Chemistry for the IB Diploma Programme

Guiding Question revisited

What happens when protons are transferred?

In this chapter we have seen:

A proton is [H ⁺].
Brønsted–Lowry acids are proton donors and Brønsted–Lowry bases are proton acceptors.
A conjugate acid–base pair differs by a single proton.
Amphiprotic species can act as both Brønsted–Lowry acids and bases.
The pH scale is the negative base 10 logarithm of [H ⁺].
The ion product constant of water, K_w , is temperature dependent. It shows the inverse relationship between [H ⁺] and [OH ⁻].
Strong acids and bases are fully ionized in solution, weak acids and bases are only partially ionized.
Acids and bases react together in neutralization reactions to form salts. The overall reaction is $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$ which is exothermic.
The equivalence point in a titration is where the acid and base have exactly neutralized each other in a stoichiometric ratio.
pH curves show the change in pH as an acid and base react together in titration.
Neutralization involving a strong acid and strong base gives a characteristic pH curve. The pH at the equivalence point is 7.