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FOREWORD 

Further Mathematics HL: Linear Algebra and Geometry has been written to provide students 
and teachers with appropriate coverage of these two Further Mathematics HL Topics, to be first 
examined in 2014. 

The Linear Algebra topic introduces students to matrices, vector spaces, and linear transformations. 
Useful preparation for this topic including the introduction to matrices is provided online with our 
MYP5 Extended book. The Principle of Mathematical Induction is useful for proofs in this topic, but 

is not essential in its preliminary study. 

The Geometry topic aims to develop students’ geometric intuition and deductive reasoning, 
particularly in plane Euclidean geometry. Most of this topic can be done using prior knowledge 
from the MYP5 Extended course. However, the final sections on conic sections require calculus 
from the HL Core course. 

Detailed explanations and key facts are highlighted throughout the text. Each sub-topic contains 
numerous Worked Examples, highlighting each step necessary to reach the answer for that example. 

Theory of Knowledge is a core requirement in the International Baccalaureate Diploma Programme, 
whereby students are encouraged to think critically and challenge the assumptions of knowledge. 
Discussion topics for Theory of Knowledge have been included on pages 124 and 129. These aim to 
help students discover and express their views on knowledge issues. 

Graphics calculator instructions for Casio fx-9860G Plus, Casio fx-CG20, TI-84 Plus and TI-nspire 
are available from icons in the book. 

Fully worked solutions are provided at the back of the text. However, students are encouraged to 
attempt each question before referring to the solution. 

It is not our intention to define the course. Teachers are encouraged to use other resources. We have 
developed this book independently of the International Baccalaureate Organization (IBO) in 
consultation with experienced teachers of IB Mathematics. The text is not endorsed by the IBO. 

In this changing world of mathematics education, we believe that the contextual approach shown in 
this book, with associated use of technology, will enhance the student's understanding, knowledge 
and appreciation of mathematics and its universal applications. 

We welcome your feedback. 
Email:  info@haesemathematics.com.au 

Web: www.haesemathematics.com.au 

CTQ PJB 

RCH PMH 
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ONLINE FEATURES 
There are arange of interactive features which are available online. 

With the purchase of a new hard copy textbook, you will gain 27 months subscription to our online product. 

This subscription can be renewed for a small fee. 

COMPATIBILITY 
For iPads, tablets, and other mobile devices, the interactive features may not work. However, the 

electronic version of the textbook can be viewed online using any of these devices. 

REGISTERING 
You will need to register to access the online features of this textbook. 

Visit www.hacsemathematics.com.au/register and follow the instructions. Once you have registered, you 

can: 
e activate your electronic textbook 

e use your account to make additional purchases. 

To activate your electronic textbook, contact Haese Mathematics. On providing proof of purchase, your 

electronic textbook will be activated. It is important that you keep your receipt as proof of purchase. 

For general queries about registering and licence keys: 
e Visit our Frequently Asked Questions page: www.haecsemathematics.com.au/fag.asp 

e Contact Haese Mathematics: info(@haesemathematics.com.au 

ONLINE VERSION OF THE TEXTBOOK 
The entire text of the book can be viewed online, allowing you to leave your textbook at school.



INTERACTIVE LINKS 

Throughout your electronic textbook, you will find interactive links to: 
e Graphing software 

  

  

  
  

  

  

e Geometry packages 

e Demonstrations D e e ——— e, =) 
e Printable pages Fie Edt Help 

e Calculator instructions Drag the circles to change their diameter and location. Does this alter the 
relationship between the points of intersection? [ hex | 

CLICK ON THESE : 
ICONS ONLINE 

e e 
  Ele £dt View Tools Help 

LAt ANYALFID 
Asymptotes Sover Xantpt Yanuept Intersect Tangent Dervatve Optimum Inegal 

+ 
propertes   

Reaton: (5 + day + Gy =21 

502 + dzy 5y2 =21     

  

  

    
  

  

| I I d 
            
  

  - 
2t Geometry Package - A set square attached to axes. 
  

File Edit Help 
  

Drag points A and B along the axes. What do you notice about the path 
traced out by point P? 

    
  

  

8 Matrix Operations 
Ele Edt Help 
Instructions 
Perform matrix operations by defining the matrices (4-Z) and then writing your expression at the bottom. The 
results will show the resulting matrix, or display undefined if the calculations can't be done. The currently defined 
matrices are displayed at the top. Matrices may be entered as text with spaces between columns and semicolons 

Results 

124 01 21 20 4=|2 21 a:[_ ]c=[ ]p:[ ] 
L _”] 12 32 31 

1l8|-2lcl+4lD|=7 

  

o Rows: 2|5 
1 Columns: 2 - 

Textiout 
[Expression input 

1B-2iCI+4PD| 3 -m         
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SYMBOLS AND NOTATION USED IN THIS BOOK 

Q is approximately equal to 

  

        

> is greater than 

> is greater than or equal to 

< is less than 

< is less than or equal to 

{i} the set of all elements ...... 

{z1, T2, ...} the set with elements zy, o, .... 

€ is an element of 

¢ is not an element of 

N the set of all natural numbers {0, 1, 2, 3, ....} 

Z the set of integers {0, £1, +2, £3, ...} 

7+ the set of positive integers {1, 2, 3, ...} 

R the set of real numbers 

u union 

n intersection 

C is a proper subset of 

C is a subset of 

= implies that 

= does not imply that 

& if and only if 

Z—z the derivative of y with respect to « 

f(z) the image of x under the function f 

f(z) the derivative of f(x) with respect to 

n 
;ui up + U + Uz + oo + Uy 

sin, cos, tan the circular functions 

arcsin, arccos, arctan  the inverse circular functions 

Il is parallel to 

€1 is perpendicular to



Az, y) the point A in the plane with Cartesian coordinates x and y 

[AB] the line segment with end points A and B 

AB the length of [AB] 

AX.AY AX x AY 

(AB) the line containing points A and B 

CAB the angle between [CA] and [AB] 

AABC the triangle whose vertices are A, B, and C 

v the vector v 

0 the zero vector 

ij, k unit vectors in the directions of the Cartesian coordinate axes 

Vew the vector dot product or scalar product of v and w 

VX W the vector cross-product of v and w 

aij the element in the 7th row and jth column of matrix A 

A! the inverse of the non-singular matrix A 

AT the transpose of the matrix A 

det A, |A| the determinant of the square matrix A 

tr(A) the trace of the square matrix A 

1 the identity matrix 

o the zero matrix 

~ which has the same solution as 

ker(T) the kernel of the linear transformation T   R(T) the range of the linear transformation T



Linear Algebra 

  

Contents: 

A Systems of linear equations 

B Gaussian elimination 

€ Matrix structure and operations 

D Matrix multiplication 

E  Matrix transpose 

F  Matrix determinant and inverse 

G Solving systems of linear equations using matrices 

H Elementary matrices 

I Vector spaces 

J  Linear transformations 

K Geometric transformations 

1] 

- L Eigenvalues and eigenvectors 
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We are all familiar with linear equations of the form y =maz +c¢ or azr+by+c=0 where z and y 

are variables and the other letters represent constants. These equations represent straight lines on the 

2-dimensional Cartesian plane. 

In this course we consider linear equations in higher dimensions, and how they can be represented using 

matrices. We will study the properties of matrices, their use in solving systems of linear equations, 

and the concept of vector spaces. These things are all part of the branch of mathematics called linear 

algebra. 

Linear algebra is fundamental to all modern technology, being the basis for all computer science. Its 

applications extend to engineering, physics, natural sciences, analytic geometry, and economics. 

SRRy Em k-1 

Carl Friedrich Gauss was born in 1777 in Brunswick, now a 

part of Germany. His parents were very poor. His mother 

could not read or write, so she did not record the date 

of Gauss’ birth. However, Gauss himself worked out his 

birthday from his mother remembering that he was born on 

a Wednesday, 8 days before the Feast of the Ascension, a 

Christian celebration which occurs 40 days after Easter. At 

the same time, Gauss found a method for finding the date of 

Easter in both past and future years. 

Gauss was a child prodigy. At the age of ten, Gauss’ teacher 

set his class the task of adding up the numbers between one 

and a hundred. Expecting the students to take a long time, 

the teacher was surprised when Gauss derived a formula to 

solve the problem, and presented his correct solution in mere 

minutes. Gauss started university at the age of 15, and attended 

  

Carl Gauss 

for three years. His tuition was paid for by the Duke of Brunswick, who had heard of Gauss’ 

mathematical talents. His greatest work, Disquisitiones Arithmeticae, was completed when he was 

21 years old. When it was published three years later, it was dedicated to the Duke. 

Gauss made many mathematical discoveries during his doctoral studies. These include the 

Fundamental Theorem of Algebra (which he proved in four different ways) and the matrix method 

for solving systems of linear equations which we now call Gaussian elimination. 

In the late 18th century, the dwarf planet Ceres was tracked by a number of Italian astronomers until 

it was ‘lost” behind the sun. Gauss was able to predict a position for Ceres in December 1801, which 

turned out to be accurate within a half-degree when it was rediscovered by German astronomers. 

In 1807, Gauss was appointed Professor of Astronomy at Gottingen University, and Director of the 

astronomical observatory in Gottingen, a post he held for the rest of his life.
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NI SYSTEMS OF LINEAR EQUATIONS 
a1x1 + as2 + ... + apz, = b is a linear equation in the variables zi, za, ...., p, 

where ay, as, ...., ap, b are constants. 

  

For example, 2z =3, 4y =7, and 3z —y =4 are all linear equations. 

Ty =1, Tog =C2, ..., Typ = C, is a solution to the linear equation a;x1 +asxs +....+apx, =0 

if these values of the variables together satisfy the equation. 

For example, consider the linear equation x; + 2z2 — 3z3 = 8. 

e 11 =3, xa =4, x3=1 is a solution to the equation since 3+ 2(4) —3(1) = 8. 

e 11 =-1, 2o =3, z3=—1 is a solution to the equation since —1 + 2(3) —3(—1) =8. 

e There are actually an infinite number of solutions of the equation. They have the form 

vy =8—2s+3t, xo =35, v3=1t where s,t€R. 

The set of all solutions of a linear equation is called the solution set. 

The solution set for a linear equation can often be written in many different forms. 

For example, the solution set for z; + 2zo — 3z3 = 8 can also be written as z; = s, z2 = t, 

  

  

  

T3 = $3t78 where s, t € R. 

Find the solution set of: 

a z—-3y=1 b 2z — x5 +4z3 =11 

a Let y=t b Let 27y =5 and z3=1¢ 

x—3t=1 co28s—ao + 4t =11 

r=1+3t co 25+ 4t —11=ao 

the solution set is . the solution set is z1 = s, 

r=1+3t y=t, tek To=2s+4t—11, z3 =1 

where s, t € R.   

  

  
  

        
a1171 + a12T2 + ... + A1 Ty = by ) . 

is an m X m system of linear equations 
2171 + G222 + ... + Q2 Ty = b : . ystem ot q 

. which consists of m equations in the n unknowns 

. . . . L1y T2y eeeey Ty 

TG DR SR e 

Ty =C1, Ty = C2, ..., Tn = C, is a solution of the system of linear equations if these values satisfy 

all m equations simultaneously.
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21 — ma + 4z =11 ... (1) 
For example, consider the system { otae—3ms=2 .. () 

o 11=3, zo=-1, x3=1 satisfies (1) since 2(3)— (—1)+4(1) =11 

but does not satisfy (2) since  (3) +(—1) —3(1) = —1#2 

1 =3, va=—1, 3 =1 is not a solution of the system. 

o =14, 2 =1, w3=2 satisfies (1) since 2(3)— (£)+4(2) =11 

and satisfies (2) since (&) + () - 3(2) =2 

1 =3, z5=13, 23=2 is a solution to the system. 

An m x n system of linear equations is: 

e inconsistent if it has no solution 

e consistent if it has at least one solution. 

. 2y=3 ... 
For example, consider the system { 22 i 45 7 52; 

If we divide equation (2) by 2, we get x + 2y = 3.5. This is inconsistent with equation (1), so there 

are no solutions. 

An m x n system of linear equations is homogeneous if b; =0 forall i=1, 2, ..., n. 

If a system is homogeneous then 7 = x5 = .... =z, = 0 is always a solution. It is not necessarily 

the only solution. 

1 +x9 —x3 =0 

For example, z9+x3 =0 is a homogeneous system of linear equations. 

2:61 —x2 + xr3 = 0 

An m x n system of linear equations is: 

e underspecified if it has more unknowns than equations (n > m) 

e overspecified if it has more equations than unknowns (m > n). 

r+y+22=2 

20+y—z=4 

2 equations in 3 unknowns. 

For example, { is an underspecified system of linear equations, since there are 

   

     
    

If an underspecified system of linear 

equations is consistent then it will 

have infinitely many solutions.
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AUGMENTED MATRICES 

A system of m x n linear equations can be written as a rectangular array of m by (n + 1) numbers 

by leaving out the + and = signs, and the variables. We call this an augmented matrix (AM). 

The general system 

  
a1171 + a12T2 + oo + ATy = by a1 a2 .. ain | b 

a2171 + AT + ... + A2 Ty = bo azr G2 ... G2, | b2 
has AM . 

Am1%1 + Gma®a + ..o + Q@ = b Am1  Gm2 o Gmn | b 

For example, the system 

2wy + 3xs — x4=5 2 3 0 1|5 

1 — x2+ x3+2x4 =10 has AM 1 -1 1 2 |10 

Ty — 2Z2 - 3I3 — X4 = 1 1 -2 3 -1 1   

An augmented matrix is 

a matrix of coefficients. 

  

EXERCISE 1A 

1 Explain why each of the following is not a linear equation: 

a 2xy +To+ 2374 =3 bz —z—22=0 ¢ T1=7—./Z2 

2 Find the solution set for: 

a 8—y=3 b z;— 215+ 23=10 € T1+x9— 213+ 14 =2 

3 Write down the system of linear equations corresponding to the augmented matrix, and state if the 

system is underspecified or overspecified: 

1 1.0 0f5 
a[lli—?’zl b11224 ‘00116 

9 1|-1 21 3 —-1|3 00 2 0|8 
00 0 1|2 

4 Write down the augmented matrix for the system of equations: 

X + To — I3 = 4 

a Ty —To+ T3 = 8 

2z1 +x9 — 323 =0 

1 +To—x3—x4 =05 

C 3o +ax3+a4=1 
b { 1+ a0 —203=7 

dry —x4 =06 
3z + x3=2 

=4 
5 For what value(s) of a € R does the system Tty have: 

3x+3y=a 

a o solutions b infinitely many solutions ¢ exactly one solution? 

. r—2y==F . 
6 For what value(s) of k£ € R is the system consistent? 

20 —4y =8
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z+y+ z=p 

7 Find the relationship between p, ¢, and r given that the system T +2z=g¢q isconsistent. 

2e+y+3z=r     
r+y= 

8 a Explain why the system 20—y = is inconsistent. 

3r+y=28   
b s this system underspecified or overspecified? 

r14+xe— x3—T7=0 
is h . oy — 2+ 205 — 9 = 0 is homogeneous 9 a Determine whether the system { 

1+ T — T3 =a 
h ? %y — 9+ 5 — 8 = b 0mogeneous b Under what conditions is the system {



LINEAR ALGEBRA (Chapter 1) 15 

EINIT GAUSSIAN ELIMINATION 
In previous years, we have solved 2 x 2 systems of linear equations by elimination. 

2r+y=—1 
Consider the system {z C gy =17, 

From using the method of elimination, we know we can: 

e interchange the equations, called swapping 

20 +y=-1 has th Luti z—3y=17 
o3y =17 as the same solution as %ty — 1 

e replace an equation by any non-zero multiple of itself, called scaling 

2 =-1 —62 —3y =3 Itiplying by —3 
{xw:;z 17 has the same solution as { z _ 35 _17 {multiplying by —3} 

e replace an equation by a multiple of itself plus a multiple of another equation, called pivoting. 

If we replace the second equation by “twice the second equation, minus the first equation”, we have 

2x — 6y = 34 

-2+ y=-1) 

—T7y =35 

2 =-1 . 2c+y=—1 
{xx:;z 17 has the same solution as { 1773 _ 35 

The principles of swapping, scaling, and pivoting are applied to augmented matrices as elementary row 

operations. We can hence: 

e i . 
interchange rows Elementary row operations 

e replace any row by a non-zero multiple of itself do not change the solution 

e replace any row by itself plus a multiple of another row. of the system. 

  

2 =1 _ 
For example, the system {;:;Z 17 has AM (? 713 | 171 ) 2L 

e If we interchanged rows 1 and 2, we would write: 

21—1N1—317 
vl T2 1] 

means “which has the indicates rows 1 and 2 

same solution as” have been interchanged 

e If we multiplied row 1 by —3, we would write: 

1 =317 1 3|17 

indicates row 1 has been 

replaced by “—3 x row 17 
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o If we replaced row 2 by “twice row 2 minus row 1”, we would write: 

2 1|1\ _ (2 1]|-1 
1 3|17 07735 

indicates row 2 has been replaced 

by “twice row 2 minus row 17 

In the process of row reduction, we use elementary row operations to eliminate variables from selected 

rows of an augmented matrix. This allows us to systematically solve the corresponding system of linear 

equations. 

SOLVING 2 x 2 SYSTEMS OF LINEAR EQUATIONS 

To solve a 2 x 2 system of linear equations by row reduction, we aim to obtain a 0 in the bottom left 

corner of the augmented matrix. This is equivalent to eliminating z; from the corresponding equation. 

Use elementary row operations to solve: { 

  

2c+3y =4 

br+4y =17   
  

. . 2 3|4 
In augmented matrix form, the system is ( 5 4 ‘ 17) 

o 2 3|4 

0 —7|14 2R275R1*>R2 

    
      

L Check your solution by 
y=-2 substitution into the 

Substituting into row 1, 2z + 3(—2) =4 e o 

2z =10 

=5 

the solution is =z =5, y = —2.     
  

In previous courses, you should have seen that ax + by = ¢ where a, b, ¢ are constants, is a line in the 

Cartesian plane. Given two such lines, there are three possible cases which may occur: 
  

Intersecting lines Parallel lines Coincident lines 
  

-— 

-— 

  

one point of intersection no points of intersection infinitely many points of 

a unique simultaneous no simultaneous solutions intersection 

solution For example: infinitely many simultaneous 

For example: 2743y =1 solutions 

{2z +3y=1 {2x 1 3y="7 For example: 

  4z 4+ 6y =2         z—2y=28§ {2x773y:1
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EXERCISE 1B.1 

r—3y=2 
1 Consider the system of linear equations 

Y 4 { 2r+y=-3 

a Write the system as an augmented matrix. 

b Replace the second row with “the second row minus twice the first row”. 

¢ Hence solve the system. 

2 By inspection, decide whether the pair of lines is intersecting, parallel, or coincident, and state the 

number of solutions to the system. 

4oy = 2% —y=—1 a{:cy b{xy 
  

  

  

3z + 6y = r+4y =13 

c Tz —5y=28 d z+y=4 

2z = 10y + 14 r+y=a, a€R 

3 Use elementary row operations to solve: 

5 r—3y=-8 b r+ Ty =-17 

4z 4+ 5y =19 2c —y =11 

. 2z +3y = -8 d 3r—y=9 

r+4y=-9 4o+ 3y =-1 

. z+3y=4 
4 Consider th 1 onsider the system {2z+6y=8. 

Explain why there are infinitely many solutions. 

Try to solve the system using elementary row operations. Explain what happens. 

Let y=t, t € R. Solve the system in terms of ¢. 

Let z =s, s € R. Solve the system in terms of s. 

® 
Q
 

an
 

O 
o 

Explain why your solutions in ¢ and d are equivalent. 

T —5y =28 
5 Consider the system { where a € R. 

2z — 10y =a 

a Write the system as an augmented matrix, and perform an elementary row operation to make 

the bottom left corner element 0. 

b Explain what the second row means for the cases where a # 16. How many solutions does 

the system have in this case? 

¢ Find all solutions for the case where a = 16. 

r+3y=4 
for all beR. 

2e+ay=> oral a,5€ 
6 Discuss the solutions to {
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SOLVING 3 x 3 SYSTEMS OF LINEAR EQUATIONS 

a1y + ajpze + azrs = di 
The general 3 x 3 systems of linear equations a21T1 + A20%o + ag3w3 = do can be written as 

    az1z1 + azaTe + aszrs = ds 

ann a2 a3 | di 
the augmented matrix az1 g azs | da 

az; azz asz | ds 

We can use elementary row operations to reduce the matrix to the form in which 

o 
o 

o
o
 

o 

>
0
 

= 
Q
o
 

there is a triangle of zeros in the bottom left corner. We call this row echelon form. 

From the row echelon form, we can see that: 

e If h#0, the third row means hxs =i. We can therefore solve for x3, and hence for 25 and z; 

using rows 2 and 1 respectively. The system has a unique solution. 

s 
z+3y—2z2=15 

Solve using elementary row operations: 26 +y+z2="7 

r—y—2z=0 

1 3 -1]15 

The system has AM 2 1 1|7 

1 -1 -2]0 

1 3 —-1] 15 

~ 0 -5 3 —23 R2 - 2R1 — R2 

0 —4 —1|-15 Rg — R1 — R3 

1 3 -1] 15 

~10 =5 3 |-23 
0 0 —17| 17 5R3 — 4Ry — R3 

Using row 3, —17z =17 

Loz=-1 

Substituting into row 2, —5y+ 3(—1) = —23 

—5y=—20 

Substituting into row 1, x4+ 3(4) — (—1) =15 

the solutionis z =2, y=4, z=—1.    
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e If h=0 and i # 0, the third row means 0z; + Oxz + Oz =4 where i # 0. In this case there 

is no solution and the system is inconsistent. 

z=3 

Solve using elementary row operations: 20 —y+2=28 

z=1 

The system has AM 
2 

c
C
o
~
 

o
o
~
 
W
=
 

Row 3 means that Oz + Oy + 0z = 5, which is absurd. 

there is no solution, and the system is inconsistent. 

T+ 2y + 

  3z —4y + 

2 1|3 

-1 18 

—4 118 

2 113 

-5 —112 R2 - 2R1 — R’_} 

—-10 —-21(9 R3 — 3R1 - R3 

2 1 (3 

-5 —-1(2 

0 0 5 R3 72R2 HR3 

  

e If =0 and i = 0, the last row is all zeros. In this case the system has infinitely many 

solutions. We let x3 =t where ¢t € R and write z; and x5 in terms of ¢. In this case the solution 

is a parametric representation with parameter ¢. We call z; and z basic variables and z3 a free 

variable. 

Solve using elementary row operations: 

  

The system has AM 

2 

C
o
w
 
O
O
 

w
W
H
 

N -1 15 

1 —-1(2 

-3 3|8 

-1 1 5 

3 -3 -1 2R2 - R1 — R2 

-3 3 1 2R3 - 3R1 — R3 

-1 1 5 

3 -3|-1 

0 010 Ry +Rs — Rs 

Row 3 indicates there are infinitely many solutions. 

If we let z =t¢, then using row 2, 3y —3t=—1 

Jy=3t—1
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Substituting into row 1, 2z —(t—3)+t= 

  

EXERCISE 1B.2 

1 Solve each system of linear equations by row reduction to echelon form: 

  
              

  

r+4y+11z2=7 20 —y+ 32 =17 2c+3y+4z=1 

a z+6y+172=9 b 2x — 2y — 5z =4 < br + 6y + 7z =2 

r+4y+8z=4 3z +2y+2z=10 8z +9y + 10z =4 

r—2y+5z=1 T+2y—z=4 2c +4y+z2=1 

d 20—y +8z=2 e 3x+2y+2z="7 f 3z —by—3z=19 

-3z —1lz=-3 Sr+2y+3z=11 Sr+ 13y +72=1 

Example [ 

T—2y—z=-1 

Consider the system 2v+y+32=13 where a € R. 

z4+8y+9z=a 

a Row reduce the system to echelon form. 

  

b For what values of a does the system have no solutions? 

¢ Under what conditions does the system have infinitely many solutions? Find the solutions in 

  

this case. 

1 -2 -1|-1 

a The system has AM 2 1 3|13 
1 8 9 a 

1 -2 -1| -1 

~|l0 5 5 15 Ry — 2R, — Ry 
0 10 10 [a+1 R37R1*>R3 

1 -2 -1 -1 

~l0 5 5 15 

0 0 0 a— 29 R3—2R2—>R3 

b Using row 3, the system has no solutions if a # 29. 

¢ The system has infinitely many solutions if the last row is all zeros. This occurs when a = 29. 

In this case we let z =t. 

using row 2, 5y + 5t = 15 

5y =155t 
y=3—-1¢ 

Substituting into row 1, xz—2(3—t) —t=—1 

L z—6+t=-1 

r=5-1 

the solutions have the form z=5—1t¢, y=3—1t, z=1t, tcR.    
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T+2y+2=3 

2 Consider the system 2 —y+4z=1  where k€R. 

r+Ty—z2=k 

Row reduce the system to echelon form. 

b For what values of k& does the system have no solutions? 

¢ Under what condition does the system have infinitely many solutions? Find the solutions in 

this case. 

d Explain why the system never has a unique solution. 

T+2y—22=5 

3 Consider the system r—y+32=-1  where keR. 

T —Ty+kz=—k 

Row reduce the system to echelon form. 

b Show that for one value of k, the system has infinitely many solutions. Find the solutions in 

this case. 

¢ Show that there is a unique solution for all other values of k. Find this solution in terms of k. 

r+3y+3z=a—-1 

4 Consider the system 20 —y+z2="7 where a € R. 

3z — 5y +az =16 

a Row reduce the system to echelon form. 

  

b Show that for one value of a, the system has infinitely many solutions. Find the solutions in 

this case. 

¢ Show that there is a unique solution for all other values of a. Find the solution in terms of a. 

REDUCED ROW ECHELON FORM 

We have seen how elementary row operations can be used to reduce augmented matrices to echelon 

form. 

We can use further row operations to convert the augmented matrix into a form from which the solution 

can be read by inspection. 

An augmented matrix is said to be in reduced row echelon form if: 

e any row containing all zeros is placed at the bottom 

o for every other row, the first or leading non-zero element is 1 

e the rows which contain non-zero elements are ordered according to the positions of the leading 1s 

e every column containing a leading 1, has zeros elsewhere. 

For example: 

  

      

  
  

        

. . The pivots 
e these matrices are in row echelon form: e 

9 4 14 5 011 2 6 3 

0 1 3) 0 1 o0 6) 0 0 0[]4 
00 00O 
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e these matrices are in reduced row echelon form: 
  

      

    

  

1 00 3 10 3 0 4 éggff 
oo -4, (oo o0l 5], 000 -1 3 
0011 5 00000O0 0000 0 0o 

The leading 1s in each row are the pivots for the row operations, and the variables corresponding to the 

columns which they are in are basic variables. The remaining variables are free variables, and must be 

allocated parameters. 

The systematic procedure by which a system of linear equations is written as an augmented matrix in 

reduced row echelon form and hence solved, is called Gaussian Elimination. 

We generally use a calculator for this task, since it can take a long time by hand. 

Click on the icon to obtain instructions for your graphics calculator. You 

should be able to enter an augmented matrix, then reduce it to row echelon GRAPHICS 

form or reduced row echelon form. CALCULATOR 
INSTRUCTIONS 

  

Solve the system of linear equations whose augmented matrix in reduced row echelon form is: 

1 0 0]-3 1 3 0 2|-1 

a 01 0f 4 b 00 1 1| 4 

00 1|7 00 0 O0]O0 

a By inspection, the system has the unique solution z; = —3, zo =4, xz3 =1T1. 

b The basic variables are x1 and x3, and the free variables are x5 and z4. 

Let zo =7 and z4 = s. 

Using row 2, x3+s=14 

Loxz3=4—3s 

Using row 1, x; +3r+2s=—1 

.y =—-1—3r—2s 

  

      So, the solutions have the form z; 1-3r—2s, zo =r, x3=4—s, x4 =s, where 

r, s €R.     
EXERCISE 1B.3 

1 Which of the following augmented matrices are in reduced row echelon form? 

1 3040 

a (1) g 8 b 10 2 3 c 00110 

01 0 01 2 4 00010 
00000 

2 Solve the system whose augmented matrix in reduced row echelon form is: 

10 0] 2 1 5 0]0 100 2|5 
a 01 0[-9 b 00 10 < 01 0 2|4 

00 1|3 00 0f1 001 1|6
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3 Solve each system of linear equations using Gauss elimination on your calculator to write the system 

in reduced row echelon form. 

  

3$1 + x9 — T3 = 12 T2 - 2z4 =4 

a Tl — Tt T3 = -8 b 1+ X2 +4xys =9 

4‘117212”13:78 Ty — T3 T z4:72   
I1+2z2+ 3I3=4 

1 — xo+ dxz =T 

31 + 3z + 1023 = 15 

6I1 -+ 91?2 -+ 19I3 =9 

T+ xo— wzg—4dxyg=1 

d r1+ Txo+ 3w+ 224 =2 

x1 + 1320 + Txg + 814 =3       

T1+ T2+ x3+2T4+ x5=2 

Ty —Tat+ T3— T4t T5=3 

3z1 + 22 + 33 + 324 + 375 = 

21 +2x3+ 4+ 225 = 

    xr1 T2 T3 QI4 3w5 1 

e 3x1 — 319 + 2]33 *414*9$5 =3 f 

2$1 - 212 — I3 + QI4 - 6$5 =2 

  

    
  4 A cubic function h(d) = z1d® + z2d? + z3d + 4, 1 < d < 2.5, is used to model the height h of 

a hill in metres above sea level, at a distance d km from the ocean. 

At the point (1, 12), the gradient of the hill is 0.1. 

The point (2.5, 46) is the top of the hill, at which the gradient is zero. 

(2.5,46) 

(1,12) 

0 d (km) 

ocean 

a Use the points (1, 12) and (2.5, 46) to write two equations in the unknowns z1, z2, 3, Z4. 

The gradient of the hill is modelled by the function 4/(d) = 3z1d? + 232d + 3. 

i If you have already studied calculus, explain why this is so. 

ii Use the gradients of the hill at the given points to write two more linear equations. 

Solve the system of linear equations to find x1, x2, T3, 4. 

d Hence estimate the height of the hill at the point 2 km from the ocean. 

HOMOGENEOUS EQUATIONS 

We have seen that a homogeneous system of linear equations has all constant terms zero. 

It has the form a1y + a2 + .. + A1 T, = 0 

2171 + 22T + ... + A2p Ty, =0   

Am1%1 + Gma®2 + ... + Gmp Ty = 0. 

All homogeneous systems have the trivial solution z; = 23 = .... = z,, = 0. 

If a homogeneous system of linear equations is under-specified (so it has more unknowns than equations) 

then it has infinitely many solutions.



24  LINEAR ALGEBRA (Chapter 1) 

  

Example 8 

Solve the homogeneous system: 

  

1+ x2— x23=0 

R .’171+.'112+.’E3+3.114:0 b 1 — T2+ Tz = 

Il—I2+I3—5I4=0 2I1--3I2— I3=0 

  

1 1 1 3|0 
a The system has AM (1 11 _5‘ ) 

~ (é (1) é ;1 | 8) {using technology} 

Let 23 =s and x4 =1. 

To+4t=0 and 1 +s—t=0 

r1=—8+t, xo=—4t, x3=358, T4=1, s, t ER 

1 1 —-1]0 

b The system has AM ; ;1 _11 8 

3 -1 =210 

1 0 0]0 

~ 8 (1] [1) 8 {using technology} 

0 0 0f0 

the only solution is the trivial solution z; = x5 = 23 = 0.     
  

EXERCISE 1B.4 

1 Briefly explain why the following systems of homogeneous equations have non-trivial solutions: 

s r+2y=0 b T+ T2— w3=0 

20 +4y=0 1+ 3x2 + 523 =0 

2 Solve the following homogeneous systems of linear equations: 

  x1 + T2 =0 Ty — X2+ x3+ $4:0 
r+3y— z2=0 

a b T +ax3=0 c 2w + w0 — w3 —2x4 =0 
2z — y+52=0 

1 —x2+2x3=0 3xy —xo+ 223+ w4 =0 

(p—2)z+y=0 
has a non-trivial solution. Find p. 

z+(p-2y=0 b 
3 The system { 

ax+biy=0 
has one solution =z =1, y=yi. s +boy = 0 1, Y=M4 

  
4 The system of equations { 

a Show that = = cxy, y = cy; is a solution for all ¢ € R. 

b If x =x5, y =y is also a solution, show that z = x; +z5, y =y; +y2 is also a solution.
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A matrix is a rectangular array of numbers arranged in rows and columns. 

The numbers are called the elements of the matrix. 

We can convert any table of numbers into a matrix. 

For example, the premiership table opposite can be 

  

   

W L D P Titans 2 

T /10 2 3 23 LG 
written as the matrix P [ 7 6 2 16 United 

U 3 7 5 11 Bulls 

B 3 8 4 10 

10 2 3 23 MIGHTY TITANS Shoenir 

or simpl T626 ] 
PY s 75 11 

3 8 4 10 

< 

Notice that °% 

e every number within a matrix has a particular meaning e qgac 

o the organisation of the data is maintained in matrix form. THE BULLS 

  

MATRIX ORDER 

Consider the following examples: 

2 

1 has 4 rows and 1 column, and we say that this 
6 isa 4 x1 column matrix or column vector. 

1 

column 2 -3 

6 1 2 . 
9 9 3 has 3 rows and 3 columns, and is called a 

row 3 100 4 3 X 3 square matrix. 

this clement is in row 3, column 2 —T 

(3 0 —1 2) has 1 row and 4 columns, and is called a 

1 x 4 row matrix or row vector. 

An m X n matrix has m rows and n columns. 

m X nspecifies the order of a matrix.



26  LINEAR ALGEBRA (Chapter 1) 

MATRIX TERMINOLOGY 

Consider a matrix A with order m x n. We can write 

ai1 a2 @13 ... Qip 

G21 Q22 Q23 ... d2p 
A= 

Am1  Am2  Am3 ... Amn 

A= (ai]_) where i=1,2,3,...m By convention, the 

a;j are labelled 

down then across. j=123, ..,n 
and a;; is the element in the 7th row, jth column. 

For example, agz is the number in row 2 and column 3 of matrix A. 

The ith row of A is ((lil ;2 Qi3 ... Qip ) and 

ayj 

{IQ]' 

the jth column of A is azj 

[ 

The elements a11, asz, ass, ...., G, form the main diagonal of an n X n matrix. 

Some special names used to describe matrices are: 

e A zero matrix O has all elements 0 and can be of any size. a;; =0 for all 7, j. 

e A square matrix has the same number of rows as columns. 

e An identity matrix I is a square matrix with all main diagonal elements 1, and 

zeros everywhere else. 

a; =1 and a;; =0 forall i# j. 

e A diagonal matrix is a square matrix where a;; = 0 for all i # j, and at 

least one diagonal element is non-zero. 

e An upper triangular matrix is a square matrix in which a;; =0 for 7 > j. 

e A lower triangular matrix is a square matrix in which a;; =0 for 7 < j. 

  

Example 

0 00 

000 

12 0 
31 2 

4 0 -1 

100 

010 
0 0 1 

100 

00 0 
0 0 4 

-
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EQUALITY OF MATRICES 

Two matrices are equal if they have the same order and the 

elements in corresponding positions are equal. 

A=B & [T bi]‘ for all 4, ] 

For example, 

a b [ 
(c d)—(y z) S a=w, b=z, c=y, and d = z. 

< means 
“if and only if”. 

  

MATRIX ADDITION 

Carla has three boxes of sports equipment: A, B, and C. The boxes Box 

contain bats, balls, and cones according to the matrix shown. A B C 

12 15 11\ bats 

32 25 21 | balls 

26 28 20/ cones 

Carla has ordered more equipment for the boxes. 10 bats, 20 balls, 10 10 10 

and 15 cones will be added to each. The new equipment is given by 20 20 20 
the matrix shown. 15 15 15 

When the new equipment is added to the boxes, we have the matrix addition: 

12 15 11 10 10 10 22 25 21 
32 25 21 |+ 120 20 20 ) =52 45 41 
26 28 20 15 15 15 41 43 35 

To add two matrices, they must be of the same order, and we add 

corresponding elements. 

A + B = (aij) + (biy) = (as; + bij) 

MULTIPLES OF MATRICES 

A cake recipe requires 3 cups of flour, 2 cups of sugar, and 6 eggs. 

3 
We can represent these ingredients using the matrix C = | 2 

6 

If we make two cakes using this recipe, we will need 6 cups of 

flour, 4 cups of sugar, and 12 eggs. 

We can represent this using the matrix 2C=C+ C = | 4 

12 

Notice that to get 2C from C, we multiply each element of C 

by 2. 
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Similarly, to make three cakes using the recipe, the ingredients needed are given by 

3x3 9 
3C=(3x2|=1|6 

3x6 18 

bxay (3 
If we made a cake using only half the ingredients, we would need %C = % x2|=11 

1 3 X6 3 

If A = (a;;) hasorder m x n, and k is a scalar, then kA = (ka;;). We use capital letters for 
matrices and lower-case 

letters for scalars. 
So, to find kA, we multiply each element in A by k. 

The result is another matrix of order m X n. 

  

NEGATIVE MATRICES 

The negative matrix A, denoted —A, is actually —1A. 

—A = (-1 x ai5) = (—aij) 
—A is obtained from A by reversing the sign of each element of A. 

A 3 -1 =3 1 For example, if A:<2 4>, then *A:(,Q ,4)' 

MATRIX SUBTRACTION 

To subtract two matrices, we define A—B=A+ (—B). 

For example, suppose that over the next 6 months, Carla’s sports equipment is lost or broken according 

3 2 4 

to the matrix 15 12 7 

4 0 3 

The equipment remaining is given by 

22 25 21 3 2 4 19 23 17 

52 45 41 ) — |15 12 7 | =| 37 33 34 

41 43 35 4 0 3 37 43 32 

To subtract matrices, they must be of the same order, and we subtract 

corresponding elements. That is, A — B = (a;; — b;;).



  

3T T R 

  

  
EXERCISE 1C.1 

Let A= 

4A 

C-A 

T
 

=
 

=
W
 

N
 

and C = 

-1 
-3 
0 

-2C 
—2A + 4C 

2 

5 
2 

Find: 

  

A +2C 

1A 

Consider two m x n matrices A = (a;;) and B = (b;;). Prove that: 

A+B=B+ A 

B—-—A=—-(A—-B) 

A+A+A+....+A=FkA, keZ" 

k of these 

Find z and y such that: 

ZIQ 

3 4 ( )=( y 9 

3 y+7 ) 

kA + kB = k(A + B) 
(a+b)A =aA + bA forall a,beR 

( r 2y 

y 

—y 

Ty 

3 2 1 2 0 -3 1 3 .o 
Let A—(4 5 6)’ B—(1 7 71), and C—(4 2). Find: 

A+B A+ C A—-B 

3A —1iB 2A — 3B 

A+B A + C cannot be found as A and C have 

(3 21 9 0 -3 different orders. 

“\a56)T\1 7 21 
(5 2 =2 

~\5 12 5 

A—-B 3A 

_ (3 2 1)y (2 0 =3 (9 6 3 

“\4 5 6 1 7 -1 —\12 15 18 

(1 2 4 

“\3 -2 7 

7%B 2A — 3B 

-1 0 % _ (6 4 2\ (6 0 -9 
= 1 71 “\8 10 12 3 21 -3 

2 T2 2 
(0 4 11 

—\5 —11 15 
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4 Two teachers are comparing the grades their students have 

scored in recent exams. 

Last year Keith’s students obtained 9 As, 12 Bs, and 7 Cs. 

This year his students obtained 8 As, 14 Bs, and 5 Cs. 

Tatiana’s students obtained 12 As, 6 Bs, and 13 Cs last year. 

This year they obtained 9 As, 9 Bs, and 10 Cs. 

a Write the results of Keith’s students in a 3 x 2 matrix K. 

b Write the results of Tatiana’s students in a 3 x 2 matrix T. 

¢ Find K+ T and K- T. 

d Explain the significance of the matrices found in c. 

-3 2 2 —4 0 5 
5 a Let A_(0 4), B_(3 71), and C—<72 73). 

Find (A +B)+C and A + (B + C). 
b Prove that if A, B, and C are any m x n matrices, then (A + B) + C=A + (B + C). 

  

6 Let O be the zero m x n matrix. Prove that for all m x n matrices A: 

a A+O0O=0+A=A b A+ (-A)=(-A)+A=0 

MATRIX ALGEBRA 

We have made several discoveries about general m x n matrices. In the following table we compare 

these with algebraic facts for real numbers. Assume that A, B, C, and the zero matrix O are matrices of 

the same order. 
  

  

  

  

Ordinary algebra Matrix algebra 

e If a and b are real numbers then e If A and B are matrices then 

a+b is also a real number. A + B is a matrix of the 

same order. 

e atb=b+a e A+B=B+A 

o (a+b)+c=a+(b+c) e (A+B)+C=A+ (B+C) 

e a+0=0+a=a e A+tO0O=0+A=A 

e a+(—a)=(-a)+a=0 e A+(-A)=(-A)+A=0 

o k(a+b)=ka+kb o k(A +B)=FkA + kB     
  

3¢ IR 

  

. . . We always write 
Write X in terms of A and B, if: 

  

A 1 
a X+2A=8B b 5X=A Callandieo i 

a X +2A =B b 5X = A 
. X+2A+ (—2A) =B+ (—2A) ooLX)=tA 

"~ X+0=B-2A L IX=1A 
. X=B-2A . 1 
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EXERCISE 1C.2 

1 Simplify: 

a 3A +4A 

d X+X 

g A—(2A+C) 

C-5C 
¢ 3(A+B)—B 

2(A + B) — (A — B)   

2 Write X in terms of A, B, and C: 

a X+B=2A 
d IX+A=2C 

-1 2 3 
3 Suppose Az(o 1 

1 

B-X=C 
e 3(X-B)=2B+C 

2 0 5 

¢ 2M - 2M 
2B — (A — B) 

i A-2D—i(D-A) 

¢ B+2X=C 
f C-35X=A-1C 

>, B:(1 ! 4), and 3A — 2X = 3B. 

a Make X the subject of the equation. 

b Hence find matrix X.
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CIMT MATRIX MULTIPLICATION 
Stefan needs 2 new tyres, 18 ball bearings, and a bottle of oil 

for his go-kart. Stefan can buy these items at two shops. 

  

At shop A, tyres cost €16.50 each, ball bearings cost €0.55 

each, and a bottle of oil costs €5.95. 

At shop B, tyres cost €14.75 each, ball bearings cost €0.70 

each, and a bottle of oil costs €6.50. 

We can represent this information using a quantities matrix 

Q= (2 18 1) 

tyres ball bearings oil 

  

16.50 14.75 

and a cost matrix C = | 0.55 0.70 

595  6.50 

To find the fotal cost of the items in each store, Stefan needs to multiply the number of items by their 

respective costs. 

In shop A, the total cost is 

2 x €16.50 + 18 x €0.55 4+ 1 x €5.95 = €48.85. 

In shop B, the total cost is 

    2 x €14.75+ 18 x €0.70 + 1 x €6.50 = €48.60. 

To calculate these values using matrices, we use matrix multiplication: 

row Q X column1l row Q X column 2 

      

6.50 14.75 \ / 
QC=(2 18 1) x 0.55  0.70 = (4885 48.60) 

5.95  6.50 

1] [3]+— the same —[3] x [2 1] x[2                           

L resultant matrix —T 

Now suppose Stefan’s friend Jason also needs supplies for his go-kart. Jason needs 4 new tyres, 12 ball 

bearings, and 1 bottle of oil. 

The quantities matrix for both Stefan and Jason is 2 18 1) -— Stefan 
4 12 1 )<— Jason 

A 
tyres  ball bearings oil 

Stefan’s fotal cost at shop A is €48.85 and at shop B is €48.60. 

Jason’s fotal cost at shop A is 4 x €16.50 + 12 x €0.55 4+ 1 x €5.95 = €78.55 

and at shop B is 4 x €14.75 + 12 x €0.70 + 1 x €6.50 = €73.90.    
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So, using matrices we require that 

    

row 1 x columri 1 rorv 1 x column 2 

2 18 1) 1%? %Qf (4885 48.60 
4 12 1 5'95 6.50 o 78.55 73.90 

row 2 x column 1 row 2 x column 2 

[2]x [8]«— the same —[3]x[2 2Ix[2               

T— resultant matrix —T 

Having observed the usefulness of multiplying matrices in the contextual examples above, we now define 

matrix multiplication more formally. 

  

The product of an m X n matrix A with an n X p matrix B, is the 

m X p matrix AB in which the element in the rth row and cth column 

is the sum 'of the produc'ts of the elements in the th row of A with the sum from 7 — 1 

corresponding elements in the cth column of B. ey 

n 

Z means the 
2= 

n 
If C=AB then Cij = Z ai,«b,«]‘ = ailblj S aizbgj S ainbnj 

r=1 

for each pair 7 and j with 1 <i<m and 1<j<p. 

Note that the product AB exists only if the number of columns of A 

equals the number of rows of B. 

  

For example: 

_f(a 0 _ (P 4q _ [ap+br aq+bs 
If A_(c d) and B—(T s), then AB_(cp+dr cq+ds ) 

  d e f de+ey+ fz 

2x3 2x1 
3x1 

To get the matrix AB you multiply rows by columns. To get the element in the 5th row and 3rd column 

of AB (if it exists), multiply the 5th row of A by the 3rd column of B. 

z 
If Cz(a b c) and D= |y |, then CDz(az”bercz). 

z 

  

  

    

a Ais 1x|3] and Cis |3[x 2 . ACis 1x2             

1 2x243x4+1x3)  
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b Bis 2x[3] and Cis [3]x 2 o BCis 2x2 

v 

2 31 
Bcf(l 4 2) 

C(2x3+3x2+1x1 2x2+3x4+1x3 

T\Ix3+4x2+2x1 1x2+4x4+2x%x3 

(13 19 
“\13 

      

=
N
 

W
 

W
 

o 
N
 

        

  

EXERCISE 1D.1 

1 Explain why AB cannot be found for A = (—2 3 1) and B = <:12 (1] ;1 ) 

2 Suppose Ais 3 xn and Bis m x 2. 

a When can we find AB? b If AB can be found, what is its order? 

¢ Explain why BA cannot be found. 

3 Let A=(3 2) and B=(6 5). Findd a AB b BA 14 

2 
4 Let A=(3 1 4) and B= |3 | Find: a AB b BA 

1 

5 Find: 
301 -10 1 1 

a (13 2)(2 23 b [ -2 2 -1 |-3 
110 0 3 1 2 

2 1 1 -1 2 1 
c(jQ}g)O—231 d 30(3}1(1)_03) 

3.0 2 1 -1 1 

6 At a new Chinese restaurant, the szechuan eggplant costs 

$8.95, the roast duck costs $12.95, and the crispy skin 

chicken costs $9.95. 

In the first month of operation, the restaurant sells 156 

serves of eggplant, 193 serves of duck, and 218 serves of 

crispy skin chicken. 

In the second month, the restaurant sells 183 serves of 

eggplant, 284 serves of duck, and 257 serves of crispy 

skin chicken. 

a Write the costs as a 3x 1 matrix C, and the numbers 

asa 2 x 3 matrix N. 

  
b Find NC and interpret the resulting matrix. 

¢ Find the total income from these dishes over the two months.



LINEAR ALGEBRA (Chapter 1) 35 
  

USING TECHNOLOGY FOR MATRIX OPERATIONS 

Click on the icon to obtain graphics calculator instructions for MATRIX 
. . . . OPERATIONS 

performing operations with matrices. ) 

Alternatively, you can click on the Matrix Operations icon to GRAPHICS 
i CALCULATOR 

obtain computer software for these tasks. INSTRUCTIONS 

EXERCISE 1D.2 

1 Use technology to find: 

2SN, 10689 
a b 5222 7 4 5 0 

La02 6 8 2 4 4 6 
301 8 11 

13 12 4 3 6 11 13 12 4 3 6 11 

¢ 211 12 8 |+3|2 9 8 d 0411 12 8] —-1312 9 8 
T 9 7 3 13 17 7T 9 7 3 13 17 

2 A bus company runs four tours. Tour A costs $125, Tour B costs $315, Tour C costs $405, and 

Tour D costs $375. The numbers of clients they had over the summer period are shown in the table 

below. 

Tour A Tour B Tour C Tour D 

November 50 42 18 65 Use matrix methods to find 

December 65 37 25 82 the total income for the tour 

January 120 29 23 75 company. 

February 42 36 19 72 

PROPERTIES OF MATRIX MULTIPLICATION 

INVESTIGATION 1 

In this Investigation we find the properties of matrix multiplication which are like those of ordinary 

number multiplication, and those which are not. 

What to do: 

1 For ordinary arithmetic 2 x 3 =3 x 2, and in algebra ab = ba. 

For matrices, does AB always equal BA? 

A (-1 3 (2 -2 
Hint: TryA7<0 2) andBf(1 3). 

2 atrA=(%%) amdo={? %) find AO and OA. c d 00 

b What can be deduced from the results in a? 

¢ Prove your result in b is true for all square matrices A where O is the zero square matrix 

of the same order.
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3 a Find AB for: 

. 10 00 o 4 -2 1 -3 
i A—(O 0) and B—(O 1) 1] A—(_2 1) and B—(2 —6) 

b Explain the significance of this result. 

4 For all real numbers a, b, and ¢, we have the distributive law a(b + ¢) = ab + ac. 

a Use any three 2 x 2 matrices A, B, and C to verify that A(B + C) = AB + AC. 

b Now let A=(a b), B=(p q), and C:(w z) 
c d ros y z 

Prove that in general, A(B + C) = AB + AC for A, B, and C of appropriate order. 

5 alIf (lé 2)(1‘; z):(z Z), showthat w=2z=1 and z=y=0 isa 

solution for any values of a, b, ¢, and d. 

b For any real number a, we know that ax1=1Xxa = a. 

Is there a matrix I such that AI = IA = A for all 2 X 2 matrices A? 

¢ Suppose I, isan n x n matrix with 1s along the main diagonal and zeros everywhere 

  

else. 

1 0 00 0 

0100 0 I, is called the 

0010 0 n X n identity matrix. 

=100 01 0 

0000 .1 
for i#j ‘ So, if X =1, then (zij):{(l) fzi zf; (@ 

Prove that AL, = A for all n X n matrices A. 

6 Suppose AF = AAAA..A 
N————— 

k of these 

alf A= (f’l 32) find: i A2 i A3 

2 0 -3 

b If B=| -1 1 2 find: i B? ii B* 

0 -2 1 

¢ If I, isthe n xn identity matrix, deduce that IT{“ =1 forall ke Z". 

-1 0 

d If A= 1 2|, explain why A% cannot be found. 
-2 1 

7 For all real numbers a, b, and ¢ we have the associative law (ab)c = a(bc). 

a Prove that for all 2 x 2 matrices A, B, and C, (AB)C = A(BC). 

b Suppose A = (a;;) is 1x2, B=(b;) is 2x3, and C = (¢;5) is 3 x4. 

Show that (AB)C = A(BC).
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In the Investigation you should have found that: 
  

Ordinary algebra Matrix algebra 
  

If a and b are real numbers then 

50 is ab. {closure} 

ab=ba forall a, b {commutative} 

a0=0a=0 foralla 

ab=0 < a=0 or b=0 
{Null Factor law} 

a(b+c) = ab+ac 

{distributive law} 

axl=1xa=a {identity law} 

a™ exists forall >0 and ne€R 

a(bc) = (ab)c forall a, b, ceR 

{associative law}   

If A and B are matrices that can be multiplied 

then AB is also a matrix. {closure} 

AB # BA. 

If O is a zero matrix then 

AO = 0A =0 forall A. 

In general {non-commutative} 

AB may be O without requiring 

A=0 or B=0O. 

A(B + C) = AB + AC {distributive law} 

If I, isthe n xn identity matrix then 

Al, =1,A = A forall nxn matrices A. 

{identity law} 

A™ exists provided A is square and n € Z* 

(AB)C = A(BC) provided A, B, and C are of 

appropriate order. {associative law}     
  

Note that in general, A(kB) = k(AB) # kBA. We can change the order in which we multiply by a 

scalar, but we cannot reverse the order in which we multiply matrices. 

eErrs0°0°0°0%0%0 
Expand and simplify: 

a (2A +1)? b (A — 2B)? 
  

a  (2A+1)2 

(2A +1)(2A +1) 

(2A +1)2A + (2A + 1)1 

    

= 4A2% 1 21IA + 2A1 + I2 

=4A% +2A +2A +1 

= 4A% 4 4A +1 

b A —2B)? ( 
(A —2B)(A — 2B) 

(A — 2B)A + (A — 2B)(—2B) 

= A% — 2BA — 2AB + 4B?   
EXERCISE 1D.3 

1 Expand and simplify where possible: 

a X(2X+1) 

e B-—A)B+A) f (A2 

{X? = XX by definition} 

{distributive law} 

{distributive law} 

{AI=1A=A and P =1} 

b (31 + B)B 

‘We cannot simplify 

b further, since in 

general BA # AB. 

  

{X? = XX by definition} 

{distributive law} 

{distributive law}   
¢ D(D?+3D + 2I) 

g (51 — 2B)? 

(A + B)(C — D) d 
h (A+  
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Suppose A% =2A — I. Write A® and A* in the form 
kA + I where k,l € Z. 
  

    

        

      

      

A% = A x A? A=A x A3 

=A(2A 1) = A(3A —2I) 

=2A% — AI = 3A2% — 2AI 

=202A—-1) - A =3(2A—-1)—2A 

=4A -2l — A =6A — 31— 2A 

=3A -2 =4A - 31     

2 Suppose A% =3A + 2I. Write in the form kA + [I where k, [ € Z: 

a A? b At c A8 

3 Suppose A is a matrix with the property A? = I. Simplify: 

a A(2A +3I) b (A-1)? ¢ A(A + 51)2 

4 Show using counter-examples that the following are not true in general: 

a A2=0 = A=0 b A2=A = A=0orl 

5 Find all 2 x 2 matrices A for which A? = A. 

6 Find the error in the argument: A% =2A 

= A’-2A=0 
= AA-21)=0 

= A=0or2l 

7 Explain why the binomial expansion for real numbers can also be used to expand (A + kI)", 

n € 7+, but cannot be used to expand (A + B)".
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N MATRIXTRANSPOSE 
The transpose AT of matrix A is the matrix obtained by writing the rows of A as the columns of A 

  

If A= (a;) isan m xn matrix, then AT = (a;;) isan n x m matrix. 

2 1 4 
For example, if A = (0 31 

2 

), then AT=1[1 
4 =

W
 

o 

The square matrix A is: 

o symmetric if AT = A 

o skew-symmetric if AT = —A. 

For example: 

° ( ,3 1 _21) is symmetric o (g _02) is skew-symmetric. 

PROPERTIES OF TRANSPOSE 

Provided that the orders of the matrices are appropriate for the operations to be performed: 

o (ANT=A 

e A+BT=AT+B" and (A—B)' =AT — BT 
o (sA)T =sAT for any scalar s € R 

e (AB)T = BTAT 

Prove that (AB)"T = BTAT for matrices A, B of appropriate 
order so that multiplications may be performed. 

  

  

k 

If C = AB then Cij = E a,mbn]‘ 

n=1 

k 
(AB)T = CT where cj; = Z: Qjnbni 

n=1 

If we let D = B'AT, then d;; z bniajn 
n =i 

k 
Z ajnbni 
= 

=cj; 

Since ¢j; =d;; forall i, j, C' =D 

(AB)T = BTAT     
 



40  LINEAR ALGEBRA (Chapter 1) 

EXERCISE 1E 

1 For A:(1 3 2) and B:(2 0 3), find: 
0 4 1 1 -2 -1 

a (ADT b (A+B)T ¢ AT + BT d (3A)7 e 3AT 

f (A—B)T g AT — BT h (—2B)T i —2B” 

1 01 -1 2 1 

2 For A= 2 1 3 and B = 0 3 2|, find: 

-1 4 1 4 0 5 

a AB b (AB)T ¢ ATB" d BTAT 

3 Assuming the matrices are of suitable shape for the operations being performed, prove that: 

a (ANT=A b (A+B)=AT + BT c (sA)T =sAT 

4 a Prove that (A1A2A3)T = AJASA 

b Generalise the result in a using Ay, Ag, Ag, ..., Ay, 

Use mathematical induction to prove your generalisation 

is true for all n € Z7. 
       

   

  

   
For help with mathematical 

induction see the HL Core course. 

5 Prove that: 

a if A is symmetric, then AT is symmetric 

b if A and B are symmetric, then A + B is symmetric 

¢ if A and B are symmetric, AB is symmetric < AB = BA. 

6 Prove that A = (a;;) is skew symmetric < a;; = —aj;. 

7 Suppose A is a square matrix. 

a Show that AAT, ATA, and A + AT are symmetric. 

b Is A — A" symmetric? Explain your answer. 

8 Give examples of 3 x 3 matrices which are 

a symmetric b skew-symmetric. 

9 a Suppose A is symmetric. If P is a matrix of appropriate size, comment on whether PTAP is 

symmetric or skew-symmetric. 

b Suppose A is skew-symmetric. If P is a matrix of appropriate size, comment on whether PTAP 

is symmetric or skew-symmetric.
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L5 [ MATRIX DETERMINANT AND INVERSE 
The real numbers 3 and % are called multiplicative inverses because when they are multiplied together, 

  

the result is the multiplicative identity 1: 3 x =2 x3=1. 

. 5 2 -1 2 . 5 2 -1 2\ (1 0\ 
For the matrices <3 1) and ( 3 _5), we notice that (3 1)( 3 _5> = (0 1)71 

-1 2 5 2 10 

and (3 4;)(3 1)‘(0 1)‘1' 

We say that (g ?) and ( _31 35> are multiplicative inverses of each other. 

The multiplicative inverse of A, denoted A~!, satisfies AA™! = A"!A =1 

To find the multiplicative inverse of a matrix A, we need a matrix which, when multiplied by A, gives 

the identity matrix L. 

FINDING THE INVERSE OF A 2 x 2 MATRIX 

Suppose A=(Z Z) has inverse A_1=(1; z) 

. 1 _f[a b woT\ ()T 
aw+by ar+bz) (1 0 

cw+dy cx+dz ) \0 1 

aw+by=1 ... (1) d ar+bz=0 .. (3) 

{cw Fdy=0 .. M \eawtdzi=1 .. (4     

    

    

  

Solving (1) and (2) simultaneously for w and y gives: w = d and y= ¢ 
ad — be ad — be 

Solving (3) and (4) simultaneously for z and z gives: z = -t and z=—2 . 
ad — be ad — be 

1 _ 
So, if A= (‘(l 2) where ad —be#0, then A~ = ——r (i ab). 

In this case A™'A =   D) 
1 (ad—be bd—bd 

" ad—be \ ac—ac —bc+ad 
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Just as the real number 0 does not have a multiplicative inverse, some matrices do not have a 

multiplicative inverse. This occurs when det A = ad — bc = 0. 

For the matrix A=<a b): 
c d 

o the value ad — be is called the determinant of matrix A, denoted detA or |A| 

  

. . 1 d b 
f detA # 0, then A is i tibl -singular, and A"l = o if detA # en A is invertible or non-singular, an JotA ( e a ) 

o if detA =0, then A is singular, and A~! does not exist. 

Find, if it exists, the inverse matrix of: 

e a=(5% ) o= ) 

. as(5 ) o (5 7) 

  

| det A = 3(1) — (<2)(=2) = -1 - det B=3(4) — (—6)(~2) 
(12 —12-12 

- A ‘*3(2 3) =0 

1 -2 - B! does not exist. 

-(= 3)     
EXERCISE 1F.1 

. 2 —4 - 
1 Find (3 _5)<_ 

2 Find the determinant of each of the following matrices. Hence find the inverse, if it exists. 

3 2 2 1 11 5 0 a a 

(4 1) o (—1 3) (1 0) d (3 0) € (—a 1) 

3 For Az(il 2 ), find: 

a detA b det(—A) c det(2A) 

3 =5 

4 Prove that if A is any 2 x 2 matrix and k is a constant, then det (kA) = k2 det (A). 

2 

1 

e
 

nj
on

 

) and hence find the inverse of (§ :g ) 

5 Prove that |AB|=|A||B| forall 2x 2 matrices A and B. 

-1 2 

6 Suppose A = o2 and B=| -4 6 -11 3 L 
a Find AB. 

b Use BA to explain why A and B are not inverses. 

¢ Explain why only square matrices have inverses.
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S ETTIERT 

Suppose A = (;1 fl ) Find A~! in terms of k, and state the values of k for which A~! 

exists. 
  

det A = 4(—1) — k(2) 

    

  

    

  

=—-4-2k If | A| =0, the matrix A is 

= —(2k+4) singular and is not invertible. 

1 k 

e -1 —k\ | 2k+4 2k+4 
T —@k+4) \—2 4 ) 2 - 

2k+4 2k+4 

. A7 exists provided 2k +4 # 0 A5 

A exists for k€ R, k # —2.   
  

7 For each of the following matrices A, find A~! and state the values of k for which A™! exists. 

2k k-5 —3 k12 
: A:(?, 76> ° AZ( 2 k) ¢ A:(k+1 k+5> 

FURTHER MATRIX ALGEBRA 

In this section we consider matrix algebra with inverse ) N 
. T Premultiply means multiply 

matrices. Be careful that you use multiplication correctly. p 
on the left of each side. 

In particular, remember that: Pty wemms ey 

e We can only perform matrix multiplication if the orders on the right of each side. 
of the matrices allow it. 

e If we premultiply on one side then we must premultiply 

on the other. This is important because, in general, 

AB # BA. The same applies if we postmultiply. 

  

INVESTIGATION 2 

In this Investigation, we consider some properties of invertible 2 x 2 matrices. 

What to do: 

1 A matrix A is self-inverse when A = A~L. 

. (-1 0 4 1({-1 0\ (-1 0} _ 
For example, if A = ( 0 _1) then A _T( 0 _1) = ( 0 _1> = A. 

a Show thatif A = A"! then A%2=1L 

b Show that there are exactly 4 self-inverse matrices of the form ( (; Z) .
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C 

-1 -1 

2 1 

If A is any invertible matrix, simplify (A=1)71(A=!) and (A=1)(A=1)~! by 

replacing A=! by B. 

What can be deduced from b? 

Given A=< ), find A=% and (A71)~L 

3 Suppose k is a non-zero number and A is an invertible matrix. 

b 

Simplify (kA)(%A‘l) and (%A‘l)(kA). 

What can you conclude from your results? 

1 
(3 1 (2 2 o ) 

Suppose A = (74 72) and B = ( 5 1 > Find, in simplest form: 

i A7! ii B! i (AB)~! 

iv (BA)~! v A-B! vi B71A! 

Choose any two invertible matrices and repeat a. 

Simplify (AB)(B~!A~!) and (B~*A~!)(AB) giventhat A= and B~! exist. 

What can you conclude from your results? 

1 2 
Given A = <0 3 ), find (A71)T and (AT)"L. 

Choose another invertible matrix A and repeat a. 

Prove that for all invertible 2 x 2 matrices A, (A~!)T = (A7)~ 

. -1 -1 
Given A = ( 9 1 ), find: 

i A7! 

il (A?)7! and (A71)? 

i (A%~ and (A71)3 

For help with mathematical 

induction see the HL Core course. 

   Prove that if A is an invertible 2 x 2 matrix, then ‘ 

(A%)~t = (A71)2 =~ 

Use mathematical induction to prove that for any 3 

invertible 2 x 2 matrix A, (A")"! = (A" for )= 

all nezZ™. 

From the Investigation you should have found that if A and B are invertible, then: 

o (AN 1=A o (kA)!= %A‘l o (AB)"'=B7'A"! 

o (AHT=(AT)! o (AM)~l=(A"H)" forall neZ*
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€1 IR 

Suppose A% =3A — L. Find A~! in the linear form rA + sl, 
where 7 and s are scalars. 

Premultiply means 

multiply on the 

left of each side. 

  

A?=3A-1 

S AT'A?=A"'(3A-1)  {premultiplying both sides by A™'} 

o ATTAA=3A"TA ATl 

IA=31-A"1 

  

AT =—A+3I ' 

EXERCISE 1F.2 

1 Consider the matrix equation AXB = C. 

a Show thatif A~! and B™' exist, then X = A~!CB~!. 

. 2 =7 -3 -2 4 1 
b Find X such that (_1 4 )X( 9 1>7(0 2)‘ 

2 Suppose X,Y,and Z are 2 x 1 matrices, and A and B are invertible 2 x 2 matrices. 

If X =AY and Y = BZ, write: 

a X in terms of Z b Z in terms of X. 

3 If A= (32 _52), write A2 in the linear form pA + ¢I where p and g are scalars. 

Hence write A~! in the form rA + sI where r and s are scalars. 

4 Write A™! in linear form, given that: 

a A2=2A+1 b 3A=2I — A? ¢ 2A2-3A-1=0 

5 TItis knownthat AB = A and BA = B where the matrices A and B are not necessarily invertible. 

Prove that A% = A. 

6 Under what condition is it true that “if AB = AC then B = C™? 

7 If X=P 'AP and A® =1, prove that X* = L. 

8 If aA? +bA +cd =0 and X =P 'AP, prove that aX? + bX + cl = O. 

9 If A= (Z Z), find constants s and ¢ such that A2+ sA + tI = O. 

10 Prove thatif AB™! = B™'A, then AB = BA. 

11 A non-singular matrix A is orthogonal if A=! = AT, 

a Prove that ATA = 1. 

b Prove that if A and B are orthogonal then AB is also orthogonal. 

¢ Prove that if A is orthogonal then A~! is also orthogonal.
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THE DETERMINANT OF A 3 x 3 MATRIX 

            

ay b1 C1 

The determinant of A = | ax b2 ¢ is defined as 

az by c3 

a by ¢ b 
o Co az ¢ az by 

[Al=|az by c2|=a by s — by a5 cs +c as b 
az by c3 

where the 2 X 2 determinants are called the minors of |A|. 

Just like 2 x 2 matrices, a 3 X 3 matrix will have an inverse if OP'E‘,'?I-:},'(),(NS 

|A[#0. m 
GRAPHICS 

CALCULATOR 
INSTRUCTIONS 

[3'E1 IR K] 

To find the inverse of a 

3 x 3 matrix, we 

generally use technology. 

     
S [ ) 1 O i (B ) 
S .- 
=-9   
  

EXERCISE 1F.3 

1 Evaluate without using technology: 

2 30 -1 2 -3 2 1 3 1 00 
a |-1 2 1 b 1 0 0 c (-1 1 2 d |0 20 

2 05 -1 2 1 2 1 3 0 0 3 

00 2 4 1 3 1 0 1 3 -1 2 

e [0 1 0 f|-10 2 g |0 -1 1 h |1 -4 1 

3 00 -1 1 1 -2 1 0 -3 1 -1 

Check your answers using technology. 

z 29 

2 Find the values of  for which the matrix 3 1 2 is singular. 

-1 0 =z 

Explain the significance of your answer.
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3 Evaluate: 

a 0 0 0 =z vy a b c 

a [0 b O b |-z 0 =z c |b ¢ a 

0 0 ¢ -y —z 0 c a b 

2 

have an inverse? 

S
 
o
=
 a® 1 

L For what values of a and b does 0 a 

1 0 

N 

5 Find as a product of 3 factors. 

—
 

o 
o
 

e 

Q
.
o
 e
 

o 
o 

INVESTIGATION 3 

a b1 Cl 

            

  

  

            

            

By definition, |A|=|az by c2|=ay by — by G +c1 az by . (1) 
o b by c3 3 C3 az bs 

3 03 C3 

In this Investigation we explore how the determinant can be represented in other forms. 

What to do: 

1 By expanding (1), show that 

IA‘ a1b203 a1b302 (12()103 t a3b102 t agb361 (13b201. 

2 Show that we can also write: 

bl c1 ay; C1 ay bl 
a [Al=—a +b —c . (2 

Al 2lbs e *las ¢ *las by @ 

b1 C1 ap €1 ay bl b |[A|l=a —b SINC . 3 [A| by o Blay co| T ay by (3) 

ay bl C1 

For the determinant of A = | as bs ¢ |, we say that (1) is the expansion by the first row, 

az by c3 
(2) is the expansion by the second row, and (3) is the expansion by the third row. 

Notice that: 

  

    

          

   

      

e the signs before each term are: in (1) 

— + — in(2) 

in (3) 

e to construct 3), |A|= a bia T & @* b 
’ Blby lag e $lag by 

Cross out row cross out row Ccross out row 

and column of and column of and column of 

A containing ag A containing bs A containing cg 

1 b a U o 
o by a o C2
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DETERMINANT PROPERTIES FOR n x n MATRICES 

If matrix B is obtained from matrix A by interchanging two rows (or columns) then |B|= —|A|. 

If A has a row (or column) which is all zeros then |A|= 0. 

If A has two identical rows (or columns) then |A|=0. 

If B is obtained from A by multiplying one row (or column) by k € R, then |B|=Fk|A|. 

If B is obtained from A by adding to one row (or column) a multiple of another row (or column), 

then |B|=|A|. 

|AB|=|A[|B| 
[AT] = Al 

EXERCISE 1F.4 

1 Check the first five properties using the general 2 x 2 matrix A = (a b ) 
c d 

ay b1 C1 

Check the first five properties using the general 3 x 3 matrix A= | ax by ¢ 

as b3 C3 

IfAis 3x3, explain why |kA|=k3|A|. 

Prove that |A"|=|A| forall 3x 3 matrices A. 

  

1 3 0 2 -1 1 

If A=(2 -1 1 and B=|1 2 3], verifythat |[AB|=|A||B|. 
4 1 =2 0 1 4 

If A is non-singular, prove that | At | = fi 

If A is an orthogonal matrix, prove that |A|= £1. 

1 x z? 1 a a® 

Consider f(z)=|1 b | and A= |1 b b 
1 ¢ ¢ 1 ¢ ¢ 

a Prove that f(z) has factors (z —b) and (z —c). 

b Hence prove that |A| has a factor (a —b)(a —c). 

¢ Prove that |A| has a factor (b—a)(b—c). 

Find A given that (AT —3I)~! = 

W 
= 

o 

w 
o 

e 

O 
=



LINEAR ALGEBRA (Chapter 1) 49 

QUATIONS 
MATRICES 

3x—2y—10 

—z+3y=-1 

can be written in the form ( 3 _2>( ) = < 10 ) 
-1 3 Y -1 

The solution z =4, y =1 can be checked using the matrix multiplication 

3 =2 4\ (10 

-1 3 1)\ -1) 

An n x n system of linear equations can be written in the form AX = B where A is an n X n 

square matrix of coefficients, X is an n x 1 column matrix of variables, and B is an n x 1 column 

matrix of constants. 

  

The systems of linear equations 

Consider such a system of the form AX = B. 

If the square matrix A is invertible, then the system has a unique solution 

which can be found as follows: 

AX =B 

. ATHAX)=A"'B  {premultiplying by A™'} 

(AT'A)X =A"'B 

IX=A"'B 

X=A"'B 

    
      

    

      

   
The matrix A is 

invertible if A= 
exists. 

If the square matrix is not invertible, then the system does not 

have a unique solution. 

3 €1 TR 

Solve using matrices: { 

  

3z — 2y =10 

—z+3y=-1 

. . 3 -2 a7 10 
In matrix form, the system is (_1 3 ) (y) = (_1>, 

A= (2 7)) ten A= @@ - (2D -7 
. _17132 (3    

Premultiply by 

the inverse matrix 

on both sides. 
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EXERCISE 1G 

1 Solve using matrices: 

LINEAR ALGEBRA (Chapter 1) 

s 2z +4y = —6 b r—3y=13 . br+2y=3 d —2z+5y=4 

br—y="7 —3r—2y=>5 —xr—3y=15 3z —2y =20 

-3 =17 
2 Consider the system { 61123 _ 7 

a Write the system in the form AX =B where X = (z) 

b Find |A|. What does this tell us about the system? 

2x —ky =4 
3 Consider the system { w43y = 4 

a Write the system in the form AX = B where X = (Z) 

b Find |A|. What does this tell us about the system? 

. . . 3 =2 5 0 
4 Consider the matrix equation (1 4 ) X = (_3 14). 

a Does this equation represent a system of linear equations? Explain your answer. 

b Find X using an inverse matrix. 

5 Show that if X; and X, are solutions of AX = B then X3 =¢X;+ (1 —1¢)Xo 

of AX=B, forall teR. 

Explain the significance of this result. 

is also a solution 

6 For what values of k does the system have a unique solution? 

r+2y—32=5 

a 20 —y—2z2=28 b 

kr+y+2z=14 

  

Example 20 

T—y—z=2 

rc+y+3z="7 

9z —y—3z2=-1 

Solve the system 

2 —y—42=28 

3r—ky+z=1 

S —y+kz=-2 

using matrix methods and 

a graphics calculator. 
GRAPHICS 

CALCULATOR 
INSTRUCTIONS 

1 -1 -1 B 2 

In matrix form, the system is: 1 1 3 y | = 7 

9 -1 -3 z -1 

The system has the form A X = B, so X=A"'B 

x 1 -1 -1\ '/ 2 0.6 
vl=[1 1 3 7 | = =53 
z 9 -1 -3 -1 3.9 

z=0.6, y=-5.3, z=39     
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7 Use matrix methods and technology to solve: 

3r+2y—z=14 

a r—y+2z=-8 b 

2c+3y—2=13 

  
  Oz —y+4z=-9 

e T+ 3y — 5z =89 f 

132z — 17y + 232z = —309 

r—y—2z=4 

5r +y+2z=—6 

3z —4dy —2=17 

T+2y—2=23 

r—y+3z=-23 

Tx+y—4z =62 

1.3z +2.7y — 3.1z =8.2 

2.8z — 0.9y +5.62 = 17.3 

6.1z + 1.4y — 3.2z = —0.6 

  

8 Describe the limitations of using matrix methods for solving systems of linear equations. 

  

A rental company has three different makes of car for 

hire: P, Q,and R. These cars are located at yards A and B 

on either side of a city, or else are being rented. In total 

they have 150 cars. At yard A they have 20% of P, 

40% of Q, and 30% of R, which is 46 cars in total. At 

yard B they have 40% of P, 20% of Q, and 50% of R, 

which is 54 cars in total. How many of each car type 

does the company have? 

BOBS CoRAENTAL 
& 

  

  

It has 150 cars in total, so = +y+ 2z =150 ... (1) 

2 4 3, _ 
0% T 10Y T 107 =46 

22 + 4y + 32 =460 ... (2) 

  
    4 2 5, _ 0% t 10y + 152 = 54 

4z + 2y + 5z =540     -3 

r+y+2z=150 

2z + 4y + 3z = 460 

4x 4+ 2y + 5z = 540 

We need to solve the system: 

    
In matrix form, we write: 

Suppose the company has z of P, y of Q, and z of R. 

Yard A has 20% of P + 40% of Q + 30% of R, and this is 46 cars. 

Yard B has 40% of P + 20% of Q + 50% of R, and this is 54 cars. 

[AI-T[E] 

  

11 1\ [z 150 
2 4 3|y ] =460 
4 2 5/\% 540 

z 11 1\ /150 45 
vl=[2 4 3 460 | = [ 55 
z 425 540 50   {using technology} 

the company has 45 of P, 55 of Q, and 50 of R. 
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Managers, clerks, and labourers are paid according to an industry award. 

Xenon employs 2 managers, 3 clerks, and 8 labourers with a total salary bill of €352 000. 

Xanda employs 1 manager, 5 clerks, and 4 labourers with a total salary bill of €274 000. 

Xylon employs 1 manager, 2 clerks, and 11 labourers with a total salary bill of €351 000. 

Let x, y, and z represent the salaries (in thousands of euros) for managers, clerks, and labourers 

respectively. 

a Write the above information as a system of three equations. 

b Solve the system of equations. 

¢ Determine the total salary bill for the company Xulu which employs 3 managers, 8 clerks, and 

37 labourers according to the industry award. 

A mixed nut company uses cashews, macadamias, 

and Brazil nuts to make three gourmet mixes. The 

table alongside indicates the weight in hundreds 

of grams of each kind of nut required to make a 

kilogram of mix. Brazil nuts 

1 kg of mix A cost $12.50 to produce, 1 kg of mix B costs $12.40, and 1 kg of mix C costs $11.70. 

a Determine the cost per kilogram of each of the different kinds of nuts. 

Cashews 

Macadamias 

  

b Hence, find the cost per kilogram to produce a mix containing 400 grams of cashews, 200 grams 

of macadamias, and 400 grams of Brazil nuts. 

Susan and Elki opened a new business in 2007. Their annual profit was £160 000 in 2010, £198 000 

in 2011, and £240000 in 2012. Based on this information, they believe that their annual profit can 

be predicted by the model 
(& 

P(t)=at+b+ P pounds t=0 gives the 

where ¢ is the number of years after 2010. Es 

a Find the values of a, b, and ¢ which fit the profits for 2010, 

2011, and 2012. 

b The profit in 2009 was £130000. Does this profit fit the model @ 
in a? k 

  

¢ Susan and Elki believe their profit will continue to grow N\ 

according to this model. Predict their profit in 2013 and 2015. 

If Jan bought one orange, two apples, a pear, a cabbage, 

and a lettuce, the total cost would be $6.30. Two oranges, 

one apple, two pears, one cabbage, and one lettuce would 

cost a total of $6.70. One orange, two apples, three pears, 

one cabbage, and one lettuce would cost a total of $7.70. 

Two oranges, two apples, one pear, one cabbage, and three 

lettuces would cost a total of $9.80. Three oranges, three 

apples, five pears, two cabbages, and two lettuces would 

cost a total of $10.90. 

a Write this information in the form AX = B where A is a quantities matrix, X is the cost per 

item column matrix, and B is the total costs column matrix. 

  

b Explain why X cannot be found from the given information. 

¢ If the last line of information was replaced with “three oranges, one apple, two pears, two 

cabbages, and one lettuce cost a total of $9.20”, can the system be solved now? If so, what is 

the solution?
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ACTIVITY 

Cryptography is the study of encoding and decoding messages. Cryptography was first developed 

for the military to send secret messages. Today it is also used to maintain privacy when information 

is transmitted on public communication services such as the internet. 

  

To send a coded message, it must first be encrypted into code called ciphertext. When the recipient 

wishes to read the message, the ciphertext must be deciphered. 

A simple method for encrypting messages is to use matrix addition or multiplication. The messages 

are then deciphered using either matrix subtraction or an inverse matrix. 

Suppose the letters of the alphabet are assigned integer values, with Z assigned 0 as shown below: 

  

  

A|B|C|D|E|F|G|H|I JIK|L 

1123|456 | 7|89 ]|10f11]12 

N|JO|P|[Q|R|S|T|U|V|W|X|Y 

14 | 15|16 [ 17 | 18 [ 19 [ 20 | 21 | 22| 23 | 24 | 25 

The word SEND can be written as the string of numbers 19 5 14 4 which we can write in 2 x 2 

. 19 5 
matrix form (1 4 4). 

13 5 

195+27_2112 

14 4 13 5/ \27 9 

Before this matrix can be transmitted all of its numbers must be written in modulo 26, or mod 26. 

This means that any number not in the range 0 to 25 is adjusted to be in it by adding or subtracting 

multiples of 26. 

Now suppose we encrypt the message by adding the matrix ( 2T ) 

21 12 

1 9 

the string says ULAI, which has no apparent meaning. 

The message SEND MONEY PLEASE could be broken into groups of four letters, and each group 

is then encoded. 

SENDIMONEI|YPLEIASEE <— repeat the last letter to make group of 4. 

This is a dummy letter. 

. L 13 15 27 15 22\ _ (156 22 
For MONE the matrix required is (14 5 ) + (13 5) = (27 10) = ( 1 10 

. L 25 16 27 27 23\ _ (1 23 
For YPLE the matrix required is (12 5 ) + (13 5) = (25 10) = (25 10)(modZG) 

. L 119 2 7 3 26\_(3 0 
For ASEE the matrix required is (5 5)——(13 5)7(18 10):(18 10 

So, the whole messageis 21 12 1 9 15 22 1 10 1 23 25 10 3 0 18 10 

The matrix to be sent is therefore ( ), and this is sent as the string 21 12 1 9. By itself, 

(mod 26) 

  (mod 26) 

The person decoding the message needs to know in advance to subtract (123 ;) from each 

matrix of numbers, in order to decipher the message.
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What to do: 

1 Perform the matrix subtractions to check that the original message is obtained. 

2 Use the code given to decode the message: 

21 12 1 9 22 15 18 256 20 22 2 21 21 1 2 

25 10 12 0 20 23 1 21 20 8 1 21 10 15 2 

5 23 3 6 12 4 

3 Create your own matrix addition code. Encrypt a short message. Supply the decoding matrix 

to a friend so that he or she can decode it. 

4 A code is broken when someone discovers how the messages can be decoded. Breaking codes 

involving matrix addition is relatively easy, but breaking codes involving matrix multiplication 

is more difficult. 

Consider the encryption matrix ( ? 3 ) 

The word SEND is encoded as 

19 5 2 3 43 67\ _ (17 15 

(14 4)(1 2)*(32 50):<6 24>(m°d26)' 

What is the coded form of SEND MONEY PLEASE? 

b What matrix needs to be supplied to the receiver so that the message can be deciphered? 

Check your answer by decoding the message. 

a b 
¢ Create your own matrix multiplication code using a matrix < ¢ d ) where ad—bc = 1. 

d What are the problems in using a 2 x 2 matrix when ad — bc # 1? How can these 

problems be overcome? 

5 Research Hill ciphers and explain how they differ from the methods given previously.
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N ELEMENTARY MATRICES 
When we solved systems of linear equations using Gaussian elimination, we saw that the process required 

systematic application of elementary row operations. If we need to solve a very large system of equations, 

it is too time consuming to perform the operations by hand. There are also no easy rules for a computer 

to follow in order to obtain the inverse of the matrix of coefficients. 

  

Instead, we can program a computer to perform Gaussian elimination for us. To do this we premultiply 

the matrix of coefficients by a series of elementary matrices, each of which achieves an elementary row 

operation. We will see that if we also add a check matrix, the procedure will also (eventually) provide 

us with the inverse of the matrix of coefficients, if such a matrix exists. 

An elementary matrix E, is a square matrix which, when postmultiplied by matrix A, achieves an 

elementary row operation. 

2 

Consider the 3 x4 matrix A= | —2 0 

1 

Since A has 3 rows, E must be 3 x 3. 

Notice that: 

1 00 1 0 0 1 2 3 4 1 2 4 

e FE=({0 5 0| then EA=(0 5 0 -2 0 1 6|=|-10 0 30 
0 0 1 0 0 1 4 1 -1 2 4 1 2 

E has multiplied row 2 of A by 5, so E is equivalent to 5Rs — Ro. 

100 100 1 2 3 4 2 4 
e fE=|0 0 1 then EA=|0 0 1 -2 0 1 6|= 1 1 2 

010 010 4 1 -1 2 2 0 6 

E has interchanged rows 2 and 3 of A, so E is equivalent to R < Rj. 

100 100 1 2 3 4 1 2 
e fE=|2 1 0 then EA={2 1 0 -2 0 1 6|]=10 4 

0 0 1 00 1 4 1 -1 2 4 1 - 

E has replaced row 2 with 2 row 1 + row 2, so E is equivalent to 2R; + Ry — R2 

From examples like those above we observe that: 

e [f a matrix A has n rows, then any elementary matrix E must be n x n. 

e To find an elementary matrix E, we start with the identity matrix I,,. Then: 

> to swap R; with R;, we swap row 4 and row j in I, 

> to replace R; by kR;, we replace the 1 in row i by k 

> toreplace R; by R; +aR;, we replace the 0 in row ¢, column j with a. 

GAUSSIAN ELIMINATION WITH CHECK MATRIX 

Suppose an augmented matrix (A | B) can be converted into reduced row echelon form using a series 

of elementary matrices E;, Eo, Eg, ...., Ej. 

The final matrix in this procedure will be EEj;_1 ....E2E;(A|B).
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The matrix W = E;E;_1 ....EqE; is called the check matrix. It can be found by inserting I,, between 

A and B in the augmented matrix (A |B). 

Under Gaussian elimination, (A |B) becomes ~ W(A|B) = (WA|WB), 

andso (A|I|B) becomes W(A|I|B)=(WA|W|WB) 

(WA | W | WB) is the reduced row echelon form with check matrix. 

  

  

1+ a0 =3 

For the system 1+ 220 =5 find the reduced row echelon form with check matrix. 

2.2?1 — X2 = 4, 

Write down the corresponding elementary matrix at each step. 

For the given system, 

(A[T]B) 
1 1(1 0 0]3 

=1 2|0 1 0[5 

2 -1/0 0 1|4 

1 1 1 0 03 1 00 

~[0 1 ]|]-11 0|2 Ry — Ry — Ry Et=|-1 10 

2 -110 0 14 0 0 1 

1 1 1 0 0] 3 1 00 

~[0 1 ]|]-1 1 0| 2 E;c=| 0 1 0 

0 -3|-2 0 1|-2 Rg - 231 — Rg -2 0 1 

1 0 2 -1 0 1 Rl—R2—>R1 1 -1 0 

~[0 1 ]|-1 1 0] 2 Es=(0 1 0 

0 -3|-2 0 1(-2 0 0 1 

1 02 -1 0f 1 1 00 

~[ 0 1|]-1 1 0] 2 E;,=|0 1 0 

0 0l-5 3 1| 4 R3+ 3Ry — R3 0 3 1 
—_— 
WA W WB 

2 -1 0 1 1 (3 

Check: W(A|B)=| -1 1 0 1 2|5 

-5 3 1 2 —-1]4 

1 0| 1 

=10 1| 2 

0 0| 4 

WA WB     
  

USING GAUSSIAN ELIMINATION TO FIND MATRIX INVERSES 

If the square matrix A is invertible, then its inverse matrix A~! can be found using Gaussian elimination 

to reduce (A |I) to the form (I|A™1).



Proof: Under Gaussian elimination, (A |I) becomes (WA |W). 

If WA=1I then W=A"1 and (A|I) becomes (I|A™1). 

Note that if A~! exists then A =W~} 

= (ExEjp_y ... EoE)) 7} 
R 1 -1 —E'E, ' ENE] 

  

  

  

0 2 

Use elementary row operations to find A= for A= |1 1 3 

3 -1 1 

0 4 2|1 0 

AlD=({1 1 3|0 1 
3 -1 1|0 0 1 

1 1 3|0 0 
] 0 4 2(1 0 0 R2<—>R1 

3 -1 1]0 1 

1 1 3|0 1 O 
~10 4 2|1 0 0 

0 -4 -8({0 -3 1 R3 — 3R, — R3 

11 3(0 1 0 

~10 4 2|1 0 O 

00 -6]1 -3 1 R+ Ry — R3 

1 13,0 1 0 

~ 0 1 % % 0 0 %RQHRQ 

00 1|-%2 %+ -2 —%R3 — Ry 

1 1 3|0 1 0 

~l0 10| % -3 & Ry —iR; > R, 

001§ 3 3 
1 0 3 *% % 7% R1*R2*>R1 

~lo1o|d 1 
101 

00 1|-5 3 -3 
1003 -2 & Ry —3R3 — R, 

~|lo 102 -1 L Check this result 
31 14 121 using technology. 

00 1f-5 3 -5 

=A™ 
i _1 3 
6 i 12 

A"l = i _1 L 
3 1 12 
11 1 ¥ 

6 2 6    
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EXERCISE 1H 

1 State the elementary 3 x 3 matrix which corresponds to the row operation: 

a Ry« R3 b —4Ry — Ry ¢ Ry —2Ry — Ry d Ri1 < R3 

(4 %Rg — R3 f R3+ %Rl — R3 g R3+5Ry — R3 h Ry +6R; — Ry 

2 State the corresponding elementary row operation for the elementary matrix: 

1 00 010 1 00 
a 010 b 1 00 < 0 10 

00 3 001 -2 0 1 

1 0 0 100 
d 0 -2 0 e 01 3 

0 0 1 001 

-1 1 4 
3 Matrix A= | 1 2 3| issubjected to the following elementary row operations in succession: 

2 —-12 

Ry < Ry, Ry+Ry— Ry, R3—2Ry— Rs, 3Ry — Ry, R3+5Ry; — Rs. 

a What does A reduce to under these operations? 

b Use elementary matrices to show that they produce the same result. 

L For each of the following systems: 

i use Gaussian elimination with check matrix to convert the system to reduced row echelon 

form 

il verify your answer using the check matrix. 

  
  

      

  

r1+ 3y =4 T, + oo + 223+ 314 =4 
2z =1 

a 201 — x90 =3 b {2x1 tot 3I3 4 < 2wy + w9 + Dy Ty 7 
i — ox3 = 

3w1 — 5z2 =2 ! 3 T T3 6$4 =4     

5 Without using technology, use Gaussian elimination to find the inverse of: 

1 -2 2 
aA:<; _41> bAz(i ’51) cA=(3 2 3 

2 -1 3 

1 -2 3 
d A=[2 3 -1 

3 -1 2 

6 There are three types of elementary n X n matrices: 

e E, for swapping two rows 

e E; for multiplying a row by a non-zero constant k 

e E, for adding a multiple of one row to another row. 

a Find the determinants of these elementary matrices: 

100 001 
i 0 70 il 0 0 ili 

001 1 0 o
 

O
 

=
 

o
 

=
 

o 
o
 

1 

0
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b Prove that: 

i |Es|=-1 il |Ey|=k iii |Eq| =1 

¢ Hence, prove that every check matrix is invertible. 

d Find the inverses of these elementary matrices: 

3 00 100 100 100 
i 010 il 0 4 0 iii 010 iv 0 01 

0 01 0 0 1 00 9 0 1 0 

0 01 10 2 100 1 00 
v 010 vi 010 vii 01 4 viii -5 1 0 

100 0 0 1 0 0 1 0 01 

e Hence, describe an inverse for each of the n x n elementary matrix types. 

7 Consider A = 

O
O
 

=
 

o
 

w
 
o
 

=
=
 

N
 

a Find elementary matrices E;, Eo, and E3 such that E3EsE;A = I5. 

b Write A as a product of elementary matrices. 

a b a 

8 Given A=|0 ¢ a where a, ¢, d # 0, use Gaussian elimination to find A~ 

0 0 d 

a b ¢ 

9 a Given A=|0 d e where a, d, f # 0, use Gaussian elimination to find A™!. 

00 f 

b Suppose matrix B is obtained from matrix A by an elementary row operation. Show that if 

C is of appropriate size then BC is obtained from AC under the same elementary operation.
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MNES vecrorseacss 
An n x 1 column matrix is commonly referred to as a vector. 

We commonly use vectors to describe the coordinates of points in space. 

For example: 

e in 2-dimensions, the point (3, 4) is given the position vector (i) 

2 
e in 3-dimensions, the point (2, —1, 5) is given the position vector -1 

5 

R™ is called the real Cartesian space in n-dimensions. 

For example: 

e R =R! is the set of real numbers on the number line 

e R? is the 2-dimensional or Cartesian plane 

e R3 is the 3-dimensional Cartesian space. 

EQUALITY AND OPERATIONS IN R" 

Using our knowledge of matrices, we can define vector equality and operations between vectors as 

follows: 

Uul U1 

U2 V2 

If u=]us |, v=] 93|, and ceR: 

Un, Un, 

e equality u=v& oy, =v; forall i=1,23, .., n 

Uy + v cuy 

Ug + Vo ClUa 

e addition u+v= | uztus e scalar multiplication cu = | Ccus 

(U U cun 

0 —U1 

0 —Ug 

e zero vector 0= | 0 e negative vector —v = —1lv= | —Us 

0 —Up
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VECTOR PROPERTIES IN R" 

For vectors u, v, and w in R™, and constants c;, ¢, k € R, the following properties apply: 

  

e u+v=v+u {commutative} o (u+v)+w=u-+(v+w) {associative} 

e u+0=0+u=u {additive identity} e u+ (—u)=(—u) +u=0 ({inverse} 

e ci(cou) = cicou e (c1+c)u=ciu—+ cou 

o k(u+v)=ku+ kv 

These properties are provable using the definitions of operations above. 

  

€l T IER 1T 

Prove that for all u,ve R" and k€ R, k(u + v)=ku + kv. 

u,vare nx 1 matrices, so we let u = (u;1) and v = (v;1), i =1,2,3, ... 

Now  ku+ kv 

= k(uin) + k(vir) 

= kf(ui1) + (vir)] 
= k(ufl R ’U“) {addition} 

=k(u+v) forall u,veR" keR. 

  

ORTHOGONALITY 

If vi =(a;) and vo = (b;) are n x 1 matrices then the vector dot product 

of vi and vy is 
n 

Vi o vy = VT vy = 3 asb; = arby + agby + ... + anbn. 
Sl iz 

3 -1 You will study vector dot 
For example, if v; = | —2 and vy = 1 product more thoroughly 

1 4 in the HL Core course. 

-1 

then V10V2=V1TV2=(3 -2 1) 1 
4 

= @)=+ (=2)1) + (1)(4) 
=-1 

  

Two non-zero n x 1 vectors v; and vo are orthogonal if v, e vo = vlT vo = 0. 

Geometrically, if two vectors are orthogonal then they are perpendicular. This result is proven in the 

HL Core course. 

Three or more non-zero n x 1 vectors are mutually orthogonal if each is orthogonal to every other. 

For example, if vy, vo, and v3 are mutually orthogonal then v; @ vo = vy e v3 = vo @ v3 = 0.
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Example 25 

—240+2=0 

=0+0+2=2 .. the vectors are not mutually orthogonal. 

  

LINEAR COMBINATIONS OF VECTORS 

Vector w is a linear combination of vectors vy, va, vs, ...., V; if it can be written in the form 

W = ¢1V] + €V + c3V3 + ... + ¢,V for some constants ¢; € R. 

  

€1 T 1081 

  

  

-1 1 2 3 

Show that 0 is a linear combination of | 2 |, —1 ], and 0 

0 0 1 1 

-1 1 2 3 

Suppose 0 =c| 2] +c| =1 ] +ec3| 0 for some ¢; € R. 

0 0 1 1 

1+ 2cy 4+ 3c3 =—1 

Equating elements, we have the system of linear equations 2c1 — ¢ =0 

Ca 1+ C3 = U. 

Using technology, we obtain the unique solution ¢; =1, ¢o =2, c3 = —2. 

-1 1 2 3 

Thus 0 =112 ]|+2| -1 ] —2| 0], whichisa linear combination of the vectors. 

0 0 1 1     
  

From the Example, we write the linear combination as 

-1 1 2 3 

0 =12 |+2-1]-2{0 

0 0 1 1
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In general, 

If w is a linear combination of vectors vy, va, V3, ...., Vg, then 

C1 

C2 

W = c1V1 + CaVa + €3V + oo + Vi = (V1 | V2 | V3 | oo [ Vi) | €3 

ok 
and so w can be written in the form Ac. 

4 2 1 

a Show that | 1 can be written as a linear combinationof u= | 3 | and v= 4 

5 1 -1 

4 

b Hence write | 1 as a matrix product. 

5 

4 

a Suppose 1 | =ciu + cpv for some cq, cp € R 

5 

2 1 4 

cal 3] +e 4 = 1 

1 -1 5 

2c1 +cp=4 2 1 |4 1 0 3 

3¢y +4ex =1 which has augmented matrix 3 4 |1 |~10 1]|-2 

¢1—ca=5 1 -1(5 0 0|0 

81=3 and 82=—2 

4 2 1 2 1 

Thus | 1 | =3| 3 | =2 4 |, whichis a linear combinationof | 3 | and 4 

5 1 -1 1 -1   
  

BASIC UNIT VECTORS 

. . L . 1 0 
In R2, any vector is a linear combination of the unit vectors e; = ( 0) and ey = ( 1 ) 

Il o
 

< N Il —
 

o = o
 In R3, any vector is a linear combination of the unit vectors e; 

0 
€3 = 0 

1
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In R™, any vector is a linear combination of the basic unit vectors e;, eo, e, ...., €, where e; 

consists of 1 in the ith position and zeros everywhere else. 

EXERCISE 11.1 

1 Prove that for all u, v, w € R™: 

a u+v=v-+u bu+0=0+u=u c (u+v)+w=u+(v+w 

2 Prove that for all uw € R™ and ¢y, ¢ € R: 

a ci(cou) = cicou b (c1+c2)u=ciu+ cou 

3 Determine whether the following sets of vectors are mutually orthogonal: 

3 1 3 O B0 2 0 -5 

4 -1 2 

< 01, 3 ], 2 

1 4 -1 

4 Explain geometrically why any set of 3 vectors in R? cannot be mutually orthogonal. 

5 Find k such that: 

4 
a -1 and are orthogonal 3 

k 2 

3 1 k 
b 1], [ k=1, | —4 | are mutually orthogonal. 

k 1 -7 

8 1 -2 

6 Write -3 as a linear combination of 0 and 1 

—15 -3 3 

-3 1 -1 1 

7 a Write -2 as a linear combination of 0 |, 2 |, and 4 

9 -1 3 -1 

-3 

b Hence write | —2 | as a matrix product. 

9 

-3 1 -1 2 

8 a Write 1 as a linear combination of | —1 |, 1 |, and 0 

-2 1 -1 1 

-3 

b Hence write 1 as a matrix product. 

-2 

a 2 -2 4 

9 Show that b is a linear combination of 1], —1 ], and 2 S a=2b
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3 2 1 -1 

10 a Showthat | —2 | cannot be written as a linear combination of | 1 |, 1|, 2 

0 1 -1 -8 

b Give a geometrical interpretation of the result in a. 

1 0 0 

11 Can every vector in R® be written as a linear combination of 1], 1], and 0]? 

. 1 1 2 
Explain your answer. 

12 Prove that in R"”, the set of basic unit vectors e, e, €3, ...., €, where e; consists of 1 in the ith 

position and zeros everywhere else, is mutually orthogonal. 

SUBSPACES 

A subspace of R" is a non-empty subset W of R™ such that IV is closed under vector addition and 

scalar multiplication. 

By “closed under vector addition and scalar multiplication”, we mean that the sum of any two vectors in 

W is also in W, and any scalar multiple of a vector in W is also in W. 

To show that W is a subspace of R™ we need to establish that: 

(1) W is non-empty 

(2) forevery uyve W and ccR, u+veW and cuec V. 

Every subspace of R™ contains the zero vector 0. 

  

  

  

Example 28 

x 

Show that W = y z,y €R is a subspace of R3. 

T+y 

0 
(1) f 2=y=0, 0= |0 | € R® = W is non-empty. 

0 

T T2 

(2) Let u= Y1 , V= Y2 be in W, and let c e R 

1+ Y1 T2 + Y2 

T T2 (z1+x2) 
u+v= Y1 o Y2 = (y1 + y2) which € W 

1+ T2 + Y2 (z1+22) + (y1 +12) 

1 CIT1 

and cu=c Y1 = cy1 which is also € W. 

1+ Y1 cx1 + cy1 

Thus, W is non-empty, and is closed under vector addition and scalar multiplication. 

= T is a subspace of R3.   
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EXERCISE 11.2 

1 a Prove that every subspace of R™ contains 0. 

b Show that W = {0} is a subspace of R™. 

x 
2 Determine whether W = z—3 ||x 2z€R ) isasubspace of R 

2 

3 Explain why a=2,b=0, c+d=2 is not a subspace of R* whereas 

Q
L
o
 
o
 

a=0, c+d=0p isa subspace of R*. 

Q
L
o
 
o
 

L Prove that R™ is a subspace of itself. 

xT 

5 Show that W = 2z +1 zeR is not a subspace of R3. 
0 

6 Consider the homogeneous set of linear equations Ax = 0 where A is an m X n matrix. 

z 

T2 

Show that the solutionset W =< x= | Z3 Ax=0 is a subspace of R™. 

x.n 

7 Prove that every subspace of: 

a R? iseither {0}, a line through O, or R2 

b R3 iseither {0}, a line through O, a plane through O, or R®. 

SPANNING SET 

W is a spanning set of vectors vy, Vo, V3, ..., Vi, € R™ if W is We also say W is the span of 

the set of all linear combinations of these vectors. Vi, V2, V3, ..., Vi, OF that W 
is the linear space spanned 

by Vi, V2, V3, .o, Vi 
W= {Clvl + caVo + €3V3 + ... + Cp Vi I c; € R} 

  

We write W = lin{vy, vo, V3, ...., Vi }
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Example 29 

Explain what these spanning sets represent: 

1 0 0 3 2 

a szlin{<O>, (1)} b W =ln 1 ¢ W =lin 1], 0 
0 0 =1 

0 

a wznn{(l), (0)} b W=lind 1 
0 1 

0 

{Cl(é)+02((1)) C],CZER} 0 

=<c |1 c €R 

0 

  

  

  
  

  

  

_ €1 = {(Cz) C1, Cg GR} 

) 0 
=R = c1 cp €R 

0 

which is the y-axis in 3-dimensional 

Cartesian space. 

3 2 

¢ W=ln 1], 0 

0 -1 

3 2 

=¢c| 1 +c2 0 ¢, co €ER 

0 -1 

301 S 202 

= (&1 c1, 2 ER 

—co 

Now if = =3c; +2c2, y=c¢1, and z= —cy then 

T =3y—2z 

L r—=3y+22=0 

0 

Thus W = Y z—3y+22=0 which is a plane in R® passing through the 
z 

origin O. 

3 €1 I ]] 

1 3 1 

Determine whether the vectors v = —2 |, vo=| 1], and v3=| 5 span RR3. 

1 2 0 

ki 1 S 1 

Suppose Yy | =c1v1+ cava +c3vs =1 2 e | 1 Fes| B 

z 1 2 0   for some ¢y, ¢z, c3 € R
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T 1 3 1 cy 

Yy = -2 1 5 C2 

z 1 20 c3 

This is a linear system of the form x = Ac where |A| :1’; 3’73‘ 712 g“*‘l’]z ;’ 

— 1(=10) — 3(=5) + 1(~5) 
=0 

Since |A|=0, A~! does not exist. 

Ac = x does not have a unique solution ¢ = A~!'x for each vector x. 

Thus vy, V2, v3 do not span R3.   
  

s ] 

  

  

  
    

1 0 1 
a Show that W = lin 1), (1}, (o0 spans R3, 

0 1 1 

5 
b Hence write 2 as a linear combination of the spanning vectors. 

1 

D 1 0 1 

a Suppose y|=c| 1| +ec|l]|+e|0 for some ¢y, ¢, c3 € R 

z 0 1 1 

T 1 0 1 c1 

y|l=1110 Co 

z 01 1 c3 

This is a linear system of the form x = Ac where 

10 11 
\A\fll 1 70+1’0 1 =1+1=2 

Since |A|#0, A™! exists, and so a non-trivial solution exists for ¢ 

= TV spans R3. 

5 5 1 01 c1 

b If x=1{2 then 2]=(1 10 Co 

1 1 0 1 1 cs 

a 101\ /5 3 
= |lece|=(110 2 1= -1 {using technology} 

cs 0 1 1 1 2 

5 0 1 

2 114210 
1 1 1  
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From these examples, we observe the following theorem on spanning vectors: 

If A= (vi|va|Vs|...|]Vn), then the vectors Vi, Va, Vs, ..., Vy: 

e span R" if |A|#0 

e do not span R™ if |A|=0. 

EXERCISE 11.3 

1 Explain what these spanning sets represent: 

1 1 0 1 

a Wzlin{( )( )} b w=tn [0 ¢ w=ind |2 
0 1 

2 3 

1 0 

d W =ln 2 5 1 e LVzlin{el, €g, €3, 64} 

1 3 

2 a Show that W=lin{(;), (i)} spans R2. 

. 7 . Lo . 
b Hence write ( 8) as a linear combination of the spanning vectors. 

1 1 —2 
3 Determine whether W = lin o), -1}, 3 spans I3, 

1 0 1 

1 0 2 

4 a Show that W =lin 21,11],10 spans R3. 
0 2 1 

6 

b Hence write | 7 | as a linear combination of the spanning vectors. 

8 

1 -1 
5 Find the equation of the plane in R® which is spanned by | 2 | and 2 

1 3 

x 
6 Consider S = y z,y € R 

2z 

a Is S a subspace of R3? 

0 1 
b Does W; =lin 11,10 span S? Explain your answer. 

1 3 

-1 1 

¢ Does W, =lin 30, -1 span S? Explain your answer. 

-2 2 

7 Prove that W = lin{vy, va, V3, ..., v} is the smallest subspace of R" containing the vectors 

Vi, V2, V3, ..oy Vi
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LINEAR INDEPENDENCE OF VECTORS 

The vectors Vi, Vo, Vs, ...., v, are linearly independent if the equation 

T1V1 + T2Va + 23Vs + .... + 2.V, = 0 has only the trivial solution 

RN Ry (J} 

If there is a non-zero solution to the equation, the vectors are linearly dependent. 

  

  

1 —1 2 

Determine whether the vectors v; = -3, vo = -2, and v3 = -1 are 

2 -1 3 
linearly independent. 

Ty 0 

If z1vi +2ava +23v3 =0 then (vi|va|v3)| @2 | =0 
T3 0 

1 -1 2 T 0 

-3 -2 -1 zo | =10 

2 -1 3 T3 0 

1 -1 210 

The system has AM -3 -2 -1(0 

2 -1 310 

1 0 110 

~10 1 —-1(|0 

00 010 

If z3=1¢ then 2o =¢ and =y = —¢ 

Iy -1 

zo | =t| 1 |, te€R, whichis a non-trivial solution. 

T3 1 

V1, Vo, and v3 are linearly dependent.   
LINEAR DEPENDENCE IN R2 

The following are useful facts about linear dependence in R2. 

(1) Any list of vectors in R? which includes 0 is linearly dependent. 

(2) Any two vectors in R? are linearly dependent <> one is a multiple of the other or one is 0. 

u=cv Y 

v u 

are linearly dependent are linearly independent 

(3) Any list of 3 or more vectors in R? is linearly dependent. 
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LINEAR DEPENDENCE IN R3 

The following are useful facts about linear dependence in R>. 

(1) Any list of vectors in R® which includes O is linearly dependent. 

(2) Any three vectors in R? are linearly dependent <« one is a linear combination of the other two 

or one is 0. 

(3) Any three vectors u, v, and win R? are linearly dependent 

if they lie in the same plane. 

(4) Any list of four or more vectors in R? is linearly dependent. 

THEOREM ON LINEAR INDEPENDENCE 

The list of vectors V' = {v1, Va, V3, ..., v} is linearly dependent <> one of the vectors is a linear 

combination of the other vectors. 

Proof: 

(=) The vectors of V' are linearly dependent 

  

  

  
  

= €1Vy + CaVy + c3V3 + .... + ¢, v, = 0 for some scalars ¢; which are not all zero. 

v €1V1 — CoVa — ... — Ci—1Vi—1 — Ci+1Vit1 — -... — C;V,  Where ¢; # 0 

c1 c2 Ci—1 Cit1 cr 
Vi Vi Vo Vi—1 Vit1 Vi 

i i ¢ cj ¢ 

= v; is a linear combination of the other vectors. 

(<) w; is a linear combination of the other vectors 

= Vi = Z1V1 +ZaVa + ... + Ti_1Vi—1 + Tip1Vig1 + oo + T Vp 

      T1V1 + ToVo + oo + 21 Vie1 — 1V F 21 Vigr + o 2V, = 0 

there exists a non-trivial solution for the x;s 

the vectors of V' are linearly dependent. 

EXERCISE 11.4 

1 Determine whether each set of vectors in R? is linearly independent. 

1 1 0 -1 2 

a {el, €2, 83} b 5 1], 1 < 1], 0 5 3 

0 1 0 -2 4 

1 

0 

0 

t 

2 For what values of ¢t € R are 1], 

1 —
 

e 

1 

s 1 linearly dependent? 

t 

3 If uand v are any two vectors in R™, show that the following vectors are linearly dependent: 

a wv,v b uvu-—v ¢ w,u+v,u—v
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4 Prove that any two vectors in R? are linearly dependent < one vector is a scalar multiple of the 

other or one of them is 0. 

5 Prove that any set of vectors in R* which includes 0 are linearly dependent. 

6 Prove that if {vi, vo, v3} is a linearly dependent set of vectors in R3, then so is the set 

{V1, V2, V3, V4}~ 

Uy U1 

7 The vector cross-product of any two non-zero vectors u = | us and v= | vy in R3 

us VU3 

U2V3 — U3V2 

is defined as the vector u X v = | ugvy — uqv3 

Uv2 — U201 

1 -1 

alf u=|2 and v = 1 |, wverify that u, v, and u x v are linearly independent. 

1 3 

b Is the result in a true in general? 

8 Prove that any set of three non-zero vectors in R® are linearly dependent <> one of them is a 

linear combination of the other two. 

BASIS AND DIMENSION FOR A VECTOR SPACE 

Suppose W is a subspace of R™. The vectors {vi, Va, V3, ..., V,.} form a basis for W 

& Vq, Vo, V3, ..., v, are linearly independent and these vectors span W. 

From this definition we establish the following basic basis property: 

If w is any vector in W, then w can be written as a unique linear combination of vy, Vo, V3, ...., V;. 

Proof: 

Let w € W =lin{vy, va, V3, ..., V;,} and suppose that the linear combination is not unique. 

= W=a1V; +asvVs +asvz +...+a.v, and W = byvy + bova + b3vs + .... + bV, 

for some a;, b € R wherenotall a; =b;,, i=1,2,3, ..., 1. 

= 
ks r 

aiv; = Y biv; 
i=1 i=1 

= E (ai = bi)vi =0 

i=1 

= a;—b;=0 for i=1,2,3,..,r {since vy, va, ..., v, are linearly independent} 

= aq;=0b; for i=1,23,..,7r 

This is a contradiction, so the linear combination must be unique. 

The dimension of a subspace W is the number of vectors in a basis of W. 

For example, {ej, €, ...., e,} forms the standard basis for R”, and R" has dimension n.
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s ] 
1 2 3 

Let vy = (1], vo= (0|, and v3 = [ 2 |. Show that W = {vy, vo, v3} isa 

0 1 1 

basis of R3. 

Suppose there exist 1, z2, 3 in R such that z3vq + xave + z3v3 = 0 

1 2 3 0 

= x| 1 | +22l 0 ) +23{ 2] =10 

0 1 1 0 

1 2 3 1 0 

= 1 0 2 T = 0 

0 1 1 xr3 0 

1 2 3|0 1 0 0]0 

which has augmented matrix { 1 0 2|0 |~ (0 1 0]0 {using technology} 
01 1(0 0 0 1(0 

1 2 3 

Now A= (vi|va|vz)=(1 0 2 has |A|=-1+#0 
011 

Vi, V2, V3 span R3, 

Since vy, Vo, and v3 are linearly independent and span R, they form a basis of R®.   
  

s ] 
0 -3 0 

Consider S = y z+3y=0, z,y, 2z € R and W = 1 , 10 

z 0 1 

a Show that: 

i S is asubspace of R? il W spans S iii W is a basis of S. 

b State the value of dim(S). 

  

0 
a i) 0] =0€eS = S isnon-empty. 

0 

Uy U1 

2) Let u= | ug and v= | v be in S, 

u3 U3 

SO u; +3us =0, vi +3v2 =0 ... (*) 

Uy + U1 

Now u+v= /| us+uvs where  (ug +v1) + 3(ug + v2) 

Uz + U3 = (u1 BE 3UQ) N (1}1 R 31)2)       

=0 {from (*)}    
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cuy 
and cu= | cup where  (cu1) + 3(cuz) 

cug = c(u1 + 3ug) 

=0 {from ()} 

wveS >u+ves and cue S 

Thus S is closed under vector addition and scalar multiplication. 

S is a subspace of R* {using (1) and (2)} 

  

  

  
  

  

  

—3 0 
ii 1 and | 0 | are both in S, since they both satisfy x + 3y = 0. 

0 1 

T -3 0 

If yl=a 1 +co| O then ¢y =y = 7§ and ¢y = z is a non-trivial 

z 0 1 

solution for which = + 3y = —3¢; + 3¢1 = 0. 

Thus W spans S. 

-3 0 0 
i) If z 1 J+x{0)={0 

0 1 0 

then -3z, =0, 21 =0, 22 =0 

1 =22 =0 {the trivial solution} 

-3 0 
1 and 0 are linearly independent. 

0 1 

(2) From ii, W spans S. 

Thus W is a basis of S {using (1) and (2)} 

b dim(S) =2 {since 2 linearly independent vectors span S} 

Find a basis for and state the dimension of the solution space of 

Ty —To—2x3+3x4+ z5=0 

T1 — T2 — 273 + x5 = 

T2+ X3+ X4 = 

2x) +x9 — X3 + 225 = 

1 -1 —2 3 1|0 10 -1 0 1]0 
1 -1 -2 010 01 1 00]0 . 

The system has AM o1 1 10lol~loo o olo {using technology} 

2 1 -10 2|0 00 0 00O0fO0 

The free variables are x3 and x5. 

Letting 3 =35, 5 =t, wefind 24 =0, zo+s=0, and z;—z3+25=0 

To = —s and Ty =8—1    
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Thus x3 | =5 where s, t € R 

8 
8 

8 
8 

T
 

N
 

=
 

c
o
r
~
 |
 

~ 
— 

D
 

+ ~
~
 

| 
D
—
\
O
O
O
H
 

1 -1 
-1 0 

1 and 0 span the solution space and are linearly independent. 

0 0 
0 1 

1 -1 

-1 0 

S = s 0 is a basis for the solution space, and dim(S) = 2. 
0 
1   

  

Theorem 1 on bases: 

If vy, vo, V3, ...., v, is a basis of vector space V, then every set of m vectors in V' where m > n 

is linearly dependent. 

Proof: 

Let wi, Wo, W3, ...., W,,, be a set of m vectors in V', where m > n. 

If vy, Vo, V3, ...., v,, is a basis of V, then each of the w; is expressible as a linear combination of 

these vectors. We can write the system of linear equations: 

  

W1 = €11V1 T C12V2 €13V3 T ... T C1nVp 

          Wz = C21V1 T C22V2 C23V3 T .... T ConVn 

Wi, = Cm1V1 + Cm2V2 + Cm3Va + ... + CmnVn- 

Suppose ki1wy + koWa + ksws + ... + kW, = 0. 

(k1c11 + kacor + oo + kmCm1)V1 + (k1c12 + kacoo + ... + kmCm2)Va + ... 

+ (k1c1n + kacon + oooc + kmCrmn) Ve, = 0 

But vy, va, Vs, ..., v, are a basis of V, so vy, Vo, V3, ...., V,, are linearly independent. 

we require each coefficient of v; to be zero, and we are left with the system 

kici1 + kacor + ... + kmCrmy =0 

kicia + kacoo + ... + kmCma = 0 

  kicin + kocon + oo. + kmCmn =0 

This is a system of equations with more unknowns than equations, so there must exist non-trivial 

solutions for ki, ko, k3, ...., kn. 

Wi, W2, W3, ...., Wy, are linearly dependent. 

Theorem 2 on bases: 

Two distinct bases of a vector space contain the same number of vectors.
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Proof: 

Let vy, Vo, V3, ...., V, and Wi, Wa, W3, ...., W,,, be the two distinct bases. 

Since Vi, Vo, V3, ...., V,, is a basis and wy, Wa, W3, ...., Wy, are linearly independent, by Theorem 1 

on bases, m < n. 

Likewise, since Wi, Wa, W3, ...., Wy, is a basis and vy, Vo, Vs, ...., v, are linearly independent, 

n < m. 

Consequently m = n. 

For example, the standard basis of R"™ ey, eq, €3, ...., €, consists of n vectors. 

by Theorem 2 on bases, every basis of R™ contains n vectors. 

EXERCISE 11.5 

1 3 1 

1 Showthat vi=| 2], vo=|3 |, and v3=| —1 form a basis for R3. 

1 4 3 

2  Which of these sets of vectors form a basis for R3? 

0 0 1 1 2 3 
a 0], (1], (1 b 0 |, 1], (-1 

1 1 1 -1 ! —4 

1 -1 1 

< 2], 1, 3 

3 4 10 

3 Find bases for these subspaces of R?: 

a theplane 242y —32=0 b the plane with equation z+ 2z =10 

¢ theline x=t, y=-5t, z2=2t, teR 

a 
d all vectors of the form b where a, b € R. 

a—>b 

4 Find a basis, and the dimension of the solution space, of: 

b 1 — X+ 23 = 
  

X1 +2$2 - 3z3 =0 

2$1 — T2 T 7z3 =0 

  Ty + To+2w3+ x4+ 225 = 

1+ 2o — x34+24=0 i 2 + x4+3x5=0 

200 — w9+ 223 — 14 =0 2x1 + 3x2 + x4+3x5=0 

2361 - 3ZL‘2 22?3 2.%'4 - 5ZL‘5 =0           

1+ xo+2x3— x4+315=0 

  

2r1 — X2 + x4 +225=0 

e 311 + 2x3 +5x5 =0 

I 72$2 72$3”2$47 ZTs5 =0     4y + xo+ w3 — x4+ 3x5=0
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5 Determine the dimension of these subspaces of R*: 

a a 

a all vectors of the form g b all vectors of the form 2ba 

c a+b 

6 If {vi, v2, v3} is the basis of a vector space V in R®, show that {vy +ve +v3, v1 +va, v1} 

is also a basis of V. 

NULL SPACE 

The null space of the m x n matrix A is the set of all solutions to the homogeneous equation 

Ax = 0. 

The null space of A is denoted Null A, and Null A = {x | Ax =0, x € R"}. 

The null space of an m x n matrix A has the following properties: 

3 €1 T 

Null A are vectors in R™. 

Null A always contains 0, the trivial solution. 

Null A depends on the number of columns of A. 

If A is invertible, Null A = {0}. 

The nullity of matrix A is the dimension of the null space of A. 

  

  

  

1 21 1 3 

Find Null A and nullity (A), if A=(2 4 0 -1 2 

3 6 1 0 5 

121 1 3|0 20 -3 1]0 

Ax =0 has AM 240 -1 2|(0|~f0 O % 210 {using technology} 

3 6 1 0 5|0 000 0 O0]0 

Letting @o =7, 24 =35, a5 =t, wefind o3 =—3s—2t and oy = —2r+ 35—t 

1 
x —2 2 1 

o 1 0 0 

Null A is z3 [ =r| O | +s| =2 [+t =2 |, where r,s,teR 
T4 0 1 0 

ZTs5 0 0 1 

1 —9 D —1 

1 0 0 

which is the subspace spanned by o [, | -2 -2 
0 1 0 

0 0 1 

nullity (A) =3 
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COLUMN AND ROW SPACE 

aip a2 ... Q1n 

For the m x n matrix A = a.m a?z a?" , we say that: 

Am1 (17.,22 Amn 

ap a2 A1n 

a21 a2 a2n . 
are its column vectors 

a,.n1 a7;12 Amn 

° (a11 a2 ... a1n), (azl az2 ... aQn), ey (am1 Am2  .en amn) 

are its row vectors. 

The column space of matrix A is the subspace of R™ spanned by the column vectors of A. 

The row space of matrix A is the subspace of R™ spanned by the row vectors of A. 

The following theorems are important for finding bases for the row and column spaces of a given matrix. 

They are given without proof. 

Theorem 1: The row space of a matrix is not changed by elementary row operations. 

This theorem does not hold for the column space of a matrix. 

Theorem 2: Suppose matrix B is obtained from matrix A by elementary row operations. 

If the column vectors of B form a basis for the column space of B, then the 

corresponding column vectors of A form a basis for the column space of A. 

Theorem 3: If matrix A is converted to matrix R in reduced row echelon form, then: 

e its row vectors with leading 1s form a basis for the row space of R 

e its column vectors with leading 1s form a basis for the column space of R. 

The row rank of matrix A is the dimension of the row space of A. 

The column rank of matrix A is the dimension of the column space of A. 

Since row rank and column rank are both determined by the number of leading 1s in the reduced 

row-echelon form matrix, the row rank of A is equal to the column rank of A. 

Hence we define rank (A) by 

rank (A) = row rank of A = column rank of A. 

  

1 21 1 3 

Let A=(2 4 0 -1 2. a Find a basis for the row space of A. 

36 1 0 5 b Find a basis for the column space of A. 

¢ Find rank (A). 
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1 
121 1 3 120 -5 1 

A=(2 40 -1 2|~R=]0 011 % 2 {using technology} 
361 0 5 000 0 0 

a By Theorem 3, a basis for the row space of R is 

{(1 20 -11),(0012 2)} 
. by Theorem 1, a basis for the row space of A is 

{(1t 20 -4 1),(0 01 % 2)}. 

1 0 

b By Theorem 3, a basis for the column space of R is o], (1 

0 0 

1 1 

by Theorem 2, a basis for the column space of A is 21,10 

3 1 

¢ rank (A) = row rank of A = column rank of A = 2.     
  

FINDING A BASIS FOR THE ROW SPACE USING AT 

An alternative method for finding a basis for the row space of A is: 

    
      

This method is sometimes 

  

  

  

      

Step I:  Find AT {since AT converts the row space of A into referred o as “selecting a 

the column space of A} basis from the rows of A”. 

Step 2:  Convert AT into reduced row echelon form R. 

Step 3: From the leading 1s in R, choose the column vectors of 

AT which form a basis for the column space of A'. 

Step 4. Write down a basis for the row space of A. 

Example 38 

121 1 3 
Using the transpose method, find a basis for the row spaceof A= |2 4 0 -1 2 

361 0 5 

1 2 3 101 
121 1 3 2 4 6 o[ 1 

For A=[240 -12], AT=|1 0 1|~R=[000 {using technology} 

361 0 5 1 -10 000 
3 2 5 000 

The first two columns of R form a basis for the column space of R 

= the first two columns of AT from a basis for the column space of AT 

= the first two rows of A form a basis for the row space of A 

= {(1 2 11 3),(2 4 0 —1 2)} formsa basis for the row space of A.    



Theorem on system consistency: 

The system Ax = b is consistent < b is in the column space of A. 

      

Proof: 

Ty 

T2 

Let A= (ci|ea|es]....]e,) and x= | =3 

Zn 

x1 

T2 

Ax=b & (ci|eafes|....]len)]| T3 | =b 

Ty 

T1€1 + X2C2 + T3€3 + ... + TpCp, = b 

< b is in the column space of {c1, €2, €3, ..., € }. 

Example 39 

    

        

  

21+ 225 + 23 + 24 =3 

Determine whether the system 221 + 410 o =r is consistent. 

3x1 + 622 + x3 5 

1 21 1 3 

The system has the form Ax =b where A=|2 4 0 -1, b=1]2 

361 0 5 

2 0 -1 
A~ |0 0 2 | =R {using technology} 

000 O 

1 0 

a basis for the column space of R is 0], (1 

0 0 

1 1 

a basis for the column space of A is S = 21,10 

3 1 

3 1 1 atb=3 
Now if 2]l =al2]+b|0 then 2a = which has solution a =1, b=2 

5 3 1 3a+b=5 

3 

b=|2 is in the column space of A 

5 

Ax = b is consistent {Theorem on system consistency}    
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DIMENSION 

We have defined: 

e the dimension of the row space of A is the rank of A 

e the dimension of the null space of A is nullity (A). 

Theorem on rank and nullity: 

If n is the number of columns of A then rank (A) + nullity (A) = n. 

3 €1 TN 
  

  

  

      

  

      

121 1 3 

Verify the rank-nullity theorem for A= |2 4 0 -1 2 

361 0 1 

121 1 3|0 12 0 -1 o]0 

For Ax=0, the AMis [2 4 0 —1 20|~ [0 0 (1 2 0]0 

361 0 1(0 000 0 [1]0 

{using technology} 

Letting @o =s, 4 =t, wefind 25 =0, z3=—3t, 51 =25+ &t 

1 
X1 —2 2 

To 1 0 

Null A is xz3 | =s| O +t 7% , where s,teR 

T4 0 1 

Ty 0 

1 
-2 2 

1 0 
which is the subspace spanned by 0 1, —% 

v 1 
0 

0 

nullity (A) = 2. 

We will use the transpose method to find a basis for the row space of A. 
  

      

1 2 3 10 0 
2 4 6 0 1 0 

AT=|1 0 1|[~R=]0 0 [1 
1 -1 0 0 0 0 
3 2 1 0 0 0 

the three rows of A form a basis for the row space of A. 

Thus {(1 2 1 1 3),(2 4 0 -1 2),(3 6 1 0 1)} forms a basis for the 
row space of A. 

rank (A) = 3. 

rank (A) + nullity (A) =3+ 2 =5, which is the number of columns of A v   
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EXERCISE 11.6 

1 

0 1 -2 

-1 1 3 list: 

3 2 1 

For the matrix A = 

— 
N 

= 

b the column vectors. 

Find Null A and nullity (A) for: 

a the row vectors 

1 2 10 2 1 13 1 
aA=[(2 -1 1 3 b A=[3 3 15 6 

3 -4 11 1 -1 11 -2 

For each of the following matrices A, find: 

i a basis for the row space ii a basis for the column space 

1 
1 9 10 1 2 2 

aA:<_3 6> b A=[1 2 -1 3 c A=|3 
32 1 5 2 

5 

Use the transpose method to find a basis for the row space of: 
1 

10 1 2 2 

aA=(§zi) b A=[|1 2 -1 3 c A=|3 
32 1 7 2 

5 

1+ x9o—x3=4 

Determine whether the system ry —2x9+1x3=20 is consistent. 

2.%'1 — T2 =11 

1 3 1 -2 1 

Verify the rank-nullity theorem for A = 2 6 4 -8 3 

-1 -3 1 -2 5 

Find a basis for the subspace of R?® spanned by: 

1 1 1 0 

a 21, 0 b o, (1], 
0 -1 1 1 

Find a basis for the subspace of R* spanned by: 

0 0 1 0 1 
1 0 1 1 0 

@ ol {1 o b 1] {ol 
1 1 1 0 1 

ili rank (A). 

1 1 2 4 

0 -1 1 0 

-1 -3 0 -8 

2 2 4 1 

1 -1 4 -7 

1 1 2 4 

0 =11 0 

-1 -3 0 -8 

2 2 4 1 

1 -1 4 -7 

-1 2 

0 1.5 
1) 0 

1 -1
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FN I LINGAR TRANSFORMATIONS 
From the HL Core course you should be familiar with the idea of a function which maps one variable 

onto another. We defined a function as a relation in which no two different ordered pairs have the same 

first component. This means that each element in the domain of the function is mapped to a unique 

element in the range of the function. 

  

We now expand our idea of a function to consider it as a mapping from 

one vector space to another. We consider a function T which maps a 

vector v € R™ to another vector w € R™. We say that w is the image 

of v under the transformation T, and write w = T(v). 

For a function such as 

flz)=2 , m=n=1 
and we map R® onto R*. 

Y 
) and w=T(v)= | z+y | then T maps 

-y 

xT 
For example, if v = (y 

R? onto R3. 

1 1 3 
When v = , wefind w=T = 4 

(3) ((3)) -2 

A vector-related function T : R™ — R™ is a linear transformation if: 

(1) T(u+v)=T(u) + T(v) forall u,veR" {addition property} and 

  

(2) T(ku)=kT(u) forall ue R"”, keR {scalar multiplication property} 

  

  

  

Y 
Show that T : R?+— R® where T < < z )) = z+y is a linear transformation. 

Y Ty 

Let u= i , V= 962 
Y1 Y2 

(1) T(u+v) 2) T(ku) 

—T T+ T2 _ kxy 

Y1+ Y2 ky1 

Y1+ Y2 ky1 
= T1+ T2+ Y1+ Y2 = | kz1+ ky1 

o1+ 22 — (Y1 + Y2) kxy — kyy 

Y Y2 Y1 

=|lzit+y |+ | 22+ = 1+ Y1 
T1 — Y1 T2 — Y2 T1 =Y 

-7((5)) () -a((5) it Y2 Y1 

=T(u) + T(v) = kT(u) 

Since the addition and scalar multiplication properties are satisfied, T is a linear transformation.   
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In general, if a transformation involves higher powers of the variables, it will not be linear. 

s 
Show by counter-example that T : R? +— R® where T((g)) = (;2) is not a linear 

transformation. 

1 2 
Let u= (1) and v = (3) 

vov 1w+ -1(($)) = (1) 

os () +5((2) - () 2)-(3) 
For thisu and v, T(u + v) # T(u) + T(v) 

T is not a linear transformation.     
PROPERTIES OF LINEAR TRANSFORMATIONS 

If T:R™— R™ is a linear transformation, then: 

e T(0)=0 
e T(—u)=—T(u) 

o T(kjuy + koug + .... + kpu,) = k1 T(uy) + ko T(uz) + ... + k. T(u,.) 

Proof (of the first two properties): 
In T(0) = 0, the Os are 

different as the first O is in   

  

° T(0) = T(0 +0) R™ and the other is in R™. 
=T(0) + T(0) {addition property} 

= 2T(0) 

- T(0)=0 

e T(—u)=T(—1u) 

= —T(u) {scalar multiplication property} ’ 

If a basis for a vector space V' is known, the image of any vector v € V' can be found under the 

linear transformation T : V — W. 

Proof: 

If V has basis {vi, vo, V3, ..., v} and T:V — W, then T(v;) =w; for i=1,2,3, ..., 7. 

Now as {vy, Vo, V3, ..., V,.} is a basis of V, for any v € V' there exists scalars 

ai, ag, ag, ..., a, € R such that v = a1vy + asvo + agvs + ... + a,v,. 

Hence T(v) =T(a1vy + azve + asvs + .... + a,v,) 

= a1T(v1) + a2T(v2) + agT(vs) + .... + a,T(v,) 

= a1W1 + asWs + azws + .... +a,w, 

since the w; are known, T(v) can be determined.
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swsoe 1((1)) = (3) st ((2)) = (4) et 
transformation T : R? — R2. Find T((g)) 

(). ()} b e st o 

() =766) +<(0)) 
((6)) (3 
( 3*(?) 1 

2 

23 

11 

  

  

  

3 

3 

  

EXERCISE 1J.1 
T 

1 Show that T :R?+— R*® where T((z >> = y is a linear transformation. 

Y T+ 2y 

. 3 2 z T+y . . . 
2 Determine whether T : R® — R* where T Y ={,_ y is a linear transformation. 

z 

x Tz 
3 Show by counter-example that T : R® s R?> where T y = (yz) is not a linear 

z 
transformation. 

4 Prove that if T : R™ +— R™ is a linear transformation, then 

T(k1uy + kous + ... + kpuy) = k1 T(wr) + k2T(u2) + ... + k. T(u,). 

5 T:R?+— R? is a linear transformation where T(((l))) = (é) and T((?)) = (é) 

ot 7(( ) 
2 P . . 1 1 1 -1 

6 T:R*+— R? isalinear transformation where T 0 =13 and T 9 =\ _3) 

ro (1)) 
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2 -3 

7 T:R?+— R? is alinear transformation where T((l)) =1 and T( (?)) =( 0 

wr((3) 
1 1 0 2 

8 T:R3— R3 is a linear transformation where T 0 =(-1], T 1 =1 
0 2 0 3 

0 5 

and T 0 =11 

1 4 

1 a 

Find: a T 3 b T b 

0 c 

9 Determine which of these transformations are linear: 

- T 

a T:R?—R? where T(( )) =|y—=z 
Y z2 

b T:R?— R? where T((z)) = (z—y) 
y 2 

T 

¢ T:R¥®—R where T| [y =(z+y—22) 
z 

d T:R?>—R? where T _ [ty 
T \x—4z 

N 
e 

8 

KERNEL AND RANGE 

For the linear transformation T : R™ — R™: 

o the domain of T is R" 

o the co-domain of T is R™ 

o the kernel (or null space) of T, denoted ker(T), is the set of all vectors u in the domain of T 

such that T(u) =0 

e the range of T, denoted R(T), is the set of all vectors w in the co-domain of T such that 

w = T(v) for some v € R™. 

    domain R”. co-domain R™
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Theorem on kernel and range: 

Proof: 

If T:R"™+— R™ is a linear transformation, then: 

e ker(T) is a subspace of the domain R™ and 

e R(T) is a subspace of the co-domain R™. 

For ker(T) 

(1) ker(T) is non-empty as T(0) =0 = O € ker(T). 

(2) Forall uy, us € ker(T), T(u; +uz) = T(u;) + T(uz) {addition property} 

=0+0 {uy, uy € ker(T)} 

=0 

= u; + us € ker(T) 

Thus ker(T) is closed under vector addition. 

(3) For u € ker(T), keR, T(ku)=kT(u) {scalar multiplication property} 

=k0 {u € ker(T)} 

=0 

= ku € ker(T) 

Thus ker(T) is closed under scalar multiplication. 

From (1), (2), and (3), ker(T) is a subspace of the domain R™. 

For R(T) 

(1) R(T) is non-empty as T(0) =0 = 0 € R(T). 

(2) Forall wy, wo € R(T), w1 +wp =T(vq) +T(v2) forsome vy, vo € R" 

=T(v1 +v2) {addition property} 

= W; + Wg € fl(T) 

Thus R(T) is closed under vector addition. 

(3) Forall we R(T), keR, kw=£kT(v) forsome veR" 

=T(kv) {scalar multiplication property} 

= kw e R(T) 

Thus R(T) is closed under scalar multiplication. 

From (1), (2), and (3), R(T) is a subspace of the co-domain R™. 

If T:R™— R™ is a linear transformation, then: 

e nullity (T) is the dimension of ker(T), and 

e rank (T) is the dimension of R(T).



  

Y 
Consider T:R2—R? where T((*))=|2+y|. Find: 

Y z—y 

ker(T) R(T) nullity (T) rank (T) 

Consider w = T(v) 

  
  

vy 0 1 
z=y=0 =z|1|+y| 1 

0 1 -1 o -{0) 0 . m)hn{(l), ( )} 
1 -1 

nullity (T) =0 rank (T) =2 

Consider T :R?— R? where T((g)) = (ziz) Find: 

ker(T) R(T) nullity (T) rank (T) 

< Let T((z))<g) Consider w = T(v) 

y=0 and 2+2=0 :y((l)) (Z”)( 

oo 
ker(T) = _oz , z€R _Rr 

nullity (T) =1 
1 

=z 0], zer rank (T) =2 

l      
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RANK-NULLITY THEOREM 

From examples like these, we observe the following property of nullity, rank, and dimension: 

For every linear transformation T : R™ — R™, nullity (T) + rank (T) = n. 

Example 46 

      

   

  

   

  

  

  

w 

For the linear transformation T : R* — R?> where T ; S <1::il), find: 

z 

a the kernel of T b rank (T) ¢ the range of T. 

w 
0 0 . 

a Let T y ={o b From a, nullity (T) =2 

2 Now nullity (T) 4 rank (T) =n =4 

wty) _ (0 . rank (T) =2 

T+z 0 ¢ Consider w=T(v 

L w=-y and z=—2x (w+ty 

—y T+z 

_ L 1 0 

-z 
0 

0 -1 = R(T) =lin 1 

_ 1 0 2 =z| | +y 1| =R 

-1 0 

z,y € R 

0 —1 

s 1 0 
MYl o |t 

—1 0   
  

THE STANDARD MATRIX OF A LINEAR TRANSFORMATION 

Consider the linear transformation T : R? — R3 where 

. y 0 1 0 1 - 
T( ( ) ) = T+y =z 1 +y 1 = 1 1 ( ) . 

Y T—y 1 -1 1 1) \Y 

0 

If we let u = (Z), we notice that T(u) = Au where A= |1 1 
1
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We also notice that T ( ( (1) )) = 

=
=
 

O
 

w o((9)- (3 
! 

column 1 column 2 

of A of A 

So, the effect of T on the standard vectors of R? is to produce the column vectors of the matrix of T. 

A is therefore called the standard matrix of T. 

If T:R™— R™ is a linear transformation, the standard matrix for T is 

A = (T(e1) | T(e2) | T(e3) | ... | T(en)). 

s 
Find the standard matrix of the linear transformation T : R? — R3 where 

  

0 2 0 2 0 2 
Method 1: T((I))zx 1l+yl 0 =1 o0 (x> so A=[1 0 

Y 1 1 1 -1/ \¥ 1 -1 

. 0 0 2 0 2 sz 1((3))= (1) wa 7((2))=(3 ). 0 a- (1 G 
1 ~1 1 -1     
  

If T:R"+— R™ is a linear transformation with standard matrix 

A = (T(e1) | T(e2) | T(e3) | ....| T(e,)), then T(v) = Av for all v € R™. 

Proof: 

  Consider v U3 vi1€1 + voey + v3es + ... + vpen 

T(V) = T(v1e1 + voeg + vze3 + ... + vnen) 

vlT(el) t ’U2T(e2) t v3T(e3) .. vnT(en)   

  

= (T(e1) | T(e2) | T(es) | ... | T(en)) | 3 

= Av
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The converse of this theorem is also true: 

If T:R"+— R™ isdefined by T(v) = Av, then T is a linear transformation. 

Proof: 

Since T(v) = Av, T(u+v) and T(ku) 
= A(u + V) = Aku 

= Au + Av = kAu 

=T(u) + T(v) = kT(u) 

Since the addition and scalar multiplication properties hold, T is a linear transformation. 

To find the range, we observe that R(T) is spanned by the column vectors of the transformation 

matrix A. We therefore use the property that the column space of A is the row space of A7, the transpose 

of A. 

Example 48 
  

  

1 1 2 3 

Consider the linear transformation T : R* — R3 where T(v)= |1 -2 1 4 |v. Find: 
2 -1 1 -1 

a ker(T) b R(T) ¢ nullity (T) d rank (T). 

1 1 2 

. s (1 =2 4 
a Av = 0 has augmented matrix b A = 9 1 1 

1 1 2 310 3 4 -1 

1 -2 1 410 

2 -1 1 1[0 L 
10 ~0 Lo {using technology} 

100 —5|0 00 1 
~lo 10 -2lo 000 

001 4 |o a basis for the row space of AT is 

{(100),(010), (00 1)} 

a basis for the column space of A is 
{using technology} 

Letting x4 = t, t € R, we find that 
0 0 _ _5 _ 10 T3 = —4t, T3 =31, andxlth. 0 , 1]. 1o 

10 - = 0 0 1 

5 
= 3 |, teR s R(T) 
o3 —4 0 0 
i 1 = lin 11,10 

10 0 1 
3 
5 

*. ker(T) =lin g 
—4 

1 

¢ nullity (T d rank (T) =3    
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EXERCISE 1).2 
z 0 

1 Consider the linear transformation T : R® — R? where T Y = z |. Find: 

2 -y 

a ker(T) b R(T) ¢ nullity (T) d rank (T). 

x z g T 
2 Consider the linear transformation T : R?® — R* where T Y = % . Find: 

# rt+y+z 

a ker(T) b R(T) ¢ nullity (T) d rank (T). 

. . . 2 9 1 3 
3 Consider the linear transformation T : R* — R* where T(v) = 9 ¢V 

9 -3 
a Show that 5 )€ ker(T), but 0 ¢ ker(T). 

. . . . (2 . [ —4 
b Determine whether the following vectors are in R(T): i <2> ii ( g ) 

4 Find the standard matrix for: 

a T:R?— R? where T((x)) = (71}) 
y x 

£ x+z 
b T:R3—R? where T y =( ) 

y—=z 
z 

z Y 
¢ T:R*—R? where T y = -z 

z Tty 

—x 

d T:R2—R* where T( (%)) =[%TY 
Y Y 

y—x 

Ca e S /31 2 -1 
5 T:R*— R? is a linear transformation with T(v) = 120 4 )7 

a Find ker(T). b Find R(T). 

¢ Verify that nullity (T) + rank (T) = dimension of the domain. 

1 0 -1 2 
6 Consider T:R*+—R3 where T(v)=| 1 2 9 —4]|w 

-2 -1 -3 -1 

a Find ker(T). b Find R(T). 

0 7 -3 
-7 —21 . 3 

¢ Show that 9 and 3 are in ker(T), but 1 ¢ ker(T). 

1 -2 2
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z 

7 Consider T:R*+— R? where T Y = (eryfz). Find: 
z yt+w—x 

w 

a ker(T) b R(T) ¢ nullity (T) d rank (T) 

8 If T:R2— R? is areflection in the line y = —x, then T((z)) = (:i) 

Determine the kernel and range for this linear transformation. 

z 

9 Consider T:R?*+— R? where T Y :(z—y). 
z w+ z 

w 

a Find the standard matrix for T. b Find ker(T). 

¢ Find R(T). d Verify the rank-nullity theorem. 

COMPOSITION OF LINEAR TRANSFORMATIONS 

Suppose S :R¥ — R™ is a linear transformation with standard matrix A(m x k), 

and T:R™— R* is a linear transformation with standard matrix B(k x n). 

The composition of S and T is the linear transformation S o T : R™ — R™ defined by 

(SoT)(v) =S(T(v)) forall v&R", and this has standard matrix AB(m X n). 

Proof: For every v € R", (SoT)(v) 

=S(T(v)) 
= S(Bv) 

= A(Bv) 

= AB(v) 

S oT has standard matrix AB. 

Note that T o S can only be defined if m = n, since the domain of T must lie in the range of S. 

Example 49 

Consider S : R® — R? where S 

r—y 

r+y 

2r 

Find So T using: 

a the definition of composition b standard matrices. 

 



94  LINEAR ALGEBRA (Chapter 1) 

a (SoT)(v) = S(T(V)) 
T—yY 
T+y 

2z 

S (i) 
_(3z—vy =%y 

b Let S have standard matrix A and T have standard matrix B. 

1 0 

Now A= |[S 0 1 

0 0 

w o G(I(E) 
S o T has standard matrix AB 

  
INVERSE LINEAR TRANSFORMATIONS 

The identity transformation is the linear transformation T : R™ — R™ 

where T(v) =v forall v e R" 

The standard matrix for the identity transformation is I,,. 

Proof: The standard matrix A = (T(e1) | T(e2) | -... | T(en)) 

= (er]|ez]....| en) {since T(v)=v forall veR"} 

=1, 

A linear transformation T : R™ — R™ is invertible if there exists a linear transformation S : R” — R" 

where (ToS)(v)=(SoT)(v)=v forall veR" Sis called the inverse linear transformation 

of T. 

If the linear transformation T has standard matrix A, then the standard matrix of S is A~
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Proof: Let the standard matrix of S be B. 

Now (ToS)(v)=(SoT)(v)=v 

. ABv = BAv =I,v 

. AB=BA =1, 

. B=A"! by definition of matrix inverse. 

  

Example 50 

2 5 . ¥ [ 3xz+y ¥ 9 
Suppose T : R?+— R* is defined by T((y))7<4z+y) for all (y)ER. 

Find S :R? — R? such that S is the inverse of T. 

  

(()-G)6) 
= T has standard matrix A = (i }) 

    
EXERCISE 1).3 

T 

1 Consider S:R?®—R? where S y = ( 2z ) 
2 z+x—y 

- x 
and T:R?>—R> where T(( )): y—x 

Y y+x 

Find T oS using: 

a the definition of To S b standard matrices. 

T Y 
2 Consider S:R®— R® where S y =| —=x 

z Y+ z 

T 2z 

and T:R?—R® where T Y = —y 

z z—x 

Find So T using: 

a the definition of So T b standard matrices. 

2 9 . T -2 T 9 
3 Suppose T :R*— R? is defined by T((y))i(szSy) for all <y)€R. 

Find S:R?— R? such that S is the inverse of T.
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x rT+y—=z x 

4 Suppose T :R3+—R? isdefinedby T| [ y =| z+2z forall |y | € R 
z y—z—c z 

Find S:R3+— R? such that S is the inverse of T. 

z 

5 Let T and S be linear transformations defined by T : R3 s R® where T y = 

z 2y 

T T 

and S:R3+— R? where S y =1 0 

z -y 

a Showthat ToS#SoT. 

b i Find A and B, the standard matrices for T and S respectively. 

il Calculate AB and BA. 

iii What is the significance of your result in ii? 

6 Prove that the composition of two linear transformations is linear. 

APPLICATIONS TO SOLVING Ax =b 

We have seen previously that for an m x n matrix A: 

e the row rank of A is the dimension of the row space of A 

o the column rank of A is the dimension of the column space of A 

e rank (T) is the dimension of the range R(T). 

For a linear transformation T where T(v) = Av, 

row rank of A = column rank of A = rank (T). 

  

1 1 0 2 

Verify for T(v) =Av= |2 0 1 -1 |v, that 
13 -1 7 

row rank of A = column rank of A = rank (T). 

  

11 0 2 0 % 7% 

A=[20 1 -1]~]0 -1 3 

13 -1 7 00 0 0 

A basis of the row space is {(1 0 % —%), (0 1 —% %)}, 0 row rank = 2. 

1 1 

A basis of the column space is 21,10 , so column rank = 2. 

1 3 

But R(T) is the column space of A, so rank (T) = column rank = 2.     
  

The system of linear equations Ax = b is consistent and thus has a solution 

& rank (A) = rank ((A|b))
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Example 52 

rc+y+2z=4 

Use rank to check the system z—y—2z=3 for consistency. 

2+ 4y+T7z=11   

1 1 2 
The system has the foom Ax =b where A=|1 -1 -1, 

2 4 7 

so rank (A) = 2. 

1 1 2|4 

(Alp)=1 -1 —-1|3 so rank (A|b) =3 
2 4 7|11 

Since rank (A) # rank (A |b), there are no solutions to Ax = b. 

  

Theorem on a known solution: 

Let xo be a particular solution of Ax = b, and let {vi, Vo, v3, ..., v,.} be a basis for the null 

space of A. 

(1) Every solution of Ax =b can be written in the form X = Xg+¢1V1 +caVa +.... +¢.v,, where 

c1, C2, ...., ¢, are constants. 

(2) Every vector of the form x = Xg+c¢1v1 +caVa+....+ ¢V,  where ¢y, ca, ...., ¢, are constants, 

is a solution to Ax = b. 

Proof: 
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1‘1—I2—21’3+3I4“ I5=1 

T — Tp — 2T + z5=1 
Use the Theorem on a known solution to solve ! 2 3 5 

Ty + T3+ T4 =0 

2x1 + 1o — T3 + 2z5 = 2.   
  

By inspection, z1 =1, 22 =0, 23 =0, 4 =0, x5 =0 is a particular solution. 

The corresponding homogeneous system of equations has augmented matrix 

  

      

      
  

1 -1 -2 3 1|0 1 0 -1 0 1]0 
1 -1 -2 0 1f0) [0 1 00f0 
0 1 1 1 0f0 00 0 (1 0f0 

2 1 -1 0 2|0 00 0O O0O0fO0 

Letting 23 =s and x5 =t, we find 24 =0, 22 = —s, and 27 =s—t. 

1 1 -1 

0 -1 0 

x=]0]+s| 1 +t| 0 where s, t € R. 

0 0 0 

0 0 1 

0 -1 0 1|1 

. . . 0 1 00}0 
Note that if we solve the system in Example 53 directly, we have (A |b) ~ 00 0 oo 

00 0O 0 O0fO0 

Letting 23 =s and x5 =t, we find 24 =0, 2o = —s, and 3 =1+ s —1. 

1+s—t 

—S 

Hence x = s which is the same form as in Example 53. 

0 

t 

However, for a different choice of particular solution, we may end up with the same set of solutions but 

in a different form. 

For example, suppose the particular solution we chose was x; = 0, a0 =0, 23 =0, x4 = 0, 

x5 = 1. The homogeneous solutions would be the same, but the final solution would have the form 

0 1 -1 s—t 

0 -1 0 —s 

x=]|0|+s| 1 +t| O = s where s, t € R. 

0 0 0 0 

1 0 1 1+t
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EXERCISE 1).4 

1 Verify for each linear transformation T(v) = Av, that 

row rank of A = column rank of A = rank (A): 

1 2 12 1 3 
a T(v)7<4 8>v b T(v)f(2 0 -1 1>V 

1 -1 -2 3 1 

1 -1 -2 0 1 
CTM=19 1 1 1 0] 

2 1 -1 0 3 

2 Use rank to check each system for consistency: 

r—y+z=4 T+2y+z=2 

a 2r+y+z= b rtyt+z=— 

3r+3y+z= 3z +4y+ 32 =10   

3 Use the Theorem on a known solution to solve: 

  s T+ To—x3+ T4=23 

] — T+ T3+ 224 =3 
    

    2wy + w9 + 3x3 — 224 + 25 = 3  
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[0 I GEOMETRIC TRANSFORMATIONS 
In this Section we apply linear transformations to functions and relations in the Cartesian plane R2. 

In R2, suppose P(x,y) movesto P’(z’,y’) under the linear transformation 

  

2 =azx +b 
{ 0 “ & where a, b, ¢, d € R. 

y =cr+dy 

We say that: 

o P has been subjected to a geometric linear transformation 

e P is the object point and P’ is the image of P. 

/ 

In matrix form, we write (x,):(a b)(x) or vV = Av 
Y c d)\y 

where v = (Z) and A = (li Z) is the transformation matrix. 

  

/ =3z — 
v Y Under T, find the image of: A linear transformation T has equations { 

Yy =z+uy. 

a the point (3, 2) b the line with equation y =2z — 1. 

  

a 2=3z-y=303)-(2)=7 

Y= z+y=3+2=5 

3,2) 5 (7, 5) 

  

b We need to write the equation of the image line in 

terms of o’ and 7. 

()= 7)(0) 
C)¢)-6) 

y =2z — 1 becomes 

—id 43y =2(k + 4y) -1 

= —2' +3y =2c"+2/ -4 

= 32’ —y =4 

Hence y:2z713317y:4  
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DISCUSSION 

Under a linear transformation, will the shape of an object be preserved in its image? 

  

For example, will a line always remain a line, a circle always remain a circle, and so on? 

EXERCISE 1K.1 

) . . o =2z+y . 
1 A linear transformation T has equations , Under T, find the image of: 

Yy =z—y. 

a the point (0, 1) b the point (-1, —3) 

the line y =3z +2 d thecircle 22 +y% =1 

e the parabola y = 2% + 1. 

2 a Find the equations of the linear transformation S which maps (2, 1) onto (4, 1) and 

(-1, 3) onto (-7, 3). 

b Under S, a point is transformed to (3, —1). Find the object point. 

a b 

c d 

y = maz + k maps onto another line provided |A| # 0. 

3 Show that under the linear transformation v = < )v = Av, the line with equation 

a b 
c d ) v = Av transform the circle 4 Under what conditions does the linear transformation v/ = ( 

7?2 +9% =1 into: 

a an ellipse b acircle? 

ROTATIONS AND REFLECTIONS 

In the following Investigation we consider common rotations and reflections which you would have 

studied in previous years, but this time in terms of linear transformations. 

INVESTIGATION 4 

Under an anticlockwise rotation about O through 7, 

(3,1) — (-1, 3), and in general (z,y) — (—y, z). 

/ 
xr = - . . 

{ Y =2 Y are the transformation equations for an 

anticlockwise rotation about O through Z. 

. 2\ (0 -1\(=z 
In matrix form, (y’)7<1 0)(y 

with transformation matrix A = ([1) Bl ) , |A|=1. 
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What to do: 

1 Copy and complete: 

Transformation 

Anticlockwise Reflection in the 
rotation about O zr-axis. 

through Z. 
  

Reflection in the 

y-axis. 

Clockwise rotation 

about O through 7. 

Reflection in the 

line y =x. 

Rotation about O 

through 7. 

  

Rotation about O 

through 0. 

Reflection in the      
2 Record any observations from your results in 1. 

ROTATIONS ABOUT O(0, 0) THROUGH 6 

We now consider a more general rotation about O(0, 0), this time anticlockwise through an arbitrary 

angle 6. 

Consider the following traditional method for finding the corresponding transformation matrix: 

Let P(z, y) be a point on the unit circle which makes an 

angle ¢ with the positive z-axis. 
', y') 

. [OP'] makes angle ¢ + 6 with the z-axis. 

P (@.1) Since the unit circle has radius 1, 

W pis (cos ¢, sing) and P’ is (cos(¢+ 6), sin(¢ + 6)). 

unit circle and o = sin(¢ + ) 

= sin ¢ cos + cos ¢ sin O 

=ycosf + xsinf 

    
Thus 2’ = cos(¢ + 6) 

= cos ¢ cosf — sin ¢ sin O 

=xcosf —ysinf 

  

2’ = xcosf — ysind 
Hence, the transformation equations are: , . 

Yy =xsinf +ycosh 

sinf  cosé 
with A=(C959 ’Sme). 

We notice that |A| = cos?6 +sin?4 = 1.
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An alternative method for generating the transformation matrix is to use vectors: 

The standard matrix for T, a rotation anticlockwise about 

0O(0, 0) through 0, is: 

(T(e1) | T(e2)) 
1 0 r(G)IE) 

[ cosf —sinf 
~ \sinf  cosf 

For a rotation anticlockwise about O(0, 0) through 6, the transformation matrix is 

A=<COS€ _Sme) with |A|=1. 

A 

  

  

sinf  cosf 

REFLECTION IN THE LINE y = (tana)z 

AY Consider a mirror line which makes an angle a with the 
1]  (cos2a,sin2a) T-axis. 

We use vector methods to find the transformation matrix 

corresponding to a reflection in this line. 

T - 

o 

0 sin 2av 

y= (tan a) 

v 

AY Suppose the point S(0, 1) is reflected to point 

IS 1.4 P(cos(—0), sin(—0)). 

POQ = POR — a 

6=SOR —a {reflection} 

~(3-a)-a 
y=(tanaj P(cos(—0),sin (—6)) =2 2o and is the magnitude of POQ. 

v cos(2a— % 
Thus T(ez):T<(O)): ( 2) 

1 sin (20 — %) 

_ sin 2a 

—\ —cos2a 

) and |A|= —cos?2a —sin®2a = —1. 

     
cos2a  sin2a 

Hence A = (T(e1)|T(e2)) = (sin 200 —cos2a 

For a reflection in the mirror line y = (tan )z, the transformation matrix is 

A= C?Sza sin2a with |A|=—1. 
sin2a  — cos2a



The following formulae are useful for working with the transformation matrix for reflections: 

If m =tana, then: 

1—m? . 2m 2m 
e sin2a = e cos2a = . 

+m?2 1+m? 1—m? 
      

Proof: 

Example 55 

Find the transformation matrix A for: 

a clockwise rotation about O through %" a reflection in the line y = 3x. 

A= cos2a  sin2a 

sin2a  —cos2«a ( 
(¥ )  
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3 E1 T I0R L) 

Find the nature of the transformation with equations: 

= —315— 4y = 3z ; 4y 

d ;) —4x+3y e ) 4x+3y 

¥="3 V=5 

_3 _4 3 _4 
_ 5 5 _ _ (5 B _ a A—<_é §) where |A|=—1. b A-(é §) where |A|=1. 

5 5 5 5 

a b - Since A has f A Ahas form (0 ) soAisa R B W P RS 

reflection matrix where cos2a = —32 

and sin 20 = —4 

tan20 =% and —7 <2a <0. 

If m =tana then 

2m 4 
  = 5 which simplifies to 
1—m2 

2m* +3m —2=0 
S 2m—1)(m+2)=0 

. m=1%or—2 

But -5 <a<0 so m<0 

tano = —2 
the transformation is a reflection in 

the line y = —2z.   
EXERCISE 1K.2 

1 Find the transformation matrix A for: 

a a reflection in the y-axis 

¢ an anticlockwise rotation about O through % 

a clockwise rotation about O through & 

> 
- 

o 
o 

e 

8 

i an anticlockwise rotation about O through E{T". 

a clockwise rotation about O through ‘%" 

2 Find the nature of the transformation with equations: 

o =L@ +y) 
a b 

v=J0b-2 

2 = —5114?: 12y 

¢ ;  —12x—5y d 

v = 13 

rotation matrix. 

If the angle of rotation is 6, cosf = % 

and sinf =2 

I
 
o
 

= tanf =3 

= 6= arctan( ) 

(or 6~ 0.927°) 

the transformation is an 

anticlockwise rotation about O(0, 0) 

W
i
 

through arctan (3 ).   
an anticlockwise rotation about O through % 

a reflection in the line y = —x 

a reflection in the line y = 5z 

a reflection in the line y = V3z 

2 = \/Lg(xjty) 

V=25 

. 8y — 15z 

17 

y, _ 8z + 15y
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3 a Show that the matrix of a linear transformation which maps (\/i, 7\/5) onto (0, 2) has the 

s s 
form A = (t—&-fi t) for some s, t € R. 

b Discuss whether the linear transformation in a can be 

i a rotation about O il areflection in the line y = (tana)z. 

4 Let A be the transformation matrix for an anticlockwise rotation about O through angle §. Show 

that A—! = AT, and explain the significance of this result. 

5 Let A be the transformation matrix for a reflection in the line y = (tana)x. Show that A=! = A, 

and explain the significance of this result. 

6 Let T be an anticlockwise rotation about O through —%’r. Under T, find the image of: 

a the point (5, —1) b the line y =3z —1 ¢ the rectangular hyperbola y = L 
x 

7 Let S be a reflection in the line y = —2z. Under S, find the image of: 

a the point (—4, 2) b theline y=2-=z ¢ the parabola y = 22. 

8 Suppose that y = ma + ¢ under a reflection in y = %x, becomes 32z + 43y = 13. 

Find the equation of the object line. 

9 A straight line under an anticlockwise rotation about O through 37”, becomes = — 3y = —V2. 

Find the equation of the object line. 

SENSE AND AREA 

INVESTIGATION 5 

The square OABC with vertices O(0, 0), A(1, 0), B(1, 1), and C(0, 1), is called the “unit 

square”. 

What to do: 

1 Illustrate OABC and its image O’A’B’C’ under a linear transformation with matrix A, where 
A is: 

10 b 2 0 c 2 0 d 0 2 a 2 1 

2 1 01 0 2 2 0 -1 -2 

Find det(A) for each matrix A in 1. 

The labelling of square OABC is anticlockwise. If the labelling of O’A’B'C’ is also 
anticlockwise, we say that sense has been preserved; otherwise, we say that sense has been 

reversed. 

What is the connection between det(A) and sense for a linear transformation with matrix A? 

area O'A’B/C’ 

area OABC 

What is the relationship between this fraction and det(A)? 

For each of the matrices in 1, find 

Discuss the effect on sense and area for: a rotations b reflections.
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STRETCHES 

Consider a stretch which is parallel to the z-axis with scale 

factor k. The point P is moved to P’ where [PP'] is 

parallel to the z-axis, and if (PP’) meets the y-axis at N 

then NP’ = kNP, k> 0. 

2’ =NP' = kNP = kz 
We therefore find: { , 

y =y 

  

For a stretch parallel to the x-axis with scale factor &, the transformation matrix is 

k 0 
Af(0 1) and |A|=k. 

Now consider a stretch which is parallel to the y-axis with 

scale factor k. The point P is moved to P’ where [PP'] is 

parallel to the y-axis, and if (PP’) meets the z-axis at N 

then NP/ = kNP, k > 0. 

/ 
r =x 

We therefore find: { Y = NP = kNP = ky 

  

For a stretch parallel to the y-axis with scale factor k, the transformation matrix is 

10 
A_<0 k) and |A|=k. 

  

  

  

        

Ay A linear transformation maps rectangle ABCD onto 

square A’B'C'D’. 
A B A/ B’ q o 5 . 

1 a Identify the geometric linear transformation T.     

  b Write down the transformation matrix. 

  

    

                        

  

] A'B'C'D’ 2 ¢ Verify that E2ABED Ay 
area ABCD 

D Cc D/ c’ 
-+ > 

1 T 
v 

. A'B/'C'D! 

a T is a stretch, parallel ba=(30 c icap NBIGIN 
L. 0 1 area ABCD 

to the z-axis with scale 9 

factor k = 3. =3 
=3 

[TA]|    
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SHEARS 

The two diagrams below show rectangle OABC subjected to shears in different directions. In each case 

a parallelogram O’ A’B’C’ results. 

   
shear parallel to the z-axis shear parallel to the y-axis 

For a shear parallel to the x-axis with scale factor k, the point P is moved to P’ where [PP’] is parallel 

to the x-axis, and if N is the foot of the perpendicular from P to the z-axis then PP’ = kPN, &k > 0. 

¥ =x+PP =x+kPN=uzx+ky 
We therefore find: { , 

y=y 

For a shear parallel to the x-axis with scale factor &, the transformation matrix is 

1 k 
A—(O 1) and |[A|=1 

For a shear parallel to the y-axis with scale factor k, the point P is moved to P’ where [PP’] is parallel 

to the y-axis, and if N is the foot of the perpendicular from P to the y-axis then PP’ = kPN, k > 0. 

! 
Tr =T 

We therefore find: 
¢ therefore Hm {y’=y+PP’=y+kPN=y+kz 

For a shear parallel to the y-axis with scale factor k, the transformation matrix is 

10 
Af(k 1) and |A|=1. 

  

€1 T 108 T 

  

The linear transformation T is a shear parallel to the 

z-axis with scale factor 2. Triangle ABC is moved to 

A’B’C’ under T. 

a Find A’, B’, and C’, and illustrate the transformation. 

b Find the area of AABC and hence find the area of 

AA'B'C'. 
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I 2 

a A= 12 so we have z, Tty 
0 1 Y =y. 

  

  A(l, 2) — A'(5, 2)   

  B(3, 3) — B'(9, 3) 
  C(3, —1) - (1, —1) 
  

]Y
 

b Area AABC = 1 x 4 x 2 = 4 units® 
                        

  

    area AA'B'C’ = || A || x area AABC 
  

=1 x 4 units? 

= 4 units? 

  

PROJECTING A POINT ONTO THE LINE y = (tana)x 

When a point P(z, y) is projected onto the line y = (tana)z, 

it is moved to the point P/(z’, y') on the line such that [PP’] 

is perpendicular to the line. 

To find the transformation matrix for such a projection, we 

return to vector methods. 

  

    
y=(tana)z 

  

Using AOAB, cosar = % —O0B ..(1) {0A=1} 

Using AOCB, OC = OBcosa = cos’ a {using (1)} 

and BC =OBsina =sinacosa {using (1)} 

cos® 
T(er) = (sinacosa 

For e — ((1]) T(es) = (gg) 

Now AOB=1I-aq 

OAB = a 

. . OB 
Using AOAB, sina = on = OB .. (1) {0A =1} 

Using AOBC, OC = OBcosa =sinacosa  {using (1)} 

and BC = OBsina =sina {using (1)} 

T(es) = (sinacosa) 

sin® a
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For a projection onto the line y = (tana)x, the transformation matrix is 
2 

) and |A[=0. 
A= cos” sin o cos a 

sin a cos sin® a 

For a projection onto a line, how many possible object points could correspond to a particular image 

point? 

Can you use this to explain why |A|=0 for this transformation? 

  

Example 59 

a Find the projection of the point (3, 4) onto the line y = %z 

b Hence find the shortest distance from (3, 4) to the line y = 3. 

4 2 
a tana = 3 The transformation matrix A = < 2 i ) 

5 5 

NG soal=%x+2y and Y =Za+ iy 

1 Hence when =3, y=14 

2 o' =23)+2(4)=4 and 

Y =23)+ 1) =2 
. sina = -1 . 1 g 

V5 the projection of (3, 4) onto y = 3z is (4, 2). 
2 and cosa = = 

b The shortest distance from (3, 4) to y= 3z 

= the distance between (3, 4) and (4, 2) 

=+/(4—-3)2+(2—4)? 

= /5 units   
EXERCISE 1K.3 

1 A stretch parallel to the y-axis has scale factor 2%‘ For this stretch, find the image of: 

a P(3,1) b the line y =1—4z. 

2 A shear parallel to the z-axis has scale factor 1%. For this shear, find the image of: 

a Q(-2,6) b the circle 22 +y? = 10. 

3 Find the projection of R(4, —1) onto the line with equation 3z +y = 0. 

4 A shear parallel to the y-axis has scale factor 4. For this shear, find the image of: 

a S(—1,-3) b the parabola y = —2z2. 

5 A stretch parallel to the z-axis has scale factor 3%. For this stretch, find the image of: 

a T(-2,4) b the line 3z — 4y = 6. 
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6 The projection of (4, —3) onto the line y =ma is (1, 13). Find m. 

7 A(-1,0), B(2, —2), C(5,1), and D(2, 7) are the vertices of quadrilateral ABCD. 

A shear parallel to the y-axis with scale factor 1% is applied to ABCD. 

a Find and illustrate the image A’B’C'D’. b Find the areas of ABCD and A’B'C'D’. 

8 The circle 2% +y? =9 is subjected to a vertical stretch with scale factor . 

a Illustrate the object and image. b Find the equation and area of the image. 

9 Find the shortest distance from: 

a the point (-1, 3) to the line y =4z b the point (h, k) to the line y =ma. 

10 The circle 2?4 y? = a? is transformed by a stretch parallel to the x-axis with scale factor é 
a 

a Illustrate the object and image. b Prove that the image has area wab. 

COMPOSITIONS OF TRANSFORMATIONS 

Suppose point P is transformed to point P’ under a linear 

transformation T with matrix A, and then P’ is transformed to 

P” under a second linear transformation Ty with matrix B. 

We can call this “T, followed by Tg” or “Tg follows Tp”. 

P’ 

Under Tp, X' = AX, and under Tz, X' = BX’ pr 

- X" = B(AX) = (BA)X. P 

The single linear transformation which maps P directly onto P” is the composition Tp o T, with 

transformation matrix BA. 

3 €1 TN    

   

  

Find the single transformation equivalent to an anticlockwise rotation about O through %, followed 

by a reflection in the line y = 2. 

    If T, is an anticlockwise rotation of % about O, then A = <(13 _01 ) 

1-m2 1-4 
  

  

If Ty is a reflection in the line y = 2z then cos2a = 5 =— = —% and 
1+m 1+4 

5 _2m 4 
sin 2a = Tz 5 

= Il 

/
N
 

e 
ml
w 

S
N
—
—
 

_3 4 0 —1 4 3 
Thus BA=| ° 7 Sl 

5 5/\1 O t % 

BA has form (‘; fa) with |BA|=|B||A]|=(-1)(1) = -1 

Tx followed by Tg is a reflection on a line through (0, 0).  
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For a point on the mirror line, z/ =z 

    
      

4 3, _ Likewise, using tr+y==x 
5% 5Y y" =y leads to 
4z + 3y = bz y=1z. 

y=3e 

Hence T, followed by T is a reflection in the line y = %z 

  

EXERCISE 1K.4 

1 Find the single transformation equivalent to: 

a areflection in the z-axis followed by an anticlockwise rotation of % about O 

b an anticlockwise rotation through %" about O followed by a reflection in the line y = —z 

¢ areflection in the line y = v/3z followed by a reflection in the y-axis 

d areflection in the line y =z followed by a reflection in the line y = 3x. 

2 Suppose Ty is a reflection in the line y =z and T is an anticlockwise rotation about O through %. 

a Find the transformation matrices for Ty and Ts. 

b Determine the nature of the composition: i Ty 0Ty il TooTy 

¢ Does Ty oTy=TyoTy? 

3 Find the single transformation equivalent to: 

a arotation about O through 6 followed by a rotation about O through ¢ 

b a reflection in the line y = (tana)z followed by a reflection in the line y = (tan 3)z. 

4 Prove that a reflection in a line through O, followed by a rotation about O, is equivalent to a 

reflection in another line through O. 

5 Giving reasons for your answers, discuss the combined effect of: 

a an even number of reflections b an odd number of reflections. 

6 What transformation is needed before a clockwise rotation through 7 about O, in order to give a 

reflection in the line y = $2? 

7 The line with equation y =2z — 1 is subjected to a reflection in the line y = —x followed by a 

rotation of %” about O. Find the equation of the image. 

8 a Find the transformation matrix for a vertical stretch with scale factor k. 

b Find the single transformation matrix for a vertical stretch with scale factor 2, followed by a 

reflection in the line y = —2x. 

¢ What effect does the composition of transformations in b have on sense and area?
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I 0 EHGENVALUES AND EIGENVECTORS 
In the final Section of this topic, we consider the eigenvalues and eigenvectors of 2 x 2 matrices. 

These have useful applications in geometric transformations, molecular and quantum physics, vibrations, 

geology, and glaciology. 

  

  

HISTORICAL NOTE 

One of the first known applications of eigenvectors came 

from Leonhard Euler’s study of the rotational motion of rigid 

bodies. The Italian mathematician Joseph-Louis Lagrange 

recognised that the principal axes for the rotation correspond 

to the eigenvectors of the inertia matrix. 

In the 19th century, numerous mathematicians and physicists 

considered the properties of eigenvalues and eigenvectors 

in their studies. However, it was not until 1904 that the 

Prussian mathematician David Hilbert gave them the German 

description eigen, meaning “own”. 

  

David Hilbert 

In general, if we are given a 2 x 2 matrix A and 2 x 1 non-zero vector x, we will not be able to find 

a constant A such that Ax = Ax. 

. 8 3 1 14 1 
For example, if A = (2 7) and x = (2>, then Ax = (16) 75)\(2) forany A e R. 

However, for some 2 x 2 matrices A, we can find non-zero vectors x and corresponding constants A 

such that Ax = Ax. 

. 8 3 6 60 
For example, if A = (2 7) and x = (4>, then Ax = (40> =10x where X\ = 10. 

Let A be a square matrix. If x is a non-zero vector and A is a constant such that Ax = Ax, then A is 

an eigenvalue of A and x is its corresponding eigenvector. 

Note that we demand x to be non-zero, since clearly if x =0 then Ax =Ax=0 forall A e€R. 

Now, if Ax =Ax then Ax— Ax=0 

S (M—A)Xx=0 

This equation has non-zero solutions for x < det(Al — A) = 0. We therefore conclude that: 

The eigenvalues of A can be found by solving det(AI — A) = 0.
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Example 61 

Find the eigenvalues and their corresponding eigenvectors for A = ( 

  

A 

-1 A 

S 

If det(A\I—A) =0 then ‘ 

Thus the eigenvalues are A =1, —3. 

For A=1, (M —A)x=0 

becomes <1 73><a):(0 
-1 3 b 0 

. a—3b=0 

Letting b=t, t#0, 

a=3t 

3 
1 X 

Any vector of the form (i’)t, t # 

)t, t 

)t, t#0 

=l 

1   Any vector of the form ( 

L A=1)A+3)=0 

0 3 
1 -2 ) 

=3 2| = 
A—-3=0 

. A=1lor -3 

For A = -3, (M —A)x=0 

becom -3 -3 al (0 
ecomes ( » )= o 

. o—a—b=0 

Letting b=t, t#0, 

a=—1 

x=( )t,t;éO 

0 is an eigenvector corresponding to the eigenvalue 1. 

=l 

1 

# 0 is an eigenvector corresponding to the eigenvalue —3. 

GEOMETRIC INTERPRETATION 

In the previous Example where A is the matrix ( 

e for A\ =1, the basic eigenvector is 

3 (3 
e 

A1 

) o 
P 1 =2 

Ay 

| 

3 

1 

3 

1 )= (1) 
  

=1 
  

  

  

]Y
 

  

                          

0 

1 

3 
_9 ) , we see that: 

e for Ay = —3, the basic eigenvector is 

x:<*11), and 

NS 1 1 

A2 
  

  

  

  

8]
Y 
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From examples like these, we can conclude the following: 

Suppose the matrix A has eigenvalue A with corresponding eigenvector x. 

e If A=1, Ax does not change x. 

e If XA >0, the effect of A on x is to increase its length by factor A, and preserve its direction. 

e If A <0, the effect of A on x is to increase its length by factor ||, and reverse its direction. 

EIGENSPACES 

If A is a square matrix and X is an eigenvalue of A, then FE) = {x | x =0 U Ax = Ax} is the 
eigenspace of A corresponding to eigenvalue A. 

If Ais n xn then F is a subspace of R™. 

  

Proof: 

If xe B, A(tx) and if xq, X2, ..., X, € E 

= t(Ax) A(X1 + X2+ oo +Xp,) 

= t(Ax) = Axq + Axp + ... + AX, 

= A(tx) = XX + AXg + ... + AX,, 

= txe€F forall teR =A(X1 + X2+ .oo. +Xp) 

= F is closed under = Xy +Xg+ ... + X, €EF 
scalar multiplication. = FE is closed under vector 

addition. 

Since E is closed under scalar multiplication and vector addition, it is a subspace of R™. 

The eigenspace includes 

If Xy, Xo, ...., X, are linearly independent eigenvectors of A then all vectors which are 

E = {xq, X2, ..., X, } s called the eigenbasis of A. linear.combinations of 
eigenvectors. 

0 3 

1 -2 

  

For example, for the matrix A = ( ) in Example 61: 

1   
X = (3 ) t} is the eigenspace for A corresponding to A =1 

  
X = ( 711 )1‘} is the eigenspace for A corresponding to A = —3 

=
 

W
 

~
—
 

/
N
 | 

! ) } is the eigenbasis for A.
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CHARACTERISTIC POLYNOMIAL 

The characteristic polynomial of an n X n matrix A is det(AI — A). 

For 2 x 2 matrices, the characteristic polynomial is quadratic. 

For 3 x 3 matrices, the characteristic polynomial is cubic. 

How does the existence of real solutions to the characteristic polynomial affect the eigenvalues and 

eigenvectors of a matrix? 

What happens in the case of a repeated root? 

Fora 2 x 2 matrix A with eigenvalues A\; and Aa: 

e )\ + )y is the sum of the elements on the leading diagonal of A, 

commonly called trace (A) or tr(A) 

o M= A] 

Proof: 

      For eigenvalues A1 and Ao, det(Al — A) = (A — A1)(A — A2) A (AL +F)A+Ah o (D) 

a b A—a b 
For A=(C d)’ det()\I—A)=( e )\—d) 

=\ —a\—d\+ad—be 

=N —(a+dA+|A] .. 

Comparing (1) and (2), M +Xo=a+d=1tr(A) and M)Ay =|Al 

  

Example 62 

Find the eigenvalues for: 

aa=( ) »a=(1 1) 

  

a tr(A)=—1 and |A|=-12 b tr(A)=2 and |A|=-5 

S A=A =2+ A—12 S M—A|=X2-2x-5 

S A=A =(A=3)(A+4) L A—Al=0 & y_ 2EVET20 

[NI—A|=0 & A=3,—4 2 

the eigenvalues are 3, —4. =1+v6 

the eigenvalues are 1+ V6, 1—+/6.    
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EXERCISE 1L.1 

10 

Find the eigenvalues and corresponding eigenvectors for each of the following matrices: 

sa-(3 ) oa- (V) ca-(2 1) 
aa(iy) e () 

Consider the matrix A = (i 711 ) 

a Find the eigenvalues of A and the corresponding eigenvectors. 

b Describe the geometric effect of matrix A on the eigenvectors. 

¢ State the eigenspaces of A and an eigenbasis. 

For any 2 x 2 matrix A, show that A and AT have the same eigenvalues. Discuss whether they 

would have the same corresponding eigenvectors. 

. 1 -3 
Consider A = (_5 3 ) 

a Find A2 and A~ 

b Find the characteristic polynomials of A, A%, and A™!, 

¢ Discuss the connection between the eigenvalues of: 

i Aand A2 i Aand A™L 

Suppose A is an n x n matrix with eigenvalue A and corresponding eigenvector x. 

a Prove that A2 has eigenvalue A2 with corresponding eigenvector x. 

. . 1 . . . 
b If A~! exists, prove that A~ has eigenvalue 5 with corresponding eigenvector x. 

¢ Prove by mathematical induction that A™ has eigenvalue \" with corresponding eigenvector x 

forall neZt. 

Prove that if a 2 x 2 matrix has distinct eigenvalues, then the corresponding eigenvectors are 

linearly independent. 

a Prove that if A is an eigenvalue of matrix A, then A+% is an eigenvalue of A + kI. Discuss 

the connection between the eigenvectors of A and A + KL 

b Suppose A is a square matrix with eigenvalue A and corresponding eigenvector x. Write the 

cigenvalue of A% +4A and the corresponding eigenvector in terms of A and x. 

Suppose matrices A and B are symmetric. Prove that AB and BA have the same eigenvalues. 

If x"Ax > 0 for all non-zero vectors x, show that the eigenvalues of A are positive. 

Suppose matrix A is real and symmetric with unequal eigenvalues \;, Ay and corresponding 

eigenvectors X, Xo. Prove that x; and Xx» are orthogonal.
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DIAGONALISATION OF 2 x 2 MATRICES 

A 2 x 2 matrix A is diagonalisable if there exists a 2 x 2 matrix P such that D = P~*AP isa 

diagonal matrix. We say that P diagonalises A. 

0 3 
In Example 61, A:<1 9 

-1 . 
< 1 ) respectively. 

Consider the matrix P = ( 

) has eigenvalues 1, —3 with corresponding eigenvectors (?) and 

3 -1 

1 1 

ap_af 11 0 3 3 -1 
We observe that P~ AP <71 3><1 72>(1 1) 

(1 0 

—\0o -3 

(M0 

L0 N ) 

Examples like this lead us to the theorem: 

) made up using the eigenvectors of A. 

The 2 x 2 matrix A with distinct eigenvalues Aq, A2 and corresponding eigenvectors Xj, Xo is 

diagonalisable. The matrix P = (x1|x) diagonalises A, and P~!AP = ()(‘)1 )(\] ) 
2 

Proof: Since A has distinct eigenvectors Xj, Xo, these vectors are linearly independent. 

{proved in the previous Exercise} 

Consequently P = (x;|x2) has an inverse P~ where P~!P = L. 

Now P™'P=P7!(x;|x2) = (P 'x; | P 'x2) 

w1=((0)] (9) 
= () = () o 

So, PT'AP =P !(Ax; |Ax,) {since P = (x1|x2)} 

=P~ (Arx1 | Aaxa) {since Ax = Ax} 

= ()\1P_1X1 |)\2P_1X2) 

() o 
< 
< 

  

(3)I () 
Y
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3 €] T Y] 

2 5 
Let A—(1 0). 

a Find the eigenvalues Aj, Ay (A1 > A2) and corresponding eigenvectors Xj, Xo. 

b Find the matrix P which will diagonalise A. 

A0 
¢ Verify that if P = (x;|x2) then PT'AP= ( 0\ 

2 
) and also that 

if P=(x2|x1) then P_lAP=()\2 0). 

  

  

0 N 

_|A=2 S5 2 oy a \/\17A|7‘ RN ‘7,\ 22 -5 

AL-A|=0 & A=22EZ 

& A=1+ \/— 

For Ay =1+ /6, For Ay =1 — /6, 

(A= A)X=0 (AI—A)x =0 
becomes becomes 

V6—1 -5 a\ _ (0 -1—+6 -5 a\ _ (0 
-1 1+v6)\b) \0 -1 1-+v6)\b) \0 

—a+(1+V6)b=0 o —a+b(1—+6)=0 

Letting b=t, t#0, Letting b=t, t#0, 

a=(1+V6)t a=(1-V6)t 

a) _ [1+6 ) a _ (1-6 
<b>—( 1 )t, t#0 S (b)7< 1 >t, t#0 

let x1:(1+1\/6) o et x2:(171\/g) 

{choosing t =1} {choosing ¢ =1} 

b P could be 1+v6 1-V6 or 1-Vv6 1+v6 . 
1 1 1 1 

¢ For P= (1+1\/6 171\/6), P !AP ~ (3449 _10449> {using technology} 

1+f 0 6) 

Q B Pf(l_\/_ H‘/_), P—LAP 

I 

      

—1.4 . 
( 3.4 49> {using technology} 

1+\/_>   
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CALCULATING THE POWER OF A MATRIX 

If a matrix A is diagonalisable, we can calculate its powers using the following theorem: 

A0 
Matrix A is diagonalisable such that D = P~!AP = ( 0 A 

2 
) if and only if 

M0 
AF =P . |PTH forall keZt. 

0 A 

Proof: 

3¢, XY 

0 3 
From Example 61, the matrix A = (1 9 ) has eigenvalues 1, —3 with corresponding 

eigenvectors (i’), < _11 ) Use the diagonalisation of A to find AS.   
oo (3 -1\ 0 peiap (M 0 (1 0 

The matrix P_<1 1) diagonalises A with P AP—(0 )\2>_(0 _3>. 

A0 
Now AF=p( "t ° |p! 

0 A 

e )6 SR
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Afi:l(s _36)< ! 1) Check:  [TA17& 1 6 — eck: - 

o g Tigg, a3, _1 3+30 3-37 

A\1-3% 1437 

[ 183 —546 
T\ 182 547 

Example 65 

. 3 -3 . . . 
The matrix A = _3 _5 has eigenvalues \; = —6, Ay = k with corresponding 

. 1 =3 . 
eigenvectors (3), ( 1 ) respectively. 

a Find k. b Diagonalise A. ¢ Find the exact value of A%, 

a tr(A) =3+ (=5) =2 
—6+k=-2 

k=4 

b P= (; 713) diagonalises A and P~!AP = ( 56 2) {Theorem} 

(_6)59 0 _ 

cA59=P( 0 4 p! 

(1 =3\ (-6 0\, ,/1 3 
—\3 1 0 459 J10\ —3 1 

L[ 6% —3x4% 1 3 
= 10 —3x 659 459 EEOEN 

71< 9x 4% —6%  —3x6°°—3x4% 
=10 3% 6%9 — 3 x 4% 459 _ g x 659 ) {simplifying}     

The square root of a matrix does not exist. However, when given a 2 x 2 matrix A, we can use 

eigenvalues and eigenvectors to find matrices B such that A = B2 

  

€1 TN T 

4 1 
0 9), find all matrices B for which B? = A. 

First we find the eigenvalues and eigenvectors of A: 

A—4 

0 
If [A\I—A|=0 then ‘  
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When )\ =4, When A =9, 

(M—A)x=0 (M—A)x=0 

(6 %)(3)=0) (5 9)()=0) 
b=0, a0 - Ba—b=0 

an eigenvector is (é) Letting a=t, t#0, 
b= "5t 

an eigenvector is (é) {choosing ¢ =1} 

the eigenvalues are A\ =4, Ay =9 with corresponding eigenvectors ((1)), (é) 

11 

0 5 

e (40 PA]L(OQ 

[N N 1) . BP_<0 9> 

. g zp(é g)l,fl 

2 2p—1 o +2 0 
. B*=PC°P where C—( 0 _:3> 

Thus P = ( ) will diagonalise A, and 

  

  

- B> = (pCcP~!)(PCP!) 

. B=PCP™! 

we=(53) 2=(5 3)(5 o )(C ‘f)=(3 ) 
Likewise, using the other possibilities for C, we find other possibilities for B. 

2 3 2 -1 -2 1 -2 -3 5 2 _ 5 5 The 4 solutionsto B = A are B = <0 3), (0 _3), < 0 3), 0 -3 

EXERCISE 1L.2 

    
  

27 

a Find the eigenvalues of A and their corresponding eigenvectors. 

1 Consider matrix A = (8 3). 

b If the eigenvalues of A are Aj, A2 (A1 < A\2) with corresponding eigenvectors Xj, Xa, and 

if P =(xi|x2), verify that: 

MO0 
i piap= (2 0 i AP =" 0 X 0 A
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Consider the matrix A = (g ;1) 

a Find the eigenvalues of A and their corresponding eigenvectors. 

b State a matrix P which will diagonalise A. 

¢ Hence find the matrix P~'A3P. 

If A= ( ;1 } )7 find the exact value of A%0, 

If C= ((1) ?), find the exact value of C2015, 

1 k 
For what values of k is (0 2 ) diagonalisable? 

Find the possible matrices B for which B? = (; 2) 

The Cayley-Hamilton theorem is: 

“Every m x n matrix satisfies its own characteristic equation”. 

This means that for a 2 x 2 matrix A, if |A[—A| = A — (A; + A2)A + A\ Ag = 0 then 

A? — (A1 + A2)A + Al = 0. 

a Prove the Cayley-Hamilton theorem for 2 x 2 matrices. 

b Hence find in the form aA + bl, the matrices: i A3 i AT! 

If there exists an invertible matrix P such that B = P~'AP, prove that A and B have the same 

eigenvalues. 

a If Aisa 3 x3 upper triangular matrix, prove that its eigenvalues are the elements of its main 

diagonal. 

b Does this result hold for a 3 x 3 lower triangular matrix?
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THEORY OF KNOWLEDGE 

When we talk about space, we commonly refer to a quantity with three physical dimensions. 

For example, when we describe the size of an object, we might talk about its length, width, and 

  

  

  

height. 

The dimensions length, width, and height 

can be described by the orthogonal linear 

coordinate system called Euclidean 3-space. 

Its basis consists of the linearly independent 

1 0 0 
vectors 0),{1]),(0 . 

0 0 1 T               If the coordinate system was physically constructed, 

we would form a cubic honeycomb like the one shown.       
1 What is space? 

2 What does it mean to say that a coordinate system is independent? How is independence 

related to uniqueness? 

3 We can use linear transformations to distort the cubic honeycomb into other honeycomb 

systems such as those shown below: 

  

  

                  
cuboid honeycomb 

T T 7 
lli'il 

77 777 lll!l7 
l’li’li 
,/",l ,llllr 

L L [ 
parallelepiped honeycomb 

     

  

    

        
    

Could these other honeycomb systems be used to represent 3-dimensional physical space? 

What properties would these systems have? 

Do these systems give us another understanding of space? 

Q 
an 
C
 o
 

system for 3-dimensional physical space? 

Research a bitruncated cubic honeycomb. Can this honeycomb be used as a coordinate 

4 Does it make sense to use an orthogonal linear coordinate system to describe a sphere? 

5 If there are many ways to represent 3-dimensional space, is it reasonable to say that some 

representations of space are more ‘natural’ than others? 

In the 3rd century BC, Eratosthenes proposed a system of latitude and longitude for a map of the 

world. Measuring latitude was relatively easy since it could be found from the altitude of the sun at 

noon. However, measurement of longitude was much more complicated, especially at sea, and it was 

at sea that its use for navigation was fundamentally important. This drove astronomers, physicists, and 

mathematicians to seek better ways of calculating longitude, and significant advances are credited to
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Galileo (1612), Halley (1683), and Maskelyne (1767) for their lunar methods, and Harrison (1773) 

and Earnshaw (1780) for their marine chronometers. 

In addition to latitude and longitude, our location on the Earth is more commonly described by 

including a third dimension which is our elevation above sea level. 

6 How does longitude relate to time? 

7 Discuss whether the system of longitude, latitude, and elevation is: 

a linear b independent ¢ orthogonal d a vector space. 

8 I[s the system of longitude, latitude, and elevation equivalent to 3-dimensional physical space? 

In the scientific world today, it is widely agreed that we need more than 3 dimensions to adequately 

describe the world around us. 

9 What would these extra dimensions actually mean? 

10 Mathematically, it is trivial to extend the Euclidean 3-space into a Euclidean 4-space with 

1 0 0 0 

. 0 1 0 0 . . 
basis E E R 0 . Does mathematics hold the key to unlocking 

0 0 0 1 

extra dimensions which are otherwise beyond our comprehension? 

11 We are used to representing 3-dimensional objects such as a cubic on 2-dimensional paper. 

This process can be extended to give visual representation to “cubes” in higher dimensions: 

e  0-dimensional point Z 

lD 2-dimensional square 3-dimensional cube 

e—— 1-dimensional line 
—_— 

  

  

  

      
  

            \ 
4-dimensional cube 5-dimensional cube 6-dimensional cube 

  

If the extra dimensions do not represent physical space, is there purpose to giving them 

physical representation? 

12 Is time 2-dimensional? 

13 Can the universe be completely described by a finite-dimensional space?
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Euclid’s angle bisector theorem 

Apollonius’ circle theorem 
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Theorems of Ceva and Menelaus 

The equation of a locus 

The coordinate geometry of circles 

Conic sections 

Parametric equations 

Parametric equations for conics 

The general conic equation
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Many amazing discoveries have been made by mathematicians and non-mathematicians who were simply 

drawing figures with rulers and compasses. 

For example, this figure consists of three circles of unequal 

radii. Common external tangents are drawn between each pair 

of circles and extended until they meet. 

Click on the icon to see what interesting fact emerges. 

GEOMETRY 
PACKAGE 

This topic is a mix of Euclidean geometry and coordinate geometry. 

The Euclidean geometry is a consistent system of logical thought and deductive reasoning, based on a 

few simple ideas called axioms. The approach is therefore quite formal. Euclidean geometry is felt to 

possess great mathematical beauty, which is reason enough to justify our study. 

This topic deals mainly with ratio properties of figures, and we will concentrate on: 

e Apollonius’ theorems 

e the theorems of Ceva and Menelaus 

e Ptolemy’s theorem 

Coordinate geometry was developed more recently and provides us with an alternative approach to solving 

geometrical problems. 

HISTORICAL NOTE 

Euclid was one of the great mathematical thinkers of ancient times. 

He founded a school in Alexandria during the reign of Ptolemy I, 

which lasted from 323 BC until 284 BC. 

  

Euclid’s most famous mathematical writing is called Elements. It is 

the most complete study of geometry ever written, and has been a 

major source of information for the study of geometric techniques, 

logic, and reasoning. It was used as a text book for 2000 years until 

the middle of the 19th century. At this time a number of other texts 

adapting Euclid’s original ideas began to appear. 

Like many of the great mathematicians and philosophers, Euclid 

believed in study and learning for its own merit rather than for the 

rewards it may bring. 
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THEORY OF KNOWLEDGE 

Euclid’s great work FElements is a set of 13 books 

written in Alexandria around 300 BC. Elements is 

sometimes regarded as the most influential textbook ever 

written, consisting of definitions, postulates, theorems, 

constructions, and proofs. It was first printed in 1482 in 

Venice, making it one of the first mathematical works ever 

printed. 

The foundation of Euclid’s work is his set of postulates, & of the ot auncc ent Philofopher 
EVCLIDE 

which are the assumptions or axioms used to prove further 

results. Euclid’s postulates are: 

1. Any two points can be joined by a straight line. 

2. Any straight line segment can be extended indefinitely 

in a straight line. 

3. Given any straight line segment, a circle can be drawn 

having the segment as radius and one endpoint as 
centre. 

  

Imprinted at London by 
4. All right angles are congruent. =   

5. Parallel postulate: If two lines intersect a third in such a way that the sum of the inner angles 

on one side is less than two right angles, then the two lines inevitably must intersect each other 

on that side if extended far enough. 

1 Can an axiom be proven? Is an axiom necessarily true? 

2 Consider the first postulate. 

a What is a straight line? How do you know that a line is straight? 

b s straightness more associated with shortest distance or with shortest VIDEO 

time? Does light travel in a straight line? 

¢ Is straightness a matter of perception? Does it depend on the reference 

frame of the observer? 

3 For hundreds of years, many people believed the world to be flat. It was then discovered the 

world was round, so that if you travelled for long enough in a particular direction, you would 

return to the same place, but at a different time. 

a How do we define direction? 

b s a three-dimensional vector sufficient to describe a direction in space-time? 

¢ Can any straight line segment be extended indefinitely in a straight line? 

4 Comment on the definition: 

A straight line is an infinite set of points in a particular direction.
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BACKGROUND KNOWLEDGE 

From previous courses you should be familiar with the following theorems: 

ANGLE THEOREMS 

Vertically opposite angles | Vertically opposite angles are equal. 

Angles at a point The sum of the angles at a point is 360°. 

  

    
  

a+b+c=360° 

Angles on a line The sum of the angles on a line is 180°. 

a/b 

a+b=180° 

PARALLELISM THEOREMS 

  

Corresponding angles | When two parallel lines are cut 

by a third line, the angles in 

corresponding positions are equal. 

  

Alternate angles When two parallel lines are cut by 

a third line, the angles in alternate 

positions are equal. 

Allied (or co-interior) | When two parallel lines are cut by 

angles a third line, the angles in allied 

positions are supplementary. 

      
  

a+b=180° 

Converse of If two lines are cut by a third 

parallelism theorems | line, they are parallel if either dfc 

corresponding angles are equal, b 

alternate angles are equal, or allied a 

angles are supplementary. Iy is parallel to Iy if a=c 

or b=d or b+ c=180°.    
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TRIANGLE THEOREMS 

Click on an icon for an interactive demonstration. 

Name Theorem Figure 
  

Angles of a triangle | The sum of the interior angles of GEOMETRY 
a triangle is 180°. PACKAGE 

% a+b+c=180° 
  

Exterior angle 

of a triangle 

The exterior angle of a triangle is GEOMETRY 
PACKAGE 

% 
c=a+b 

equal to the sum of the interior 

opposite angles. 

Isosceles triangle | In an isosceles triangle: 

GEOMETRY 
PACKAGE 

e base angles are equal 

e the line joining the apex to 

the midpoint of the base is 

perpendicular to the base and 

bisects the angle at the apex. 

  

  % 

  

Converses of e If a triangle has two equal 

isosceles triangle angles, then the triangle is 

theorem isosceles. 

e If the third angle of a triangle GEOMETRY 

lies on the perpendicular PACKAGE 

bisector of its base, then the 

triangle is isosceles. 

e [fthe line joining the midpoint 

of the base to the apex bisects 

the angle at the apex, then the 

triangle is isosceles. 

Midpoint 

theorem 

The line joining the midpoints of GEOMETRY 

two sides of a triangle is parallel A PACKAGE 

to the third side and half its 

length. n 

i idpoi GEOMETRY The line .drawn fron.l the midpoint . ACKAGE 

of one side of a triangle parallel 

to a second side, bisects the third a 

side. 

% 

Converse of 

midpoint theorem         %
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QUADRILATERAL THEOREMS 

Angles of a The sum of the interior angles of a GEOMETRY 

quadrilateral | quadrilateral is 360°. PACKAGE 

a+b+c+d=360° 

Parallelogram | In a parallelogram: G,f,fl:fiTG'EY 

e opposite sides have equal length ” 

e opposite angles are equal. 

GEOMETRY 
PACKAGE 

% 
A 

  

Diagonals of a | The diagonals of a parallelogram 

parallelogram | bisect each other. 

% 

GEOMETRY 
PACKAGE 

Diagonals of a | The diagonals of a rhombus: 

rhombus e Dbisect each other at right angles ,. 
& 

e bisect the angles of the thombus. A 

  

  % 

OTHER IMPORTANT FACTS ABOUT QUADRILATERALS 

Any one of the following facts is sufficient to establish that a quadrilateral is a parallelogram: 

e opposite sides are GEOMETRY e one pair of opposite GEOMETRY 
. PACKAGE L . PACKAGE 

equal in length sides is equal in length 

and parallel 
% 

e opposite angles GEOMETRY e diagonals bisect each GEOMETRY 
PACKAGE PACKAGE 

are equal other. 

% 

Any one of the following facts is sufficient to establish that a quadrilateral is a rhombus: 

> the quadrilateral is a parallelogram with one pair of adjacent sides equal 

> the diagonals bisect each other at right angles. 

Any one of the following facts is sufficient to prove that a parallelogram is a rectangle: 

> one angle is a right angle 

> the diagonals are equal in length. 

Any one of the following facts is sufficient to establish that a quadrilateral is a square: 

> the quadrilateral is a thombus with one angle a right angle 

> the quadrilateral is a rhombus whose diagonals are equal in length 

> the quadrilateral is a rectangle with one pair of adjacent sides equal in length.
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GO SIMILAR TRIANGLES 
Two triangles are similar if one is an enlargement of the other. 

Consider the two similar triangles shown. Since C 

AA'B'C’ is an enlargement of AABC, angles 
and side ratios are preserved. 

    

Cl 

For example, A B 
~ ~ A/ / AIBI 

CAB = C'A/B' and 25 — AR 
AB 

When triangles are similar, we write the vertices , 

corresponding to equal angles in the same order. A B’ 

For the above triangles we would write AABC is similar to AA’B/C’. 

THEOREMS ON SIMILAR TRIANGLES 

Theorem: Two triangles are similar < corresponding angles are equal. 

This theorem is a direct consequence of the definition, since one triangle is an enlargement of the other. 

Theorem: 

Two triangles are similar < the lengths of corresponding sides are in the same ratio. 

Proof: 

AA'B'C’ is an enlargement of AABC 

4 there exists an enlargement factor k such that A’B’ = kAB, A’C’ = kAC, B'C’' = kBC 

A’B! _ A'C’ BIC AL L 
AB  AC  BC 

& the lengths of corresponding sides are in the same ratio. 

Corollary: 

If two triangles are such that two side lengths of each triangle are in the same ratio and the included 

angles are equal, then the triangles are similar. 

   For example: 1cm .’ and are similar. 

2cm 

6cm
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Proof: (modern outline) 

Consider the two triangles given. 

By the Cosine Rule: 

Z X , ()2 = (ka)? + (kb)? — 2kakb cos 6 

“ N = k%(a® 4 b — 2abcosb) 

= k22 {Cosine Rule} 

bk Y 

  

We can repeat this process to show that 

a =ka and b = kb. 

NECESSARY AND SUFFICIENT CONDITIONS FOR SIMILAR TRIANGLES 

e If two triangles are similar then: Similarity of triangles is 

> the triangles are equiangular an equivalence relation, 

> the corresponding sides are in the same ratio. RelZiizt;:z]d]gszpsse:Z;)ic 

  

e A pair of triangles is similar if any one of the following is true: 

> the triangles are equiangular 

» the corresponding sides of the triangle are in the same ratio 

> two sides of each triangle are in the same ratio and the 

included angles are equal. 

  

For each of the following figures: 

i Identify similar triangles and prove that they are similar. 

ii Write an equation connecting the lengths of corresponding sides. 

B b 
K 

Instead of writing PaR = TSR it 

is often more convenient to write 

a1 = ap. The subscripts 1 and 

2 show the location of the angle. 

T 

a1 = ap {alternate angles} 

and (3, =3, {vertically opposite angles} 

As PQR and TSR are equiangular, and therefore similar. 

PQ PR QR 
TS TR SR  
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Consider triangles KLN, NLM, and KMN. 

i Let LKN=a i KL_IN_KN 
~ NL LM NM 

. KNL =90° —a {angles of a A} NL LM NM 

. INM=a (KNM is 90°} ™ kw2 

. LMN=90°—a {angles of a A} KL _ LN _ KN 
Thus the three triangles are equiangular e 

and therefore similar. 

As KLN, NLM, and KNM are similar.     
  

PARALLEL LINES WITHIN A TRIANGLE THEOREM 

A 

5 AX AY 
= Y If [XY] is parallel to [BC] then Sl 

C 
B 

Proof: 

BAC = XAY 
and a1 =@ {equal corresponding angles} A We write AX x AY     

as AX.AY 
As AXY and ABC are equiangular and therefore similar. 

AX _ AB 
AY ~ AC 
AX _ AX +XB 
AY  AY +YC 

  

  

o AXAY + AX.YC = AXAY + AY XB C ) 

AX AY = B 
XB YC 

CONVERSE TO PARALLEL LINES WITHIN A TRIANGLE THEOREM 

AX BX Y 2222 . X If 22 ===, then [XY]] [BC]
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EXERCISE 2A 

1 For each of the following figures: 

i Identify similar triangles and prove that they are similar. 

il Write an equation connecting the lengths of corresponding sides. 

a P b A <k 

B A 

Q T 

D B R S E 5 c C 

2 Inthe given figure, PQ =5cm, QR =3 cm, and TS =2 cm. P 

Find the length of [PT]. Q 

R 

T 

S 

3 375m __N  a Prove that [OL] is parallel to [NM]. 

50m 9 b If OL =32 m, find the length of [MN]. 

K 

40m 

L 

30m 
M 

4 ABCD is a trapezium with [AB] parallel to [DC]. The diagonals of the trapezium meet at M. 

Prove that AABM is similar to ACDM. 

5 A pine tree grows between two buildings A 

and B. On one day it was observed that the 

top of A, the apex of the tree, and the foot of B 

line up, and at the same time the foot of A, 

the apex of the tree, and the top of B line up. 

Find the height of the tree. 

6 PQRS is a parallelogram and T lies on [PS]. [QT 

Prove that QT.PS = QU.PT. 

7 ABC is an isosceles triangle with AB = AC. X 

Prove that BX = BC. 

  

    
   

  

AT”T160m 

— 
  

      
Q   produced meets [RS] produced at U. 

lies on [AC] such that CB? = CX.CA.
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Triangle ABC has altitudes [AP] and [BQ] where P lies on [BC], and Q lies on [AC]. H is the 

intersection of [AP] and [BQ]. 

Prove that AH.HP = BH.HQ. 

Prove the converse to the parallel lines within a triangle theorem: 

A it 2%~ BX hen [XY] | [BC. 
AY CY
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INMIT CONGRUENT TRIANGLES 
Two triangles are congruent if they are identical in every respect apart from position and orientation. 

They have the same shape and size. 

TESTS FOR THE CONGRUENCE OF TRIANGLES 

Two triangles are congruent if one of the following is true: 

e corresponding sides have equal length (SSS) 

o two corresponding angles are equal and any corresponding 

sides are equal in length (AAcorS) 

e cach triangle is right angled, the hypotenuses are equal in 

length, and a pair of corresponding sides are equal (RHS). 

These 4 tests for congruence are a consequence of the fact that two or 

more people will draw exactly the same triangle when given details 

of: 

° 

° 

the lengths of the sides of the triangle 

the lengths of two sides of the triangle and the angle between 

them 

two angle sizes and one side length 

a right angled triangle with known hypotenuse and one other side 

length. 

Example 2 

Determine whether each of these figures contains congruent triangles: 

a A b A 

e two corresponding sides are equal in length and the 

included angles are equal (SAS) 

     
    

           

   
   

  

   
   

Congruence of 

triangles is also an 

equivalence relation. 
   

Angles marked with 

the same symbol 

are equal in size.
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a We observe that: b We observe that: 

e DA =DC e DA =DC 

e [DB] is common e [DB] is common 

o ADB = CDB e ABD = CBD. 
As ADB and CDB are congruent None of the four tests apply, so we cannot 

{SAS}. establish congruence. 

{The equal angles are not included angles 

for the equal sides.} 

  

s ] 
Use congruence to prove that the bisector of the apex of an isosceles triangle bisects the base at 

right angles. 

Consider an isosceles AABC where AB = AC 

A and a1 = Q9. 

We observe that: 

® (] = (2 

e AB=AC 

e [AX] is common to both As 

As ABX and ACX are congruent {SAS}. 

Consequently BX = CX and AXB = AXC. 

But these angles add to 180°  {angles on a line} 

each of them is a right angle 

[AX] bisects [BC] at right angles.     
EXERCISE 2B 

1 In this question you may not assume any properties of isosceles triangles. 

Determine whether each of these figures contains congruent triangles: 

N A4 AN 

AV AV
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2 a Explain why triangles ABC and EDC are congruent. B E 

b If AC=6cm and BAC = 42°, find: 
i the length of [CE] c 

il the size of DEC. 

A D 

3 B Point P is equidistant from both [AB] and [AC]. Use congruence 

A .P to show that P lies on the bisector of BAC. 

C 

4 Triangle ABC is isosceles with AC = BC. E D 

BC and AC are produced to E and D respectively 

so that CE = CD. 

Prove that AE = BD. 

A B 

5 You are given a parallelogram ABCD. B C 

Use congruence of triangles to prove that: 

a opposite sides are equal in length 

b opposite angles are equal 

¢ the diagonals bisect each other. A D 

In AABC, [BM] is drawn perpendicular to [AC], and 

[CN] is drawn perpendicular to [AB]. 

If these perpendiculars are equal in length, prove that: 

a As BCM and CBN are congruent 

b AABC is isosceles. 

  

7 In APQR, M is the midpoint of [QR]. [MX] is drawn 

perpendicular to [PQ], and [MY] is drawn perpendicular 

to [PR]. If the perpendiculars are equal in length, prove 

that: 

a AMQX is congruent to AMRY 

b APQR is isosceles. 
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(o NALITY IN 
RIANGLES 

EUCLID’S THEOREM FOR PROPORTIONAL SEGMENTS IN A RIGHT 
ANGLED TRIANGLE 

In the given figure: 

af | b o hr=pq 
o a*=p(p+q) 

o ¥=4q(p+q)   

  

Proof: 

A In AABC, let ABC = a. 

90°—a_to @ - BAD =90° —a {angles of a triangle} 

af | G . CAD=a 

Also, ACD = 90° — a {angles of a triangle} 

As ABC, DBA, and DAC are equiangular and hence 

are similar. 

  

  

Corresponding sides are in proportion, so: 

DB DA p h 

  

— == = E_1 o p2= 
® DA DC h q il 

BA DB a D 
¢ —=— = =£ 

BC AB p+q a 

=  d=pp+9) 
AC  DC b q 

0 — = = — == 
BC AC p+tq b 

= V=qlp+q   

Example 4 

Find BD and AD in: 

  

From Euclid’s theorem, BA? = BD.BC 

32=BD x5 
BD =18 cm 

Also AD? = BD x DC 

. AD=+v18x32=24cm 

 



142 GEOMETRY (Chapter 2) 

Notice in the previous Example that we can obtain the same result by calculating the area of AABC in 

two different ways: 

I1x5xAD=1x3x4 

= AD=4%=24cm 

AREA COMPARISON THEOREM 

Theorem: Areas of triangles are proportional to: 

e altitudes if bases are equal 

e Dbases if altitudes are equal 

e squares of corresponding sides if the triangles are similar. 

Proof: 

1 
Areaof (1)  zbh1 hy 

?) Area of (2) %bhz ho 

proves the first part. 
[1 

b 

  

@ . 

[1 

b 

. Area of (3) %blh _ b_l 

3 @ Area of (4) %th T by 

proves the second part. 
[1 [1 

by 

  

  

. = 
G B ©) Q Area of (6) %ab sin 0 

- ka 
P R _ (ka)? 

b =2 

A @ o e = T2 

proves the third part. 

Example 5 

In AABC, P divides [BC] in the ratio 1 : 2, Q is 

the midpoint of [AC], and R divides [AP] in the 

ratio 2 : 5. 

By area, what fraction is APQR of AABC?  



  

EXERCISE 2C 
  1 P<—13cm s—>Q 

12cm bem 

{7 

R 

2 L 

3m 

K& O N 

7m 

M 

3 A 
£ 

Scem 15cm 

B [l C 
D 

4 In the diagram alongside, the quadrilateral ABCD has 

not been drawn to scale. 

a Find the value of x. 

b Find the value of y. 

¢ Find the perimeter of ABCD using Euclid’s 

theorem only. 

GEOMETRY  (Chapter 2) 

Let AARQ have area 2. 

. ARQP has area 5z, 

and APQC has area 2z + bx = Tz. 

AAPC has area 14x. 

area of AABP 

area of AAPC 

area of AABP = 1(14z) = 7 

But 

Thus AABC has area 7z + 14z = 21x 

area of APQR 5z 

area of AABC 21z 
S 
2 

Find the length of: 

a [QS] b [RS] 

Find the length of: 

a [KN] b [KL] ¢ [KM] 

Find the length of: 

a [BC] b [DC] ¢ [AD] 

  

143
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5 Our proof of Euclid’s theorem for proportional segments ¢ 

in a right angled triangle used similar triangles only. b 

Use Euclid’s theorem to prove Pythagoras’ theorem h 

a?+v? = (p+q)% 
  

  

a Find the ratio of: 

i area ADEC : area AABC 

ii area ADEC : area ABDE. 

b If the area of ABDE = 6 cm?, find the area of AABC. 

D divides [AC] in the ratio 1:2. 

E divides [BC] in the ratio 3: 1. 

By area, what fraction of AABC is ABDE? 

8 D A In the given figure, ADB = ACD. 

AD?  AB 
Prove that — = —. 

AC2 AC 

B ABCD is a parallelogram. 

[BC] is produced to E such that BC = CE. 

F is the point of intersection of [AE] and [DC]. 

G is the point of intersection of [BD] and [AE]. 

What fraction of the parallelogram is occupied by 

ADGF?
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OMETRY 

CIRCLE TERMINOLOGY 

If an arc is less than half the circle, it is called 

a minor arc. If an arc is greater than half the 

circle, it is called a major arc. 

  

A chord divides the interior of a circle into two 

regions called segments. The larger region is 

called a major segment and the smaller region 

is called a minor segment. A 

Consider minor arc BC. ‘ 

We can say that the arc BC subtends the angle 

BAC at A which lies on the circle. 

minor arc BC major arc BC 

major segment 

We also say that the arc BC subtends an angle at 

the centre of the circle, which is angle BOC. 

minor segment C 

CIRCLE THEOREMS 

Name of theorem Statement Diagram 
  

GEOMETRY Angle in a The angle in a semi-circle ACB = 90° PACKAGE 
semi-circle is a right angle. 9 

  

Proof: 

Since OA = OB = OC, triangles OAC and OBC are isosceles. 

a1 =as and B, =B, {isosceles triangle} 

Now in triangle ABC, 

ag + B + (e + 3,5) = 180°  {angles of a triangle} 

2a + 28 = 180° 
L oa+B=90° 

  

ACBis a right angle. 

Converse 1: 

B 

If M is the midpoint of the hypotenuse of a right angled triangle, 

then a circle can be drawn through A, B, and C with M its centre on 

diameter [AC]. 
A M @
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Converse 2: 

If A, B, and C lie on a circle and ABCisa right angle, then [AC] is 

A C a diameter of the circle. 

Proof of converse 2: 

Let [AD] be a diameter of the circle with centre M. Join [BD]. 

ABD is a right angle {angle in a semi-circle} 

. Now C also lies on the circle such that ABC is a right angle. 

A D . CBD = 90° — 90° = 0 
. Cand D are coincident 

[AC] is a diameter of the circle. 

  

Name of theorem Statement Diagram 

Chord of a The perpendicular from GEOMETRY 

circle the centre of a circle to a PACKAGE 

chord, bisects the chord. 

  

Proof: 

A 

OA = OB {equal radii} 
> triangle OAB is isosceles 

AM = MB {isosceles triangle} 

B 

Converse 1: 

The line from the centre of a circle to the midpoint of a chord, is perpendicular to the chord. 

Converse 2: 

The perpendicular bisector of a chord of a circle, passes through the circle’s centre.



GEOMETRY (Chapter2) 147 

Proof of converse 2: 

Let X be any point on the perpendicular bisector of [AB]. 

As XAM and XBM are congruent {SAS} 

  

B 

XA =XB 

A Now choose X so that XA = XB = r, where 7 is the radius of 
the circle. 

.. X is necessarily the circle’s centre. 

B {distance r from both A and B, and lies within the circle} 

the perpendicular bisector of the chord passes through the 

circle’s centre. 

Name of theorem Statement Diagram 

Radius-tangent | The tangent to a circle OAT = 90° 

is perpendicular to the 

radius at the point of 

contact. 

  

Proof: 

GEOMETRY 
PACKAGE 

Consider a circle with centre O, and a tangent to the circle with point 

of contact A. 

Suppose P is any point on the tangent and P is not at A. 

P lies outside the circle. 

OA is the shortest distance from O to the tangent. 

A P . [OA] is perpendicular to the tangent. 

   
             

   
     

  

     

  

Statement     Name of theorem Diagram 
  

    
   

  

Angle at the AOB = 2ACB 
centre 

The angle at the centre of 

a circle is twice the angle 

on the circle subtended by 

the same arc. 

GEOMETRY 
PACKAGE
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Proof: 

  

The following diagrams show @ 

other cases of the angle at the 

centre theorem. These cases 
can be easily shown using the 

geometry package. 

GEOMETRY 
PACKAGE 

a; =ay and By =3, 

b 

OA = 0OC = OB {equal radii} 

- AOB = 2a + 283 

=2 x ACB 

@ 

triangles AOC and OBC are isosceles 

{isosceles triangle} 

But AOX = 2a and BOX = 23 {exterior angle of a triangle} 

9 

In case (2), letting 2a = 180° we have another proof of the angle in a semi-circle theorem. So, the 

angle in a semi-circle could be considered as a corollary of the angle at the centre theorem. 

  

Corollary 

  

  

Statement Diagram 

  
  

Angles subtended | Angles subtended by an D ADB = ACB 

by the same arc | arc on the circle are 

equal in size. 

A B 

Proof: 

ADB = la  {angle at the centre} 

and ACB = 1o {angle at the centre} 

  

-, ADB = ACB 

GEOMETRY 
PACKAGE
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Tangents from 

an external point 

  

Proof: 

Name of theorem 

Statement Diagram 

Tangents from an Py AP = BP 

external point are APO = BPO GEOMETRY 
PACKAGE 

equal in length, and 

the line joining the 

point to the centre 

bisects the angle at 

the point. 

We observe that: 

e OAP = OBP = 90° {radius-tangent} 

e OA=0B 

e OP is common to both 

As OAP and OBP are congruent (RHS). 

{equal radii} 

  

Angle between 

tangent and chord 

  

O 

= Consequently, AP = BP and APO = BPO. 

Statement Diagram 

The angle between BAS = BCA 

a tangent and a GEOMETRY 

chord at the point of PACKAGE 

contact, is equal to 

the angle subtended 

by the chord in the 

alternate segment. 

  

Proof: 

  

We draw AOX and BX. 

XAS = 90° 
ABX = 90° 

{radius-tangent} 

{angle in a semi-circle} 

Let BAS = o 

. BAX=90° -« 

So, in AABX, 

BXA = 180° — 90° — (90° — o) = a 
But BXA = BCA {angles subtended by the same arc} 

. BCA=BAS=a
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Name of theorem Statement Diagram 

Intersecting The line joining 

circles the centres of two 
intersecting  circles GEOMETRY 

bisects the common PACKAGE 

chord at right angles. 

Q 

[XY] L [PQ] 
MP = MQ 

  

USING CIRCLE THEOREMS 

Example 6 

Show that ADC is a right angle: 

  

Since AB = BD, AABD is isosceles. 

A o o oq =y {isosceles triangle} 

Likewise, (3, = 3, in isosceles triangle BCD. 

Thus in triangle ADC, 

a+ (a+p)+ 6 =180° 

D {angles of a triangle} 

2a + 26 = 180° 
L oa+3=90°   

ADC is a right angle. 

Alternatively: 

Since BA = BC = BD, a circle with centre B can be drawn through A, D, and C. 

[AC] is a diameter. 

ADC is a right angle. {angle in a semi-circle} 

 



GEOMETRY (Chapter2) 151 

  

Given a circle with centre O, and a point A on the circle, C 

a smaller circle with diameter [OA] is drawn. [AC] is 

any line drawn from A to the larger circle, cutting the 

smaller circle at B. L 

Prove that the smaller circle will always bisect [AC]. 

  

© Join [OA], [OC], and [OB]. 

Now OBA is a right angle. 

{angle in a semi-circle} 

Thus [OB] is the perpendicular from the centre of the 

circle to the chord [AC]. 

[OB] bisects [AC]. {chord of a circle theorem} 

Thus B always bisects [AC]. 

(       
EXERCISE 2D 

1 O is the centre of two concentric circles. [AB] is a tangent to the 

smaller circle at C. A and B are both on the larger circle. Prove 

that AC = BC. ° 

2 Triangle PQR is inscribed in a circle. The angle bisector of 

QfiR meets [QR] at S, and the circle at T. 

Prove that PQ.PR = PS.PT.     

    

      

   
If PQR is inscribed 

in a circle, a circle is 

drawn through its 

three vertices. 

(/ 

3 O is the centre of two concentric circles. 

M [AB] is a diameter of the smaller circle. 

Tangents at A and B are drawn to cut the larger circle at 

M and N respectively. 

Prove that AM = BN. 

4 The tangent at P to a circle meets the chord [QR] produced at the point S. Prove that triangles SPQ 

and SRP are similar.
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P, Q, R, and S are distinct points on a circle, and are in cyclic order. The diagonals of PQRS meet 

at A. Prove that triangles PQA and SRA are similar. 

Prove the ‘intersecting circles’ theorem. 

Triangle PQR is isosceles with PQ = PR. A semi-circle P 

with diameter [PR] is drawn which cuts [QR] at X. 

Prove that X is the midpoint of [QR]. 

O 

R 

Q X 

[AB] is a diameter of a circle with centre O. X is a Y 

point on the circle, and [AX] is produced to Y such that 

OX = XY. X 

Prove that YOB is three times the size of XOY. . 

A B 

Triangle PQR is isosceles with  PQ = QR. PQR is inscribed in a circle. [XP] is a tangent to the 

circle. Prove that [QP] bisects angle XPR. 

[AB] is a diameter of a circle with centre O. [CD] is a chord parallel to [AB]. Prove that [BC] 

bisects the angle DCO, regardless of where [CD] is located. 

[PQ] and [RS] are two perpendicular chords of a circle with centre O. Prove that POS and Q6R are 

supplementary. 

The bisector of YXZ of AXYZ meets [YZ] at W. When a circle is drawn through X, it touches 

[YZ] at W, and cuts [XY] and [XZ] at P and Q respectively. Prove that YWP = ZWQ. 

A, B, and C are three points on a circle. The bisector of CAB cuts [BC] at P, and the circle at Q. 

Prove that APC = A]§Q. 

[AB] and [DC] are parallel chords of a circle. [AC] and [BD] intersect at E. Prove that: 

a triangles ABE and CDE are isosceles b AC =BD. 

P is any point on a circle. [QR] is a chord of the circle parallel to the tangent at P. Prove that 

triangle PQR is isosceles. 

Two circles intersect at A and B. 

[AX] and [AY] are diameters, as shown. 

Prove that X, B, and Y are collinear. 
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Two circles intersect at A and B. Straight lines [PQ] P v 

and [XY] are drawn through A to meet the circles 

as shown. 

Show that XBP = YBQ. 

    
Triangle PQR is inscribed in a circle with [PR] as a diameter. The perpendicular from P to the 

tangent at Q, meets the tangent at S. Prove that [PQ] bisects angle SPR. 

Tangents are drawn from a fixed point C to a fixed 

circle, meeting it at A and B. [XY] is a moving tangent 

which meets [AC] at X, and [BC] at Y. Prove that 

triangle XYC has constant perimeter. 

  

[AB] is a diameter of a circle. The tangent at X cuts T 

the diameter produced at Y. [XZ] is perpendicular to X 

[AY] at Z on [AY]. Prove that [XB] and [XA] are the 

bisectors of ZXY and ZXT respectively. 

In the given figure, AF = FC and PE = EC. F 

a Prove that triangle FPA is isosceles. P 4’ 

b Prove that AB + BE = EC. 0 

/7 c 
A 

Tangents from the external points P, Q, R, and S 

form a quadrilateral. This is called a circumscribed 

polygon. 

What can be deduced about the opposite sides of 

the circumscribed quadrilateral? 

Prove your conjecture.  
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[POQ] is a diameter of a circle with centre O, and R is any other point on the circle. The tangent 

at R meets the tangents at P and Q at S and T respectively. Show that SOT is a right angle. 

[PQ] and [PR] are tangents from an external point P to a circle with centre O. 

[PS] is perpendicular to [PQ] and meets [OR] produced at S. 

[QR] produced meets [PS] produced at T. Show that triangle STR is isosceles. 

A solid thin bar [AB] moves so that A remains on DEMO 

the z-axis and B remains on the y-axis. There is a 

small light source at P, the midpoint of [AB]. 

Without using coordinate geometry methods, prove 

that as A and B move to all possible positions, the 

light traces out a circle. 

  

(AB) is a common tangent to two circles. Prove that: 

a the tangent through the point of contact C bisects 

[AB] 

b ACBisa right angle. 

A 

Two circles touch externally at B. (CD) is a common D 

tangent touching the circles at D and C. Y S 

[DA] is a diameter. 

Prove that A, B, and C are collinear. 

A 

For the given figure, prove that 

. 4 2 QP? = QA.QB. 

1 
Two circles touch internally at point A. Chord [AC] 

of the larger circle cuts the smaller circle at B, and C 

chord [AE] cuts the smaller circle at D. 

Prove that [BD] is parallel to [CE]. 
A 

Q
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30 Two circles touch internally at point P. The tangent to the inner circle at Q meets the outer circle 

at R and S. Prove that [QP] bisects RPS. 

31 A and B are the goalposts on a football field. A 

photographer wants to find the point P on the boundary 

line such that his viewing angle of the goal, APB, A 

is maximised. Prove that P should be chosen so the 

boundary line is a tangent to the circle through A, B, 

and P. B
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3 LATERALS 
A circle can always be drawn through any three non-collinear 

points. 

  

To find the circle’s centre, we draw the perpendicular bisectors 

of the line segments joining the two pairs of points. The centre 

is the intersection of these two lines. 

  

It may or may not be possible to draw a circle through any four given points in a plane. 

If a circle can be drawn through four points we say that the points are concyclic. 

  

Py Py We cannot draw a circle 

Py through these four points. 

Py P3 

Py 

Py Py 

concyclic points non-concyclic points 

GEOMETRY 

If any four points on a circle are joined to form a PACKAGE 

convex quadrilateral, then the quadrilateral is called 

a cyclic quadrilateral. 

OPPOSITE ANGLES OF A CYCLIC QUADRILATERAL THEOREM 

Name of theorem Statement 

Opposite angles of a | The opposite angles of GEOMETRY 

cyclic quadrilateral | a cyclic quadrilateral are PACKAGE 

supplementary. 
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Consider a cyclic quadrilateral ABCD in a circle with 

centre O. Join [OD] and [OB]. 

If DAB = a and DCB = 8 then DOB = 2a 
% and reflex DOB = 233 {angle at the centre} 

/ 
C 

Converse: 

2a+ 23 =360° {angles at a point} 

a+ B =180° B ... 

/ .. angles DAB and DCB are supplementary. 

Similarly, angles ADC and ABC are supplementary. 

If a pair of opposite angles of a quadrilateral are supplementary, then the quadrilateral is a cyclic 

quadrilateral. 

For example: A B 

108° 

72° 

Since DAB + BCD = 180°, 
ABCD is a cyclic quadrilateral. 

  

3€1 TR 

  

Clearly, ABED is a cyclic quadrilateral. 

Now BED = BCD = o 

[ED] || [CD] {corresponding angles} 

E and C coincide 

ABCD is a cyclic quadrilateral.   

Prove the converse of the opposite angles of a cyclic quadrilateral theorem: If a pair of opposite 

angles of a quadrilateral are supplementary, then the quadrilateral is a cyclic quadrilateral. 

Let ABCD be a quadrilateral with BCD = a and 

BAD = 180° — a. 

We draw a circle through A, B, and D. 

The circle cuts [BC], or [BC] produced, at E. 

Join [DE]. 

Consequently, BED = a {opposite angles of a cyclic quadrilateral} 
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EXTERIOR ANGLE OF A CYCLIC QUADRILATERAL THEOREM 

Exterior angle of a | The exterior angle of 

cyclic quadrilateral | a cyclic quadrilateral is GEOMETRY 

equal to the interior 
PACKAGE 

opposite angle. * 

Consider the cyclic quadrilateral ABCD with ABC = o 

  

Proof: 

Now CDA = 180° —a 
{opposite angles of a cyclic quadrilateral} 

CDE = 180° — (180° — a) = a 
{angles on a line} 

Thus ABC = CDE. 

  

Converse: 

If an exterior angle of a quadrilateral is equal to the interior opposite angle, the quadrilateral is a cyclic 

quadrilateral. 

TESTS FOR CYCLIC QUADRILATERALS 

A quadrilateral is a cyclic quadrilateral if any of the following is true: GEOMETRY 
. . PACKAGE 

1 one pair of opposite angles are supplementary 

2 one side subtends equal angles at the other two vertices 

3 an exterior angle is equal to the interior opposite angle. 

  

A 

a+ 8 =180° a=8 a=8 

= the quadrilateral is a = ABCD is a cyclic = PQRS is a cyclic 

cyclic quadrilateral. quadrilateral. quadrilateral.  
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TEST FOR CONCYCLIC POINTS 

Four points are concyclic if either of the following is true: 

1 when the points are joined to form a convex quadrilateral, one pair of opposite angles are 

  

  

  

  

supplementary 

2 when two points (defining a line) subtend equal angles at the other two points on the same side 

of the line. 

where a + 3 = 180° where a = 

Example 9 

  

Triangle ABC is isosceles with AB = AC. X and Y lie on [AB] and [AC] respectively such that 

[XY] is parallel to [BC]. Prove that XYCB is a cyclic quadrilateral. 
  

Since AABC is isosceles with AB = AC, 

a1 = as  {equal base angles} 

Now XY || BC, so a; =as {corresponding angles} 

YXB = 180° — o {angles on a line} 

YXB + YCB = (180° — a) + a = 180° 

XYCB is a cyclic quadrilateral 

{opposite angles supplementary} 

  

  

Example 10 

Triangle ABC is inscribed in a circle. P, Q, and R are any points on arcs AB, BC, and AC 

respectively. Prove that AfiC, C(A)B, and BPA have a sum of 360°. 
  

Let AfiC, C(A)B, and BPA be a, 3, and -y respectively. 

Now BARC is a cyclic quadrilateral. 

ABC = 180° — @ 
Likewise in cyclic quadrilaterals ABQC and CAPB, 

BAC = 180° — 3 and ACB = 180° — v 

Thus (180° — ) + (180° — ) + (180° — 7) = 180° 
{angles of a triangle} 

540° — (a+ B+ ) = 180° 

. a+ B+~ =2360° as required          
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EXERCISE 2E 

1 Use the given figure to prove that the opposite angles of 

a cyclic quadrilateral are supplementary. 

  

2 D C Without assuming any properties of isosceles trapezia, prove that 

an isosceles trapezium is always a cyclic quadrilateral. 

Hint: Draw [CX] parallel to [DA], and meeting [AB] at X. 

A B 

3 What can be deduced about the quadrilateral ABCD? 

Explain your answer. 

  

L ABC is an isosceles triangle in which AB = AC. The angle bisectors at B and C meet the sides 

[AC] and [AB] at X and Y respectively. Show that BCXY is a cyclic quadrilateral. 

5 Two circles meet at points X and Y. [AXB] and [CYD] are two line segments which meet one circle 

at A and C, and the other circle at B and D. Prove that [AC] is parallel to [BD]. 

6 Prove that a parallelogram inscribed in a circle is a rectangle. 

7 ABCD is a cyclic quadrilateral and X is any point on the diagonal [CA]. [XY] is drawn parallel to 

[CB] to meet [AB] at Y. [XZ] is drawn parallel to [CD] to meet [AD] at Z. Prove that XYAZ is a 

cyclic quadrilateral. 

8 OABC is a parallelogram. 

A circle with centre O and radius [OA] is drawn. 

[BA] produced meets the circle at D. 

Prove that DOCB is a cyclic quadrilateral. \ 

9 Two circles intersect at X and Y. A line segment [AXB] is drawn cutting the circles at A and B 

respectively. The tangents at A and B meet at C. 

Prove that AYBC is a cyclic quadrilateral.



10 

1 

12 

13 

14 

15 

16 

17 

18 

19 

20 
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[RX] is the bisector of angle QRT. 

Prove that [PX] bisects angle QPS. / 

  

=
 

=
 

[AB] and [CD] are two parallel chords of a circle with centre O. [AD] and [BC] meet at E. 

Prove that A, E, O, and C are concyclic points. 

[AB] and [AC] are chords of a circle with centre O. X and Y are the midpoints of [AB] and [AC] 

respectively. Prove that O, X, A, and Y are concyclic points. 

Triangle ABC has perpendiculars [CX] and [BY] as 

shown. 

a What can be said about quadrilaterals AXOY and 

BXYC? Explain your answers. 

b Prove that XAO = XYO = XCB. 

¢ Prove that [AZ] is perpendicular to [BC]. 

  

B C 
z 

Two circles intersect at P and Q. [APB] and [CQD] are two parallel lines which meet the circles at 

A, B, C, and D. Prove that AB = CD. 

In triangle PQR, PQ = PR. If S and T are the midpoints of [PQ] and [PR] respectively, show that 

S, Q, R, and T are concyclic points. 

Triangle ABC is acute angled. Squares ABDE and BCFG are drawn externally to the triangle. 

If [GA] and [CD] meet at P, show that: 

a B, G, C, and P are concyclic b [DC] and [AG] are perpendicular 

¢ [BP] bisects angle DPG. 

[AOB] is a diameter of a circle with centre O. C is any other point on the circle, and the tangents 

at B and C meet at D. Prove that [OD] and [AC] are parallel. 

Triangle PQR is inscribed in a circle. [ST] is parallel to the tangent at P, intersecting [PQ] at S and 

[PR] at T. Prove that SQRT is a cyclic quadrilateral. 

Prove the converse of the exterior angle of a quadrilateral theorem. 

DEMO PAB is a wooden set square in which APB is a 

right angle. The set square is free to move so 

B that A is always on the z-axis and B is always 

on the y-axis. 

Without using coordinate geometry methods, 

show that the point P always lies on a straight 

line segment which passes through O. 

 



162 GEOMETRY (Chapter 2) 

21 Prove that if a line segment [AB] subtends equal angles at C and D, then A, B, C, and D are 

concyclic. 

22 P is any point on the circumcircle of AABC A 

other than at A, B, or C. Altitudes [PX], [PY], 

and [PZ] are drawn to the sides of AABC (or 

the sides produced). 

Prove that X, Y, and Z are collinear. 

[XYZ] is known P 
as Simson’s line. 

  

23 Triangle ABC has altitudes [AX] and [BY]. P and Q are the midpoints of [AC] and [BC] respectively. 

Prove that points P, Q, X, and Y are concyclic. 

  INVESTIGATION 1 

The mechanism in the picture is called Hart’s inversor, 

invented by Harry Hart in about 1874. 

A and B are fixed ends of bars [AC] and [BD] with 

AC =BD =a. 

Bars [PC], [PD], and [RS] are equal in length with 

PC=PD =RS =b. 

R and S are located such that CR = DS = c. 

The bars are made so that b? = ac. 

A pencil is placed at P, and as P moves, a path is 

traced out. 

What to do: 

1 Discuss with your class how you can draw a straight line. How do you know that a ruler is 

straight? 

  

2 Make Hart’s inversor from wood (or metal) with a =16 cm, b =8 cm, ¢ =4 cm. What is 

the locus of points described by the movement of P? 

3 Use deductive geometry to prove your proposition when a =8 cm, b =4 cm, c¢=2 cm. 

4 Prove the general case of your proposition with 5> = ac.
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CHORDS 
EOREMS 

A secant of a circle is a line that intersects the circle twice. 

A chord is the line segment which connects the points of intersection of the secant. 

  INVESTIGATION 2 

Click on the icon to access software for investigating the intersection of chords ~ 'NTERSECTING 
and secants. SECANTS THEOREMS 

What to do: 

For each of the following cases, use the software to find the connection between 

the variables. 

1 2 3 

= " 
From the Investigation you should have discovered: 

  

Name of theorem Statement Diagram 

Intersecting chords | If chords [AB] and [CD] intersect at X, 

or chord-chord then AX.BX = CX.DX. < 

D 

AX.BX = CX.DX 

Secant-tangent If the tangent at T to a circle meets the 

chord [BA] produced at X, then 

(XT)? = XA.XB. 

   



164  GEOMETRY (Chapter 2) 

  

Name of theorem Statement 

Secant-secant If X is outside a circle, and XAB and XCD 

are two secants, then XA.XB = XC.XD. 

XA.XB = XC.XD 

  

The converse of each theorem also holds: 

e Suppose [AB] and [CD] (or their line extensions) meet at X. If AX.BX = CX.DX, then ABCD 

is a cyclic quadrilateral. 

e Suppose A and B are distinct points on a circle, and X is a point outside the circle that is collinear 

with A and B. If T is a point on the circle such that (XT)? = XA.XB, then [XT] is a tangent. 

  

Example 11 

Find z in: 

a b c 2cm 

‘ xcm 

. 4em 

~—__— 5cm 

a By the intersecting chords theorem, b By the secant-secant theorem, 

TXx5=3x%x4 4(4+2)=5%x (5+7) 

. bx =12 o444+ x)=5x%x12 

=24 s 44+2=15 

z=11 

¢ By the secant-tangent theorem, 

22 =2x7 

z? =14 

z=+14 {as z >0} 

  

EXERCISE 2F 

1 Find z:
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Chords [AB] and [CD] meet at X inside the circle. 

a If AX=4cm, BX=6cm, and CX = 5 cm, find the length of [DX]. 

b If AX=2cm, AB=8cm, and CX = 3 cm, find the length of [CD]. 

¢ If AX=3cm, BX=5cm, and CD =9 cm, find the length of [CX]. 

d If BX=2x AX, DX =3cm, and CD = 7 cm, find the length of [AB]. 

X lies on a chord [AB] of a circle. AX =3 cm and BX = 5 cm. If O is the circle’s centre and 

OX = 4 cm, find the radius of the circle. 

Chords [AB] and [CD] of a circle are produced to X, where X is outside the circle. 

a If BX=4cm, BA=2cm, and DX = 3 cm, find the length of [CD]. 

b If AX=3 xBX, DX=3cm, and CX =11 cm, find the length of [AB]. 

Consider a point X outside a circle with centre O. Secant XAB is drawn cutting the circle at points 

A and B. [XT] is a tangent, with T the point of contact. 

a If XT=6cm and XA =4 cm, find the length of [BX]. 

b If XA =2cm and AB = 3 cm, find the length of [XT]. 

¢ If XA=8cm, AB=2cm, and OA =5 cm, find the length of [OX]. 

The radius of the Earth is about 6370 km. Point B is directly B 

above point A on the Earth’s surface. The distance from point B A \ 

to the visible horizon is the length of the tangent [BC]. c 

a Find the distance to the visible horizon from the observers 

in a space shuttle 400 km above the Earth’s surface. 

b Show that if B is height A km above the Earth’s surface, 

then the distance to the visible horizon is given by 

D = +/h? +12740h km. 

Two circles intersect at A and B. 

C is any point on the common chord [AB] 

produced. 

Prove that the tangents [CS] and [CT] are equal 

in length. 

8 [AXB] and [CXD] are two intersecting line segments. 

Prove that points A, B, C, and D are concyclic when: 

a AX=8cm, BX=7cm, CX=14cm, and DX =4 cm 

b AX=5cm, BX=32cm, CX=8cm, and DX =2 cm.
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[XAB] and [XC] are two intersecting straight line segments. 

Given that BX = 6.4 m, AB =5.5m, and XC = 2.4 m, prove that [CX] is a tangent to the 

circle through A, B, and C. 

Point P is 7 cm from the centre of a circle with radius 5 cm. A secant is drawn from P which cuts 

the circle at A and B, A being closer to P. If AB = 5 c¢m, find the length of [AP]. 

Two circles have a common chord [CD]. [AB] is a common tangent to the circles. [DC] produced 

meets [AB] at X. Prove that X bisects [AB]. 

Two circles meet at P and Q. X lies on [PQ] produced. Line segment [XAB] is drawn to cut the 

first circle at A and B. Likewise, line segment [XCD] is drawn to cut the second circle at C and D. 

Prove that ACDB is a cyclic quadrilateral. 

Two non-intersecting circles are cut by a third circle. The first circle is cut at A and B. The second 

circle is cut at C and D. When the common chords are extended, they meet at X. Prove that the 

tangents from X to all three circles are equal in length. 

[AB] is a fixed diameter of a circle. The ray [MN) is a N 

fixed perpendicular to [AB]. A line from point A cuts the 

circle at X and meets [MN] at Y. X is a moving point, and 

consequently Y moves on [MN]. 

Prove that AX.AY is constant. A B 

c ABCD is a semi-circle with diameter [AD]. 

B P is the point of intersection of [AC] and [BD]. 

Prove that AP.AC + DP.DB = AD?. 

L = 

Suppose A, B, C, and D are points such that [AB] and [CD] intersect at X. If XA.XB = XC.XD, 

show that A, B, C, and D are concyclic. 

Y 

Three circles intersect each other as shown. 

Prove that the three common chords are 

concurrent. 

Hint: Draw two common chords [AB] and 

[CD], and let them meet at M. From E, 

draw a chord [EMF] of circle (2), and a 

chord [EMG] of circle (3). Then show 

that F and G coincide. 

Line segments are 

concurrent if they 

all pass through 

  
a common point. 
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[N CENTRES OF A TRIANGLE 
  INVESTIGATION 3 

In this Investigation we will use software demonstrations to discover properties of any general triangle. 

What to do: 

A median of a triangle is any line segment 

from a vertex to the midpoint of the opposite 

side. 

Click on the icon and follow the instructions. 

Do not forget to change the triangle by clicking 

and dragging the vertices. 

Write down your observations and conclusions. 

An angle bisector of a triangle is any line 

segment from a vertex to the opposite side, 

which bisects the angle at the vertex. 

Click on the icon and follow the instructions. 

Write down your observations and conclusions. 

An altitude of a triangle is any line segment 

from a vertex which meets the base (or the base 

extended) in a right angle. 

Click on the icon and follow the instructions. 

Make sure you consider obtuse angled 

triangles. 

Write down your observations and conclusions. 

A perpendicular bisector of a triangle is any 

line which is a perpendicular bisector of one of 

its sides. 

Click on the icon and follow the instructions. 
Make sure you consider obtuse angled 

triangles. 

Write down your observations and conclusions. 

DEMO 

> 

a median 

DEMO 

> 
angle bisector 

DEMO 

P> 
altitude 

DEMO 

b2 perpendicular bisector 

You should find that your observations from the Investigation are summarised in the theorems which 

follow. 

Theorem: 

The medians of a triangle are concurrent at a point called the 

centroid, and this point divides each median in the ratio 2 : 1. 

entroid b
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Proof: 

We start with AABC. 

Let P be the midpoint of [AC], and Q be the midpoint 

of [AB]. 

Let [BP] and [CQ)] intersect at G. 

We now have to prove that: 

BR =RC, GR = AR, GQ = CQ, and GP = 1BP. 

We draw [BH] parallel to [QC], to meet [AR] produced 

H at H. We then join [CH]. 

‘v
% ; f 

In AABH, [QG] || [BH]. 

since Q is the midpoint of [AB], G is the midpoint of [AH]. {converse of midpoint theorem} 

[GP] is the line joining the midpoints of two sides of AAHC 

[GP] || [HC] {midpoint theorem} 

[BG] || [HC] 
BGCH is a parallelogram 

BR = RC {diagonals of a parallelogram} 

If RG = a units, then RH = a units and so AG = GH = 2a units 

. AR =3a units andso RG = ;AR 

Using the same method, we can show that GQ = 3CQ and GP = $BP. 

Theorem: 

  

     
inscribed circle 

The angle bisectors of a triangle are concurrent at a point called 

the incentre, and a circle with this centre can be inscribed in 

the triangle. 

incentre 

Theorem: 

The perpendicular bisectors of the sides of e 

a triangle are concurrent at a point called the 

circumcentre, and a circle with this centre can be 

drawn through the triangle’s vertices. circumeentre
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Theorem: 

i L . orthocentre 
The three altitudes from vertices to opposite sides of a triangle 

are concurrent at a point called the orthocentre. 

Proof: 

We draw two of the altitudes, [BP] and [CQ]. 

Let O be the point where they meet. 

We draw [AO], and produce it to meet [BC] 

at R. 

We now need to prove that [AR] L [BC]. 

We join [PQ].     
R © 

Since [BC] subtends equal angles at P and Q, BCPQ is a cyclic quadrilateral. 

{cyclic quadrilateral theorem} 

a1 = ap  {angles subtended by the same arc} 

But APOQ is also a cyclic quadrilateral as its opposite angles at P and Q are supplementary (both right 

angles). 

as = a3 {angles subtended by the same arc} 

a1 = Q3 

[QR] subtends equal angles at C and A. 

QRCA is a cyclic quadrilateral. 

Thus, [AC] subtends equal angles at Q and R, and since the angle at Q is a right angle, ARC s a right 

angle also. 

Thus [AR] L [BC].
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Example 12 

Prove that if two medians of a triangle are equal in length then the triangle is isosceles. 

Consider triangle ABC with medians [BQ] and [CP] of equal 

length. 

Let these medians meet at the centroid M, and let PM = a. 

Since M is a point of trisection of the medians, MC = 2a, 

MQ = a, and BM = 2a. 

In triangles BMP and CMQ: 

e MP=MQ 
¢ BM =CM 

e BMP = CMQ {vertically opposite angles} 

the triangles are congruent. 

- BP=CQ 
- AB=AC 

AABC is isosceles. 

  

EXERCISE 2G 

1 A a How many circles can be drawn with a centre on [BX], 

which rouch [BA] and [BC]? 

b How many circles can be drawn with a centre on [CY], 

Y which rouch [CB] and [CA]? 

¢ What can you conclude from a and b? 

d Explain how a, b, and ¢ can be used to prove the angle 

B bisectors of a triangle theorem. 

2 X is the midpoint of side [CD] of parallelogram ABCD, and [BX] meets [AC] at Y. Prove that [DY] 

produced bisects [BC]. 

3 Consider the given figure. A 

a What can you conclude from AABX? 

b  What can you conclude from AACX? 

¢ What do a and b tell us about ABCX? L M 
Give reasons for your answer. 

d  What can be deduced from ¢? 

4 Triangle ABC has centroid G. [AX] is a median of the triangle. Prove that AGBX has % of the 

area of AABC.
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Through the centroid of a triangle, lines are drawn parallel to two sides of the triangle. Prove that 

these lines trisect the third side. 

A circle with centre O has diameter [AB]. P is a point outside the circle, not on the line through A 

and B, such that AP = AB. If [PB] cuts the circle at R, and [OP] and [AR] meet at X, prove that 

[XP] is twice as long as [OX]. 

Two circles of equal radius touch externally at B. [AB] is the diameter of one circle, and [CD] is 

any diameter of the other circle. Prove that [CB] produced bisects [AD]. 

Through the vertices of APQR, lines are drawn which are parallel to the opposite sides of the 

triangle. The new triangle formed is AABC. Prove that As ABC and PQR have the same centroid. 

Triangle ABC has centroid G. [BC] is fixed, and A moves such that 

CGB is always a right angle. Find the locus of A. 

PQRS is a rhombus. [PM] is perpendicular to [QR], and meets [QS] 

at Y and [QR] at M. Prove that [RY] is perpendicular to [PQ]. 

    

  

   The locus of A is 

the set of all points 

where A could be.      

PQRS is a parallelogram. A and B are the orthocentres of triangles 

PQR and PSR respectively. Prove that PARB is also a parallelogram. 

Triangle PQR has altitudes [PA], [QB], and [RC] which meet at H. 

Prove that: 

a PH.PA = PB.PR b PH.HA = QH.HB = RH.HC 

[AP] and [BQ] are altitudes of AABC, and O is the orthocentre of the triangle. X and Y are the 

midpoints of [AB] and [OC] respectively. Prove that [XY] bisects [PQ] at right angles. 

Triangle PQR has orthocentre O, and [RS] is a diameter of the . o 
. . . . The circumcircle is 

circumcircle of the triangle. Prove that SQOP is a parallelogram. o Gl (e (e 

vertices of the triangle. 

  

= 

Prove that in any triangle, the centroid, orthocentre, and circumcentre are collinear, and that the 

centroid divides the line joining the circumcentre and orthocentre in the ratio 2 : 1. 

Hint: In AABC, locate the centroid G and the circumcentre O. Let [OG] be produced to X such 

that OG : GX = 1:2. Now prove that X is the orthocentre. 

The line which joins 

these three centres is 

called the Euler line. 
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The bisectors of the angles of a triangle divide the opposite side in the same ratio as the ratio of the 

lengths of the sides containing that angle. 

AB BP 5 A 
— = — for either case . or 
AC  CP (internal) | A o (external) 

B @ B P 
P © 

Proof 1: (Classical) 

HEOREM   

We draw [CD] parallel D 

to [PA] to meet [BA] or 

[BA] produced at D. 

    

      

A 

A g 

i fay a2 

a3 

D 
B c B o P 

. P @ 
a3 =as {given} 

as = ay {alternate angles} 

a3 =as  {corresponding angles} 

Q3 = 04 

AACD is isosceles 

AD = AC {isosceles triangle} ... (1) 

Since [PA] || [CD], then % = % {parallel lines within a triangle theorem} 

. AB BP 
Using (1), ok 

Proof 2: (Modern - Internal case only) 

A Using the Sine Rule in As ABP and ACP, 

sin @ _ sina and sin(180° — 0) _ sina 

AB BP AC PC 

But sinf = sin(180° — 0) 

AB x sint _ AC X sinc 
BP  PC 

B C . AB _ BP 
6—180° " AC PC



THE CONVERSE TO THE ANGLE BISECTOR THEOREM 

  

In AABC, suppose P lies on [BC] or [BC] produced. If % = %, CAB is bisected by [AP]. 

If % = B for cither case A or X then o = 8. 

A/B 

B b @ B C B 

Proof: (Internal case only) 

Using the Sine Rule, 

A sina _ sinf and sin8 _ sin(180° —0) 

BP AB PC AC 

5 But sin(180° — ) = sinf 

AC . AB . 
—sinff = —sina 
PC BP 

BP . AB . 
—sinf = —sina 
PC AC 

g A g AB BP 
B 180°— 6 . o, sina=sinf {since A_Cffi} 

B or a=180°-3 

B {as a+ B < 180°} 

o= 

o= 

  

  

  

  

Find z: 

B 3cm P xzcm C 

8cm 

1lcm 

A 

AB BP g R RT g 
— = — {angle bisector theorem} @ _ {angle bisector theorem} 
AC PC QS TS 

8 3 .13 _ x4l 
11z 911 
x:% oo 143 =9z 499 

Lo M . T=%     
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EXERCISE 2H 

1 The side lengths of a triangle are 12 cm, 15 cm, and 18 cm. Find the lengths of the segments cut 

from the sides of the triangle by the internal angle bisectors. 

2 a Triangle ABC has sides of length BC = 6 cm, AC = 8 cm, and AB = 10 cm. The bisector 

of ABC meets [AC] at D. Find: 

i the lengths of [AD] and [DC] il tan (ATBC) 

b Find tan(%) using the technique in a. 

3 In triangle PQR, [PX] is a median. The internal bisectors of the angles at X meet [PQ] and [PR] 

at Y and Z respectively. Prove that [YZ] is parallel to [QR]. 

4 Triangle ABC is isosceles with AB = AC. Suppose P is any point within the triangle. The bisector 

of PAB meets [BP] at H. The bisector of CAP meets [CP] at K. Prove that [HK] is parallel to [BC]. 

5 D EAB and EDC are similar triangles with 

corresponding vertices in that order. 

[AF] bisects BAE and meets [BE] at F. 

E C [DG] bisects CDE and meets [EC] at G. 

Prove that [GF] is parallel to [CB]. 

A B 

6 P is the midpoint of [BC] of triangle ABC. [PQ] is the bisector of A§B, and cuts [AB] at Q. 

[QR] is drawn parallel to [BC], meeting [AC] at R. Prove that QfiR is a right angle. 

7 A semi-circle has diameter [AB]. P lies on the semi-circle and [PQ] bisects A§B, cutting [AB] at 

Q. [PC] is drawn perpendicular to [AB], cutting [AB] at C. 

Prove that A2 — A€ 
QB  PC 

8 M is the midpoint of [PR] of triangle PQR, and [QM] P 

bisects P@R. 

a Prove that APQR is isosceles using the angle bisector M 

theorem. 

b Why can we not use congruence in this figure? R 

Q 

9 B If XMN is the angle bisector of BXD, prove that 

MA.BN = ND.CM. 

A



10 

1 

12 

13 

14 
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Triangle ABC has interior angle bisectors which meet [BC], [CA], and [AB] at points P, Q, and R 

respectively. Prove that AR.BP.CQ = AQ.BR.CP. 

  

Triangle PQR has incentre O. [PO] produced meets [RQ] at S. 

Prove that PO : OS = (PQ + PR) : QR. 

A circle has diameter [PQ]. [RS]is any chord perpendicular to [PQ]. T lies on [RS]. [PT] produced 

and [QT] produced meet the circle at A and B respectively. Prove that BR.AS = RA.BS. 

B Two circles touch internally at A. [BC] is a chord 

of the larger circle and is a tangent to the smaller 

circle at T. 

Prove that AB : AC = TB : TC. 

A 

C 

C A semi-circle with centre O is inscribed within a 

triangle with sides AB = 20 cm, BC = 14 cm, 

10cm ldcm and AC = 10 cm. 

Find the radius of the semi-circle. 

o 
A - B 

20 cm
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I [ APOLLONIS® CIRCLE THEOREM 
DEM 

PA ° 
If A and B are fixed points such that i k, where k is a positive constant, k # 1, 

then the locus of points P is a circle. 

Proof: 

Let P be a point not collinear with A and B such 
PA . .. 

that Bt k where £ is a fixed positive constant, 

k#1. 

We draw the internal and external bisectors 

of APB. We let them meet [AB], and [AB] 

produced, at P; and Py respectively. 

Now 2a+ 23 =180° {angles on a line} o BB = 
. a+4=90° 

. PiPPyisa right angle 

APy _ AP {angle bisector theorem} 
BP, BP 
& 

BPy 

Now 

=k, and so Py is a fixed point independent of the choice of P. 

: 5 AP AP 5 o D A 
Likewise, B_PZ kS k, and so Py is a fixed point independent of the choice of P. 

2 

Since P; and Py are fixed points and P1§P2 is a right angle, [P1P2] subtends a right angle at P as P 

moves. 

P traces out a circle, with centre the midpoint of [P;Ps]. 

Corollary: 

If the resulting Apollonius’ circle has centre O and radius 7, then 72 = OA.OB. 

CONVERSE OF APOLLONIUS’ CIRCLE THEOREM 

Suppose a circle has fixed diameter [P;P5], and point P moves anywhere on the circle. If two fixed 

points, A on [P2P1] produced, and B on [P;P2], can be found such that | e &, then e is a 
BP;  BP, PB 

positive constant.
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EXERCISE 21 

1 Prove the corollary of Apollonius’ circle theorem. 

2 P In the given diagram, OB = 3 cm, AP; =4 cm, 

{/ and PP bisects APB. Find the radius of the 

Apollonius’ circle. 

3 Suppose P has coordinates (z, y), Ais (—2,0), and B is (4, 0). 

a Find the Cartesian equation connecting z and y if: 

PA_ PA _ A, 
PB PB PB 

b Explain why the condition k 7 1 was given in Apollonius’ circle theorem. 

. PA 
v —=3 ii iii = 

PB o
=
 

¢ Explain why the Cartesian equation of a circle has the form 22 4+ y?> +dz +ey+ f =0 

where d, e, and f are constants. 

The points A, Py, B, P, lie on a line, APy _ APy P 75 . BP;  BPy’ 
and P; PPy is a right angle. 

a Prove that a = (. 

‘ b Hence, prove the converse of Apollonius’ 
A Py B P2 circle theorem.
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REM FOR 
ATERALS 

If a quadrilateral is cyclic, then the sum of the products of the 

lengths of the two pairs of opposite sides is equal to the product 

of the diagonals. 

AB.CD + BC.DA = AC.BD 

  

Proof: 

We first draw [AH], where H lies on [DB] such that 

61 = 05 as shown. 

Now in As ABH and ACD: 

e 0 =0y  {construction} 

e a3 =as {angles subtended by the same arc} 

The triangles are equiangular and therefore similar. 

  

  

AB _ BH 
AC  CD 

BH=2BD (1 
AC 

Also, in As ADH and ACB: 

e AHD=a+6 {exterior angle of AABH} and 65 =6, {angles subtended by the same arc} 

AHD = ABC = o + ¢ 
e (3, =[, {angles subtended by the same arc} 

The triangles are equiangular and therefore similar. 

  

    

HD _ DA 
BC  AC 

 HD_BCDA o 
AC 

Using (1) and (2), BD = BH+ HD — A'f\'SD + Bi'CDA 

AB.CD + BC.DA 
. BD= 

AC 

Hence, AB.CD + BC.DA = AC.BD
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Find AC given that [BD] has length 12 cm. 

  

  

AB.CD + BC.DA = AC.BD {Ptolemy’s theorem} 

L 6x9+5x10=ACx 12 

. 104 =AC x 12 

. AC=8%cm   
  

THE CONVERSE FOR PTOLEMY’S THEOREM FOR CYCLIC QUADRILATERALS 

If the product of the lengths of the diagonals of a quadrilateral equals the sum of the products of the 

lengths of its pairs of opposite sides, then the quadrilateral is a cyclic quadrilateral. 

A B If AB.CD + BC.DA = AC.BD 

then ABCD is a cyclic quadrilateral. 

Proof: 

Let CAD — a, ADB = 3, and BAC = 4. 

Choose a point H on the same side of AC as B, such that 

BAH = o and ACH = 3. 

Now CAH=DAB=a+60 

and ACH = ADB = 8 

As ACH and ADB are equiangular and therefore similar. 

CH AC _ AH 
DB AD AB 
—— 

() — 
@ 

  
AC.DB = () Rearranging (1), CH =  
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Given (2) and that BAH = DAC = a, in As BAH and DAC we have two sides in the same ratio 

and the included angle between them equal. 

As BAH and DAC are similar. 

  

BH _ AB 
CD AD 

BH _ ABCD @ 
AD 

AC.DB  AB.CD 

AD AD 

_ AC.BD — AB.CD 
AD 

_ BC.AD 

Using (3) and (4), CH—BH =     

  {by the assumption of the converse} 

=BC 

BC + BH = CH, which can only be true if B, C, and H are collinear. 

- ACB=2 

. ACB = ADB are equal angles subtended by [AB]. 

ABCD is a cyclic quadrilateral. 

s 
In the given quadrilateral ABCD, AC = 10.5 cm and 

N L R BD = 8.2 cm. 
53 cm Is ABCD a cyclic quadrilateral? 

3.4 cm 

D 9.2 cm 

  

AB.CD + BC.DA and AC.BD 

=74x%x92+4+53x%x34 =10.5x8.2 

=86.1 = 86.1 

Hence, by the converse of Ptolemy’s theorem, ABCD is a cyclic quadrilateral.     
EXERCISE 2) 

1 The side lengths of a cyclic quadrilateral, in clockwise order, are 6 cm, 9 cm, 7 cm, and 11 cm. 

If one diagonal is approximately 12.0 cm long, find the length of the other diagonal. 

2 Three consecutive sides of a cyclic quadrilateral have lengths 6 cm, 5 cm, and 11 cm. Its diagonals 

have approximate lengths 10.1 cm and 9.54 cm. Find the length of the fourth side of the cyclic 

quadrilateral.
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3 In each figure, determine whether PQRS is a cyclic quadrilateral: 

a 7Tcm P — Q 

9em 11cm 

S 13cm R 

L Consider a cyclic quadrilateral ABCD with the dimensions 

given. Diagonal [AC] has length m, and diagonal [BD] 

has length n. 

a Write down an equation connecting the variables. 

b Suppose we construct rectangles on 

sides [AB], [BC], and [AC], with 

widths y, 2z, and n respectively. 

What can be deduced about the shaded 
areas? 

¢ Suppose ABCD is a rectangle. 

What formula does Ptolemy’s theorem 

give in this case? 

  

b Q 72mm     
110 mm 

    

5 a Use the given figure and the Cosine Rule to deduce 

that 22 — (ac + bd)(ab + cd) 

(bc + ad) : 

b If the other diagonal has length y units, show that 

5> _ (ac+bd)(ad + bc) 

o ab+cd ’ 

¢ Hence, prove Ptolemy’s theorem. 

6 B [AC] is a diameter of a circle with centre O and radius 

1 unit. 

BAC = a and DAC = s. 

Use Ptolemy’s theorem to prove the addition formula 

A C sin(a + ) = sinacos 8 + cos asin .
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[7% IENTHEGREMS OF CEVA AND MENELAUS 
We have seen previously that: 

e three or more lines are concurrent if they e three or more points are collinear if one 

intersect at a common point straight line passes through all of them. 

A \‘\B‘\C‘\ 

Points A, B, and C are collinear. 

These lines are concurrent at P. 

The converse theorems of Ceva and Menelaus enable us to establish concurrency and collinearity, 

respectively. 

  

CEVA'S THEOREM 

Any three concurrent lines drawn from the vertices of a triangle divide A B C A 

the sides (produced if necessary) so that the product of their respective Nz NxA Ny 

ratios is unity. may help you to 

A write down the 

Z correct ratios. 
AZ BX CY 
ZB'XC'YA 

B Y 

X 2 

© 

Proof of Ceva’s theorem: 

We use the theorem that if two triangles have the same base, then the ratio of their areas is the same 

as the ratio of their altitudes. 

In AABC, [AX], [BY], and [CZ] intersect at O. 

We draw altitudes [BP] for AAOB and [CQ] for AAOC. 

In As BXP and CXQ: 

e BPX = CQX 

e BXP = CXQ {vertically opposite angles} 

The triangles are equiangular and .. similar. 

BX BP area of AAOB 
! 

CX CQ  areaof AAOC @ 

{as As have common base [AO]}  
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. . hvg f AB AZ f AA 
Likewise, YRR arca 0l =HOG e (2) and o2 = LB o e (3) 

AY area of ABOA BZ area of ABOC 

Multiplying (1), (2), and (3) gives /DO X 2wa of AROR X Ac=a of ABOC _ 
7B XC YA  areaofABOC  _arcaof AAOC _a.:ea—eme’il 

  

3 CT T IERT 

A P B P divides [AB] in the ratio 2:1 and 

Q divides [BC] in the ratio 3: 7. 

Q Find the ratio in which R divides [CA]. 

C 
  

P divides [AB] in the ratio 2:1 = AP:PB=2:1 

        

   

AP 2 
1 If P divides [AB] in 

BQ 3 the ratio r : s then 
Q divides [BC] in the ratio 3:7 = &=7 AP:PB=r:s. 

But 2P BQCR_, {Ceva’s theorem} 
PB QC RA 

2 3 CR % 
=X =X S 
177 

I C 
6 

R divides [CA] in the ratio 7 : 6. 

21
2 

%l     
THE CONVERSE OF CEVA'S THEOREM 

If three lines are drawn from the vertices of a triangle to cut the opposite sides (or sides produced) 

such that the product of their respective ratios is unity, then the three lines are concurrent. 

Proof: 

Let [BY] and [CZ] meet at O. 

Suppose [AO] produced meets [BC] at point X’. 

BX' CY AZ ) = 22 {Ceva’s theorem} 
X/C YA ZB 
BX CY AZ . But —.—.—=1 {given} 
XC YA 'ZB 

BX' _ BX 
X'C ~ XC 

X and X’ coincide 

{as B, X, X/, and C are collinear} 

[AX], [BY], and [CZ] are concurrent.  
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Example 17 

LMN is a triangle. X is on [LM], Y is on [MN], and Z is on [NL]. 

NZ=5cm, YN=6cm, ZL =2cm, and XM =5 cm. 

Prove that [MZ], [NX], and [LY] are concurrent. 

[MZ], [NX], and [LY] are concurrent. 

{converse of Ceva’s theorem} 

Let the medians of AABC be [AP], [BQ], and [CR] 

respectively. 

Ry O S 
RB PC QA 

= [AP], [BQ], and [CR] are concurrent. 

{converse of Ceva’s theorem}   
EXERCISE 2K.1 

1 A T B T divides [AB] in the ratio 3: 7. 

S divides [BC] in the ratio 5: 3. 

Find the ratio in which R divides [AC]. 

C 

2 In AABC, D lies on [BC] such that BD = 1BC. 

E lies on [AC] such that CE = 2CA. 

[BE] and [AD] intersect at O, and [CO] produced meets [AB] 

at F. 

A 

} E 

F 

Find: 

; C a AF:FB 

B D b area of AAOB : area of ABOC.
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3 C In the diagram, BZ : ZC =2:1 and AY : YC =3:2. 

a Find the ratio in which X divides [AB]. 

Y 7 b Find the ratio in which S divides [AZ]. 

X B 

L P, Q, and R lie on sides [AB], [BC], and [CA] of triangle ABC respectively, such that AP = %AB, 

BQ = 2BC, and CR = 1CA. Prove that [AQ], [BR], and [CP] are concurrent. 

5 Use the converse of Ceva’s theorem to prove that the angle bisectors of a triangle are concurrent. 

6 The inscribed circle of triangle PQR has tangents [QR], [RP], and [PQ] which touch the circle at A, 

B, and C, respectively. Prove that [PA], [QB], and [RC] are concurrent. 

7 Use the converse of Ceva’s theorem to prove that the altitudes from the three vertices of a triangle 

are concurrent. 

MENELAUS’ THEOREM 

So far, when we have considered ratios of lengths of line segments, we - 
R i We only use sensed magnitudes 

have used the length or magr}ltude only.. To state Menelaus. tl?eorem, L —, 

we need to use sensed magnitudes, which means that a ratio is taken ey 

to be positive or negative depending on whether the line segments are 

written as vectors with the same direction. 

For example: 

° C B 
/é// 

AB . . 
Bc 18 positive, since AB and BC have the same direction. 

/CA//V 
. . - = . . . . 

Bc 8 negative, since AB and BC are opposite in direction. 

  

If a transversal is drawn to cut the sides of a triangle (produced if necessary), then using sensed 

magnitudes, the product of the ratios of alternate segments is minus one. 

   

  

    transversal
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Proof: (for Case 1) 

We draw perpendiculars from A, B, and C to the 

transversal. 

  

    
      

   

As BQX and CRX are similar = B _ £ 
CX CR 

BX BQ 
XC ~ CR 

As CYR and AYP are similar = CIEECR 
AY AP 

cY  CR 
YA  PA 

As BQZ and APZ are similar = A 
You should show BZ BQ 

that this proof also AZ _ PA 

holds for Case 2. ZB  BQ 

Q 
=-1 

Example 19 

P divides [AB] in the ratio 2: 3, and Q divides 

[AC] in the ratio 5: 2. 

In what ratio does R divide [BC]? 

AQ _5 
QC 2 BR 

i Since — < 0, R 

Co_-ac_gc_ (a0) } RC 
QA —-AQ AQ \qQcC does not lie on [BC], 

but rather on [BC] 

produced. 

R divides [BC] externally in the ratio 15 : 4. 
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THE CONVERSE OF MENELAUS’ THEOREM 

If three points on two sides of a triangle and the other side produced (or on all three sides produced) 

are such that the product of the ratios of alternate segments is equal to minus one, then the three points 

are collinear. 

A i BXCY Az 
XC'YA'ZB 

transversal then X, Y, and Z are collinear. 

5     

B 

Proof: (for the illustrated case) 

Let XYZ' be a straight line. 

   

  

A 
! BX CY AZ . —.—.—— = —1 {Menelaus’ theorem} 

XC YA Z'B 

| But BXOYAZ_ 
transversal XC'YA'ZB 

! _______ X L 
........ 7'B ZB 

{A, 7', Z, and B are collinear} 

7' and Z coincide. 

X, Y, and Z are collinear. 

  

3 €1 IR 1] 

In a triangle two angles are bisected internally, and the third angle is bisected externally. 

Prove that the points where the angle bisectors meet the triangle’s sides are collinear. 

A Let the triangle be ABC, and the internal angle 

bisectors at A and B meet [BC] and [AC] at X and Y’ 

respectively. Let the external angle at C be bisected 

J by [CZ] where Z lies on [AB] produced. 

B A By the angle bisector theorem, as [AX] bisects BAC, 
AB BX BX AB e = === .. (1) 

@ AC XC CX AC 

@ Likewise, as [BY] bisects AfiC, 

BA_AY _ CY_ BC 
BC CY AY  BA 

CY BC 

- @ 
Also, as [CZ] bisects the external angle, 

_CA_AZ _ AZ_CA 
CB BZ 7B CB 

AZ  AC = 22_2% 0 
ZB  BC    
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AB BC AC 
From (1), (2), and (3), — G 

=-1 

= X, Y, and Z are collinear. {converse of Menelaus’ theorem} 

  

EXERCISE 2K.2 

1 Transversal XYZ of triangle ABC cuts [BC], [CA], and [AB] produced, at X, Y, and Z respectively. 

If BX: XC=3:5 and AY : YC = 2: 1, find the ratio in which Z divides [AB]. 

2 A Prove Menelaus’ theorem by constructing [AW] parallel 

to [XB], to meet the transversal at W. 

Hint: Look for similar triangles. 

X 
B C 

3 ABC is a triangle in which D divides [BC] in the ratio 2 : 3, and E divides [CA] in the ratio 5 : 4. 

Find the ratio in which [BE] divides [AD]. 

4 In the figure alongside, P and Q are the midpoints of 

sides [AB] and [AC] respectively. R is the midpoint 

of [PQ]. 

[BR] produced meets [AC] at S, and [AR] produced 

meets [BC] at M. 

a Show that M is the midpoint of [BC]. 

b Find the ratio in which S divides [AC]. 

¢ Find the ratio in which R divides [BS]. 

  

   

        

   
5 Common external tangents are 

drawn for the three pairs of 

illustrated circles. 

The circles have different radii a, 

b, and ¢ units. 

Use the converse of Menelaus’ 

theorem to prove that X, Y, and 

Z are collinear. 

DEMO
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A, B, and C lie on a circle. 

The tangents at A, B, and C meet 

[CB] produced, [AB] produced, and [AC] 

produced at D, E, and F respectively. 

a Prove that DB : DC = AB? : AC?. 

b Prove that D, E, and F are collinear. 

          

   D E F 

7 Consider two lines. One line contains the 

distinct points A, B, and C. The other line 

contains the distinct points D, E, and F. 

Suppose [AE] and [BD] meet at X, [AF] and 

[CD] meet at Y, and [BF] and [CE] meet 

at Z. 

Pappus of Alexandria discovered that X, Y, 

and Z are always collinear. 

Prove Pappus’ theorem. 

  

Hint: Produce [EA] and [FB] to meet at G. 

Let [DC] intersect [GF] at 1. Apply 

Menelaus’ theorem to each of the 

five transversals of triangle GHI. 

GEOMETRY 
PACKAGE 
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I I THE EQUATION OF A Locus 
A locus is a set of points satisfying a particular equation, relation, or set of conditions. 

The plural of locus is loci. 

If P(z,y) represents any point in a locus, the Cartesian equation connecting = and y is the equation 

of the locus. 

Example 21 

Consider the locus of all points which are equidistant from A(—1, 0) and B(5, 4). 

a Find the equation of the locus. b Describe the locus. 

  

a AP = BP, 

. AP? = BP? 

@)+ = (2 -5+ (y—4)° 
A2+ 1+ =2 — 102+ 25+ 4% — 8y + 16 / 

122 + 8y — 40 A(-1,0)    
  

  

3z + 2y = 10 P y) 

b The locus is the line 3z + 2y = 10, which is the perpendicular 

bisector of [AB]. 

. q _ 4-0 4 2 
Check: The gradient of [AB] = 5o 53 

. . . 3 
gradient of perpendicular is —3. 

The midpoint of [AB] is <5 +§_1), %) or (2,2),   

so the perpendicular bisector of [AB] is 3z + 2y = 3(2) + 2(2) 

which is 3z + 2y = 10.   

  

In this Section we will be more concerned with finding the Cartesian equation of a locus rather than 

describing its nature. The nature of a locus is discussed in some sections which follow. 

A useful result from finding equations of loci is the distance from a point to a line formula. This 

formula is: 

|Az1 + By + O 
A+ B 

The distance from the point (z1, y1) to Az + By +C =0 is d=



Proof: 

  

Az +By+C=0 

In AQRS, let RQS = 6. 
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We draw a line through P(zy, y;) parallel to the 

given line. 

This line has equation Az + By = Axz; + Byj. 

We label points as shown. 

is (=S - w) So,le( A,O) and SIS( 7 ,0 

Az + By +C 

A 

0 

Now Az + By+ C =0 has gradient 7% 

[QR] has gradient % 

@ = (kA) for some constant k. 
kB 

  

Find the distance from (2, 3) to the line with equation y = %x +1. 
  

y=2z+1 

= 2z-y+1=0 

= 2z —-3y+3=0   

g 20 -33)+3] _ 
2+(-3)   [—2] 

13 

2 . 
—— units 
V13 
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Find the equation of the locus of all points which are parallel to the line 2z +y = 11 and 

2+/5 units from it. 

  

20 +ty=11 = 2z +y—11=0 

Let P(z,y) be a point in the locus o5 tnits 

224y 111 _o /5 

V22 +12 

s l2w+y—11]=10 2¢/5 units 
20 +y—11==+10 

2r+y=1 or 2x+y=21 

  

2 +y=11 

the locus includes all points on the two lines 2z +y =1 and 2z +y =21 which are both 

parallel to the given line. 

  

3T TR 1] 

Suppose A is (0, 3) and Bis (0, —3). Find the Cartesian equation of the locus of P(z, y) such 

that AP + BP = 8 units. 

  

    

  
  {squaring both sides} 

9 =64—161/22 +y2 + 6y + 9+ +3° + 6y +9 

o 168/ + 42 + 6y + 9 = 12y + 64 

L AyZ R+ by +9=3y+16 

o 16(2% +y? + 6y +9) = 9y + 96y + 256 

1622 4 16y> 4 967 + 144 = 9y° + 967 + 256 
7)2 2 

2 L 72 = LY 162 + 7y =112 (or T +¥% =1 

          

  
    

    
EXERCISE 2L 

1 Find the distance from: 

a (3,2) to 2z+5y+6=0 

¢ (2,-1) to y=3z—2 

2 Find the distance between the parallel lines: 

a 3x+2y=>5and 3x+2y+1=0 b ar+by+c; =0 and ax+by+c2=0 

3 Find the value of k if: 

a the distance from (k, —3) to 3z —2y+6 =0 is /13 units 

b A(1, —2) is equidistant from z+y =%k and x —y+7=0. 

(-1,4) to 4z —3y =141 b 

d (-1,-3) to mex+y=>5 meR.
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4 Find the equation of the locus of all points which are parallel to the line =z —y = 4 and are 

24/2 units from it. 

5 Find the locus of all points P(z, y) which are equidistant from N(—1, 8) and S(5, 4). 

6 Suppose A is (—3,0) and Bis (3, 0). Find the locus of all points P(z, y) such that APBisa 

right angle. 

7 Find the Cartesian equation of the locus of P(z, y) if: 

a P is the same distance from (2, 1) asitis from 2z —y =25 

b P is equidistant from the lines 3z —4y =3 and 5z — 12y = 4. 

8 a A(—1,0) and B(3,0) are given points. P(x, y) moves such that % =2. 

i Find the Cartesian equation of the locus of P. 

ii Describe the locus of P. Give reasons for your answer. 

AP 
b Repeat a for the case where 3 % 

e ] 
The distance from the point P(z, y) to A(—1, 3) is a half of the distance from P to the line 

4 2y = 7. Find the Cartesian equation of the locus of P. 

AP = 1 x Ps distance from z +2y—7=0 
2 

|z+2y—7]| @7+ (9P = 3 et 
    

4oy — 72 
(x+1)2+(y—3)%= W {squaring both sides} 

2022 +2c+14+y2 — 6y +9) =2 + 4% 4+ 49 + 4oy — 28y — 14z 

{(a+b+c)?=a?+b%+c%+ 2ab+ 2be + 2ac} 

202 + 20y? + 40z — 120y + 200 = x2 + 4y? + 49 + 4zy — 28y — 14x 

1922 — 4zy + 16y + 5dx — 92y + 151 =0 

  

  

        

  

      
  

9 Find the Cartesian equation of the locus of R(z, y) if R’s distance from A(3, 0) is: 

a equal to its distance from the line = = —3 

b half its distance from the line = = 12 
4 ¢ 1.5 times its distance from z = 3. 

10 Suppose A is (2,0) and Bis (—2, 0). Find the Cartesian equation of the locus of Q(z, y) such 

that: 

a AQ+BQ=6 b AQ — BQ=2.
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CIRCLES   

A circle is the set of all points which are equidistant from a point called its centre. 

THE CENTRE-RADIUS FORM OF THE EQUATION OF A CIRCLE 

The equation of a circle with centre (h, k) and radius r is 

(x—h)?2+(y—k)2=r2 

The proof is a simple application of the distance formula. 

  

  

Example 26 

  

    
     

Find the equation of a circle with centre (2, —3) and radius /7 units. 
  

The equation is (z —2)? + (y — —3)* = 

whichis (. —2)*+ (y+3)? 
   

If we expand and simplify (x—2)%+(y+3)?2= 

  
  we obtain 22 — 4z 4 4 + 32 + 6y 

    

        This equation is of the form 2 +y? + dx + ey 

In fact, the equation of any circle can be put into this form. 

For the equation of a 
The general form of the equation of a circle is circle to be in general 
2 + y2 +dr+ey+ f=0. form, the coefficients 

of 22 and y? should 
We are often given equations in general form and need to find the both be 1. 

centre and radius of the circle. We can do this by ‘completing the 

square’ for both the x and y terms. 
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€. 108F) 

Find the centre and radius of the circle with equation 22 + y? + 6x — 2y — 6 = 0. 

22+ +6x—2y—6=0 

22 + 6z +y2 -2y =6 

2?4+ 62 +3%+y? —2y+12=6+32+12  {completing the squares} 

(3P4 (y—1)2=16=42 

the circle has centre (—3, 1) and radius 4 units. 

  

€1 10801 ] 

The point (m, 2) lies on the circle with equation (z —2)% + (y — 5)? = 25. 

Find the possible values of m. 
  

Since (m, 2) lies on the circle, (m —2)%+ (2 —5)? =25 

S (m—22+9=25 

  

  

EXERCISE 2M.1 

1 Find the centre and radius of the circle with equation: 

a (-2 +((y-3)2=4 b 22+ (y+3)2=9 ¢ (z—-2%4+y2=7 

2 Write down the equation of the circle with: 

a centre (2, 3) and radius 5 units b centre (—2,4) and radius 1 unit 

¢ centre (4, —1) and radius v/3 units d centre (—3, —1) and radius v/11 units. 

3 Find, in centre-radius form, the equation of the circle with the properties: 

a centre (3, —2) and touching the z-axis b centre (—4, 3) and touching the y-axis 

¢ centre (5,3) and passing through (4, —1) 

d (—2,3) and (6, 1) are end-points of a diameter 

e radius /7 and concentric with (z 4 3)%+ (y — 2)% = 5. 

4 Describe what the following equations represent on the Cartesian plane: 

a @422+ @y-72=5 b (z+22+(y-772=0 ¢ (z+224+@Yy-72=-5 

5 Consider the shaded region inside the circle, centre (h, k), 

radius 7 units. 

a Let P(z,y) be any point inside the circle. 

Show that (z — h)? + (y — k)% < r% 

b What region is defined by the inequality 

(x—h)2+ (y — k)2 > r?? 
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6 Without sketching the circle with equation (z + 2)2 4 (y — 3)? = 25, determine whether the 
following points lie on the circle, inside the circle, or outside the circle: 

a A(2,0) b B(L 1) ¢ D(3,0) d E(4,1) 

7 Find m given that: 

a (3, m) lies on the circle with equation (z +1)% + (y —2)? =25 

b (m, —2) lies on the circle with equation (z + 2)? + (y — 3)? = 36 

¢ (3, —1) lies on the circle with equation (z + 4)? + (y +m)? = 53. 

8 Find the centre and radius of the circle with equation: 

  

a 2?2 +y?+6x—-2y—3=0 b 22 +y>—6x—2=0 

¢ 22+ +4y—1=0 d 2?2 +y? +4r-8y+3=0 

e 22+9y? -4z —-6y—3=0 f 22+y?—-8x=0   
9 Find £ given that: 

a 22 +y?— 122 +8y+ k=0 is a circle with radius 4 units 

b 224 y?+ 62 — 4y =k is a circle with radius /11 units 

¢ 2?2 +y?+4r—2y+ k=0 represents a circle.     

10 1In general form, a circle has equation 22+ y? + dz + ey + f = 0. 

. . d . . a2 | e? 
a Show that its centre is <75, 7%) and its radius r = 4 |7+ % — f where d?+e? > 4f. 

b Hence, find the centre and radius of the circle with equation 3x2 + 3y? + 6z — 9y +2 = 0. 

¢ Comment on the locus with equation z? + y? +dz +ey+ f =0 in the case: 

i d?+e?=4f il d?+e?<df 

TANGENTS TO A CIRCLE 

For a given circle in the plane, we can describe any line as: tangent 

e external if it does not meet the circle 
external e a tangent if it touches the circle at one point line 

e a secant if it cuts the circle at two points. 

DN 

For any point P on the circle, there is a unique tangent through A 

P called the tangent at P. 

secant 

For any external point P there are exactly 2 tangents, called the 

external tangents from P. In the diagram, A and B are the 

two points of contact.
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Example 29 

Find the equation of the tangent to the circle with equation z? + y?> — 8z —4 = 0 at the 

point P(8, —2). 

2249y —8x—4=0 

cox? 8z +y2 =4 

Lox?—8r 44yt =4442 

(-4 4+ =20 

the circle has centre (4, 0). 

  

—2-0_ -2 4 
=7 "2 8—-4 4 

  The gradient of [CP] is 

P(8,-2) 
the gradient of the tangent is % 

.. the equation of the tangent is 2z —y = 2(8) — (—2) 

whichis 2z —y = 18. 

  

[3'€1 110 

Find the equations of the tangents from the external point P(0, —4) to the circle with equation 

224+ 9% — 10z — 2y + 16 = 0. 

22 +1y? — 10z — 2y + 16 =0 
- 2% — 102 +y?—2 =-16 

22— 10z + 52 + 42 — 2y + 12 16 + 5% 4+ 12 

s (@=5)2+@-12%=10 

which is a circle with centre (5, 1) and radius v/10 units. 

      

Let m be the gradient of a tangent from P. 

it has equation y = max + ¢ for some constant c. 

  

But (0, —4) lies on the tangent, so ¢ = —4 

the equation is y = mxz —4 whichis maz —y —4=0. 

The centre of the circle is v/10 units from each tangent. 

Im®) - 4] _ V10  {point to a line formula} 
21 
o 5m =5 =+/10(m2? + 1) 

25m?% — 50m + 25 = 10m? 4 10 

15m? —50m 4+ 15=10 

o 3m?2—10m+3=0 

o (m=3)(8m—1)=0 
.. m=3 or 

  

W
l
 

the tangents are y =3z —4 and y = %x —4.      
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EXERCISE 2M.2 

1 Find the equation of the tangent to the circle with equation: 

a 22+ y?+6z—10y+17=0 at the point P(—2, 1) 

b 22+ y?+ 6y =16 at the point P(0, 2).     

2 The boundary of a circular pond is defined by the equation 

2?2 +y? — 242 — 16y + 111 = 0. 
A straight path meets the edge of the lake at grid reference 

A(3, 4). 

a Given that the grid units are metres, find the diameter 

of the circular pond. A 

b Find the equation of the straight path. 

3 A circle has centre (2, 3) and radius 4 units. P(8, 7) is external to the circle. Find the equations 
of the two tangents from P to the circle. 

4 Find the equations of the two tangents from the origin O to the circle with centre (4, 3) and 

radius 2 units. 

A circle has centre (3, 4). One tangent from the origin O 

has equation y = 3. 

Find the equation of the other tangent. 

  

6 A circle with centre (3, —2) has a tangent with equation 3z — 4y + 8 = 0. 

a Find the equation of the circle. 

b Find the tangent’s point of contact with the circle. 

7 Consider the circle x? 4 3? — 42 + 2y = 0. Find the value(s) of k for which 3z +4y =k is: 

a a tangent b a secant ¢ an external line. 

C(r, 0) is the centre of a fixed circle with radius r. 

A is a point which is free to move on the circle, and M is 

the midpoint of [OA]. 

a Find the Cartesian equation of the locus of M. 

b Describe the locus of M. 
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Line segment [AB] has fixed length p units. A can only move 

on the z-axis, and B can only move on the y-axis. M is the 

midpoint of [AB]. 

a Find the Cartesian equation of the locus of M. 

b Describe the locus of M. 

  

Suppose A is (1, 0), Bis (5, 0), and k is a constant. P(z, y) is a point such that g =k for 

all positions of P. Find the equation and nature of the locus of P if: 

a k=3 b k=3 ¢ k=1 

Suppose A is (2, 0) and B is (6, 0). The point P(z, y) moves such that % = 2 for all 

positions of P. 

a Deduce that P lies on a circle, and find the circle’s centre and radius. 

b The circle in a cuts the z-axis at points Py and Py, where Py is to the right of P;. Deduce the 

coordinates of P; and Ps. 

AP AP, _ AP, 
¢ Show that — = — = . 

BP BP; BP, 

d Hence, deduce that [PP ] bisects AfiB, and [PP5] bisects the exterior angle A§B, for all positions 

of P.
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CIN cowicsicrions 
Consider a right-circular cone, which means the apex is directly above 

the centre of the base. 

Suppose you have a second identical cone which you place upside-down 

on the first. 

Now suppose the cones are infinitely tall. 

We call the resulting shape a double inverted right-circular cone. 

  

When a double inverted right-circular cone is cut by a plane, 7 possible intersections may result. 

1 a point when the plane 2 a line when the plane 3 a line-pair when the 

meets the double-cone is tangential to the plane contains an axis 
where the apexes touch, double-cone, for of symmetry of the 

and at no other points example (AB) double-cone 

X 

  

4 a circle when the plane 5 an ellipse when the 6 a parabola when the 

is perpendicular to the double-cone is cut such double-cone is cut such 
axis of symmetry, and that o > 0 that a =3 

not through X 

axis of symmetry axis of symmetry axis of symmetry 
       



     

7 an hyperbola when the 

double-cone is cut such 

that a < 3. 

axis of symmetry 

FOCUS-DIRECTRIX DEFINITION OF AN ELLIPSE, HYPERBOLA, AND 
PARABOLA 

Suppose P(z,y) moves in the plane such that its distance 

from a fixed point F (called the focus) is a constant ratio 

e of its distance to a fixed line (called the directrix). The 

locus of P is a conic which is 

o anellipseif 0 <e<1 

e aparabolaif e=1 

e an hyperbola if e > 1. 

If N is the foot of the perpendicular from P to the directrix 

then % =e, and e is called the eccentricity. 

GEOMETRY  (Chapter 2)     
1,2, and 3 are called 

degenerate conics and 

4 to 7 are called the 

non-degenerate conics. 

DEMO 

  

directrix 

Circular-linear graph paper is useful for graphing the non-degenerate conics. 

  

PF 5 
P(z, y) moves so that N= 1 where Fis (4 ,0) and N is the foot of the 

perpendicular from P to the y-axis. Sketch the locus of P. 

  

    
  

  
  

201
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Consider a parabola with focus (4, 0) and directrix z = 1. 

a Sketch the parabola on a set of axes. b Find the location of the vertex. 

¢ Find the Cartesian equation of the parabola. 
  

b The vertex is midway between the focus and the 

directrix. 

Vis (5, 0). 

¢ For any point P(z, y) on the parabola, % =) 

where N is (1, y) 

VDA -0 =@ 1P+ G-y 
Loz —8r+16+yt=a2—-2z+1 

y? =6z —15 

  

  

EXERCISE 2N.1 

1 Click on the icon to obtain and print circular-linear graph paper. CIRCULAR-LINEAR 
GRAPH PAPER 

P(z, y) moves in the plane so that % =e where Fis (0,3) and N is the foot 

of the perpendicular from P to the z-axis. Sketch the locus of P if: 

a e=1 b e= ¢ e=2 (2 parts) 1 
2 

2 Consider a parabola with vertex (1, 1) and focus (3, 3). 

a Sketch the parabola on a set of axes. 

b Find the equation of the directrix. 

¢ Find the Cartesian equation of the parabola. 

3 Find the Cartesian equation of a parabola with directrix =+ y =4 and focus (1, 1). 

THE PARABOLA 

If F is a fixed point (called a focus) and P(z, y) moves so that PF = PN where N is the foot of the 

perpendicular from P to a fixed line (called the directrix), then the locus of P is a parabola. 

The axis of symmetry of the parabola is the line through the focus which is normal to the directrix. 

Since e =1 for a parabola, PF = PN. 

For the simplest parabola we choose the focus to be F(a, 0) 
on the z-axis, a > 0, and the directrix to be the vertical line 

r=—a. 

The z-axis is the axis of symmetry of the parabola, and the 

vertex of the parabola is the origin O. 

For a given point P(z, y), the coordinates of N are (—a, y).  
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Since PF = PN, 

(z—a)+y*=z—(-a) 
,ar:z72a:c+,@fz”y2 :,ZZJranJrfl(Z 

y? = dax 

  

For the case a < 0, the graph opens in the negative direction.    
   

  

      

     

Using the same reasoning we also obtain 32 = 4ax in this case. 

| a] is the distance from 
the vertex to the focus 

and from the vertex 

to the directrix. 

Sketch y? = —8z. State the coordinates of the focus and the equation 

of the directrix. 

y' =8 

4a = -8 {y* = 4dazx} 

- 9 

the focus is F(—2, 0) and 

the directrix is « = 2. 

  

    
EXERCISE 2N.2 

1 Sketch each parabola, stating the coordinates of its focus and the equation of its directrix: 

a 3> =8z b y2+10z=0 ¢ 22=12 d 222 +5y=0
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2 Find the equation of the parabola with: 

a V(0,0) and F(3,0) b V(0,0) and F(0, 3) 
¢ V(0,0) and directrix z=—5 d F(-2,0) and directrix z =2 

e F(0, —5) and directrix y =5 f F(0, —2) and directrix y =2. 

3 Consider the parabola y? = 4axz. 

a Show that the tangent at (x1, y1) is 2ax — y1y = —2az;. 

b Show that the normal at (z1, y1) is y1z + 2ay = T1y1 + 2ay;. 

¢ For a >0, show that the z-intercept of the normal is > 2a. 

4 The inner surface of this parabola is a mirror. 

[AB] is a ray of light which is parallel to the axis 

of symmetry. 

The ray is reflected at B so that a; = a3, and it 

cuts the axis of symmetry at D. 

[BC] is a tangent to y? = 4az. 

Prove that: 

a ABCD is isosceles 

b D is the focus of the parabola. 

5 F is the focus of parabola y? = 8z and [PQ] is a 

focal chord which passes through the focus. 

a Suppose P has z-coordinate 4. 

i Find the coordinates of P and Q. 

ii Find the equations of the tangents at 

P and Q. 

iii  Show that the tangents at P and Q meet 

on the directrix and are at right angles to 

each other. 

  

b Show that the property in a iii is true for any 

focal chord [PQ]. 

THE ELLIPSE 

If F is a fixed point (called a focus) and P(z, y) moves so that % =e where 0 <e<1 and 

N is the foot of the perpendicular from P to a fixed line (called the directrix), then the locus of P is 

an ellipse, and e is called the eccentricity. 

  Consider P(z, y) moving on an ellipse with centre O, focus (h, 0), directrix z =k, z-intercepts +a, 

and y-intercepts +b.  
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As P moves around the ellipse, N moves along the directrix. 

When P is at A, Nisat (k,0) and AF=e¢AN = a—h=c(k—a) .. (1) 

When P isat B,Nisat (k,0) and BF=eBN = h+a=c¢(k+a) ...(2) 

Adding (1) and (2) gives 20 =2k = k=2 
€ 

Subtracting (1) and (2) gives —2h = —2ae = h=ae 

Hence, the focus is F(ae, 0) and the directrix has equation z = Z 
€ 

Since PF = ePN, 

2 
(z—ae)®+y%>=e <z— 2) 

z? — 2aex 4 a’e? y2 e? (zz 20z } a2> 

2% — 2ae7 + a’e? ——y2 = e2? — 2ae7 + a® 

(1—eHa? +y? =a’(1—¢?) 
2 2 

z Y A A 
a? + a?(1 —e?) 

  

  

  
  

    The ellipse has y-intercepts +ay/1 —e2 = +b 

2 2 
the ellipse has equation 1—2 + z—z =1 where b =a?(1—€?). 

a 

Since the equation remains unaltered by replacing = by —z, the ellipse has a second focus at (—ae, 0) 

a 
and a second directrix © = ——. 

€ 

TERMINOLOGY 

The centre of an ellipse is the point of intersection of its axes of symmetry. The diameters of an 

A chord of an ellipse is any line segment joining two points on the ellipse. ellipse do not all 
have the same length. 

A diameter of an ellipse is any chord which passes through its centre. 

  

The major axis of an ellipse is the diameter through its foci. 

The minor axis is the diameter perpendicular to the major axis. 

The latus rectum is the chord through a focus which is perpendicular to 

the axis of symmetry.
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GEOMETRICAL PROPERTIESFOR a >0, b>0, 0<e<1 

a = half the length of the major axis. 

ae = distance from centre to focus. 
minor axis     

  

a . i i . . 
= distance from centre to directrix. aioaxL 

c 
b = half the length of the minor axis. 

axes of symmetry 
latus rectum 

SIMPLE ELLIPSES 

  

  

  
  

Ay centre: 0,0 

foci: (£ae, 0) 

directrices:  x = +2 
= € 

G @ inequality: a>b 0<e<l1 

e e identity: b2 =a?(1—€?) 
2 2 

v P, T vy _ I . equation: =tE= 1 

-+ y=- 

€ 

centre: (0, 0) 

foci: (0, tae) 

directrices:  y = +2 
xT e 

inequality: a>b 0<e<1 

identity: b2 =a?(1—e?) 
2 2 

a Lo X Y 
-— > Yy =—— : —- + == y - equation 32 S = 1   

v 

THE FOCAL-DISTANCE PROPERTY 

As P(z, y) moves around an ellipse, the sum of the distances from P to the foci is PF + PF/ = 2a. 

Proof: 

PF + PF/ 

= ePN + ePN’ 

= ¢(PN + PN) 

~(2-(2) 
=2a 

 



GEOMETRY  (Chapter 2) 207 

  

Consider the ellipse with equation 2z2 + 4y = 16. 

    
The plural of directrix 

is directrices. 

  

    

  
a Find the axes intercepts. 

b Sketch the ellipse. 

¢ Find the eccentricity of the ellipse. 

d Find the coordinates of each focus and the equations A ) 

of the corresponding directrices. v: 

  

a 22?2 +4y716 b 
2 2 

C”—+—_1 

. a*=8 and b2 =4 T 

  the z- intercepts are -_2\/_ 

y-intercepts are £2.   

2\/_ < b =a?(1—€?) d a672\/§><\/_72 and 2 =4 

4=8(1—¢?) 7 
1_e2=1 The focus (2, 0) has corresponding 

o2 f directrix z = 4. 

_ 21 The focus (—2, 0) has corresponding 
=" fas e>0} directrix = = —4. 
  

  

  Find the equation of the ellipse with foci (43, 0) and eccentricity % 

  

  As the foci are (£3,0), ae=3 

.oa=6. 

Now b? =d*(1 —¢?) 

b =36(1—1) =27 

  

    
  

the ellipse h tion &+ ¥ =1 e ellipse has equation —= + o= = 

EXERCISE 2N.3 

1 For each ellipse: 

i Find the axes intercepts.  ii Sketch the ellipse. iii  Find the eccentricity. 

iv Find the coordinates of each focus and the equations of the corresponding directrices. 

a 42? +9y% =36 b da? 432 =12
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2 Find the equation of the ellipse with the properties: 

centre (0, 0), focus (3, 0), major axis of length 8 units 

  

    

  

  

  

  

  

b foci (0, +4), e= % 

¢ major axis on the z-axis, z-intercepts +3, e = % 

d foci (0, £4), directrices y = +5 

e PF+ PF =10, foci (4, 0) 

f centre (0,0), foci (0, +3), minor axis of length 8 units 

g extremities of minor axis (0, £3), e = % 

h foci (£3,0), directrix = =5. 

3 Find the length of the latus rectum of the ellipse Z—z + —2 =1 with foci (+ae, 0). 

[AB] is a line segment of fixed length &, where A is free to move 

on the z-axis and B is free to move on the y-axis. N lies on [AB] 

such that AN : NB = 2 : 1. Determine the nature of the locus 

of N. 

    

2 2 
Find the equation of the tangent to the ellipse T—fi SE % =1 at the point (2, _sTfi) 

  

g ) {implicit differentiation} 

n (o), 2o 
:. the equation of the tangent is V3z — 4y = \/5(2) — 4(—%) 

which is  V/3z — 4y = 8v/3 

I 

    
2 2 

6 Consider the ellipse % + % = 1. Find the equation of: 

a the tangents to the ellipse at the point where z = /2 

b the normals to the ellipse at the point where y = 2.



GEOMETRY  (Chapter 2) 209 

2 2 
7 a Show that the equation of the tangent to w—z + i—z =1 atthe point (z1,y1) is —+ 

a a 

b Hence, show that the equation of the tangent at the end of the latus rectum in the first quadrant 

is ex+y=a. 

¢ Find the equation of the normal at the point (z1, y1). 

THE HYPERBOLA 

If F is a fixed point (called a focus) and P(z, y) moves so that % =e where e > 1 and 

N is the foot of the perpendicular from P to a fixed line (called the directrix), then the locus of P is 

an hyperbola. 

Consider P(z, y) moving on an hyperbola with centre O, focus (h, 0), directrix = = k, and 

z-intercepts +a.   

  

As P moves on the hyperbola, N moves along the directrix. 

When P is at A, Nisat (k,0) and AF=¢eAN = h—a=c(a—k) .. (1) 

When P is at B, Nis at (k,0) and BF=eBN = h+4+a=e(k+a) .. (2 

(1) and (2) are the same equations as for the ellipse 

a 
h=ae and k= — 

€ 

Hence, the focus is F(ae, 0) and the directrix has equation z = Z 
e 

Using PF = ePN, we also get the same equation of the hyperbola as we obtained for the ellipse: 
(I)Z yZ 

Ty 
a? * a?(1 — e2?) 

However, as € > 1, 1 —e? <0 and therefore a*(1 —e?) <O0. 

Let a?(1 —e?) = —b% for some constant b. 

. 2?42 
the equation becomes — — — = 1. 

a b2 

Once again the equation is unaltered by replacing = by —z, so there is a second focus at (—ae, 0) and 

. . a 

a second directrix x = ——. 
e
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ASYMPTOTES 

From the graph of the basic hyperbola, we observe there are no 

y-intercepts. 
Oblique means at 

an angle. An oblique clearly b has a different geometrical interpretation from an ellipse. 

  

  

  

However, we notice from the graph that the basic hyperbola approaches asymptote is neither 

oblique asymptotes for large values of x and y. horizontal nor vertical. 

2 2 2 2 
For large values of x and y, £ -2 1 becomes L ~Z. 

b2 a? b2 a 

This means that y approaches, but never equals, ::Ez. 
a 

22 y2 b ) 

the asymptotes of ST 1 are y= -z 

TERMINOLOGY 

The centre of an hyperbola is the point of intersection of its axes of symmetry. 

A diameter of an hyperbola is any chord which passes through its centre. 

The transverse axis is the diameter on the axis containing the foci. 

The latus rectum is the chord through a focus which is perpendicular to the transverse axis. 

GEOMETRICAL PROPERTIESFOR a >0, b>0, e>1 

a = half the length of the transverse axis. 

ae = distance from centre to focus. 
a . . . 
— = distance from centre to directrix. 
€ 

   / 

axes of symmetry     

    di
re
ct
ri
x 

   
SIMPLE HYPERBOLAE 

  

    

  

y ] foci: (£ae, 0) 

vertices: (£a, 0) 

directrices: z==+2 
€ 

b 
asymptotes: Yy==xT—-T 

a 

identity: b = a?(e? — 1) 
2 2 

equation: L   
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foci: (0, tae) 

vertices: (0, +a) 

directrices: y= +2 
€ 

a 
asymptotes: Y= :EI 

identity: b2 = a?(e? — 1) 
2 2 

equation: 3—2 — :—2 2} 

  

THE FOCAL-DISTANCE PROPERTY 

As P(z, y) moves along the hyperbola, |PF — PF'| = 2a. 

RECTANGULAR HYPERBOLAE 

An hyperbola is rectangular if its asymptotes are perpendicular. 

    

. b . . b 
Since the asymptotes are y = +—x, their gradients are +-. 

a a 

. b b 
for the asymptotes to be perpendicular, — x —— = —1 

a a 

a2 =2 

a=b  {since both are >0} 

2 2 2 the equation of a rectangular hyperbola can be z? — y? = a? or y? — 2% = a?. 

Since 0% =a%(e*—1), e*—1=1 

e=+2  {since e >0} 

So, every rectangular hyperbola has eccentricity v/2. 

In the HL Core course, we saw rectangular hyperbolae with equations of the form xy = k where k is 

a constant. 

2 2 2 
Y T a 

    

xT . . 

In fact, — — =; =1 under a rotation of +7 becomes zy = 5 where a is a constant. These are 
a a 

the only rectangular hyperbolae for which y can be written as a function of x. 

T 

  

    

  

   

Sketch 422 — 9y = 36 by finding the axes intercepts and asymptotes. 

  

  

   = ::3   

    

     

the graph cuts the z-axis at (3, 0) and (-3, 0). 

22 42 ) ) 
The asymptotes are ol which are y = 5z 
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3 €T 

    An hyperbola has foci (42, 0) and directrices @ = £3. At what points does it cut the axes? 

The foci lie on the z-axis and the centre is (0, 0). 

Now ae=2 and & = 
e 

a? =2 x 
  

  

1 5=1 

a=1 {as a >0} 

  the hyperbola cuts the z-axis at (£1, 0) but does 

not cut the y-axis. 

Example 39 

Each circle in a set touches the z-axis, and the y-axis cuts off a chord of length 2 cm from each 

circle. Find the nature of the locus of the centres of all such circles. 
  

  

Let the centre of one of the circles be C(z, y), and 

let M be the midpoint of [AB]. 

Now CM =z and CA =y {radius of circle} 

Loy=z%+1 {Pythagoras} 

the locus of C is > — 2> = 1 which is the 
equation of a rectangular hyperbola 

all centres lie on a rectangular hyperbola. 

  

EXERCISE 2N.4 

1 For each hyperbola: 

Find the axes intercepts. 

Find the foci and the equations of the corresponding directrices. 

Find the equations of the asymptotes. 

iv Sketch the graph. 

a 25z% — 16y> = 400 b 4y —22=16 

¢ 22—y =4 d y2-22=9 

2 Find the equation of the hyperbola with the following properties: 

  a vertices (£4,0), e= 1% b centre O, y-intercept —2, directrix y :g 

¢ foci (+12,0), directrices z d vertices (::%, 0), directrices x         

wl
eo
 2 

V3
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|[PF — PF/| = 2, foci (£3,0) f foci (0, +£2), directrices y = 4       

wi
lo
o 

    g asymptotes y = +2x, vertices (£4, 0) 

h transverse axis 4 units long on y-axis, ¢ = % 

3 For any hyperbola: 

a Prove that |PF — PF/| = 2a. 

b Show that b can be interpreted as the shortest distance from a focus to an asymptote. 

    
    

4 Find the equations of the tangent and normal to 422 —9y? = 36 
at the point: 

a (30 b (3v2 —2) 

   Use implicit 

differentiation! 

5 Find the equation of the tangent and normal to z? —y% =9 at 
the points on the curve where x = 5. 

2 2 
6 Consider the hyperbola z_2 — 2_2 = 1. Suppose P(z1, y1) lies on 

a 

the hyperbola. 

a Show that the equation of the normal to the curve at P is 

a*y1x + b2z1y = (a® + V)39 

b Find the equation of the tangent to the curve at P. 

¢ Suppose [PT] is a tangent to the curve and T lies on the asymptote with positive gradient. 

(b:vl +ayr bxy +ay1) 
Show that T has coordinates s 

a 

7 y Each circle in a set touches the z-axis, and the y-axis cuts 

off a chord of length 4 cm from each circle. Find the 

T nature of the locus of the centres of all such circles. 

4cm 

AN 

TRANSLATING CONICS 

In general, if a conic is translated (Z), we replace z by = —h, and y by y — k in its equation. 

Under the translation (Z) 

o the parabola y? = 4az becomes (y — k)% = 4da(xz — h) 

    

    

2 2 v _ (@=m?  (=k? _ e the ellipse ? + z= 1 becomes - S o 1 

? g @=hn> _ (-k? e the hyperbola ST E 1 becomes - @ = 1 

o the rectangular hyperbola xy = c?> becomes (x — h)(y — k) = c2.
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If a conic has an equation which can be put into one of these forms, we can then sketch it and find 

details of any foci and directrices. 

Example 40 

@+2?  -1)? 
T 

Sketch the ellipse =1 and give details of its foci and directrices. 

  

_1)2 2 2 ) 
-1 =1 comes from % S yI =1 under the translation ( 

(z +2)2 
9 i 4 

Now a? =9 and »? =4. 

Since b% = a*(1 — €?), 

1—e?= 

e’ = 

e= {e >0} 

a 
Now ae=+/5 and < = 

€ 

2 2 
% 4 yI =1 has foci (+/5, 0)   

  

. . 3 
and directrices x = £—=. 

V5 

(2+2?  (-1? 
+ 4 

  Hence =1 has foci (—2++/5, 1) and directrices = = —2 4   

  

EXERCISE 2N.5 

1 Sketch each conic, giving details of any foci and directrices: 

@=12  @+3? _ — L1 b (4P =-8+2) ¢ (@+22- W=       

2 Find the Cartesian equations of the ellipse with: 

a foci (—5,2) and (1, 2), and eccentricity % 

b focus (—3,4) with corresponding axis extremity (—5, 4), and eccentricity £ 

¢ foci (—1, —3) and (5, —3), and one directrix = = 13. 

3 Find the equation of the hyperbola with: 

a centre (2, —1), focus (1, —1), and eccentricity 2 

b focus (2, 3) with corresponding directrix = = —1, and eccentricity 2 

¢ foci (2, —2) and (6, —2), where |[PF—PF/|=2. 

4 Consider the curve with equation zy — 2x + 3y — 10 = 0. 

a  Write the equation in the form (x — h)(y — k) = 2. 

b Identify the curve and sketch its graph. 

¢ Check the position of the graph by finding the axes intercepts from the original equation.
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5 Consider the curve with equation y? — 8z + 6y + 22 = 0. 

a Write the equation in the form (y — k)% = 4a(z — h). 

b Identify the curve and sketch its graph. 

¢ Find the axes intercepts from the original equation. 

d Find the coordinates of any foci and the equations of any directrices. 

6 For each conic: Complete the square 
i Write the equation in a suitable form so that the curve can YA CLE anianlcy 

be identified and graphed. 

ii Sketch the graph of the curve. 

iii Find the coordinates of any foci and the equations of any 

directrices. 

a 22 +4y> —6x+32y+69=0 

b 42? —9y? + 162+ 18y =9 

  

7 Explain why 322 +y? — 62 — 4y +40 =0 does not have a graph.
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LEIEE PARAMETRIC EQUATIONS 
Parametric equations are equations where both = and y are expressed in terms of another variable called 

the parameter. The parameter takes all real values unless otherwise specified, and often represents an 

angle 6, or a time ¢. 

For example, © =2cosf, y =2sinf is a parametric representation 

for the circle x? +y? = 4. The parameter is # where 0 € R is 
the angle measured anticlockwise from the positive z-axis to the point 
P(z, y). The identity 

) cos20 +sin?60 =1 
However, notice that x = 2sinf, y = 2cosf would also be a is very useful. 

suitable parametric representation for this locus. In this case # would 

have a different meaning. 

  

There may be infinitely many parametric representations for the one 

Cartesian equation. 

    

      

For example, for the line with equation x +y = 8 we could use ' 

r=t y=8—t or y=t, t=8—t or x=1—t, y="7+1t, 

and so on. 

  

Example 41 

Find the Cartesian equation of the curve with parametric equations: 

a z=sinf, y=2cosf b z =sinf —cosf, y=-sin26 

2 

t 
, y=2—3t where t#0. 

  b We use the identities cos? + sin?6 = 1 

and sin 260 = 2sinf cos 6. 

Now z? = (sinf — cos6)> 

=sin? 6 — 2sinf cos @ + cos? 0 

=1-—sin26 

=1—y 

y=1 —z? 

¢ Since z—1= % and y — 2 = —3¢, we can eliminate ¢ by multiplying. 

(z-1(y-2)= (%) (—3t) = —6 

Ty —2z—y+2+6=0 or alternatively, 

zy—2z—y+8=0    
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Find a suitable parametric representation for: 

a zy= b y2=1 ¢ 2 ¥ Ty =5 y Oz 7 5 

5 t2 
a If =1t then y=—,t9é0. b If y=t then B= 

2 
C w__y_zl 

4 9 In cases such as a 

2 and b there are several 

sensible answers. () - ( 
- (3) - () 

But sec?f =tan?6 +1 for all 6. 

we let gzsece and %:tanfi 

8
w
l
 

  

z =2secl, y=3tan6 are the parametric equations.   
PARAMETRIC DIFFERENTIATION 

Consider a curve with parametric equations = = g(t), y = h(t). 

. . d; dy d. 
Using the Chain Rule, A 

dt dx at 

W) =g 

—= = — or —— is the gradient of the tangent at any point with parameter ¢ on the curve. 

  

  

A curve has parametric equations x =t? — ¢, y =2t — 3. 

Find the equation of the tangent to the curve which has gradient % 

  

  

B _9t—1 and Y =2 
dt dt 

dy 2 

dr  2t—1 

. . s 2 3 
Since the gradient of the tangent is £, o 

= 

When ¢t =3, =6 and y =3 

(6, 3) 1is the point of contact. 

Thus, the equation of the tangent is 2z — 5y = 2(6) — 5(3) 

which is 2z — by = —3.   
  

 



218 GEOMETRY  (Chapter 2) 

EXERCISE 20 

Find the Cartesian equation of the curve with parametric equations: 

a r=t, y=% b z=t y=1-5t c x=1+4+2t, y=3—1 

d z=t y=t>-1 e z=1t2 y=13 f =12 y=4t 

Find the Cartesian equation of the curve with parametric equations: 

a x=2cosf, y=3sinf b =2+cosf, y=sinf ¢ x=cosf, y=cos20 

d z=sinf, y=cos26 e xz=tanf, y=2sech f z=cosf, y=sin20 

Find a suitable parametric representation for: 

a z+4y=5 b zy=-8 ¢ y? =9z 

d 22 +y2=9 e 4z’ +y* =16 foa?=—dy 
2 2 2 2 

2 2 — r_ v i Z_Y_ g 3z°+5y° =15 h 1 1+9 |16 9 1 

Consider the curve represented by z = 2t2, y = t. 

a  Where does the line =+ y =3 meet the curve? 

b Check your answer by first converting the parametric equations into Cartesian form. 

Find the equation of the tangent to: 

a x=3t y=t>—-3t at t =2 b z=2cosf, y=>5sinf at §=1% 

¢ z=secl, y=tanf at 0= F. 

Find the equation of the tangent to: 

a x=1—1t2 y=4t with gradient 4 b z=1-t y=t> passing through (1, 0). 

Find the coordinates of the points where the line = + 2y = 3 meets the curve with parametric 

equations = = 1+sinf, y=1— cosé. 

A curve has parametric equations x =t + %, y=1— %, t # 0. Find: 

a the Cartesian equation of the curve 

b the equation of the normal to the curve at the point where ¢ = 2. 

2 2 
The illustrated ellipse has equation % + 311_6 =1. Ais (0,4). 

Find the nature of the locus of the midpoints of all chords from 

A to the ellipse. 

Hint: Write the coordinates of B in terms of parameter 6. 

Then write the coordinates of M in terms of 6. 
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I3 PARAMETRIC EQUATIONS FOR CONICS 
The standard parametric equations for the non-degenerate conics are: 

x =acosf, y=asinf for the circle 

o x=at? y=2at for the parabola y? = dax 

. . 22 y? 
e x =acosf, y=>bsin@ for the ellipse = S5 z 1 

e z=ct, y= %, t#0 for the rectangular hyperbola zy = c 

e x =asecl, y=>btan6 for the hyperbola = -—==1 

   

   

     
    

The parameter 6 is called the eccentric angle. 
(acosb, asinf) 5 5 5 . . . 

z° 4+ y* = a” is called the auxiliary circle. 
(acosf, bsind) 

SUMMARY OF TANGENTS AND NORMALS TO CONICS 

In the following Exercise we will prove these equations of tangents and normals for the non-degenerate 

conics: 
  

Tangent Normal 
  

Circle 
2?1y’ =a 

at (acosd, asinf) 

Parabola 
y? = 4daz at (at?, 2at) 

2 (cosf)z + (sinf)y = a y = (tanf)z 

       
   

    

    

  

z —ty = —at? tr +y = at’ + 2at 
  

(bcosO)z + (asin@)y = ab | (asinf)z — (bcos)y = (a® — b?)sinf cos 

Rectangular hyperbola    
    

t2x—y=ct3—§ 

  

Hyperbola 

alp 
a b2 

at (asec6, btan@) 

bz — (asinf)y = abcosf (asin@)z + by = (a® + b%) tan  
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Example 44 

2 2 
Find the equation of the normal to 2—2 = Z—z =1 at the point (asec6, btan@). 

dz _ asecOtanf and 
do 

bsec? 0 

asectanf 

_ bsech 

atanf 

E( 1 )(cosQ) 

a \cos@ sin 6 

b 

asinf 

the gradient of the normal is _asind 

", the equation of the normal is  (asin @)z + by = (asin®)(asecd) + b(btanh) 

= (J,QSil’l9< L ) +b*tan 6 
cos 6 

= a*tan + b* tan 6 

= tanf(a’® + b?) 

Thus, (asin@)z + by = (a® + b?) tané.   
EXERCISE 2P 

1 Suppose P(acosf, asinf) is any point on the circle z? + y? = a2. Show that: 

a the equation of the tangent at P is (cosf)z + (sinf)y = a 

b the equation of the normal at P is y = (tan6)z. 

2 Find the equations of the tangent and normal to the circle 2 + y* = 9 at the point where the 

eccentric angle is %. 

3 Suppose P(at?, 2at) is any point on the parabola y? = 4az. Show that: 

a the equation of the tangent at P is = — ty = —at? 

b the equation of the normal at P is tx +y = at® + 2at. 

4 A(at?, 2at;) and B(at?, 2ats) lie on the parabola y? = 4ax. 

a Show that the chord [AB] has equation 2z — (t1 + t2)y = —2atqts. 

b If [AB] is a focal chord, prove that t;to = —1. 

¢ Hence prove that the tangents at the extremities of the focal chord always intersect at right 

angles on the directrix. 

d If the tangents at the ends of a focal chord meet the y-axis at C and D, prove that [CD] subtends 

a right angle at the focus. 

e Determine the nature of the locus of the midpoints of the focal chords of y? = 4az.
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A chord of y? = 4ax from (—a, 0) cuts the parabola 

at Py and Ps. 

Find the locus of the points of intersection of the tangents 

at Py and Ps. 

  

2 2 

6 Suppose P(acosf, bsinf) is any point on the ellipse 4 5—2 = 1. Show that: ) 

a the equation of the tangent at P is (bcos)z + (asinf)y = ab 

b the equation of the normal at P is (asinf)z — (bcosf)y = (a? — b?)sin cosb. 

2 2 

Suppose P is a point on the ellipse 4 Z_Z =1. 2 

[NQ] is a vertical line which passes through P, where 

Q lies on the auxiliary circle 2 + y? = a?. 
Prove that: 

a PN:QN =b:a forall positions of N 

b the tangents at P and Q meet on the z-axis provided 

N is not at (0, 0). 

  

2 2 

8 Suppose P(acosf, bsinf) is any point on the ellipse — + Z—Z =1 P 

a Show that the normal at P cuts the z-axis at Q(ae? cos ¥, 0). 

b Prove that PF = a(1 — ecosf) and PF' =a(l+ ecosf) where F and F’ are the foci. 

n
 Hence, prove that the normal [PQ] bisects FPF. 

d What is the significance of the result in ¢? 

2 2 

9 The tangent at P(acos6, bsinf) to the ellipse z—2 + 5—2 =1 meets the directrix at Q. 
a 

Prove that PFQ is a right angle. 

2 2 
10 A tangent to 2—2 + Z_Q =1 meets the axes at A and B. Find the equation of the locus of the 

a 

midpoint of [AB]. 

2 2 
11 Prove that the foot of the perpendicular from a focus to a variable tangent to z_2 =+ Z_Q =1 lies on 

a 

the auxiliary circle 22 +y? = a2 

12 Find the equation of the locus of the foot of the perpendicular from the centre of the ellipse 
2 2 

Z_2 + ?;_2 =1 to any tangent.
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13 

14 

15 

16 

17 

18 

19 

20 

21 
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A tangent is drawn at (acosf, bsin6) to the ellipse with 
couati o2 g2 
quation 2 + e 1. 

The ellipse has foci F and F’. M and M’ are the feet of the 

perpendiculars from F and F’ to the tangent, respectively. 

Prove that MF.MF’ = 4% for all tangents. 

  

2,2 
Prove that the equation of the tangent to the hyperbola 2—2 — :_2 =1 at the point (asec, btan@) 

a 

has equation bz — (asinf)y = abcos#. 

2,2 
Suppose the normal to m—2 — 5—2 =1 cuts the axes at A and B, and that M is the midpoint of [AB]. 

a 

Find the equation of the locus of M. 

2 2 
Suppose the tangent to z—2 - 5—2 =1 at the point P(asec, btan6) meets the z-axis at Q. 

a 

a Find the coordinates of Q. 
! ! 

b If F and F’ are the foci of the hyperbola, prove that PE_QF _ef COSG. 
PF QF e — cosf 

  

¢ What can be deduced from b? 

Suppose P(ct, %) is any point on the rectangular hyperbola xy = c¢2. Show that: 

a the equation of the tangent at P is z + %y = 2ct 

(& 

b the equation of the normal at P is 2z — y = ct® — - 

A tangent to the rectangular hyperbola zy = ¢ meets the asymptotes at L and M. Find the 

coordinates of the midpoint of [LM]. Comment on your answer. 

Consider the rectangular hyperbola 2y = ¢?. Find the coordinates of the foci and the equations of 

the corresponding directrices. 

Find the equation of the locus of the foot of the perpendicular from O to a tangent of zy = 2. 

The normal to zy = ¢? 
the midpoint of [AB]. 

cuts the z-axis at A and the y-axis at B. Find the equation of the locus of 

Consider the part of the rectangular hyperbola xy = ¢? in the first quadrant. 

Suppose Py and Py are any two distinct points on the curve which are extremities of a focal chord 

passing through focus F. Suppose Q is the point of intersection of the tangents at Py and P,. Prove 

that the locus of Q is a straight line.
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5] I THE GENERAL CONIC EQUATION 
The most general form for the equation of a conic section is  az? + 2bzy + cy? +dx + ey + f = 0. 

For the non-degenerate conics (circle, ellipse, parabola, hyperbola) we require that: 

1 at least one of a, b, and ¢ is non-zero 

2 at least one of d, e, and f is non-zero. 

For example: 

e If a=1, b=0, c=1, d=2, e=—4, and f= —5 then we have the 

circle #2 + 4%+ 2z — 4y — 5= 0. 

e If a=¢c=0, b=1, d=0, e=0, and f = —6 then we have the 

rectangular hyperbola zy = 3. 

e If a=4, b=0, ¢c=9, d=e=0, and f= —36 then we have the 
2 2 

ellipse 422 +9y? = 36 or %er?:l. 

  INVESTIGATION 4 

In this Investigation we explore the graphs of conic sections PRINTABLE GRAPHING 
TABLE PACKAGE 

in the general form axz? + 2bzy +cy?> +dr+ey+ f =0 
where a, b, ¢, d, e, and f are constants. * * 

What to do: 

1 Use the graphing package to graph each conic. Hence copy and complete the table, identifying 

the type of each conic and whether axes of symmetry are parallel to the coordinate axes. 
  

Conic Type of conic Axes of symmetry 

22—y +82+16=0 

22— 2y —2y2 +5r—y+6=0 

  2?2 —xy—2y° +4r —2y+4=0 
  

ry =4 

zy+3xr—2y+8=0 

Ty+z+2y+6=0 

Fy? — 62+ 10y +18 =0 

Fy? — 22— 6y +6=0 

Fy? =6y +9= 

  

        y?+4dz — 2y 

y?—8r—6y—T7=0 

322 + 6xy + 3y% + 16y = 0 

922 — 18zy + 9y + 22 — 4y — 10 =0  
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Fy? — 8z +6y+4=0 

zy+y? —4=0 

- 2wy + 5y + 562 — 20y + 80 =0   
  

2?2 —4y? -3z +5y+4=0 

42? — 10zy + 3y* + 8z + 16y = 0 

—82% — 15xy + 6y> + 2z — 4y +10=0 

  

2 What feature(s) of the general conic equation determine: 

a what type of conic is produced 

b whether any axes of symmetry are parallel to the coordinate axes? 

From the Investigation you should have noticed that when an zy-term is present in the equation of a 

conic, any axes of symmetry are not parallel to the coordinate axes. These conics can be considered as 

translations followed by rotations of standard conics. 

THE QUADRATIC FORM 

(= _f(a b Tao a b\ (x 
If xj(y) and Ai(b c)’ then xAxf(z y)(b c)(y) 

= (a,:chby b:c+cy)<z> 

= az?® + bry + bry + cy? 

  = ax? + 2bxy + cy? 

If x= (x), A= <a b), and v = (d), then the general conic 
y [ e 

ax? + 2bxy + cy? +dx + ey + f =0 becomes xTAx + vIx + f=0. 

We can use orthogonal diagonalisation to transform a general conic into standard form. This allows us 

to recognise the conic as an ellipse, hyperbola, or parabola. 

Step 1:  Rewrite ax? + 2bxy + cy? +dr +ey+ f =0 in the form A rotation matrix 

xT"Ax + vI'x = —f where has the form 

)i oo (2 
Step 2:  Find the eigenvalues and corresponding eigenvectors of A. 

cosf —sinf 

sinf cosf )’ 

Step 3: Use the normalised eigenvectors as the columns of a rotation GAG 

matrix P such that detP = 1. & 

/ 

Step 4. Let x = Px’ where x' = (2, ) to obtain the standard conic Y/ 

equation. 

T )\1 0 < B 
Remember that P* AP = 0 A since P is orthogonal. 

2 
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Using a suitable rotation, rewrite 5x2 + 4y + 5y* = 21 in standard form. Identify the conic and 

sketch its graph. 
  

2 5 

which has the form x”Ax = 21 

5w2+4zy+5y2:21 can be written as (x y)<5 2)(2):21 

A=5 =2 
-2 A=5 

A =3, 7 are the eigenvalues of A. 

Now |Al —A| = 
  

’:/\2710/\+21:(/\73)(/\77) 

When A=3, (AI-A)x=0 When A=7, (Al—A)x 

EHO-0 A 
L r+y=0 S — 

x=<711)t,teR SoX 

. . 0 (-1 a1 (1 
The normalised eigenvectors are 7 ( 1 and 7|1 {length 1} 

), 
1 
1)t, teR 

Z< 
< 

Let P=-L ( 1 711 ) where each column is a normalised eigenvector and 

S
 

2 
) x 2 =1 for a rotation. From the column order we have A\ =7 and Ay = 3. 

= i . i us cosf = 73 and sinf = 75 SO P corresponds to a rotation of 7. 

Let x = Px’. 
Notice that P . NT N 

- (Px)TA(PX) =21 orthogonally 

. xX'TPTAPY =21 diagonalises A, 

PTAP = T (T 0N, 
. X (O 3)x—21 ()\1 0 

0 
72’2+ 3y’ 2 =21 

A e 
3 7 

the conic is an ellipse with centre (0, 0), 

rotated through 7.       
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Example 46 

Using a suitable rotation, rewrite 2z% — 4zy —y?> = —8 in standard form. Identify the conic and 

graph it from its asymptotes and intercepts. 

2 o . 2 -2 z\ _ 
2z —4xy —y© = —8 can be written as (z y)(72 _1 e 8 

which has the form x7Ax = —8 

A—2 2 
Now |[Al — A| = 2 A+l ‘:)\27/\76:()\73)(>\+2) 

A =3, —2 are the eigenvalues of A. 

When A=3, (AI-A)x=0 When A= -2, ( 

(D0 CE 
L r+2y=0 

(1)- () rew | 
-2 ised ei 1 1 i The normalised eigenvectors are 7 ( 1 ) and 7 ( 2) {length is 1} 

Let P = % (; 712> where each column is a normalised eigenvector and detP =1 for a 

rotation. A\; = —2 and Ay = 3. cosf = L and sinf = %, so tanf = 2. 

Let x = Px’. 

(px)TA(PX) 

o X' TPTAPY 

X7 ( _02 g)x’ 

20’2432 = 

20’2 — 3y % = 
y/2 

(2%) V3 

The graph cuts the z’-axis when 3y’ =0 
x’2:4’ =42 

the vertices for the rotated graph are 

(30:5%) 0 (%), 
The graph cuts the z-axis when y =0 

22 = —4 which is never. 

=1 which is an hyperbola. 

  

The graph cuts the y-axis when x =0 

¥’ =38 
Y= ::2\/5      
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Identify and sketch the conic 12z% — 7zy — 12y% — 30z + 40y = —50. 
  

To avoid working with fractions, consider 24x2 — 14y — 243> — 60z + 80y = —100. 

This equation can be written in the form x”Ax + vI'x = —100 where 

a7 24 -7 —60 
X = (y)’ A= (_7 _24>, and v= ( 80 ) 

Now |/\17A|:’)\724 7 ’:)\27576749:)\27625:()\+25)()\725). 
7 A+24 

A =25, —25 are the eigenvalues of A. 

When A =25, (AI—-A)x=0 When A= -25, (AI—A)x=0 

IO T 6 
(5)=(F)e vem ()= (1) ven 

. . -7 1 1 1 The normalised eigenvectors are ( ) and T ( )   

VB0 \ 1 7 

Let P = — (1 _7) where detP = 1. A\; = —25 and Ay = 25. cosf = and 
Vo \7 1 

£ o _ sinf = 755 S0 tanf = 7. 

§
I
|
’
_
l
 

o
 

Let x = Px'. 

o (PX)TA(PY) + vIPx' = —100 

. JTpT , 1 1 -7 z'\ . X'TPTAPX + (—60 80)\%(7 1)y ) =100 

(=25 0\, o'\ _ x (0 25)3( + 505 (500 500) y ) =100 

! 

—25z" % + 25/ 2 + (50v2 50v2) (;,) =—100 

25¢" 2 + 25y' 2 + 50v/22 + 50v/2y’ = —100 

25z 2 — 25y 2 — 50v/2’ — 50v/2y" = 100 

soal2—y 2 -2V — 2V =4 

(@2 —2v22' +2) — (¥ 2 +2V2' +2) =4+ 2 -2 

(@ -v2)? - +v2)* =4 

which is X2 —Y? =4 translated ( V2 > 
-2 

  

  

  

  

the original conic is a rectangular hyperbola.    
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ANIMATION 

  

1222 — Ty — 1247 — 302 + 40y = —50 

  

EXERCISE 2Q 

1 Using a suitable rotation, rewrite the conic: 

a 622 —4dzy +9y*> =80 b 822+ 287y — 13y +40 =0  in standard form. 

Hence, identify the conic and sketch its graph. 

2 Write each conic in the form A(2’ — h)? + B(y' — k)? + f = 0. Hence, identify and sketch the 
conic. 

a 2?—ay+y*-20+y—-3=0 b 22 +dxy — 29> + 252 — By —5=0 

¢ 322 —6zy —5y? + 3z + 9y = 10 d 222 —dzy+ 5y +dr—2y =1 

3 a Use questions 1 and 2 to complete the following table: 

a+c | Ay and Ao | A+ Ao | Sign of M2 | Tipe of conic 

“ 15 5, 10 15 >0 ellipse 
  

  

  

  

b Use the table to make conjectures dealing with the eigenvectors A\; and As. 

ABC is a set square which is right angled at A. [AB] and 

[AC] have lengths 2 units and 1 unit respectively. 

The set square is free to move so that A always lies on 

the z-axis and B on the y-axis. 

[AC] makes an angle 6 with the z-axis as shown. 

a Find the coordinates of C in terms of 6. 

b Find the Cartesian equation of the locus of C. 

¢ Find possible transformed equations for the locus 

of C. 

d Use your observations from question 3 to identify the 

conic. Give reasons for your answer. 
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INVESTIGATION 5 

For the conic section with equation ax? + 2bxy + cy? + dz + ey + f = 0, the value b* — ac 
is called the discriminant. In this Investigation we will observe how the value of the discriminant 

allows us to quickly identify the conic type. 

What to do: 

1 We have seen that the conic section with equation ax? + 2bzy + cy? +dx +ey+ f =0 can 

Y b ¢ 

v = (j) Show that det A is the negative of the discriminant of the conic. 

be written in the form xTAx + vIx + f = 0 where x = (x)’ A= (a b), and 

2 Suppose the conic az? + 2bxy + cy® +dz +ey+ f =0 is rotated through angle 6 to produce 

a'z' 2+2b'z'y +c'y 2+ d'x’ +e'y’ + f =0 such that the constant f is equal in both equations. 

Show that: 

a the trace of matrix A is conserved, so a’ +c =a+c 

b the determinant of matrix A is conserved, so a'c’ — b 2 = ac — b? 

¢ the discriminant of the conics are the same, so b’ 2 — a/c’ = b* — ac. 

3 Consider the following proof that if > —ac > 0 then the conic is either a hyperbola or a 

line-pair: 

Suppose az? + 2bxy + cy? +dz +ey+ f =0 is rotated through angle 6 to obtain 

dr' 2+ 2y + Y 2+ dd + ey + f=0. 

We choose 6 so that b = 0. 

Using2¢, b?—ac=02—adc =-dcd 

—a'd >0 

a/ and ¢’ are opposite in sign ... (1) 

The rotated conic is o'z’ 2 +cy' 2 +d'a’ +e'y +f=0 
’ ' ’ ’ 2! 2 d ;Y 2 € y, 

ad Tl 

1 o d, 1 2 € f 

! (z } CL’z } a’ yo c’y a'cd 

This equation is of the form i(z’ —h)2+ fi(y' -k)?=C 

which is a hyperbola if C' # 0 {using (1)} 

or a line-pair if C' = 0. 

  
  

Prove that: 

a if b2 —ac < 0 then the conic is an ellipse, a circle, a point, or else has no graph 

b if > —ac =0 then the conic is a parabola, a line, a pair of parallel lines, or else has no 

graph.
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Worked Solutions 

  

EXERCISE 1A S———— 

1 a It contains a product of two variables, z3z4. 

b It contains the squared term —2w32. 

¢ It contains the square root term —,/Zz. 

2 a Llet x=t 

8t—y=3 

y=28t—3 

the solution setis = =t, y=8t—3, t € R. 

b Let zo =5 and z3 =t 

x1 —2s+t=10 

1 =28 —t+ 10 

the solution set is 1 = 2s —t+ 10, x2 = s, z3 = t, 

where s, t € R. 

¢ Let za =71, xz3=3s, and x4 =t 

1 +r—2s+t=-2 

Ty =-r+25s—t—2 

the solution setis z3 = —r+2s —t —2, z9 = 7, 

x3 = s, wq =t, where 7,5, t€R. 

3 a z1+2x2=3 This system is overspecified as 

z0 = —4 it has more equations (3) than 

221 4+ mp = —1 unknowns (2). 

b z1+x2+ 223+ 224 =4 This system is 

2¢1 + @2+ 3w3 — x4 =3 underspecified as it has 

more unknowns (4) than 

equations (2). 

  
¢ x4 x2 = This system is neither 

T3+ x4 = underspecified nor 

23 =8 overspecified as it has 

2y =2 the same number of 

equations and unknowns. 

1 1 —11]4 

4 a The system has AM 1 -1 118 

2 1 -3|0 

b The system has AM (; (1) 712 ‘ Z) 

11 -1 —-1]|5 

¢ The system has AM 0o 3 1 1|1 

0o 0 4 —116 

5 a No solutions exist when a # 12, a € R (the lines are 

parallel). 

b Infinitely many solutions exist when a = 12 (the lines are 

coincident). 

¢ There is no value of a € R for which exactly one solution 

exists. 

6 The system is consistent if it has at least one solution 

k=4 

7 Adding the first two equations gives 2z +y + 3z =p+ ¢ and 

the third equation is 2z +y + 3z =7 

the system is consistent if p+ g = 1. 

(If p+q # r, the two planes are parallel and no solutions would 

exist.) 
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Solving the first two equations, = 3, y = 0 but this does 

not satisfy the third equation 

the system is inconsistent. 

The system is overspecified as it has more equations than 

unknowns. 

The system is z1 +z2 — 3 =7 

r] —x2 +223 =9 

with by =7 and bs =9 

the system is not homogeneous. 

The system is 21 + x2 — 23 = a 

2wy —x2 +a23=b+8 

It is homogeneous if a =0 and b+8=0 

a=0 and b=-8. 

EXERCISE 1B.1 W 

1 The system has AM (1 -3 | 2 ) 
2 1|3 

(1 3] 2 
0o 7 |-7 

Using row 2, 7y = -7 

cy=-1 

Substituting into row 1, = —3(—1) =2 

r=-1 

the unique solution is =z = —1, y = —1. 

The second equation is a multiple of the first. 

the lines are coincident and have infinitely many points 

of intersection. 

the system has infinitely many solutions. 

The lines are neither coincident nor parallel 

they intersect in exactly one point. 

the system has a unique solution. 

The lines are not coincident, but they have the same gradient 

they are parallel and never meet. 

the system has no solutions. 

If a =4, the lines are coincident. 

.. the system has infinitely many solutions. 
If a #4, a €R, the lines are parallel. 

the system has no solutions. 

The system has AM 

1 -3|-8 
4 5 19 

(1 —3|-8 
0 17| 51 Ry — 4Ry — Ry 

Using row 2, 17y =51 

  

y=3 
Substituting into row 1, = — 3(3) 

   =1 

the unique solutionis =z =1, y = 3. 

The system has AM 

1 7| —17 

2 -1 11 

1 7 —-17 

0 —15| 45 Ry — 2Ry — Ry 

Using row 2, —15y =45 

  

cLooy=-3 

Substituting into row 1, =+ 7(—3) = —17 

z =4 

the unique solutionis =z =4, y = —3.
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The system has AM 

2 3-8 
1 4|-9 

(2 3| -8 
0 5| -10 2R2 — R1 — R2 

Using row 2, 5y = —10 

  

coy=-2 

Substituting into row 1, 2z + 3(—2) = —8 

L2 =-2 

r=-1 

the unique solution is = —1, y = —2. 

The system has AM 

(3 —-11 9 ) 

4 3 |-1 

- ( 3 -1 | 9 ) 
0 13| -39 3Ry — 4R, — R 

Using row 2, 13y = —39 

Cooy=-3 

Substituting into row 1, 3z — (—3) =9 

3r =6 

=2 

the unique solution is = =2, y = —3. 

The equations represent coincident lines, which meet at 

infinitely many points. 

the system has infinitely many solutions. 

The system has AM 

1 3|4 

2 618 

(1 3|4 
0 0]0 Ry — 2Ry — Ra 

The second equation is a multiple of the first, so we obtain a 

row of zeros when we try to use row operations. The second 

equation adds nothing to aid the solution of the system. 

Let y=1t, teR. 

Usingrow 1, = +3t=4 

r=4-3t 

the solution setis =4 —3t, y=1t, t€R. 

Let z=3s, s€R. 

  

  

Usingrow 1, s+ 3y =4 

3y=4—s 

_ 4= 

Y= 
. . 4—s 

the solution setis = =s, y =   , sER. 

  

4-s o . 
Let (s', 3 s ) be a point in the second solution set. 

4—s 

3 
    

74—5' 
In the first solution set, when y = 3 

_ ! 

2:473<4 3) 
3 

z=4—-4+5s 
’ 

T =35 

  

when the y-coordinates are the same, the z-coordinates 

are also the same. 

any point in the second solution set is also in the first 

solution sct. 

the solution sets are equivalent. 

5 a The system has AM 

1 5|8 
2 —10|a 

(1 -5 8 
0 0 |a—16 Ry —2R; — R 

b When a # 16, the second row gives Oz + Oy # 0 which 

is not possible. 

there are no solutions; the lines are parallel. 

¢ When a = 16, the second row gives Oz + Oy = 0 which 

is true for all z, y € R. 

  

  

.. there are infinitely many solutions to the system. 

Let y=t, tER. 
Usingrow 1, = —5t=38 

r=>5+8 

the solution setis « =5t+8, y=1t, t € R. 

6 The system has AM 

1 3|4 

2 al|b 

1 3 4 

0 a—6|b—38 R2 —2R1 — Ra 

  

The second row gives (a — 6)y =b—8 

b—8 
If a#6, y:—G 27> @ — 

b—8 
3 =4 T+ (a76> 

_ 4(a—6)—3(b—8) 

  

xT 

    

a—6 

4a — 3b 
T = — 

a—=6 

. L 4a — 3b b—8 
the unique solution is « = , Y= . 

a—6 a—6 

If a=6, b=8, 0z+0y=0 

the lines are coincident and infinitely many solutions exist. 

Let y=1t, teR. 

r+3t=4 

r=4-3t 

the solution setis =4 —3t, y=1t, t € R. 

If a=6, b#8, 0x+ 0y # 0 which is not possible. 

the lines are parallel and the system has no solutions. 

EXERCISE 1B.2 NS 

1 a The system has AM 

1 4 11(7 

1 6 179 

1 4 814 

1 4 11 7 

~lo 2 6|2 Ry — Ry — Ry 
0 0 -3|-3 R3 — R1 — R3 

Using row 3, —3z = —3 

soz=1 

Substituting into row 2, 2y + 6(1) =2 

2y=—4 

Sy =-2 

Substituting into row 1, =+ 4(—2)+11(1) =7 

r=4 

the unique solutionis z =4, y= -2, z=1.



b The system has AM 

2 -1 3 17 

2 -2 5|4 

3 2 2 10 

2 -1 3 17 

~(0 -1 -8|-13 Ry —Ri — Ry 
0 7 -5|-31 2R3 — 3R1 — R3 

2 —1 3 17 
~[0 -1 -8 | —13 

0 0 —61 [ —122 R3 + 7Rz — R3 

Using row 3, —61z = —122 

z=2 

Substituting into row 2, —y —8(2) = —13 

Sooy=-3 

Substituting into row 1, 2z — (—3) +3(2) = 17 

2c =38 

=4 

the unique solutionis z =4, y= -3, z=2. 

¢ The system has AM 

Row 3 means that Oz + Oy + 0z = 1 which is absurd. 

2 3 4|1 

5 6 7|2 

8 9 10|4 

2 3 4 1 

0 -3 —6|-1 2Ry —5R1 — R2 
0 -3 -6 0 R3 — 4Ry — R3 

2 3 4 1 

0 -3 —6|-1 

0 0 0 1 R3 — Rz — R3 

there are no solutions, and the system is inconsistent. 

d The system has AM 

1 -2 5 1 

2 -1 8 2 

-3 0 —11 | =3 

1 -2 5 |1 

0 3 -2 10 Ry —2R1 — Ra 

0 -6 4|0 R3 +3R1 — R3 

1 -2 5 1 

3 —210 

0o 0 010 R3 +2R2 — R3 

Row 3 indicates there are infinitely many solutions. 

Let z=1. 

Using row 2, 3y —2t=20 

3y =2t 

y=35t 
Substituting into row 1, = — 2(%1&) +5t=1 

m:l—ls—lt 

the solutions have the form z = 1 — %t. Yy = 

z=t teR. 

w
o
 

t, 

233 WORKED SOLUTIONS 

e The system has AM 

12 -1 4 
3.2 1|7 
5 2 3|11 

102 -1 4 
~lo0o -4 4|-5 Ry —3R; — Ry 

0 -8 8 |-9 Rs —5R; — R3 

102 -1 4 
~|lo0o -4 4]|-5 

0o 0 0|1 R3 — 2R3 — R3 

Row 3 means that Oz + Oy + 0z = 1 which is absurd. 

there are no solutions, and the system is inconsistent. 

f The system has AM 

2 4 1 1 

3 =5 =3[19 
5 13 7 (1 

2 4 1 1 
~|0 —22 -9|35 2Ry — 3Ry — Ra 

0 6 9 |-3 2R3 — 5R1 — R3 

2 4 1 1 

~|0 —22 -9(35 
0 0 2424 LRy + Ry — Ry 

Using row 3, 24z =24 

z=1 

Substituting into row 2, —22y — 9(1) = 35 

22y = —44 

Sy =-2 

Substituting into row 1, 2z +4(—2)+ (1) =1 

2 =8 

=4 

the unique solutionis =z =4, y= -2, z=1. 

a The system has AM 

1 2 1 3 

2 -1 4|1 
1 7 1|k 

1 2 1 3 
~(0 -5 2| -5 Rz —2R1 — Ro 

0 5 —2|k-3 Rz — Ry — R3 

1 2 1 3 
~0 -5 2| =5 

0 0 O0|k-38 R3 + R2 — R3 

b Using row 3, the system has no solutions if &k # 8. 

¢ The system has infinitely many solutions if the last row is all 

zeros. This occurs when k = 8. 
In this case we let z =t. 

using row 2, —5y+ 2t = —5 

5y =2t+5 

y:§t+1 

Using row 1, x+2(%t+l)+t:3 

m:lfgt 

the solutions have the form = =1 — %t, Y= %t-f—l, 

z=t, teR. 

d In row echelon form, row 3 reads Oz + Oy + 0z = k — 8. 

From b and ¢ the system has no solutions if &k # 8 or 

infinitely many solutions if k = 8. 

the system never has a unique solution.



234  WORKED SOLUTIONS 

a The system has AM 

1 2 =215 
1 -1 3 -1 

1 -7 k |-k 

1 2 —2 5 

~10 -3 5 —6 Ry — Ry — Ro 

0 -9 k+2|—-k-5 R3 — R1 — R3 

1 2 —2 5 

~| 0 -3 5 —6 

0 0 k—13|-k+13) Rs—3R.— Ry 

b The system has infinitely many solutions if the last row is all 

zeros. This occurs when &k = 13. 

In this case we let z =t. 

using row 2, —3y+ 5t = —6 

3y=5t+6 
y:§t+2 

Using row 1, x+2(§t+2)—2t:5 

x:lfgt 

the solutions have the form =z =1 — %t, y= %t + 2, 

z=t, teR. 

¢ When k # 13, row 3 gives (k— 13)z = —(k — 13) 

sooz=-1 

Substituting into row 2, —3y +5(—1) = —6 

3y=1 

y=3% 
Substituting into row 1, x + 2(%) —2(-1)=5 

oz=1 o 3 

the unique solution is « = %, y= %, z=—1 forall 

k#13, keR. 

a The system has AM 

1 3 3|la-—-1 

2 -1 1 7 

3 -5 a 16 

1 3 3 a—1 
~[o0 -7 -5 9—2a Ry —2R1 — R» 

0 —-14 a—-9|19-3a R3 —3R; — R3 

1 3 3 a—1 

~0 -7 -5 | 9—2a 

0 0 a+1|a+1 Rs — 2R> — R3 

b The system has infinitely many solutions if the last row is all 

zeros. This occurs when a = —1. 

In this case we let z = ¢. 

using row 2, —7y — 5t =9 —2(—1) 

Ty = —5t—11 
_—st—11 
v 

Substituting into row 1, 

5t — 11 
z+3(T)+3t:(—1)—1 

  

ot —15t — 33 4 21t —14 

7 [ 
19 — 6t 

T = 
7 

the solutions have the form 

19 — 6t —5t — 11 
= ,y=————, z=t, teR   

7 

¢ If a# —1, row3gives (a+1)z=a+1 

z=1 

Substituting into row 2, —7y —5(1) =9 — 2a 

Ty =2a—14 

y = %a -2 

Substituting into row 1, = +3(2a—2)+3(1)=a—1 

:c+$a—6+3:a—1 

la+2 T=z 

the solutions have the form z = %a +2, y= %a -2, 

z=1 a# -1, ac€R. 

EXERCISE 1B.3 NS 

a Not in reduced row echelon form as the row of all zeros is 

not at the bottom. 

b Is in reduced row echelon form. 

¢ Not in reduced row echelon form as the leading 1 in row 3 

should have zeros above it in column 4. 

a By inspection, the system has the unique solution x; = 2, 

xo = —9, x3 = 3. 

b By inspection, the system has no solutions as row 3 means 

0z 4+ Oy + 0z = 1 which is absurd. 

¢ The basic variables are x1, z2, and x3, and z4 is the free 

variable. 

Let x4 = t. 

Using row 3, Using row 2, Using row 1, 

x3+t=26 zo +2t =4 x1+2t=05 

x3=6—1 xo =4 —2t ;] =5—2t 

the solutions have the form x7 =5 —2t, xo = 4 — 2t, 

x3=6—t za=1t tER. 

a The system has AM 

3 1 -1 12 

1 -1 1| -8 

4 -2 1 -8 

1 0 0] 1 
~[0 1 0of 3 {using technology} 

0 0 1|-6 

By inspection, the system has the unique solution z; = 1, 

x9 =3, 3 = —6. 

b The system has AM 

0o 1 0 2| 4 

11 0 4|9 

0o 1 -1 1|-2 

1 0 0 2|5 

~[0 1 0 2|4 {using technology} 
0O 0 1 1(6 

The basic variables are x1, x2, and x3, and x4 is the free 

variable. 

Let x4 = t. 

Using row 3, Using row 2, Using row 1, 

r3+t=6 zo +2t =4 x1+2t =5 

3 =6—1 xo =4 —2t x1 =5—2t 

the solutions have the form x; =5 —2t, xo = 4 —2t, 

x3=6—t za=1t tER.



¢ The system has AM 

1 2 3 4 

1 -1 4 7 

3 3 10 | 15 

6 9 19| 9 

i1 10 L 
1] 

~10 1 -3 1 {using technology} 
0 0 0 1 

0 0 0 0 

By inspection, the system has no solutions as row 3 means 

0z1 + O0z2 + Oxz3 = 1 which is absurd. 

d The system has AM 

1 1 -1 —-4]1 

17 3 2 |2 

1 13 7 8 |3 

5 5 10 -3 5|2 
2 1 : ~10 1 3 115 {using technology} 

o =}
 

k=
1 

o
 =}
 

The basic variables are x1 and x2, and the free variables are 

x3 and x4. 

Let 23 =s and x4 = t. 

Using row 2, x2 + %s +t= % 

Ty = % — %s —t 

Using row 1, z1 — %5 — 5t = % 

=545 1 =g+ 38 + 5t 

the solutions have the form z; = % + %s + 5t, 

IQ:%*%S*L r3 =s, w4 =1, where s, t € R. 

e The system has AM 

1 1 1 -2 3|1 
3 -3 2 -4 913 

2 2 —1 2 6 |2 

1 0 0 0 oOf1 

~|l0 1 0 0 3f0 {using technology} 
0O 0 1 -2 0fO0 

The basic variables are x1, 22, and x3, and the free variables 

are x4 and xs5. 

Let ©4 =s and x5 = t. 

Using row 3, x3 —2s =10 

x3 = 28 

Using row 2, z2+3t=0 

©oxp = —3t 

Usingrow 1, z1 =1 

the solutions have the form z7 =1, xo = —3t, 

x3 =28, x4 =8, x5 =t, where s, t € R. 

f The system has AM 

1 1 1 2 1|2 

1 -1 1 -1 1|3 

3 1 3 3 3|7 
2 0 2 1 2|5 

1 5 101 4 1]3 
3 1 

~l0 050 2 {using technology} 
00 0 0 0O 
0O 0 0 0 o0 O 
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The basic variables are x1 and x2, and the free variables are 

x3, x4, and 5. 

Using row 2. T2+ 58=—3 

:czz—%—gs 

Using row 1, a1 +7+ 3s+t=3 

zlzgfrfésft 

the solutions have the form xlzg—r—és—t, 

12:7%7%5, r3 =71, T4 =8, T5 =1, 

where 7, s, t € R. 

4 a When d=1, h=12 

21(1)% + 22(1)? + 23(1) + 24 = 12 

1 +x2+xz+xa=12 ... (1) 

When d = 2.5, h =46 

z1(2.5)% + z2(2. 5)2 + x-g(? 5) + a4 = 46 

o0y + 2ay + 2ag+as =46 .. (2) 

b i The gradient of the hill is the rate of change of height 

over distance. This is modelled by the derivative function 

R'(d), which is found by differentiating the height 

function h(d) with respect to d. 

h(d) = 21d® + x2d? + z3d + 24 
h'(d) = 3z1d® + 2z2d + x3 

il When d=1, h/(d)=0.1 
321(1)% + 222(1) + @3 = 0.1 

321 4+ 2x0 + 23 =01 ... (3) 

When d =25, h/(d) =0 

321(2.5)% + 222(2.5) + 3 = 0 

Do +5za+23=0 ... (4 

¢ From (1), (2), (3), and (4), the system has AM 

1 1 1 1f12 
125 2 5 
s 7T 3z 1|46 

3 2 1 0]0.1 

75 L 5 1 0|0 
2714 1 0 0 0|53 

01 0 of 4 
~ 3311 {using technology} 

0 0 1 0f—-H 

4169 0 0 0 1 =T 

By inspection, the system has the unique solution 
_ 2714 _ 4748 _ 27111 _ 4169 

TL="T35> 2= 45 > T3 TTqg s T4 T Tip - 
d h(d) 2173154 dB 4 4748 4748 d2 2711d+ 4169 

when d =2, h(2 )z 37.2 
at the point 2 km from the ocean the height of the hill is 

about 37.2 m above sea level. 

EXERCISE 1B.4 NS 

1 a The second equation is a multiple of the first. So the lines 

are coincident, and there are infinitely many solutions. 

the system has non-trivial solutions. 

b The system is underspecified as it has more unknowns than 

equations. 

it has infinitely many solutions 

the system has non-trivial solutions.
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2 a The system has AM 

1 3 -—-1]0 
2 -1 5|0 

~ (é (1) _21 | 8) {using technology} 

Let x3 =t. 

Using row 2, Using row 1, 

zog —t =0 1 +2t=0 

xo =1 or] = —2t 

the solutions have the form z1 = —2¢t, x2 = t, 

3 =1t, tER. 

b The system has AM 

1 1 0]0 
1 0 1[0 

1 -1 1(0 

1 0 0f0 

~[0 1 0f0 {using technology} 
0 0 1]0 

the only solution is the trivial solution 

xr1 =x2 =23 =0. 

¢ The system has AM 

1 -1 1 110 

2 1 -1 =210 

3 -1 2 110 

1 

0 

00 —%]o0 

~ 10 7§ 0 {using technology} 

001 2|0 

Let x4 = t. 

Using row 3, Using row 2, Using row 1, 

zg+§t:0 zzfét:() Zl*ét:O 

. znggt 12:§t le%t 

the solutions have the form z1 = %t, To = %t, 

z3=—2t, tER. 

3 The system has AM 

1 p-2]o0 
p—2 1 0 

1 p—2 

0 1-(p—2)? 
(1-(-2%y=0 
if (p—2)2#1, y=0 and z=0 

So for non-trivial solutions (p — 2)% =1 

{swapping rows} 

0 
0) Ry — (p—2)R, — Ry   

p—2=+=+1 

p=1or3. 

4 a If =21, y=y1 isasolution of ajxz+ by =0 

asx + bay =0 
then arzr +biy1 =0 ... (1) 2002y 
and agz1 +bay1 =0 ... (2) 

Now if  =cxzy; and y = cy1 then 

a1z + b1y and asx + bay 

= ay(cw1) + bi(cyr) = az(cx1) + ba(cy1) 
= c(ar@1 + b1y1) = c(azz1 + bay1) 

=¢(0) {from (1)} =¢(0) {from (2)} 

=0 =0 

x = cxy, y=cyr isasolution for all ¢ € R. 

b If z =2, y=y2 is also a solution 

then ajzs +b1y2 =0 ... (3) 

and azwy +b2y2 =0 ... (4) 

Now if z =21 +x2 and y =y1 +y2 then 

a1z +biy = ar(z1 + @2) + b1 (y1 +y2) 
= (a1z1 + b1y1) + (a122 + bry2) 
=0+0 {from (1) and (3)} 

=0 

and  asx + boy = az(z1 + @2) + b2(v1 + y2) 
= (azx1 + bay1) + (azz2 + boy2) 

=0+0 {from (2) and (4)} 

=0 

T =1 + 2, y=y1 +y2 isa solution. 

EXERCISE 1C.1 N 

4x1 4x2 4 8 

1 adA=|4%x6 4x3 | =124 12 

4x5 4x4 20 16 

—2x -1 —-2x2 2 -4 

b —2C= —2x-3 —-2x5|=]|6 -10 

—2x0 —2x2 0 -4 

1 2 -2 4 -1 6 

c A+2C=[6 3 |+ -6 10 | = 0 13 

5 4 4 5 8 

-1 2 1 2 —2 0 

d C-A= -3 5)—-16 3 |=|-9 2 

0 2 5 4 -5 -2 

1 

—2 -4 -3 1 
[P 5 

e 72A+5C7 —-12 -6 | + ,% % 

—-10 -8 0 1 

5 -3 -3 

= 2t 7 
2 2 

-10 -7 

12 
. 3 3 

f 3A = 2 1 

5 4 
3 3 

2 a A+B b kA + kB 

= (aij) + (bij) = (kai;) + (kbij) 
= (aij + bij) = (kai; + kbij) 
= (bij + aij) = k(aij + bij) 
= (bij) + (aiz) =k(A+B) 
=B+A 

< B—A d (a+b)A 

= (bij — aij) = ((a+b)ai;) 
= (—(aij — bij)) = (aas; + baij) 
= —(as; — biz) = (aas;) + (baij) 

=—(A—B) —aA +bA forall a,be R 

e 
A+A+A+ .+ A= (aij) + (aiz) + (aij) + ... + (aij) 

k of these k of these 

= (aij + aij + aij + ... + aij) 

= (kaij) 
=kA, keZT
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3 a (z 12):(3; 9 ) g A—(2A+C) h 2(A+B) — (A—B) 

3 4 3 y+7 =A-2A-C =2A+2B—A+B 

z=y, 22=9, 3=3, and 4=y +7 =-A-C =A+3B 

r=y, z=%3, and y = -3 iA-2D-i(D-A)=A-2D- 1D+ 1A 
r=-3 and y= -3 _3A_5D 

-2 2 
2 — 

b (; f)z(xy z) 2 aX+B=2A 
X+ B+ (—B) = 2A + (—B) 

r=-y, 2y==x, y=x, and =y X+0=2A_B 

y=—-y=2y and z =y 
X=2A-B 

=0 and y =0 
bB-X=C 

9 8 12 9 S B-X+X=C+X 

4 aK=|[12 14 bT=(6 9  B4O=C4X 
7 5 13 10 . CiX=B 

21 17 -3 -1 S CHX+(-C)=B+(-C) 
¢ K+T=|[18 23 |, K-T= 6 5 . X+0=B-C 

2 15 -6 -5  X—B_C 

d K+ T is the total number of As, Bs, and Cs of both classes c B+2X=C 

for cach year. . B+2X+(-B)=C+(-B) 
K — T is the difference in grades of the classes for each . 2X+0=C-B 
year. 

1(2X) = 1(C-B) 
5 a (A+B)+C . X=4(C-B) 

_ (-1 =2 0 5Y_(-1 3 . _le 1 
*(3 3)*(72 73>*<1 0) o X=9C-3B 

ATBTO : IX+A A)=2C A 
(-3 2 2 1Y) (-1 3 "5+1+(7)_ +(=A) 
*(0 4)*(1 —4>*<1 o) s 3Xt0=20-4A 

2(3X) =2(2C — A) 
b (A+B)+ C = (ai; +bij) + (ciz) 

= (aij + bij + cij) 

= (aiz) + (bij + cij) € 
—A+(B+C) 

X =4C - 2A 

3(X-B)=2B+C 

3X — 3B =2B 4 C 

3X - 3B+3B=2B+C+3B 

3X+0=5B+C 

1(3X) = 1(5B+C) 

6 a The zero m X n matrix is O = (0) 

A+0=(aj;)+(0) and A+0=(a;;)+(0) 

= (aij +0) = (aij +0) — 5 1 

= (0+ai) = (aiz) . Xl— 3B+ 3C 
= (0) + (aij) =A fC-3X=A-3C 

—0+A o C=E3X+(-C)=A-1C+ (-0 

A+0=0+A=4 s —8X+0=A-3C 

b A+ (—A) and A+ (—A) R =-2(a-£0) 

= (ai;) + (—ai;) = (ai;) + (—ai;) o X=-2a+4C 

= (aij + (—ai;)) = (ai; + (—aij)) 3 a 3A— 92X =3B 

= ((maig) + aig) = (aij — aij) 5 3A—2X + (—3A) = 3B+ (—34) 
=(-a z]>+(au) =(0) s —2X+0=3B-3A 
=(=A)+ =0 —2(-2X) = —1(3B - 3A) 

— 3(A— 
EXERCISE 1C.2 I X=3(A-B) 

1 a3A+4A=TA b C—5C=—4C 
-2 1 -1 

¢ 2M - 2M =0 d -X+X=0 :%(72 1 74) 

e 3(A+B)—B f 2B — (A —B) 3 3 _3 

=3A+3B-B —2B-A+B = > 2 
-3 % -6 —3A+2B =3B- A
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EXERCISE 1D.1 B 

1 Ais 1x3 and Bis 2x3 

# 
The number of columns of A is not equal to the number of rows 

of B. 

AB cannot be found. 

2 a ABexists if n=m. 

b If AB exists, it has order 3 x 2. 

¢ The number of columns of B (2) does not equal the number 

of rows of A (3). 

BA cannot be found. 

3 a Ais 2x2 and Bis 1x2 
¢ 

Z 
AB cannot be found. 

b Bis 1x2 and Ais 2x2 

v 

(6 5)(% %) 
(6x3+5x1 6x2+5x4) 

BAis 1x2 

BA 

= (23 32) 

4 a Ais 1x3 and Bis 3x1 ABis 1x1 

v 

2 

AB=(3 1 4)|3 
1 

=(Bx2+1x3+4x1) 

= (13) 
b Bis 3x1 and Ais 1x3 BAis 3x3 

r ¢ 
v 

2 

BA= |3 |(3 1 4) 
1 

2x3 2x1 2x4 

= 3x3 3x1 3x4 

I1x3 1x1 1x4 

6 2 8 

=19 3 12 

3 1 4 

3 0 1 

504 (13 2)(2 2 3 
1 1 0 

:(11 8 

0 1 

b —2 2 —1 -3 
3 2 

—1x140x-3+1x2 

—2x1+4+2x-3+—-1x2 
OXx14+3x—-3+1x2 

710 

‘(1 10)3}2§11 7(2—14()) 
2 13)\, o 5 5 —4 7 6 

2 1 4 6 1 —6 
d 3 0 (g }1 (1) _03): 6 3 0 -9 

—1 1 -2 3 1 3 

8.95 156 193 218 6 a C=| 1295 |, N:( ) 0.95 183 284 257 

8.95 156 193 218 b NC = ( ) 12.95 183 284 257 0.5 

_ (156 x 8.95 + 193 x 12.95 + 218 x 9.95 

183 x 8.95 + 284 x 12.95 + 257 x 9.95 

_ ( 6064.65 
—\ 787280 

NC gives the income for each month. 

the restaurant had an income of $6064.65 in the first 

month and $7872.80 in the second month. 

¢ Total income = $6064.65 + $7872.80 

= $13937.45 

EXERCISE 1D.2 HES 

2 6 0 7 4 115 
1 a 3 2 8 6 5 _ | 136 

1 4 0 2 6 - 46 
3 0 1 8 11 106 

1 0 6 8 9 
b 5222 7 4 5 0 

8 2 4 4 6 

5.22 0 31.32 41.76 46.98 
= | 10.44 36.54 20.88 26.1 0 

41.76 10.44 20.88 20.88 31.32 

13 12 4 3 6 11 35 42 41 
c2| 11 12 8 | +3[2 9 8 ) =28 51 40 

7T 97 3 13 17 23 57 65 

13 12 4 3 6 11 
d 04( 11 12 8 |—-13[2 9 8 

T 9 7 3 13 17 

1.3 -3 —12.7 
= 1.8 —6.9 —7.2 

—1.1 —-133 —19.3 

125 
. . 315 

2 Prices matrix = 405 

375 

50 42 18 65 125 

65 37 25 82 315 

120 29 23 75 405 

42 36 19 72 375 

51145 

60655 

61575 

51285 

total income = $51 145 4 $60 655 + $61 575 4 $51 285 

= $224660 

Monthly income =



EXERCISE 1D.3 B 

a  X(2X+1) b (3I+B)B 
=2X? + XI = 3IB + B? 

=2X2+X =3B+ B? 

¢ DMD*+3D+21) d (A+B)(C-D) 

=D® +3D% + 2DI 
=D3 4 3D% + 2D 

e (B—A)(B+A) 
= (B—A)B+ (B—A)A 

=B? — AB + BA — A 

t (A-20)? 

= (A —2I)(A —2I) 
= (A — 2D)A + (A —21)(—2I) 
= A% — 2IA — 2A1 + 412 

=A% —2A —2A +4I 

=A% —4A 441 

g (51 —2B)? 
= (51 — 2B)(51 — 2B) 
= (51 — 2B)5I + (51 — 2B)(—2B) 
= 2512 — 10BI — 10IB + 4B> 

= 251 — 10B — 10B + 4B? 

= 251 — 20B + 4B> 

h  (A+B)? 
= (A+B)(A+B)(A+B) 

=[(A+B)A+ (A+ B)BJ(A+B) 
= (A2 +BA + AB + B?)(A +B) 
= (A% + BA + AB + B?)A + (A% + BA + AB + B%)B 

= A% + BA% + ABA + B?A + A%B + BAB + AB? + B® 

=(A+B)C+ (A+B)(-D) 
= AC+ BC — AD — BD 

a A% = A x A? b AT =AxA3 

= A(3A + 2I) = A(11A + 6I) 
= 3A% + 2A1 = 11A% + 6AI 

= 3(3A 4 2I) + 2A = 11(3A + 2I) + 6A 
= 9A + 61 + 24 = 33A + 221 + 6A 
= 11A + 61 = 39A + 221 

¢ A% =A% x At 

= (39A + 221)(39A + 22I) 
= (39A + 221)39A + (39A + 221)221 
= 1521A2 + 858IA + 858AI + 4841° 

= 1521(3A + 2I) + 858A + 858A + 4841 
= 4563A + 30421 + 1716A + 4841 
= 6279A + 35261 

a  A(2A +3I) b (A-1)? 
= 2A% 4 3A1 =(A-I)(A-T) 

=2[+3A =(A-DA+(A-I)(-I) 
=A% 1A - AL+ 12 

—I-A—A+I 
= 21— 2A 

c  A(A+51)? 
= A(A + 5I)(A + 51) 
= (A% 4 5AI)(A + 51) 
= (I+ 5A)(A + 5I) 
= (I+ 5A)A + (1 + 5A)51 
= 1A + 5A% + 512 + 25A1 
= A+ 51+ 51 + 25A 
= 26A + 101 
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. 1 -1 
4 a Consider A7(1 71) 

2e=(1 ) 9)=(0 0)=0 
So, we have found A2 = O where A # O 

A2=0 % A=0 

11 
b Consider A = (i i) 

2 2 

11 11 
2_[2 2 2 2\ _ _ 

2 2 2 2 

So, we have found A2 = A where A is not O or I. 

A2=A # A=O0orl 

a b 
5 Let Af(c d)' 

2 a b a b\ _(a b 
If A° =A, then (c d)(c d)i(c d) 

a?+bc ab+bd) _ (a b 
actecd be+d? ) \c d 

Equating corresponding elements: 

wl
= 

v
l
 

wl
= 

o
l
 

a®+bc=a be=a(l—a) ..(1) 

ab+bd=b ba+d—1)=0 (2 
ac+cd=c cla+d—1)=0 . (3) 

be+d?=d be=d(1—d) .4 

If b=c=0 then from (1) and (4), a=0orl 

and d=0or1l 

As 0 0 0 0 10 or 1 0 
o 0) o 1) o o) o 1) 

If band carenotbothO then a+d—-1=0 

d=1-a 

a b 

c l-a 

6 The last step is invalid as 

AA-2)=0 # A=0 or A=2L 

10 0 0 
For example, A7<0 0), Bf<0 1) 

10 0 0 0 0 
have ABf(O 0)(0 1)—<0 0)—0 

but A # O and B # O. 

7 In the binomial expansion for real numbers ab = ba is essential. 

A is of the form ( ) where be = a(1l — a). 

But for matrices AB # BA {non-commutative} in general. 

(A 4 B)™ cannot be found using the binomial expansion. 

However, A and I commute as Al = IA = A {identity law}. 

expansions of the form (A + kI)?, n € ZT can be found 

using the binomial expansion. 

EXERCISE 1E IEEN—— 

1A:(1 3
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10 2 1 3 1 
cAT4+B'=[3 4 |+|0 —2)=(3 2 

2 1 3 -1 5 0 

3 0 
dsa=(3 9 6 BA)'T=19 12 

0 12 3 6 3 

10 3 0 
e3AT=3(3 4)=[9 12 

2 1 6 3 

T -1 -1 

I(A—B)T:(71 3 —21) (3 
-1 2 

L0 2 1 -1 -1 
gAT-B"=(3 4]-[0 2= 3 6 

2 1 3 -1 -1 2 

T —4 -2 

I D I 
-6 2 

2 1 -4 -2 
i —2BT=—2(0 —2|=[0 4 

3 —1 -6 2 

10 1 -1 2 1 
2 a A= 2 1 3], B= 0 3 2 

-1 4 1 4 0 5 

3 2 6 
AB= |10 7 19 {using technology} 

5 10 12 

3 10 5 
b ABT=[2 7 10 

6 19 12 

12 -1 -1 0 4 
cA™B"=|0 1 4 2 3 0 

13 1 1 2 5 

2 4 -1 
=] 6 11 20 

-1 20 9 

-1 0 4 12 -1 
dB'AT= 2 3 0 0 1 4 

1 2 5 13 1 

3 10 5 
=2 7 10 

6 19 12 

i Let A =(ai;), b Let A=(aij), B=(biy) 

then AT = (a;:) A+ B = (aij) + (bij) 
and (A1) = (a;) A+ B = (a;; + bij) 

=A (A+B)T = (aj; +bj;) 

= (aji) + (bji) 
— AT 4+ BT 

¢ Let A= (ay), SA = s(ai;) 

= (saij) 
(sA)T = (saji) = SAT 

  

4 a (A1A243)T = [(A1A2)A3]" 

—AJ(A1A2)T  {(AB)T = BTAT} 
— AJAJAT 

b Proof: (By the principle of mathematical induction) 

Pnist (A1A24A3...An)T =ATAT | AJAJAT for 

all nezZt. 

(1) If n=1, A=A is true. 
Py is true. 

(2) If Py is true, then 

(A1A2A3 ... Ap)T = AT LASASAT 

(A1A2A3 ... ApAy1)" 

= ([A1A2A5 ... A]Agp1)" 
= A [A1A2A3 . A" 

= AL GAA L ASASAS 

Thus Pjq is true whenever Py is true. 

Since Py is true, Py, is true for all n € ZT. 

{Principle of mathematical induction} 

5 a If Ais symmetric, then AT = A 

(AT)T = A = AT {Property 1} 

AT is also symmetric  {its transpose is equal to itself} 

b If A and B are symmetric, then AT = A and BT = B 

(A+B)T =AT +B"  {Property 2} 

=A+B 

A + B is symmetric {its transpose is equal to itself} 

¢ If A and B are symmetric, then AT = A and B! = B. 

Now AB is symmetric < (AB)T = AB 

< BTAT = AB {Property 4} 

< BA =AB 

6 (=) If A is skew symmetric then AT = —A 

(ai)" = ~(as;) 
aji = —aij 
aj; = —aj; 

(<) If a;; =—aj; 

a;j +a;; =0 

(aij +aji) =0 
A+AT=0 

AT =-A 

7 a (AAT)T = (AT)TAT  {Property 4} 
= AAT 

o AAT is symmetric. 

(ATA)T = AT(AN)T  {Property 4} 

=ATA {Property 1} 

ATA is symmetric. 

A+AHT=AT+@ANT 
=AT+A 
=A+A" 

A+ AT is symmetric. 

b (A—ADHT = AT - (ADHT 

=AT-A 

— —(a—A") 
A — AT is skew symmetric. 

{Property 1} 

{Property 2} 

{Property 1} 

{Property 2} 

{Property 1}



8 a Example: b Example: 

1 2 3 0 1 

A=[2 0 4 A= -1 0 
3 4 5 -2 3 

9 a If A is symmetric, AT = A. 

Now (PTAP)T = PTAT(PT)T 

=PTAP 
PTAP is symmetric. 

b If A is skew symmetric, AT = — 
(PTAP)T = PTAT(PT)T 

=PI (-A)P 

= —PTAP 
PTAP is skew symmetric. 

EXERCISE 1F.1 I 

G- 

detA=2(3)— (1) =7 

()~ ( 

Al
 
=l
 

[
 <

l
 

S
N
—
—
 

det A = 5(0) — 3(0) = 0 
A~ does not exist. 

e Let A:(a a) 
—a 1 

detA = a(1) — a(—a) 

=a+a? 

=a(l+a) 

A1 exists provided a(l+a) #0, 

provided a # 0 or —1. 

=arale o) 
1 -1 

a(l+a) 1+a 

1 1 

1+a 

If a#0o0r -1, A 

  

    

1+a 

/
N
 

o 
| 

al
s | 

om
e 

ail
ee 
~
—
—
 

that is, 
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2 .. Ao (;1 2 ) 

3 det A = (—1)(=5) — (2)(3) = 
0 . el ( 52 

) 
oo det(—A) = 1(5) — (—2)(=3) = 

< 2A:( ) 

det(24) = (—2 

4 
~10 

)(=10) —4(6) = — 
a b ka kb ALt A= ( d) kA = (k kd) 

and  det(kA) = (ka)(kd) — (kb)(kc) 
= k%ad — kbe 

= k?(ad — be) 

= k2 det(A) 

sA:(a b) and B:(w x) 
c d Yy oz 

|[A|=ad—bc and |B|=wz—zy 

_f(a b w x\ _ (aw+by az+bz 

Now AB?(C d)(y z)f(cmrdy ) cx + dz 

|AB| = (aw + by)(cz + dz) — (az + bz)(cw + dy) 

= gewT + adwz + bexy + bdyz 

—aewT — adry — bcwz —bdyz 

= ad(wz — zy) + be(zy — wz) 

= ad(wz — zy) — be(wz — zy) 

= (wz — zy)(ad — bc) 

—[B||A| 
SN 

-1 2 

6 a ( ) 4 6 | {2x3 by 3x2} 
1 -1 fo 

7(—1+0+2 2+0—2) 
- 1-4+43 -2+6-3 

() 
b AsBAis 3x3 and ABis 2 x 2, AB # BA and 

A, B cannot be inverses. 

The inverse of A must satisfy AA~! = A7!A =L 

¢ As A must have the same number of rows as columns, 

A must be square. 

2k 
7 aA:(3 76) 

" detA = 2(—6) — k(3) 
- 123 
= 3(k+4) 

_ 1 6 —k 
e (5 ) 

2 k 
k+4 3(k+4) 

- 1 ) 
k+4 3(k+4) 

A~ exists provided —3(k +4) #0 

kA4
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bA:(k_S —3) 2 a If X=AY and Y = BZ then X = AY 

2 k = ABZ 

det A = (k —5)(k) — (=3)(2) b Usinga, A"'X=A"'ABZ  {premultiplying by A~} 

=k?—5k+6 o ATIX=1IBZ 

=(k=3)(k-2) . ATIX=BZ 

1 1 k 3 .. B'AT'X=B"'BZ {premultiplying by B~} 

:(ka)(k72)<—2 k—5> s BTlATIX=1Z 

k 3 s BTATIX=1Z 

®—8)(k—2) (k-3)(k-2) . Z=B'ATX 
- —2 k-5 

-3)(k-2) k-3)(k-2) a4 ) 
A1 exists provided (k — 3)(k —2) #0 

( 
k#3or2 A2:<,12 ;2)(32 ;2) 

( 
k 12 cA:( ) /5 12 

k+1 k+5 =( 12 2 

detA = k(k+5) —12(k+1) ~ 1 -2 1 0 

= k% 45k — 12k — 12 =p{ o 5 )talg 1 
— k2 _ _ =k2 -7k —12 :<p+q _2p> 

Al 1 (k+5 —12) —2p Sptgq 

k2 —7k—12\~k-1 k ptqg=5 —2p=—12, and 5p+q=29 
k+5 —12 . p=6 

| K -TR—12 k2 Tk - 12 Substituting in p+qg =25 

- —k—1 k gives 6+q=5 

k2 — Tk —12 k2 — Tk — 12 Sog=-1 

A~ exists provided k2 — 7k — 12 # 0. Substituting in  5p + ¢ = 29 {to check consistency} 

gives 5(6) +q =29 
7+ /49 + 48 Now K2-Tk—12=0 when k= Y212 =1 v 
7407 A% = 6A — I which is of the form A2 = pA + gl where 

= p==6 and ¢g=—1. 

CA2A-1 —1_ A1 . s -1 
L ) 7407 oo ATATT = 6AA A {postmultiplying by A~} 

A~ exists provided k # ——— A(AA’I):GI—A’1 

Al=61-A"! 
A=6l—A"" 

EXERCISE 1F.2 B 4 
AT =6I—-A 

1 a If AXB = C we premultipy both sides by A~ and A l=_At6l 

tmultiply both sides by B~1. 
Postmutiply both sides by which is of the foom A~! = rA + sI where 7 = —1 and 

o A"1(AXB)B™! =A~!cB7! s — 6. 

(A"'A)X(BB™1) = A~ lCcB! 
1 4 a AZ=2A+1 

IXI=A"'CB 
(AA)A™! = 2AA1 + 1A {postmultiplying by A~} 

. —1 —1 
X=A"'CB A(AA’I):2I+A’1 

2 -7 -3 -2 4 1 o Al=20+A71 

e (5 )x(F )00 -1 4 2 1 0 2 O A=2A Al 
-1 -1 -1 2 -7 4 1\[/-3 -2 AT =A-21 

wa x=(57) (0 2) (5 ) -1 ozJvz 1) b 3A = 21— A2 
{using a} o 3AAL = 21A! - (AA)A! 

4 7T\(4 1 102 o 1 
X=1 0 2 1 5 3 {postmultiplying by A~} 

1 3l=2A"1 —A(AA™Y) 

— oAl _ 
—20 -—22 311 =24 A 

—6 -7 S 2A7 T =31+ A 
-1 _ 37,1 AT = §I+§A 

6 18\(1 2 . 
1 5 )2 -3 o BT=2A"1 - AI



< 247 ~3A-1=0 
2(AA)A™T —3AA" 1Al =0 

{post multiplying by A=} 

2AAA" ) —31-A"1 =0 

2A1-31-A"'=0 
2A-31-A"1 =0 

A"l =2A-3I 

5 If AB=A and BA = B, 
then A% =AA 

= (AB)A 

= A(BA) 

= AB 

AZ=A 

As we do not know that inverses exist, we cannot 

conclude that AB=A = B=1 

{associative rule} 

Note: 

6 We require the condition that: 

A is non-singular or |A|# 0 

If this is so, AB=AC = A~ !(AB) = A~!(AC) 

= (A7'A)B=(A"1A)C 
= IB=IC 
= B=C 

7 If X=P 'AP and A% =1 

then X3 = (P~1AP)(P~'AP)(P~'AP) 

= (P1A)(PP HA(PP1)AP 

= PT1AIAIAP 

= P 1AAAP 

=P 1A%P 

=P IP 

=P lp 
=1 

{associative rule} 

8 If aA2+bA + cl =0 and X = P~!AP then 

aX? 4 bX + cl 

= a(P~*AP)(P~'AP) + b(P~'AP) + cl 

= aP IA(PP1)AP + bP AP 4 cl 

=aP AP + bPTIAP + cI 

=P ! (aA? + bA + cl)P 

=plop 
=0 

9 AZ+sA+tI=0 

o (22)(2 8 (2 ) (5 ) (22) 
a? +bec ab+bd sa+t  sb 00 

(ac+cd bc+d2)+( sc sd+t>: (0 0) 

a?+bct+sat+t=0 ..(1) 

ab+bd+sb=0 .. (2) 

act+ced+sc=0 ...(3) 

bet+d>+sd+t=0 . (4) 

(1)—(4) gives a®>—d?>+s(a—d)=0 

(a+d)(a—d)+s(a—d)=0 

(a—d)(a+d+s)=0 

s=—(a+d) 

{as a is not necessarily equal to d} 
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m@ bla+d+shb=0 v 
In@3) cla+d)+sc=0 v 

Substituting s = —(a +d) in (1) gives 

a2 4+be—(a+da+t=0 

a®+bc—a®—ad+t=0 

t=ad— bc 

10 AB™! =B 1A 

= B(AB™!)=B(B7'A) 

= BAB~! = (BB 1A 

= BAB '=1A"'=A 

= (BAB"!)B=AB 

= BA(B™!B) = AB 

= BAI=AB 
= AB=BA 

{premultiplying by B} 

{postmultiplying by B} 

ATl =AT 

ATA=A"'A=1 
and AAT=AAT! =1 
So,as ATA = AAT =1, AT and A are inverses 

A"l =AT (and (AT)"! =A4) 

b For A, B orthogonal, A~! = AT and B~! = BT 

(AB)"! =B71A! 

=B'AT 

— (AB)" 
= AB is orthogonal. 

¢ For A orthogonal, A= = AT 

(A )~ = (AT 
— @AY 

= A~ is orthogonal. 

11 a As 

{Property 4} 

EXERCISE 1F.3 W 

2 30 2 1 -1 1 -1 2 a1l o2 :2‘ ‘73‘ ‘+0‘ ‘ s o 3 0 5 2 5 2 0 

=2(10 - 0) —3(~5—2) +0 
=20421 
=41 v 

-1 2 -3 
b 1 0 o0 

-1 2 1 

00 10 10 
12 e e ] 
=—1(0—0) —2(1—0) — 3(2—0) 
=8 v 

2 1 3 12 -1 2 -1 1 cl-1 1 2 —2’ ‘71‘ ‘+3‘ ‘ 2 1 3 1 3 2 3 2 1 

=2(3-2)—1(-3—4)+3(-1-2) 
=0 v 

100 2 0 0 0 0 2 dlo 2 o :1‘ ‘—0‘ ‘+0’ ‘ 0o 3 0 3 0 3 00 

=1(6—-0) 
=6 v
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0 0 2 
1 0 0 0 0 1 

e |0 1 0 :O‘ ‘—O‘ ‘-%—2‘ ‘ 
3 0 0 0 0 3 0 3 0 

=2(0—3) 
=—6 Vv 

4 1 3 
0o 2 -1 2 -1 0 fl-1 0 2= ‘71‘ ‘+3\ \ 

111 11 -1 1 -1 1 

=4(0-2) —1(-1—(-2))+3(-1-0) 

=-12 v 

1 0 1 

g 0o -1 1 

-2 1 0 

-1 1 0 1 0 -1 

=3l S ol 
=1(0-1)+1(0-2) 
=-3 Vv 

3 -1 2 

h 1 —4 1 

-3 1 -1 

—4 1 1 1 1 —4 =3 Ao Al h 
=3(4—1) 4 (=1 —(=3)) +2(1 — 12) 
=9+42-22 

=-11 v 

r 2 9 
1 2 3 2 3 1 

2 a |3 1 2|==z 0 = —2‘71 ‘+9‘71 0’ 
-1 0 =     

=xz(z) — 23z — —2) +9(1) 

=22 —6x—4+9 

=22 —6x+5 

—(@-5@-1) 
The matrix is singular when its determinant is 0, which occurs 

when x =1 or 5. 

b This means that the matrix has in inverse for all z in R, 

    

      

    

x #1orb. 

a 0 O 

3 al|o bO*abO—OOO-%—OO b 
0 ¢ 0 ¢ 0 0 

0 0 ¢ 

a(bc —0) 

abc 

0 z vy 

bz 0 z :0‘_0 HE ‘:xSer‘:x_O 
—y -2 0 z y y —z 

= —z(0 — —yz) + y(zz) 

= —xyz + Yz 

=0 

a b e c a b a 
c|b ¢ al=a —b +c 

b c b c a 
c a b   

= a(cb — a?) — b(b® — ac) + c(ba — ¢?) 

= abe — a® — b% 4 abc + abe — ¢* 

=3abc —a® —b® - 

    

_ o2f|a b|_ |0 b 0 a 
o 0‘ 1‘1 ol ™1 o 

=a?(0) — (0—b) +1(0 — a) 
=b—-a 

1 

b has an inverse for all a, b € R 

0 where b # a. 

b b2 1 b 2|1 b 
=1 c27a1c2+alc‘           

=bc? —b%c —a(c® —b%) + a®(c—b) 

= be(c —b) — ale+b)(c—b) +a(c—b) 

= (c—b)[bc—ac—ab+a2] 

= (c-ba-b)a-c) 
=(a—b)(b—c)(c—a) 

EXERCISE 1F.4 B 

(Examples only) 

Property 1: 

Property 2: 

Property 3: 

Property 4: 

Property 5: 

Property 6: 

Property 7: 

a b c d was (2 2) wone (2 4) 
then |B|=bc— ad = —(ad — bc) 

[B|=—[A] 
a b IfA7<O 0)’ [Al=0-0=0. 

IfA:(“ b), [A] = ab—ab=0. 
a b 

a b Ifo(kc kd),\B\flmd—kbc 
= k(ad — be) 

=k[|A]| 
a b 

IfAf(c d) and 

a b 

B= (c+ka d+kb>’ 
then |B| = a(d+ kb) — b(c+ ka) 

= ad + kati — bc =kab 

=ad —bc 

=1A| 
_f(a b _ (e f IfAf(C d) and B—(g h) 

_ (ae+bg af+0bh 

then AB?(ce+dg cf+dh) 

|AB| 
= (ae +bg)(cf + dh) — (af + bh)(ce + dg) 

= geef + adeh + befg + bdght 

—acef — adfg — beceh —bdgh 

= ad(eh — fg) + be(fg — eh) 

= ad(eh — fg) — be(eh — fg) 
= (ad — bo)(eh — f9) 
=|A[[B] 
_(a b T_(a ¢ 

IfA—(c d)’ then A _(b d) 

a c 
‘AT|: b od =ad—bc=|A| 

   



2 (Examples only) 

Property 1: 

ar b1 a1 b1 
Let A= | as ba co and B= [ az b3 c3 

az bz c3 as by co 

where B is obtained from A by interchanging rows 2 and 3, then 

az b3 
as  bs 

b3 c3 
bs  co 

as c3 
[|B|=a1 as  co —b +c1 

            
= a1(bgcz — bacz) — bi(azcz — azcs) 

+ c1(azba — azbz) 

= a1bzce — arbacg — agbice + azbics 

+ agbac1 — azbzer 

= —ai(bzes — bzcz) + bi(azes — azez) 
— c1(azbz — azbz) 

          

= Al 
[B|=—]A] 

Property 2: 

0 0 o0 
Let A= | a2 b2 c2 |, 

az bz c3 

then |Al=0|02 2|_glez 2| o] b 
b3 c3 a3 c3 az b3 

[A]=0 

Property 3: 

ai b1 c 

Let A= | a2 b2 c2 
az by c2 

where rows 2 and 3 are identical 

as  bs 

as  be 

ba ¢ 

ba  co 
az c2 

az c2             
a1 (baca — bacz) — by (azea — asca) 

+ c1(agba — azbz) 

=0 

Property 4: 

ar b1 @ ai by c1 
Let A= | a2 bz c2 |, then B=| kaz kbz kca 

a3 bz c3 as bs c3 

where B is obtained from A by multiplying row 2 by k, k € R. 

kba  kea kaz  kba 

bz c3 az by 

kas keo 
[B| = a1 as  es —b1 c1 

            
= a1 (kbacg — keabs) — bi(kazes — keaas) 

+ c1(kazbs — kbaag) 

= kay(b2cs — c2b3) — kbi(azcs — c2as) 

+ kei(azbs — baag) 

=k|A| 
Bl =Fk|A] 

Property 5: 

a; b1 ¢ 

Let A= | a2 bz c2 |, then 

as bz c3 

ay by c1 

B = az b2 c2 
a3 + kaz bz + kb c3+ ke 

where B is obtained from A by adding R3 and kR>. 
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_ by e | ai c1 
|B| = (a3 + kaz) by e (b3 +kb2) | o 

a; by 
+ (c3 + kea) as by 

{on expanding by row 3} 

_ b1 ¢ a1 a; by 
= [B]=as beoea| Plas | T ez b 

b1 c1 ar c1 a1 bi 
+ k(az by col| az c2 az bo ) 

= [A| + k (a2bres —asbzer —arbres + asbacy 
+ a1brcs —asbres) 

=|A[+k(0) 
=|A] 

a b ¢ 

3 Let A=|d e f 

g h i 

ka kb kc 

kA= | kd ke Ekf 
kg kh ki 

| kA | = ka(keki — kfkh) — kb(kdki — kfkg) 
+ ke(kdkh — kekg) 

= k%a(ei — fh) — k3b(di — fg) + k®c(dh — eg) 

=K A 

            

            

4L Let A=| az by ca 

a3 bz c3 

ar az a3 
AT=|( b by b3 

c1 c2 3 

by b b1 b b1 b 

‘AT‘:G 2 l-ax| ! Sl +as| ! 2 
c2 c3 cl c co 

—a by co| b1 ta b1 

T by s bs ¢ 31by ca 

{|B"|=|B| for 2x 2 matrices} 

=|A| {by definition} 

1 3 0 2 -1 1 
5 A=(2 -1 1 , B=|1 2 3 

4 1 -2 0 1 4 

|[A| =25 and |B|=15 {using technology} 

5 5 10 

Now AB=| 3 -3 3 {using technology} 
9 —4 -1 

where |AB| =375 {using technology} 

andas |A||B|=25x15= 375 

|AB|=|A||B]| has been verified. 

6 If A is non-singular, A~ ! exists and AA~! = A~1A =1 

At =1 (=1} 
= |A[|A7 ] =1 {|AB|=|A]|B|} 

1 
—  which exists as |A| #0 = A=
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7 1If A is orthogonal, AT = A1 

= |AT|=]A7] 
1 

= \A|:m {|AT|=]A| and property 6} 

= |AP=1 
= |A|==1 

1 z 2?2 1 a a2 

8 a f@)=|1 b b | and A=[1 b b 
1 ¢ ¢ 1 ¢ ¢ 

Now f(b) = f(c) =0 {two identical rows in cach casc} 

(z—b) and (z —c) are factors of f(zx) 

{factor theorem of polynomials} 

b Froma, (z—b)(z—c) isa factor of f(x) 

. (a—0b)(a—c) isa factor of f(a) 

o (@—b)(a—c) is a factor of |A| 

{f@) =1Al} 
1 a a 

¢ Consider g(z)=|1 = 2?2 
1 ¢ ¢ 

Now g(a) =g(c) =0 
(z — a)(z — c) is a factor of g(x) 

(b—a)(b—c) is a factor of g(b) 

(b—a)(b—c) isafactor of |A| {g(b)=]Al} 

1 

9 (AT -3 = 1 

-1 

W
 

N 
W
 

W
O
k
 

W
O
 

R 

B 
= 

EXERCISE 1G I 

1 a Inmatrix form, the system is (2 4 ) (ac ) = 
5 -1 

2 4 was (2 ) 

oo AT —3I= < 

AT _31= ( 1 1 -1 {using technology} 

oo AT = ( 

. . 1 -3\ /(= 13 
b In matrix form, the system is (73 72) (y) = ( 5 ) 

1 -3 was () 
then |A|=(1)(—2)— (=3)(-3) =—11 

In matrix form, the system is f 2 ) 

5 2 was (5 02) 
then |A|=(5)(—3) — (2)(—1) = —13 

-3 -2 —1 1 

A *‘fi( 1 5 ) 

In matrix form, the system is (72 5 ) (z) = ( 4 ) 
3 -2 

-2 5 was (25 

-2 -5 2 5 -1 _— 1 _ 1 

AT =1 o3 72)*fi(3 2) 

In matrix form, the system is AX = B 

S -3 1 4 7 
which is ( 6 _2> (y) = (_7) where 

-3 1 T 7 
A7<6 _2), Xf(y), and B7<_7). 

[A]=(=3)(=2) — (1)(6) =0 
‘. A is singular, and A~—! does not exist. 

the system does not have a unique solution. 

In matrix form, the system is AX = B 

o (4 )(:)= () o 
(5 F) () e (4) 
[A]=(2)(3) = (—k)(—2) =6 -2k 
|A|=0if k=3 

A~ exists if k#3 

the system has a unique solution if %k # 3.



4 a Yes, this matrix equation represents a system of 4 linear 

equations in 4 unknowns. 

If 
3 -2 5 0 

A:(1 4) and B:(_3 14) have 

order 2 x 2 then X has order 2 X 2. 

b [A[=(3)(4) - (-2)(1) =14 

A 

Afl L[4 2 
-1 3 

“lAX =A"!B 

w405 -4 
5 Xj and Xs are solutions of AX =B 

6 

AX; =B 

Now 

e (1) and 

X3 = tX; + (1 — £)Xz 
AX =B ... (2) 

AX3 = A(EX1 + (1 — t)X2) 
= tAX; + (1 — £)AX> 
=tB+(1—-t)B {using (1) and (2)} 

=tB+B—tB 

=B 

X3 is also a solution of AX = B for all ¢ € R. 

As t 

AX = 

€ R, X3 represents infinitely many solutions. So, if 

B has two solutions then it has infinitely many solutions. 

a In matrix form, the system is 

1 2 -3 T 5 

2 -1 -1 y|=1 8 
k1 2 z 14 

1 2 -3 
If A=(2 -1 -1 then 

ko1 2 

-1 -1 2 -1 2 -1 

w3 S e S e 
=1(-2—--1)—2(4— k) —3(2— —k) 

= —1-2(44k) —3(2+k) 
—1-8—-2k—6—-3k 

= —15—5k 

[A]|=0 if k=-3 A1 exists if k# —3 
the system has a unique solution for k € R, k # —3. 

b In matrix form, the system is 

If 

2 -1 -4 T 8 

3 -k 1 y | = 1 

5 -1 k z —2 

2 -1 -4 

A=[3 —k 1 then 

5 -1 k 

-k 1 sl L2 s -1 k 5 k 5 —1 

=2(—k% — —1) + 1(3k — 5) — 4(—3 — —5k) 

=2(1 — k%) + (3k — 5) — 4(5k — 3) 
=2 2k? 4+ 3k —5— 20k + 12 

=2k — 17k +9 
= (—2k+1)(k+9) 

|A] =0 if k=1 or—9 

A~ exists if k # % or —9 

the system has a unique solution for k € R, 

k# 4 or —9. 

7 
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a In matrix form, the system is 

3 2 -1 z 14 
1 -1 2 y | = -8 
2 3 -1 z 13 

The system has the form AX = B, so X = A~'B. 
1 x 3 2 -1\ /14 2.3 

yl=[1 -1 2 &= 13 
z 2 3 -1 13 —4.5 

{using technology} 
=23, y=13, z=—-45 

In matrix form, the system is 

1 -1 -2 z 4 
5 1 2 y|=1| -6 
3 -4 -1 z 17 

The system has the form AX = B, so X = A~!'B. 

1 — 
x 1 -1 -2\ [ 4 3 

_ _ 95 y|l=15 1 2 -6 | =1 —%53 

z 3 -4 -1 17 5 
21 

{using technology} 
_ 1 _ 9 _2 

T=T3 YT oo AT ar 
In matrix form, the system is 

1 3 -1 T 15 
2 1 1 y | = 7 
1 -1 -2 z 0 

The system has the form AX = B, so X = A~'B. 

-1 z 13 -1 15 2 
yl=[2 1 1 7= 4 
z 1 -1 -2 0 ~1 

{using technology} 
z=2 y=4, z= -1 

In matrix form, the system is 

12 -1 z 23 
1 -1 3 y | = -23 
701 -4 z 62 

The system has the form AX = B, so X = A~!B. 

1 z 12 -1\ '/ 23 4 
y|=(1 -1 3 —23 =1 6 
z 701 —4 62 -7 

{using technology} 

r=4, y=6, z=-T7 

In matrix form, the system is 

10 -1 4 x -9 

7 3 -5 y | = s9 
13 —17 23 z —309 

The system has the form AX = B, so X = A~'B. 
1 

T 10 -1 4\ -9 
yl=7 3 -5 89 
z 13 17 23 —309 

3 

= 11 {using technology} 
-7
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f In matrix form, the system is 

1.3 2.7 —3.1 T 8.2 

2.8 —0.9 5.6 y | = 17.3 

6.1 14 —3.2 z —0.6 

The system has the form AX = B, so X = A~'B. 

e 13 27 -31\ '/ 82 
y|=[28 —09 56 17.3 
z 6.1 1.4 —3.2 —0.6 

0.326 

~ | 7.65 {using technology} 

4.16 

x ~0.326, y~ 765 z~4.16 

8 If A is non-singular the matrix method is excellent and a unique 

solution is easily obtained. 

However, when |A| =0 the matrix method does not enable us 

to find out whether there are no solutions or infinitely many. The 

form of the infinitely many solutions is also not attainable. 

9 a2z+3y+ 8z=352 

T+ 5y + 4z =274 

x+ 2y + 11z = 351 

b In matrix form, the systcm is 

352 
— | 274 

351 
x 2 3 R 42 
y)=[15 4 274 | = | 28 
z 12 11 351 23 

{using technology} 
the salaries for managers, clerks, and labourers are 

€42 000, €28 000, and €23 000 respectively. 

¢ Total salary bill = 3z + 8y + 37z 

= 3(42) + 8(28) + 37(23) 
= 1201 thousand euros 

= €1201 000 

10 a Letx, y, and z represent the costs per kilogram (in dollars) 

of cashews, macadamias, and Brazil nuts respectively. 

0.5z + 0.3y + 0.2z = 12.5 

0.2z + 0.4y + 0.42 = 12.4 

0.6z + 0.1y + 0.3z = 11.7 
In matrix form, the system is 

0.5 03 0.2 T 12.5 

02 04 04 Yy = 12.4 

06 0.1 0.3 z 11.7 

P 05 03 02\ /125 
y |=102 04 04 12.4 

z 0.6 01 03 11.7 

12 

=115 {using technology} 
10 

the costs per kilogram of cashews, macadamias, and 

Brazil nuts are $12, $15, and $10 respectively. 

b Cost per kilogram of 400 g of cashews, 200 g of macadamias, 

and 400 g of Brazil nuts 

=04z + 0.2y + 0.4z 

=0.4(12) + 0.2(15) + 0.4(10) 
= $11.80 

a PO)=b+ % = 160000 

P(1) :a+b+§ = 198000 

P(2)=2a+b+ g = 240000 

In matrix form, the system is 

1 

01 g 160000 
11 % 198000 

240000 2 1 % 

13 a 160000 
bl=1 1 % 198000 
¢ 5 1 240000 

6 

50000 
= | 100000 {using technology} 

240000 

a = 50000, b= 100000, ¢ = 240000 

b t= —1 corresponds to 2009. 

P(—1) = 50000(—1) + 100000 + 

= 130000 

the profit of £130000 in 2009 fits the model. 

¢ Predicted profit for 2013 is 

P(3) = 50000(3) + 100000 + 

1990 000 

7 

~ £284000 

Predicted profit for 2015 is 

P(5) = 50000(5) + 100000 + 

_ 1130000 

3 

~~ £377000 

240000 

(-1)+4 

240000 

(3)+4 
  

240000 

(5)+4 
  

12 a Leto, a, p, ¢, and [ represent the cost per item (in dollars) of 

oranges, apples, pears, cabbages, and lettuces respectively. 

In matrix form, the system is 

121 1 1 o 6.3 
2 1 2 1 1 a 6.7 
12 3 1 1 p|=| 77 
2 2 1 1 3 c 9.8 
33 5 2 2 l 10.9 

A X = B 
b Using technology, |A|=0 

A~ does not exist and X cannot be found using this 

information. 

¢ If the last line is amended, 

12 1 1 1 6.3 

2 1 2 1 1 6.7 

A=11 2 3 1 1 and B= | 7.7 

2 2 1 1 3 9.8 

31 2 2 1 9.2 

|A| =6 {using technology} 

A1 exists 

X = A~ !B and the system can be solved



—1 
o 1 2 1 1 1 6.3 

a 21 2 1 1 6.7 
pl=]12 3 11 77 
c 2 2 1 1 3 9.8 

l 3 1 2 2 1 9.2 

0.5 
0.8 

=107 {using technology} 
2 

1.5 

oranges cost $0.50 each, apples cost $0.80 each, pears 

cost $0.70 each, cabbages cost $2.00 each, and lettuces 

cost $1.50 each. 

EXERCISE 1H B 

1 0 0 -4 00 1 00 
1 a 0 0 1 b 0 10 < -2 10 

0 1 0 0 01 0 01 

0 0 1 1.0 0 100 

d 01 0 e 01 0 f 0 10 
1 1 1 0 0 00 3 3 01 

1 0 0 1 0 0 
g 0 1 0 h 6 1 0 

0 5 1 0 0 1 

2 a 3R3 — R3 b R; < Ro ¢ R3 —2R; — R3 

d —2Rs — Ro e Ry +3Rs — R 

-1 1 4 

3 aA=| 1 2 3 
2 -1 2 

1 2 3 
~l -1 1 4 Ry < Ry 

2 -1 2 

1 2 3 
~lo 3 7 Rz + R1 — R 

0 —5 —4 R3 —2R; — R3 

12 3 

~ |0 I iR, > Ry 

0 —5 —4 

1 2 3 
7 ~[lo 1 % 

00 % R3+5Rz — Ry 

b E; 

—2 

1 0 0 

Es=[0 1 0 
0o 5 1 

1 2 3 

and EsE4E3EoE;A = [ 0 1 % , as required. 
23 00 = 
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a i For the given system, 

(A]1]B) 

1 3 |(100(4 
=2 —-1({0 1 0|3 

3 5|0 0 12 

1 3 1 00| 4 
~[0 —-7[-2 10 -5 Ry —2R1 — Ra 

0 —-14|-3 0 1|-10 R3 —3R1 — R3 

1 3 1 0o 0| 4 

2 1 5 1 ~lo 1 ]2 1o 2 ~1Ry — Ry 

0 —-14|-3 0 1|-10 

1o+ 2 of &2 Ri—3Ry — R 
~ 2 1 5 

0117 -7 0] % 
00f1 =2 1| 0 R3 +14R2 — R3 
o N—— 

WA w WB 

ii Check: W(A | B) 

12 o 1 3|4 
— | 2 1 _ 2 Lo 2 -1|3 

1 -2 1 3 =52 

13 ool 
= 5 0 1 Z 

0 0| 0 

WA WB 

b i For the given system, 

(A]T|B) 
/11 2|1 01 

~\2 0 -3|0 1|4 

3 1 (1o —3fo 32 
01 L |1 -i|-1 
———— —— 

WA w WB 

{using technology} 
i Check: W(A | B) 

1 _(0 5)(1 1 2 1) 
1 1 1) 2 0 3|4 

3 _ 10 -3 2 

01 % |-1 
—— 

WA WB 

¢ i For the given system, 

(A|T|B) 
1 1 2 3[(1 0 0]4 

=2 1 5 1|0 1 0]|7 

0 1 1 6([0 0 1|4 

z 1 3 3 
L 00 -3|2 -3 —3|-3 

1 1 1 5 
~lo 1o F11 -3 3|3 

1 1 1 3 
001 5|1 5 3|3 
————— —— ——— 

WA w WB 

{using technology}
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ii Check:  W(A|B) 

1 3 2 -4 -3 112 3[4 
— 1 1 =1 -1 1 2 15 1|7 

1 1 -1 3 1 011 6|4 

7 3 100 -Z|-2 
11 5 ~lo1o0 4|2 

oo0o1 1] 3 
—_——— 

WA WB 

1 4|1 0 
°<A|')*<2 71|0 1) 

(1 410 
0 —9|-2 1) R.—2R — R 

1 4|1 o0 
“lo 112 -3 ~iRy > Ry 

<1 0% %) Ri— 4Ry — Ry 
~ 2 1 

0 15 -3 

=@A™h 
14 

~1_ (9 9 

9 9 

3 -1|1 0 
"(A|I)*<4 5 |o 1) 

ot 3|5 0 tRi — Ri 
4 5|0 1 

1 1 (v 0 

0o -2 1 Ry — 4Ry — Ry 
1 1 

N<1 B ; O> 
4 3 3 0 1 -5 I3 52 — R2 

<1 0 % %) R1+%R2—>R1 

4 3 01| -4& & 

=A™ 
5 L 

1 _ 19 19 

19 19 

< (AlD 
1 -2 2(1 0 O 

=3 2 3o 10 
2 -1 3|0 0 1 

1 -2 2|1 00 
~l0o 8 —3{-3 10 Ry —3Ri — Ry 

0 3 -1|-2 0 1 R3 — 2Ry — Rs 

1 -2 2 1 0 0 
3 3 1 1 ~lo 1 -2[-2 Lo LRy — Ry 

0o 3 — -2 0 1 

10 2[4 1 0\ Rt2R—R 
3 3 1 

~(o01 -5(-§ § O 
00 &[-% -2 R3 — 3Ry — Ry 

T
~
/
 

o
 

o
 

o
 

O
 

= 
o
o
 

o
 
o
=
 

o
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o 
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=
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-
 

- 
= 

o 
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o
 

o
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o
o
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N
l
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0 
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-7 -3 8 

9 4  -10 

-1 3 

-3 8 

oo
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i
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o
=
 

O 

~l
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| w 

R
 

= 

| 
2
 
e
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e
 

~l
ee
 

| 
1= 
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El
er

 
=
 
o
 

i | 
[en

 
=l =
 

H 

Zl
er

 
v
 

Il - 

o
 

-
 

o
 

| o 

=1(7-0)4+0+0 
=7 

:0‘0 0 

=0+0+1(0-1) 
=1 

1 0 

:1‘—5 1 [l 
=1(1+0)+0+0 

=1 

[
 

vl
 

El
E o
 

Sl
er

 
o
=
 

o a 

—
 

ol
 
=
 

10 0 - 

o 

0 
0 

8R3 — R3 

Ry — %Ra — R 

Ra + %Rs — Ro 

Rs —2R; — Ra 

R3 —3R; — R3 

%Rz — Ra 

R; +2R2 — Ry 

R3 — 5R2 — R3 

,le — R3 

R; — R3 — Ry 

Ry + R3 — Ra 

o
 

o
 

o
=
 

= 
o 

o 
=



b i Es is the elementary matrix corresponding to swapping 

tWo rows. 
EsA is obtained by swapping two rows of A. 

|EsA| = —|A| {property 1 of determinants} 

|Es||A|=—|A| {property 6 of determinants} 

|Ec|=—1  {for |A|#0} 
i Ej, is the elementary matrix corresponding to multiplying 

a row by a non-zero constant k. 

E,A is obtained by multiplying one row of A by k. 

|ExA| =Fk|A| {property 4 of determinants} 

|Ex||A|=k[A| {property 6 of determinants} 

[Ep| =k {for |A|+# 0} 

iii E, is the elementary matrix corresponding to adding a 

multiple of one row to another. 

E,A is obtained by adding a multiple of one row 

of A to another row. 

|EcA|=|A| {property 5 of determinants} 

|Eq||A|=|A| {property 6 of determinants} 

[Ea|=1 {for [A]#0} 
¢ The check matrix W is a product of elementary matrices E; 

| W] is a product of 1s, (—1)s, and ks, where k # 0 

[W]#0 W1 exists. 

d  Using the Gaussian elimination method in Example 23: 

30 0\ " L oo 
i 0o 1 0 =10 1 0 

0 0 1 0 0 1 

10 -1 10 0 
ifo 4 0 =|0o 1 o0 

0 01 0 0 1 

1o o\"' 10 0 
i o 1 0 —[o 1 0 

1 00 9 00 % 

10 o\" 10 0 
wv o o1 ={o0o 0 1 

01 0 01 0 

0o o0 1\ " 00 1 
vio 10 ={o0o 1 0 

100 100 

1o 2\"' 10 -2 
vilo 10 ={o 1 o 

00 1 00 1 

1 0 o\ "' 10 0 
vii [0 1 4 ={o0o 1 -4 

00 1 00 1 

10 o\ " 100 
viii [ =5 1 0 =[5 1 0 

0 0 1 00 1 

e The inverse of an elementary matrix for swapping two rows 

is itself. 

The inverse of an elementary matrix for multiplying a row by 

o1 
a non-zero constant k contains % instead of k and all other 

clements of the matrix are unchanged. 

The inverse of an elementary matrix for adding a of one row 

to another row contains —a instead of @ and all other elements 

of the matrix are unchanged. 
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102 
aA=[031 

001 

102 100 
~lo1 1) iR~ R Ey={030 

00 1 001 

100\ Ri—2R3 — R; 10 -2 
~ 01§ Ex=(01 0 

00 1 00 1 

100 100 
~[010| Ro—iRs—Ry Eg= (01 —3% 

001 00 1 
=13 

E3EoE A 

10 0 10 —2\/10 0\/10 
={o1 -4ffo1 0o |fo$o]|lo31 

00 1 00 1 00 00 1 

100 
=[(o10 

00 1 

=13 

b E3EoE1A = I3 

E; 'EsE2E1A =E; I3 {premultiply by E, *} 

E2E1A=E; 

E, 'E2E1A = E; 'E; 7! 

E1A=E, 'E;! 

  

a b al|ll 00 

=10 cal010 

00d|0O0O1 

1 
1 2 1= 0 

a a 

o - 

o 
o 

2
=
 

o
o
l
 

o 

- 
o 

  

2 
—
 

e
 

—
 

o 
o 

— 

o 
= 

o - 

= 
o
l
a
 

| 

o
 

o
 

o
n
l
»
—
g
l
 

a
l
=
 

o 
[=]

 

{premultiply by E,~ I 

{premultiply by E,~ B 

o 
= 

o 

= 
o 

N 

o
 

o
 

=
 

o 
= 

o 

=
W
l
 

O
 

—Ry — Ry 

—Rs — Ro 

Ry — —Rs — Ry 

1 
- R: R gt — Hs 

b 
Ry — (17—)R3~>R1 

c 

Ry — 2R3 — Ry 
c
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1 —-b b—c 

a ac cd 
1 — 

Al=]o = =2 
c cd 

0o 0 L 
d 

9 a 

(A1) 
abec|l0O0 

=|0de|010 

00 fl0OOT1 

b 1 1 1220200 Ry — Ry 
a a a a 

~ e 1 1 
01 -0 -0 SRz = R 

00 flo o1 

d—be |1 —b b 102212 Z 0\ Ri-"R—~ R 
ad a ad a 

e 1 
~|101 - 0o - 0 

d d 
1 1 

00 1 0 0 =) 2R3 —Rs 
) r 

1 —-b be—cd cd — be 
100|- — Ry — R R 

a ad adf 1 ( ad ) 3 

1 —e e 
~ 0 - —_ Rz — =R R: 010 7 o 273 3 — It 

1 
001[{0 o0 - 

! 
={|A! 

(l ) 1 —b  be—cd 

a ad adf 

A-l=1]o0 L —¢ 
= d df 

0 0 ! 
f 

b If E is the elementary matrix then 

EA=B {given} 

(EA)C = BC  {postmultiply by C of appropriate size} 

E(AC) = BC 
BC is obtained from AC under the same elementary 

operation. 

EXERCISE 11.1 B 

1 a w v are nx1 matrices, so we let u = (u;;) and 

v=(vi1), i=1,2,3, .., n 

Now u+v = (uj1)+ (vi1) 

= (us1 +vi1) {addition} 

= (vi1 + ua1) 
=v+u forall u,veR" 

b u, 0 are n» x 1 matrices, so we let u = (u;1) and 

0=(01), i=1,2,3 ...m. 
Now u+0 

= (ui1) + (0i1) 
= (ui1 + 0i1) 

{addition} 

= (u1) 

=u 

ut+t0=0+u=u 

and O+u 

= (0i1) + (ua1) 
= (031 + ui1) 

{addition} 

= (ui1) 
=u 

for all uw € R™. 

¢ u,v,and w are n X 1 matrices, so we let u = (u;1), 

v=(vi1), and w= (w;1), 1=1,2,3, ..., n. 

Now (u+v) +w = ((ui1) + (vi1)) + (wi1) 
= (ui1 +vi1 +w;iy)  {addition} 

= (ui1) + (vir + wir) 
=u+(v+w) forallu,v,and we R" 

2 a uwisan m X 1 matrix, so we let u = (u;1), 

i=1,2,3, ..,n 

Now  c1(c2u) = e1(ca(uir)) 
= c1(cauin) 
= ciea(uin) 
=cijcou forallu € R"™ and c1,c2 € R 

b wisan n x 1 matrix, so we let u = (u;1), 

1=1,2,3, .., n. 

Now (1 +c2)u 

= (c1 + e2)(uin) 
= ((e1 + c2)uin) 

= (erui1 + c2uit) 

= (cruin) + (c2uin) 
= c1(ui1) + c2(ui1) 
=cju+cou forall u € R"” and cj,co ER 

)@ () =0 =-5 

2 -1 (1)+(3)- v 
=10 

the vectors are not mutually orthogonal. 

3 1 
b —1 |e| 3| =3-34+0=0 

2 0 

3 3 
—1 |e| -1 | =9+1-10=0 
2 —5 

1 3 

3 ]e|l -1 ])=3-3+0=0 
0 -5 

the vectors are mutually orthogonal. 

4 -1 
< 0 ]e 3 =—-44+0+4=0 

1 4 

4 2 
0 ]e 2 =84+0-1=7 
1 -1 

-1 2 
3 . 2 =-246-4=0 
4 -1 

the vectors are not mutually orthogonal. 

4 Let vectors v and vo 

be orthogonal in R2. 3 
1 

V2 

In R, any vector v3 that is orthogonal to vi must cither have the 

same direction as vz, or the opposite direction to va. 

In either case, v and v3 are not orthogonal. 

Hence, a set of 3 vectors in R? cannot be mutually orthogonal.



4 1 

a If -1 |e| 3 |=0 

2 k 

then 4—-3+2k=0 

__1 
k=-3 

the vectors are orthogonal if k = —%. 

3 1 
b If 1 |e| k-1 |=0 

k 1 

then 3+ (k—1)+k=0 

2+2k=0 

k=-1 

3 k 
If 1 |e| -4 |=0 

k -7 

then 3k —-4—-Tk=0 

—4k—4=0 

k=-1 

1 k 
If k—1]e| —4 | =0 

1 -7 

then k—4(k—1)—7=0 

—3k—3=0 

k=-1 

the vectors are mutually orthogonal if k& = —1. 

1 —2 8 

Suppose  c1 0 +co 1 = -3 

-3 3 —15 

for some ¢1, ca € R 

c1 —2c2 =8 

co = —3 

—3c1 + 3¢co = —15 

c1 =2 and c2 = -3 

8 1 —2 

-3 =2 0 -3 1 

—15 -3 3 

1 —1 1 -3 

a Suppose c¢1 0 |4+e2| 2 |+e3| 4 =| -2 

-1 3 -1 9 

for some ci, c2, c3 € R 

cp— c2+ c3=-3 

2¢o +4c3 = —2 

—c1 +3ca— e3=9 

which has augmented matrix 0 2 4 | -2 

-1 3 -1 9 

which has reduced row echelon form 

1 0 0| 2 

0 1 0] 3 {using technology} 
0 0 1]|-2 

c1 =2, c2=3, and c3=—2 

-3 1 -1 1 

-2 | =2 0 +3 2 -2 4 

9 -1 3 -1 
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—3 c1 

b -2 | = (v1 | Vo |V3) ca 

9 c3 

1 —1 1 2 

= 0 2 4 3 

-1 3 —1 —2 

1 -1 2 -3 

a Suppose c1| —1 | +ec2| 1 +e3| 0 ) = 1 

1 -1 1 —2 

for some ¢y, c2, c3 € R 

c] —c2 +2c3 = -3 

—c1+c2 =1 
c1—ca+ c3=-2 

1 -1 2| -3 

which has augmented matrix -1 1 0f 1 

1 -1 1|-2 

which has reduced row echelon form 

1 -1 0]-1 

0 0 1|-1 {using technology} 
0O 0 0|0 

¢cg—cy=—1, and c3=—1 

One solutionis ¢; =0, c2 =1, cg = —1. 

-3 1 -1 2 

Thus 1 =0 -1 )+1 1 —110 

—2 1 -1 1 

-3 c1 

b 1 |= (V1|V2|V3) c2 
—2 c3 

1 -1 2 0 

= -1 1 0 1 

1 -1 1 —1 

2 -2 4 a 

Suppose ¢ 1 +eco| =1 | +ec3 2 = b 

-2 0 -3 c 

for some ¢y, c2, cg € R 

2¢1 —2co +4c3 =a 

c1— c2+2c3=5b 

—2c1 —3c3 =c 

which has augmented matrix 

2 —2 4 |a 

1 -1 2 |b 

-2 0 =3|c 

1 -1 2 |b 

~[ 2 -2 4]a Ry < Ry 
-2 0 -3 |c 

1 -1 2 b 

~[0 0 O0|la—-2b Ry —2R; — R» 
0 -2 1]|2b+c¢c R3 +2R; — R3 

1 -1 2 b 

~10 =2 1[2+¢ 

0 0 0|a—2b Ry < Ry 

If a # 2b, the system is inconsistent and .". has no solutions. 

So, if a = 2b, the system has at least one solution. 

a 

b is a linear combination of the given 3 vectors.
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2 1 —1 3 EXERCISE 11.2 HESSS————————— 

10 Suppose c1| 1 | +c2| 1 J+es| 2 | = -2 1 a Let W be a subspace of R™. 
1 -1 —8 0 If we W, then Ow € W as W is closed under scalar 

for some cq, c2,c3 € R multiplication. 

2c1 +co— e3=3 = 0eW 
el 4o+ 2e3 = —2 Thus, every subspace of R™ contains the zero vector 0. 

el —ca—8c3 =0 b Consider W = {0} 

2 1 -1| 3 As 0 € W = W is non-empty. 
which has augmented matrix 1 1 2 | -2 M fuvew = u=0 and v=0 

1 -1 -8(0 
= u+v=0 

which has reduced row echelon form = utvew 

10 =310 . 2) If ceR and ueW = cu=c0 
01 510 {using technology} - —0 
00 0|1 = 

Lo = ameW 

The last row 1n<_hc_ates 0_: 1 From (1) and (2), W is closed under vector addition and 
the system is inconsistent scalar multiplication 

no solutions for c1, c2, c3 exist. - W = {0} isa subspace of R". 

3 

—02 cannot be written as a linear combination of 2 W= c-3 ), zzeRr 

z 
these vectors. 

1im s . . . ul vl 
The three vectors lie in a plane, and the point does not lic on Let u=| u—3 and v= | v -3 | ew 

that plane. us v3 

a 1 0 0 w1+ o1 
11 Suppose b )=k |1 |+k| 1| +k3| O utv=|wtv—6|¢w 

c 1 1 2 ug + s 

k1 =a {For u + v to be in W, the 2nd element would have to be 

k1 + k2 =b ui + v — 3.} 

k1 + ko +2ks =c . W is not closed under vector addition. 

Thus ki —a, ke —=b—a, ks—= c—a *2(1’ —a) = W is not a subspace of R3. 

—_b a 
ks = = i b 

2 3 Consider Wy = . a=2b=0, c+d=2 

So, as ki1, ko, and ks can be determined uniquely for a given q 

“ 2 
vector b |, every vector of R3 can be written as a lincar 0 

c oo W= ¢ ceR 

combination of the 3 given vectors. 2 ¢ 

2 1 0 0 2 9 
For example, 5 =21 |+3[1)—-6]0 0 0 

_7 1 1 2 Let u= us and v = vs ceWw; 

—7-5 2—u 2 —w; 
{ss k=2 ky=5-2=3 hyi=—— =6} s 3 

4 
12 F t distinct basi it 1 or any two distinci asic unit vectors s oudv= 0 ¢ Wl 

0 0 u3 + v3 

0 0 4— (u3 +v3) 
: {For u + v to be in W, the 1st clement would have to be 2, 

e = 1 th position and  ej = 1 jth position and the 4_th element would have to be 2 — (u3z — v3).} 

W1 is not closed under vector addition. 

: . = W is not a subspace of R%. 

0 0 a 

e;ee; =0(0) +0(0) + ... +1(0) + ... + 0(1) + ... +0(0) Consider W = ch a=0, ct+d=0 

bt : 
ith position  jth position 

—0 0 
- b 

the set of basic unit vectors e, €2, ..., e, is mutually Wa = c b,ceR 

orthogonal. —e



7 

0 0 

Let u= w2 and v = v2 € Wa 
us v3 

—u3 —v3 

0 
u2 + v2 ; — W- 

uty u3z + v3 £ W2 

—(u3 +v3) 
0 0 

and if c€R then cu=c w2 = cuz € Wo 
u3 cug 
—us —cug 

Wa is closed under vector addition and scalar multiplication 

and as Wa is non-empty, 

= Wb is a subspace of R4, 

If u,v€R"™ then u+ v e R™ and cu € R™ where ¢ € R. 

Thus R™ is closed under vector addition and scalar multiplication, 

and as R™ is non-empty, R™ is a subspace of itself. 

x 

Consider W = 2z +1 z €R 

0 

ul 1 

Let u= 2up + 1 and v = 2v; +1 ew 

0 0 

ul + v 

ut+v=| 2(u+v)+2 | ¢W 
0 

{For u + v to be in W, the 2nd clement would have to be 

2(ug +v1) + 1.} 

W is not closed under vector addition. 

= W is not a subspace of R3. 

xy 

2 

Consider W ={¢x=| T3 Ax=0 

n 
As 0 e W = W isnon-empty {AO =0} 

Let vi,vo € W Avi =0 and Avy =0 

A(v1 + v2) = Avy + Avg 

=0+0 

=0ecW 

and if ¢ € R then A(cevi) =cAvy =¢(0) =0 W 

Thus, for vi,vo € W, vi +vo € W and cvy € W. 

W is a non-empty closed subset under vector addition and 

scalar multiplication. 

= W is a subspace of R™. 

a Every subspace of R? is either: 

(1) {0}, (2) aline through O, or (3) R2. 
Proof: 

(1) We proved in 1 a that {0} is a subspace of R™ and 

o of RZ, 
(2) Suppose W is a subspace of R? where W # {0}. 

Let W contain a non-zero vector u. 
= W contains all vectors cju, ¢; € R 

{closure under scalar multiplication} 
and if these are the only vectors in W then 

W = {ciu | ¢1 € R} which is a straight line through 

0(0, 0) with direction vector u. 
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(3) Suppose now that W contains another non-zero vector v, 

v ERS, 
= W contains all vectors cav, c2 € R 

= W contains all vectors cju + cov 

= WisR2 
{any vector in R? is a linear combination of u and v} 

b Every subspace of R? is either (1) {0}, (2) a line through 

0, (3) a plane through O, or (4) R3. 

Proof: 

(1) We proved in 1 a that {0} is a subspace of R™ and 

o of RS, 
(2) Suppose W is a subspace of R® where W # {0}. 

Let W contain a non-zero vector u € R3. 

= W contains all vectors cju, ¢; € R 

{closure under scalar multiplication} 
and if these are the only vectors in W then 

W = {ciu | ¢c1 € R} which is a straight line passing 

through the origin O(0, 0, 0) with direction vector u. 

(3) Suppose W contains another non-zero vector v, v € R3. 

= W contains all vectors cav, c2 € R. 

= W contains all vectors ciju + caov 

= W ={ciu+ cov|eci,c2 € R} 

= W is a plane through O(0, 0, 0). 

(4) Finally, if W contains another non-zero vector w, 

w e R3. 
= W contains all vectors c3w, c3 € R 

= W contains all vectors cju + cov + caw 

= WisR3. 
{any vector in R? is a lincar combination of u, v, and w} 

EXERCISE 11.3 

s ewew{(2): () 
  

  

1 1 
:{61<O>+Cz<1> cl,czeR} 

:{(CI+CQ> cl,czER} 
c2 

=R? 

0 
b W=Ilinq 0 

2 

0 
=<ec1 | O c1 €R 

2 

0 
= 0 c1 €R 

2c1 

which is the z-axis in 3-dimensional Cartesian space. 

1 
¢ W =lin 2 

3 

1 
=< 2 c1 €ER 

3 

c1 

= 2¢1 c1 €ER 

3c1 

which is a straight line passing through the origin 

0(0, 0, 0).
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d W =lin 2 

ca| 2 ) +e ci,c2 €R 

c1 
= 2c1 +c2 

c1 + 3c2 
ci,c2 €R 

Let  =c1, y=2c1 +c2, and z=rc1 + 3c2 

then y =2z +c2 and z =z + 3co. 

zZ—T 

3 
3y—6br=z—-x 

5t —3y+2z2=0 

y—2r=   

z 
w = Y 

z 
S5z —3y+2=0 

which is a plane in R passing through O(0, 0, 0). 

e W =lin{es, e, e3, e4} 

1 0 0 0 

—in 0 1 0 0 
- 0’ [V 1/ 0 

0 0 0 1 

1 0 0 0 

0 1 0 0 
=qcl o] teel g tes| 1| Tl g 

0 0 0 1 

c1, c2,¢3, ¢4 €R 

c1 

= 2 c1, c2,c3, ¢4 ER 
cs 
¢ 

=R* 

2 a Suppose (Z):cl(;)+62<i) for some ¢1, co € R 

z\ _ (1 3 c1 

y) \2 4 co 

This is a linear system of the form x = Ac where 

[A|=4—6=-2 
Since |A| # 0, A™! exists, and so a non-trivial solution 

exists for c. 

= W spans R2. 

b If x:(;), then (;) = 

—
~
 

o 
o 

&
2
 

~
—
 

Il 

c1=-2, c2=3 

7 1 3 (£)==(2)+(3) 
T 1 1 —2 

3 Suppose y |=c |0 |+c| -1 |+ecz| 3 
z 1 0 1 

for some c1, c2, c3 € R 

T 1 1 -2 c1 

y|l=10 -1 3 c2 

z 1 0 1 c3 

This is a linear system of the form x = Ac where 

  

-1 3 0 3 0 -1 
|A‘*1’0 1’_1‘1 1‘_2‘1 0 

=-1+3-2 

=0 

Since |A|=0, A~ does not exist. 

= W does not span R3. 

T 1 0 2 

4 a Suppose y |=c| 2 |+ec2| 1 |+es| O 

z 0 2 1 

for some c¢1, ¢c2,c3 €R 

x 1 0 2 c1 

Y = 2 1 0 [ 

z 0 2 1 c3 

This is a linear system of the form x = Ac where 

10 2 1 
‘A|*1‘2 1‘_0+2‘0 2 

=1+8 
-9 

Since |A| # 0, A~! exists, and so a non-trivial solution 

exists for c. 

= W spans R3. 

6 6 10 2 o1 
bIf x=|[7 then 7T1=12 10 ca 

8 8 0 2 1 c3 

a 1 0o 2\ /6 2 
e |=12 10 71=13 
c3 0 2 1 8 2 

{using technology} 

c1 =2, ca=3, and c3 =2 

6 1 0 2 

T)=22|+3|1|+2[0 

8 0 2 1 

1 -1 

5 lin 2], | 2 
1 3 

1 -1 

=<1 | 2 | +e 2 ci,e2 €R 

1 3 

¢l —c2 
= 2¢1 + 2¢2 cl,c2 ER 

c1+ 3c2



  

    

  

  

Let =c1—c2, y=2c1+2c2, and z=rc1+ 3c2 

Solving ¢1 —c2 =z 

=¥ 01+6272 

Yy 2 = Y c1 x+2 

2z +y 
c1 = 

4 

Y 
and 62:5761 z=rc1+ 3c2 

227214’@/ 2:21+y+3(y_21) 
3 2 4 4 

2 — 2z —y 4z =2z +y + 3y — 6z 

= 1 o4z = —dx 44y 

_y—2 

T4 
the equation of the planeis z —y+ 2z = 0. 

1 o 

6 a Let u= y1 |, v= Y2 bein S,andlet c € R 

21 2o 

1 + T2 
u+tv= y1 + Y2 which € § 

2(z1 + 22) 

x1 cxry 

and cu=rc Y1 = cy1 which is also € S 

2z, 2crq 

Thus, S is non-empty, and is closed under vector addition 

and scalar multiplication. 

= S is a subspace of R3. 

x 0 1 

b Let Y =ci| 1 |+c2| O for some c1, c2 € R 

2x 1 3 

which has augmented matrix 

0 1| =z 

1 0|y 

1 3|2z 

1 3|2z Ry — Ry 
~(0 1] = Ry — R 

1 0|y Ry — R3 

1 0 —x Ri —3Ry; — Ry 
~ |0 1 T 

0 —-3|y—2 Rz — R; — R3 

1 0| —= 
~|0 1 x 

0 O0|y+z R3 + 3R2 — R3 

From row 3, solutions for ¢; and ez only exist for z+y = 0. 

x 

Vectors of the form Y where = +y # 0 cannot be 

2x 

0 1 
written in the form ¢; | 1 | +c2 | O 

1 3 

Wy does not span S. 
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T -1 1 

¢ Let y =c1 3 +eco| —1 

2z -2 2 

    

-1 1 T 22 @) (; —2 2 2 2 

which has augmented matrix 

-1 1 T 

3 —1ly 

-2 2 |2z 

1 1| -z 

~1 3 -1y “Ri — Ry 
-2 2 2z 

1 -1 —z 
~10 2 |y+3z R2 —3R1 — Ra 

0 0 0 R3 +2R1 — Ry 

2c0 =y+3z and c¢1 —c2 = —x 

=2 +y o — 3z +y 
1=—— 2=—3 

For any z and y, there exists a unique solution to ¢1 and ¢z 

such that 

x —1 1 

Yy |=a 3 +co 1 
2z —2 2 

= W does span S. 

7 Proof: 

Let u and w be in W. 

u=cjvi +ca2va +¢3vs + ... + Crvp 

and w = kivy + kova + k3vz + ...+ kpve 

where ¢; and k; € R 

Since Vi, V2, V3, ..., v € W, W is not empty. 

Also u+v={(c1 +k1)vi+ (c2 + k2)va + .... + (cr + kr)vr 

utwew 

and cu = c(c1vi +cava + ... + cpVp) 

= cc1V1 + ccava + ... + cervy 

cuce W 

W is closed under vector addition and scalar multiplication. 

Hence, W is a subspace of R™. 

Let z = mivi +mava + ...+ m.v, bein W, 

and let V' be any subspace of R™ containing vi, V2, V3, ...., Vp. 

MiV1, M2V, M3V3, ..., MpVp €V 

{V is closed under vector scalar multiplication} 

and mivy + mava +m3vs + ... + mpvp €V 

{V is closed under vector addition} 

zeV 

Thus every element of W is also an element of V' 

wcCv 
W is the smallest subspace containing vi, v2, V3, ..., V.
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EXERCISE 11.4 B 

1 a If xie1 + xoes + x3e3 =0 then 

1 0 0 0 

z1| O | +a2| 1 | +23( O | =10 

0 0 1 0 

x1 0 

z2 | =1| 0 

xs3 0 

z1 =xz2 =23 =0 

the system has only the trivial solution 

{e1, ez, e3} are linearly independent. 

1 1 1 0 
bIf 1 0 | +a2| 1 | +z3| 1 =10 

0 0 1 0 

then z1 +z2+23 =0 

22 +x3 =0 

x3 =0 

z3 =0, 20 =0, 21 =0 

the system has only the trivial solution 

1 1 1 

0|, 1], 1 are linearly independent. 

0 0 1 

0 -1 2 0 
cIf 1| 1 |+=x2| O +z3| 3 |=10 

0 —2 4 0 

then —x9+2z3 =0 

x1 +3z3 =0 

—2x2 +4x3 =0 

which has augmented matrix 

0 -1 2|0 
1 0 3|0 
0 —2 4|0 

1 0 3|0 
~[0 1 —2|0 {using technology} 

0 0 0|0 

z1+3xz3 =0 and x2 —2z3 =0 

If z3 =t then z9 =2t and z; = —3t 

T -3 

T2 =t 2 |, t €R, which is a non-trivial 

x3 1 

solution. 

v1, v2, and v3 are linearly dependent. 

t 1 1 0 

2 Consider z1| 1 | 4+ax2| ¢t | +23( 1 | =10 

1 1 t 0 

t 1 1 T1 0 

1t 1 z2 | =10 

11 ¢ z3 0 

The system has AM 

t 1 10 
1t 10 
11 tf|o 

1 1 t]|o Ry < R3 
~1 ¢t 1]0 

1 10 

1 1 t 0 
~[o t—1 1-¢t|o0 Ra — Ry — R2 

0 1—-t 1-t2]0 R3 —tRy — Ry 

1 1 t 0 
~[o0o t-1 1t 0 

0 0 —t2—t+2|0 R3+ Ry — R3 

The vectors are linearly independent if the system has only the 

trivial solution x1 =z = 23 = 0. 

From row 2 and row 3, this is when 

t—1#0 and —t2—t+2#0 

t#1 and (t+2)(t—1)#0 

t#—2orl 

t 1 1 
L), (t ). |1 are linearly dependent when 

1 1 t 

t=—2orl. 

3 a As Ou+1lv+ (-1)v=0, 

u, v, v are linearly dependent. 

b As —lu+1v+ 1(u —v) =0, 

u,v,and u — v are linearly dependent. 

¢ As —2u+1(u+v)+1u—-v)=0, 

u, u+v, and u — v are lincarly dependent. 

4 Consider u, v e R2. 

u, v are linearly dependent 

& au+bv=0 forsome a, b€ R, both are not zero 

& au=—bv 

b . 
S u=——v if a#0 

a 

< uis a scalar multiple of v (if b # 0) 

or u=0 (if b=0) 

5 Consider 0, u,andv € R3, thenas 10 + Ou + Ov = 0 where 

the scalars are not all zero 

= 0, u, and v are lincarly dependent. 

6 If {vi, v2, va} is lincarly dependent then 

z1v1 + xave + x3vy = 0 where 1, 2, x3 are not all zero 

= x1V1+x2ve +x3v3 +0vqy = 0 where z1, x2, z3, 0 are 

not all zero 

= {v1, v2, v3, v4} is linearly dependent. 

1 -1 
7 alf u=|21], v= 1 then 

1 3 

2x3—-1x1 

I1x—-1-1x3 

1x1-2x-1 

5 
—4 
3



1 -1 5 0 

Consider z1| 2 |+ 22 1 +xz3| -4 |=| 0 

1 3 3 0 

1 -1 5 T1 0 

= 2 1 —4 z2 |=1| 0 

1 3 3 3 0 

= x1 — x2+523 =0 

221 + x2 —4x3 =0 

x1 +3x2 +3x3 =0 

which has augmented matrix 

1 -1 510 

2 1 —410 

1 3 310 

1 0 0)0 

~10 1 0f0 {using technology} 
0 0 1]0 

= x = w2 = w3 = x4 — 0 which has the trivial 

solution. 

Thus u, v, and u X v are lincarly independent. 

u1 
b If u=| ue and v is a scalar multiple of u 

u3 

kuy 

then v=| kuz |, kER 

kus 

uokus — uzkus 

uxv=| usku; —uikus 

urkus — uskuy 

0 
=10 

0 

using 5, u, v, and u X v include O so they are lincarly 

dependent. 

no, the result in a is not true in general. 

8 Proof: 

(=) If vq, v2, and v3 are vectors of R® which are lincarly 

dependent, then ¢1v1 + cava + c3vz = 0 for some 

c1, c2, ¢z which are not all 0. 

c1vy = —cava —cavy if ¢ #0 

€2 c3 
Vi = ——vy — —v3 

c1 c1 

= vj is a linear combination of vo and v3. 

(<) Ifvy is a linear combination of vo and v3 

then vi = xava + x3V3 

—V1 + z2v2 +23v3 =0 

—1, x2, z3 is a non-trivial solution to 

c1v1 + cava + c3vy = 0 
= Vi, v, and v3 are linearly dependent. 

EXERCISE 11.5 I 

1 3 1 

Tvi=|2], va=| 3|, v3=| —1 

1 4 3 

(1) Suppose there exists 1, 22, 3 in R such that: 

T1V1 + x2v2 + x3v3 = 0 
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1 3 1 0 

= x1| 2 | +a2| 3 |+a3| -1 |)=]0 

1 4 3 0 

1 3 1 T 0 

= 2 3 -1 z2 | = 0 

1 4 3 x3 0 

which has augmented matrix 

1 3 110 
2 3 —-1]0 

1 4 310 

1 0 0f0 

~10 1 00 {using technology} 
0 0 1f0 

The system has the trivial solution z1 = z2 = 23 =0, so 

v1, v2, and vz are linearly independent. 

1 3 1 

(2) Now A= (vi|va]va)=1[2 3 -1 

1 4 3 
has |[A|=-3#0 

Vi, V2, v3 span R3. 

From (1) and (2), vi, v2, and v3 are linearly independent, and 

form a basis for R3. 

0 0 1 
2 avi=|0}), va=| 1], vs3=1|1 

1 1 1 

(1) Suppose there exists 1, z2, 3 in R such that: 

T1V1 + x2ve + x3v3 =0 

0 0 1 0 
= z1| 0 | +x2| 1 | +ax3| 1 = 0 

1 1 1 0 

0 0 1 T 0 

= 0o 1 1 T2 = 0 

1 1 1 3 0 

which has augmented matrix 

0 0 110 

0 1 1|0 

1 1 1|0 

1 0 0)0 

~10 1 0f0 {using technology} 
0 0 1]0 

The system has the trivial solution z; = 22 = x3 =0, 

SO Vi, Vo, v3 are linearly independent. 

0 0 1 

(2) Now A= (vi|va|va)=[0 1 1 

1 1 1 
has |A|=-1#0 

V1, V2, V3 span R3. 

From (1) and (2), v1, v2, and v3 form a basis for R3. 

1 2 3 

b vi= 0 |, va= 1 L ovz=| —1 

-1 -1 —4 

1 2 3 

A=(vi|vz2|vz)=| 0 1 -1 
-1 -1 -4 

has |A|=0 

V1, v, v3 do not span R3 

V1, V2, v3 is not a basis for R3.
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1 -1 1 

cvi=| 2], voa= 1 , V3= 3 

3 4 10 

(1) Suppose there exists z1, z2, 3 in R such that: 

x1v1 + x2ve + x3vy = 0 

1 —1 1 0 

= x| 2 | +x2 1 +z3| 3 =|0 

3 4 10 0 

1 -1 1 1 0 

= 2 1 3 z2 | =1 0 

3 4 10 T3 0 

which has augmented matrix 

1 -1 1{o0 

2 1 310 

3 4 10|0 

1 0 0]0 

~10 1 0f0 {using technology} 
0 0 1|0 

The system has the trivial solution z; = 22 = z3 =0, 

S0 V1, V2, v3 are linearly independent. 

1 -1 1 

(2) Now A= (vi|va]vs)=1|2 1 3 

3 4 10 
has |A|=14#0 

V1, V2, V3 span R3. 

From (1) and (2), v1, v2, and v3 form a basis for R3. 

alf 4+2y—32=0 andwelet y =35, 2z =1 then 

T =—2s+ 3t 

T -2 3 

= y |=s| 1 +tl O forall s,t€R 

z 0 1 

—2 3 

1 S 0 is a basis. 

0 1 

biIf z+2=0 

then == —z 

So,if z=t, x=—t, y=s 

T 0 -1 
= y | =s[ 1]+t 0 forall s,t e R 

z 0 1 

0 -1 

1], 0 is a basis. 

0 1 

T 1 

< y | =t| -5 forall ¢t € R, 

z 2 

1 

=5 is a basis. 

2 

a 1 0 

d b =al 0 |+b[ 1 forall a,beR 

a—b 1 -1 

1 0 
o1, 1 is a basis. 

1 -1 

4 a The system has AM 

(1 2 3|°)~< o & 
2 -1 7|0 1 o 1 -3 

The free variable is z3. 

    ) 
{using technology} 

Letting z3 =t, we find zo = %t and =1 = —%t. 

17 
x1 5 

Thus zo | =t % , teR 

T3 1 

_17 
5 

% spans the solution space 

1 

17 
5 

% is a basis for the solution space, 

1 

and dim(S) = 1. 

b The system has AM 

  
1 

1 1 -1]o0 o 3 |o 
3 ; ;1 25 8 ~1o0 310 

- 00 0|0 

. using technology 
The free variable is z3. { } 

Letting @3 = ¢, we find 22 = gt and =1 = —%t. 

1 
x1 2 

Thus zo | =1t % , teR 

T3 1 

_1 
2 

% spans the solution space 

1 

1 
2 

S = % is a basis for the solution space, 

1 

and dim(S) = 1. 

¢ The system has AM 

11 -1 1o 0o 3 0 
2 -1 2 -1|0)"\o @ -4 1 

0) 3 0 

{using technology} 

  

The free variables are x3 and x4. 

Letting z3 = s, x4 = t, we find a2 = %s —t and 

T = —%s. 

1 
x1 3 0 

4 -1 2 3 | 4 , steR 
z3 1 0 

1 T4 0 

_1 
3 0 

4 _ 
3 and 0 span the solution space and 

1 
0 1 

arc linearly independent.



_1 
3 0 

4 -1 
S = 3 , 0 is a basis for the 

1 1 
0 

solution space, and  dim(S) = 2. 

d The system has AM 

  1121 2]|0 1000 00 
1101 3|0 ofoo o0jo 
230130 |oof]o 3]0 
2 32 2 5|0 00 0 3 |o 

. using technology 
The free variable is x5. { } 

Letting z5 = ¢, we find x4 = —3t, z3 = %t, x2 =0, 

and z; = 0. 

1 0 
x2 0 

zs | =t| 3 |, teRr 
T4 73 

x5 1 

0 

0 

% spans the solution space 

-3 

1 

0 

0 

S = é is a basis for the solution space, 

1 

and dim(S) = 1. 

e The system has AM 

  

1 1 2 -1 310 

2 -1 0 1 2|0 

3 0 2 0 5|0 

1 -2 -2 2 —-110 

4 1 1 -1 3|0 

oo o 5o 
8 0 o -1 -&1lo 

~ 5 sing technolo, 0 0 o 3o {using 2y} 

0O 0 0 O 0|0 

00 0 O 010 

The free variables are x4 and 5. 

Letting z4 = 5, 5 =t we find z3 = 7§t, o = 5+§t, 

and x1 = 7%t. 

_5 
x1 0 89 

2 1 9 
xs3 =s| 0 +t| _5 |, s,teR 

x4 1 3 

T5 0 0 
1 
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o
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0 

1 5 
0 and _ % span the solution space and 
1 3 

0 0 

1 

are linearly independent. 

_5 
0 9 

1 5 
S = 01, _5 is a basis for the 

1 3 

0 0 

1 

solution space, and  dim(S) = 2. 

a 1 0 0 

b 0 1 0 
5 a o]l =2l o +b 0 +c o | 

c 0 0 1 

where a, b, c € R 

1 0 0 

0 1 0 is a basi 
ol-lol:- 1o s a basis 

0 0 1 

the subspace has dimension 3. 

a 1 0 

b 0 1 
b 2 =al , +b o | where a, be R 

a+b 1 1 

1 0 

0 1 . . 
5 |- 0 is a basis 

1 1 

the subspace has dimension 2. 

6 {v1, Va2, v3} isa basis of V in R3 

Vi, Vo, va are linearly independent ... (1) 

and vi, va,v3 span V... (2) 

Consider a(vi + v2 +v3) +b(v1 + v2) + ¢(v1) =0 

(a+b+c)vi + (a+b)ve +avz =0 

But, using (1) @1v1 + @av2 + 23v3 = 0 has only the trivial 
solution z1 =z2 =23 =0 

a+b+c=0, a+b=0, and a=0 

a=b=c=0 

v1 + v2 + v3, v1 + va, v are linearly independent. 

Now  a(vi + va +v3) + b(v1 + v2) + evi 

= (a+b+c)vi+ (a+Db)va +avs 

= Z1V1 + T2V2 + T3V3 

= lin{vi, v, v3} 

lin{vi + v2 + v, v1i + v2, vi} = lin{vy, v2, v3} and 

Vi, v2, vz span V' {from (2)} 

vi + v2 +v3, vi + va, vi alsospan V. 

vi + V2 4+ v3, vi + v2, vy are linearly independent and 

span V' 

{vi + v2 + v3, vi + va, vi} is a basis for V.
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EXERCISE 11.6 BN 

1a(101— 7113(1321) 2 2 

1 

b 2, 

1 

2 a Ax =0 has AM 

  

3 
1 2 1 0]o0 0 5 0)0 

— ~ 1 

soaa o) 00 - 0o o o [1fo 
{using technology} 

Letting x3 = t, we find x4 = 0, 22 = —%t, and 

xlf—%t 3 

T 5 

. z2 -1 
Null A is =t 5 1|, teR 

z3 - 1 

4 0 
_3 

5 
1 

which is the subspace spanned by 5 

1 

. 0 
nullity (A) = 1. 

b Ax = 0 has AM 5 4 

2 1 13 10 0 5 5040 
33 15 6[0)~|o0[-% % o]0 
1 -1 11 —-2]|0 oo o o[1fo 

{using technology} 
  

Letting z3 = s, x4 = ¢, we find 5 =0, 22 = %37 %t, 

and @1 = — 25— 3¢ 1 3 3 2 4 
1 3 3 

Null A i o % 7% ull A is ;‘3 =s 1 +t 0 y 

o 0 1 
° 0 0 

where s, t € R which is the subspace spanned by 

2 4 
3 3 
1 1 
3 3 

1 ? 0 
0 1 
0 0 

nullity (A) = 2. 

(1 =2 _ -2 . 
3 aA= (73 6 ) ~R= (0 0 ) {using technology} 

i By Theorem 3, a basis for the row space of R is 

(0 -2} 
by Theorem 1, a basis for the row space of A is 

{(x —2)} 
ii By Theorem 3, a basis for the column space of R is 

() 
by Theorem 2, a basis for the column space of A is 

{(5)) 
iii rank (A) = row rank of A = column rank of A = 1. 

  

10 1 2 0 1 0 
bA=[1 2 -1 3|~R=[0 -1 0 

3 2 1 5 0o o0 o [ 

{using technology} 

i By Theorem 3, a basis for the row space of R is 

{(1 01 0),(0 1 -1 0),(0 00 1)} 

by Theorem 1, a basis for the row space of A is 

{(1 01 0), (0 1 -1 0), (0 00 1)} 

ii By Theorem 3, a basis for the column space of R is 

1 0 0 

of, (1], (o 
0 0 1 

by Theorem 2, a basis for the column space of A is 

1 0 2 

19, 2, 3 

3 2 5 

iii rank (A) = row rank of A = column rank of A = 3. 

  

  

1 1 1 2 4 

2 0 -1 1 0 

¢ A=|3 -1 -3 0 -8 

2 2 2 4 1 

5 1 -1 4 -7 

04 4o 
ol 32 % o _ 

~R= 000 ) m {using technology} 

0 0 0 0 0 

0 0 0 0 0 

i By Theorem 3, a basis for the row space of R is 

{(-10—%%0),(01%;0),(00001)} 
by Theorem 1, a basis for the row space of A is 

{(10o-%£40). (012 30), (00001)} 
ii By Theorem 3, a basis for the column space of R is 

1 0 0 
0 1 0 

o, o], 1 
0 0 0 

0 0 0 

by Theorem 2, a basis for the column space of A is 

1 1 4 

2 0 0 

30, -1 1, —8 

2 2 1 

5 1 -7 

iii rank (A) = row rank of A = column rank of A = 3. 

a For A:(1 3 2), 
2 6 4 

1 2 2 
AT=[3 6 |~R=[0 0 {using technology} 

2 4 0 0 

The first column of R forms a basis for the column space 

of R 
the first column of AT forms a basis for the column space 

of AT 

the first row of A forms a basis for the row space of A 

{( 1 3 2 )} forms a basis for the row space of A.



10 1 2 
b For A=|1 2 -1 3|, 

3 2 1 7 

1 1 3 1 o 2 
0o 2 2 0 [1 1 

T= ~ R = A=l 1 1] ~R={o0 0 o 
2 3 7 0 0 0 

{using technology} 

The first two columns of R form a basis for the column space 

of R 

the first two columns of AT form a basis for the column 

space of AT 

the first two rows of A form a basis for the row space 

of A 

{(1 0 1 2),(1 2 -1 3)} forms a 

basis for the row space of A. 

  

1 1 1 2 4 

2 0 -1 1 0 

¢ For A= 3 -1 -3 0 -8, 

2 2 2 4 1 

5 1 -1 4 -7 

1 2 3 2 5 

1 0 -1 2 1 

Al=]1 -1 -3 2 -1 
2 1 0 4 4 

4 0 -8 1 -7 

15 15 oo 2 
7 7 

0 0 -3 -3 
~R= T 11 ing technol 0o o [1 z u {using technology} 

0O 0 o 0 0 

0O 0 0 0 0 

The first three columns of R form a basis for the column 

space of R 

the first three columns of AT form a basis for the column 

space of AT 

the first three rows of A form a basis for the row space 

of A 

{(t1124),(20-110), (3-1-30-8)} 
forms a basis for the row space of A. 

5 The system has the form Ax = b 

  

1 1 -1 4 

where =1 -2 1 ], b= 6 

2 -1 0 11 

1 
0 -3 

_ 2 i A~R= |0 [1 -3 {using technology} 

0 0 0 

1 0 
a basis for the column space of R is 0, 1 

0 0 

a basis for the column space of A is 

1 1 
S = 1], | -2 

2 -1 
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4 1 1 

Now if 6 =al|l 1 | +0b]l —2 

11 2 -1 

a+b=14 

then a—2b=6 which has no solution. 

2a —b=11 

4 
b= 6 is not in the column space of A 

11 

Ax = b is inconsistent. 

6 For Ax = 0, the AM is 

  

1 3 1 -2 10 11 3 0 0 o]0 
2 6 4 -8 3|0|~[0 0 -2 0|0 
-1 -3 1 -2 5|0 000 o0 [1]o 

Letting @2 = s, x4 = ¢, we find x5 =0, x3 = 2t, and 

x1 = —3s 
T -3 0 

X2 1 0 

Null A is T3 =35 0 +t| 21, 

T4 0 1 

5 0 0 

where s,t € R _3 0 

1 0 
which is the subspace spanned by 0 s 2 

0 1 

0 0 
nullity (A) = 2. 

We will use the transpose method to find a basis for the row space 

  

of A. 

1 2 -1 0 0 
3 6 -3 0 0 

AT = 1 4 1 ~R=|0 0 [1 
-2 -8 -2 0 0 0 

1 3 5 0 0 0 

the three rows of A form a basis for the row space of A. 

{(1 31 -2 1), (2 64 -8 3), (71 —31 -2 5)} 

forms a basis for the row space of A. 

rank (A) =3 

rank (A) + nullity (A) =342 =25, 
of columns of A v 

which is the number 

  

1 1 

7 a 2 is not a scalar multiple of 0 

0 -1 

these vectors are linearly independent 

1 1 

a basis for the subspace is 2, 0 

0 -1 

b The subspace is the column space of A, where 

1 0 1 0 1 
A=[0 1 2 |~R=|0 1 2 

1 1 3 0 0 0 

{using technology} 
a basis for the column space of A is 

1 0 

o, |1 
1) \1
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1 0 kxy 
. 2) For all R, T =T 

a basis for the subspace is O |1 > (@) Forall kR, T(ku) (( ky1 )) 

1 kxy 

1 1 = ky1 
2 is a linear combination of 0 and kx1 + 2ky1 

3 1 
1 

0 =k Y1 
1 so it is not needed in the basis |. z1+ 21 

1 = kT(u) 
8 a The subspace is the column space of A, where Since the addition and scalar multiplication properties are 

0o 0 -1 1 o o satisfied, T is a linear transformation. 

(1 0 1 o 0 
A=lo 1 o |~"R= 10 o 01 o e 

111 0 0 0 2 Let u=| 1wy |, v=| u2 
{using technology} “1 Z2 

a basis for the column space of A is 1+ T2 

0 0 -1 O T+ =T( [ v+ 
1 0 1 21 + 22 
(U 1] 0 
1 1 1 _( mitz2tyrty2 

z1+ 22 — (y1 +y2) 
a basis for the subspace is 

0 0 1 7(x1+y1) (w2+y2) 
- Tz — 29 — 1 0 1 1- Y1 2 — Y2 

of (1) | o =T(u) +T(v) 
1 1 1 ki 

2) Forall k€ R, T(ku)=T k: 
b The subspace is the column space of A, where @ 2 (k) kz; 

00 2 
01 -1 2 @ f _ [ key+kyy 

a1 0 0 15 R — ofo 3 kz1 — kyy 
10 1 0 00 ,% _ z1+y1 
01 1 -1 =k _ 

000 0 1o 

a basis for the column space of A is = kT(u) 

0 1 —1 Since the addition and scalar multiplication properties are 

1 0 0 satisfied, T is a linear transformation. 

1 o]’ 1 

0 1 1 1 2 

3 Let =2 d =11 
a basis for the subspace is e 3 and. v 0 

0 1 -1 

1 0 0 3 9 
1110 1 Now T(u+v)=T 3 :(9 

0 1 1 3 

2 1 2 

1.5 is a linear combination of and T(u) +T(v)=T 2 + T 1 
0 the other three vectors. 3 0 

—1 
3 0 3 

=(6)+(5)=(2) EXERCISE 1).1 B 

1 Let 1 ) o For thiswand v, T(u + v) # T(u) + T(v) 
u= , V= . . . 

Y1 Y2 T is not a linear transformation. 

(1) T(u4v)=T (( o1 i *2 )) 4 Proof: (By the Principle of Mathematical Induction) 
1+y2 

Y Y P, is that  T(kiuy + kauz + ... + kpuy) 

T+ T2 = k1T(u1) + k2T(uz) + ... + k,T(up) for €2+ 
= y1+y2 

T1 + T2 + 2(y1 + y2) (1) If =1, T(kiuy)=kiT(uy) is true 

{scalar multiplication property} 
1 T oo Pyis true. 

= Y1 + Y2 (2) If Pj is true, then 

z1+ 21 T3 + 2y2 T(k1uy + kauz + ... + kjuy) 

= T(u) + T(v) = k1 T(ur) 4 koT(u2) + oo + k;T(wj), j€ZT . (%)



Now  T(kiui + kouz + ... + kjuj + kjy1ujp1) 

= T(kiu1 + kouz + ... + kju;) + T(kjr1u41) 

{addition property} 

=k1T(ur) + k2T(u2) + ... + k;T(uz) + kj 1 T(uj41) 

{using () and scalar multiplication property} 

Thus Py is true, and Pj41 is true whenever P; is true. 

P, is true for r € Z7F. 

5 {((1]) ((1))} is the standard basis for R2. 

(%)) =76()-2(1)) 
= ((5)) - (1)) 
=5(3)-2(3) 
-(2) 

6 Let vlz((l]) and vzz(;) 

Suppose there exists x1, z2 € R such that 

x1V1 + x2ve =0 

(6 2)(2)=() 
which has augmented matrix 

1110y (1 0 
0 2|0 0 1 

the system has only the trivial solution z; = zo = 0. 

g ) {using technology} 
    

So, v1 and vy are linearly independent. 

Now A=(mlw)=(g ) hes [Al=270 
vi and v span R2. 

Since v1 and va are linearly independent and span R2, they form 

a basis for R2. 

() =r((6) +2(2)) 
"((e) o ((2) 
( 
( 

3) e (%) 
=) 

7 {((1]) (?)} is the standard basis for R2. 

()= (1) 
=1((5)) (%)) 

2 -3 

=31 |+7 0 

7 —4 

—15 

= 3 
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1 0 0 

0, 1], 0 is the standard basis for R3. 

0 0 1 

1 1 0 

a T 3 =T[1]{ 0 )+3[ 1 

0 0 0 

1 0 

=T 0 + 3T 1 

0 0 

1 2 

= -1 |+3|1 

2 3 

7 
= 2 

11 

a 

b T b 
c 

1 0 0 
=Tlal O ) +b| 1 | +c| O 

0 0 1 

1 0 0 

=aT 0 +bT 1 +cT 0 

0 0 1 

1 2 5 

=a|l -1 | +b[ 1 |+c| 1 

2 3 4 

a+ 2b+ 5¢ 

= —a+b+c 
2a + 3b+ 4c 

a Consid - (! onsider u = { ; ). 

1 . -1 

Tu)=| 1 and T(fu):T(( 2)): -1 
1 - 1 

Thus T(—u) # —T(u) forall u € R2. 
T is not a linear transformation as Property 2 is violated. 

ro-((9)- (2) 
T is not a linear transformation as Property 1 is violated. 

1 T2 

cLet u=|wy1 |, v=1| v2 
Z1 z9 

r1 + x2 
(1) Tu+v)=T y1+y2 

21+ 22 

= (z1+x2 + Y1 + y2 — 2(21 + 22)) 

= (1 +y1 —221) + (z2 + y2 — 222) 

= T(u) + T(v) 

kxq 

(2) T(ku) =T ky1 
kz1 

= (kx1 + ky1 — 2kz1) 

=k(z1 +y1 — 221) 

= kT(u) 

Since the addition and scalar multiplication properties are 

satisfied, T is a linear transformation.
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x1 T2 

dLet u=/[21 |, v=1 22 
21 z9 

(1) Tu+v) () T(ku) 

1+ T2 kx1 
=T Y1 +y2 =T\ ky1 

21+ 22 kz1 

_( Titz2ty1 ty2 _ [ kx1 +kya 
T \z1 a2 —4(z1 + 22) T \kzx1 — 4kz 

_ (Tt T2 + Y2 —k T1 + Y1 
TNz — 42 xo — 4zo - r1 — 421 

= T(u) + T(v) = kT(u) 

Since the addition and scalar multiplication properties are 

satisfied, T is a linear transformation. 

EXERCISE 1).2 W 

{6 

{3} 1 

¢ nullity (T) = dimension of ker(T) 

d rank (T) = dimension of R(T) =2 

() (o 
(1) 

0 
0 

Y 0 
0 

Y 0 

z—x |0 

2z 10 
T+y+z 0 

L x=y=2=0 

0 

Thus  ker(T) = { <0> } . 
0 

Yy 
. zZ—T 

b Consider w=T(v) = 2% 

z+y+z 

0 1 0 

ol o) 
=\ 2 Yo "* 1o 

1 1 1 

0 1 0 

. -1 0 1 
R(T) =lin > I'ltol o 

1 1 1 

¢ nullity (T) = dimension of ker(T) =0 

d rank (T) = dimension of R(T) =3 

sar((5))= (5 3)(%) 
[ 9-9 

“\-18+18 

oAt (1 -2} (1 -2 . 
LAl = (3 6 0 0 {using technology} 

-2)}. 

a basis for the column space of A is { ( _12 ) } 

an - ( )} 
i (g) ¢ R(T) 

L))~ 

a basis for the row space of AT is {( 1 

o T((é) 

wa (1)) = ()



or T 

and T 

cT Y 

and T 
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O
o
 0o

 
o
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o = a — 
~
~
 

~
 

- 
o 

S
~
—
—
 

S
N
—
 

Il 

_
—
 

o
 

,_. 

—
e
—
o
 

31 2 -1 
saA*<1204) 

Av = 0 has augmented matrix 

3 1 2 -1 

1 2 0 4 

{using technology} 

oy (10 & -%]o 
0 01 -2 1o 

Letting x3 =s, x4 =t, where s,t € R, we find that 

s
 

    

x2:gs——t and xlf——s+6t 

_4 6 
1 5 5 

2 13 
2] = 5 +t| — 5 where s, t € R 
3 1 0 
*a 0 1 

_4 8 
5 5 

2 _13 
ker(T) = lin 5 5 

1 0 

0 1 

3 1 1 0 

1 2 0 1 
T~ ~ b AT = - 0 0 {using technology} 

-1 4 0 0 

T ; a basis for the row space of A* is 

{(x 0). (0 1)} 
a basis for the column space of A is { (é ) , (?) } 

an - (3). (3)} - 
¢ nullity(T) + rank(T) = 2+ 2 

=4 

= dimension of the domain 

1 0o -1 2 
6 a A= 1 2 9 -4 

-2 -1 -3 -1 

Av = 0 has augmented matrix 

1 0o -1 2|0 10 -1 210 

1 2 9 —4(0|~|01 5 =3]|0 

-2 -1 -3 -1]|0 00 0 010 

{using technology} 

Letting x3 =s, x4 =t, where s, t € R, we find that 

xo = —5s+ 3t and =z =s— 2t 

x1 1 —2 

o2 =3 -5 +1t 3 where s,t € R 
T3 1 0 
x4 0 1 

1 -2 

ker(T) = lin _15 s g 

0 1
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3 
o -2 10 -3 z 
0 2 -1 _1 — Y 

b AT — Ss s~ 0 1 5 ker(T) ety | Y eRrR 

00 0 z—y 
2 -4 -1 

0 0 o0 1 0 

{using technology} 0 1 
= , @, R 

-, a basis for the row space of AT is Tl Ty 1 Y 
. 1 —1 {0 —3).(0 1 )} v 

*. a basis for the column space of A is 0 1 

1 0 =lin 1] 1 

0 s 1 . 1 -1 
1 

- 2 N
l
 

b Consider w = T(v) 

RW:M{(&),({)} ~(5um2) 3 1 
:(z+y,z)(é)+(y+wfz)(?) 

0 
1 0 -1 2 _7 —2+2 {for any x and y we can choose z and w to make any 

< —14+18 — 4 
L 1 0 

combination of 0 and 1 } 

-(s) * sam=w{(3)- (1)) 
— w2 0 =R 

| eker(n) ¢ nullity(T) = 2 
d rank(T) =2 

-2 -1 -3 —-1 o —14+21-9+2 

10 -1 2 7721 7-3-4 © 
1 2 9 —4 5 | = 7422748 8 Let T((y) 

. y 
. T 

Il 

/
N
 

~ 
o 

~
—
 

e 

/
N
 

o
o
 

~
—
 2 3 Il g 

—
 

—
~
 

o
~
 

~
—
 

—
 

- 
o 

~
—
 

—
—
 

¢ ker(T) 

N
 
=
W
 

()0 () () () () 
GERANG) o 

z=x+y and w=x—y 

©n L > Il 
~
 -

 | i 

—
O
o
 

=
o
 

o
 

~—
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[
 
R
 

Y 

Av = 0 has augmented matrix 

0 0 

  
) which is already in reduced row 

echelon form. 

Letting y=s, w=1t where s,t€R, 

z=—t and = =s. 

o
 

o
 

where s,t € R 

g 
n
w
 sy

 

ker(T) = lin 

O
O
 

=
 

=
 

{using technology} 

=
=
 

Oo
 
o
 

. abasis for the row space of AT is 

{(x 0). (0 1)} 
*. a basis for the column space of A is 

) 
an =i 

=R2 

d nullity(T) + rank(T) =2 + 2 

= dimension of the domain 

EXERCISE 1).3 B 

a (ToS)(v) = T(S(V) 

-« 
ztz—y—2r 

z+zx—y+2z 

z+z—y 

—r—y+z 
3r—y+z 

b Let T have standard matrix A and S have standard matrix B. 

o= ()] (( 

1 0 0 

and B=|[S 0 S 1 S 0 

0 0 1 

(2 0 0 
1 -1 1 

T o S has standard matrix 

1 0 T T 
1 1 

2 0 0 
= -1 -1 1 

3 -1 1 

x 2 0 
(ToS) y = -1 -1 

z 3 -1 

2 a (SoT)(v) = S(T(v)) 

b Let S have standard matrix A and T have standard matrix B. 

1 0 0 

Now A=|S 0 S 1 S 0 

0 0 1 

0 1 0 
=l -1 0 0 

0o 1 1 

1 0 0 
and B=|T 0 T 1 T 0 

0 0 1 

2 0 0 

= 0o -1 0 

-1 0 1 

S o T has standard matrix 

0O 1 0 2 0 0 
AB=| -1 0 O 0o -1 0 

0o 1 1 -1 0 1 

0o -1 0 
=l -2 0 0 

-1 -1 1 

T 0 -1 0 T 

(SoT) y =l -2 0 0 Y 
z -1 -1 1 z 

Il 

/
N
 

& I
l
 

< 
F
e
 

+
 w 

N
~
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3 T(( z )) _ ( 1 —2) (55) iii AB is the standard matrix for To S and 
Y 2 -3 Y BA is the standard matrix for S o T. 

T has standard matrix A = ( L2 ) AB # BA 
2 -3 ToS # SoT, which agrees with part a. 

Now A~ !l= ( 72 ?) 6 Consider the linear transformations 

T:RF - R™ and S:R" — RF 

((z)) (73 2) (z) Now (ToS)(u+v) 
Y -2 1/ \y 

) =T(S(u+vV)) 

(2 = ( 7322_: yy = T(S(u) + S(v)) {addition property} 

= T(S(u)) -+ T(S(v)) {addition property} 

1 = (ToS)(u) + (ToS)(v) 
and (T oS)(cv) 

= T(S(ev)) 
11 - = T(cS(v)) {scalar multiplication property} 

T has standard matrix A =|{ 2 0 = cT(S(v)) {scalar multiplication property} 
-1 1 - 

=¢(ToS)(v) 
1 1 
3 0 -3 Since the addition and scalar multiplication properties are 

Now A~!l= 7% 1 % satisfied, T o S is a linear transformation. 

-1 1 1 
1 EXERCISE 1).4 B 

1 0 3 @ 12 2 P 2 

s y>: -3 1 3 y ! aA:(4 8)N(0 0) 
z -1 1 1 # A basis of the row space is {( 1 2 ) }, 

. %ac — %z so row rank = 1. . 

— 1 3 A basis of the column space is ) S| v =\ —se+y+3z 11 kjl pace i <4)} 
z “rtytz so column rank = 1. 

But R(T) is the column space of A, 

5o (ToS)(v) and SN so rank (T) = column rank = 1. v 

=T(S(v)) =S(T(v)         

[=]
 

)z bA:(lz 1 3)N<10*§ %) 
: 2 0 -1 1 oM 3 2 

A basis of the row space is 

{10 4 4). (01 
= -y = so row rank = 2. 

<*Z> A basis of the column space is {(;), ((2))}, 

E
N
 

o
 

~
—
 

—
—
 

Il 5 

8 
T
 

| @ 
o
8
 

Il w
 

o
 

T 
—
J
 

o
 

<
 

  

. ToS#SoT so column rank = 2. 

1 0 0 But R(T) is the column space of A, 

b i A=|[T 0 T 1 T 0 so rank (T) = column rank = 2. v 

0 0 1 1 -1 -2 3 1 10 -100 
10 0 ‘A:1717201~0100 

B 01 1 10 00 0 0 
0 2 0 2 1 —-10 3 00 0 o0l 

1 o o A basis of the row space is 

and B=[s{[o]))[s{[1])]}s([o {(1t o 1 0 0) (0 110 0), 
0 0 1 (00010),(00001)}, 

1 0o 0 so row rank = 4. 

=10 0 O A basis of the column space is 

0 -10 1 -1 3 1 
1 —1 0 1 

- 100 1 0 0 1 0 0 0|’ 1 5 1] 0 s 

i AB=(0 01 00 0)=(0-10 9 1 0 3 
020 0 10 0 0 0 

so column rank = 4. 

100 100 100 But R(T) is the column space of A, 

BA=10 0 0 001 )=100 0 so rank (T) = column rank = 4. v 
0 -10 020 00 -1



3 

a The system has the form Ax =b 

  
  

1 -1 1 4 

where A= | 2 1 1|, b=|6|. 

3 3 1 8 

111 o 3 
= ~ 1 Now A= g ; } o 1 : 

00 O 

so rank(A) = 2. 
2 | 10 

1 -1 14 o 3|+ 
= ~ _1f_2 am=(z 1 1]g)~(om ) 

00 O 0 

so rank(A | b) = 2. 

Since rank (A) =rank (A |b), Ax=Db is consistent and 

thus has a solution. 

b The system has the form Ax = b 

  

  

  

12 1] 2 1 o0 1]o0 
Alb)=[1 1 1|-1]~[0 11 0]0 

3 4 3|10 0o 0 ofl 

so rank(A | b) = 3. b 

Since rank (A) # rank (A | b), there are no solutions to 

Ax = b. 

a By inspection, =1 = 3, 

a particular solution. 

The corresponding homogeneous system of equations has 

augmented matrix 

( 11 -1 1]0 ) Mo o 3o 
1 -1 1 2|0 0 -1 - % 0 

Letting 3 = s and x4 =t we find 22 = s+ %t 

zo =0, 23 =0, z4=0 s 

  

    

and z1 = —%t. 

_3 
3 0 2 

0 1 1 
X = +s +t 2 where s, t € R 0 1 0 

0 0 1 

b By inspection, 3 = 1, 23 =0, z2 =0, x4 = 0, 
x5 =0 is a particular solution. 

The corresponding homogencous system of equations has 

augmented matrix 

  1-11 -1 1]o oo -10 10 
11 -1-1-1]0o]~ |00 0o —5fo0 
21 3 -2 10 1 oofm o %]o0 

Letting x4 = s and x5 = ¢, we find z3 = 7%t, 

xzzét, and x, = s. 

0 
0 1 1 

0 0 2 
X = 1 +s| 0| +¢t|] 1 where s, t € R 

2 
0 1 0 

0 0 1 
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EXERCISE 1K.1 B 

1 a For (0,1), 2/ =22+y=20)+(1)=1 

and y'= z—y=0—-1=-1 

©1) (1 -1 
b For (—-1,-3), 2/ =2z +y=2(-1)+(-3)=-5 

and y' = z—y=-1-(-3)=2 

(-1, -3) = (-5.2) 

  y =3z + 2 becomes 

' — 2y =3z +3y +6 

2z’ + 5y = —6 

Hence y:3z+2l>2z+5y:76 

1.0 1,1 32 +3Y 
d From ¢, (z):<:j, ‘;'/) 

Y 3¢ — 3y 
=1 becomes 

2 2 <x/+y,> +(1/—2y/) -, 

3 3 

22422y 4y 242t —ddy 42 =9 

20’2 — 22"y +5y' 2 =9 

  

@ fy? =15 22— 2ay 4 by? = 
1.7 1,7 3% + 3Y 

e From ¢, (m): :;/ 2, 

Y 37— 3y 
: y:xz+1 becomes 

2 !9y ’ ’ 
%: I;y 1 

3z —2y) =22+ 22"y +y' 2+ 9 

3z —6y =2’ 2+ 2’y +y' 2+ 9 

2422y +y' 232 +6y +9=0 

  

y:z2+1L12+2zy+y273z+6y+9:0 

' =az + 
2 a Let S have cquations { , by 

Yy =cx+dy 

We see that the y-coordinate of each point does not change. 

c=0 and d=1 andso v =u. 

We know (2, 1) maps onto (4, 1) 

and (—1,3) mapsonto (—7,3), so 

4=a(2)+b(1) —7=a(-1) + b(3) 

2a+b=4 .. (1) and —a+3b=—-7 .. (2 

Solving simultancously, we get a = 1—79 and b= —10, 
7 

o =19 
Thus, S has equations , T 

Yy =Y 

_ 10 T 7y4
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b Let the object point be (a, b). 

We know (a, b) S, (3, —1), so 

3=1¢ 19 and -1=0 7 T 
19 10 _ b= — Yo+ =3 o 1 

19a +10 =21 

19a =11 

_u 
=19 

So, the object point is (1—1, —1). 

3 Suppose v/ = (a Z) v 

1 
then (Lcl Z) Vi=v 

which is only possible if A = ( 

if |[A|#0. 

()-mr (% 2) () So, = — 1 y) T Tal\—¢ a)\y 
. z\ _ 1 ([ da' —by 
o y) A\ —ca' +ay 

y =mx +k becomes 

1 1 
fi(fcz’ +ay)=m m(dz’ —by)+k 

—cz’ +ay’ =mda’ — mby' + k|A| 

—cz’ —mda’ +ay +mby =k|A| 

—(c+md)z’ + (a+mb)y =k|A]| 

a 

c 

which has the form Az’ + By’ = C where A, B, and C are 

constants. 

So, under the linear transformation v/ = Av, the line with 

equation y = ma + k maps on to another line provided 

|A] #0. 
z) _ 1 dz’' — by’ 

4 From 3, <y>7m<—c:t’+ay’> 

22 + y2 =1 becomes 

2 2 
dx' — by’ + —ca’ +ay’ -1 

[A] [A] B 
d2(L‘I 2 _ 2bdz’y' + b2yl 2 + 62(1)[ 2 _ QGC(L‘/yl + a2yl 2 

=|Af 
(% +d?)x' 2 — 2(ac + bd)z'y’ + (a? +b2)y? = |A \2 

a An ellipse has the form Axz? + By? = C 

So, we require  —2(ac + bd) =0 

b A circle has the form Az? + By? = C  where A = B. 

So, we require  —2(ac + bd) = 0 

and (¢? +d?) = (a® +b?) 

EXERCISE 1K.2 W 

1 a For a reflection in the y-axis, ' = —z and ¢y =y 

-1 0 = (o) 
cos 3  —sing 0 -1 

bA= sinf  cos % :<1 O) 2 2 

Z) is invertible; that is, 

    

A cosf —sing _ % 739 

sing  cos% @ % 

d m=tana = -1 

1—m? 2 
Now cos2a = n and sin2a = m 

1+ m? 14 m? 

_ 0 _ -2 

T2 T2 
=0 =-1 

A= cos2a  sin2a (0 -1 
T \sin2a¢  —cos2a )\ -1 

x e cosf = cos (77) = %, sin @ = sin (7%) =- 

sinf  cos@ 

1 1 
A= (cosé’ 7sin9) 2 2 

f m=tana=5 

    

    

1- 2 
Now cos2a = m and sin2a = m 

14+ m? 1+ m? 

—24 10 
26 T 26 

— 12 -5 
= T 1a =13 

12 5 
A= cos2a sin 2ar _ (713 13 

~ \sin2a  —cos2a ) 5 12 
13 13 

g cosf = cos (7‘%") = 7§, sin @ = sin (7‘%') = 75 

V3 1 
A= cosf —sinf) _ [ T2 2 

~ \sin@ cosf ) 1 V3 
2 T2 

h m:tana:\/g 

1—m? 2 
Now cos2a = o and sin2a = o 

1+ m?2 1+ m?2 

-2 _2V3 
T4 T4 

_ 1 — 3 
=732 ) 

. 1 
cos 2a sin 2ar 2 2 

A= . = 
sin2a  —cos2a V3 1 

2 2 

. _ sr) _ _ 1 o (Br) _ 1 
Icos07cos(4)7 5 smé’fsm(“)f = 

1 1 
A= cosf) —sin@) _ 2 vz 

“\sinf cosf )\ L 1 
V2 V2 

1 L 

a A= \/? ‘{E where |[A|=1 

V2 V2 

Since A has the form (i _ab), A is a rotation matrix. 

ion i — L ing = — L If the angle of rotation is 6, cos @ = 7 and sin@ = 7 

tanf = —1 

0=-% 

the transformation is a clockwise rotation about O 

through .



L L 
b A= \{5 \/? where [A| = -1 

2TV 

A has the form ( fa) 50 A is a reflection matrix 
a 

b 

where cos2a = 715 and sin2a = 715 

tan2a =1 and 0<2a <7 

If m=tana then 

  I 5 =1 which simplifies to 
—m 

2m =1—m? 

m?24+2m—1=0 

—24 VI A (=1) 
2 

m=-1+v2 
But 0<a<% so m>0 

tana = —1 4+ V2 

the transformation is a reflection in the line 

m= 

y=(-14+V2)z. 

Alternatively: 20 =% 

a= % 

Line of reflection is y = (tan %) T 

-5 12 
< A:< 3 13 ) where |A] =1 

2 5 
3 

5 - =
 

a 

b 

If the angle of rotation is 6, cosf = —% and sinf = —} . 

12 tanf = and T <0< % 

0 = arctan (%) 

the transformation is a clockwise rotation about O through 

7 — arctan (15—2) (since cos @, sin@ < 0). 

_1 8 
dA:< " Z) where [A|= -1 

Since A has the form ( ;b ), A is a rotation matrix. 

o 
el 

  

b . . . 
A has the form (‘Z 7a) s0 A is a reflection matrix 

— 15 i =35 where cos2a = —{2 and sin2a = . 

tan2a:—% and § <2a<m 

2Zm 54 
If m =tana then T 15 

which simplifies o 4m? — 15m —4 =0 

(4m+1)(m—4)=0 
1 m=—z or4 1 

But 72 <a<3 so m>0 

tana =4 

the transformation is a reflection in the line y = 4. 

a b 
3 a Let Af(C d) 

()= 2)() 
2’ =azr+by and y' =cz+dy 
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If (V2, —v/2) mapsonto (0,2) we get 

0=+2a—V2b and 2 =+2c—+2d 

cooa=b and c—d=+v2 

Ifwelet a=b=s and d =1t then c=t+2 

s s 
and A_<t+\/§ t)' where s, t € R. 

b i Ifthe transformation is a rotation about O then |A| = 1. 

s S 
bt =st—s(t+v2) =1 

    
- ,9(7’515—\/53:1 

= _1 
= 

cos —sinf 

In Ai(sinQ cos 0 )’ 

1 5 — 1 cos@-—fi and sm9—fi 

1 37 t——fi and 0= <F 

So, the linear transformation is an anticlockwise rotation 

about O through 3T"A 

ii If the transformation is a reflection in y = (tana)z 

    

then |A|=—1. 

t+s\/§ i :stfs(t+\/§):71 

- st—st—\/2s = —1 

5:71- 
2 

cos 2a sin 2a 

In A= (sm2a —cos?a)’ 

-1 _ cos2a = 7 and sin2a = 7 

—_ 1 — t= 7 and 20 =% 

a=% 

So, the linear transformation is a reflection in 

y = (tan §)z. 

cosf —sinf 
4 Az(sin@ cosf ) where |A]=1 

Al 1 cosf  sinf 
T I\ —sinf cosf 

= ATl =AT 

AT represents a clockwise rotation about O through angle 0. This 

is the reverse of rotating the object anticlockwise about O through 

angle 6. 

5 For a reflection in the line y = (tana)z, 

cos20  sin20 
A7<51n29 —00526’) where |A[=—1 

A-l— L —cos20 —sin20 
© -1\ —sin20  cos20 

_ (cos20  sin26 

~ \sin20 —cos20 

=A 

A is its own inverse. If an object is reflected in y = (tana)z, 

then the resulting image is reflected in y = (tana)z, then we 

obtain the original object.
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y:27‘zifl 
5 

—da’ + 3y’ 

7' +y 

:2,<M> 
5 

=10+ 32’ + 4y’ 

=-10 

6 If T is an anticlockwise rotation about O through 727", then 

2 . 2 1 3 Al cos (7%) 75111(7?7') _ -1 % 

(%) (%) )T\ F 
! -3 B T 

T has equations ( ,) = 2 2 ( ) 
Y _¥3 _1 Yy 

2 2 

g EEuVs o, —eV3oy 
2 ’ 2 

—5—-+v3 —5v3+1 a (5,-1) RN (T\/_’ #) 

b From a, (m) = 
Y 

   
3z —1 becomes 

_ —3z’ — 3\/§y' 1 

2 2 

oVBa —y =32 —3V3y —2 

B+ V3)a' +(3V3—1)y' = -2 
the image of y =3z — 1 is 

B+V3)z+(3V3—1)y=—2 

1 \/gz' - y’ 2 
< y = — becomes —0mm8M8M— = ———— —— 

—z! — \/gy' 

y= 

T 2 

7\/5112 +z’y' 73z’y/ +\/§y,2 —4 

V32 22y’ — 3y 2= —4 

    

1 
the image of y = — is v/3z2 + 2zy — V3y2 = —4. 

x 

7 m=tana = -2 

1—m? 2 
Now cos2a = m and sin2a = m 

1+ m?2 1+ m2 

cos2a = —2 and sin2a = —2 
5 5 

_3 _4 
S : — 5 5 

S has matrix A7< 4 3 > 

5 5 

—3z — 4 
a S has equations z’:% 

,_ —dz+3y 

VST 
s [—3(—4) —4(2) —4(—4) +3(2 Thus (~4.2) 5 % ( ;+ ()) 

s 
So, (—4,2) > (3. 2) 

_3 _4 
-1 _ 5 5 

b Now A™" = <,3 3 ) 

5 5 

{A71 = A for a reflection} 

. —3a’ — 4y’ —4a’ + 3y’ 
S has equations = = %, y= % 

the image of y =2 —x under Sis 7z +y = —10. 

_ os —ar' 43y 9’21242’y 116y 2 
* 5 25 

—20z’ + 15y’ = 92’ 2 + 24z’ + 16y 2 

9z’ 2 + 24a’y’ + 16y’ 2 + 202’ — 15y’ =0 
the image of y = 22 under S is 

922 + 24ay + 16y + 20z — 15y = 0. 

  < Yy 

8 For a reflection in y = %x, tana = . ol 

cos2a = 

  

o 

512 . < 5 B ) o 
12 _ 5 
13 13 

Thus 2 — 5z’ + 12y’ _ 122" — 5y’ 

13 13 

mzte 12z'75y':m 5z’ + 12y’ . 

¥ 13 13 

122" — 5y’ = 5ma’ + 12my’ + 13¢ 

(12 — 5m)z’ — (5 + 12m)y’ = 13¢c 

Hence, 12 —5m = 32, —5 —12m = 43, c=1 

5m = —20, 12m = —48, c¢= 

m=—-4, c=1 

the object line has equation y = —4x + 1. 

9 For a rotation about O through ‘%’, 

cosf = 7% and sinf = 2=, 
2 2 

i _1 
(T = 

A= L . 
V2 V2 

1 1 
1_ V2 V2 _ AT and A7 = 1 (=A%) 

V2 V2 
a4y 2 —yf 

Thi = ) us 7 75 

’ ’ ’ , 

y=mz+c — Ifly = (%)4— 

—z' —y = —ma’ +my’ +cV2 

(m -1z’ — (1+m)y =cV2 

Hence m—1=1, 1+m=3, c¢=—1 

= m=2, c=-1 

the object line is y = 2z — 1.



EXERCISE 1K.3 B 

1 0 
1 The stretch has matrix ( 5 ) 

, o 3 o =x 

¥ =3y 
a Hence P(3, 1)—»P’(3,% 

b As z=2a' and y:%y’, 

y:174z~>%y':174z' 

o2y =5 202" 

202’ +2y' =5 

y=1—4x — 20z +2y=>5 

1 3 
2 The shear has matrix (O i) 

P =a+3y 

Y=y 
a Hence Q(-2,6) — Q(—2+ £(6), 6) 

That is, Q(—2,6) — Q'(7.6) 

b Now :c:a:’—%y’ and y=1' 

2 +y?=10 - (@' - 2y +y'2=10 
z/273‘,E/‘7’//+%y/2+y/2:10 

42’ ? — 122"y + 13y’ % = 40 

22 +9% =10 — 4a® — 12zy + 13y = 40 

3 tana = -3 cosa::(:\/L— 
10 

and sina = ;% 

  

Hence cos®a = %, V10 3 

2 9 sin“ o = 75 

. __ 3 and sinacosa = —15 

L 3 1 
A= ( 10 10) 

-3 9 
10 10 

,  ®—3y , —3z + 9y 

"7 YT T 

the projection of (4, —1) onto 3z +y =0 is 

(4 —3(—1) —3(4)+9(-1) o 
o that is, (=%, — 

10 10 ) s (15— 

1 

=z and y =dz+vy 

a  S(=1,-3) — (=1 4(=1)+ (=3)) 
©S(—1, -3) —S8/(~1,-7) 

b z=2' and y= —4x 

4 The shear has matrix (}1 O) 

5 The stretch has matrix ( 0 =
 

= 
o
 

~
—
 

x’:%m and y' =y 

a T(-2,4) — T/(-7, 4) 

1) 
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b x:%x’ and y=1' 

3z —4y=6 — 3(22') — 4y’ =6 

= 32’ — 1y =21 

3z —4y=6 — 3z — 14y =21 

    

  

  

  

6 4 1 . m 
m=tana .. COSQ = ————=, Sina=-—F—— 

V14 m?2 V1+m?2 

1 m? 
cos?a = ) sin?a = 

1+ m? 1+4m? 
. m 

and sinacosa = 
1+ m?2 

1 

1+ m?2 
A= 

m 

1+ m?2 

z,:z+my ! = 
1+ m2’ 

But (4, —3) — (1,1%) 

  

  

1 2, 1 4—gm d 11— 4m +m*(=3) 

1+ m? 2 14+m? 
2 1+m2:47%m and %(1+m2):4m7%m 

o2m?+m—6=0 and 4m? —8m +3=0 
2m—3)(m+2)=0 and (2m—1)2m—3)=0 

1= 

e
 m= {the common solution} 

10 
7 A= (% 1) oal=x Y =3ty 

a A(-1,0) — A'(-1,-%) 

B(2, -2) — B'(2,1) 
  

  

  

  

    
  

  

  

  

  

  

  

  

    

(1) — G by 
D(2,7) — D'(2,10) 

o 

D 

C 

A B’ 
> 
T 

v 
v B                   

b Area ABCD = area AABD + area ABCD 

_1 1 =3 X9Xx3 + 3x9x3 

= 27 units? 

Since ||A|| =1, arca A’B'C’'D’ = 27 units® also. 

8 a For a vertical stretch with k& = %, 

A 1 0 , ) 
= 5 St =z, oy = 

0 3 wsl
en Yy
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The circle has the following axes intercepts, which we 

transform to obtain the axes intercepts of the image: 

(3,0) — (3,0) 

(0,3) — (0, 5) 

(—3,0) — (-3,0) 

(0, —=3) — (0, —5) 

the image is an ellipse. 

  

b If the object has equation z? +y? =9, and z = z, 

y=2y, 

a=3 and b=5 

area = mab = 157 units? 

Now, 

Alternatively, |[|A|| = % 
. _5 2 area of image = 3 X (7 x 3) 

= 157 units? 

9 a For y=4a, tana = 4 

  

(_1, 3) . (—1+12’ —45:748) 

17 

    

  

    

    

  

b For y=mz, tana=m 
1 2 

cos?a = ) sin? o = m 
1+ m?2 1+ m?2 

. m 
sinacosa = 

1+ m?2 
1 m 

1+m? 
" T+m2 1+m? 

A= 2 
m m 

T 1+m2 1+m?2 

2 

andso o = ZE™Y fomatmy 
1+ m?2 14 m? 

| 2 (h k) — h+mk, mh +m°k 

1+ m?2 14 m? 

the shortest distance to  y = ma + ¢ 

  

    
         mh+m2‘75—k>4n275 

  

<}t+ mk =47 — hm? ) ) 1+ m?2 1+ m?2 

_ m(k — hm) 2+ mh —k\2 
- 14+ m? 14+ m?2 

_[m*(mh = k)% + (mh — k)? 

- (14 m2)? 

[ (mh = k)21 +m?) 

- (1+m?2)2 

[ (mh —k)? 
- 1+ m2 

— Imh ] units 
V14 m2 

b 
a For a horizontal stretch with k = —, 

b a 

° 0 / b / A=| a oal=—n Y=y 

0 1 

The circle has the following axes intercepts, which we 

transform to obtain the axes intercepts of the image: 

(a, 0) — (b, 0) 

(—a, 0) — (—b, 0) 

(0, a) — (0, a) 

(0. —a) = (0, —a) 
the image is an ellipse. 

  

=Y
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b Area of circle = wa? 

and |A|= 

A== {a>0, b>0} 

l
o
l
o
 

Area of image = arca of object X || A || 

() 
= mab 

EXERCISE 1K.4 B 

1 a T, is a reflection in the z-axis. 

Tg is an anticlockwise rotation of % about O. 

. 1 0 
Ta has matrix A = (0 71) . 

. 0o -1 
T has matrix B:(1 O)A 

0 -1 1 0 0 1 
Thus BA*(l 0)(0 71>*(1 0) 
which is the matrix of a reflection in y = . 

Ty followed by Tg is a reflection in y = x. 

b T, is an anticlockwise rotation of QT‘” about O. 

Tg is a reflection in y = —z. 

r eos(5) =4 sn (%) = F 
_1 N3 

Ta has matrix A = _\C: 7i 

2 2 

Tg has matrix B = (701 71). 

" BA:(*l 0) 5 1)\ 1 
2 2 2 

where |BA|=|B||A]|=(-1)(1)=—1 

and the form is (a b ) 
b —a 

Hence Ty followed by Tg is a reflection in y = (tana)z 

where cos?a:—-‘@ and sin2a:%. 

— 5m 2a = 3¢ 

— 5m 
*=T7 

Ty followed by Tg is a reflection in y = (tan 51—72')1 

¢ Ty is a reflection in y = V3z. 

Tg is a reflection in the y-axis. 

For Tp, tana = V3 - cos2a and sin2a 

_1-3 _2V3 
T 1+s T 1+3 
=-1 =3 

2 2 

1 3 

Ta has matrix A = 

S
 

- 
o 

~
—
 

e
 

uf
 

Tp has matrix B = ( 

1o\ -2 & 13 
Th BA — - 2 2 _ 2 2 

" (0 1) 3oL 3ol 
2 2 2 

where |BA|=|B||A|=(-1)(-1) = 

and BA has form (a 7b). 
b a 

Hence Ty followed by Tg is a rotation about O through 6 

_ 1 sog—¥3 . _ where cosf = 3, sinf = 325 o 0= 15 

Ta followed by T is a rotation about O through . 

d Ty, is a reflection in y = z. 

Tg is a reflection in y = 3. 

Ta has matrix A = (0 1) 
10 

For Tg, tana =3 .. cos2a and sin2a 

S 1-9 6 
149 10 

—_4 =3 
5 =5 

4 3 
. _ 5 5 

Tg has matrix B—< 3 A)' 

5 5 

4 3 3 _4 
Y - 01\ _(35 7% 

Thus BA7<§ 2)(10)7<£ é) 

5 5 5 5 

where |BA|=|B||A|=(-1)(-1)=1 

and BA has form (a 7())‘ 
b a 

Ty followed by Tg is a rotation about O through 6 

where cosf = 2 and sinf = 2 5 5 
6 = arctan (%) ~ 0.927 

Ty followed by Ty is a rotation about O through 

=~ 0.927¢. 

2 a Ty isareflectionin y=z. 

Ta is a rotation about O through % 

Ty has matrix A = (O 1). 
1 0 

1 _NM3 

T2 has matrix B = 2 2 
? * i1 

2 2 

{cos (%) = %, sin (%) = #} 

b i T; o To has matrix AB where 

1 3 V3 1 
Ap_ (0 1 2 T2\ _[7= =z 

10 Vi o1 1 3 
2 2 2 2 

and |AB|=|A||B|=—-1x1=-1 

and AB has form (a b ) 
b —a 

Ty o T2 is a reflection in y = (tana)x 

where  cos2a = @, sin 20 = 1 2 
—x 20 = F 

= L 
*=13 

Ty o T2 is a reflection in y = (tan %)z
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ii Ty o Ty has matrix BA where Now Tg o To has matrix BA where 

L 3 M3 1 BA BA — 3 3 (O 1) _ 2 2 0 ino 5 in2 
- 3 1 1 0 - 1 3 — cos — sin COS 2¢x Sin 2 

"2£ 2 2 "25 ( sinf  cos@ sin2a  — cos 2« 

and |BA|=|B|[A]=1x-1=-1 _ [ cosOcos2a —sinfsin2a  cosdsin2a + sin 0 cos 2a 
~ \sinfcos2a + cos@sin2a  sinfsin2a — cos O cos 2a 

a b 
and BA has form ( b —a ) _ (cos(6 +2a)  sin(0 + 2a) 

~ \sin(0 4+ 20)  —cos(0 + 2a) 
Ty o Ty is areflection in y = (tana)z 

which is the matrix for a reflection in the line 
where cos2a = 7-‘5, sin 2 = % 0 

9 = BT y:[tan(§+a)x] 

-6 . Lo 
o= 5T Tg o Tp is areflection in y = [tan(%+a) x] 

12 

Ty o Ty is a reflection in y = (tan 51—’2’)1 5 CO"S‘de Ti 0Ty 0Tz 0Tgo... oTy wherethe T; are 
reflections. 

¢ As Ty oTz and To o Ty represent different transformations, From 3 b, Ty o T2 is a rotation. 
Ty 0 Tg # T2 o T1. o (Ty 0T2)oTs isareflection {from 4} 

(T1 0 T2 0 T3) o T4 is a rotation and so on. 

3 a Ty has matrix A = ( C?Sg - singa ) and So, by the inductive process, the combined effect of: 

s €08 e an even number of reflections is a rotation 

Ty has matrix B — Cf’s¢ —sin¢ ) e an odd number of reflections is a reflection. 

sing  cos¢ . ) i 
6 T, is unknown with matrix A. 

Tg is a clockwise rotation about O through % 

_ (cos¢ —sing\ (cos0 —sind Tg o Tp is a reflection in y = La. 
BA*(sinqb cos¢)<sin6’ cos 6 BeoA V=2 

Tg o To has matrix BA where 

inosi i ; Ty has matrix B=( ° ! _ cos¢pcosh —singsinf — sin b cos ¢ — cos O sin ¢ B has matrix =\-1 o) 

sin ¢ cos 0 + cos ¢sin —sin ¢sin O + cos ¢ cos 

_ (cos(9+¢) 7sin(0+¢)> For TgoTy, tana = % 
“ \sin(6+ ¢) cos(0 + @) 1 

which is the matrix for a rotation about O through (6 + ¢). 
    cos2a = , sin2a = 

3 4 
5 5 
4 _3 

5 

b T, is a reflection in y = (tan )z and 

Tg is a reflection in y = (tan 3)z. 

cos 20 sin 2ar ) 
Ta has matrix A = ( sin2a  — cos2a = > Il 

N
 

5 

Ty has matrix B = 095 28 sin 20 . 3 4 
sin28 —cos283 S 0 1 

Now BA = 4 o = A 
Now Tp o To has matrix BA where F —% -10 

( 0 1)’1 3 
SA= 

cos23 sin2p3 cos2a  sin2a -10 % — % 

sin28 —cos23 sin2a  — cos2a 3 4 
0 -1 5 5 

cos 23 cos 2a + sin 23 sin 2« cos 23 sin 2 — sin 23 cos 2a S A= (1 0 ) ( : 53 ) 

sin 23 cos 2a — cos 23 sin 2a sin 23 sin 2a + cos 23 cos 2a 5 5 
4 3 

cos(28 — 2a) —sin(28 — 2a) . _ (7% % 
<sm<2,a “2a)  cos(28 - 2a) A= 24 where 

which is the matrix for a rotation about O through an angle “ b 

of 2(8 — o). |A]=—1 and A has form (b 7(1) 

Tg o Ta is a rotation about O through 2(8 — «). Ais a reflection in y = (tana)z 

4 Let Ty be a reflection in y = (tana)z, and where  cos2a = *% and sin2a = % 

let Tg be a rotation about O through 6. tan2a = 7% _ 2 tanczz 

Ta has matrix A = (Cf)s 2a sin 20 ) . 21 tan”a 
sin2a  — cos 2« —3(1 — tan” @) = 8tan 

. cos) —sinf - 3tan’a — 8tana —3 =0 

T has matrix B = (sinB cos ) . (Btana +1)(tana —3) =0 

tana = —1 or 3 
3



But % <2a <7 {cos2a <0, sin2a >0} 

<a< P =1
3 

tana >0 andso tana =3 

Ta is a reflection in y = 3z. 

7 Ta is areflectionin y = —z. 

Tg is a rotation of Z about O. 

Ta has matrix A = ( 01 71) . 

  

  

    

    

1 1 

Tg has matrix B = 1\/5 ‘{5 

V2 V2 

() = ()= 
Tg o Tp has matrix B here 

1 _ 1 1 L 

V2 V2 V2 V2 

TgoTa has equations 2’ \/5 

) 

YT 
and (BA)~! = BA {as BA is a reflection} 

a1y -y 

vz 't T, 
TgoTy @’ — 1y z +y 

y=2zxr—-1 — 7 72( 7 )—1 

= z/fy/:2z'+2y'7\/§ 

= 2’ +3y =2 

TgoT, 
y=20-1 25" 24 3y=12 

vea=(3 ) 
b T, is a vertical stretch of factor 2. 

Tg is a reflection in y = —2z. 

. 10 
Ta has matrix A7(0 2). 

Tp has matrix B = ( 

mm
 

ml
w | 

e
 

\
/
 

—4 
{tanav = -2 . cosZa— 1 7%, 

—4 
in2q¢ = —— = 4 sin2o = = £} 

Tg o Tp has matrix BA = ( 

Il 

T
N
 

[
 

I
 

il 
o
l
 

G
l
 

at
le
e 

oo
 

| il 

—
 

~
—
—
 

—
 

o
 

=
 

N 
o 

~
—
 

¢ TgoTa has |BA|=|B|[A] 

=—-1x2 

=-2 

Tg o To reverses sense and doubles area. 
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EXERCISE 1L.1 B 

a If det(\ — 

A-2 1 
2 a-s|70 
AN —TA+12=0 

A=3)(A—4)=0 

A) =0 then 

A=3o0r4 

Thus the eigenvalues are A = 3, 4. 

For A=3, (AI-A)x=0 

becomes ( ! ! )(a):(o) 
-2 -2 b 0 

L at+b=0 

Letting b=1t¢, t#0, a=—t 

x:(’ll)t, t£0 

For A=4, (AI-A)x=0 

becomes ( 2 ! )(a):(o) 
-2 -1 b 0 

v 2a+b=0 

Letting a=1¢, t#0, b= —2t 

x:(_12)t. t£0 

Any vector of the form ( 711 ) t, t # 0 is an eigenvector 

corresponding to the eigenvalue 3. 

Any vector of the form ( 712 ) t, t # 0 is an eigenvector 

corresponding to the eigenvalue 4. 

b If det(M—A)=0 then 

  

A 1 

-1 A‘*O 
oA +1=0 

A+i)(A—19)=0 

A==+i 

Thus the cigenvalues are A =4, —i. 

For A=14, (AI—A)x=0 

becomes i ! a)_ (0 S l-1 i)J\bs) 7 \o 
ai+b=0 

Letting a=t¢, t#0, b= —it 

x:<ji)t. t£0 

For A=—i, (AI—A)x=0 

becomes —i 1, a)_ (0 
-1 — b 0 

o—ai+b=0 

Letting a=1t, t#0, b=it 

x:(;)t, t#0
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1 . . 
Any vector of the form ( ) t, t # 0 is an cigenvector 

corresponding to the eigenvalue 7. 

Any vector of the form ( 1 ) t, t # 0 is an eigenvector 

corresponding to the cigenvalue —i. 

If det(AI—A) =0 then 

‘{21 )\21‘:0 

A —2x41=0 
A-1)%=0 

A=1 

Thus the eigenvalue is 1. 

For A=1, (AI—A)x=0 

becomes (0 0)(«1):(0) 
-2 0 b 0 

v —2a=0 

a= 

Any vector of the form ((1]) t, t # 0 is an eigenvector 

corresponding to the eigenvalue 1. 

If det(AI—A) =0 then 
A—2 -1 

4 ,\72‘*0 
M —ax=0 
AA—-4)=0 

A=0or4 

Thus the eigenvalues are A = 0, 4. 

For A=0, (AMI—A)x=0 

b -2 -1 a _ (0 
ccomes 4 2 v) = o 

v 2a+b=0 

Letting a=t, t#0, b= —2t 

x:(712)t, t#0 

For A=4, (AI-A)x=0 

b 2 -1 a) _ (0 
ccomes 4 9 v )= o 

v 2a—-b=0 

Letting a=t, t#0, b=2t 

x:(;)t, t#0 

Any vector of the form ( 712 ) t, t # 0 is an eigenvector 

corresponding to the eigenvalue 0. 

Any vector of the form ( ; ) t, t # 0 is an eigenvector 

corresponding to the eigenvalue 4. 

If det(A—A)=0 then 

A-3 -1 
2 ax1|70 
A —22-5=0 

o 2EVIF 
- 2 

A=1+6 

Thus the eigenvalues are A =1+ \/6, 1— 6. 

For A=1+V6, (Al-A)x=0 

o (155, 1) (3)- () 
(—2+V6)a—b=0 

Letting a=t, t#0, b= (—2+V6)t 

x:(72i\/€)t, t#0 

For A=1-v6, (\I—A)x=0 

-2-v6 -1 a 0 
becomes ( 9 27\/(_5)(17):(0) 

(—2—V6)a—b=0 

Letting a=t, t#0, b= (—2—V6)t 

x:(72i\/€)t, t#0 

Any vector of the form (72i\/€) t, t # 0 isan 

eigenvector corresponding to the eigenvalue 1+ v/6. 

1 . 
Any vector of the form <727\/6> t, t # 0 isan 

cigenvector corresponding to the eigenvalue 1 — V6. 

If det(AI—A) =0 then 

A742 /\+11‘:0 

LA =A-6=0 
A+2)(A=3)=0 

A=—2o0r3 

Thus the cigenvalues are A = —2, 3. 

For A=-2, (AI-A)x=0 

becomes (74 71)(a):(0) 
-4 -1 b 0 

w 4a+b=0 

Letting a =1¢, t#0, b= —4t 

x:(j4)t, t£0 

For A=3, (AI-A)x=0 

becomes (1 —1)(a):(0) 
—4 4 b 0 

. a—b=0 

Letting b=1t, t#0, a=t 

x:(i)t, t#0



Any vector of the form ( ! ) t, t # 0 is an eigenvector 
—4 

corresponding to the eigenvalue —2. 

Any vector of the form (}) t, t # 0 is an eigenvector 

corresponding to the eigenvalue 3. 

b The effect of A on eigenvectors ( _14) t, t #0 isto 

increase their length by factor 2, and reverse their direction. 

. 1 . . 
The effect of A on eigenvectors ( ) t, t # 0 is to increase 

1 

their length by factor 3, and preserve their direction. 

¢ E_o = {x X = (714) t, t ER} is the eigenspace 

for A corresponding to A = —2. 

Eg:{x 

corresponding to A = 3. 

E = {(_14), (})} is an eigenbasis for A. 

  

  
X = ( } ) t, te ]R} is the eigenspace for A 

3 The characteristic polynomial of AT 

=|ar— AT 

=Jow-ant o {imi=BT} 
=|on"— @ {B+C)'=B"+C"} 

=|A[—A]| ' =1 (ANHT = A} 

= the characteristic polynomial of A 

Since AT and A have the same characteristic polynomials, they 

have the same eigenvalues. 

_(a b T_(a ¢ 
If Ai(c d) then A —(b d)‘ 

  

For A=\, 

(AI-A)x=0 

(=) (6) =) 
Ni—a)z—by=0 

x:( t#0 

AML—-AT)x=0 

("5 20 (6)=(0) 
Ni—a)z—cy=0 

1 
X = Ai—a |t t#0 

c 
  

A and AT do not have the same corresponding cigenvectors. 

s (1 -3 1 -3\ _ (16 -—12 
a A *(75 3 )J{-5 3 ) (-2 o 

3 3 -3 i 11 _ 1 1 
A 12 (5 1) - < 5 7L) 

12 12 
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b tr(A) =4 and |A|=— 

The characteristic polynomial for A is 

det(Al — A) = A2 — tr(A)A + | A | 

=X —4x—12 
=(A+2)(A-6) 

tr(A2) =40 and |A|= 144 
The characteristic polynomial for A2 is 

det(AI — A) = A2 — tr(A2)A + \ A2 | 

=22 — 40X + 144 
=(A—4)(A—36) 

(A~ =% and |A|=-% 

The characteristic polynomial for A= is 

det(M — A) = A% —tr(A")A+ [ A7 | 
1 

—\2 _(_1 — =2 —( 3)A+‘A‘ 

:/\2+l)\,L 

=+ -3) 

¢ A has cigenvalues —2 and 6, A2 has cigenvalues 4 and 36, 

and A~! has cigenvalues —% and % 

i The cigenvalues of A2 are the squares of the eigenvalues 

of A. 

ii The eigenvalues of A~! are the reciprocals of the 

cigenvalues of A. 

a Ax = Ax s given 

A%x = A(Xx) 

A?x = \(Ax) 

A%x = A\(\x) 

A%x = 2\%x 

A2 has eigenvalue A2 and the corresponding eigenvector 

18 X. 

b Ax = Ax is given 

A7N(Ax) = A7 Ix 

Ix = M Ix 

x=AA"x 

A lx = lx 
A 

A~ has cigenvalue ; with corresponding 

eigenvector X. 

¢ Proof: (By the Principle of Mathematical Induction) 

P, is that “A™x = A\"x” forall n e Z*t. 

(1) If n=1, Ax = Ax is given. 

Py is true. 

(2) If Py is true, then  AFx = XFx, ke ZT .. (% 

Now AFtlx = A(AFx) 

= AN°x  {using %} 

=\ Ax 

= AFax 
— )\k+1x 

Thus Py is true, and Py is true whenever P, is true. 

P, is true for all n e Z+t. 

if A has eigenvalue A with corresponding eigenvector 

X, then A™ has eigenvalue A™ with corresponding 

eigenvector X.
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6 Let 

8 Consider 
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2 x 2 matrix A have eigenvalues A1 and A2 with 

corresponding eigenvectors x; and Xa. 

Suppose x1 and x2 are linearly dependent. 

c1X1 + caxo = 0 has a non-trivial solution 

c 
Xg = _a x1 {c2 #0} 

c2 
Now Ax; = A1x1 and Axs = A2xo 

() n(20) c2 c2 

c1 c1 
—— AX] = —— X2Xx1 

c2 c2 
c1 c1 

—— A1X1 = —— A2xy 
c2 c2 

A1 = A2 

if the eigenvectors are 

cigenvalues are not distinct. 

linearly dependent, then the 

if the eigenvalues are distinct, then the cigenvectors are 

linearly independent. 

a Ax = Ax 

(A + kI)x = Ax + kIx 

= XX + kx 

=(A+k)x 

A + EI has cigenvalue X + k and corresponding 

eigenvector X. 

So, A and A + kI have the same eigenvector. 

b Ax = Xx 

(A% 4 4A)x = A%x + 4Ax 
= A%x + 4Xx 
= (A2 +4\)x 

A2 4 4A has eigenvalue A2 + 4\ with corresponding 

eigenvector X. 

{from 5 a} 

| AL — AB| 

=|-aB)T|  {lc|=|c"|} 
=" - @aB)'| {(c+D)'=c"+D"} 

= |n" - BTA"| {(AB)" = BTAT} 

= |\l - BA| 

AB and BA have the same characteristic polynomial. 

they have the same eigenvalues. 

{I" =1, A and B are symmetric 

xTAx >0 for all x#0 

x"Ax >0 

Ax'x >0 

1 

T2 
>0 

n 
MNad +ad + o+ a,2) >0 

A>0 forall x # 0 

{z2+z2+...4+22)>0 asnotall z; =0} 

the cigenvalues of A are positive. 

10 Consider x;'Axa = x{' Aox2 

= /\Qxlsz 

=A2(x1 #x2) ... (1) 

But xlTAx2 = xlTATxg {A is symmetric} 

= (Ax1)"x> {BTAT = (AB)"} 

= (Mx1)"xa 

= )qxlTx2 

=A1(x; 0x2) ... (2) 

From (1) and (2), A1(x1 ® x2) = A2(X1 @ X2) 

where A1, A2 were given unequal 

x; exg =0 

x1 L xo 

x1 and Xz are orthogonal. 

EXERCISE 1L.2 I 

1 a If [M—A[=0 then 

A—8 -3 

’72 >\77’*O 
A%~ 15A 450 =0 
(A=5)(A—-10)=0 

A=5,10 

For A=5, |[AM—-A|x=0 

becomes -3 -3 a) _ (0 
-2 -2 b)) \0 

Lat+b=0 

Letting a=¢, t#0, b= —t 

x:(jl)t, t£0 

. . 1 . 
an cigenvector is (71) {choosing t =1} 

For A=10, |[AM[-A|x=0 

b 2 -3 a\ _ (0 
ccomes o 3 b )= 1o 

. 2a—3b=0 

. _ _2 
Letting a =t¢, t#0, b—gt 

(1) x=1| 2 t, t#0 

3 

an eigenvector is (3 ) {choosing t = 3} 

the eigenvalues are A\ =5, A2 = 10 with 

Lo 1 3 
corresponding eigenvectors ) La) 

bp:(x1|xz>:(jl g) 

()G D D) 
(b)Y 
2)(43) 
o) 

i PTIAP = i
l
 

il 
I 

A
~
~
~
/
 

o
>
 

o
w
 
N
 

= o



WORKED SOLUTIONS 283 

—142p_1(2 -3 70 45 1 3 (1 4 Cp1ap_ [T O e (20 (1 ) (1) e (1) merar— (10) 
7(2 —3)(14 9)( 1 3) o PTIAPP=D? 

1 1 6 11 -1 2 (343 0 

(10 -15 1 3 =l o0 _s 
—\20 20 -1 2 

(% 0 3 If |AI—A[=0 then 
“\lo 100 A+1 0 —1 —0 

) -2 A-1 
(520 
*(0 102) AT -3=0 

A2 0 LAV -VE) =0 
= 0 A2 LA=4V3 V3 

When A=+3, |[AM—A|x=0 

a If |NI—A[=0 then 1+v3 -1 a\ _ (0 
\s » becomes ( o Vi1l )= o 

=0 ’75 A—?‘ (1+V3)a—b=0 

A —5A-14=0 Letting a =t t#0, b=(1+3)t 
A+2)A=7)=0 1 

A=-27 x:<1+\/§)t, t#0 

For A=—-2, |[AI-A[x=0 

. an eigenvector is ( ! ) {choosing ¢ =1} 
becomes 5 4 ) = 0 1++/3 

-5 —4 b 0 
When A =—V3, [AI-A|x=0 

oo ba+4b=0 i 
i _ s 1-3 -1 a (0 

Letting a=1t, t#0, b=—3t becomes ( o _ 371)(b)7<0) 

1 
x:( 5)@ t£0 L (1=V3)a—-b=0 

1 Letting a=t, t#0, b= (1—3)t 

X:(l,l\/g)t’ t#0 
an cigenvector is ( 745) {choosing t =4} 

For A=7, |[AMI—A|x=0 
1 

. 4 -4 a _ (0 . an eigenvector is ( ) {choosing ¢ =1} 
becomes (75 5)([))7(0) 1-3 

1 1 a—b=0 . P= ( diagonalises A 
- 1+V3 1- fi) 

Letting a=t, t#0, b=t /i 
3 0 —1Ap — x:(i)tv t£0 and P AP7<O 7\/5) 

) (1 . A% 
an eigenvector is ( 1 ) {choosing ¢ =1} o0 . 

— -1 Vi i 
the eigenvalues are A\ = —2, A2 =7 with =P < 0 (7\/§)GO> P {power of a matrix theorem} 

corresponding eigenvectors ( :L5 ) s ( } ) _ 1 1 330 ¢ | 1-v3 -1 

T\1+VB 1-VB 0 3% ) 23\ 1-v3 1 
401 14 b P could be (75 1) or(l 75). :_;< 330 330 )(17\/5 71> 

2v3 \ 330(1 4 v/3) 330(1—/3) “1-v3 1 

c For P:(_45 i), D:P’IAP:<7O2 g) :7L<330(17\/§717‘/§) 330 4 330 ) 

2v3 | 330(1-3-1+3) 30(-1-v3+1-+3 
and A% =PD?P~!  {power of a matrix theorem} ( ) ( V3 v3) 

p~1A%p = p~lppip~1D _ 1 [—2VBx3% 0 
b 2V3 0 —2/3 x 330 

330 0 
0 330 

=3%1 

(-8 0 
“\o 34
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4 If |[A[—A]=0 then 

A 2 
‘71 ,\71‘*0 
A2 -a-2=0 

A+D(A-2)=0 
A=-1,2 

When A=—1, |[AI—A|x=0 

b -1 —2\(a\_(0O 
ccomes 1 2 ») = o 

Loa+20=0 

Letting b=1t, t#0, a= —2t 

X = ( _12 ) t, t#0 

an cigenvector is (71 ) {choosing t =1} 

When A=2, [AM—A[x=0 

b 2 -2\ [/a)_ (O 
ccomes I ») = o 

L a—-b=0 

Letting b=t¢t, t#0, a=t 

x:(i)t, t#0 

an cigenvector is ( 1 ) {choosing t =1} 

1 1 

-1 0 ~1Cp — and P CP—(O 2). 

2015 (~1)2015 0 —1 
C =P < 0 92015 P 

{power of a matrix theorem} 

/=2 1\(-1 o0 (1 -1 
1 1 0 92015 (*3) -1 -2 

a2 22\ 
T3\ -1 92015 1 2 

[ —2+422015 g 92016 

-3 1 4 22015 1 4 22016 

k 1 

5 A:(o k2) 

P= ( 21 ) diagonalises C 

  

A-k -1 
If |[M—A|=0 then ‘ 0 A k2 =0 

A—K)A—Kk)=0 

A=k, k? 

For A=k, (M[—A)x=0 o (3 ) (0)- (1) 
b= 

x:lt,tO (o)e ¢ 
an cigenvector is (é) {choosing t =1} 

For A=k, (AI—A)x=0 

becomes K-k -1 a)_ (0 
0 0 b)  \o 

o k(k—1)a—b=0 

Letting a=t¢, t#0, b=k(k—1)t 

) 
1 

an eigenvector is (k(k ~1) ) {choosing ¢ =1} 

P:((l) k(kl—l)) or P:(k(kl—l) é) 
diagonalises A if P~ exists. 

P! exists if [P|#0 

1 1 1 1 

‘0 k(k—l)’#o or ‘k(k—l) o"“’ 
k(k—1)#0 —k(k—1)#0 

k#0orl k#0orl 

A= (]S k12) is diagonalisable for k, k # 0, 1. 

6 Let A:(; 2), where B2 = A. 

A—-1 0 
If |M—A|=0 then ‘72 )\74‘—0 

A=1)(A—4)=0 

A=1,4 

For A=1, (AI-A)x=0 

mane (5 5) (3)=(3) 
2a+3b=0 

Letting a =t, t #0, bzfét 

an eigenvector is ( 32 ) {choosing t = 3} 

For A=4, (AI-A)x=0 

mams (% 3) (2) (1) 
a= 

x:((lj)t, t#0 

an cigenvector is (?) {choosing ¢t =1} 

3 0 

-2 1 

iy (10 
P AP7<O 4) 

inay (10 P BlL(O 4) 

Bzzl’(é 2)?*‘ 

Thus P = ( ) will diagonalise A, and



7 

If 

If 

If 

If 

B2 = PC?P~! where C= ( 

B2 = (PCP~!)(PCP™ 1) 

B =PCP! 

10 = (s3): 

C 

C 
10 -1 0 

(0 2)’ B=1{2 2) 

-1 0 c= (3 5%). B- 

the 4 solutions to B®> = A are 

( 
( 

(o) e(4) 
( 1 

( 
= (305 %) G300 

a Consider (A2 — (A1 4+ A2)A + A eD)xg 

= A%x1 — (A1 + A2)Axs + A delx 

= A2x1 — (A1 + A2)A1x1 + At dexg 

= =A% = X2+ Ada)xg 

= 0x; 

=0 

Also, (A% — (A1 + A2)A + At daD)xe 

b 

= A%x2 — (A1 + A2)Ax2 + A aIxe 

= A2x2 — (A1 4 A2)A2x2 + A1 Aexo 

= (A& = AA2 — A2 + A d2)x2 
= Oxo 

=0 

A2 — (M1 +A2)A + Al =0 

i A% = (M +A2)A — A1dal 

A3 = A%A 

=[(A1 +A2)A = A1 Ad]A 
= (A1 +X2)A% — A1 h2lA 

= (A1 + A2)[(A1 + A2)A — A dal] — AjA2A 

= (A1 +22)?A — (A1 + A2) A1 del — A1 d2A 

=[(A1+22)% = A d2)A = AMda (A1 + A2)T 

ii A% = (A1 + A2)A — A el 

AZAT = [(A1 + A2)A — A 2l]AE 

A= (14 A2 — A At 

AAeA™ = —A+ (A1 + A2)I 
—1 A A Al = A + A2 I 

A1z A1z 
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[AI—B| 

= [a—Ptap| 

=[Ap~lp— P~ lap| 

=[pap—plap| 

=[P - | 

=P |A— AP 

< = o5 M - AlLpr! 
1 

[AL—A| 
A and B have the same characteristic polynomial. 

they have the same cigenvalues. 

    

a b ¢ 

9 alet A=|0 d e 

0 0 f 

A—a —b —c 

If [AMI—A|=0 then 0 A—d —e |=0 
0 0 A—f 

A—d —e 0 —e 
(A—a) 0 A—f +b‘0 A—f 

0 A—d 
“<lo o ‘—O 

  
A=a)A=d)A—=f)+0+0=0 

A=a)A=d)(A-f)=0 
A=ua,d, f 

the eigenvalues are the elements of the main diagonal. 

  

a 0 0 

blet A=| b ¢ O 

d e f 

A—a 0 0 

If [NI—A|=0 then | =b A—c 0 |=0 
—d —e A—f 

A—c 0 O-a) |7 D r0+0=0 

A —a)A—c)A—f)=0 
A=a,c f 

yes, the eigenvalues of a 3 x 3 lower triangular matrix 

are the elements of its main diagonal.
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EXERCISE 2A B 

1 a p i QPT = RPS 
and a1 = as 

{equal corresponding angles} 

As PQT and PRS are 

equiangular, and 

therefore similar. Q T 

s PR RS PS R 

b A i ACE = DCB 
and AEC = DBC {given} 

B . /s AEC and DBC 
are equiangular, and 

therefore similar. 

E D C . AC_AE_EC 
DC DB BC 

< 

  

i Let BAC=a 
ACB = 90° — o {angles of a triangle} 

DCE = o {angles on a line} 

BAC = DCE 
and ABC = CDE {given} 

As ABC and CDE are equiangular, and therefore 

similar. 

AB _AC _ BC 
== 
CD CE DE 

    

    

PT P 
P_x {parallel lines within a triangle theorem} 
TS~ QR 

PT  5cm 

2cem  3cm 

_ 10 PT = 3 cm 

PT =~ 3.33 cm 

KL 40 m 4 KO 50 m 4 
3 a — = =— and — = =_ 

LM 30 m 3 37.5m 3 

KL KO 
LM ON 

[OL] || [NM] {converse to parallel lines 
within a triangle theorem} 

b si5m N LKO = MKN 
and a1 = a2 

{equal corresponding 

angles} 

. As KLO and KMN 

are equiangular, and 

therefore similar. 
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MN MK 
LO LK 
MN — 70m 

32m  40m 

32 x 70 MN= 220 
40 

MN = 56 m 

A A B ar = a2 

{equal alternate angles} 

and (B; = By 

{vertically opposite angles} 

A /s ABM and CDM 
D C are equiangular, and 

therefore similar. 

5 S 

U 

60m T 

40 m 

Q am P bm R 

Let PT=hm, QP =am, and PR = bm. 

TQP = UQR 

and TPQ = URQ {given} 

As TQP and UQR are cquiangular, and therefore similar. 

  

  

  

h a 
—_= e (1 
40 a+b ® 

Likewise, As TRP and SRQ are equiangular and therefore similar. 

h b 
— = . (2 
60 a+b @ 

. h h a+b 
Adding (1) and (2), — + — = 

ing (1) and (2) 40+60 a+b 

3ht2h 
120 

bh =120 

h=24 

the tree is 24 m high. 

6 P Q 

T, 

U S R 

Consider As PQT, RUQ: 

a; = ap  {cqual alternate angles} 

and B; =B, {equal alternate angles} 

. As PQT, RUQ are equiangular, and therefore similar. 

QT PT 
U RQ 
8—5 = % {RQ = PS, parallelogram theorem} 

QT.PS = QU.PT
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7 A We are given CB? = CX.CA and 

AB = AC. 

Now By 
CA CB 

X Consider As CBA, CXB. 

These As have two sides in 

proportion and share an included 

C B angle of a at C. 

Thus As CBA, CXB are similar. 

Consequently ACXB is also isosceles. 

As the angles at B and C are equal, 

{AABC is isosceles with AB = AC} 

the angles at C and X in ACXB are equal. 

BX = BC. 

8 A 

4 

k 
c b B 

Consider As AHQ, BHP: 

a; =ap {vertically opposite angles} 

and AQH = BPH = 90° {given} 
As AHQ and BHP are equiangular, and therefore similar. 

AH _ HQ 
BH HP 

AH.HP = BH.HQ 

AX  BX 
9 We are given that — = — 

AY CY 

. AX.CY = AY.BX 

AX.CY + AX.AY = AY.BX + AX.AY 

{adding AX.AY to both sides} 

AX(CY + AY) = AY(AX + BX) 
. AX.AC = AY.AB 

AX  AY 
AB  AC 

in As AXY and ABC, two sides are in the same ratio and 

the included angle at A is common to both. 

As AXY and ABC are similar 

AXY = ABC {equal corresponding angles} 

[XY] | [BC]  {converse of corresponding angles} 

EXERCISE 2B 

1 Yes, using SAS. 

No, as the equal angles are not the included angles. 

Yes, using SSS. 

Yes, using SAS  {the altitude is common}. 

No, as the equal angles are not the included angles. 

Yes, using RHS. g9 Yes, using AAcorS. 

No, as the equal angles are not 

the included angles. 

T
 
-
0
 
Q
a
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2 B E 

’ C < 

A D 

a We observe that: 
e a1 = a2 

e (31 =[5 {vertically opposite angles} 

e BC=DC {given} 

As ABC and EDC are congruent {AAcorS}. 

b i Consequently, AC = CE =6 cm 

ii DEC = BAC = 42° 

3 Q_B 

<7 
R™cC 

From P we draw perpendiculars to [AB] and [AC] meeting at Q 

and R respectively. Join [AP]. 

We observe that: 

e AQP = ARP = 90° 
e PQ =PR {given} 

e [AP] is common 

As AQP and ARP are congruent {RHS}. 

Consequently, Q;\\P = RAP. 

That is, [AP] bisects BAC. 

4 E D 

We observe that: 

o oy =ap {vertically oppositc} 

e EC =DC {given} 

e AC =BC {given} 

As AEC and BDC are congruent {SAS}. 

Consequently, AE = BD. 

A D 

We observe that: 

® x] = (2 

e (3, =B, {equal alternate angles} 

e [BD] is common 

As ABD and CDB are congruent {AAcorS}. 

a Consequentlyy, AB =CD and AD = CB 

thus opposite sides are equal in length. 

{equal alternate angles} 

We draw 

diagonal [DB]. 

{equal alternate angles}



b Also DAB = BCD (and ADC = ABC = o + ) 
thus opposite angles are equal. 

< B C 

A D 

In As AXD, CXB, we observe that: 

e AD =CB 

® B1=0 

e &y =62  {vertically opposite angles} 

As AXD and CXB are congruent {AAcorS}. 

Consequently, AX = CX and DX = BX. 

the diagonals bisect each other. 

{equal alternate angles} 

  

a In As BCM, CBN, we observe that: 

e BM =CN {given} 

e BMC = CNB =90° {given} 
e [BC] is common 

As BCM and CBN are congruent {RHS}. 

b Consequently, NBC = MCB  which are the base angles of 

AABC. 

Thus, AABC is isosceles. 

  

a In As MQX, MRY, we observe that: 

e QM =RM {given} 

e MX = MY {given} 

. Q/)ZM = RYM = 90° {given} 

As MQX and MRY are congruent {RHS}. 

b Consequently, XaM — YRM 

PQR = PRQ 
APQR is isosceles  {equal base angles} 

EXERCISE 2C N 

1 From Euclid’s theorem, 

a QR%Z=Qs.Qp 

52 =QS x 13 

Qs=2% 
QS~ 1.92 cm 

WORKED SOLUTIONS 

b RS? = QS.SP 
2 _ 25 25 RS —1—3><(1371—3) 

  

RS ~ 4.62 cm 

(Check:  Equating arcas, % X 13 X RS = 

2 From Euclid’s theorem, 

a KN? = LN.NM b 

KN?2 =3 x7 

KN =21 
KN ~ 4.58 m 

c KM? = NM.LM 

KM? =7 x 10 

KM = V70 
KM ~ 8.37 m 

3 a BC?=82+15° 
{Pythagoras} 

BC = v289 =17 cm 

¢ From Euclid’s theorem, 

AD? = BD.DC 
2 _ 225 225 AD? = (17— 228) x 228 

_ /61 225 
AD = /17 x 57 7>< 

AD = 120 % 7.06 cm 

¢ From Euclid’s theorem, 

AB = +/AQ.AC 

=4/ (B+z)(8+x) 

=128 x 17.8 

=V227.84 

DA = VAP.AC 

=4/3(8+1z) 

=v3x178 

=V53.4 

289 

1x5x12 

— 60 RS = 80 ~ 4.62) 

KL? = LN.LM 

KL? =3 x 10 

KL = /30 
KL ~ 5.48 m 

b From Euclid’s theorem, 

AC? = DC.BC 

152 = DC x 17 

DC = 2% ~ 13.2 cm 

4 a In AABC, from Euclid’s b In AACD, from Euclid’s 

theorem, theorem, 

BQ? = AQ.CQ DP? = AP.PC 

8% = (z+3)5 y? =3(z +5) 
z+3=128 y? =3x14.8 

z=98 y =/44.4 ~ 6.66 

BC = ,/CQ.CA 

perimeter = V/227.84 + /89 + v/53.4 4 1/263.44 

~ 48.1 cm 

5 By Euclid’s theorem, a® = p(p + q) 

and b =q(q+p) 

a® +b® =p(p+q) +a(p+q) 
=(@+qlp+d 

=@ +aq)? 
Thus establishing Pythagoras’ theorem.
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6 a i ACB = ECD 

and ABC = EDC {equal corresponding angles} 

As ABC and EDC are equiangular, and therefore 

similar. 

area of ADEC _ DC? . 
————————— = —  {arca comparison theorem} 
area of AABC BC2 

42 

7 
area of ADEC : area of AABC = 16 : 49 

i area of ADEC : area of ABDE = 16 : (49 — 16) 

=16:33 

b area of ADEC _ 16 

area of ABDE 33 

area of ADEC 16 
6 cm?2 =33 

area of ADEC = % cm? 

area of AABC = 6 cm? + % cm? 

_ 98 2 2 = {7 cm” &~ 8.91 cm 

7 A 

D 

B E C 

Let area of ADEC = a 

area of ABED 

area of ADEC 

area of ABED = 3a 

area of ABDC = 4a 

area of AABD 

area of ABDC 

area of AABD = 2a 

area of ABDE _ 3a 

arca of AABC  6a 

{cqual altitudes} 1
 

N
l
 {equal altitudes} 

1 
2 

C 

Consider As ADB, ACD: 

ADB =ACD  {given} 
and DAB = CAD = 0 

/s ADB and ACD are equiangular, and therefore similar. 

area of AADB _ AD? 

area of AACD ~ AC2 

Lap.AB 50 AD? 

{area comparison theorem} 

© fapacsieo AC? 

AD?  AB 
AC2 ~ AC 

E 

In As ADF, ECF, we observe that: 

e oy =ap {vertically opposite angles} 

e 3; =P, {equal alternate angles} 

e AD =BC =CE 

As ADF and ECF are congruent. {AAcorS} 

Consequently DF = CF. 

We join [GC]. 

Let area of ADGF = a and area of AFCE = b. 

area of AGFC 

area of ADGF 1 

area of AGFC = a 

f ABCG 
% = % {equal bases, equal altitudes} 

arca of ABCG =a +b 

arca of ABCD = 3a + b 

arca of ABCD = 6a + 2b 

{equal bases, equal altitudes} 

A B 

E 

But arca of AADF = area of AECF = b {congruent triangles} 

area of ABCD = 4b 

Equating area of ABCD: 4b = 6a + 2b 

b=3a 

area of ABCD = 12a 

area of ADGF _ a _ 1 
area of ABCD  12a 2



EXERCISE 2D M 

1 We join [OA], [OB], and [OC]. 

OCA = OCB = 90° 
{radius-tangent thcorem} 

AC = BC 

{chord of a circle theorem} 

  

We join [QT]. 

In As PQT, PSR: 

QPT = SPR {given} 

and a1 = ap {angles 

Q subtended by the same arc} 

As PQT and PSR are 

R equiangular, and therefore 

similar. 

PQ  PT 
T Hence, — = — 

PS PR 

PQ.PR = PS.PT 

We join [OM] and [ON]. 

We observe that: 

o OAM = OBN = 90° 
{radius-tangent thcorem} 

e OA = OB {equal radii} 

e OM = ON {equal radii} 

As OAM and OBN are 

congruent {RHS}. 

Consequently, AM = BN. 

  

Also NOB = MOA 
MON is a straight line. 

We join [PQ] and [PR]. 

In As SPQ, SRP: 

PSQ = RSP 
and a1 = az {angle 

between tangent and chord} 

As SPQ and SRP are 

equiangular, and therefore 

similar. 

Note: 

In As PQA, SRA: 

{angles subtended 

by the same arc} 

@] = ag 

B, =By {vertically 

opposite} 

As PQA and SRA are 

equiangular, and therefore 

similar. 

  

6 We join [XP], [XQ], 
P [PY], and [QY]. 

Let [PQ] meet 

[XY] at M. 
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In As XPY, XQY, we observe that: 

e PX = QX {equal radii} 

e PY = QY {equal radii} 

e [XY] is common. 

As XPY and XQY are congruent {SSS}. 

Consequently, PXY = Qs(\Y 

[XM] bisects the angle at X of isosceles AXPQ. 

[XY] bisects [PQ] at right angles. 

{converse of isosceles triangle theorem} 

7 P We join [PX]. 

PXR = 90° 
{angle in semi-circle} 

0 PXQ = 90° 
But APQR is isosceles. 

-, the line from the apex, 

R perpendicular to the base, 

Q X bisects the base. 

X is the midpoint of [QR]. 

8 Y Let XOY =a 
X XY0 = a 

{isosceles triangle} 

OXA = 2 
{exterior angle of a triangle} 

A B But OA = OX 
{equal radii} 

OAX = 2a 
{isosceles triangle} 

Thus XOB = da {angle at centre theorem} 

YOB = 4a — a = 3a 
YOB = 3(X0Y) 

9 Q Let XPQ = a; 
@) = ag 

X {angle between 

tangent and chord} 

< {isosceles triangle} 
P v R _ 

a] = as 

[QP] bisects XPR. 
10 

C A D 

A B 

Let DCB = ay 
a1 = az  {equal alternate angles} 

OB =0C {equal radii} 

as = ag  {isosceles triangle} 

o] = a3 

[BC] bisects DCO.
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1 We join [OP], [0Q], [OR], 
[OS], and [PR]. 
Let [PQ] meet [RS] at T. 

Let RPQ = a 

QOR = 2a 
{angle at centre theorem} 

But PRT = 90° — o 
{angles of a triangle} 

POS = 2(90° — a) 
= 180° — 2« 

{angle at centre theorem} 

  

QOR + POS = 2a + 180° — 2a = 180° 

POS and Q6R are supplementary. 

We join [WP] and [WQ]. 

Let YWP = oy 
o] = aa 

{angle between tangent 
and chord} 

and ap = oz {given} 

and a3z = ag 

{angle between tangent 

  

and chord} 

a] = ag 

YWP = ZWQ 

We join [BQ]. 

Let BAQ = a1, BQA = 3, 
Now a; =az {given} 

and 3; = By 
{angles subtended by 
the same arc} 

As ABQ and APC are 

equiangular, and 

C therefore similar. 

Hence, APC = ABQ. 

a Let ABE = a; 
aj; = ap {angles subtended by the same arc} 

and a; = ag {equal alternate angles} 

But a2 = oy {equal alternate angles} 

As AABE and ACDE each have two equal angles, they are 

both isosceles. {converse of isosceles triangle theorem} 

b Consequently, DE = CE and AE = BE 

AE + CE = BE + DE 

AC = BD 

15 ap = az 

{equal alternate angles} 

and a1 = ag 

{angle between tangent 

and chord} 

a2 = a3z 

Thus APQR is isosceles. 

{converse of isosceles 

  

triangle theorem} 

  

We join [XB], [AB], and [BY]. 

ABX and ABY are right angles  {angle in a semi-circle theorem} 

XBY = 90° + 90° = 180° 
XBY is a straight angle 

X, B, and Y are collinear. 

17 

  

We join [XB], [PB], [BY], and [BQ], and let PBX = ag. 

Now a1 = a2 {angles subtended by the same arc} 

{vertically opposite} 

{angles subtended by the same arc} 

a2 = (3 

and a3 = ag 

a1 = oy 

XBP = YBQ 

18 Let SPQ = a 

SQP = 90° — o 
{angles of a triangle} 

QRP = 90° — a 
{angle between tangent 
and chord} 

But PQR = 90° 
{angle in a semi-circle} 

R/I;Q =« 

{angles of a triangle} 

  

Thus SPQ = RPQ = a 

[PQ] bisects SPR.



19 

  

Now PX = AX and PY =BY {tangents from external point} 

perimeter of AXYC = CX + CY + XY 

=CX+CY +PX+PY 

= CX + CY + AX + BY 

= (CX + AX) + (CY + BY) 
=CA+CB 

which is constant as A, B, and C are fixed. 

  

We join [XA] and [XB]. 
Let ZXB = o 

AXB = 90° 
ZXA = 90° — a 
XAZ = 180° — 90° — (90° — ) = 

{angle in a semi-circle} 

{angles in a triangle} 

BXY = a 

ZBX = 180° — 90° — a = 90° — {angles in a triangle} 

AXT =90° — a {angle between tangent and chord} 

ZXB = BXY = o and ZXA = AXT = 90° — 
[XB] bisects ZXY and [XA] bisects ZXT. 

21 ¥ 

L 
A 

a F lies on the perpendicular bisector of [PC]. 

APFC is isosceles 

{converse of isosceles triangle theorem} 

PF =FC 

But AF =FC {given} 

PF = AF 

AFPA is isosceles. 

Let P be the point of 

contact with the circle. 

{angle between tangent and chord} 

23 

24 

  

WORKED SOLUTIONS 293 

b Consequently B; = 3, {isosceles triangle theorem} 

But «a; =a {isosceles triangle theorem} 

and o1 = ag {angles subtended by the same arc} 

BPA = 3 — a = BAP 
ABPA is isosceles 

{converse of isosceles triangle theorem} 

PB = AB 
But PB+BE=EC {given} 

AB + BE = EC 

Let PA=PB=ua 

QB=QC=hb, 

RC=RD =, 
SD=SA=d 
{tangents from an 

external point} 

  

PQ+RS=a+b+c+d 
=(b+c)+ (a+d) 

= QR +PS 
So, the sum of the lengths of one pair of opposite sides equals the 

sum of the lengths of the other pair of opposite sides. 

We join [OR] and mark 

right angles OPS, OQT, 
ORS, and ORT. 
{radius-tangent theorem} 

SP = SR and TR = TQ 

{tangents from an 

external point} 

OP = OR = 0OQ 

{equal radii} 

Now As SPO and SRO are congruent {SSS} 

a1 = az 

and As QOT and ROT are congruent {SSS} 

By =B 
20+ 23 = 180° {angles on a line} 

a+ 3 =90° 

SOT is a right angle. 

  
We join [OQ]. OaP = 90° {radius-tangent}
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Now [OQ] || [PT] {radius-tangent, converse of 

supplementary allied angles} 

. a1 =az  {equal alternate angles} 

But OQ =OR  {equal radii} 

a; = ag  {isosceles triangle theorem} 

But a3 =ay {vertically opposite angles} 

s =y 

ASTR is isosceles  {converse of isosceles triangle theorem} 

25 

  

AOB = 90° and P is the midpoint of [AB] 

we can draw a circle through A, O, and B with centre P and 

diameter [AB] {converse of angle in a semi-circle} 

This circle through A, O, and B has diameter [AB] of fixed 

length AB. 

its radius [OP] has fixed length 

Point O is fixed 

the light source P traces out a circle with centre O and radius 

of length é x AB. 

26 

; %B 
% X 

a We join [AC] and [BC] and draw the common tangent at C. 

Let the common tangent at C meet [AB] at X. 

Then XA =XC and XC = XB 

{tangents from external point} 

XA =XB 

X bisects [AB]. 

b ¢ 

AB A X 

As AXC, BXC are isosceles. 

oooap=oa and 3y = By {isosceles triangle theorem} 

But a1 + az + By + 3, = 180° 

20+ 23 = 180° 

a+ B =90° 

ACB is a right angle. 

Note: As XA = XB = XC, a semi-circle could be drawn 

through A, C, and B. 

ACB is a right angle. 

1 5 X AB. 

{angles of a triangle} 

27 We join [AB], [BC], and 

[BD] and draw the tangent 

at B. 

Let the common tangent at 
B meet [DC] at M. 

DBA is a right angle. 

{angle in a semi-circle} 

  

DM = BM = CM {tangents from an external point} 

a semi-circle can be drawn with diameter [DC] passing 

through B 

DBC is also a right angle  {angle in a semi-circle} 

ABCisa straight angle 

A, B, and C are collinear. 

28 

  

Draw the common tangent at P to meet [AB] at M. 

AM =PM = BM {tangents from an external point} 

MPR = 90° 
QP2 = QM2 — PM? 

= (QM — PM)(QM + PM) 

= (QM — AM)(QM + BM) 
= QA.QB 

29 We draw the tangent 

at A, which is the 

tangent to both 

circles. 

{radius-tangent} 

{Pythagoras} 

{AM = PM = BM} 

ap =z 
and a1 =asg 

{angle between 

tangent and chord} 

ag = a3 

  

[BD] || [CE] {converse of corresponding angles} 

30 
S 

AN = 
Let [SP] cut the smaller circle at T and join [QT]. 

ap =ag and a3 = a3 {angle between tangent and chord}



01 =02 {angle between tangent and chord} 

R?Q + QfiP = Pfis {exterior angle of a triangle} 

R?Q +a=0+a«a 

RPQ = ¢ 

[QP] bisects RPS. 

31 

  

Let P be the point on the boundary line such that the circle through 

A, B, and P has the boundary line as a tangent. 

Let Q be any other point on the boundary line. 

Let APB = a, AQB =6, and QAR = §. 

ARB = a {angles subtended by the same arc} 

a =0+ {exterior angle of a triangle} 

a>0 

APB is always greater than AaB 

the angle of view is maximised when P is chosen such that the 

boundary line is a tangent to the circle through A, B, and P. 

EXERCISE 2E NN 

We have four isosceles 

triangles {equal radii} with 

equal base angles which we 

mark a, 3, 6, ¢. 

  

Now 2a+ 28 + 260 + 2¢ = 360° 

a+B+60+¢=180° 

opposite angles are supplementary. 

2 D C 

{angles of a quadrilateral} 

We draw [CX] parallel to 

[DA], meeting [AB] at X. 

We let ABC = aj. 

A X B 

Now ADCX is a parallelogram 

DA = CX {parallelogram theorem} 

CX=CB 

ACBX is isosceles 

a; =ap  {isosceles triangle theorem} 
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Now AXC =180° — o 

ADC = 180° — o {parallelogram theorem} 

ADC + ABC = 180° — a + o = 180° 
ADCB is a cyclic quadrilateral 

{converse of opposite angles of a cyclic quadrilateral} 

3 20+ 283 = 360° 
a+ B =180° 

ABCD is a cyclic quadrilateral. 

{converse of opposite angles of a cyclic quadrilateral} 

{angles on a line} 

{angles of a quadrilateral} 

ABC = ACB 
{isosceles triangle theorem} 

we let angles ABX, CBX, 

ACY, BCY all be a 

[XY] subtends equal 

angles of « at B and C. 

BCXY is a cyclic 

quadrilateral. 

  

We join [XY] and let CAB = o 
XYD =« 
ABD = 180° — o 

{exterior angle of a cyclic quadrilateral} 

{opposite angles of a cyclic 

  

quadrilateral } 

CAB + ABD = a + 180° — a 
= 180° 

[AC] || [BD] {converse of allied angles} 

6 Consider the given figure and 

let ABC = o 

ADC = o 

{parallelogram theorem} 

20 = 180° 
{opposite angles of a 

cyclic quadrilateral} 

a = 90° 

ABCD is a rectangle 

{a parallelogram with one angle 90° is a rectangle} 

7 Let ABC =a     B ~ 

ADC = 180° — a 
{opposite angles of a 

cyclic quadrilateral} 

AYX =a and 

AZX =180° —a 
. {equal corresponding angles} 

C 

AVX + AZX = o + 180° — a = 180° 
XYAZ is a cyclic quadrilateral 

{converse of opposite angles of a cyclic quadrilateral }
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We join [OD] and 

let ABC = a. 

OAD = o 
{corresponding angles} 

OA =0D 

{equal radii} 

. AOAD is isosceles     180° — a 

ODA = OAD = & 

OCB = 180° — « 

{isosceles triangle theorem} 

{supplementary allied angles} 

ODB + OCB = a + 180° — & = 180° 
DOCB is a cyclic quadrilateral 

{converse of opposite angles of a cyclic quadrilateral} 

We join [XY]. 

Let CAB = o 

and CBA = B 

AYX = o 

and BYX = 8 
{angle between 

tangent and chord} 

  

ACB = 180° — a — 3 {angles of a triangle} 

AYB + ACB = a + 8+ 180° — a — 3 = 180° 
AYBC is a cyclic quadrilateral 

{converse of angles of a cyclic quadrilateral thcorem} 

  

We join [PX]. 

QPX = o {angles subtended by the same arc} 

SPX = a {exterior angle of a cyclic quadrilateral} 

QPX = SPX 

[PX] bisects Q/I;S. 

A5 We join [OE], [OC], 
[AC], and [OA]. <& 

L 

Let ADC = ay 
a1 =az {equal alternate angles} 

a1 = ag  {angles subtended by the same arc} 

AEC = az + ag = 2a  {exterior angle of AABE} 

AOC = 203 = 2a {angle at the centre} 

[AC] subtends equal angles at E and O 

A, E, O, and C are concyclic {test for concyclic points} 

    

12 We join [OX] and [OY]. 

OXA = OYA = 90° 
{converse 1 of chord 
of a circle} 

OXA + OYA = 180° 
0, X, A, and Y are 

concyclic points  {test 

C for concyclic points} 

13 

C 

a In AXOY, AXO + AYO = 90° + 90° = 180° 
AXOY is a cyclic quadrilateral 

{converse of opposite angles of a cyclic quadrilateral} 

Also, [BC] subtends equal angles at X and Y. 

. BXYC is a cyclic quadrilateral 

{test for cyclic quadrilaterals} 

b Let X,A\O = ai, a] = as and as = ag 

{angles subtended by the same arc} 

XAO = XYO = XCB. 
¢ [XZ] subtends equal angles at A and C {a1 = a3}, 

. XZCA is a cyclic quadrilateral 

{test for cyclic quadrilaterals} 

CZA = CRA = 90° 
{angles subtended by the same arc} 
[AZ] L [BC]. 

14 

  

We join [PQ], [AC], and [BD], and let PAC = . 
a1 = as {exterior angle of a cyclic quadrilateral} 

PBD = 180° —a {opposite angles of a cyclic quadrilateral } 

CAB + DBA = a + 180° — a = 180° 
[CA] || [DB] {converse of supplementary allied angles} 

ABDC is a parallelogram 

AB = CD {parallelogram theorem}



15 P S and T are the midpoints of [PQ] 

and [PR] 

[ST] || [QR] {midpoint theorem} 

T, S 

R Q 

Let PTS = ai. 

ayp =az  {isosccles triangle theorem} 

as =ag  {equal corresponding angles} 

ap = ag 

STRQ is a cyclic quadrilateral 

{converse of exterior angle of a cyclic quadrilateral} 

S, Q, R, and T are concyclic. 

16 D G 

C 

a In As BDC and ABG, we observe that: 

e DB = AB {sides of square ABDE} 
e BC =BG {sides of square CBGF} 

e DBC = ABG = 90° + ABC 
As DBC and ABG are congruent {SAS} 

Consequently, a1 = ag 

BP subtends equal angles at G and C 

B, G, C, and P are concyclic  {test for concyclic points} 

b Consequently, GC subtends equal angles at B and P. 

GPC = 90° 

[DC] L [AG) 
¢ Join [AD], [CG], and [BP]. 

GCB = 45° {CG is a diagonal of squarc} 

and so BPG = 45° {angles subtended by the same arc} 

By similar reasoning as in a, APBD is a cyclic quadrilateral 

and BPD = 45° 

BP bisects DPG. 

N\ 
We join [OC] and [BCJ, and let BOD = a. 

17 
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OBD = OCD = 90° {radius-tangent} 

OBDC is a cyclic quadrilateral 

{converse of opposite angles of a cyclic quadrilateral} 

a1 = az {angles subtended by the same arc} 

ag = ag  {angle between tangent and chord} 

a] = as 

[OD] || [AC] {converse of equal corresponding angles} 

18 

  

{equal alternate angles} 

{angle between tangent and chord} 

a1 = a2 

and o1 =as 

Q2 = a3 

SQRT is a cyclic quadrilateral 

{converse of exterior angle of a cyclic quadrilateral} 

19 

  

Let ABCD be a quadrilateral where an exterior angle is equal to 

the interior opposite angle. 

Joooap = a2 

We now draw a circle through A, B, C, and E where E is on [CD] 

or [CD] produced. 

However ap = ag {exterior angle of a cyclic quadrilateral} 

Sl =as 

[AE] || [AD] 
which is possible only if E and D coincide. 

ABCD is a cyclic quadrilateral. 

{converse of equal corresponding angles} 

  

As the axes are at right angles, OAPB is a cyclic quadrilateral 

no matter where the set square moves. {converse of opposite 

angles of a cyclic quadrilateral} 

We join OP. 

Now a; =ap {angles subtended by the same arc} 

As as is fixed, arp must also be fixed. 

P lies on a straight line segment through O.
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21 For the quadrilateral ABCD 

where [AB] subtends equal 

angles at C and D we draw a 

circle through A, B, and C. 

Let E be on [BD] or [BD] 

produced. (The latter case is 

shown.) 

Let ACB = ay. 

  

ap = ag {given} 

But a1 = a3 {angles subtended by the same arc} 

az = a3 

[DA] || [EA] 
and this is only possible if D and E coincide. 

Thus, A, B, C, and D are concyclic. 

{converse of equal corresponding angles} 

  

We join [XY], [YZ], [AP], and [PC], and let XYA = ag. 

As [AP] subtends equal angles at X and Y, APYX is a cyclic 

quadrilateral.  {test for cyclic quadrilaterals} 

a1 = az {angles subtended by the same arc} 

In APAX, XAP = 90° — a {angles of a triangle} 

But APCB is a cyclic quadrilateral 

ZCP = 90° — o {exterior angle of a cyclic quadrilateral} 

7ZPC = a3 {angles of a triangle} 

But ZPYC is a cyclic quadrilateral 

{converse of opposite angles of a cyclic quadrilateral} 

a3 = ay {angles subtended by the same arc} 

a1 =g 

But AYC is a fixed straight line. 

Hence X, Y, and Z are collinear. 

23 B We join [PQ] and [XY], 

and let CPQ = a;.      
{midpoint theorem} [PQ] || [AB] 

a1 = az {equal corresponding angles} 

Now [AB] subtends equal angles at X and Y (90°) 

. ABXY is a cyclic quadrilateral 

{test for cyclic quadrilaterals} 

YXB = 180° — o {opposite angles of a cyclic 

quadrilateral } 

o Ys(\Q =a3 

In XQPY, a1 = a3 

XQPY is a cyclic quadrilateral. 

{converse of exterior angle of a cyclic quadrilateral} 

{angles on a line} 

EXERCISE 2F IS 

1 a By the intersecting 

chords theorem, 

TX6=3x7 

6z = 21 

x =35 

b By the secant-secant theorem, 

z(z+5)=2x(2+8) 

z2 + 5z =2 x 10 

z? 4+ 5z —20=0 
—5+ /25 + 80 

2 

_5 4 108 
z:%% {as = >0} 

T = 

x = 2.62 

¢ By the secant-tangent theorem, 

z(z+8) = 52 

22 +82—-25=0 
-8+ +64+100 

2 

—8 4 2v/41 

T 

T = 
2 

z=—-4+V41l {as z >0} 
r ~ 2.40 

By the intersecting 

chords theorem, 

B 5xaz=4x%x6 

5r =24 

A S x=438 

DX =4.8 cm 

b By the intersecting 

chords theorem, 

B 3Xz=2X%X6 

3z =12 

=4 

CD=7cm 

By the intersecting 

chords theorem, 

z(9—z)=3x5 

A o9z —a?=15 

a2 —92+15=0 

9 4+ /81 — 60 
z:f 

9+ /21 
Z:T 

CX:%cm 

A~ 6.79 cm or 2.21 cm



By the secant-secant theorem, 

rX3zx=3x11 

z? =11 

z=+V11 {as z >0} 

AB = 2V11 ~ 6.63 cm 

T em 

= 

  

By the intersecting 

chords theorem, 

TX2r=3x4 

2z% = 12 
z2=6 

z=6 
{as = >0} 

AB =36 cm 
~ 7.35 cm 

Let the radius be 7 cm. 

By the intersecting chords 

theorem, 

(r+4)(r—4)=3x5 

r2-16=15 

r? =31 

r=+31 
{as r >0} 

the radius is 

V31~ 5.57 cm 

By the secant-secant 

theorem, 

3(z+3)=4x%x6 

3(x+3) =24 

r+3=28 

. x=5 

CD =5 cm 

Let BX =z cm 

AX =3z cm 

AB = 2z cm 

If AB = z cm, by the 

secant-tangent theorem, 

6% =4(4+2) 
4+x=9 

BX =9 cm 

Let XT = 2 cm. 

By the secant-tangent 

theorem, 

22 =2x5 

ooz =10 

XT = /10 
~ 3.16 cm 
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< B, radius = 5 cm 

8cm v 
X 

T cm 

By the secant-secant theorem, 

z(z +10) =8 x 10 

z® + 10z — 80 = 0 

—10 4 /T00 — 4(1)(—80) 
2 

—10 £ /420 

2 

. z=-5++105 {as =z >0} 

OX =z +5=+v105~10.2 cm 

AB = 400 km 
By the sccant-tangent 

theorem, 

BA.BX = BC? 

BC? ~ 400 x 13140 

BC? ~ 5256 000 

BC ~ 2290 km 
distance to visible 

horizon ~ 2290 km. 

  

X 

b Let BC =D km and AB = h km. 
By the secant-tangent theorem, 

D? = h(h + 12740) 

D ~ y/h? +12740h km 

7 By the secant-tangent theorem, CT? = CB.CA = CS? 

CT=CS 

AXBX = 8x7=56 

CX.DX =14 x4 =56 

AX.BX = CX.DX 

  

A, B, C, and D are concyclic. 

{converse of intersecting chords} 

b AX.BX=5x3.2=16 

CXDX=8x2 =16 

AX.BX = CX.DX 

A, B, C, and D are concyclic. 

{converse of intersecting chords} 

   
9 s XA.XB = 0.9 x 6.4 

=5.76 

0.9m and XC? =24% =5.76 
X XC? = XA.XB 

  

2.4m 

[CX] is a tangent to the circle through A, B, C. 

{converse of secant-tangent theorem}
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B——""~Azcm Let AP =z cm. 
By the secant-secant theorem, 

2cm 

z(z+5)=2x 12 

By the secant-tangent theorem, 

XP2 = XB.XA (in circle (1)) 

and XR? = XB.XA (in circle (3)) 
22 452 —24=0 XP2 = XR2 

(z+8)(z=3)=0 XP = XR 
z=3 By the secant-tangent theorem, 

{as z >0} XQ? = XC.XD (in circle (2)) 
AP =3 cm 

D, 

14 

A X B 

By the secant-tangent theorem, XA? = XC.XD = XB? 

XA =XB 
X bisects [AB]. 

  

By the secant-secant theorem, 

XA.XB = XQ.XP in one circle 15 

and XC.XD = XQ.XP in the other 

XA.XB = XC.XD ... (#) 
XA XC 

in As AXC, DXB, — = — {from s} 
XD XB 

and AXC = DXB 
As AXC and DXB are similar {two sides of cach triangle 

    

and XR% = XC.XD (in circle (3)) 

XQ? = XR? 

XQ = XR 
XP = XR = XQ 

the tangents from X to all three circles are equal in length. 

Let [MY] meet the circle at W. 

W is a fixed point. 

Let WM =MZ =a 

{chord of a circle} 

and AM =b and YW = z, 

where x varies. 

By the secant-secant theorem, 

YX.YA=YW.YZ 

(YA — AX).YA = z(z + 2a) 
YA? — AX.AY = 22 + 2az 
2+ (a+z)? = AXAY + 22 + 2az  {Pythagoras} 

b2 + a® + 2ax + 22 = AX.AY + 22 + 2az 

AX.AY = a® + b% which is constant 

We join [AB] and [CD]. 

ABD = ACD = 90° 
{angle in a semi-circle} 

By the intersecting chords theorem, PA.PC = PB.PD 

are in the same ratio and the included angles are equal}. If we let PA =a, PB=10b, PC=¢, and PD = d, then 

Consequently, ACX = DBX = a, say ac=bd .. (1) 

ACDB is a cyclic quadrilateral. Now  AP.AC +DP.DB 

{converse of exterior angle of a cyclic quadrilateral} =ala+c)+dd+d) 

13 =a? 4 ac+ be + d? 

=a? 4 2ac + d? {using (1)} 

  
Let [XP], [XQ], and [XR] be the three tangents from X to the 

three circles. 

= AC? 4+ CD? 

= AD? 

  
a® 4 2ac+c +d* — 2 

(at+e)?+d* -2 

{Pythagoras in APCD} 

{Pythagoras in AACD} 

Let P be on [AB] or [AB] 

produced such that ACPD is a 

cyclic quadrilateral. 

. XA XP = XC.XD 

But XA.XB = XC.XD {given} 

XP =XB 

Pis B 

A, B, C, and D are concyclic.
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Let [EMF] and [EMG] be chords of circles (2) and (3) 

respectively. 

EM.MF = AM.MB  {in (2)} 

=CM.MD {in (1)} 

=EMMG {in (3)} 

F and G coincide 

F and G are on both circles (2) and (3) 

F and G are really H. 

So, we have indirectly shown that all three chords are concurrent. 

EXERCISE 2G I 

1 a Infinitely many circles can be drawn. 

b Infinitely many circles can be drawn. 

¢ Where [BX] and [CY] intersect we have a circle which 

touches [AB], [AC], and [BC]. 

d We join [AO]. 

Consider AAXO, AAYO: 

AX = AY {tangents 

from an external point} Y, 

AO is common X 

ARO = AYO = 90° ‘{ 
{radius-tangent} . 

. As AXO, AYO are B 
C congruent {RHS} 

A 

Y& « 

Ok 

g Let [DY] produced meet 

[BC] at Z. 

Join [DB]. 

Z Diagonal [BD] is bisected 

by diagonal [AC] 

{parallelogram theorem} 

A 

Consequently 

XAO = YAO. 

D X C 

Y is the centroid of ABCD. 

[DZ] is a median to the third side. 

Z is the midpoint of [BC]. 

[DY] bisects [BC]. 
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3 a X lies on the perpendicular bisector of [AB]. 

AABX is isosceles 

{converse of isosceles triangle theorem} 

b Likewise, AACX is isosceles. 

¢ Now as As ABX and ACX are isosceles, 

AX =BX and AX =CX 

BX =CX 

. ABXC is isosceles 
As BXN and CXN are congruent. {RHS} 

d Consequently, BN = CN 

We have indirectly shown that all three perpendicular 

bisectors of the sides of a triangle are concurrent. 

4 A We join [GC]. 

BX =CX {given} 

GX = %AX {medians of a triangle} 

area of AGBX = 1 x area of AABX {equal bases} 

and arca of AABX = 1 x arca of AABC {cqual altitudes} 

area of AGBX = 1 x % x area of AABC 

=1 x area of AABC 

As G is the centroid of AABC, 

AG 
GM 1 

Q But AAGS is similar to 

AAMB 

{equal corresponding angles} 

AG AS 4 
AM T AB S 

AS = 2AB 
S is a point of trisection 

of [AB]. 
C P M B 

RG GS 
Similarly, o™ and — = 

MB 

RG=%CM and GS= 

RG = GS {as BM = MC, given} 
In As SQG, SAR, [QG] || [AR] 

Q bisects [AS] {converse of midpoint theorem} 

{similar triangles} 

W
i
 

W
i
 

o
 

w
h
e
 

MB @l 

AQ=QS =SB 
Q and S trisect [AB]. 

6 P Consider triangles APR and 

ABR: 

ARB = 90° 
{angle in semi-circle} 

ARP = ARB = 90° 
{angles on a line} 

AP = AB {given} 

AR is common 

/. 
N\ 

As APR and ABR are congruent {RHS}
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Consequently, PR = BR 

[AR] is a median of AAPB. 

OA = OB {equal radii} 

. [PO] is also a median. 

X is the centroid. 

X divides [PO] in the ratio 2: 1 {medians of a triangle} 

[XP] is twice as long as [OX]. 

C 

7 ‘ 

A ‘ 

»k 10 
D 

Let [BC] produced meet [AD] at M, let N be the second circle’s 

centre, join [AC], and join [CD]. 

[CD] is a diameter. 

N is the midpoint of [CD]. 

[AN] is a median of AACD. 

As AB:BN=2r:r=2:1, 

B is the centroid of AACD. 

CM is another median 

M bisects [AD]. 1 

\ LI { 

B 

As CPQR is a parallelogram, CP = RQ ... (1) 

{parallelogram theorem} 

Likewise as PAQR is a parallelogram, PA = RQ ... (2) 

From (1) and (2), CP = PA 

P is the midpoint of [CA]. 

By similar reasoning, Q is the midpoint of [AB] and 

R is the midpoint of [BC]. 

We now join [PB], [RA], and [QC]. 

Let G be the centroid of AABC and let 

[CQ] meet [PR] at X, [AR] meet [PQ] at Y, and 

[BP] meet [RQ] at Z. 

Now As BRZ, BCP are equiangular and therefore similar. 

RZ BR 
c BC 2 12 
RZ = 2CP 

Likewise in As BZQ, BPA, ZQ = $PA 
Thus RZ =ZQ {as CP = PA} 

PZ is a median of APQR. 

By similar reasoning using different similar As, [QX] and [RY] 

are also medians of APQR. 

These 3 medians meet at G, the centroid of AABC. 

/s PQR, ABC have a common centroid. 

Let 

and OB = BC = r, where r 

is constant. 

A 

. G lies on a semi-circle 
with centre O and radius 

7 {converse of angle in 

a semi-circle}. 

A o OG=r and AG=2r 
{medians of a triangle} 

o OA=3r 

. OA is constant for all 
C r 0 7 B positions of A. 

the locus of A is a circle with centre the midpoint of [BC] 

and radius £ x BC. 

P Q 

EM 
S R 

[RY] produced is also an altitude. 

Thus [RY] L [PQ]. 

Join [PR] and let [PR] and 

[OS] meet at N. 

As PQRS is a rhombus, 

its diagonals bisect each 

other at right angles. 

Thus [PM] and [QN] are 

altitudes of APQR and as 

they meet at Y, Y is the 

orthocentre of APQR. 

  

Let [PB] produced meet [SR] at M and [RA] produced meet [PQ] 

at N. 

[PM] and [RN] are altitudes. 

RMP = PNR = 90° 

{A, B are orthocentres} 

MPN = 90° {supplementary allied angles} 

[PM] || [NR] {converse of allied angles} 

Let [RB] produced meet [PS] at K and [PA] produced meet [QR] 

at L. 

[RK] and [PL] are altitudes. 

PKR = RLP = 90° 

KRL = 90° 
[KR] || [PL] 

So, [PB] || [AR] and [BR] || [PA] 

PARB is a parallelogram. 

P a Consider As PBH, PAR: 

P is common {e} and 

AE 
O 

B 

) .. Al 
R A 

{A, B arc orthocentres} 

{supplementary allied angles} 

{converse of allied angles} 

PBH = PAR = 90° 
/s PBH and PAR are 

cquiangular and 

therefore similar. 

PB _ PH 
PA PR 

Q . PH.PA = PB.PR
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b Consider As PHB, QHA: 

a1 = ag {vertically opposite angles} 

and PBH = QAH = 90° 
/s PHB and QHA are equiangular and therefore similar. 

PH _ HB 
Qi HA 

PILHA = QH.LHB ... (1) 
Likewise, As CHQ and BHR are similar. 

HC  QH 
HB  RH 

QH.HB = RHHC ... (2) 
From (1) and (2), PH.HA = QH.HB = RH.HC 

  

In OPCQ, OPC + 0QC = 90° + 90° = 180° 
OPCQ is a cyclic quadrilateral 

{converse of opposite angles of a cyclic quadrilateral} 

[OC] is a diameter of circle (1) as it subtends right angles at P 

and Q {converse of angle in a semi-circle} 

.Y is the centre of circle (1). 

As [AB] subtends equal angles of 90° at P and Q, ABPQ is a 

cyclic quadrilateral  {test for cyclic quadrilaterals} 

[AB] is a diameter of circle (2) as it subtends right angles at P 

and Q {converse of angle in a semi-circle} 

X is the centre of circle (2). 

So, circles (1) and (2) have a common chord [PQ] and the line 

[XY] connects the circles’ centres. 

[XY] bisects [PQ] at right angles  {intersecting circles} 

We let the circle’s 

centre be M and locate 

the orthocentre O at 

the intersection  of 

perpendiculars [PA] to 

[QR] and [QB] to [PR]. 

Now as [RS] is a 

diameter, it subtends 

right angles at P and Q. 

{angle in a semi-circle} 

  

As SPR + QBP = 90° + 90° = 180°, 
[SP] || [QB] {converse of supplementary allied angles} 

Likewise, as SQR + QAP = 180°, [SQ] || [AP]. 
Thus SQOP is a parallelogram. 
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15 A Using the given hint, we 

now have to prove that 

X is the orthocentre of 

AABC. 

We join [AX] and produce 

it to [BC] meeting [BC] 

at N. 

c N B Let M be the midpoint of 

[BC]. 

[OM] L [BC] {O is the circumcentre} 

AGM is a median of AABC 

where AG:GM =2:1 

Now GX:0G=2:1 {construction} 

and AGX = MGO {vertically opposite} 

As AGX and MGO are similar 

{Two pairs of sides in proportion and included angles equal} 

Consequently, XAG = OMG 

[AX] || [OM] 

{medians of a triangle} 

{converse of equal alternate angles} 

But OMB is a right angle  {O is the circumcentre} 

ANB is a right angle 

[AN] is an altitude of AABC .... (1) 

By similar reasoning we can show that [CX] produced to R on 

[AB] is also an altitude of AABC. 

Use: A 

  

Thus as [CR] and [AN] are altitudes which meet at X, then X is 

the orthocentre. 

EXERCISE 2H I 

1 

  

(18 —z) cm P o em 

We draw the angle bisectors of the triangle: 

[AP] meets [BC] at P, [BQ] meets [AC] at Q, and [CR] meets 

[AB] at R. 

We let BP =z cm, CQ =y cm, and AZ = r cm. 

  By the angle bisector theorem, 2 = 4 - 
15 5 18—z 

72 —4x = 5z 

9z =72 

=28 

and 18 —x =10 

BP =8 cm, PC = 10 cm
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Likewise S _3__¥ and S _8_12-2 
12 2 15—y 15 5 z 

45 — 3y =2y . 6z =60— 52 

5y = 45 11z = 60 

y=9 z= % 

CQ=9cm, QA =6cm, AR~ 5.45cm, and 

RB =~ 6.55 cm. 

2 a i B Let AD = 2 cm. 

By the angle 

bisector theorem, 

10 cm X 6 8-z 
6 cm 1—0 =T 

. 6z =280~ 10z 

16z = 80 

A zem  D(8—a)emC ST =5H 

AD =5 cm, 

CD=3cm 

il AABC is right angled at C  {ratio of sides 3:4:5} 

CD ABC 3 tan( 2 )_?_E 

ABCY) _ 1 
tan (T) =3 

e
 

  

(1-=z) B 
-—— 

By the angle bisector theorem, 

  

    

  

Consider the right-angled 

isosceles triangle shown. 

The two equal sides have 

length 1 unit. 

By Pythagoras, the 

hypotenuse is /2 units. 

PY 

YQ 

1 =z 

V2 l-=z 

1-—z=aV2 

1=2(vV2+1) 

V21 
V2+1\v2-1 

V2-1 

2-1 
Consequently, tan (%) = V2 =v2-1. 

1 

3 P Join [YZ]. 

By the angle bisector 

PX 
theorem, — = 

QX 
PX PZ 

XR 
7R’ 

QX = XR, LHS of 

each fraction are equal. A 
PZ 

ZR 

PY 
YQ 

[YZ] || [QR] {converse to parallel lines within a triangle} 

and 

C 

By the angle bisector theorem, 

B 

AP PH AP PK - and — = — 
AB  HB AC ~ KC 

But AB =AC {given} 

PH _ PK 
HB ~ KC 

[HK] || [BC]  {converse to parallel lines within a triangle} 

5 D 

E ‘ C 

A B 

By the angle bisector theorem, 

DC GC 
— =— ..(1) and 
DE EG 

AB BF 
S-m @ 

As EAB and EDG are similar  {given} 

AB _ DC 
AE ~ DE 
BF GC 
-G {using (1) and (2)} 

[GF] || [CB]  {converse to parallel lines within a triangle} 

6 A We join [PR]. 

oy =az  {given} 

AP AQ 
550 O 

Q 
{angle bisector theorem} 

Al AR 
Bu 2Q_AR 

BQ RC 

{parallel lines within a triangle} 

AP AR 
BP  RC 

{from (1). @)} 

[PR] bisects APC {converse of angle bisector theorem} 

However BP =PC {given} 

AP AR 

PC RC 

B1 =82 

20+ 28 = 180° 
a+ 3 =090° 

That is, QFR is a right angle. 

{angles on a line}



7 P 
<D 

L] 

I 
A Q C B 

As QP bisects A/P\B, 

PA Al 
5= Q—g ... (1) {angle bisector theorem} 

But As APC and ABP are equiangular and therefore similar. 

AC _ PC 
AP BP 
PA AC 

O i e ) n rearranging, B r 2) 

Al AC 
Thus from (1) and (2), AQ = —. 

QB PC 

R RM 
8 a R _RM {angle bisector theorem} 

QP PM 
But RM = PM 

QR = QP 
APQR is isosceles. 

b None of the 4 tests for congruence apply. 

9 By the secant-secant theorem in AXBD, 

XA.XB = XC.XD 

XA XD 

x-x W 
By the angle bisector theorem, 

XA MA 
in AXAC, — =-— ... (2) and 

XC CcM 

XD ND 
in AXBD, — =— .. (3) 

XB BN 

MA ND 
o = BN rom (D). (@, 3)} 

MA.BN = ND.CM 

10 A Using the angle bisector 

theorem 3 times: 

AB  BP AC AR 
Q R AC ~ CP° BC  BR’ 

AB  AQ 
and — = — 

l. BC CQ 

      

C P B 

ACBR AB.CP AQ.BC 
Thus AR.BP.CQ = . . 

" Q BC = AC T AB 

= AQ.BR.CP {after cancellation} 

1 P By the angle bisector 

theorem in APQS, 

PQ PO 
== 
QS ©OS 

and in APRS, 

PR PO 

A‘; woos 
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Now QR = QS+ SR 

    QR = P(i(())s + Pl;é)s {from (1) and (2)} 

R — (PQ + PR).OS 
PO 

QR 0s 
(PQ+PR) PO 

PO : 0S = (PQ + PR) : QR 

12 Chords [RQ] and 

[QS] are equal in 

length. 

{RS is a chord of the 

circle perpendicular 

to the diameter. } 

they subtend the 

equal angles at 

the circle at B. 

al = o2 

  

Likewise, as chords [PR] and [PS] are equal in length, they 

subtend equal angles at A. 

B1=Bs 

By the angle bisector theorem, 

BR RT RA RT 
— =— and — = — 
BS ST AS ST 

BR _ RA 
BS  AS 

BR.AS = RA.BS 

13 

  

ai = az {angle between tangent and chord} 

a1 = ag  {angle between tangent and chord} 

az = oy {angles subtended by the same arc} 

a3 = a4 

Hence, [BC] || [RS] {converse of equal corresponding angles} 

Consequently, (3 = 3, {equal alternate angles} 

B, = B3 {angle between tangent and chord} 

and B, =B, {angles subtended by the same arc} 

L By =0, 

Thus [AT] bisects BAC. 
AB TB 

AC ~ TC 
AB: AC=TB:TC
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14 . Thus OA.OB = (r + z)(r — y) 

=72 far—yr—ay 

=2 fr(z—y)—ay 

:7‘2+( oy )(:fl—y)—xy 
-y 

  

=r’tay—ay {z#y} 
:7‘2 

2 OB=3cm and AP; =4 cm 

  

  

  

  

We join [CO] and let AO = x cm. Now OA =r + APy = (r +4) cm 

OB = (20 — z) cm. But 72 = OA.OB {corollary of Apollonius’ circle theorem} 
Now [CR] and [CS] are external tangents to the semi-circle. 2= 3(r+4) 

. RCO = sCO {tangents from an external point} L or2_3r—12=0 

By the angle bisector theorem, 3+ /9—4(1)(-12) 

CA _ OA SoT= - 3 

CB OB 3457 

o_5__= e 
14 7 20—z 

3+ V57 
100 — bz = Tz or=—D {as >0} 

12z = 100 oo r R 5.27 em 

=2 3 a Pz, y), A(-2,0), and B(4,0) 

OB = & cm oo PA= /@ +22 142 and PB=./(z 42+ 42 
Let ABC =6 ; PA 

i — = 
o 202 + 142 — 102 PB 

= arccos _— 
2% 20 x 14 PA =PB 

. PA? =PB? 
6 = arccos (fl) 2 2 2 2 35 (z+2)°+y" =(x—4)°"+y 

Now [0S] L [BC] {radius-tangent theorem} At dr Aty = 8r+ 16447 
. . T oo 122 =12 
in ABOS, sinf = — . 

OB =1 

r= '3_35 sin (arccos (%)) Thus P lies on the vertical line, = = 1. 

& 5.42 i PA_ L 

So, the radius is 5.42 FB : o, the radius is 5.42 cm. - PB2 = 4[pAZ] 

EXERCISE 2] M L@y =A@+ 2)? 7 
1 Proof of Corollary: Let APy ==z coa? — 8z 46+ y2 = 42® + 16z + 16 + 4y2 

P1B = o3¢ 43y + 24z =0 

B . BO=r—y o2+ 482=0 

PA 
iii — =2 

PB 

o PA% = 4[PB? 

(@ +2)° +9° =4[z — 9° +4°] 
AT Py B =y O T Py st x4 y® =4 - 8z + 16+ ¢ 

22 + 4z + 4+ y? = 42 — 32z + 64 + 4y? 

Now A _PA_PA o 327 +3y? — 362 +60=0 
PB P1B P2B oty — 120 4+20=0 

T _ 2r+w PA 

y 2r—y iv = 3 

z(2r —y) = y(2r + z) PA? = 9[PB2] 
o [ 

22 4z +4+y? =9[z* — 8z + 16 + 37 

P — ) = 2y 22 + 4z + 4+ 1y = 92 — 720 + 144 + 9y° 
oy 822 + 8y? — 76z + 140 = 0 

z—y zz+y27§z+3—;:0 

Tr —rYy =Y 

r=  
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b When k=1, AP =PB A EXERCISE 2) NN 
. . ., 

", P lies on the perpendicular - 1 6 cm Let the other diagonal be = cm. 
bisector of [AB], and this N 
N traicht 1i . By Ptolemy’s theorem, 

18 @ straight fme, mot a 9 em 12.00 ~ 6 x 7+ 11 x 9 
circle. 

12.0z ~ 141 

_ o~ 118 
¢ If a circle has fixed cc?ntre  the other diagonal is 

C(p, q) and fixed radius r 7cm . 
approximately 11.8 cm long. 

and P(z,y) moves on the 

circle, then CP = r. 

2 6cm Let the 4th side be  cm. 

V By Ptolemy’s theorem, 

zcm 5cm 5z +6 x 11 ~ 10.1 x 9.54 

P2 = g2 TR 5 

@-p’+@y—a’=r" LoeRe0T 
2 +y? —2pr—2qy+p>+ g2 —r2=0 th64th'51dflls 

. . approximatel 
which is of the form 22 + y? +dz +ey+ f =0 with PP Y 

2 2 2 6.07 cm long. 
d=—2p, e=—2q, and f=p°+q° —r°. 

3 a  PQRS+SP.QR  and PR.QS 

@ =7x134+9x11 =14x12 
=190 = 168 

PQRS is not a cyclic quadrilateral. 

b 
72 mm 2 

P 

A Py 

,\ 79 mm 110 

Let AP =a, BP =b, PPy =x, PPy =y, APP; =aq, mm 

BPP; = 8. 

As PiPPy = 90°, BPPy = 90° — 3. 
Now area of AAP; P _ APy R 

area of ABP;P BP; 
2 2 2 118 — 72 ang 2 of AAP,P _ AR In APQS, cosa = 797 +118° — T 

area of ABPoP  BPy 2x 79 x 118 

{arca comparison theorem, altitudes are equal} a = arccos( }g gf‘;},) 

area of AAPP area of AAP5P { s APy APy } p§R = 60° + arccos( }: 23‘11 

area of ABP;P area of ABPoP BP;  BPy In APSR 

1 . 1 . zorsina 5oy sin(90° + ) PR? = 792 +80? — 2 x 79 x 80 cos (60Q + arccos(1295% ) 

Lbrsing  Lbysin(90° — B) PR ~ 118.65 
sina  cosa Now  PQ.RS+ SP.QR and SQ.PR 
Snpg  cosB =72 x 80+ 79 x 110 ~ 118 x 118.65 

sina_ sing = 14450 ~ 14001 

cosa  cosfB PQRS is not a cyclic quadrilateral. 

tana = tan 3 4 a By Ptolemy’s theorem, xzz+ wy = mn. 

a=p b zz + wy = sum of areas of blue rectangles 

b As a = (3, the angle bisector theorem applies. 

AP APy AP, 
_——=— or = —— < 
BP  BP; BP, 
AP 

=k, a positive constant 

{as A, B, and Py are fixed} 
BP 

mn = area of brown rectangle 

using Ptolemy’s theorem, blue area = brown area. 

When ABCD is a rectangle, 

z=2z w=y {opposite sides are equal} 

and m =n {diagonals are equal} 

Ptolemy’s theorem becomes  x2 + y? = m?  which is 

Pythagoras’ theorem.
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5 a By the Cosine rule, 

22 =a%+d? — 2adcos® and 

{z2 =c? +b% — 2chcos(180° — ) 

But cos(180° — @) = — cos @ 

22 —a? — d? 712—62—62 

—Zad - 2Zbc 

(2% — a® — d®)be = —ad(z® — & — b?) 

z2be — a?be — bed? = —adz? + ac’d + ab’d 

z%(be + ad) = ac®d + ab®d + a®be + bed? 

z2(be + ad) = ac(ed + ab) + bd(ab + cd) 

22 (be + ad) = (ab + cd)(ac + bd) 

22— (ac + bd)(ab + cd) 

  

(be + ad) 

b 

By similar reasoning, 

o (bd + ca)(bc + da) 

v= cd + ba 

{replacing d by a, a by b, ¢ by d, and b by ¢} 

> (ac+bd)(ad + be) 

v= ab + cd 

. 2202 — (ac + bd)(ab + cd) (ac + bd)(ad + be) 

= be+ ad ’ ab+ cd 

22y? = (ac + bd)? 

ac+bd = zy 

6 r=1 . AC=2 

ABC = ADC = 90° 
{angles in a semi-circle} 

  

. b 
sina = — 

2 

a 
cosa = — 

2 

. c 
sinff = — 

B 2 

d 
cos 3 = — 

A 2 

ac+bd = 4cosasinB+4sinacosf ... (1) 

01 = 62 {angles subtended by the same arc} 

In AACD, sinf = g 

In AABD, using the Sine rule, 

  

BD  d 
sin(a+ )  sinf 

BD = dsin(a + 3) 

2 

BD = 2sin(a + 8) 

AC.BD = 2BD 

AC.BD = 4sin(a + ) ... 2) 
AC.BD = ac+ bd {Ptolemy’s theorem} 

4sin(a + ) = 4sinacos 8 + 4cos asin 8 

{using (1) and (2)} 

sin(a + 3) = sinacos 3 + cos asin 3 

EXERCISE 2K.1 MESSS——— 

1 AT:TB=3:7 and BS:SC=5:3 

AT BS CR 
By Ceva’s theorem, —.—.— =1 

TB SC RA 

CR 3,5 _ EXFIX—=1 

R_z 
RA ° 

R divides [AC] in the ratio 5: 7. 

2 a BD=4BC .. BD:DC=1:1 

CE=2CA .. CE:EA=2:1 
AF BD CE 

By Ceva’s theorem, —.—.— = 
FB DC EA 

AF 
fiXTxizl 

AF 1 
FB 2 

AF:FB=1:2 

b We have that AE: EC =1:2. 

We use the theorem that if two triangles have the same 

altitude, then the ratio of their areas is the same as the ratio 

of their bases. 

area of AABE 

area of ACBE 

area of AAOE 

area of ACOE 

arca of AAOB = area of AABE — area of AAOE 

area of ACBE  area of ACOE 

= % {cqual altitudes} 

= % {equal altitudes} 

2 2 

_ area of ACBE — area of ACOE 

- 2 
_ area of ABOC 
=D 

arca of AAOB : area of ABOC =1:2 

AX BZ CY 
— X=—=X—=1 
XB zc YA 

AX 2 

3 a By Ceva’s theorem, 

— Xx2x=-=1 
XB 3 

AX 3 
XB 4 

X divides [AB] in the ratio 3 : 4.



= %a 

= %e 

{areas of triangles are 

proportional to their 

bases if altitudes are 
equal} 

Similarly, e+d+c—2f+a+b) 

e+ 2e+25=23a+2a+2 
a:%e and so f:%e 

Also, 4(a+ f+e)=30b+c+d) 

4(Ze+ Ge+e) =3(b+2b+ %e) 

AS:SZ = f+a b 
_ .17 

1—5fl+1—0l-fil 

=49:34 
—2 A AP = 2AB 

o AP:PB=2:1 

BQ = 3BC 

. BQ:QC=3:1 
P, 

R CR=1icCA 

.. CR:RA=1:6 
B Q C 

AP B 
ow APBQER 5o 5,1 

PBQCRA T717% 
=1 

[AQ], [BR], and [CP] are concurrent. 

{converse of Ceva’s theorem} 

Let the triangle have vertices A, 
A 

B, and C. 

The angle bisector [AX] meets 

[BC] at X. 

[BY] meets [AC] at Y. 

7 Y [CZ] meets [AB] at Z. 

By the angle bisector theorem, 

AB  BX BC CY 
AC  XC' BA YA’ 

B X C CA AZ 
and — = —. 

CB 7B 
BX CY AZ AB BC CA 

XC'YA'ZB  AC BA CB 

=1 

by Ceva’s theorem, [AX], [BY], and [CZ] are concurrent. 

By the tangents from an P 

external point theorem, 

RA = RB, QA = QC, 
g B and PB = PC. 

RA Thus 2 QP8 _y 
AQ CP BR 

Q 

A 

R 

[PA], [QB], and [RC] are concurrent. 
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Let the triangle have 

vertices A, B, and C. 

The altitudes from A, 

B, and C meet [BC], 

[AC], and [AB] at P, 

Q, and R respectively. 

w 

~
 

o 
> 

o 

C 

AR BP C 
We need to prove that ———Q 

RB PC QA 

As ABP and CBR are 

cquiangular, and therefore 

similar. 

{Equal angles are marked.} 

AB BP AP c === 0 
CB  BR CR 

Likewise As BQC and APC 

are similar. 

BC _BQ _ QC 
—_—=—= .. (2 
AC AP PC @ 

@ 

= 
= 

> 
T 

> 
> 

o 
o 

Q 

Finally, also As ACR and 

ABQ are similar. 

AC CR AR —=—=— .03 
AB  BQ AQ 

B C 

AR BP CQ _ BP QC AR {rearranging to fit 

RB'PC'QA  RB PC AQ 1. @, 3} 
B BE' At 

T,CB AC| A8, 
=1 

So, by Ceva’s theorem, [AP], [BQ], and [CR] are concurrent. 

EXERCISE 2K.2 B 

1 A By Menelaus’ theorem, 

BX CY AZ _ 
XC'YA'ZB 

Y 31az_ 
B 5278 

C 
X AZ 10 

ZB 3 

z .. Z divides [AB] externally in the ratio 10 : 3. 

2 w A 

Y 

B C X 

In As AWZ and BXZ, 

ap =az and (3 = By {equal alternate angles} 

the triangles are similar 

AZ AW 
= () 

BZ BX
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In As AYW and CYX, 

a1 = a2, and 67 =602 {vertically opposite angles} 

the triangles are similar 

AW AY 

x-w ? 
AZ BX CY AW BX CcX 

Thuys —.—.—=(-—). — . [—— 
ZB XC YA BX XC AW 

X 

XC 

=-1 

3 D divides [BC] in the ratio 2:3 .. — = 

o = 

o
 

ol
 

o 

E divides [CA] in the ratio 5:4 . — = 

A 

fi B D C 

Let [BE] and [AD] meet at X. 

Now BXE is a transversal of AADC. 

by Menelaus’ theorem, 

AX DB CE == 
XD BC EA 

AX(2>5_ | 
XD\ 5) 4 

AX 2 

XD 1 
X divides [AD] in the ratio 2: 1. 

[PQ] || [BC] 4 a A 

{midpoint theorem} 

AAPR is similar to 

b ‘ Q AABM 
{a1 = a2, cqual 

corresponding angles, 

B & c and @ is common} 

PR AP 1 
BM  AB 2 
BM = 2(PR) ... (I) 

Likewise AARQ is similar to AAMC and MC = 2(RQ) 

  

Using (1) and (2), as PR = RQ e (2) 

BM = MC 

M is the midpoint of [BC]. 

b A BRS is a transversal of 
AAPQ. So, by Menelaus, 

AS QR PB 

SQ'RP'BA 
AS'1 1 
0T —1 

AS 2 
5Q 1 

AS:SQ:QC=2:1:3 

AS:SC=2:4 

=1:2 

S divides [AC] in the ratio 1 : 2. 

Also ARM is a transversal of 

ASBC, and by Menelaus, 

[4 

A 

BR SA CM _ | 
S RS'AC'MB 

BR 11 
R | 

RS~ 3°1 
_ BR 3 

B M C RS 1 

R divides [BS] in the ratio 3: 1. 

Q 

PN~ v 

N 

As APY and CQY are equiangular, and therefore similar. 

AY AP a 
Y CQ ¢ 
AY BX AZ 

Thus A = 2 and likewise ox — 2 AZ _a 
oY ¢ X e BZ b 

X, Y, and Z are points on the three sides produced of AABC. 

AY CX BZ a c b e () (5)-(2) 
AY CX BZ 

YC'XB'ZA 
Y, X, and Z are collinear  {converse of Menelaus’ theorem} 

=-1 

  

a By the angle between a tangent and a chord theorem, 

a; =az =a3 and B = (. 

Consider As ABD, CAD: 

A As ABD and CAD are 

equiangular and 

therefore similar. 

D 

area of AABD _ AB® DB . 
arca of ACAD CAZ DC W 

{area comparison theorem} 

DB : DC = AB? : AC?



Likewise, As BCE and 

CAE are equiangular and 

therefore similar. 

E 

area of ABCE BC? _ BE 

area of ACAE ~ CA2 ~ AE 

Finally, As BCF and 

ABF are equiangular and 

therefore similar. 

Q) 

  

    

   
area of ABCF BC? _ CF 
—_——=—=— ..0 
area of AABF  AB2  AF ® 

AF CD BE  aB? ‘ca® 'Be? 
W — e — = == 

FC DB EA Be?  ABZ  CAZ 

from (3) from (1) from (2) 

=1 

by the converse of Menelaus’ theorem, D, E, and F are 

collinear. 

7 AGHI has 5 transversals and for each we can use Menelaus” 

theorem. 

HX GB ID 
For transversal DXB, —.—.— = —1 

XG BI DH 

HA GF 1Y 
For transversal AYF, ——— =1 

AG FI YH 

HE GZ IC 
For transversal CZE, ——— =1 

EG ZI CH 

HC 1B GA 
For transversal ABC, —.—.— = —1 

CI BG AH 

HD IF GE 
For transversal DEF, —_—.— =1 

DI FG EH 

Multiplying all of these gives 

HX GB P Al gr Iy uE'Gz de'uelas! 
XG BT \DH ,AG Bt YH ,B6 ZI |,CH | €T ;B6 

G« up' ! GE! 

HX GZ 1Y 
—.—.—— = —1 for points X, Y, and Z on two sides of 
XG ZI YH 

AGHI and one side produced. 

X, Y, and Z are collinear. {converse of Menelaus’ theorem} 

EXERCISE 2L I 

_ 23 +5(2) +6] _ 22 
  

  

  

1 d="—"""__""T it 
° 1+25 vz e 

|4(—1) — 3(4) —4| _ |—20] ) 
bd=" = = 4 unit 619 5 s 

13(2) — (=1) — 2| 5 . 
cd= = t 

9+1 Jio 1 

4 g ImED+(3) -5 \m2+8l units 
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2 a (1,1) lieson 3z+2y=>5 

B+ +1 6 
V9 +4 V13 

b (0, 7761) lieson az+by+c1 =0 

d units   

    
a(0) +b (‘—;1) +eo 

d= 

Va2 +b2 

lea—eal . 
d = ——— units 

Va? + b2 

[3(k) —2(~3) +6| 
3 a —————— =V13 

V9+4 

|3k + 12| = 13 
3k +12 = +13 

3k=1or—25 

k:%orf% 

b IO+ -k -7 
vi+1 VI+T 

\—1—k|_\10\ 

V2 V2 
|k+1| =10 

k+1==£10 

k=9or—11 

& The distance of P(z,y) from z—y—4=0 is _\z—y_4" 
v1i+1 

|z —y —4] 
— =22 

V2 
le—y—4/=4 
r—y—4==4 

r—y=0 or z—y=38 

z—y=0 and x—y =28 are the two parallel lines. 

5 PN =PS 
  

V@ +12+ 87 = /(257 + (y - 4)? 
oA 42+ 14y — 16y + 64 = 2% — 10z + 25 

+4% -8y +16 
122 — 8y +24=0 

the locus is 3z —2y+6 =0 

6 gradient of [AP] 

  

  

  

    

’ y—0 y 
dient of [BP] = —— = gradient of [BP] 23" 7.3 

Yy Yy Th =1 =-1 = ()(s) - tmme=n 
sy =2 -9) 

soyP =249 

z?+y% =9 

the locus is 2 + y?=9
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7 a (172)2+(y71)2:% 

(-2 + (-2 = Zmy=?’ 
522 —dz+4+y? —2y+ 1] =42® + 4> +25 

—dxy + 10y — 20z 

522 =207 + 5y° — 10y +25 = 42° + y*> + 25 
— dzy + 10y =207 

22 + 4oy + 4y — 20y = 0 

b |3z74y73\:|5z—12y—4\ 

VI+16 V25 F 144 
|3z — 4y — 3] _ |5z — 12y — 4] 

5 13 

13 |3z — 4y — 3| =5 |5z — 12y — 4| 

13(3z — 4y — 3) = £5(5bz — 12y — 4) 

39z — 52y — 39 = £[25x — 60y — 20| 

39z — 52y — 39 = 25z — 60y — 20 

or 39z — 52y — 39 = —25x + 60y + 20 

14z +8y —19=0 or 64zr — 112y —59 =0 

which is a line pair. 

8 a i AP = 2BP 

AP? = 4BP? 

(z+1)? +y2 =4(x - 3) + 97 
22 4+ 20+ 1+ y? = 4[2® — 62 + 9 + 7] 

40?4y — 242 +36 =22 +y? 422+ 1 

322 +3y? — 262+ 35=0 

ii The locus of P is a circle.  {Apollonius’ circle theorem} 

b i 2AP = BP 
4AP? = BP? 

A +2c 4+ 14y =a® -6z +9+9y° 

42? +4y? +8c+4—a? -y  +62-9=0 

302 +3y* + 142 —5=0 

ii Once again, by Apollonius’ circle theorem, the locus of P 

is a circle. 

9 a 

  

Let N be a point on the line @ = —3 such that 

NR = AR 

z—(=3)=+/(z—3)2 +y2 

(z—3)% +y% = (z +3)? 

A —br Ity = 6+ 9 
y? =12z 

  

z =12} 

Let N be a point on the line = = 12 such that 

AR = RN 

o 4AR? =RN? 

oAz —3) 4y = (12— a)? 

4[a? — 6z + 9+ y?] = 144 — 24x + 2 

4a? =247 + 36 + 4y° — 2? 7 —144=0 

322 4 4y = 108 

     T 

Let N be a point on the line 

T=3 such that 

AR = $NR 

4AR? = 9NR? 

Az —3)2 + 9 =9 — 3)? 

o A4fz® — 6z + 9+ 9% = 9f? — B+ 18] 

4a? + 4y? =247 + 36 = 922 —247 + 16 

522 — 4y? = 20 

10 a AQ+BQ=6 

ViE—=22+y2+\/(z+2)2+y2=6 

Va2 —dz+4+y2=6— /a2 +4z+4+y? 

A dr A 

=36 —12¢/a% +de+4+ 12+ 25 + Az + A+ 47 
{squaring both sides} 

so12y/a? 44z +4+y? =8z + 36 

so3yat+dr4+4+y2=2x+9 

oo 9(a? + 4z + 4+ y?) = 4a? + 36z + 81 
{squaring both sides again} 

922 + 367 + 36 + 9y? = 42> + 367 + 81 

522 + 9y? = 45 

b AQ—-BQ =2 

o AQ=BQ+2 

s —de Aty =/ 22 tdz+ 4+ Y2 +2 

A e A 

Al A A2 f et Aty 4 
{squaring both sides} 

o Ay/a? Az +4+y2 =8z —4 

Va2 tdr 44y =201 

2?4 AF+4+y? =42+ A4+ 1 
{squaring both sides again} 

3127y2:3



EXERCISE 2M.1 B 

a Centre (2,3), r =2 units 

b Centre (0, —3), r =3 units 

( ¢ Centre (2,0), r= V/7 units 

a (@—2)%+(y—32=25 b (x+2)2+(y—4)2= 

c @42+ (y+1)2=3 d (@+3)2+(y+1)2=11 

(x—3)2+(y+2)2=4 

(z+4)2+(y—3)%2=16 

  

  

< r?=(5-4)2+(3+1)? 

sor?=1+16 
ort=17 

(=524 (y—3)2 =17 

(4,-1) 

d Centre is at (_2+6,fi) 
2 2 

(~2.3) that is, at (2, 2) and 

r?=(6-2)2+(1-2)2 
=16+1 

=17 

(x =20+ (y—-2?°=17 

e (x+3)2+(y—2)2=7  {samecentre and r? =7} 

a A circle, centre (—2, 7), radius /5 units. 

b The point (-2, 7). 

¢ Nothing, as the LHS > 0 forall z,y € R and RHS < 0. 

a If P is inside the circle then PC < r 

oPC? < r? 

(x—h)2+(y—k)? <r? 

b If (z—h)?+(y—k)?>r> then PC%>r?2 

PC>r 

P lies outside the circle. 

6 (z+2)2+ (y—3)?2=25 hascentre C(—2,3) and 

=5 units. Using 5 above: 

a For A(2,0), b For B(1,1), 

(+2)°+(y—3)> (z+2)°+ (y—3)° 
=(2+2)2+(-3)? =(1+27%+(1-3)2 
=55 =13 whichis <25 

=2 . B lies inside the circle. 

A lies on the circle. 
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For D(3, 0), d For E(4, 1), 

(@ +2)%+ (y - 3)? (z+2)%+ (y—3)? 
=(3+2)2+(-3)? =(4+2)2+(1-3)? 
=52 43% whichis >25 =40 whichis > 25 

D lies outside the circle. E lies outside the circle. 

As (3,m) lieson (z+ 1)+ (y —2)? =25, 

42 4 (m—2)%2=25 

(m—2)2=9 

m—2=43 

m=5or—1 

As (m, —2), lieson (z+2)% + (y —3)% = 36, 

(m+2)? + 25 = 36 
(m+2)2=11 

m+2=+/11 

m=—-2++V11 

As (3, —1) lieson (z +4)> 4 (y+m)? =53, 

72+ (m—1)%2=53 
(m—-1)%2=4 

m—1=+2 
m=3or—1 

2 +y%+62—2y—3=0 

22 46z +9+y2 -2y +1=3+9+1 

(e+3)%+(y—1)2=13 

which is a circle, centre (—3, 1), r = /13 units. 

2?4y —6x—-2=0 

22 —6x+9+y>=2+9 

(x—3)2+y?=11 
which is a circle, centre (3, 0), r = /1T units. 

2 fy?+4y—1=0 

2yt tay+4=1+4 
22+ (y+2)?%=5 

which is a circle, centre (0, —2), r = /5 units. 

22 +y? +4x —8y+3=0 

2 tdr+4+y° —8y+16=-3+4+16 

(x+22%+(y—4)2 =17 

which is a circle, centre (-2, 4), r = /17 units. 

2? +y? —dz—6y—3=0 

22 —dx+4+y>—6y+9=3+4+9 

(x—2)%+(y—3)2 =16 
which is a circle, centre (2, 3), 7 = 4 units. 

x2+y2782:0 

22 — 8z + 16+ y> =16 

(x—4)%+y*=16 
which is a circle, centre (4, 0), 7 = 4 units. 

2?2 +y?> 120 +8y+ k=0 
2% — 12z + 36 + 3 + 8y + 16 = —k + 36 + 16 

(z—6)+ (y+4)? =52k 

which is a circle of radius /52 — k 

LoA/B2—-k=4 

. 52—k =16 

k=36
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b 2+ + 6z —dy=k 

@60+ 9+  —dy+a=k+9+4 
(x+3)°+(y—2)°2=k+13 

which is a circle with radius V& + 13 

oAV k+13=V11 
E+13=11 

L k=-2 

¢ 2+ +4x—2y+k=0 

e fdz+a+y® —2y+1=-k+4+1 
(e+2%+(y-1)2=5-k 

which is a circle if 5—k >0 

k<5 

10 22+ +detey+f=0 

5 d\? 5 e 27 d\? 627 
auz +dm+(2 Ty eyt ) =(5) {3 f 

d\? e\ a®  e? <z+§> +(y+§> =c+7-/ 

d 
which is a circle centre | ——, _< 

2 2 

  

d% 4 €% > 4f 

b 322 +3y%+6z—-9y+2=0 

@ +y?+20-3y+2=0 

which is a circle centre (—1, %) and 

r=y/4+2-2 {d=2 e=-3 f=2} 

— /3T uni = 15 units 

¢ i When d?+e2=4f, r=0 
. . d e 

the equation represents the point -5 3 

[ a2 
ii When d? +e? < 4f, TJr 1 — f is a non-real 

complex number. 

the equation has no meaning. 

EXERCISE 2M.2 e 

22+ 4+ 62 —10y+17=0 
22 462 +9+y? — 10y +25=9+25+17 

(x+3)2+(y—5)2 =51 

has centre C(—3, 5). 

1 a 

  Gradient of [CP] = 1-5 
—2+3 
_4 

1 0 
gradient of tangent = + P(-2.1) 

tangent has equation z — 4y = (—2) — 4(1) 

at P(—2,1) 
the tangent is = — 4y = —6 

b 22 +y? + 6y =16 
P(0,2) 

2?4 (z+3)2=25 m 

which has centre C(0, —3). 

2 (— 
Gradient of [CP] = J 

0-0 

which is undefined. 

gradient of tangent is 0 

its equation is y = 2. 

22 +y® — 24z — 16y + 111 =0 

22 — 24z + 144 4 y? — 16y + 64 = —111 + 144 + 64 

(x—12)% + (y — 8)2 =97 

the centre of the lake is at (12, 8), and the radius is 

  

V97 m. 

diameter = 2v/97 ~ 19.7 m 

8—4 
b Gradient of [AC] = = % 

12 -3 ° 

gradient of tangent = —% 

equation is 9z + 4y = 9(3) + 4(4) 

that is, 9z + 4y = 43 

3 Let a tangent have P(8,7) 
equation y = mz + c. T 

As (8,7) lies on it , 

7T=8m+c n 

c=T7-8m 

the tangent is y = mz + 7 — 8m 

m(2) = (3) +7—8m| _ 

= Ve 
{distance of (2, 3) to the line is 4 units} 

[4—6m|=4y/m2+1 

(4 —6m)? =16(m? +1) 

o M6 —48m + 36m? — 16m? — 16 =0 
20m? — 48m =0 
m(20m — 48) =0 

12 m=0or £ 

4 

tangents have equations y =7 and y = 1—5210 +7— 9—56 

the equations are y =7 and 12z — 5y = 61. 

4 Let a tangent have 

equation y = max. 

Now the distance of 

(4, 3) to a tangent 

is 2 units. 

  

Im®) - @) _ 
Vm? +1 

[4m — 3| = 24/m2 + 1 

(4m —3)% = 4(m? +1) 

16m? — 24m +9 = 4m? + 4 

12m? — 24m +5 =0 
m ~ 0.236 or 1.76 

tangents have equations y ~ 0.236z and y ~ 1.76x. 

2



5 

6 

Let the other tangent have equation y = ma. 

Now the distance of (3, 4) to maz —y = 0 is equal to the 

distance of (3,4) to =z —2y =0. 

Im@3) — (4] _ [B) —2(4)] 
VmE o1 JiTd 

o VEBm—4l=+/m2+1x5 

- 5(3m —4)% = 25(m? 4+ 1) 

5(9m? — 24m + 16) — 25m? — 25 =0 

45m? — 120m + 80 — 25m? — 25 =0 

20m? — 120m + 55 =0 

4m? —24m +11=0 
(2m—-1)2m —11) =0 

   

m=1Loril 
the other tangent is y = %m 

o B® 42+ 
Vo+16 

=2 344y —8=0 

=5 units 

the circle has equation 

(x—3)%+ (y+2)? =25 

b Now the gradient of the tangent is %. 

Let P be the point of contact of the tangent and the circle. 

[CP] has gradient 7% 

[CP] has equation 4z + 3y = 4(3) + 3(—2) 

thatis, 4z +3y =26 

P is at the intersection of 4z +3y =6 and 3z —4y = —8. 

Solving simultaneously gives = =0, y = 2. 

point of contact is at (0, 2). 

z2+y274z+2y:0 

2 —drt+a+yir2y+1=4+1 
(=22 +@y+1)>=5 

the centre is (2, —1) and r = /5 units. 

a Tangent case is when 

_B@+acn -k g 

  

d 5 
V9 + 16 

12—kl =5V5 
2— k=455 

k=2+5V5 

b A sccant occurs when d < v/5 

2—k 
‘ o5 

[2— k| < 5V5 

—5V5<2—k<5/5 
—2-5V5< k< -2+5V5 

2-5V5<k<2+5V5 
{x (—1) and reverse incquality signs} 

¢ An external line occurs when d > /5 

E>2+5/5 or k<2-5V5. 
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8 a Let M have coordinates (X, Y). 

As M is the midpoint of [OA], A has coordinates (2X, 2Y). 

But AC=r1r 

JEX @ 0 = 
©(2X —7)? +4Y2% =+2  {squaring both sides} 

the Cartesian equation of the locus of M is 

(2¢ —1)2 + 4y? = r2. 

b (2¢ —7)2 +4y* =12 

  

Let M have coordinates (X, Y). 

Ais (2X,0) and 
Bis (0,2Y). 

B(0,2Y)    
But AB =p 

VEX-02+0-2Y)2=p 

L AAXZ 442 =p 
4X? +4y? = p? 

2 
2 2 P 

X 4+Y —(—2) 

the Cartesian equation of the locus of M is 
2 

2 2_ (P 2= (2), 
b This is the equation of a circle, centre (0, 0), radius g units. 

  

AP 
10 a If — =3, AP =3BP 

BP 

/(@ =1)2 4y =3/ (z - 5)2 +y? 

L=+ y? =9 - 5)° + 97 
9(z? — 10z + 25 + y?) = 2% — 2z + 1 +¢°
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922 — 90z + 225+ 9y? — 2% +22—1—3y> =0 d y 

822 4 8y2 — 88z + 224 =0 

22 +y? — 11z +28=0 
Completing the square on z: 

  

  

- S = 
2? — 11z + (A2 + 9% = —28 4 (&)? N ° 

Pa(1 @572 +v’ =3 2100 
So, we have a circle, centre (12—1, 0) with r = % units. 

AP 
b If — =31 BP=3AP 

BP Thus, by the converse of the angle bisector theorem 
BP? = 9AP? b BB and [PPa] b o 47 

[PP1] bisects APB and [PP2] bisects exterior angle APB. 
22 — 10z + 25+ y? = 9[z% — 20 + 1 +y?] 
2?2 — 10z + 25+ y® = 9% — 18z + 9 + 9y 

822 +8y? — 8z — 16 =0 
2?24y —z-2=0 1 a 

Completing the square on z: 

B+ ($?+y?=2+(3)7=% 
@-hP vt =7 

EXERCISE 2N.1 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

So, we have a circle, centre (%,0) with 7= % units. 

¢ o Ay ap—mp 
BP 

. AP? =BP? \\ \ 

A2 14 = 100+ 25+ 47 
Lo Sw=24 - \\ = 

r=3 
  

which is a vertical line.   

  

AP 
11 a As — =2, AP2 =4BP? 

BP 

  

  

  

  

(x—2)* +y° = 4[(z - 6)* + ¢ 
22 —doe + 4497 = 42? — 122 + 36 + 47 

422 — 48z + 144+ 4y? —2® + 4z —4— > =0 

322 + 3y? — 44z + 140 = 0 

z2+y274—34z+%:0 

o= fhor (B = (B - 4 
(z— 2P +y°=(§)? 

the locus of P is a circle, centre (%, 0) and radius 
8 . 
3 units. 

  

  

  

  

  

  

        

     

     

  

  

  

—N o 
| | 

\ ‘e J; A ) 

W) 
    
    

b The circle cuts the z-axis when y =0 

-89 =37   

  

  

  

  

  

  

  

3 3 ‘ 

121001”% " 

Pyis (4, 0) and P5(10,0). 

14 

APy 3 ¢ 2L _ 3 and AP2 _8_, 
BP; 6—3 BPy 4 

3 

8 
=3 
T4 

3 

=2 

AP AP; AP, 
BP  BP; BPy
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EXERCISE 2N.2 NSSSS—— 
  

  

  

  

  

  

    

  

   

    

        

       
    

  

    
    

   

  the focus is 

F(2,0) and 

the directrix 

is ©=—-2. 

  

  

  

  

  

  b y?+ 10z =0 

y© = —10z 
  

  

  

  

  

  

the focus is 

F(—%,0) and 

the directrix 

  

      
is x = % 

< 22 =12y 

4a =12 

a=3 

the focus is 

F(0, 3) and 

the directrix 

is y=—3. 

directrix d 22% + 5y =0 

. a?=-8y 
b The vertex is midway between the focus and the directrix. - 

N(—1, —1) lies on the directrix. da=—3 
[VN] has gradient 1 and is perpendicular to the directrix. ca= 7% 

the dirccn;ix has gradient —1 . the focus is 

and equation x4y = (—1)+ (—1) F(0, _%) and 

Thy=-2 the directrix 
¢ P(z, y) isany point on the parabola and PF = PN. s y=2 

lz+y+2| 8 
z—3)2+ (y—3)2 = e Ve =37+ -9 = L L. 

2 /63194y 6y+9= % 

20?4 y? —6r—6y+18) = (z +y +2)? 

222 + 2y — 122 — 12y + 36 = 2% + ¢y° + 4 
+2zy + 4 + 4y 

22 +y? — 162 — 16y — 20y + 32 =10 

3 Let P(z, y) be any point on the parabola. 

The focus is F(1, 1) and N is the foot of the perpendicular from b a=3 and 2° = day 

P to the directrix =+ y = 4. Y 2 

PF = PN oo@? =43)y 
2 

lz+y—4 et =12y 
—1)2 12 = = V=124 (y-1) T 

20a® 2 +1+y? -2y +1) = (z +y—4)° 

222 42y — 4z —dy+4=2+y>+16 -8z 
— 8y + 2zy 

2% 4 y? + 4z + 4y — 2ay = 12 
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< —a=-5 and y?=4az When (z1, y1) = (0, 0), the tangent to the parabola is 

a=5 and y?=4(5)z the y-axis and the normal is the z-axis. So it does not make 

y? = 20z sense to talk about the x-intercept in this case. 

    

  

  

4 a 

d y a=-2 and y?=4daz 

Loyt =4(-2)z 

y2 = —8x 

a; =z {given} 

ai; = ag  {equal corresponding angles} 

Sooa2 = a3 

=2 .. ABCD is isosceles 

{converse of isosceles triangle theorem} 

e Ay a=-5 and 2°=day b Consequently CD = BD {from a} 

y=5 oa? =4(-5)y If Bis (z1,y1), then the tangent at B has equation 

H oa?= —20y 2ax — y1y = —2ax; {from 3 a}. 

This tangent cuts the z-axis when y =0 

T cooat (—z1, 0). 

4F(0,—5) If we let D be (t, 0), then 

t—(—w1) =/ (t - 21)? +y° 
! (t+a)? = (t—a)? +32 

f Ay a=-2 and 22 =day o B totey + @ =4 2tay + 2+ dazy 
©oa? = 4(—2)y {as y? = daz} 

22 = —8y oo Atz = daxy 

Sot=a 

Dis (a, 0), which is the focus. 

5 a i When z=4, y>=28(4) 

y? =32 

ooy =+4V2 

5 Pis (4, 4v/2) 
3 a y° = daz yz — 8z 

d d . _ E(yQ):EM“) oo da=38 

dy Soa=2 .. the focus is F(2, 0). 
2y — =4a 

4 -0 442 2v2 
do .. [FP] has gradient —\/_ = _\/_ = _\/_ 
dy _ 2a 4-2 2 1 
dx Y .. the equation of the focal chord is 

2 
the gradient of the tangent at (x1, y1) is = 2V2z —y = 2v/2(2) — (0) 

the tangent at (z1, y1) is o which is 22z — y= 42 

2az — y1y = 2a(z1) — y1(y1) The focal chord meets the parabola when 

which is  2az — y1y = 2az1 — y? (2v2z — 4v/2)% = 8z 

which is 2az — y1y = —2ax1  {as y = 4ax1} 822320 +32-8z=0 
2 _ 

b The normal at (1, y1) has gradient _y_14 82" — 40z +32=0 

. - 2a oo —br+4=0 
its equation is  y1z + 2ay = y1(z1) + 2a(y1) C@-@-4=0 

which is  y1z + 2ay = z1y1 + 2ay1 r—1ord 

¢ The normal cuts the z-axis when y =0 

y1z + 2a(0) = z1y1 + 2ay1 
- y? =8(1) 

yi1z = yi(z1 + 2a) —42V3 

when (z1,y1) # (0,0), z==x1+2a v= 

z>2a {as a>0 .. x>0} oo Qis (1, —2\/5), 

Q has z-coordinate 1



ii Using 3 a, the tangent at P(4, 4v/2) is 

22)z — (4VD)y = ~2(2)(4) 
which is 4z — 4\/§y =—16 

whichis @ —Vv2y=—4 .. (1) 

and the tangent at Q(1, 72\/5) is 

2(2)z — (—2v2)y = ~2(2)(1) 
which is 4z + 2v2y = —4 

whichis 2z +v2y= -2 ... (2) 
iii Solving (1) and (2) simultaneously, 

3z =—6 

Sor=-2 

the tangents at P and Q meet where = = —2 and 

a=2 

the directrix is ¢ = —2 

the tangents meet on the directrix. 

The gradient of the tangent at P is 7- 

2 and the gradient of the tangent at Q is v 

1 2 where (75) X (775) =—1 

the tangents are at right angles to each other. 

b LetPbe (z1,y1). 

Using 3 a, the tangent at P is 4z — y1y = —4z;. 

Y1 Fis (2,0) 5 
xr] — 

[FP] has gradient   

the focal chord through P has equation 

yiz — (21— 2)y =2y 
(w1 =2y =n(z - 2) 

_yi(z—2) 

S (@1 -2) 
This chord meets the parabola when 

(ylx(:”:;) )2 =8z 

2, o2 
v (@—2) — 8z 

(z1 —2)? 
Szl(z—2)2 o 
W:Sz {as y° =8z} 

zi(z—2)2 —z(x1 —2)2=0 

z1(z? —da +4) —z(z? — 4o +4) =0 

z1a? 4+ (—4aq —xf +4ai —4)z +4x1 =0 

z12? — (2 + 4)x + 4z =0 

(z1z —4)(x—21) =0 

  

4 
r=— or I 

kgt 
. 4 

Q has z-coordinate — 
1 

and y2 = 8x 

32 
y2 = — 

z1 

V32 
y==* 

VT 

4 V32 
Qis | —, —— 

1 VZT1 
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Using 3 a, the tangent at Q is 

4z + @ = _16 
VL 1 
V32 4 Toeafer) 

4\ (VA 
v=a(er ) (Vm) -0 

The tangent at P is 

4z — y1y = —4x1, where y; = \/g\/fi 

4z — \/g\/ay = —4x, 

VB8\Z1y = Az + 1) 

= w L@ 
e 

Equating y in (1) and (2): 

Az + 1) (o 2) () -2 
(e 2= Ler ) 

—z17 — 4 = 22 + 221 

2+z1)r=—4—22 

  

  

—2(2+ 1) 

24z 

r=—2 

the tangents at P and Q meet where = = —2 

the tangents meet on the directrix. 

4 2 
The gradient of the tangent at P is L, 

V8/z1 Ty 

. . 4./ VT 
the gradient of the tangent at Q is — ==, gl g Q 75 5 

and V2 x <, VoL ) -1 
VT1 V2 

the tangents are at right angles to each other. 

EXERCISE 2N.3 I 

1 a i 422 +9y® =36 
2 2 

T Y 4+ =1 
9+4 

=9 and b2 =4 

the z-intercepts are +3 and the y-intercepts are +2. 

ii 

  

i b2 =a?(1—e?) 

4=9(1—¢%) 

1782:% 

=5 

3:335 {as e >0}
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Woac—3x L — e_3 _ 9 Ivaef3><37\/3 and A 

3 

  

The focus (v/5, 0) has corresponding directrix 

=2 

The focus (7\/5, 0) has corresponding directrix 

a>=4 and b* =3 

the z-intercepts are +v/3 and the y-intercepts 

are £2. 

  

3 
1 

2 _ 1 
e =17 

e= % {as e >0} 

. 1 2 
iva=2x5=1 and —=—=4 

e 1 
2 

The focus (0, 1) has corresponding directrix y = 4. 

The focus (0, —1) has corresponding directrix y = —4. 

2 a a=4 and ae=3 

e=3 
b = a2(1 — 52) 

2 _ 9 b2 =16(1— ) 
=7 

42 
— =1 
7 

b e=4 and e= % 

ad) = 
cooa=38 

b2 =a?(1—e?) 

b’ =64(1- 1) 

b =48   the ellipse has equation — + — = 1.   

the ellipse has equation % + y? =1 

  

10 
=10 

property} 
=5 

  

the ellipse has equation — + % =1 

f Ay ae=3 and b=4 

  
  

g Ay b=3 and e:% 
3| 

b2 = a?(1 —€?) 

9=d(1-1%) 
T a?=9x% 

coa?=12 
-3 

v 

the ellipse has equation — + % =1



  

  

ae=3 and — =5 
€ 

ae (E> =15 
€ 

coa?=15 
b2 =a?(1—e?) 

b? = a? — a%e? 

b?=15-9 
b’ = 

2 2 
. . T Y 

the ell k 1] —+—==1 e cllipse has equation = + 5 

3 The latus rectum meets the ellipse when = = ae. 
GQ;Z . fi _, 

a b2 
2 

vy 2 
= 1—e 

a2 
b2 

y=+— 

° 22 
the length of the latus rectum is —. 

a 

4 LetNbe (X,Y). 2y 

Ais (3X,0), Bis (0, T) 

AB=k 

3Y 
\BX 024 (0- =) =k 

9y?2 
9X2 4 —— =k? 

4 

9x? 4 9y? 
k2 4k 02 oy 

So the locus of N is an ellipse with equation :—2 + % = 

5 Make a loop with the string and 
Py Py 

place it over the pegs Py and Pa. 

Place a pencil on the inner side of 

the string and pull the string taut 

pencil as the pencil moves. The pencil 

draws an ellipse. 

This works because of the focal-distance property. 

PPy s fixed, and MP; + MPy is a constant as the loop’s 

length is fixed. 

  

   
string 

  

2 2 
T y 

6 a -+t =1 
3 + 12 

2 2y d . s o LY g {implicit differentiation} 
3 12 dz 

y dy =z 
12 dz 3 

dy 4z 

de vy 

w2)? ¢ 
Wh =V2, —=1 en z =2, 3 12 

i —1-2 
12 3 
Y =12x1 

v’ =4 
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At (V2 2), j—z = 74((‘2/)5) = —2V2. 

the equation of the tangent is 

2V2z +y = 2v2(vV2) + 2 

which is  2v/2z + y=26 

At (V2, -2), Z—Z = 74((:/25)) =22 

the equation of the tangent is 

22z —y = 2v2(vV2) - (-2) 

whichis 2v2z —y =6 

  

  

b The gradient of the normal is i. 

  

4x 
2 2 x 2 

Wh =2, —+4+—==1 en Yy 3+12 

w_2—1,l 
3 3 

cc272 

3 738 

z? =2 

z=4V2 @ 
2 1 

At 2, 2), the gradient of the normal is = —. (V/2.2). the gradien S5 
the equation of the normal is 

z—2V2y = (V2) - 2v2(2) 
whichis = — 2v2y = —3V2 

At (—+/2, 2), the gradient of the normal is 

(2) 1 

=3 e 
-, the equation of the normal is 

z+2V2y = (—V2) +2v2(2) 
which is @ + 2v2y = 3v2 

  

2 2 x v 
7 a §+b_2,1 e (1) 

2 2y d . S P a_z + b_g fi =0 {implicit differentiation} 

y dy z 
b2 de a2 

dy bz 

de a2y 

dy b211 At (z1.y1), — = - (@1, 91), = =0 

the equation of the tangent is 

Veiz + a®yiy = bz (21) + a’y1(y1) 
2 2 

ey _wd ol 22 o 2 = a2 + b2 {dividing by a”b”} 

z1T Y1y . 
T + 2 = {using (1)} 

b The end of the latus rectum in the first quadrant is 

2 
(ae, —> {using 3} 

a b2 

wn (5 The cquation of the tangent is = = 

whichis =+ 2% =1 
a a 

whichis ex +y = a.
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2 
a”y1 

b2y 
  ¢ The gradient of the normal at (z1, y1) is 

the normal has equation 

a’yiz — o1y = a®ya(z1) — b2@1(y1) 
which is a2ylz — bzzly = (a2 — bz)zlyl 

EXERCISE 2N.4 B 

1 a i 2522 — 16y% = 400 
2?42 

6 25 
cuts the z-axis when y =0 

z2 =16 

r=+4 

the hyperbola cuts the z-axis at (4, 0) and 

(—4, 0) but does not cut the y-axis. 

il a2=16 and b% =25 

b2 =a?(e2 - 1) 

) S Il — o © W | - 

The focus (v/41, 0) has corresponding directrix 
z— 6 

Vi 

The focus (—+/41, 0) has corresponding directrix 

g = —-16 
Vat’ 

. b 
iii The asymptotes have equations y = +—x 

a 

y = i%z 

iv 

  

   
b i 

2 a? 

116 
cuts the y-axis when = =0 

yP=4 
y =2 

the hyperbola cuts the y-axis at (0, 2) and (0, —2) 

but does not cut the z-axis. 

ii a2=4 and b =16 

b2 =a?(e? - 1) 

16 = 4(e% — 1) 
e —-1=4 

=5 

e=+5 {as e>0} 

- 22 ae=2V5 and S 

The focus (0, 2v/5) has corresponding directrix 

=2 y== 

The focus (0, —2v/5) has corresponding directrix 
2 

vy=-"7 

iii The asymptotes have equations y = :t%ac 

  

iv 

i 2?2 —y? =4 

2 y? 

T 
cuts the z-axis when y =0 

22 =4 

T =12 

the hyperbola cuts the z-axis at (2, 0) and 

(=2, 0) but does not cut the y-axis. 

i a2=4 and b2 =4 

b = (12(62 —1) 

4=14(e® 1) 

e2-1=1 
2 =2 

Ce=v2 {as e>0} 

ae =2V2 

a 2 
and ;:fi:fi 

The focus (2\/5, 0) has corresponding directrix 

z =12 
The focus (—2+/2, 0) has corresponding directrix 

1:7\/5. 

b 
iii The asymptotes have equations y = +—z 

a 

— 42 y—:tiac 

y =tz



iv 

  

cuts the y-axis when « =0 

y?=9 
y==£3 

the hyperbola cuts the y-axis at (0, 3) and 

(0, —3) but does not cut the z-axis. 

iia?=9 and b»>=9 

b = (12(62 —1) 

9=9(2—-1) 
e2-1=1 

e2=2 

e=v2 {as e>0} 

ae=3v2 and <= 
e 

3 

V2 

The focus (0, 3v/2) has corresponding directrix 
3 v="15 

The focus (0, —3v/2) has corresponding directrix 

y=— 3 7 

iii The asymptotes have equations y = :(:%9: 

    

y:i%z 

y =tz 

sk 

a=4 and e:l% 

b2 =a2(e® - 1) 

b =16(3 1) 

b2 =36 — 16 

b =20 

2 vy 

WORKED 

  

   
     3 r—= 3V, 3 r=—1 r=% 

the equation of the hyperbola is 

Ay 
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a=2 and fi:§ 
e 5 

2 8 
e 5 

o oe=8 
b2 =a?(e® - 1) 

b =4(2 1) 
2 _ 9 b =4x 15 

2_ 9 
b =3 
2 g 

T = 

ae =12 and fl:% 
€ 

a 3 Z—=12x3 ane ><4 

L a?=9 

and e= 

b2:a2(5271) 

b2 =9(16 — 1) 
b* =135 
127y2 B 

9 135 
— 4 
=
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S D a=4 

b 
and +—z =12z 

a 

b 2 -2 
a 

L b=8 

oL, s 

th tion of the hyperbola is — — 2 =1 e equation of the hyperbolais - — 

h Ay a=2 and e:% 

3 a 

[PF— PF'| = |ePN — ePN'| 

= |e(PN — PN')| 

=c[PN=PN'| {as e>0} 

=e|[\W| 

(%) —e(2e 
e 

b 

d= 

  

The asymptote is 

b 
y=—x or 

a 

bz —ay = 0. 

b(ae) — a(0)| 
Vb2 + a? 

|bae] 

bae 
  T {as a, b, and e > 0} 

a“e 

bae 

ae 

b 

a 4z% — 9y% = 36 

dy . L . 
8z — 18y e 0 {implicit differentiation} 

T 

dy 4z 

dz 9y 

d 4 12 
AL (30, W2 120 G s undefined. 

dz ~ 9(0) 0 

the tangent is vertical 

the tangent has equation = = 3 

and the normal has equation y = 0. 

dy  4(3V2) 2V2 b At (3v2, —2), o= 9((72) =-= 

the tangent has equation 

2V2z + 3y = 2v/2(3v2) + 3(-2) 

which is  2v2z +3y==6 

; o 3 The gradient of the normal at (3v/2, —2) is 5 

  

the normal has equation 

3z — 2v2y = 3(3V2) — 2V2(-2) 

which is 3z — 22y = 13v2 

2?2 —y?=9 

2z — 2y Z—y =0 {implicit differentiation} 
Tz 

dy T 

iz "y 
When =5 25—y°=9 

y? =16 

y==+4 

the points are (5, 4) and (5, —4). 

dy dy _ s At (5.4). 2 =% 

the tangent has equation 5z — 4y = 5(5) — 4(4) 

whichis 5z —4y =9 

The normal has gradient 7% 

the normal has equation 4z + 5y = 4(5) + 5(4) 

which is 4z + 5y = 40 

dy 5 At (5, —4), L =_3 (6.4, ==-3 

the tangent has equation 5z + 4y = 5(5) + 4(—4) 

which is 5z +4y =9 

The normal has gradient % 

the normal has equation 4z — 5y = 4(5) — 5(—4) 

which is 4z — 5y = 40 

  

2 2 
a z—2 -2 

a b2 

2z 2y dy . s L. 
— — — — =0 {implicit differentiation 
a? b2 dz {imp 1 

y dy =z 
b2 dz a2 

dy b’z 

dz a2y 5 

the gradient of the normal at (z1, y1) is — UL 
b2z 

the normal has equation 

a*yiz + b2y = a’yi(z1) + b2e1 (y1) 
which is a2y1z + b2z1y = (a2 + b2)zly1



dy b2z1 
b At (z1,y1), = a   

the tangent has equation 

ez — a’yry = b2ay (z1) — a®yi(y1) 

which is  b2z1z — a’y1y = b2x12 — 112y12 

. L. Lo b 
¢ The asymptote with positive gradient is y = —z. 

a 

The tangent meets the asymptote when 

b 
blex - a2y1 (—x) = b2x12 - a2y12 

a 

b2z — abyrz = (b1 + ay1)(bwy — ay1) 
ba(bry—ayr) = (bz1 + ay)(bryr—agi) 

bxy + ayy 
= ——— {bx; —ay; # 0} 

b 
b <b11+ay1> 

y=—(——= 
b1 

_bzy +ay 

midpoint of [AB]. 

  

Now CM =z and CA =y {radius of a circle} 

y? =2 + 22 {Pythagoras} 

the locus of Cis y? —z? =4 
2 a? 

4 

which is the equation of a rectangular hyperbola. 

which is 

all centres lie on a rectangular hyperbola. 

EXERCISE 2N.5 B 
12 2 2 A R ) @ 
16 9 1 

under the translation ( 71,;) . 

Now a?=16 and b>=9 

S 9=16(1—¢€?) 
l1—e" = % 

JE 
e = 4 {as e >0} 

Now2 ae :2\/7 and 2 % 

% + % =1 has foci (:E\/?, 0) and 

directrices = = \1/—67 

Hence &~ n? + w+3)? =1 has foci 
16 

_ irectri = 16 (1++/7, —3) and directrices = =1+ 7 

Let the centre of one of 

the circles be C(z, y), 

and let M be the 

2 
=1 comes from —+%:1 
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b (y+4)% = —8(x +2) comes from y?> = —8z under 

the translation (:Z ) 
2 y° = 4dax 

4a = -8 

=-2 

y? = —8z has focus (—2, 0) and directrix x = 2. 

Hence (y+4)2 = —8(z+2) has focus (—4, —4) and 

directrix = = 0. 

    2_ 
(y+4)*=-8(z +2) directrix z =0 

(y—1)7° 2 
¢ (z+2)?°— =1 comes from z2 — yr =1 

under the translation ( _12 ) . 

a?=1 and b2 =4 

b2 =a?(e? - 1) 

4=1(2-1) 

e2-1=4 
=5 

e=vV5 {as e>0} 

- 2_ L ae;\/g and TV 

z2 — yT =1 has foci (i\/g, 0) and 
. . 1 
117¢ 1 = . directrices © = + 7 

—1)2 
Hence (z +2)% — % =1 has foci 

   (—2++/5, 1) and directrices = —2 4 —=. 
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. 422 4y? 
the ellipse comes from 2oy 

81 45 

under the translation ( ;2), which is 

Az+2?  Aw-2)? 
1. 

  

Let the minor axis be x = h. 

h—(-5)=a and h 

h+5=a and 

h=a—-5 and 

a—5:%a—3 

3a—15=a—-9 

2a =6 

a=3 and h=-2 

b2 = a2(1 — 52) 

b =9(1— %) 

b =8 
22 

the ellipse comes from o 

2 

      

a 
FF' =2ae=6 and CN=— =11 

e 
ae =3 

aex < =3x11 
e 

2 _ _ 3 a” =33 and e= = 

bQ:a2(1762) 

2 _ g b? =33(1— 5%) 

b?=33-9 

b2 =24 
2?42 . 

the ellipse comes from — + =— = 
P 33 * 24 

under the translation (fg) , which is 

@=2?  @+3? 
33 24 

1. 

directrix 

Let C be the point (h, 3). 

e=2 

CF=ae=2-h and C(N=Z=_-1-p 
e 

2a=2—h and ngl—h 

h=2-2 and h=-1-2



4 

2-2=-1-2 
2 

3a - 

a=2 and h=-2 

b2 =a2(e® - 1) 

b2 =4(4—1) 

b =12 
22 2 

the hyperbola comes from — — =— =1 
4 12 

under the translation (;2 ) , which is 

(242 (y—3)° _ 
4 12 

1. 

  

Cis (4, —2). Let P(z, y) be a point on the hyperbola. 

‘PF - PF'| = 2a {focal distance property} 

But ‘PF—PF’| =2 

Soa=1 

FF' = 2ae = 4 

e=2 

b2 = 0,2((-32 —-1) 

2=1(4-1) 

b =3 
42 

the hyperbola comes from 22 — 5= 1 

under the translation (:; ) , which is 

(y +2)* _ (z—4)2 — 3 1. 

azy—2x+3y—10=0 

(z+3)(y—2)=10—-6 

(@ +3)(y—2)=4 
b The curve comes from the rectangular hyperbola zy = 4 

under the translation ( ;3) . 

the curve is a rectangular hyperbola. 

  

5 
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¢ When y =0, —2z=10 

r=-5 

the z-intercept is —5. v 

When =0, 3y=10 

y =33 
the y-intercept is 3%. v 

a y278x+6y+22:0 

Y246y +32=8z—22+9 

(y+3)2 =8z —13 

(y+3)° =8(z— 
b The curve comes from the parabola y? = 8z under the 

E 

translation ( 83), the curve is a parabola. 

  

the z-intercept is 2%. 

When =0, y2+6y+22=0 

with A = (6)% — 4(1)(22) = —52 
A <0 

the graph does not cut the y-axis. 

d y2 =8z has focus (2,0) and directrix = = —2 

(y+3)2 =8(z — %) has focus (2 —3) and 5 

directrix = = — wl
w 

22 +4y® — 62+ 32y +69 =0 

22 — 6z + 3% + 4(y% + 8y + 4%) = —69 + 9 + 64 

(x—3)2 +4y+4)2 =4 

(z—3)° : +y+4)?r=1 

2 
The curve comes from the ellipse ZT +y2=1 

under the translation (f’ 4). 

the curve is an ellipse. 

ii Ay 
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il a®>=4 and > =1 

b = a?(1 —€?) 

1=4(1-¢€?) 

1762:i 

P2=3 
ez@ {as e >0} 

a 
x,zae:\/g and ;:% 

3 

T+ y> =1 hasfoci (+V/3,0) and 

— .4 directrices = = i75‘ 

—3)2 
Hence % +(y+4)2=1 has foci 

—4) 4 irectrices @ — —4 4+ A (3++/3, —4) and directrices & = —4 + 7 

b i 42% — 9y? + 16z + 18y = 9 

4(2? +4x+2%) -9 —2y+12) =9+ 16 -9 

4z +2)2 -9y —-1)%=16 

(@+2)? 9(y-1)?° 
4 16 

=1 

2 9’_!/2 

The curve comes from the hyperbola % — =1 
16 

under the translation ( 712 ) . 

the curve is a hyperbola. 

   
2 2 
=W 1 has foci (iZ—”;s, 0) and 
4 16 
: : _ 6 directrices = = :tm. 

(z+2)% 9(y—1)2 
16 

Hence =1 has foci 

2v13 i : _ 6 (=2 + =5=,1) and directrices @ = -2+ 75 

7 322 4+ 9% — 6z — 4y +40 =0 

322 — 2z +1%) +y? — 4y +2%2 = —40+3+4 
3z —1)2 + (y—2)% = -33 

which is not possible as the LHS is always positive. 

the equation does not have a graph. 

EXERCISE 20 W 

1 a Since z=1¢ and y = % we can eliminate ¢ by multiplying. 

zy:t(%) {t 0} 
zy=9 

b If 2=t then y=1-5t=1-5z 

y=1-5x 

cx=1+2t, y=3—-1 

L t=3—-y 

z=1+23-y) 

z=1+6-2y 

z+2y="7 

dIf o=t then y=t>—1=2%—1 

y:mzfl 

e z=12, y=1t3 t =12, y=4t 

LB (423 _ 46 cooxt = ()7 =t =Y 

and % = (13)%2 =+° 4 
a2 .3 2 (1) 4 

42 
= 

16 

yzzlfix 

2 a x=2cosf, y=3sinb 
2 2 

2 s2 z Y 9 0=1, . (= =] =1 cos” 0 + sin’ <2> + 3) 

2 2 
'T_+y_:1 
4 9 

b z=2+cosf, y=sinb 

cos?0+sin20=1, . (z—2)2+y>=1 

¢ z=cosf, y=cos20 

We use the identity cos20 = 2cos260 — 1 

y:2cos2t9—1 

y:?zzfl 

d z=sinf, y=cos20 

We use the identity cos20 = 1 — 2sin? 0 

y=1-—2sin?0 

y:172z2 

e x =tan6, y=2secl 

We use the identity sec? =1 + tan® 6 

Yy 2 — =1+t 6 1 + tan’ 

2 
Y 2 =1 1 +z 

4x2fy2:—4 

f o =cos, y=sin20 

We use the identities  sin 20 = 2 cos @ sin 6 

and sin?0 =1 — cos? 0 

Now 3?2 =sin?20 

= 4cos?@sin? 0 

= 4cos? 0(1 — cos? ) 

y? = 4a?(1 - 2?)



r+4y =25 

If y=t, then z+4t=5 

x=05—4t, y=1t arethe parametric equations. 

Ty = —8 

If @ =1¢, then ty= -8 

8 
r=t y= B (t #0) are the parametric 

equations. 

y? =9z 

If o =1t2, then 32 =09t 

y =3t 

(we do notneed y = £3¢, as t could be positive or negative) 

x =12, y=3t arc the parametric cquations. 

2?2 +y? =9 

2 2 
x Y —_t==1 
9 9 

() () - 
But cos?0 +sin?0 =1 forall @ 

welet 2 =cosf and 2 =sinf. 
3 3 

z =3cosf, y=3sinf are the parametric 

equations. 

42? +y2 =16 
2 2 

r + ¥y _ 1 
4 16 

() () - 
But cos?6 +sin?0 =1 forall§ 

T 
welet = =cosf and 2 =sinf. 

2 4 

x =2cosf, y=4sin@ are the parametric 

equations. 

f a2 =4y 

Ifwelet y=—t2, 2% =—4(—t%) = 4¢> 
=2t 

x =2, y=—t> arc the parametric cquations. 

322 4+ 5y2 =15 

2 v 
5 3 

() () 
But cos?6+sin?0 =1 forall§ 

z Y . 
we let —= =cosf and —= =sinb. 

V5 V3 
z = +/5cos 0, y= V3sin6 are the parametric 

equations. 
2 2 

z y 14+ L 
4 + 9 

() -5 
But sec?0 =1+ tan20 forall 0 

welet = =secf and 2 =tané. 
2 3 

z =2secl, y=3tan6 are the parametric 

equations. 

4 
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I — 

  

Gl 
But sec?0 =1+tan?0 forall 0 

welet = =secf and 2 =tand. 
4 3 

x =4sech, y=3tanf arc the parametric 

equations. 

a The line meets the curve when 2t2 +¢ =3 

22+t —-3=0 
(2t+3)(t—-1)=0 

t=-%orl 

When tzfg, z:2(7%)2:% and yzfg 

When t=1, z=2 and y=1 

they meet at (%,—%) and (2, 1). 

b 2 = 2t2, y=t 

z=2y?> whichmeets z+y=3 

where 2y2:3—y 

2% +y—3= 

  

When y=1, 2=3-1=2 v 

a =3t y=1t>-3t 
d d 
Z- Y93 
dt dt 

d 
dy _ F% _2t-3 

de  dz 3 
dt 

When t =2, z=23(2)=6 

and y =22 —3(2)=-2 
. . dy 1 

(6, —2) is the point of contact and — = 5. 
dx “ 

Thus, the equation of the tangent is 

@3y = (6)— 3(~2) 
whichis = — 3y =12 

b x = 2cosf y = 5sinf 

d d 
L 2sin0 — =5cosl 
do 

dy 
dy 3 _ 5cosf 

dr  dxr  —2sinf 
do 

and y=5sin(%) = % 

(%, %) is the point of contact. 

1 
dy _ 5(_7'2) - 

d. _o(_L 2 

© -2(F) 
Thus, the equation of the tangent is 

5z + 2y = 5(%) +2(35) 

5x+2y:%, or 5\/5:c+2\/5y:20 which is 

329
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< x =secl y =tan@ 

de =secOtan@ dy =sec? 0 
do do 

dy 
dy a5 sec®  secl 
dz ~ dr  secOtan@  tan0 

de 

1 
= —x 

cost 

1 

sin 6 
  

When 0= %, z=sec(F)=2 3 

and y = tan(§) = V3 

(2, V/3) s the point of contact and 

Thus, the equation of the tangent is 

2z — 3y = 2(2) — V3(v/3) 
which is 2z — \/Ey =1 

6 a z=1—1t2 y =4t 
d: d: a4 o & _ 
dt dt 

dy 4 2 
de -2t t 

Since the gradient of the tangent is 4, 

2 i 
t 

1 
t=-3 

_ 1 _ 12 _ 3 When t = —3, x—17(72) =3 

and y=4(—%)=-2 

%, —2) is the point of contact. 

Thus, the equation 

dr —y 

which is 4z —y 

b r=1-1t 

dx =" 

Z—Z:fszz 

Since the point of 

1=1—t¢ 

sot=0 

d; d—Z:o 

of the tangent is 

=4(3) - (-2) 
=5 

y== 
d g2 
at 

contact is (1, 0), 

and 0=1¢3 

cosT 

sin 6 
  

dy 
dx 

Thus, the equation of the tangent is y = 0. 

7 The line meets the curve when 

(1+sinf) +2(1 —cosf) =3 

. A +sin@+2Z—2cosh =30 

sin@ = 2cos 0 

tanf = 2 

— 1 i — cosf = 7 and sinf = 

or cosf = ——% 7 sinf = 

they meet at (1 + 2, 1 

+ 

V5’ 

2 (1% 1 ) 

s 

and at 

1 1 
aw=thg, y=t— . t#0 

2 
x4y =2t and acfy:? 

2 
andso (z +y)(z —y) =2t (? 

whichis 22 —y? = 

b If 22 —y?=4 

d; 
then 2z —2y <L =0 

dx 

dy = 

de vy 

When t =2, == +%:2% 

and y = —%:1% 

) 

(2%, 1%) is the point of contact and the gradient of the 

1 

tangent &= 2—5 =2 
dz 11 3 

2 

the gradient of the normal is —2. 3 
5 

Thus, the equation of the normal is 

3z + 5y = 3(24) + 5( 
which is 3z + 5y = 15 

2 2 2 2 

LY g (z) +(2) -1 
4 16 2 4 

But cos?6+sin?0 =1 forall 6. 

13) 

  

  

  

  

  

  

  

  

  

  

  

  

    

welet — =cosf and 2 =sind 
2 4 

r =2cosf, y=4sinf 

If A=(0,4), M= (X,Y), B=(2cosb,4sin0) 

0+ 2 0 A —92\? then X — 2T 2¢0s0 Y 24(4' ) _ 1 
2 4 2 

Y:4+4sin9 

2 

X = cos0, 

Y =2+ 2sin0 - > 

Y —2)2 T i ‘ 
X2+( ) =1 

2 —2 
which is an ellipse 4 2 

with graph shown: z v 
4 T 

Y                     

EXERCISE 2P IS 

Let x=acosf and 

dxz dy 

  

y = asinf 

— = —asinf and — =acosf 
do do 

dy _ acosf _ cosl 

dr  —asinf  sin@ 

the equation of the tangent is 

(cos )z + (sinf)y = (cosB)(acos ) + (sinf)(asin@) 

= acos? 6 + asin? 0 

= a(cos? 6 + sin? §) 

=a 

Thus, (cos®)x + (sinf)y = a.



3 

0 
b From a, the tangent has gradient — cos   

sin 6 

the normal has gradient =   
cos 0 

the equation of the normal is 

(sin@)z — (cos )y = (sinf)(a cos @) — (cos)(asin@) 

= asinfcosf — asinf cos O 

=0 

(cosO)y = (sin@)x 

sin 0 

v= cos 9:c 

Thus, y = (tan0)z. 

  

When =2, cos@=2 and sinf =2, EN 2 2 

Using 1 a, the equation of the tangent is 

1 V3, 
3T+ gy =3 

whichis @ +v3y =6 

When 6 = %, tand = /3 

Using 1 b, the equation of the normal is y = /3. 

a Let z=at® and y = 2at 

dx dy 
Z_oat and Z=2 = at  an = a 

dy _ 2a 1 

dz  2at L 

the equation of the tangent is 

x — ty = at® — t(2at) 

= at? — 2at? 

Thus, z —ty = —at?. 

. .1 
b From a, the gradient of the tangent is 7 

t 
the gradient of the normal is -1 

the equation of the normal is 

tx 4 y = t(at?) + 2at 

= at® + 2at 
Thus, tz+y= at® + 2at. 

  

2aty — 2aty 

2 2 aty — aty 
a gradient of [AB] 

2a(to—t7) 
a(ta + t1)(to—t1) 

) ta+ 11 t1+t2 
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the chord [AB] has equation 

2z — (t1 + t2)y = 2(at;’) — (f1 + t2)(2at1) 

= 2at{ — 2aty — 2at1ty 
Thus, 2z — (t1 + t2)y = —2atits 

If [AB] is a focal chord, then (a, 0) lies on [AB]. 

2a — (t1 +t2)(0) = —2at1t 

2a = —2atqta 

tity = —1 {since a # 0} 

Using 3 a, the cquation of the tangent at A is 

T —ty = —mtl2 and the equation of the tangent at B is 

T — 2y = —at22. 

If we multiply the first equation by ¢2 and the second equation 

by —t1 we get: 

tax — titay = —atta 

—t12 + titay = atity 

(to—tT)x = atite(to—t1) 
ox=atity {since to # t1} 

Tr=—a 

these tangents always meet on the directrix. 

. o1 . 
Now, the gradient of the tangent at A is o and the gradient 

1 
.1 

of the tangent at B is o 
2 

1 1 1 == 
t1 " ta tito 

= —1 {using 4 b} 

these tangents are perpendicular. 

Thus, the tangents at the extremities of the focal chord always 

intersect at right angles on the directrix. 

  

If =0, then z—tiy= flztlz becomes 

Yy =aty 
Cis (0, aty). 

Likewise, D is (0, at2). 

0 —at 
the gradient of [CF] = aol =—1 a— 

and the gradient of [DF] = 

  

Multiplying these gradients together gives t1t2 = —1. 

     

[CF] and [DF] are perpendicular. {from 4 b} 

[CD] subtends a right angle at the focus F. 

B(ats, 2ats) 

Let the midpoint of [AB] be M(X, Y). 

t2 + atd 2at; + 2at 
This means X = ati taty and Y = % 

Thus X = % (t2+t2) and Y =a(t +1t2)
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Now, (t1 +1t2)% =t + 21t + ¢ 

=t2+t2—2 {usingh b} 

(Y)2 2X 
—) == _2 
a a 

Y2 2x 
—==_2 

a 

Y2 = 2aX — 24 

Y2 =2a(X —a) 

Y2:4<%)(X—a) 

So, the Cartesian equation of the locus of M is 

y? =4 (%) (z—a), which is another parabola with vertex 

(a, 0) and focus (3—;, 0). 

    

  

Pl(atlz, 2at1) 

Let Py be (at?, 2at;) and Py be (at?, 2atz). 

Now [P1P2] has equation 

2z — (t1 + t2)y = —2atitz {using 4 a} 

But (—a, 0) lies on the line 

2(—a) — (t1 + t2)(0) = —2at1t2 
—2a = —2at;ty 

tito=1 .. (1) 

Using 3 a, the equation of the tangent at Py is 

T —tiy = 7at12 e (2) 

and the equation of the tangent at Py is 

T —toy = —at22 e 3) 

These tangents meet at Q: 

tow — t1tay = —at’ts {t2 x @} 
—t1z + titoy = atity {~t1 x3)} 

(t2 — t1)z = atyta(te — t1) 

T = at1ts {since t3 #t1} 

z=a {from (1)} 

Q lies on the vertical line through the focus, but outside the 

parabola. 

  

a Let z=acosf and y = bsinf 

d d 
L _ _asing and 2 =pcoso 
do d 

dy _ bcosf 

dz ~ —asin® 

the equation of the tangent is 

(bcosO)x + (asin0)y 

= (bcos)(acosh) + (asin@)(bsinb) 

= abcos® 0 + absin® 0 

= ab(cos? 0 + sin® 0) 

=ab 

Thus, (bcosO)z + (asin@)y = ab. 

  

bcos 0 
b From 6 a, the gradient of the tangent is Coé . 

—asin 6 

. . asin@ 
the gradient of the normal is . 

bcos 0 

the equation of the normal is 

(asin@)z — (bcos0)y 

= (asin®)(acosf) — (bcos @) (bsinb) 

= a%sin6cos0 — b sin 0 cos 0 

= (a® — b®)sinf cos 

Thus, (asin@)z — (bcos@)y = (a? — b?)sinf cos . 

a Let P be (acos6, bsin0). 

Q has x-coordinate 

acos@ also. 

But Q lies on 
22 +y2 = a? 

(acos)? +y? =a? 

a?cos? 0 4 y? = a? 

y2 =a?—a’cos?0 

y? = a®(1 — cos? ) 

y2 =a?sin?0 

  

y =asinf 

Qis (acosf, asinb). 

PN : QN = bsinf : asin@ 

=b:a 

b Using 6 a, the equation of the tangent at P is 

(bcosO)z 4 (asin )y = ab. 

This tangent cuts the z-axis when y =0 

(bcos @)z = ab 

alf a 

- FBcos = coso 

The tangent at Q has the equation 

(cos @)z + (sinb)y = a. 

This tangent cuts the z-axis when y =0 

T     

(cosO)z =a 
a 

T =   
cos 0 

. a 
Thus, both tangents cut the z-axis at ( ) 0) 

cos 

  

provided that cos@ # 0, so 0 # 3 

(and so N is not (0, 0)).



8 a From 6 b, the normal at P has equation 

(asin@)z — (beos )y = (a? — b?)sinfcos O 

This cuts the z-axis when y = 0. 

o (asir®)z = (a® — b?) sirr cos O 

_ (a27lf)c059 L 
x 

But for an ellipse, b2 = a?(1 — €?) 
b2 — a2 — a2e? 

ooa? —b? =a2%e? 

2 a?e? cos 0 
z=———2 =ae’cosf 

a 

Thus, the normal at P cuts the z-axis at (ae? cos 0, 0). 

  

  

b 

PF = ePN 

=e (E - acosl9> 
e 

=a —aecosl 

=a(l —ecosb) 

Likewise, PF’ = ePN’ 

=e (acosG — (*2>) 
e 

=aecosf+a 

=a(l+ecosb) 

< QF = ae —ae?cos {using a} 

= ae(1 — ecos0) 

and QF = ae® cos — (—ae) 

= ae(ecosf + 1) 

PF d(l —ecosf) 1—ecos 

PF T A(1+ecosf) 1+ecosh 

QF  ge(l—ecosf) 1—ecos 

Now 

and —="——-"—"— " =~ 
QF ae(l+ ecosf) 1+ecosf 

PF  QF 
0, — = — 

PF  QF 

by the converse of the angle bisector theorem, 

FPQ = F/PQ. 
[PQ] bisccts FPF’. 

d As P varies, sound or light emanating from one focus is 

concentrated at the other focus. {Equal angles that [PQ] 

makes with the normal — reflection principle.} 

9 The tangent at P has the equation (bcos @)z + (asinf)y = ab. 

a 
This tangent meets the directrix @ = — when 

e 

(bcos 9)'2 + (asin0)y = ab 
€ 

bcos @ 

e 
  +ysinf =b 
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becos 6 
ysinh =b— cos 

e 

be — bcos 0 ysinf = —— 2057 
e 

_ be—bcosd 

v= esin @ 

. a b(e—cosf) 

Qis (;’ esin @ ) 

      acosf, bsinf) 

bsinf — 0 
gradient of [PF] = emrm e 

acosf — ae 

_ bsin @ 

" a(cosd —e) 

ble—cost) _ 

gradient of [QF] = csinf 
< —ae e 

b(e — cos6) 

esina(% — ae) 

_ b(e — cos 0) 

" asin0 — ae?sind 

b(e — cos ) 

asin (1 — e2) 

b 1 cosf —e 

a \1—e2 sin 6 
  

b 1 cosf —e 

T a b2 sin 6 
<2 @ 

{using b% = a?(1 —e?)} 

¥ o cosb—e 

7; 2 " sing 

. —a(cos — e) 
Thus, gradient of [QF] = o 

sin 

Now, mgq is the negative reciprocal of mpg. 

[PF] L [QF] 

Pi-'\Q is a right angle. 

10 

  

  

The tangent at P has the equation 

a A 

' (cosfi 

(bcosB)z + (asinf)y = ab. 

    ,O) and B is (0, Ab ) 
sin @
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Let M(X,Y) be the midpoint of [AB]. 

    

    

  

440 0+ =2 
=2 and Y = - 2 2 

a b 
= d Y = 

2cos 0 an 2sin 

b 
cosf = -2 and  sinf = — 

2X 2Y 
2 2 b 

cos?0 = 2 and  sin?0 = — 1x2 4Y?2 

2 2 b 
&+m =1 {since c0529+sin29:1} 

a®Y? + ’X? = 4X7Y? 
the equation of the locus of M is  b2z2 + a?y? = 4x2y>. 

1 y 

      P(acos6, bsin0) 

  

=Y
 

The tangent at P has the equation 

(beosO)z + (asinf)y = ab ... (1) 

. Lo bcos O 
and its gradient is —   

asin @ 

in6 
the gradient of [FN] is asim   

beosh’ 

Now, [FN] has the equation 

(asin@)z — (bcos0)y = (asin@)ae — 0 

(asin@)z — (bcosO)y = a’esinf ... (2) 

[PN] and [FN] meet at N(X, Y). 

We let sin =S and cosf =C 

(1) and (2) then become bC'X + aSY = ab 

aSX —bCY = a’eS 
Squaring these, we get 

b2C%2 X2 4 2abSCXY + a?5%Y? = a?b? 

a?82X? — 2abSCXY + b2C?Y? = ate?s? 
Adding: 

a?S%2X2? +b2C2 X2 +a2S?Y? + b20%Y? = a?b? + ate?S? 

(a®S% + b2°C?) X2 + (a®S? + b2C?)Y? 
=a?(b* + a%e?5?) 

=a?(b? + [a® — b?]S?) 
{since b% =a?(1 - e?) = a? — a?e? 

oa?e? =a? —b?} 

=a?(b® +a?5% — bv?5?) 

= a*(a?8% + b*[1 - 57)) 
= a*(a®S? +b°C?) 

Thus, 252 X2+ (a2S2 45Ty 
= a*(a®S24++7C?) 

X2 +Y2=a? 

the locus of N is the auxiliary circle z2 + y? = a2, 

12 v 

      
XY 

, >P(acos 0, bsin®) 

The tangent at P has equation 

bcos b 

asin®’ 

(bcosO)z + (asinf)y = ab 

and its gradient is —   

ino 
[OQ] has gradient <2   

bcos O’ 

in 0 
The equation of [OQ] is Y = asin 

bcos 

Now, Q(X,Y) lies on the tangent. 

(bcos0)X + (asinf)Y =ab ... (2) 

—Ja2X2 1 p2Y2 h=4/a’X?+ Y by 

bY 
tanf = — O 

aX aX 

So, sinG:z and COS&:% 

  X .. 

From (1), Y = (%tan9> X 

and so (2) becomes 

b(fl)X-%—a(z)Y:ab 
h h 

abXx? 4 aby? 
h h 

L X2 +Y? = h=1/a2X2 +02Y2 
(X2 +Y?%)? =a®X? +0°Y? 

Thus, the equation of the locus of Q is 

(22 +y2)? = a2a? + b2y, 

13 The tangent at P has equation (bcos0)z + (asin@)y = ab 

Using the distance from point to line formula, 

_ |bcos f(ae) + (asinB)(0) — ab| 

    

MF 
b2 cos? 0 + a2 sin? § 

MF = |abe cos 0 — ab| 

Vb2 cos? 0 + a2 sin? 0 
and M'F — |bcos O(—ae) + asin0(0) — ab| 

Vb2 cos? 0 + aZsin? 0 
MF — | —abe cos @ — ab| 

Vb2 cos? 0 + a2 sin? 0 

MEM'F = ablecosf — 1| X ablecosf + 1] 

b2 cos2 0 + a2 sin? 6 

a?b? ‘e2 cos? 0 — 1‘ 

b2 cos? 0 + a2 sin? 6 

But  b%cos? 0+ a?sin? 0 

= b2 cos? 0 + a?(1 — cos? ) 

=b%cos? 0+ a® — a® cos? 0 

= (b® — a?)cos? 0 + a® 

= —a%e?cos? 0+ a?  {b? = a2(1 — €?) = a® — a2e? 

a? = 2 4262 
= a?(1— e?cos? 0) b a*e’}
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a?b? |e?cos?0 — 1 

=02 x +1 

=5 as MEM'F’ mustbe >0 

Thus MF.M'F' = 

14 = =asech, y=btan6 represents any point on the 

  

  

  

  

2 2 
z¢ oy 

hyperbola — — — =1. yperbola  —5 — — 

d d 
& asecltanb, &Y bsec2 6 
do 

dy bsec? 0 _ bsect 

dr  asecftanf atanf 

1 

dy _ b (o) b 
dr sind)  asind 

“(cose) 
. b 

the tangent has gradient — 
asin@ 

the equation of the tangent is 

bz — (asin@)y = b(asecd) — (asinf)(btanb). 

  

  

  

b bsin® 0 
bz — (asinf)y = L sm 

cos 0 cos 0 

b 
=2 (1 —sin20) 

cos 

b 
=2 cos?o 

cos 0 

= abcosf 

Thus, the equation of the tangent is bz — (asin0)y = abcos 6. 

15 The equation of the normal is 

(asin@)z + by = (a? + b?) tan6 

(a? + b?)sin0 

  

When y =0, we obtain (asinf)z = 
cos 0 

a2 + b2 
T = 

acos@ 

When @ =0, we obtain by = (a® + b?) tan 0 

_ (a® + b%) tan 6 
= 

2 2 2 2 

Soais [ o) aapis (o Lot b)tano ) 
acos @ b 

Let M(X,Y) be the midpoint of [AB]. 

  

    

    

X_a2+b2 and Y_(a2+b2)tan0 

" 2acosf - 2b 

2aX 2bY 
sect = Zi and tan = TR 

2aX 2/ 2bY \? 
2re) \@re) T 

{sec?§ = tan? 6 + 1} 

4a®Xx? 4’y? 
(a2 +b2)2 (a2 + b2)2 - 

the locus of M is 

4a2a? 4bzy2 _ 

(a2 +b2)2 (a2 +b2)2 

16 a The tangent at P(asec, btan@) has the equation 

bz — (asinf)y = abcos 6. 

This tangent cuts the z-axis when y = 0. 

. Bx = a¥cosl 

.z =acosf 

Qis (acos,0). 

    
#P(asecl, btand) 

PF' PN 
PF  ¢PN 

  

  

  

cos 6 

ae + acos @ 

ae — acos 6 

d(e + cos0) 

(e — cos 0) 

e+ cos 6 

e—cos0 
QF acosf — (—ae) 

Now, oF = {using a} 
ae — acos @ 

acosf + ae 

ae —acos0 
a(e + cos 0) 

e+ cos @ 

e —cosf 

PF’ 
PF 

PF QF 
Thus, — = = 

PF ~ QF 

e+ cos @ 

e—cosf’ 

¢ By the converse of the angle bisector theorem, QTJ\F = Q/I;F’ s 

no matter where P is located on the hyperbola. 

  

17 a Let z=ct and y=-=ct ! 

d d; 
Lo ad Yog2=-2 
dt dt 2 

c 
dy  —¢2Z 1 

de ¢ 2 

the equation of the tangent is 

@+ 2y = (ct) + t2 (%) 

=ct+ct 

Thus, z=+ t2y = 2ct.
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. 1 . a a |k| a 
b From a, the tangent has gradient ——. Since OM = — = — . —L — 

2 2 V2 V2 
the normal has gradient 2. ~kl=a 

the equation of the normal is L k=—ta=4cV2 

c 

2w —y = t3(ct) — (?) . the directrices are @ + y = +cv/2. 

Thus, 2z —y=ct® — % 20 

  

Consider the point P on the curve zy = c2. 

  

We assume ¢ > 0. 
Let P be any point on  zy = ¢2. 

The tangent at P has equation x + t?y = 2ct and has 
L and M are the axes intercepts of the tangent at P {since the 

    

. 1 

asymptotes of zy = c? are the axes}. gradient e 

The equation of this tangent is @ + t2y = 2ct. . [ON] has gradient t2 

Now, when y =0, z=2ct and its equation is Y = t2X 

and when = =0, t’y=2ct ey 

2¢ o X y== Y . ) 
t 5 cooatN, X+ (}) Y =2ct {since N lies on the tangent} 

Lis (2ct,0) and M is (O, TC) 5 
Y 

2 X + < = 2ct 

o f2t40 O+ T c 
The midpoint of [LM] is 7 3 = (et %) X2 4 Y2 =92¢cXt 

We now consider Xt when ¢ is positive or negative: 

So, the midpoint of [LM] is P. Case I: If t>0, Pisinquadrant 1, and X >0 
So, irrespective of the position of point P on zy = ¢, P is 

Y 
the midpoint of the tangent [LM] to zy = c2. Sot= < and X = VX2 

Xt:m\/Z:\/W 
Case 2: 1If t <0, Pisin quadrant 3, and X < 0. 

t:—\/g and X = —VX2 

xz?m(f\/g):m 

In cither case, we have X2 + Y2 = 2¢V/XY. 

Thus, the equation of the locus of N is  z2 + y? = 2¢,/Zy. 

19     
al 4 < < i 2, =3 & 

Since this is a rectangular hyperbola, e = /2. 21 The normal at <Ct’ t) has equation %z —y = ct t 

  

OF = ae = a2 This normal cuts the z-axis at A(ct — %, 0) and the y-axis 
in AONF, ON = NF =a {Pythagoras} t 

the focus is at (a, a). at B(O, —ct3 + f)‘ 
t 

But 0Q=a=+/c2+c2 {since Qis (c.c)} If M(X,Y) is the midpoint of [AB], 
o a=eV3 . .. 

) et — o3 —ctt + 5 
the foci are (ev/2, ¢v/2) and (—cv2, —cv/2). then X = TR Y = — 

Let the equation of one directrix be @ +y +k = 0 for some k. ¢ s 
[1(0) + 1(0) + K| ctft—3:2X, —ct +;:2Y 

OM = {distance from a point to a line} 

 



ctt —c=2°X  and 

—ctt +c=2tY 

0=2t>X + 2ty {adding} 

—2tY = 263X 

Y = —t2X 
Y 

2= < O 

But M is on t217y:ct37§ 

c(tt — 1) 
t 

22X Y = 

  

tx —2X%Y =¢(Y? - X?) 

12 x 4X1Y? = 2(v? - x?)? 
Y 

—= x4axty? = 2(v? - x2)? 
X 

A(Y? — X2)2 = _4x3Y? 

the Cartesian equation for the locus of M is 
2(y? — ?)? = —4a3yP. 

22 y 

  

    

  

F(e: 2,cfi) 

c 
Py(ct1, 37) 

The tangents at Py and Py are 

T+ tlzy =2ct; and x+ t22y = 2cto 

Ifwelet Qbe (X,Y) then X +¢2Y =2ct; 

and X + t22Y = 2ct2 

We now solve (1) and (2): 

2ct1 — t12Y = 2cty — t22Y {equating X's} 

2c(ty —to) = Y(t2 — t2) 

L 2eltt5] = Y (t1 + to)(t—ta] 
2c 

Tt 
So, X =2ct; — th 

2c 

= 2 7t12 (tl +t2) 

2cty(t1 + ta) — t(2¢) 

- t1 +to 

 2etf 4 2ctity — 2etf 
- t1 + 2 

X = 2ctyty 

t1 +lg 

  

  

  

) 

o) 

Now, [P1P2] has gradient 
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£ _ < 
ty  ta 

cty — cty 

cto — cty 

tita(cty — cta) 

AL 
£yt (t—13] 

1 

T tto 

and [P1P2] has the equation 
c 

T + titoy = (ct1) + tito (t_) 
1 

x + ti1toy = cty + cta 

T +titoy = c(ty +t2) 
Since [P1P2] is a focal chord, F(cv/2, C\/E) lies on [P1P2]. 

(eV2) + t1ta(eV2) = elts + t2) 

/2 etitaV/2 1 

oty +ta) | e(ty +t2) 

()5 ()1 o=   
  

    

t1 + L2 

2 X = ctltg} 

t1 + 12 
Y : X -1 

V2 V2 

L X+Y =02 

the equation of the locus of Q is =z +y = ¢V/2, which is 

a straight line. 

EXERCISE 2@ B 

a 622 —4xy +9y? =80 can be written as 

= 0% )= 
which has the form x” Ax = 80 

Now \/\I—A|:‘)\;6 )\39‘ 

=22 —15A+50 
=(A-5)(A—10) 

A =5, 10 are the eigenvalues of A. 

When A=5, (AI—A)x=0 

(2 2)6)=0) 
Sz +2y=0 

x:(z)t,tER 

When A =10, (AMI—A)x=0 

(2 DE)-() 
20 +y=0 

x:(j2)t, teR 

o (2 L1 
The normalised eigenvectors are = ( 1 ), = ( 9 ) 

_ 12 _ Let P—\/g(72 1) where |P|=1 

{since |P|=1 for a rotation}
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Now, 0059:713 and sin9:772=, s0 tanf = —2. 

From the column order we have A1 = 10 and Ao = 5. 

Let X = Px’ 

(Px")TA(PX') = 80 

x' TPTAPX' = 80 

x’T(lo O)X':SO 

the conic is an ellipse with centre (0, 0), rotated through 

arctan(—2). 

0 5 

102’ 2 + 5y’ 2 = 80 
Z!Z y/2 

— +=— =1 whichi 1li 3 + 6 which is an ellipse 

  

b 822 4 28zy — 13y® +40 = 0 can be written as 

(= v)(n Ms)(5)=-0 
which has the form  xT Ax = —40 

A-8 14 
Now \A17A|:‘_14 )\+13‘ 

=A% £ 51 — 300 
= (A= 15)(A + 20) 

A =15, —20 are the cigenvalues of A. 

When A =15, (AI-A)x=10 

( a ’}184)(2):(8) 
Tr—14y =0 (or = =2y) 

x:(f)t, teR 

When XA = —-20, (AI-A)x=0 

. . 2 L L The normalised eigenvectors are 7 ( 1 ), 7 ( 

Let 

Now, 

(2 )6)-) 
4z + 7y =0 (or y= —2x) 

x:<712>t, teR 

P:%(}Z f) where |P|=1 

{since |P|=1 for a rotation} 

- L ing = -2 cosf = 7 and sinf = 7 

so tanf = —2 

1 

-2 
). 

From the column order we have A\ = —20 and Ay = 15. 

Let x=Px 

(Px)TA(PX) = —40 

X TPTAPY = —40 

  

0 15 
202" 2 +15y' 2 = —40 

’2 ’2 3 TNy 
2 8 
172 y!2 

    

the conic is a hyperbola. 

The graph cuts the z’-axis when y’ =0 

2/2=2 o =42 

the vertices for the rotated graph are 

(8-2) w (A2). 
The graph cuts the z-axis when y =0 

8z% = —40 
] 

the graph does not cut the z-axis. 

The graph cuts the y-axis when z =0 

—13y% = —40 
2 _ 40 

¥y =13 

y=+/12 

  

  

& , 
822 4 287y — 13y> +40=0 

  

2 aaz?-zy+y?—22+y—-3=0 

To avoid working with fractions, we consider 

222 — 2zy + 2y% — 4z + 2y = 6. 

This equation can be written in the form 

xTAx +vI'x =6 where 

() (G ) e (5) 
Now Ml—Al:‘)‘IZ )\12‘ 

=X —4x+3 
=(A-1)(A-3) 

A =1, 3 are the eigenvalues of A.



When A=1, (M—A)Xx=0 

(2 2)6)-0 
z—y=0 

()-(1)e vex 
When A =3, (AI-A)x=0 

G- 
(5)=(4) 

o G (1) a1 (1 
The normalised eigenvectors are 7 ( 1) =) 

P 
(1 1 

Let P7¢§(71 1 where | 

_ 1 inf— L —-_z Now, cos@—\/E and sinf = 75 S0 0= T 

From the column order we have Ay =3 and A = 1. 

Let x =Px’ 

(Px)TA(PY) + (-4 2)Px' =6 

I TpT Apy/ L (11 X TPTAPY + ((—4 2)75(71 1 (3 
(3 D7) 

(a: 

32/ 2 +4y' 2 —3V2 —V2y' =6 

36/ 2 Vaa' + ()N + (v 2 - VaY + ($)?) 
=6+3(2)+2 
=8 

3@~ )+ - )7 =8 

whichis 3X2+Y2 =8 translated 

S the original conic is an ellipse. 

  

b a? +4zy —2y° +2vBx — By —5=0 

:t2+4a:y—2y2+2\/gx—\/5y:5 

This equation can be written in the form 

xTAx +vI'x =5 where 

x:(z), A:(; 32), and v:(i‘{;%) 
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Now \)\I—A|:‘)\71 ’2‘ 
-2 A+2 

=X +1-6 
=A=2)(A+3) 

A =2, —3 are the eigenvalues of A. 

When A=2, (AI-A)x=0 

(2 D6)-0) 
L —2y=0 

()-(2)e ves 
When A= -3, (AI—-A)x=10 

(= 6)=@) 
Lo 2x—y=0 

y=—2x 

(5)- (1) eex 
o 2 1 1 1 The normalised eigenvectors are 7 ( 1 ), 7 ( 9 ) 

1 2 — 1 — 5 Let P= \/5(72 1) where |P| =1 for a rotation. 

A1 =—-3 and Ao =2. 

cosG:% and sin9:7%, so tanf = —2. 

Let x =Px’ X=X (Px)TA(PY) +vIPX =5 
’ 

X TPTAPY + (2V5 7\/5)%(712 f) (Z,):z’) 

o (=3 0Y ., 1o2) (2" _ 
X (0 2)"*(2 ’1)(72 1)(y' =5 

(=3 0 z'\ _ X (0 2)x+(4 3)(3/)*5 

=32’ 242y 2 442’ +3y =5 

CoBE -3+ (DN 207+ 3+ (DD 
— 4 9 
=5-3(3) +2(55) 
— 115 

24 

=3 - 37+ 20 + §)? = 52 
-3 WD’ 
115 115 

(=) Sy 
=1 

X2 y? 
    which is 

2 
15 T —1 translated < 3 ) . 

(=) (F) - 

the original conic is a hyperbola. 

[
N
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¢ 322 — 6zy — 5y + 3z + 9y = 10 

This equation can be written in the form 

xTAx + vI'x = 10 where 

x=(° (3 3 and v = 3 
“\vy ) “\-3 —-5) “\9 ) 

A—3 3 

3 A+5 

=X +2)r—24 
=(A—4)(A+6) 

, —6 are the eigenvalues of A. 

When/\—4 (M —A)x=0 
1 3 z\ _ (0 
3 9)ly) " \o 

x4+ 3y=0 

(z):(73)t, teR 
Y 1 

When \ = —6, ()\I — = 

(60 

Now \)\I—A|:‘ 

  

The normalised eigenvectors are —— ( -3 ) ) = ( 1 ) 
Vio\ 1 V1o \ 3 

1 -3 . 
Let P= \/—_ ( 1 ) where |P| =1 fora rotation. 

A =—6 and Ao =4 

— L ing=—3_, s - cos07\/fi and sln07m, so tanf =3 

Let x=Px' (Px)TA(PY) +vIPX = 10 
1 TpT ’ 1 1 -3 _ 

X PAPx+(3 9)¢—1_D<3 1>(y) 10 

6 0 ! 
(0 ) +¢_(30 0)(y,):1o 

—6a’ % + 4y’ 2 4+ 3V102" = 10 

o 62’2 — 4y’ 2 — 3V/102" = —10 

6(a’ 2 — ¥T00/ 4 (M0)2) 4% — _10 4 6(20)? 
6(ac—¢_)2 4y'? = 2 

  

  

- 

(' __\45)2 2 

25 
(33) 

x2  y? 
which is —— — > —1 translated ( 

&) (%) 
the original conic is a hyperbola. 

        
  

3% — 6zy — 5y + 3z + 9y =10 

0= arctan3 

4.0) 
  - 

T 

d 222 —4axy+5y®+42—2y =1 can be written in the form 

xTAx +vI'x =1 where 

() a7 e () 
Now \)\I—A|:‘>\;2 AES‘ 

=X -7A+6 
=(\—1)(A—6) 

A =1, 6 are the cigenvalues of A. 

When A=1, (AI-A)x=10 

-1 2\(z\_ (0 
2 —4 y/) \0 

—x+2y=0 

(5)-(2)e e 
When A=6, (M—A)Xx=0 

(D0)-0) 
20 +y=0 

()= () e 
. . a1 (2 (1 

The normalised eigenvectors are 7 (1 ARy E 

Let }’:712(_12 f) where |P|=1. 

A1 =6 and Ao =1. 

cosG:fi and sinfl—fT, so tanf = —2. 

Let x =Px’ 
(Px)TARPY) + (4 -2 

I TpT Apy/ 1 1 2 '\ _ X TPTAPY + (4 72)fi(72 1)<y/>71 

(6 0Y)_, 1 '\ _ (0 1)x+7§(8 6)<y,>71 

Pyt B+ By =1 

)Px’:l 

6% + 32’ + () + W2 + v+ (H)?) 
=1+6(%)+2 

6@ + 5222+ (W + %) =2 N 

which is  18X2 +3Y?2 = 10 translated 

the original conic is an ellipse. 

    
    

182% 4 3> = 10 

222 —dzy + 5y + 4o — 2y =1 

18(z + 322)°
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d As 3+2v/2>0 and 3-2V2>0, 
A1A2 > 0, so we have an ellipse. 

cllipse Check: at+c=1+5=6 

typerbols MtA=3+2V243-2/2=6 v 

  

hyperbola 

2d| 7 | | 7 | >0 | cllipse 
  

  

Note: In 2 a, the cigenvalues were found from the conic 

2z% — 2xy +2y% — 4z +2y — 6 = 0. 

Conjectures: 

e \i+Xl=a+c 

e if AjA2 > 0 the conic is an ellipse and if AjA2 < 0 

the conic is a hyperbola. 

These conjectures are true, but proof is left to the reader. 

In AACN, 
AN 

cos) = — 
1 

AN = cos 0 

CN 
and sinf = — 

1 

CN = sin6 

  

In AAOB, sinf = % 

OA = 2sinf 

Thus ON = OA + AN 

= 2sinf + cos 0 

Cisat (2sinf + cos6, sinf). 

Let x=2sinf + cosf, y=sinf 

z=2y+1/1-y2 {cos@=1/1—sin?0} 

z—2y=+/1—y2 

(x—2y)? =1-y° 
—4my+4y2+y2:1 

2?2 —dzy +5y° =1 

z274zy+5y2:1 

) 
(L) 

A-1 2 
2 A-5 

=22 —6A+1 

If A2 —6X+1=0, 

hen 4= 8F \/362— ZIEHIE) 

[A—A| = 

)\:6:(:4\/5 
2 

A=3+2V2 

A1 =3+ 2\/5, Aoy =3 — 22 or vice versa 

under a suitable rotation, 2 — 4zy + 5y% = 1 

becomes either 

(B+2v2)a'2+(3-2v2)y'2 =1 or 

(3-2v2)a' 2+ (34+2V2)y 2 =1
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allied angles 

alternate angles 

altitude 

angle at the centre theorem 

angle between tangent and chord 

angle bisector 

angle in a semi-circle theorem 

angles at a point 

angles of a quadrilateral 

angles of a triangle 

angles on a line 

angles subtended by the same arc 

Apollonius' circle theorem 

area comparison theorem 

asymptote 

augmented matrix 

auxiliary angle 

axiom 

axis of symmetry 

basic unit vectors 

basic variable 

basis 

centre of an ellipse 

centre of an hyperbola 

centroid 

Ceva's theorem 

characteristic polynomial 

check matrix 

chord 

chord of a circle theorem 

chord of an ellipse 

circle 

circumcentre 

co-domain 

column rank 

column space 

column vector 

composition of transformations 

concyclic points 

congruent triangle 

consistent system of equations 

corresponding angles 

cyclic quadrilateral 

determinant of a matrix 

diagonal matrix 

diagonalisable matrix 

130 
130 
167 
147 
149 
167 
145 
130 
132 
131 
130 
148 
176 
142 
210 

13 
219 

128,129 
202 
63 

19,22 
72 

205 
210 
167 
182 
116 
55 

163 
146 
205 

194, 200 
168 
86 
78 
78 
25 

93, 111 
156 
138 
12 

130 
156 

42,46 
26 

118 

diameter of an ellipse 

diameter of an hyperbola 

dimension 

directrix 

discriminant of a conic 

distance from a point to a line 

domain 

eccentric angle 

eccentricity 

eigenbasis 

eigenspace 

eigenvalue 

eigenvector 

elementary matrix 

elementary row operations 

elements of a matrix 

ellipse 

equal matrices 

Euclid's angle bisector theorem 

exterior angle of a cyclic quadrilateral 

exterior angle of a triangle 

external tangents 

focal-distance property of ellipse 

focal-distance property of hyperbola 

focus 

free variable 

Gaussian elimination 

general form of a circle equation 

homogenous 

hyperbola 

identity matrix 

image 

incentre 

inconsistent system of equations 

infinitely many solutions 

intersecting chords theorem 

intersecting circles theorem 

inverse of a matrix 

inverse transformation 

isosceles triangle theorem 

kernel 

latus rectum of an ellipse 

latus rectum of an hyperbola 

line 

linear combination of vectors 

linear equation 

linear transformation 

linearly dependent vectors 

205 

210 

72 

201 

229 

190 

86 

219 

201 

115 

115 

113 

113 

55 

13 

25 

200, 201, 204 

27 

172 

158 

131 

196 

206 

211 

201 

19,22 

22 

194 

12 

200, 201, 209 

26 

100 

168 

12,19 

19 

163 

150 

41,42 

94 

131 

86 

205 

210 

200 

62 

11 

83 

70



linearly independent vectors 70 

line-pair 200 

locus 190 

lower triangular matrix 26 

major arc 145 

major axis 205 

major segment 145 

matrix 25 

matrix addition 27 

matrix multiplication 32,33 

matrix subtraction 28 

median of a triangle 167 

Menelaus' theorem 185 

midpoint theorem 131 

minor 46 

minor arc 145 

minor axis 205 

minor segment 145 

mutually orthogonal vectors 61 

negative matrices 28 

no solution 19 

non-singular matrix 42 

null space 77 

nullity 77,87 

object 100 

opposite angles of a cyclic quadrilateral 156 

order of a matrix 25 

orthocentre 169 

orthogonal matrix 45 

orthogonal vectors 61 

overspecified 12 

parabola 200, 201, 202 

parallel lines within a triangle 135 

parametric differentiation 217 

parametric equations 216 

perpendicular bisector 167 

pivoting 13 

pivots 22 

point 200 

powers of a matrix 120 

projection 109 

Ptolemy's theorem for cyclic quadrilaterals 178 

radius-tangent theorem 147 

range 86 

rank 78, 87 

rank-nullity theorem 89 

real Cartesian space 60 

rectangular hyperbolae 211 

reduced row echelon form 

reflection 

rotation 

row echelon form 

row rank 

row reduction 

row space 

row vector 

secant 

secant-secant theorem 

secant-tangent theorem 

segment 

self-inverse matrix 

sense 

shear 

similar triangles 

singular matrix 

skew-symmetric matrix 

solution set 

spanning set 

square matrix 

standard basis 

standard matrix 

standard parametric equations 

stretch 

subspace 

symmetric matrix 

system of linear equations 

tangent 

tangents from an external point 

theorem on a known solution 

trace 

transformation 

transformation matrix 

transpose 

transverse axis 

trivial solution 

underspecified 

unique solution 

unit vectors 

upper triangular matrix 

vector 

vector cross-product 

vector dot product 

vertically opposite angles 

zero matrix 
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43 

106 

108 

133 

42 

39 

11 

66 

26 

72 

89 

219 

107 

65 

39 

11 

196 

149 

97 

116 

83 

100 

39 

210 

23 

12 

18 

63 

26 

60 

72 

6l 

130 

26



344 NOTES


