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PREFACE TO 3RD EDITION

It will be immediately obvious that the 3rd edition of the Mathematics – Higher Level (Core) text 
has been completely revised and updated. Sections of the previous two editions are still present, 
but much has happened to improve the text both in content and accuracy. 
In response to the many requests and suggestions from teachers worldwide the text was 
extensively revised. There are more examples for students to refer to when learning the subject 
matter for the first time or during their revision period. There is an abundance of well-graded 
exercises for students to hone their skills. Of course, it is not expected that any one student work 
through every question in this text - such a task would be quite a feat. It is hoped then that 
teachers will guide the students as to which questions to attempt. The questions serve to develop 
routine skills, reinforce concepts introduced in the topic and develop skills in making appropriate 
use of the graphics calculator.
The text has been written in a conversational style so that students will find that they are not 
simply making reference to an encyclopedia filled with mathematical facts, but rather find that 
they are in some way participating in or listening in on a discussion of the subject matter.
Throughout the text the subject matter is presented using graphical, numerical, algebraic and 
verbal means whenever appropriate. Classical approaches have been judiciously combined with 
modern approaches reflecting new technology - in particular the use of the graphics calculator.  
The book has been specifically written to meet the demands of the Higher Level (Core) section of 
the course and has been pitched at a level that is appropriate for students studying this subject. 
The book presents an extensive coverage of the syllabus and in some areas goes beyond what is 
required of the student. Again, this is for the teacher to decide how best to use these sections.
Sets of revision exercises are included in the text. Many of the questions in these sets have been 
aimed at a level that is on par with what a student could expect on an examination paper. 
However, some of the questions do go beyond the level that students may expect to find on an 
examination paper. Success in examinations will depend on an individual’s preparation and they 
will find that making use of a selection of questions from a number of sources will be very 
beneficial. 
I hope that most of the suggestions and recommendations that were brought forward have been 
addressed in this edition. However, there is always room for improvement. As always, I welcome 
and encourage teachers and students to contact me with feedback, not only on their likes and 
dislikes but suggestions on how the book can be improved as well as where errors and misprints 
occur.  There will be updates on the IBID Press website in relation to errors that have been 
located in the book – so we suggest that you visit the IBID website at www.ibid.com.au. If you 
believe you have located an error or misprint please email me at fabio@ibid.com.au.

Fabio Cirrito, July 2004
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PREFACE  TO  2ND EDITION

We are grateful to all those teachers who have made comments and corrections on the 
first edition. We hope that these contributions have improved this second edition. This 
edition is now in line with the course whose first examinations will start in 2000.  As 
always, we welcome all comments from teachers and with due time, will make use of 
them to further improve this book. Suggestions and comments can be directed to Fabio 
Cirrito via email: fabio@ibid.com.au
Fabio Cirrito, 1999

PREFACE  TO  1ST EDITION

This text has been produced independently as a resource to support the teaching of the 
Mathematics Higher Level Course of the International Baccalaureate. The examples and 
questions do not necessarily reflect the views of the official senior examining team 
appointed by the International Baccalaureate Organisation.
The notation used is, as far as possible, that specified in the appropriate syllabus 
guidelines of the IB.
The units of physical measurements are in S.I.
The language and spelling are U.K. English.
Currency quantities are specified in dollars, though these could be read as any currency 
that is decimalised, such as Swiss francs, Lire etc.
The graphic calculators covered directly in the text are the Texas TI/82 and 83. 
Supplementary material is available from the publisher for students using some other 
makes and models of calculators. As it is important that students learn to interpret 
graphic calculator output, the text and answers present a mixture of graphic calculator 
screens and conventional diagrams when discussing graphs. 
The text has been presented in the order in which the topics appear in the syllabus. This 
does not mean that the topics have to be treated in this order, though it is generally the 
case that the more fundamental topics appear at the front of the book. Students are 
reminded that it is the IB Syllabus that specifies the contents of the course and not this 
text. One of the keys to success in this course is to be thoroughly familiar with the course 
contents and the styles of questions that have been used in past examinations.

Fabio Cirrito, August 1997.
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NOTATION

The list below represents the signs and symbols which are recommended by the International 
Organization for Standardization as well as other symbols that are used in the text.

the set of positive integers and zero, {0, 1, 2, 3,...} 
the set of integers, {0, ±1, ±2, ±3...}
the set of positive integers, {1, 2, 3,...} 

the set of rational numbers 

the set of positive rational numbers,  
the set of real numbers
the set of positive real numbers 
the set of complex numbers, 

z a complex number
z* the complex conjugate of z
|z| the modulus of z
arg z the argument of z
Re z the real part of z
Im z the imaginary part of z

the set with elements 
n(A) the number of elements in the finite set A 

the set of all x such that...
is an element of
is not an element of 

Ø the empty (null) set 
U the universal set
∪ union
∩ intersection

is a proper subset of
is a proper subset of
the complement of set A
the Cartesian product of sets A & B, 

a|b a divides b
a to the power  or the nth root of a

x |x a
b--- b 0 a b ∈, ,≠,=   

x |x x 0>,∈{ }

+ x |x x 0>,∈{ }
C a bi|a b ∈,+{ }

x1 x2, …{ } x1 x2, …

x |   { }
∈
∉

⊂
⊆
A'
A B× A B× a b,( )|a A b B∈,∈{ }=( )

a1 n/ an, 1
n---
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a to the power  or the square root of a≥0

the modulus or absolute value of x 

identity
is approximately equal to

> is greater than
≥ is greater than or equal to
< is less than
≤ is less than or equal to

is not greater than
is not less than
the closed interval 
the open interval 
the nth term of a sequence or series

d the common difference of an arithmetic sequence
r the common ratio of an geometric sequence

the sum of the first n terms of a sequence 
the sum to infinity of a sequence 

f is a function under which each element of set A has an image in set B
f is a function under which x is mapped to y
the image of x under the function f
the inverse function of the function f
the composite function of f and g
the limit of  as x tends to a

the derivative of y with respect to x

the derivative of  with respect to x

a1 2/ a, 1
2---

x x x 0≥,
x x 0<,–



≡
≈

>
<
a b,[ ] a x b≤ ≤

]a b, [ a x< b<
un

Sn u1 u2 u3 … un+ + + +
S∞ u1 u2 u3 …+ + +

ui
i 1=

n
∑ u1 u2 … un+ + +

ui
i 1=

n
∏ u1 u× 2 …× un×

n
r  

n!
r! n r–( )!-----------------------

f :A B→
f :x y→
f x( )
f x( )1–

f og
lim
x a→ f x( ) f x( )
dy
dx------

f ' x( ) f x( )



xvii

the second derivative of y with respect to x

the second derivative of  with respect to x

the nth derivative of y with respect to x

the nth derivative of  with respect to x
the indefinite integral of y with respect to x

the indefinite integral of y with respect to x between the limits x = a and x = b

the exponential function of x
logarithm to the base a of x
the natural logarithm of x, 

sin,cos,tan the circular functions

the inverse circular functions

csc,sec,cot the reciprocal circular functions
the point A in the plane with Cartesian coordinates x and y

[AB] the line segment with endpoints A and B
AB the length of [AB]
(AB) the line containing points A and B

the angle at A
the angle between the lines [CA] and [AB]
the triangle whose vertices are A, B and C

v the vector v
the vector represented in magnitude and direction by the directed line segment 
from A to B

a the position vector 
i,j,k unit vectors in the directions of the Cartesian coordinate axes
|a| the magnitude of a

the magnitude of 
the scalar product of v and w
the vector product of v and w

d2y
dx2--------

f '' x( ) f x( )
dny
dxn--------

f n( ) x( ) f x( )
y xd∫
y xd

a
b∫
ex

xalog
xln xelog

arcsin
arccos
arctan 




A x y,( )

Â
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Mathematics has clearly played a significant 
part in the development of many past and 
present civilisations.

There is good evidence that mathematical, 
and probably astronomical techniques, were 
used to build the many stone circles of 
Europe which are thought to be at least three 
thousand years old (Thom). It is likely that 
the Egyptian pyramids and constructions on 
Aztec and Mayan sites in South America 
were also built by mathematically 
sophisticated architects. Similarly, cultures 
in China, India and throughout the Middle 

East developed mathematics a very long time ago. It is also the case that there have been very 
successful cultures that have found little use for mathematics. Ancient Rome, handicapped, as it 
was, by a non-place value number system did not develop a mathematical tradition at anything 
like the same level as that of Ancient Greece. Also, the Australian Aborigines who have one of the 
most long lasting and successful cultures in human history did not find much need for 
mathematical methods. The same is true of the many aboriginal cultures of Africa, Asia and the 
Americas. This may well be because these aboriginal cultures did not value ownership in the way 
that western culture does and had no need to count their possessions. Instead, to aboriginal 
cultures, a responsible and sustainable relationship with the environment is more important than 
acquisition and exploitation. Maybe we should learn from this before it is too late!

Mathematics has developed two distinct branches. Pure mathematics, which is studied for its own 
sake, and applied mathematics which is studied for its usefulness. This is not to say that the two 
branches have not cross-fertilised each other, for there have been many examples in which they 
have.

The pure mathematician Pierre de Fermat (1601-1665) guessed that the equation  
has whole numbered solutions for n = 2 only. To the pure mathematician, this type of problem is 
interesting for its own sake. To study it is to look for an essential truth, the ‘majestic clockwork’ 
of the universe. Pure mathematicians see ‘beauty’ and ‘elegance’ in a neat proof. To pure 
mathematicians, their subject is an art.

Applied mathematics seeks to develop mathematical objects such as equations and computer 
algorithms that can be used to predict what will happen if we follow a particular course of action. 
This is a very valuable capability. We no longer build bridges without making careful calculations 
as to whether or not they will stand. Airline pilots are able to experience serious failures in 
commercial jets without either risking lives or the airline’s valuable aeroplanes or, indeed, 
without even leaving the ground.
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Mathematics is based on axioms. These are ‘facts’ that are assumed to be true. An axiom is a 
statement that is accepted without proof. Early sets of axioms contained statements that appeared 
to be obviously true. Euclid postulated a number of these ‘obvious’ axioms.

Example: 
‘Things equal to the same thing are equal to each other’; 

That is, if y = a and x = a then y = x. 

Euclid was mainly interested in geometry and we still call plane geometry ‘Euclidean’. In 
Euclidean space, the shortest distance between two points is a straight line. We will see later that 
it is possible to develop a useful, consistent mathematics that does not accept this axiom. 

Most axiom systems have been based on the notion of a ‘set’, meaning a collection of objects. An 
example of a set axiom is the ‘axiom of specification’. In crude terms, this says that if we have a 
set of objects and are looking at placing some condition or specification on this set, then the set 
thus specified must exist. We consider some examples of this axiom.

Example:

Assume that the set of citizens of China is defined. If we impose the condition that the members 
of this set must be female, then this new set (of Chinese females) is defined. 

As a more mathematical example, if we assume that the set of whole numbers exists, then the set 
of even numbers (multiples of 2) must also exist. 

A second example of a set axiom is the ‘axiom of powers’: 

Example:

For each set, there exists a collection of sets that contains amongst its elements all the subsets of 
the original set. If we look at the set of cats in Bogota, then there must be a set that contains all the 
female cats in Bogota, another that contains all the cats with green eyes in Bogota, another that 
contains all the Bogota cats with black tails, etc. A good, but theoretical, account of axiomatic set 
theory can be found in Halmos, 1960.

Mathematics has, in some sense, been a search for the smallest possible set of consistent axioms. 
In the section on paradox, we will look further at the notion of axioms and the search for a set of 
assumptions that does not lead to contradictions. There is a very strong sense in which 
mathematics is an unusual pursuit in this respect. Pure mathematics is concerned with absolute 
truth only in the sense of creating a self-consistent structure of thinking. 

As an example of some axioms that may not seem to be sensible, consider a geometry in which 
the shortest path between two points is the arc of a circle and all parallel lines meet. These 
‘axioms’ do not seem to make sense in ‘normal’ geometry. The first mathematicians to investigate 
non-Euclidean geometry were the Russian, Nicolai Lobachevsky (1793-1856) and the Hungarian, 
Janos Bolyai (1802-1860). Independently, they developed self consistent geometries that did not 
include the so called parallel postulate which states that for every line AB and point C outside AB 
there is only one line through C that does not meet AB.

AXIOMS1.2
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Since both lines extend to infinity in both directions, this seems to be ‘obvious’. Non-Euclidean 
geometries do not include this postulate and assume either that there are no lines through C that 
do not meet AB or that there is more than one such line. It was the great achievement of 
Lobachevsky and Bolyai that they proved that these assumptions lead to geometries that are self 
consistent and thus acceptable as ‘true’ to pure mathematicians. In case you are thinking that this 
sort of activity is completely useless, one of the two non-Euclidean geometries discussed above 
has actually proved to be useful; the geometry of shapes drawn on a sphere. This is useful because 
it is the geometry used by the navigators of aeroplanes and ships.

The first point about this geometry is that it is impossible to travel in straight lines. On the surface 
of a sphere, the shortest distance between two points is an arc of a circle centred at the centre of 
the sphere (a great circle). The shortest path from Rome to Djakarta is circular. If you want to see 
this path on a geographer’s globe, take a length of sewing cotton and stretch it tightly between the 
two cities. The cotton will follow the approximate great circle route between the two cities.

If we now think of the arcs of great circles as our ‘straight lines’, what kind of geometry will we 
get? You can see some of these results without going into any complex calculations. For example, 
what would a triangle look like?

The first point is that the angles of this triangle add up to more than 180˚. There are many other 
‘odd’ features of this geometry. However, fortunately for the international airline trade, the 
geometry is self consistent and allows us to navigate safely around the surface of the globe. Thus 
non-Euclidean geometry is an acceptable pure mathematical structure.

While you are thinking about unusual geometries, what are the main features of the geometry of 
shapes drawn on the ‘saddle surface’?

A B
C

Rome

Djakarta
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One final point on the subject of non-Euclidean geometries; it seems to be the case that our three 
dimensional universe is also curved. This was one of the great insights of Albert Einstein (1879-
1955). We do not yet know if our universe is bent back on itself rather like a sphere or whether 
another model is appropriate. A short account of non-Euclidean Geometries can be found in 
Cameron (pp31-40).

By contrast, applied mathematics is judged more by its ability to predict the future, than by its 
self-consistency. Applied mathematics is also based on axioms, but these are judged more on their 
ability to lead to calculations that can predict eclipses, cyclones, whether or not a suspension 
bridge will be able to support traffic loads, etc. In some cases such mathematical models can be 
very complex and may not give very accurate predictions. Applied mathematics is about getting a 
prediction, evaluating it (seeing how well it predicts the future) and then improving the model. 

In summary, both branches of mathematics are based on axioms. These may or may not be 
designed to be ‘realistic’. What matters to the pure mathematician is that an axiom set should not 
lead to contradictions. The applied mathematician is looking for an axiom set and a mathematical 
structure built on these axioms that can be used to model the phenomena that we observe in 
nature. As we have seen, useful axiom sets need not start out being ‘sensible’.

The system of deduction that we use to build the 
other truths of mathematics is known as proof. 

Proof has a very special meaning in mathematics. We use the word generally to mean ‘proof 
beyond reasonable doubt’ in situations such as law courts when we accept some doubt in a 
verdict. For mathematicians, proof is an argument that has no doubt at all. When a new proof is 
published, it is scrutinised and criticised by other mathematicians and is accepted when it is 
established that every step in the argument is legitimate. Only when this has happened does a 
proof become accepted.

Technically, every step in a proof rests on the axioms of the mathematics that is being used. As we 
have seen, there is more than one set of axioms that could be chosen. The statements that we 
prove from the axioms are known as theorems. Once we have a theorem, it becomes a statement 
that we accept as true and which can be used in the proof of other theorems. In this way we build 
up a structure that constitutes a ‘mathematics’. The axioms are the foundations and the theorems 
are the superstructure. In the previous section we made use of the idea of consistency. This means 
that it must not be possible to use our axiom set to prove two theorems that are contradictory. 

There are a variety of methods of proof available. This section will look at three of these in detail. 
We will mention others. 

A' B' C'
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1.3.1 RULES OF INFERENCE

All proofs depend on rules of inference. Fundamental to these rules is the idea of ‘implication’. 

As an example, we can say that 2x = 4 (which is known as a proposition) implies that x = 2 
(provided that x is a normal real number and that we are talking about normal arithmetic). 

In mathematical shorthand we would write this statement as . 

This implication works both ways because x = 2 implies that 2x = 4 also. 

This is written as  or the fact that the implication is both ways can be written as
. 

The  symbol is read as ‘If and only if’ or simply as ‘Iff’, i.e., If with two fs.

Not every implication works both ways in this manner:

If x = 2 then we can conclude that . 
However, we cannot conclude the reverse: 
i.e.,  implies that x = 2 is false because x might be –2. 

Sothat  is all that can be said in this case.

There are four main rules of inference:

1. The rule of detachment: from a is true and  is true we can infer that b is true. a and
b are propositions.

Example: If the following propositions are true:

It is raining.
If it is raining, I will take an umbrella.

We can infer that I will take an umbrella.

2. The rule of syllogism: from  is true and  is true, we can conclude that  
is true. a, b & c are propositions.

Example: If we accept as true that:
if x is an odd number then x is not divisible by 4 ( )and,
if x is not divisible by 4 then x is not divisible by 16 ( ) 

We can infer that the proposition; 

if x is an odd number then x is not divisible by 16 ( ) is true.

2x 4 x⇒ 2= =

x 2 2x⇒ 4= =
x 2 2x⇔ 4= =

⇔

x2 4=

x2 4=

x 2 x2⇒ 4= =

a b⇒

a b⇒ b c⇒ a c⇒

a b⇒
b c⇒

a c⇒
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3. The rule of equivalence: at any stage in an argument we can replace any statement by an
equivalent statement.

Example: If x is a whole number, the statement x is even could be replaced by the
statement x is divisible by 2.

4. The rule of substitution: If we have a true statement about all the elements of a set, then
that statement is true about any individual member of the set. 

Example: If we accept that all lions have sharp teeth then Benji, who is a lion, must
have sharp teeth.

Now that we have our rules of inference, we can look at some of the most commonly used 
methods of proof

1.3.2 PROOF BY EXHAUSTION

This method can be, as its name implies, exhausting! It depends on testing every possible case of 
a theorem.

Example:

Consider the theorem: Every year must contain at least one ‘Friday the thirteenth’. 

There are a limited number of possibilities as the first day of every year must be a Monday or a 
Tuesday or a Wednesday.... or a Sunday (7 possibilities). Taking the fact that the year might or 
might not be a leap year (with 366 days) means that there are going to be fourteen possibilities. 

Once we have established all the possibilities, we would look at the calendar associated with each 
and establish whether or not it has a ‘Friday the thirteenth’. If, for example, we are looking at a 
non-leap year in which January 1st is a Saturday, there will be a ‘Friday the thirteenth’ in May. 
Take a look at all the possibilities (an electronic organiser helps!). Is the theorem true?
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1.3.3 DIRECT PROOF

The following diagrams represent a proof of the theorem of Pythagoras described in ‘The Ascent 
of Man’ (Bronowski pp 158-161). The theorem states that the area of a square drawn on the 
hypotenuse of a right angled triangle is equal to the sum of the areas of the squares drawn on the 
two shorter sides. The method is direct in the sense that it makes no assumptions at the start. Can 
you follow the steps of this proof and draw the appropriate conclusion?
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1.3.4 PROOF BY CONTRADICTION

This method works by assuming that the proposition is false and then proving that this 
assumption leads to a contradiction.

Example: 

The number  greatly interested classical Greek mathematicians who were unable to find a 
number that, when it was squared, gave exactly 2.

Modern students are often fooled into thinking that their calculators 
give an exact square root for 2 as when 2 is entered and the square 
root button is pressed, a result (depending on the model of 
calculator) of 1.414213562 is produced. When this is squared, 
exactly 2 results. This is not because we have an exact square root. It 
results from the way in which the calculator is designed to calculate 
with more figures than it actually displays. The first answer is stored 
to more figures than are shown, the result is rounded and then displayed. The same is true of the 
second result which only rounds to 2. Try squaring 1.414213562, the answer is not 2.

The theorem we shall prove is that there is no fraction that when squared gives 2. This also 
implies that there is no terminating or recurring decimal that, when squared, gives exactly 2, but 
this further theorem requires more argument.

The method begins by assuming that there is a fraction  (p & q are integers) which has been 

cancelled to its lowest terms, such that . From the assumption, the argument proceeds:

As with most mathematical proofs, we have used simple axioms and theorems of arithmetic. 

The most complex theorem used is that if  is even, then p is even. Can you prove this?

The main proof continues with the deduction that if p is even there must be another integer, r, that 
is half p.

We now have our contradiction as we assumed that  was in its lowest terms so p & q cannot 
both be even. This proves the result, because we have a contradiction. 

This theorem is a very strong statement of impossibility. 

There are very few other areas of knowledge in which we can make similar statements. We might 
be virtually certain that we will never travel faster than the speed of light but it would be a brave 
physicist who would state with certainty that it is impossible. Other methods of proof include 
proof by induction which is mainly used to prove theorems involving sequences of statements.
Whilst on the subject of proof, it is worth noting that it is much easier to disprove a statement than 

2

p
q---

p
q--- 2=

p
q--- 2= p2

q2-----⇒ 2 p2⇒ 2q2 p2 is even p is even⇒ ⇒= =

p2

p 2r p2⇒ 4r2 2q2⇒ 4r2 q2⇒ 2r2 q2 is even q is even⇒⇒= = = =

p
q---
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to prove it. When we succeed in disproving a statement, we have succeeded in proving its 
negation or reverse. To disprove a statement, all we need is a single example of a case in which 
the theorem does not hold. Such a case is known as a counter-example.

Example: 

The theorem ‘all prime numbers are odd’ is false. This can be established by noting that 2 is an 
even prime and, therefore, is the only counter-example we need to give. By this method we have 
proved the theorem that ‘not every prime number is odd’.

This is another example of the way in which pure mathematicians think in a slightly different way 
from other disciplines. Zoo-keepers (and indeed the rest of us) might be happy with the statement 
that ‘all giraffes have long necks’ and would not be very impressed with a pure mathematician 
who said that the statement was false because there was one giraffe (with a birth defect) who has 
a very short neck. This goes back to the slightly different standards of proof that are required in 
mathematics.

Counter-examples and proofs in mathematics may be difficult to find. 

Consider the theorem that every odd positive integer is the sum of a prime number and twice the 
square of an integer. Examples of this theorem that do work are:

. 

The theorem remains true for a very large number of cases and we do not arrive at a counter-
example until 5777.

Another similar ‘theorem’ is known as the Goldbach Conjecture. Christian Goldbach (1690-
1764) stated that every even number larger than 2 can be written as the sum of two primes. For 
example,  etc. No-one has every found a counter-example 
to this ‘simple’ conjecture and yet no accepted proof has ever been produced, despite the fact that 
the conjecture is not exactly recent!

Finally, whilst considering proof, it would be a mistake to think that mathematics is a complete 
set of truths that has nothing which needs to be added. We have already seen that there are 
unproved theorems that we suspect to be true. It is also the case that new branches of mathematics 
are emerging with a fair degree of regularity. During this course you will study linear 
programming which was developed in the 1940s to help solve the problems associated with the 
distribution of limited resources. Recently, both pure and applied mathematics have been 
enriched by the development of ‘Chaos Theory’. This has produced items of beauty such as the 
Mandelbrot set and insights into the workings of nature. It seems, for example, that the results of 
Chaos Theory indicate that accurate long term weather forecasts will never be possible 
(Mandelbrot). 

5 3 2 12×+= 15, 13 2 12× 35,+ 17 2 32×+= =

4 2 2 10,+ 3 7 48,+ 19 29+= = =
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1.4.1 WHAT IS A PARADOX?

Pure mathematics is a quest for a structure that does not contain internal contradictions. A 
satisfactory mathematics will contain no ‘nonsense’. 

Consider the following proof:
   

    Try substituting x = 1 to check this line.
Factorising using the difference of two squares.

               Dividing both sides by x – 1.
                      2 = 1 Substituting x = 1.

There is obviously something wrong here as this is the sort of inconsistency that we have 
discussed earlier in this chapter, but what is wrong? To discover this, we must check each line of 
the argument for errors or faulty reasoning.

Line 1 must be acceptable as we are entitled to assign a numerical value to a pronumeral.
Line 2 is true because the left hand and right hand sides are the same if we substitute the

given value of the pronumeral.
Line 3 is a simple factorisation of the left hand side.
Line 4 is obtained from line 3 by dividing both sides of the equation by x – 1 and should

be acceptable as we have ‘done the same thing’ to both sides of the equation.
Line 5 is obtained from line 4 by substituting x = 1 and so should give the correct answer.

Obviously we have an unacceptable conclusion from a seemingly watertight argument. There 
must be something there that needs to be removed as an acceptable operation in mathematics.

The unacceptable operation is dividing both sides by x – 1 and then using a value of 1 for x. What 
we have effectively done is divide by a quantity that is zero. It is this operation that has allowed us 
to prove that 2 = 1, an unacceptable result. When a paradox of this sort arises, we need to look at 
the steps of the proof to see if there is a faulty step. If there is, then the faulty step must be 
removed. In this case, we must add this rule to the allowed operations of mathematics:

Never divide by a quantity that is, or will become, zero.

This rule, often ignored by students, has important implications for Algebra and Calculus.

Some paradoxes are arguments that seem to be sound but contain a hidden error and thus do not 
contain serious implications for the structure of mathematical logic. An amusing compilation of 
simple paradoxes can be found in Gardner (1982). An example is the ‘elevator paradox’. 

Why does it always seem that when we are waiting for an elevator near the bottom of a tall 
building and wanting to go up, the first elevator to arrive is always going down? Also, when we 
want to go back down, why is the first elevator to arrive always going up? Is this a real 
phenomenon or is it just a subjective result of our impatience for the elevator to arrive? Or is it 
another example of Murphy’s Law; whatever can go wrong will go wrong?

PARADOX1.4

Let x 1=
Then x2 1– x 1–=
x 1+( ) x 1–( ) x 1–=

x 1+ 1=
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This is quite a complex question, but a simple explanation might run as follows:

If we are waiting near the bottom of a tall building, there are a 
small number of floors below us from which elevators that are 
going up might come and then pass our floor.

By contrast, there are more floors above us from which elevators 
might come and then pass our floor going down.

On the basis of this and assuming that the elevators are randomly 
distributed amongst the floors, it is more likely that the next 
elevator to pass will come from above and will, therefore, be 
going down.

By contrast, if we are waiting near the top of a tall building, there 
are a small number of floors above us from which elevators that 
are going down might come and then pass our floor.

Also, there are more floors below us from which elevators might 
come and then pass our floor going up.

It is more likely that the next elevator to pass will come from 
below and will, therefore, be going up.

A fuller analysis of this paradox can be found in Gardner (pp96-97).

The elevator paradox does not contain serious implication for the structure of mathematics like 
our first example. We will conclude this section with a look at a modern paradox that did cause a 
re-evaluation of one of the basic ideas of mathematics, the set. 

1.4.2 RUSSELL’S PARADOX

Bertrand Russell (1872-1970) looked in detail at the basic set axioms of mathematics. We do 
regard the existence of sets as axiomatic in all mathematical structures. Does this mean that we 
can make a set that contains ‘everything’? There would seem to be no difficulty with this as we 
just move around the universe and sweep everything that we meet into our set, numbers, words, 
whales, motorcycles etc. and the result is the set that contains everything.

Russell posed the following question which we will relate in the context of library catalogues.
Every library has a catalogue. There are various forms that 
this catalogue might take; a book, a set of cards, a computer 
disc etc. Whatever form the catalogue in your local library 
takes, there is a sense in which this catalogue is a book (or 
publication) owned by the library and, as such, should 
appear as an entry in the catalogue:

Of course, many librarians will decide that it is silly to include the catalogue as an entry in the 
catalogue because people who are already looking at the catalogue know where to find it in the 

CATALOGUE NEWEL LIBRARY

Catcher in the Rye
JD Salinger   123.64

Castle, The. 
F Kafka        231.72
Catalogue
At reception

Catherine the Great
A Biography
J Nelson    217.42

Catullus
The complete works
Edited by F Wills
                     312.42
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library! It follows that library catalogues can be divided into two distinct groups:

Catalogues that do contain an entry describing themselves.
Catalogues that do not contain an entry describing themselves.

Next, let us make a catalogue of all the catalogues of type two, those that do not contain 
themselves.

This gives us a problem. Should we include an entry describing our new catalogue? If we do, then 
our catalogue ceases to be a catalogue of all those catalogues that do not contain themselves. If 
we do not, then our catalogue is no longer a complete catalogue of all those catalogues that do not 
contain themselves. 

The conclusion is that making such a catalogue is impossible. This does not mean that the library 
catalogues themselves cannot exist. We have, however, defined an impossible catalogue.

In set terms, Russell’s paradox says that sets are of two types:

Type 1 Sets that do contain themselves.
Type 2 Sets that do not contain themselves.

The set of all sets of type 2 cannot be properly defined without reaching a contradiction.

The most commonly accepted result of Russell’s paradox is the conclusion that we have to be 
very careful when we talk about sets of everything. The most usual way out is to work within a 
carefully defined universal set, chosen to be appropriate to the mathematics that we are 
undertaking. If we are doing normal arithmetic, the universal set is the set of real numbers.

When writing Theory of Knowledge essays, students are required to develop their arguments in a 
cross disciplinary way. For more details on this, you are strongly advised to read the task 
specifications and the assessment criteria that accompany the essay title. You are reminded that it 
is these statements that define what is expected of a good essay, not the contents of this Chapter 
which have been provided as a background resource. A good essay will only result if you develop 
your own ideas and examples in a clear and connected manner. Part of this process may include 
comparing the ‘mathematical method’ described earlier with the methods that are appropriate to 
other systems of knowledge.

As we have seen, mathematics rests on sets of axioms. This is true of many other disciplines. 
There is a sense in which many ethical systems also have their axioms such as ‘Thou shalt not 
kill’. 

The Ancient Greeks believed that beauty and harmony are based, almost axiomatically, on 
mathematical proportions. The golden mean is found by dividing a line in the following ratio:

The ratio of the length AB to the length BC is the same as the ratio of the length BC to the whole 

MATHEMATICS AND OTHER DISCIPLINES1.5

A B C
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length AC. The actual ratio is 1:  or about 1:1.618. The Greek idea was that if this line 
is converted into a rectangle, then the shape produced would be in perfect proportion:

Likewise, the correct place to put the centre of 
interest in a picture is placed at the golden mean 
position between the sides and also at the golden 
mean between top and bottom. Take a look at the 
way in which television pictures are composed to 
see if we still use this idea:

In a similar way, the Ancient Greeks believed that ratio determined harmony in music. If two 
similar strings whose lengths bear a simple ratio such as 1:2 or 2:3 are plucked together the 
resulting sound will be pleasant (harmonious). If the ratio of string lengths is ‘awkward’, such as 
17:19, then the notes will be discordant. The same principle of simple ratios is used in tuning 
musical instruments (in most cultures) today.

The most common connection between mathematics and other disciplines is the use of 
mathematics as a tool. Examples are: the use of statistics by insurance actuaries, probability by 
quality control officers and of almost all branches of mathematics by engineers. Every time 
mathematics is used in this way, there is an assumption that the calculations will be done using 
techniques that produce consistent and correct answers. It is here that pure mathematical 
techniques, applied mathematical modelling and other disciplines interface.

In some of these examples, we apply very precise criteria to our calculations and are prepared to 
accept only very low levels of error. Navigation satellite systems work by measuring the position 
of a point on or above the Earth relative to the positions of satellites orbiting the Earth. 

1
2--- 1 5+( )

A B C

Centre of interest

Satellite

Satellite

Navigator
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This system will only work if the positions of the satellites are known with very great precision. 

By contrast, when calculations are made to forecast the weather, whilst they are done with as 
much precision as necessary, because the data is incomplete and the atmospheric models used are 
approximate, the results of the calculations are, at best, only an indication of what might happen. 
Fortunately, most of us expect this and are much more tolerant of errors in weather forecasting 
than we would be if airlines regularly failed to find their destinations!

There are, therefore a large number of ways in which mathematics complements other 
disciplines. In fact, because computers are essentially mathematical devices and we are 
increasingly dependent on them, it could be argued that mathematics and its methods underpin 
the modern world. 

That is not to say that mathematics is ‘everywhere’. Many very successful people have managed 
to avoid the subject altogether. Great art, music and poetry has been produced by people for 
whom mathematical ideas held little interest. 

In using mathematical ideas in essays, remember that you should produce original examples, look 
at them in a mathematical context and then compare the ways in which the example might appear 
to a mathematician with the way in which the same example might appear to a thinker from 
another discipline.

As a very simple example, what should we think of gambling?

To the mathematician (Pascal was one of the first to look at this activity from the mathematical 
perspective), a gambling game is a probability event. The outcome of a single spin of a roulette 
wheel is unknown. If we place a single bet, we can only know the chances of winning, not 
whether or not we will win. Also, in the long run, we can expect to lose one thirtyseventh of any 
money that we bet every time we play. To the mathematician, (or at least to this mathematician) 
this rather removes the interest from the game!

Other people look at gambling from a different standpoint. To the politician, a casino is a source 
of revenue and possibly a focus of some social problems. To a social scientist, the major concern 
might be problem gamblers and the effect that gambling has on the fabric of society. A theologian 
might look at the ethical issues as being paramount. Is it ethical to take money for a service such 
as is provided by a casino? Many of these people might use mathematics in their investigations, 
but they are all bringing a slightly different view to the discussion.

As we can see, there are many sides to this question as there are many sides to most questions. 
Mathematics can often illuminate these, but will seldom provide all the answers. When you 
choose an essay title, you do not have to use mathematical ideas or a mathematical method to 
develop your analysis. However, we hope that if you do choose to do this, you will find the brief 
sketch of the mathematical method described in this Chapter helpful.

We will finish with one observation. 

Mathematics and mathematicians are sometimes viewed as dry and unimaginative. This may be 
true in some cases, but definitely not all. 

We conclude with some remarks by the mathematician Charles Dodgson (1832-1898), otherwise 
known as Lewis Carroll:
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‘The time has come’, the Walrus said,
‘To talk of many things:

Of shoes and ships and sealing wax,
Of cabbages and kings,

Of why the sea is boiling hot
And whether pigs have wings’.

Through the Looking Glass
References:
Megalithic Sites in Britain. Thom, A. (1967). U.K. Oxford University Press.
Heritage Mathematics. Cameron, M. (1984).U.K. E.J. Arnold.
The Ascent of Man, Bronowski, J. (1973).U.K. BBC.
The Fractal Geometry of Nature, Mandelbrot, B (1977), U.S. W.H. Freeman & Co. 1977.
Gotcha!, Gardner, M. (1977). U.S.A. W.H. Freeman & Co.

We would like to encourage students to consider Mathematics as a choice of subject for their 
extended essay.

Whilst there is a requirement that these have solid academic content, it is not necessary to record 
an original discovery to produce an excellent essay! That said, many of the great original 
discoveries of mathematics are the work of comparatively young individuals with a modest level 
of ‘experience’.

An excellent example is Evariste Galois who struggled to enter university and whose life was cut 
short by a duel in 1832 at age 21. Galois left a set of ‘memoirs’, many of which were written on 
the night before the duel, that are regarded as some of the most original ideas ever contributed to 
mathematics.

It is fashionable today to regard this sort of original thought as the preserve of ‘experts’. We assert 
that it is not and encourage all our students to believe that they are capable of original ideas and 
hope that, if they do have a new idea, they have the courage to explore it. 

Students might choose to look at some of the many simply stated but as yet unproved conjectures 
of mathematics:

THE EXTENDED ESSAY1.6

1. There are an infinite number of prime numbers. Pairs of primes such as 5 & 7, 11 & 13
that are separated by one even number are called ‘twin primes’. 
How many twin primes are there?

2. The Goldbach conjecture: ‘Every even natural number greater than 2 is equal to the
sum of two prime numbers’ remains unproved.

3. If an infinite number of canon-balls are stacked in an infinite pyramid, what is the
biggest proportion of the space they can fill?

4. What are Mersenne primes and can you find a new one? The 25th & 26th Mersenne
primes were found by high school students.

... and a lot more!



MATHEMATICS – Higher Level (Core)

16

As a short case study, we will outline the work of a student who undertook a mathematical essay. 
The topic she chose was ‘The Mathematics of Knots’.

To begin with, the student displayed an understanding of two of the major ‘ways of thinking’ 
that are characteristic of mathematicians: EXISTENCE and CLASSIFICATION.

EXISTENCE means developing tests for when a knot does or does not exist. It is neither possible 
nor appropriate to explore all these ideas in an introduction such as this, but the essentials are 
illustrated below.

Take a look at these two photographs of ‘knots’:

These look similar, but if the ends are pulled apart, the results are quite different:

The left hand arrangement was a ‘tangle’ whereas the right was a ‘knot’.

The student investigated and skillfully explained the tests that can be applied to such rope 
arrangements to determine if a knot EXISTS.

The second feature of this essay was a look at the CLASSIFICATION of knots. These two 
photographs show knots that have two different applications:

These knots have two different uses. The sheet bend is used to join two lengths of rope and is 
designed not to ‘slip’. The bowline (pronounced ‘bo-lin’) is the knot you tie around your waist if 
you are drowning and a rescuer throws you a rescue rope. It will not slip of or tighten around you 
and, irrespective of mathematics, is well worth knowing!

These knots have different uses and belong to different CLASSES of knot. There are knots 
similar to the bowline that are intended to slip (such as the ‘noose’) that belong to yet another 
class of knots. What are the classes of knots and what are their mathematical characteristics?

Sheet bend Bowline
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2.1.1 THE REAL NUMBER LINE

A visual method to represent the set of real numbers, , is to use a straight line. This 
geometrical representation is known as the real number line. It is usually drawn as a horizontal 
straight line extending out indefinitely in two directions with a point of reference known as the 
origin, usually denoted by the letter O. Corresponding to every real number x there is a point P, 
on the line, representing this value. If x > 0, the point P lies to the right of O. If x < 0 the point 
P lies to the left of O. If x = 0, the point P is at the origin, O.

2.1.2 SET BUILDER NOTATION

The set of points on the real number line can also be written in an algebraic form:

This means that any real number set can be expressed algebraically. For example, the set of
positive real numbers  = , 
negative real numbers = 

Note that .

Similarly we can construct any subset of the real number line. The great thing about using set 
notation is that we can quickly identify if a point on the number line is included or excluded in the 
set. How do we represent these inclusions and exclusions on the real number line? 

If the number is included in the set, you ‘black-out’ a circle at that 
point on the number line – this is called a closed circle.
For example, the set  has the following representation:

If the number is excluded from the set, you place a circle at that 
point on the number line – this is called an open circle.
For example, the set  has the following representation:

2.1.3 INTERVAL NOTATION

Another notation that is used to describe subsets of the real numbers is interval notation. This 
form of notation makes use of only ‘square brackets’ or ‘square brackets’ and ‘round brackets’ to 
indicate if a number is included or excluded. For the examples above we have:

 = [3, ∞) or [3, ∞[
and for  = (3, ∞) or ]3, ∞[
Notice that ‘∞’ is never included!

THE REAL NUMBER LINE2.1

C
H

A
P

T
E
R

 2

O                                                 P
0    1    2    3    4    5    6  . . . –6  –5  –4  –3  –2  –1  . . . x

x : ∞– x ∞< <{ }=

x : x 0>{ }=+
x : x 0<{ }=

  0{ }   ∪ ∪= +

0        3

0        3

x

x

x : x 3≥{ }

x : x 3>{ }

x : x 3≥{ }
x : x 3>{ }
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It should be noted that  can also be expressed as . Hence the reason 
for having ‘∞’ in the interval notation representation.
A summary of the different possible intervals is given in the table below:
Real Number Line Set Notation Interval Notation Example

or 

 or 
or 
    

 or 
or 
    

 or 
or 
    

or  or 
or 
    

or  or 
or 
    

or  or 
or 
    

or  or 
or 
    

x : x 3≥{ } x : 3 x≤ ∞<{ }

a        b

a        b

x

x
x : a x b≤ ≤{ } x a b,[ ]∈ 3        8 x

x : 3 x 8≤ ≤{ }
x 3 8,[ ]∈

a        b

a        b

x

x
x : a x b<≤{ } x a b ),[∈ x a b[,[∈ 3        8 x

x : 3 x 8<≤{ }
x 3 8 ),[∈
x 3 8[,[∈

a        b

a        b

x

x
x : a x< b≤{ } x a b ],(∈ x ]a b],∈ 3        8 x

x : 3 x< 8≤{ }
x 3 8 ],(∈
x ]3 8],∈

a        b

a        b

x

x
x : a x< b<{ } x a b,( )∈ x ]a b[,∈ 3        8 x

x : 3 x< 8<{ }
x 3 8,( )∈
x ]3 8[,∈

a

a        b

x

x

x : x a≥{ }

x : a x ∞<≤{ }
x a ∞),[∈ x a ∞[,[∈ 3      x

x : x 3≥{ }
x 3 ∞),[∈
x 3 ∞[,[∈

a

a        b

x

x

x : x a>{ }

x : a x ∞<<{ }
x (a ∞),∈ x ]a ∞[,∈ 3      x

x : x 3>{ }
x (3 ∞),∈
x ]3 ∞[,∈

          a

          a

x

x

x : x a≤{ }

x : ∞– x< a≤{ }
x ∞– a ],(∈ x ] ∞– a],∈           8 x

x : x 8≤{ }
x ∞– 8 ],(∈
x ] ∞– 8],∈

          a

          a

x

x

x : x a<{ }

x : ∞– x< a<{ }
x ∞– a),(∈ x ] ∞– a[,∈           8 x

x : x 8<{ }
x ∞– 8),(∈
x ] ∞– 8[,∈
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We also make the following point in relation to set notation. Rather than using the colon ‘:’ in 
expressions such as  we can also use the separator ‘|’. That is, . Either 
notation can be used.

2.1.4 NUMBER SYSTEMS

The set of real numbers can be broken down into two subsets, namely, the set of rational 
numbers and the set of irrational numbers. The set of rational numbers can itself be broken 
down into two sets, the set of integers and the set of fractions. The set of integers can then be 
broken down into the set of positive integers, the set of negative integers and the set that includes 
the number zero. Each of these sets can be represented by a different symbol.

In this book we will use the following notation and definitions:

Set of positive integers and zero =  = {0, 1, 2, 3, . . .}.
The set of integers =  = {0, ±1, ±2, ±3, . . . }
The set of positive integers =  = {1, 2, 3, . . . }     [Also known as Natural numbers]
The set of rational numbers =  

Definition: 

The set of positive rational numbers  = 
The set of positive real numbers    =  = 
The empty set    =  = The set with no members.

x : x 3<{ } x  x 3<{ }

Real Numbers

Irrational Numbers                              Rational Numbers

Fractions                   Integers

Positive            Zero            Negative
Integers                                Integers

+

   x  x ab--- b 0 and a and b are integers ≠,=   =

+
+ x  x    , x 0>∈{ }

∅

(a) Write each of the following using interval notation.
(b) Represent the sets on the real number line.

i.
ii.
iii.

x 1 x 4≤<–{ }
x x 3≥{ } x x 6<{ }∩
x : x 8<{ }\ 5{ }

E 2.1XAMPLE
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i. (a)  =   or using round bracket: (–1, 4].

ii. (a)  =  or [3, 6) – using round bracket.

iii. (a)  = ]–∞, 8[ \ {5}   or (–∞, 8)\{5} – using round brackets.

2.1.5 IRRATIONAL NUMBERS

We provided a definition of rational numbers earlier. The question then remains, what is an 
irrational number? The obvious answer is ‘Whatever is not a rational number’! So, what do these 
numbers look like? The best way to answer this is to say that it is a number that cannot be 
written in the form  where a and b are integers. Examples of irrational numbers are 

 and so on.

How do we know that  is an irrational number?

We can show this as follows – a process known as reductio ad absurdum – meaning to prove by 
contradiction:

Assume that  is a rational number. Then by the definition of rational numbers there exist 
integers a and b (where a and b have no common factors) such that

Upon squaring we have:    
     

Then,  must be even [because  is even – i.e., any number multiplied by 2 is even] and so 
a must also be even.
This means we can express a as 2k. So, setting a = 2k we have:

  
But, , so that 

      
And so,  must also be even, meaning that b is even.
Then, since both a and b are even it follows that a and b have a common factor (i.e., 2). 
This is contrary to our original hypothesis. Therefore  is not a rational number and must 
therefore be an irrational number.

One subset of irrational numbers is known as the set of surds. Surds can be expressed in the form
 where  and . A commonly encountered surd is  (i.e., the square root).

S
o
l
u
t
i
o
n

x 1 x 4≤<–{ } ]–1, 4]

–1     0                      4 x(b)
x x 3≥{ } x x 6<{ }∩ [3, ∞[ ]∞,6[∩ [3, 6[=

x(b) 3                60
x : x 8<{ }\ 5{ }

x(b) 5                80

a
b--- b 0≠,

2 3 π, ,

2

2

2 a
b--- b 0≠,=

2 a2
b2-----=

a2⇔ 2b2=
a2 2b2

a2 4k2=
a2 2b2= 2b2 4k2=

b2⇔ 2k2=
b2

2

an n ∈ + a ∈ + a
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The laws of operations apply to surds in the same way that they apply to real numbers. We 
summarise some results involving surds:

Notice that the last result shows that we obtain a rational number! The surds  and 
 are know as conjugate pairs. Whenever conjugate pairs are multiplied together they 

produce a rational number.

(a)   = 
= 
= 
= 

(b)  = 
    = 
    = 

(a)   =   [multiplying numerator and denominator by conjugate]

   = 

   = 

(b)   = 

       =  [cannot be simplified further]

a b× ab=
a
b-------

a
b---=

a2b a b a 0>,=
a b c d× ac bd=

a b+( ) a b–( ) a b–=

a b–
a b+

Expand the following
(a) (b)2 3+( ) 6 3–( ) 5 2 3–( ) 5 3–( )

E 2.2XAMPLE

S
o
l
u
t
i
o
n

2 3+( ) 6 3–( ) 2 6 3 2 3 6 3 3×–×+×–×
2 2 3×( ) 3 2– 3 3 2×( ) 3 3–×+×

2 3 3 2– 3 2 3 3–+
3–

5 2 3–( ) 5 3–( ) 5 5 5 3 2 3 5 2 3 3×+×–×–×
5 15– 2 15– 2 3×+
11 3 15–

Rationalise the denominator of (a) (b)1
2 2+----------------

1 2+
2 3 1–-------------------

E 2.3XAMPLE

S
o
l
u
t
i
o
n

1
2 2+----------------

1
2 2+----------------

2 2–
2 2–----------------×

2 2–
4 2–----------------

1 1
2--- 2–

1 2+
2 3 1–------------------- 1 2+

2 3 1–------------------- 2 3 1+
2 3 1+-------------------× 2 3 1 2 6 2+ + +

4 3 1–×--------------------------------------------------=

2 3 1 2 6 2+ + +
11--------------------------------------------------
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2.1.6 THE ABSOLUTE VALUE

The absolute value or modulus of a number x, denoted by , is defined as follows:
If   and if .

This means that the absolute value of any number will always be positive.
E.g.,  :– seeing as 4 > 0, we use the value of 4. Whereas,  :– by 
taking the negative of a negative number we obtain a positive number.

(a) We are looking for value(s) of x such that when we take the absolute value of x it is 7.
From the definition of the absolute value, we must have that x = 7 or x = – 7.
That is, . Therefore, the solution set is {7, –7}

(b) i This time we want all values of x such that their absolute value is less than or equal
to 3. For example, if x = –2.5 then  which is less than 3. However, if
x = –4 then  which is greater than 3. So we cannot have x = –4.
Working along these lines we must have:

Using interval notation we have  = {x : –3 ≤ x ≤ 3} = [–3, 3]
ii. This time we want numbers for which their absolute value is greater than 1.

For example,  > 1 and . We then have:

Using interval notation we have  = ]–∞, –1[ ∪ ]1, ∞[

1. Show the following sets on the real number line.
(a) (b) (c) \{4}
(d) ]2, 7]  ∩ ]4, 8[ (e) (–∞, 4)  ∩ [–2, 5) (f)

2. Write the following using interval notation.
(a) (b)
(c)   (d)
(e) (f)

x
x 0 x⇒≥ x= x 0 x⇒< x–=

4 4= 2– 2–( )– 2= =

(a) Find .
(b) Use the number line to represent the sets

i. ii.
Express these sets using interval notation.

x : x 7={ }

x : x 3≤{ } x : x 1>{ }

E 2.4XAMPLE

S
o
l
u
t
i
o
n

x 7 x⇔ 7±= =

2.5– 2.5=
4– 4=

x0–3                                                        3
x : x 3≤{ }

1.2 1.2= 3.2– 3.2 1>=
x0–1                     1

x : x 1>{ }

EXERCISES 2.1

x 2 x 8≤ ≤{ } x x 7>{ } x 2 x 6≤<–{ }
x : x 6–<{ }

x 2 x 7≤ ≤–{ } x x 9>{ }
x 0 x 5≤<{ } x : x 0≤{ }
x : x 8<{ } x : x 4–>{ }∩ x : x 1–<{ } x : x 2>{ }∪
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3. Simplify the following.
(a) (b) (c)

4. Simplify the following.
(a) (b)
(c) (d)

5. Rationalise the denominator in each of the following.
(a) (b) (c)

(d) (e) (f)

6. (a) If , find the value of i. ii.

(b) If , find the value of i. ii.

7. Find the value of x if
(a) (b) (c)
(d) (e) (f)

8. Represent each of the following on the real number line.
(a) (b)
(c) (d)

9. Write the following using interval notation.

(a) (b)           (c)   

10. Prove each of the following if .
(a)
(b)
(c)
(d)
(e)

11. Find the square root of the following.
(a)
(b)

3 5 20+ 2 3 27– 2 3 8 18–+ +

5 1+( ) 5 1–( ) 2 3 2–( ) 2 3+( )
3 2 6–( ) 3 3+( ) 2 3 3+( )2

1
2 3+----------------

3
7 2–---------------- 3

5 2–----------------

2 5 1+
3 2–------------------- 2 3+

3 5–-------------------- 2 3
2 5 3 2–---------------------------

x 5 3+= x 1
x---+ x2 1

x2-----+

x 4 3+= x 1
x---– x2 1

x2-----+

x x 3={ } x x 10={ } x x 2–={ }
x x 1+ 3={ } x x 2+ 10={ } x x 2– 2={ }

x : x 5≤{ } x x 2>{ }
x : 2 x 5<≤{ } x : 2 x 8≥{ }

x x 1 0>–{ } x 12---x 2>    x : x 4>{ } x : 2x 12<{ }∩

a    , b   ∈∈
ab a b=
a
b---

a
b----- b 0≠,=

a b+ a b+≤
a b– a b+≤
a b– a b–≤

9 2 18+
12 2 32–
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2.2.1 REVIEW OF LINEAR EQUATIONS

A linear equation in the variable x (say) takes on the form  where a, b and c are real 
constants. The equation is linear because x is raised to the power of one. To solve such equations 
we use the rules of transposition:

       
Solving  produces a solution that can be represented on the real number line.

(a)

(b)

(c)  [don’t forget to multiply the 3 and –2]

       

Sometimes equations might not appear to be linear, but with some algebra, they form into linear 
equations. The following examples shows how this works.

(a)

   
  

(b)

LINEAR ALGEBRA2.2

ax b+ c=

ax b+ c ax⇔ c b–= =
x⇔ c b–

a-----------=
ax b+ c=

Solve the following linear equations
(a) (b) (c)4x 5+ 21= 9 2x– 7= 3 5x 2–( ) 12=

E 2.5XAMPLE

S
o
l
u
t
i
o
n

4x 5+ 21 4x⇔ 16 x⇔ 4= = =

9 2x– 7 2x–⇔ 2 x⇔– 1= = =

3 5x 2–( ) 12 15x 6–⇔ 12= =
15x⇔ 18=
x⇔ 6

5---=

(a) Solve for x, .

(b) Find .

x 3–
2----------- 1– x=

x  x3---
2 x–
2-----------– 1=   

E 2.6XAMPLE

S
o
l
u
t
i
o
n

x 3–
2----------- 1– x x 3–

2-----------⇔ x 1 x 3–⇔+ 2 x 1+( )= = =
x 3–⇔ 2x 2+=
x–⇔ 5=
x∴ 5–=

x
3---

2 x–
2-----------– 1 2x

6------
3 2 x–( )

6--------------------–⇔ 1 2x 3 2 x–( )–⇔ 6= = =
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(a)  [taking b out as a common factor]
       [dividing both sides by b]

(b)

    

Linear Equations involving Absolute values

Recall that if  (where a ≥ 0) then, . Using this result we can solve similar 
linear equations. 
That is, 

  
      or   

Notice that this time we have two solutions!

(a)  or 
    

(b)

(c)

2x 6– 3x+⇔ 6=
5x⇔ 12=
x⇔ 12

5------=

Solve the following literal equations for x, where a and b are real constants.
(a) (b)bx b2– ab= bx a b x–( )=

E 2.7XAMPLE

S
o
l
u
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o
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bx b2– ab bx⇔ ab b2 bx⇔+ b a b+( )= = =
x⇔ a b+=

bx a b x–( ) bx⇔ ab ax bx ax+⇔– ab= = =
b a+( )x⇔ ab=

x⇔ ab
b a+------------=

x a= x a  or  a–=

ax b+ c ax b+⇔ c  or  ax b+ c–= = =
ax⇔ c b  or  ax– c– b–= =
x⇔ c b–

a-----------= x c b+( )
a----------------–=

Solve the following.
(a) (b) (c)2x 6= x 1– 5= 3 1

2---x– 2=
E 2.8XAMPLE

S
o
l
u
t
i
o
n

2x 6 2x⇔ 6= = 2x 6–=
x⇔ 3 or  x 3–= =

x 1– 5 x 1–⇔ 5  or  x 1– 5–= = =
x⇔ 6 or x 4–= =

3 1
2---x– 2 3 1

2---x–⇔ 2  or  3 1
2---x– 2–= = =
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Examples such as those that follow require careful consideration of the restrictions placed on the 
absolute values of the variables. We work through a number of such equations.

(a) By definition,  if x ≥ 0 and –x if x < 0. Therefore we have two separate equations
to solve, one for x ≥ 0 and one for x < 0.
Case 1 ( x ≥ 0):

 
Now, our solution is that x = – 1, however, we must also satisfy the condition that x ≥ 0.
As both statements do not agree with each other, we conclude that for x ≥ 0 there is no
solution.
Case 2 ( x < 0):

 

This time our solution is that x = – , and we must also satisfy the condition that x < 0.
As both statements agree with each other, we conclude that for x < 0 there is a solution.
Namely, .

Therefore,  has only one solution, .
Notice that unlike Case 1, Case 2 has only one solution.

(b) Using our definition for the absolute value, we have:
1.  if . i.e.,  if x ≥ 1.
2.  if x – 1 < 0. i.e.,  if x < 1.
Notice we can combine these two expressions into one expression, namely:

 [this is known as a hybrid expression]

Meaning that solving  is the same as solving .

Case 1 ( x ≥ 1):
.

And so, there is no solution for the case when x ≥ 1.

1
2---x–⇔ 1  or  1

2---x–– 5–= =
x⇔ 2  or  x 10= =

Solve the following.
(a) (b) (c)x 2x 1+= x 1– x= 3 x– x 1–=

E 2.9XAMPLE

S
o
l
u
t
i
o
n

x x=

x 2x 1 x 0≥,+=
x–⇔ 1 x 0≥,=
x⇔ 1 x 0≥,–=

x– 2x 1 x 0<,+=
3x–⇔ 1 x 0<,=
x⇔ 1

3--- x 0<,–=
1
3---

x 1
3---–=

x 2x 1+= x 1
3---–=

x 1– x 1–= x 1 0≥– x 1– x 1–=
x 1– x 1–( )–= x 1– x 1–( )–=

x 1– x 1–  if x 1≥
x 1–( )–  if x 1<

=

x 1– x= x x 1–  if x 1≥
x 1–( )–  if x 1<

=

x 1– x if x 1 1–⇔≥ 0 if x 1≥= =
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Case 2 ( x < 1):

      

Then, as  lies in the interval x < 1, it is a solution.

So, .

(c) This time we will reduce the amount of setting out:

Case 1 (x ≤ 3):   .

As x = 2 lies in the interval x ≤ 3, then it is a solution.
Case 2 (x > 3): .
For which there is no solution.

Therefore, 

Solving Equations with the TI-83

Equations such as those we have just looked at can also be solved using the solve( option on the  
TI–83. We do this by calling up the Catalogue and then

1. locating the solve( option
2. enter the relevant equation

[The equation must be entered in the form Equation = 0. So, to solve the equation
2x + 6 = 15, we must rewrite it as 2x + 6 –15 = 0 so that the equation that is 
entered into the TI–83 is 2x + 6 – 15 = 0]

3. indicate the variable we are solving for
4. provide a reasonable guess (for the answer)

To obtain the solve( option we use the following sequence:
   then use the arrow key to reach solve( and then press :

We look at some of the problems we have aleady solved:

x 1–( )– x if x 1 x– 1+⇔< x if x 1<= =
2x⇔ 1 if x 1<=
x⇔ 1

2--- if x 1<=

x 1
2---=

x 1– x x⇔ 1
2---= =

3 x– x 1 3 x–  if 3 x– 0≥
3 x–( )–  if 3 x– 0<

⇔– x 1 3 x–  if 3 x≥
3 x–( )–  if 3 x<

⇔– x 1–= = =

3 x– x 1 x 3≤,–=
4⇔ 2x x 3≤,=
x⇔ 2 x 3≤,=

3 x–( )– x 1 x 3 2–⇔>,– 0 x, 3>= =

3 x– x 1 x⇔– 2= =

  2nd    0    LN  ENTER
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(a) (b) (c)

(d)

Another method is to use the Equation solver facility. The expression must still be entered in 
the form Equation = 0. To call up the Equation solver screen 

1. press  
2. Enter the equation in the form Equation = 0
3. Move the cursor over the variable for which you

want to solve and then press  .

It is important that you become familiar with both modes of solving equations, although 
eventually you will prefer one method over the other.

1. Solve the following linear equations.
(a) (b) (c)

(d) (e) (f)

2. Solve the following equations.
(a) (b) (c)

(d) (e) (f)

Solve the following linear equations
(a) (b) (c)
(d)

4x 5+ 21= 3 5x 2–( ) 12= x 3–
2----------- 1– x=

x 2x 1+=

E 2.9XAMPLE

S
o
l
u
t
i
o
n

Notice that in each case we have used a guess of 5.

MATH   0  

 ALPHA ENTER

EXERCISES 2.2.1

2x 8= 5x 3– 12= 2 1
3---x– 4=

3 2x–
7--------------- 2= 5x

3------
1
2---+ 2

3---= 2x 1
4---+ 1=

5 x 1–( ) 12= 3 2 1
2---x–   4= 2 2x 1+( )– 1=

2x 1– 3 x–= 3 5 1
3---x–   x 20–= 5 2x 3–( ) 8 1

4---x–=
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3. Solve the following equations.
(a) (b) (c)

(d) (e) (f)
4. Solve the following equations for x.

(a) (b) (c)
(d) (e) (f)

(g) (h) (i)

5. Solve for x.
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

6. Solve the following equations.
(a) (b) (c)

(d) (e) (f)

7. Solve the following for x.
(a) (b)
(c) (d) , a > 0

8. Solve the following for x.
(a) (b)

9. Make use of your graphics calculator to solve a selection of equations from questions 1 to
8.

2.2.2 LINEAR INEQUATIONS

Inequalities are solved in the same way as equalities, with the exception that when both sides are 
mulitplied or divided by a negative number, the direction of the inequality sign reverses.

2 u–
6------------ 8+ 1 u–= u 1–

4------------ 3– u
3---= x 2–

3----------- 1+ 1 x–
4-----------=

5
x 1+------------ 2+ 1

x 1+------------= 1
y 1–----------- 1+ 2

y 1–-----------= 3 u 1+( )
5-------------------- 2– u 1+( )

5-----------------=

x b– b 2–= a x b–( ) b a+= ax b a x–( )=
x
a--- a– b= x

b--- a–
x
a--- b–= 1

a---
1
x---+ 1
b---=

b x–
a x+------------

b x+
a x–------------= 1 ax–

b---------------
1 bx–
a---------------+ 0= a

b x–-----------
b
a x–-----------=

2x 8= 5x 3– 12= 2 1
3---x– 4=

3 2x–
7--------------- 2= 5x

3------
1
2---+ 2

3---= 2x 1
4---+ 1=

5 x 1–( ) 12= 3 2 1
2---x–   4= 2

3---x 1+   1=

a 2 x– b= a 1
b---x– b= 2ax b– 3b=

2x x 1–= 1 x– 1
2--- x= x 2+ 3x 1–=

1 1
3---x– 2x 1+= 1 2x+ 2 x–= 3x 4+ 3 x–=

x a+ 2x a a 0>,+= 2x a– 2a x a 0>,–=
2x a+ x a a 0>,–= 1

2---x a+ x a–=

x 1+ x 1–+ 3= x 1+ x 1–– 2=

Find (a) (b)x : x 1+ 4<{ } x 2x 5– 1<{ }E 2.10XAMPLE
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(a) . 
Therefore, the solution set (s.s) is .

(b)
     

Therefore, the solution set (s.s) is .

(a)
    
      

Therefore, s.s. = 

(b)  [multiply both sides by 14]
   
         

        [notice the reversal of the inequality – as we divided 
     by a negative number]

Therefore, s.s. is .

When dealing with inequalities that involve absolute values, we need to keep in mind the 
following:

S
o
l
u
t
i
o
n

x 1 4 x 3<⇔<+
x : x 3<{ }

2x 5 1 2x 6<⇔<–
x 3<⇔

x : x 3<{ }

Find (a) (b)x : x 2 3 2x–>+{ } x : 3 2x–
7--------------- 4x 3–

2---------------≤   E 2.11XAMPLE

S
o
l
u
t
i
o
n

x 2 3 2x 3x 2 3>+⇔–>+
3⇔ x 1>
x 1

3--->⇔

x : x 1
3--->   

3 2x–
7--------------- 4x 3–

2--------------- 14 3 2x–
7---------------   14 4x 3–

2---------------  ≤⇔≤
2⇔ 3 2x–( ) 7 4x 3–( )≤

6 4x 28x 21–≤–⇔
32x 27–≤–⇔
x 27

32------≥⇔

x : x 27
32------≥   

1.

2.

x a a x a< <–⇔<

x a x a  or  x a>–<⇔>

Find (a) (b)x : x 1+ 4<{ } x 2x 5– 1≤{ }E 2.12XAMPLE
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(a)
    [subtracting 1 from both inequalities]

Therefore, s.s. is .
(b)

       [adding 5 to both sides of inequality]
       [dividing both sides by 2]

(a)  or 

          or 
 or  [Note the reversal of inequality sign, i.e., × by –2]

Therefore, s.s. is .
(b)

   or 
         or 
           or 

Therefore, s.s. is .

As with equalities, we need to consider the conditions of the absolute value.
For x > 0 we have: .

As both conditions are satisfied, i.e., x > 0 and , one s.s. is .

For x < 0 we have: .
However, this time the conditions do not agree with each other, i.e., we cannot have the
solution x > 1 with the restriction that x < 0.

Therefore, the only s.s. is .

S
o
l
u
t
i
o
n

x 1+ 4 4 x 1 4<+<–⇔<
5 x 3< <–⇔
x : 5 x 3< <–{ }

2x 5– 1 1 2x 5 1≤–≤–⇔≤
4⇔ 2x 6≤≤
2 x≤ 3≤⇔

Find (a) (b)x : 1 1
2---x– 3>    x 3x 2– 1 5≥–{ }

E 2.13XAMPLE

S
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l
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1 1
2---x– 3 1 1

2---x 3>–⇔> 1 1
2---x 3–<–

1
2---x 2>–⇔ 1

2---x 4–<–
x 4–<⇔ x 8>
x : x 4–<{ } x : x 8>{ }∪

3x 2– 1 5 3x 2– 6≥⇔≥–
3x 2 6≥–⇔ 3x 2 6–≤–

3x 8≥⇔ 3x 4–≤
x 8

3---≥⇔ x 4
3---–≤

x : x 4
3---–≤    x : x 8

3---≥   ∪

Find x : x 1 2x–>{ }E 2.14XAMPLE

S
o
l
u
t
i
o
n

x 1 2x 3x 1 x 1
3--->⇔>⇔–>

x 1
3---> x : x 1

3--->   

x 1 2x x 1>⇔–>–

x : x 1
3--->   
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1. Solve the following inequalities.
(a) (b) (c)

(d) (e) (f)

2. Solve the following inequalities.
(a) (b) (c)

3. Solve the following inequalities.
(a) (b)

(c) , (d) , a > 0

4. Solve the following inequalities.
(a) |4x + 2| ≤ 6 (b) |2x – 1| ≤ 5 (c) |4x – 2| ≤ 8
(d) |4x + 2| ≤ 0 (e) |x – 1| ≤ 8 (f) |3x + 3| ≤ 12
(g) (h) (i)

5. Solve the following inequalities.
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

6. For what value(s) of p does  have no solutions?

7. Solve the following inequalities.
(a) (b) (c)

8. Solve the following inequalities where 0 < a < 1.
(a) (b) (c)

9. Find (a) (b) .

EXERCISES 2.2.2

2x 1 x 3–<+ x 4–
3----------- 2x 1–≥ x 1 x 3+

2------------>+

x 3 x 4+( )≥ x 4–
5-----------

2 x–
2-----------> 1 3x 5x 2–<–

2x 1+
5--------------- 2 x–

3----------- 3>– 1 x+
2------------

1 x–
4----------- 1≤+ x

5---
2 3x–
3--------------- 2–≥+

a x 1+( ) 2a a 0<,> a x–
2----------- 1 a a 0>,>+

x
a---
b
a2-----

4x
a------
b
a2-----–<+ b a 0> > x x 1–

a 1+------------
x 1+
a 1+------------ ax–≥+

3 x2---– 5≤ 2 x4---– 9≤ 3x 1
2---+ 3

4---≤

2x 1– 4> 5 2x– 2> 1 x2---– 7≥

3 1
3---x+ 5≥ 3 6 4x– 1 10>+ 12 4 x– 2>–

2 x4---– 9> 3x 1
2---+ 3

4---> 3 x2---– 5≥

3x
2------ 7– p 3–≤

1
2---x 1 x>+ 3 x 2x≥– 2x 1– x 1+<

ax x a–> x ax 1+< x
a--- x a+≥

x : 4 x 2x>–{ } x : 13---x 1– x>   
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2.3.1 GRAPH OF THE LINEAR FUNCTION

The study of functions and relations is dealt with in detail in Chapter 5, however, we give a basic 
definition of the term function at this point.

For example, if x = 5, then  will only generate one value of y. Consider the function 
 then, . i.e., only one y–value has been generated.

There are three possible outcomes when a linear function is graphed:
Case 1: m > 0 Case 2: m < 0 Case 3: m = 0

However, sometimes the linear function is expressed in different forms. The reason is that it is 
sometimes more convenient to express it in a form other than the standard form. For example, the 
following linear functions are all the same:

, , ,

They have simply been rewritten into different formats.

(a) The function  represents a straight line
with a gradient of 2 and a y–intercept of 1.
i.e., the graph will cut the y–axis at the point (0, 1).
The x–intercept is obtained by solving :

.

LINEAR FUNCTIONS2.3

A function  is an algebraic expression that will generate only one value 
of y for any one value of x.

y f x( )=

f 5( )
f x( ) x 3+= f 5( ) 5 3+ 8= =

A linear function has the form 

Its graph is a straight line such that
1. m is the slope of the line.
2. c is the y–intercept (i.e., where the line cuts the y–axis).

y f x( ) mx c+= =

y                                                      y                                                       y

 x                                                      x                                                        xO O O
c c c

f x( ) 5x 2–= y 5x 2–= y 2+ 5x= 5x– y 2+ + 0=

Sketch the graphs of the following linear functions.
(a) (b) (c)f x( ) 2x 1+= y 3 1

2---x–= 4x 2y– 5=
E 2.15XAMPLE

1

–0.5

y

x

S
o
l
u
t
i
o
n

f x( ) 2x 1+=

f x( ) 0=
2x 1+ 0 2x⇔ 1 x⇔– 0.5–= = =
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(b) The function  represents a straight line

with a gradient of  and a y–intercept of 3.
i.e., the graph will cut the y–axis at the point (0, 3).
The x–intercept is obtained by solving :

.

(c) We first rewrite the equation :
.

So, we have a straight line with gradient 2 and
y–intercept at –2.5.
The x–intercept is obtained by solving .
Using the original equation we have

Geometrical interpretation of solving equations

It is interesting to note that although we have been solving equations like , we had 
not provided (apart from using the real number line) a geometrical representation corresponding to 
the equation. We can now provide such an interpretation.

Solving  for x, is the same as considering
the function  and then asking the question:
“When will the straight line  have a y–value of 7”. 
Or, 
“When will the straight line  meet the straight line y = 7”.

In general we have the following geometrical interpretation for any equation.

Note that although with linear equations there will only be one solution, for non-linear functions 
there may very well be more than one solution.

We complete this section by providing a summary of other properties of straight lines:

y

x

3

6O

y 3 1
2---x–=

1
2---–

y 0=
3 1

2---x– 0 1
2---– x⇔ 3 x⇔– 6= = =

y

x

-2.5

1.25
O

4x 2y– 5=
4x 2y– 5 2y⇔ 4x 5 y⇔– 2x 5

2---–= = =

y 0=

4x 2 0( )– 5 x⇔ 5
4--- 1.25= = =

2x 1+ 7=

y

xO

7
y 2x 1+=
y = 7

?

2x 1+ 7=
f x( ) 2x 1+=

y 2x 1+=

y 2x 1+=

Solving  for x is equivalent to 
finding the x–value where the graphs of 

 and y = k intersect.

f x( ) k=

y f x( )=
y = k

y

x

y f x( )=

a                 b
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Properties of straight lines

1. Gradient of a line 
The gradient, m, of the line through two points 

and  is given by  or 

From this we can obtain the point–gradient form of a line. 
That is, if (x, y) is any point on a straight line having a gradient m, and  is another fixed 
point on that line then the equation of that line is given by

2. Parallel lines
The straight line  with gradient  is parallel to the 
straight line  with gradient  if and only if .

That is, 

Notice that if the two lines are parallel, they also make equal angles 
with the x–axis.

3. Perpendicular lines

The straight line  with gradient  is perpendicular  to the
straight line  with gradient  if and only if . 

That is, .

The gradient of the line  is found by rearranging to the form  to get: 
. The gradient is 2 and so all the lines parallel to this will also have gradient 2. The 

equation of the required line is . The value of the constant c can be found by using the 
fact that the line passes through the point (–1,3).
That is, 
Therefore the equation of the straight line is .

x1 y1,( )

x2 y2,( )
Rise y2 y1–=

Run x2 x1–=
x

y
x1 y1,( )

x2 y2,( )   m y2 y1–
x2 x1–----------------  =   m Rise

Run----------  =

x1 y1,( )

  y y1– m x x1–( )  =

x

y

m1 m2=

l1
l2

θ θ

l1 m1
l2 m2 m1 m2=
  l1  //  l2  iff  m1 m2=

x

y l1

l2

90˚

l1 m1
l2 m2 m1 m2× 1–=

l1 l2  iff  m⊥ 1 m2× 1  or  m1– 1
m2
------  –= =

Find the equation of the line that passes through the point (–1,3) and is 
parallel to the line with equation .2x y– 7+ 0=

E 2.16XAMPLE
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2x y– 7+ 0= y mx c+=
y 2x 7+=

y 2x c+=

y 2x c 3 2 1– c+× c⇔=∴+ 5= =
y 2x 5+=

Find the equation of the line which passes through the point (–1,4) and 
which is perpendicular to the line with equation .2x 5y 2+ + 0=

E 2.17XAMPLE
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The gradient form of  is .

So the gradient is . The gradient of all lines perpendicular to this line is found using the fact 

that the product of the gradients of perpendicular lines is –1: .

Then, the equation of the line is . The constant c is found in the same way as the 

previous example: Using the point (–1, 4) we have . 

Therefore the equation of the straight line is .

1. Sketch the graph of the following straight lines.
(i) (ii) (iii)
(iv) (v) (vi)
(vii) (viii) (ix)
(x) (xi) (xii)

(xiii) (xiv) (xv)

2. Find the gradient of the line joining the points
(a) (3, 2) and (5, 6) (b) (4, 5) and (6, 11) (c) (–1, 3) and (2, 8)

3. Use the gradient–point method to find the equation of the straight line if
(a) it passes through the point (1, 1) and has a gradient of 2.
(b) it passes through the point (–2, 3) and has a gradient of 3.
(c) it passes through the point (3, –4) and has a gradient of –1.

4. Find the gradient of the straight line that is perpendicular to the straight line with
gradient equal to
(a)  2. (b)  – 3. (c) . (d)

5. Find the equation of the straight line that passes through the origin and the point (2,4).

6. Find the equation of the straight line that passes through the points (–1,2) and (0,1).

7. A straight line passes through the point (4,3) and is perpendicular to the line joining the
points (–1,3) and (1,–1). Find the equation of this line.

S
o
l
u
t
i
o
n

2x 5y 2+ + 0= 5y 2x– 2 y⇒– 2
5---– x

2
5---–= =

2
5---–

2
5---–  m 1 m⇒– 5

2--- 2.5= = =

y 5
2---x c+=

4 5
2--- 1– c c⇔+× 6.5= =

y 5
2---x 612---+=

EXERCISES 2.3.1

y x 1+= f x( ) x 2–= y 2x 3–=
f x( ) 2 3x–= y x 1+

2------------= f x( ) 3 4x+=
x f x( )+ 3= x 2y+ 4= x 3y– 6=
x
2---
y
5---+ 1= x y3---– 1= 2x

5------ 3y– 2=

x 5y
4------+ 1–= 4 t+

2----------- q= x 4y+ 2 x–=

2
3---–

5
4---
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8. The lines  and  are perpendicular. Find the value of p.

9. Find equations for each of the following lines.

10. Sketch the graph of the following functions.
(a) , a < 0, b > 0 (b)
(c) (d)

2.3.2 SIMULTANEOUS LINEAR EQUATIONS IN TWO
        UNKNOWNS

Pairs of simultaneous equations in two unknowns may be solved in two ways, either 
algebraically or graphically. To solve means to find where the two straight lines intersect once 
they have been sketched. So, we are looking for the point of intersection.

Method 1: Graphical

We sketch both lines on the same set of axes:

Reading off the grid we can see that the straight lines
meet at the point with coordinates (2, 5).

So, the solution to the given system of equations is
x = 2 and y = 5.

The graphical approach has a disadvantage. Sometimes it can only provide an approximate 
answer. This depends on the accuracy of the sketch or simply on the equations, for example, 
sketching the pair of straight lines with equations  and  can only 
result in an approximate solution.

Then there is the graphics calculator. There are a number of ways that the graphics calculator can 
be used. Using the TI–83 we can make use of the TRACE function or the intersection option 

px 4y 2–+ 0= 2x y– p+ 0=

x

y
(2,5)

x

y

x

y

x

y
3

2
(–3, –3)

(3, 2)
(–1, 3)

(2, –3)

(a) (b) (c) (d)

f x( ) ax b–= f x( ) a2x b b 0 a 0≠,<,+=
f x( ) a

a 1+------------x a a 0>,–= f x( ) 2a 1
a---x a 0>,+=

Solve the system of linear equations  and .y x– 7+= y 2x 1+=E 2.18XAMPLE

1   2  3   4   5  6  7   8

7
6
5
4
3
2
1

y

x

S
o
l
u
t
i
o
n

y 2x 1–= y x– 3+=
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under the CALC menu. We solve the previous problem using the intersection option from the 
CALC menu.

Step 1: Enter both equations in the required form, i.e., y =  . . .
Step 2: Choose an appropriate window setting, in this case we have [–2,8] by [–1,8].
Step 3: Sketch the straight lines using the GRAPH key.
Step 4: Call up the CALC menu (i.e., press 2nd TRACE) and choose option 5: intersect.
Step 5: 5.1 Move the cursor to where the lines intersect and press ENTER – this

confirms that you have selected your first equation.
5.2 Press ENTER again, this confirms that you are using the second equation.
5.3 Because you have already placed your cursor near the point of intersection,

when prompted to Guess? simple press ENTER.
Step 1: Step 2: Step 3:

Step 4: Step 5.1: Step 5.2:

Step 5.3:

This particular example worked out rather neatly, however, the solution of the pairs of equations  
 and  would produce the following result:

The exact solution is in fact .

Of course, depending on the application, an approximate solution might suffice. However, at this 
stage we are interested in the mathematical process. Because we cannot always obtain an exact 
answer using a graphical means we need to consider an algebraic approach.

The final screen shows the 
solution as x = 2 and y = 5.

y 2x 1–= y x– 3+=

i.e., we only obtain an 
approximate solution!

x 6 2 3– 1 y,–+ 2 3 1 6– 2–+= =
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Method 2: Algebraic

There are two possible approaches when dealing with simultaneous equations algebraically. They 
are the process of a. Elimination

b. Substitution

Elimination Method

The key step in using the elimination method is to obtain, for one of the variables (in both 
equations), coefficients that are the same (or only differ in sign). Then:

As it is easier to add than subtract, we try to eliminate the variable which differs in sign. In this 
case the variable ‘y’ is appropriate. However, the coefficients still need to be manipulated. We 
label the equations as follows:

 – (1)
 – (2)

3×(1):  – (3)
2×(2):  – (4)

Adding (3) + (4):

Substituting into (1) we can now obtain the y–value: .
Therefore, the solution is x = –3, y = 2.

Once you have found the solution, always check with one of the original equations.
Using equation (2) we have: L.H.S =  = R.H.S.

Note that we could also have multiplied equation (1) by 2 and then subtracted the result from 
equation (2). Either way, we have the same answer.

Substitution Method

The substitution method relies on making one of the variables the subject of one of the equations. 
Then we substitute this equation for its counterpart in the other equation. This will then produce 
a new equation that involves only one unknown. We can solve for this unknown and then 
substitute its value back into the first equation. This will then provide a solution pair.

if the coefficients are the same, you subtract one equation from the other – this will eliminate 
one of the variables – leaving you with only one unknown.

if the coefficients only differ in sign, you add the two equations – this will eliminate one of 
the variables – leaving you with only one unknown.

However, 

Use the elimination method to solve x 2y– 7–=
2x 3y+ 0=

E 2.19XAMPLE

S
o
l
u
t
i
o
n

x 2y– 7–=
2x 3y+ 0=
3x 6y– 21–=
4x 6y+ 0=
7x 0+ 21–=
x⇔ 3–=

3– 2y– 7 2y–⇔– 4 y⇔– 2= = =

2 3– 3 2×+× 0=
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Label the equations as follows:  – (1)
 – (2)

From equation (1) we have that  – (3)
Substituting (3) into (2) we have:

 

Substituting x = 1 into equation (3) we have: .
Therefore, the solution is given by x = 1 and y = 1.
Check: Using equation (2) we have: L.H.S =  = R.H.S

Not all simultaneous equations have unique solutions. Some pairs of equations have no solutions 
while others have infinite solution sets. You will need to be able to recognise the ‘problem’ in 
the processes of both algebraic and graphical solutions when dealing with such equations.

The following examples illustrate these possibilities:

(a) Algebraic solution: Graphical Solution:
Label the equations as follows:

 – (1)
 – (2)

3×(1):  – (3)
2×(2):  – (4)

In this case, we have the same equation. That is, the straight lines are coincident.

If we were to ‘blindly’ continue with the solution process, we would have:
3×(1) – 2×(2): 0 = 0!

The algebraic method produces an equation that is always true, i.e., zero will always equal zero. 
This means that any pair of numbers that satisfy either equation will satisfy both and are, 
therefore, solutions to the problem. Examples of solutions are: x = 4, y = 0, x = 1, y = 1 & x = 7, 
y = –1. In this case we say that there is an infinite number of solutions.

Graphically, the two equations produce the same line. The coordinates of any point on this line 
will be solutions to both equations.

Use the substitution method to solve 5x y– 4=
x 3y+ 4=

E 2.20XAMPLE

S
o
l
u
t
i
o
n

5x y– 4=
x 3y+ 4=
y 5x 4–=
x 3 5x 4–( )+ 4=

16x 12–⇔ 4=
16x⇔ 16=
x⇔ 1=
y 5 1 4–× 1= =

1 3 1×+ 4=

Solve: (a) (b)2x 6y+ 8=
3x 9y+ 12=

2x 6y+ 8=
3x 9y+ 15=

E 2.21XAMPLE

S
o
l
u
t
i
o
n

x

y

4

4
3---

2x 6y+ 8=
3x 9y+ 12=
6x 18y+ 24=
6x 18y+ 24=
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(a) Algebraic solution: Graphical Solution:
Label the equations as follows:

 – (1)
 – (2)

3×(1):  – (3)
2×(2):  – (4)

(4) – (3): 0 = 6

The algebraic method produces an equation that is never true. This means that there are no 
solutions to the equations. 

Graphically, the two lines are parallel and produce no points of intersection.

There is a matrix method for solving systems of simultaneous equations that will be discussed in 
Chapter 25. This method is particularly useful when using graphics calculators which can perform 
the matrix arithmetic necessary to solve simultaneous equations. 

1. Solve these simultaneous equations, giving exact answers.
(i) (ii) (iii) 

(iv) (v) (vi)

2. Solve these simultaneous equations, giving fractional answers where appropriate.
(i) (ii) (iii) 

(iv) (v) (vi)

3. Find the values of m such that these equations have no solutions.
(i) (ii) (iii)

4. Find the values of m and a such that these equations have infinite solution sets.
(i) (ii) (iii)

x

y

4

4
3---

5

5
3---

2x 6y+ 8=
3x 9y+ 15=
6x 18y+ 24=
6x 18y+ 30=

EXERCISES 2.3.2

3x 2y– 1–=
5x 2y+ 9=

3x 5y+ 34=
3x 7y+ 44=

2x 4y+ 6=
4x 3y– 10–=

3x 2y+ 2=
2x 6y– 6–=

5x 4y+ 22–=
3x y– 3–=

5x 9y– 34–=
2x 3y+ 7–=

3x y– 2=
5x 2y+ 9=

4x 2y+ 3=
x 3y– 0=

3x– y+ 0=
2x 4y– 0=

x
2--- 3y– 4=

4x 3y
2------+ 1–=

5x 2y
3------+ 4–=

4x y+ 2=

3x
5------ 4y– 1

2---=

x 2y– 1
3---=

3x my– 4=
x y+ 12=

5x y+ 12=
mx y– 2–=

4x 2y– 12=
3x my+ 2=

4x my+ a=
2x y+ 4=

5x 2y+ 12=
mx 4y+ a=

3x my+ a=
2x 4y– 6=
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5. Find the solution sets of the following simultaneous equations, solving for x and y.
(a) (b) (c)

(d) (e) (f)

2.3.3 SIMULTANEOUS LINEAR EQUATIONS IN THREE
        UNKNOWNS

So far we have looked at linear equation in two unknowns. However, this can be extended to 
linear equations in three unknowns. Equations such as these, involving the variables x, y and z 
take on the general form  where a, b, c and k are real constants.
Just as for the case with two unknowns, where we required two equations to (hopefully) obtain a 
unique solution to the system of simultaneous equations, when dealing with three unknowns we 
will require a minimum of three equations to (hopefully) obtain a unique solution.
The solution process for a system of linear equations in three unknowns will require, primarily, 
the use of the elimination method. The method usually involves the reduction of a system of three 
equations in three unknowns to one of two equations in two unknowns. This will then enable the 
use of the methods already discussed to solve the ‘reduced’ system. Once two of the unknowns 
have been determined from this ‘reduced’ system, we substitute back into one of the original three 
equations to solve for the third unknown.

We label the equations as follows;  – (1)
 – (2)
 – (3)

Step 1: Reduce the system to one involving two equations and two unknowns.
We first eliminate the variable z:

(2) – (1):  – (4)
3×(2) – (3):  – (5)

Step 2: Solve the reduced system of equations.
(4) + (5):       

  
Substitute into (5): .
Step 3: Solve for the third unknown.

Subtituting x = 2 and y = 3 into (1):

Therefore the solution is given by x = 2, y = 3 and z = –2.
Check: Using equation (2): L.H.S. = 2 + 3 –3×–2 = 11 = R.H.S

bx y+ a=
ax y– b=

bx y+ a=
ax y+ b=

ax by+ 1=
ax by– 1=

ax y+ ab=
bx y– b2=

ax by+ a b–=
bx ay+ a b–=

ax y+ b=
bx ay+ 2ab a3–=

ax by cz+ + k=

Solve the simultaneous equations 
x 3y z–+ 13=
3x y z–+ 11=
x y 3z–+ 11=

E 2.21XAMPLE

S
o
l
u
t
i
o
n

x 3y z–+ 13=
3x y z–+ 11=
x y 3z–+ 11=

2x 2y– 2–=
8x 2y+ 22=

10x 20=
x⇔ 2=

2 2 2y–× 2 2y–⇔– 6 y⇔– 3= = =

2 3 3 z–×+ 13 z⇔ 2–= =
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We have already seen that linear equations in two unknowns are represented by straight lines on 
the Cartesian axes. The question then becomes, “What do linear equations in three unknowns look 
like?”

Equations of the form  represent a plane in space. To draw such a plane we need 
to set up three mutually perpendicular axes that coincide at some origin O. This is commonly 
drawn with a horizontal x–y plane and the z–axis in the vertical direction:

There are a number of possible combinations for how three planes in space can intersect (or not). 
Labelling the planes as  and  the possible outcomes are shown below.

ax by cz+ + k=

x
y

z
ax by cz+ + k=

O

(2, 3, –2)In Example 2.21 we obtained a unique solution. This means that 
the three planes must have intersected at a unique point. We can 
represent such a solution as shown in the diagram alongside:

α β, γ
All 3 planes parallel Two planes coincide All three planes coincide

Any line of intersection is
parallel to the other two.

Two parallel non-coincident
planes crossed by the third plane

Two parallel coincident planes
crossed by the third plane

All three planes intersect along
a straight line

All three planes intersect
at a unique point

γ

α
β

α

β γ= α β γ= =

β γ=

αγ

α

β

α

β

γ

γ
α

β

γ

α

β
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We label the equations as follows;  – (1)
 – (2)

 – (3)
We eliminate x using equations (1) and (2):

(2) – 3×(1):
 – (4)

We are now left with equations (3) and (4). However, these two equations are identical. 

To obtain the solution set to this problem we introduce a parameter, we let z be any arbitrary 
value, say z = k where k is some real number. 
Then, substituting into equation (4), we have:

.
Next, we substitute into (1) so that .

Therefore, the solution is given by, .

Notice the nature of the solution, each of the variables is expressed as a linear function of k. This 
means that we have a situation where the three original planes meet along a straight line. 

1. Solve the simultaneous equations

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Solve the simultaneous equations 
x 2y+ 10=

3x 2y 4z–+ 18=
y z+ 3=

E 2.22XAMPLE

S
o
l
u
t
i
o
n

x 2y+ 10=
3x 2y 4z–+ 18=
y z+ 3=

4y– 4z– 12–=
y z+⇔ 3=

y k+ 3 y⇒ 3 k–= =
x 2 3 k–( )+ 10 x⇒ 4 2k+= =

x 4 2k y,+ 3 k z,– k= = =

EXERCISES 2.3.3

6x 4y z–+ 3=
x 2y 4z+ + 2–=

5x 4y+ 0=

x y z+ + 2=
4x y+ 4=

x– 3y 2z+ + 8=
4x 9y 13z+ + 3=
x– 3y 24z+ + 17=

2x 6y 14z+ + 6=

x 2y– 3z– 3=
x y 2z–+ 7=

2x 3y– 2z– 0=
x y– z– 2=

3x 3y 7z–+ 7=
x 2y 3z–+ 3=

x 2y– 1–=
x– y– 3z+ 1=
y z– 0=

x y z+ + 1=
x y– z+ 3=

4x 2y z+ + 6=

2x– y 2z–+ 5=
x 4z+ 1=

x y 10z+ + 10=
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2.4.1 QUADRATIC EQUATION

A quadratic equation in the variable x (say) takes on the form  where a, b 
and c are real constants. The equation is a quadratic because x is raised to the power of two. 
The solution(s) to such equations can be obtained in one of two ways.

Method 1: Factorise the quadratic and use the Null Factor Law.

Method 2: Use the quadratic formula.

We look at each of these methods.

Method 1   Factorisation and the Null Factor Law

First of all we must have one side of the equation as 0, otherwise the Null Factor Law cannot be 
used. Next, when factorising the quadratic, you will need to rely on your ability to recognise the 
form of the quadratic and hence which approach to use. A summary of the factorisation process for 
quadratics is shown below:

Note that sometimes you might need to use a perfect square approach to part of the quadratic and 
then complete the factorisation process by using the difference of two squares.

In this instance it is not obvious what the factors are and so trial and error is not appropriate. 
However, we notice that  can be ‘broken up’ into .
That is, part of the quadratic has been expressed as a perfect square, so that

 = 
Then, we are left with a difference of perfect squares:  = .
Therefore, .

QUADRATICS2.4

ax2 bx c+ + 0=

Quadratic expression
x2 bx c+ +

Case 1: a = 1
Trial and error:
x α+( ) x β+( )

Perfect square:
 or x α+( )2 x α–( )2

Difference of two squares:
x α+( ) x α–( )

x2 12x 32+ + x 4+( ) x 8+( )=
x2 12x 28–+ x 14+( ) x 2–( )=

x2 6x 9+ + x 3+( )2=
x2 4x– 4+ x 2–( )2=

x2 16– x 4+( ) x 4–( )=
x2 3– x 3–( ) x 3+( )=

Example

Solve the quadratic x2 6x 7+ + 0=E 2.23XAMPLE

S
o
l
u
t
i
o
n

x2 6x 7+ + x2 6x 9 2–+ +

x2 6x 9 2–+ + x 3+( )2 2–
x 3+( )2 2– x 3 2+ +( ) x 3 2–+( )

x2 6x 7+ + 0 x 3 2+ +( ) x 3 2–+( )⇔ 0 x⇔ 3– 2±= = =
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That is, the methods for the case a ≠ 1 are the same as for when a = 1, they require a little more 
mental arithmetic to ‘juggle’ the correct numbers. Sometimes they can get messy, as the next 
example shows.

None of the above methods provides a quick solution, so, as for Example 2.23, we will combine 
the methods of perfect squares with the difference of two squares:

 [add and subtract ]

       = 
Part of the quadratic is now a perfect square. Next, we use the difference of perfect squares:

 

Therefore, .
Now, that was quite a bit of work!

Of course, coming up with the ‘magic’ number,  did make life a little easier. The rest was 

simply being careful with the arithmetic. So, how did we pull  out of the hat? Well, once we 
have made the coefficient of the  one, i.e., by factorising the ‘3’ out, we look at the coefficient 
of the x term. Then we halve it, square the result and add it. i.e., .
Then, so that the equation is unaltered, we subtract this result – but be careful, do not forget to 
multiply it by the factor ‘3’ at the front of the brackets. The rest then follows.

The only way to be proficient with these methods is practice, practice and more practice. 
However, there is a short cut to solving quadratic equations. We look at this next.

Quadratic expression
ax2 bx c+ +

Case 2: a ≠ 1
Trial and error:

Perfect square:

Difference of two squares:

2x2 3x 1+ + 2x 1+( ) x 1+( )=

4x2 12x 9+ + 2x 3+( )2=

9x2 25– 3x 5+( ) 3x 5–( )=

Example

Solve the quadratic .3x2 2x 2–+ 0=E 2.24XAMPLE

S
o
l
u
t
i
o
n

3x2 2x 2–+ 3 x2 2
3---x+   2– 3 x2 2

3---x
1
9---+ +   3 1

9--- 2–×–= = 3
9---

3 x 1
3---+   2 7

3---–

3 x 1
3---+   2 7

3---–=

3 x 1
3---+   2 7

9---–=

3 x 1
3---

7
3-------–+   x 1

3---
7
3-------+ +  =

3x2 2x 2–+ 0 3 x 1
3---

7
3-------–+   x 1

3---
7
3-------+ +  ⇔ 0 x⇔ 1

3---– 7
3-------±= = =

1
9---

1
9---

x2
1
2---

2
3---× 1

3---
1
3---   2→ 1

9---= =
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Method 2   Quadratic Formula and the Discriminant

A formula that allows us to solve any quadratic equation  (if real solutions 
exist), is given by . So that obtaining solutions requires that we make the 
appropriate substitution for a, b and c. 

To derive this expression we proceed in exactly the same way as we did in Example 2.24. We 
show some of the key steps in obtaining this result and leave the proof for you to complete.

   

Therefore, .

The Discriminant

Closer inspection of this formula indicates that much can be deduced from the term under the 
square root sign, i.e., . The expression  is known as the discriminant and is 
often represented by the delta symbol .

(a)       For the equation , we
            have a = 1, b = –1 & c = –4, 

           

(b)      Similarly, if , then,
           
           so that a = 2, b = 1 and c = –4, so that

           

ax2 bx c+ + 0=
x b b2 4ac–±–

2a-----------------------------------=

ax2 bx c+ + a x2 ba---x+   c+ a x2 ba---x
b2
4a2--------+ +   a b24a2--------×– c+= =

a x b2a------+   2 a b24a2-------- ca---–  –=

a x b2a------+   2 b2 4ac–
4a2--------------------  –=

a x b b2 4ac–+
2a----------------------------------+   x b b2 4ac––

2a----------------------------------+  =

ax2 bx c+ + 0 x b b2 4ac–±–
2a-----------------------------------=⇔=

Use the formula to solve the quadratic equations:
(a) (b)x2 x– 4– 0= 2x2 4 x–=

E 2.25XAMPLE

S
o
l
u
t
i
o
n

x2 x– 4– 0=

x b b2 4ac–±–
2a-----------------------------------=

1 1–( )2 4 1 4–××–±
2 1×---------------------------------------------------------=

1 17±
2-------------------=

2x2 4 x–=
2x2 x 4–+ 0=

x b b2 4ac–±–
2a-----------------------------------=

1– 1–( )2 4 2 4–××–±
2 2×--------------------------------------------------------------=

1– 33±
4------------------------=

b2 4ac– b2 4ac–
∆ b2 4ac–=
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In particular, there are three cases to address:
Case 1.      > 0
Case 2.      = 0
Case 3.      < 0

Case 1.  > 0
In this case, the expression  produces two real solutions.

This is because taking the square root of a positive number will produce another positive
real number. This in turn implies that there will be one solution corresponding to the ‘+’
term and one solution corresponding to the ‘–’ term.
That is, say that , where  is a real number. We then have that 

, i.e., , giving two distinct real solutions.

Case 2.  = 0
In this case, the expression  produces only one real solution.

This is because taking the square root of zero gives zero. This in turn implies that there
 will be only one solution because adding and subtracting ‘0’ to the ‘–b’ term in the

numerator will not alter the answer.
That is, if , we then have that  meaning that we have 
only one real solution (or two repeated solutions).

Case 3.  < 0
In this case, the expression  produces no real solution.

This is because the square root of a negative number will not produce a real number.
This in turn implies that the formula cannot be utilised (if we are dealing with quadratic
equations under the real numbers).

Summary

Discriminant Number of solutions for

  Can be factorised to obtain 2 real and unique solutions.
  Can be factorised to obtain 1 real (repeated) solution.
  Cannot be factorised and so no real solutions exist.

b2 4ac–
b2 4ac–
b2 4ac–

b2 4ac–
x b b2 4ac–±–

2a-----------------------------------=

b2 4ac– K= K
x b K±–

2a--------------= x1 b K+–
2a---------------- x2, b K––

2a----------------= =

b2 4ac–
x b b2 4ac–±–

2a-----------------------------------=

b2 4ac– 0= x b 0±–
2a------------- b

2a------–= =

b2 4ac–
x b b2 4ac–±–

2a-----------------------------------=

∆ b2 4ac–= ax2 bx c+ + 0=
∆ 0>
∆ 0=
∆ 0<
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(a) For one real solution to exist, we must have that  = 0. 
For this quadratic we have that a = 2, b = m and c = 1. 
Therefore, we need that 

                  

                 
(b) For two real solutions, we must have that  > 0. 

For this quadratic we have that a = 1, b = 4 and c = k. 
Therefore, we need that 

       
             
                 .

i.e., the quadratic  will have two real solutions as long as k < 4.

First we find an expression for the discriminant in terms of k:
Using the values a = 1, b = k + 3 and c = k + 6, we have: 

                    
(a) For the equation to have 1 solution, the discriminant, , thus,

That is, the solution set is {k : k = –5, 3}.
(b) For the equation to have 2 solutions, the discriminant, , thus,

  Using a sign diagram for k:
That is, the solution set is .

(c) For the equation to have no real solutions, the discriminant, , thus,
            Using a sign diagam for k:

That is, the solution set is .

(a) Find the value(s) of m for which the equation  has one real solution.
(b) Find the value(s) of k for which the equation  has two real solutions.

2x2 mx 1+ + 0=
x2 4x k+ + 0=

E 2.26XAMPLE

S
o
l
u
t
i
o
n

∆ b2 4ac–=

m2 4 2 1××– 0=
m2 8–⇔ 0=

m 8–( ) m 8+( )⇔ 0=
 m∴ 2 2 or m 2 2–= =

∆ b2 4ac–=

42 4 1 k××– 0>
16 4k 0>–⇔

16 4k>⇔
4 k>⇔

x2 4x k+ + 0=

Find k if the equation  has
(a) 1 root (b) 2 real roots (c) no real root.

x2 k 3+( )x– k 6+( )+ 0=
E 2.27XAMPLE

S
o
l
u
t
i
o
n

∆ b2 4ac– k 3+( )2 4 1 k 6+( )××–= =
k2 2k 15–+=
k 5+( ) k 3–( )=

∆ 0=
k 5+( ) k 3–( ) 0 k⇔ 5  or  k,– 3= = =

∆ 0>
–5                   3 k

k 5+( ) k 3–( ) 0 k 5  or  k 3>–<⇔>
k  : k 5–<{ } k  : k 3>{ }∪

∆ 0<
–5                   3 k

k 5+( ) k 3–( ) 0 5 k 3< <–⇔<
k  : 5 k 3< <–{ }
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1. By using a factorisation process, solve for the given variable.
(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) (j)

2. Without using the quadratic formula, solve for the given variable.
(a) (b) (c)

(d) (e) (f)

3. By completing the square, solve for the given variable.
(a) (b) (c)
(d) (e) (f)

4. Use the quadratic formula to solve these equations.
(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) (j)
(k) (l)
(m) (n)
(o) (p)

5. For what value(s) of p does the equation  have
(a) no real solutions
(b) one real solution
(c) two real solutions.

6. Find the values of m for which the quadratic  has
(a)   one real solution
(b)   two real solutions
(c)   no real solutions.

7. Find the values of m for which the quadratic  has
(a)   one real solution
(b)   two real solutions
(c)   no real solutions.

EXERCISES 2.4.1

x2 10x 25+ + 0= x2 10x 24+– 0=
3x2 9x+ 0= x2 4x– 3+ 0=
3 u–( ) u 6+( ) 0= 3x2 x 10–+ 0=
3v2 12v– 12+ 0= y y 3–( ) 18=
x 3+( ) x 2+( ) 12= 2a 1–( ) a 1–( ) 1=

u 1
u---+ 2–= x 2+ 35

x------= 5x 13– 6
x---=

x
2---

1
x 1+------------– 0= y 1+ 4

y 1+------------= v 20
v------+ 9=

x2 2x+ 5= x2 4+ 6x= x2 2x– 4=
4x2 x+ 2= 2y2 9y 1–= 3a2 a– 7=

x2 3x– 7– 0= x2 5x– 2=
x2 3x– 6– 0= x2 7x 2+=
x x 7+( ) 4= x2 2x 8–+ 0=
x2 2x 7–+ 0= x2 5x 7–+ 0=
x2 3x– 7– 0= x2 3x– 9+ 0=
x2 9+ 8x= 4x2 8x– 9+ 0=
4x2 8x 9+= 5x2 6x– 7– 0=
5x2 12x– 1+ 0= 7x2 12x– 1+ 0=

x2 px 1+ + 0=

x2 2x m+ + 0=

x2 mx 2+ + 0=
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8. Find the values of k for which the quadratic  has
(a)   one real solution
(b)   two real solutions
(c)   no real solutions.

9. Consider the equation . Prove that this equation has two real roots.

10. Find the value(s) of p such that the equation  has exactly one real root.

11. Prove that the equation  has two real solutions for all non-zero real values
 of k.

2.4.2 QUADRATIC FUNCTION

A quadratic function has the general form . 
All quadratic functions have parabolic graphs and have a vertical axis of symmetry.

If a > 0, the parabola is concave up:

If a < 0 the parabola is concave down:

General Properties of the graph of 

1. y–intercept
This occurs when x = 0, so that .
That is, the curve passes through the point (0, c)

2. x–intercept(s)
This occurs where .
Therefore we need to solve .
To solve we either factorise and solve or
use the quadratic formula, which would provide
the solution(s) .

3. Axis of symmetry
This occurs at .

4. Vertex (turning point)
The vertex occurs when . Then, to find the y–value, find 

2x2 kx 9+ + 0=

x2 2x+ 7=

px2 px– 1+ 0=

kx2 3x+ k=

f x( ) ax2 bxc a 0  and  a b c   ∈, ,≠,+=

f x( ) ax2 bx c a 0≠,+ +=

y f 0( ) a 0( )2 b 0( ) c+ + c= = =

(0, c)

y

x

f x( ) ax2 bx c a 0>,+ +=

x b
2a------–=

b
2a------ f

b
2a------–  ,–  

x b b2 4ac–+–
2a--------------------------------------=

x b b2 4ac–––
2a--------------------------------------=

axis of symmetry

Vertex

f x( ) 0=
ax2 bx c+ + 0=

x b b2 4ac–±–
2a-----------------------------------=

x b
2a------–=

x b
2a------–= f b2a------–  
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Geometrical Interpretation and The Discriminant

Just as it was the case for linear functions, solving the quadratic  is 
geometrically equivalent to finding where the parabola with function  meets 
the graph (horizontal straight line) y = k . Then, when k = 0, we are finding where the parabola 
meets the line y = 0, i.e., we are finding the x–intercept(s). Based on our results of the 
discriminant about the number of solutions to the equation , we can extend 
these results to the following:

Sketching the graph of a quadratic function

Two methods for sketching the graph of  are:

Method 1: The intercept method
i.e., expressing  in the form 

This involves 
Step 1 Finding the x–intercepts [by solving ]
Step 2 Finding the y–intercept [finding ]
Step 3 Sketch parabola passing through the three points

Method 2: The turning-point form
i.e., expressing  in the form 

This involves
Step 1 Expressing  in the form 

[by completing the square]
Step 2 Use the turning point (h, k)
Step 3 Finding the y–intercept [finding ]
Step 4 Sketch the parabola passing through the two points

If , then
there are two x–intercepts.

If , then
there is one x–intercept.

If , then
there are no x–intercepts.

ax2 bx c+ + k=
f x( ) ax2 bx+ c+=

ax2 bx c+ + 0=

The number of x–intercepts for the 
function f x( ) ax2 bx+ c+=

The number of solutions to the 
equation ax2 bx+ c+ 0==

∆ b2 4ac 0>–= ∆ b2 4ac– 0= = ∆ b2 4ac 0<–=

x
a > 0

a < 0

∆ 0>

x

a > 0

a < 0∆ 0=
x

a > 0

a < 0∆ 0<

f x( ) ax2 bx c a 0≠,+ +=

f x( ) ax2 bx c a 0≠,+ += f x( ) a x p–( ) x q–( )=

ax2 bx c+ + 0=
f 0( )

f x( ) ax2 bx c a 0≠,+ += f x( ) a x h–( )2 k+=

f x( ) ax2 bx c a 0≠,+ += a x h–( )2 k+

f 0( )
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(a) i. For the intercept method we start by factorising the quadratic:
 = .

Then, for the x–intercepts we have:
 or x = 4

Next, the y–intercept:
.

Summary: Parabola passes through (2, 0), (4, 0) and (0, 8).

ii. We first complete the square:

Therefore, the parabola has a turning point at (3, –1)
Then find the y–intercept:

Summary: Parabola passes through (3, –1) and (0, 8).

(b) i. For the intercept method we start by factorising the quadratic:
 =  [completing the square]

     =  [next use difference of two squares]
     = .

Then, for the x–intercepts we have:
 = 0

 or 
Note: It would have been quicker to find the intercepts if we had used the quadratic formula!

Sketch the graph of 
(a) (b)  using
i. the intercept method ii. the turning point method

f x( ) x2 6x– 8+= f x( ) 3x2 12x 4+ +=
E 2.27XAMPLE

S
o
l
u
t
i
o
n

f x( ) x2 6x– 8+= x 4–( ) x 2–( )

f x( ) 0 x 4–( ) x 2–( )⇔ 0 x⇔ 2= = =

x 0 f 0( )⇒ 02 6 0( )– 8+ 8= = =

2        4

8

y

x

Note, the axis of symmetry is the midpoint of the x–intercepts, 
i.e., . Or use x 2 4+

2------------
6
2--- 3= = = x b

2a------– 6–
2------– 3= = =

f x( ) x2 6x– 8+ x2 6x– 9+( ) 1– x 3–( )2 1–= = =

x 0 f 0( )⇒ 02 6 0( )– 8+ 8= = =

8

y

x
(3, –1)

Notice that both graphs are the same but display different information. Each 
display has its strengths and weaknesses – it depends on what information is 
important for the question. Of course, including all the information will rid 
us of any problems.

f x( ) 3x2 12x 4+ += 3 x2 4x 4+ +( ) 12– 4+
3 x 2+( )2 8–
3 x 2+( ) 2 2–[ ] 3 x 2+( ) 2 2+[ ]

f x( ) 0 3 x 2+( ) 2 2–[ ] 3 x 2+( ) 2 2+[ ]⇒=
x∴ 2– 2 2

3---+= x 2– 2 2
3---–=
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Next, the y–intercept:
 = 4.

Summary: Parabola passes through ,  and (0, 4).

ii. We first complete the square:
  =  [completing the square]

     =  
Therefore, the parabola has a turning point at (–2, –8)
Then find the y–intercept:

 = 4.
Summary: Parabola passes through (–2, –8) and (0, 4).

We will need to use the relationship between the number of x–intercepts of the function
 and the number of solutions to the equation . To do

this we first find the discriminant: .

(a) If the function cuts twice, then .

(b) If the function touches the x–axis, then we have repeated solutions (or roots), in this case
we have only one solution, so .

(c) If the function has no x–intercepts, then .

So far we have sketched a graph from a given function, but what about finding the equation of a 
given graph?

x 0 f 0( )⇒ 3 0( )2 12 0( )+ 4= = =
2– 2 2

3--- 0,+   2– 2 2
3--- 0,–  

y

x

4

2– 2 2
3---– 2– 2 2

3---+

f x( ) 3x2 12x 4+ += 3 x2 4x 4+ +( ) 12– 4+
3 x 2+( )2 8–

x 0 f 0( )⇒ 3 0( )2 12 0( )+ 4= = =

y

x

4

(–2, –8)

For what value(s) of k will the function 
(a) cut the x–axis twice  (b)    touch the x–axis (c) have no x–intercepts

f x( ) x2 6x k+ +=E 2.28XAMPLE

S
o
l
u
t
i
o
n

f x( ) x2 6x k+ += x2 6x k+ + 0=
∆ b2 4ac– 6( )2 4 1 k××– 36 4k–= = =

∆ 0 36 4k 0 k 9<⇔>–⇒>

∆ 0 36 4k–⇒ 0 k⇔ 9= = =

∆ 0 36 4k 0 k 9>⇔<–⇒<
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Finding the equation from a graph

If sufficient information is provided on a graph, then it is possible to obtain the equation that 
corresponds to that graph. When dealing with quadratics there are some standard approaches that 
can be used (depending on the information provided).

Note: the process is identical for a downward concave parabola.

Information provided Process
Graph cuts the x–axis at two points:

Use the function 
and then use the point (0, c) to solve for k.

Graph touches the x–axis at x = α:

Use the function 
and then use the point (0, c) to solve for k.

Graph does not meet the x–axis: 

Use the function 
and then use the point (0, c) to solve for k.

Three arbitrary points are given: Use the function 
and then set up and solve the system of 
simultaneous equations by substituting 
each coordinate into the function:

α x

y

β

(0, c) f x( ) k x α–( ) x β–( )=

α x

y
(0, c) f x( ) k x α–( )2=

α β,( )
x

y
(0, c) f x( ) k x α–( )2 β+=

x1 y1,( )
x

y
x3 y4,( )

x2 y2,( )

f x( ) ax2 bx c+ +=

ax12 bx1 c+ + y1=
ax22 bx2 c+ + y2=
ax32 bx3 c+ + y3=

Find the equation defining each of the following graphs.
(a) (b) (c) (d)

x

y

x

y

x

y
4

1                5 x

y
–3

–2
6

(3,2)

(–1, 12) (3, 12)

(2,6)

E 2.29XAMPLE
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(a) Using the form  we have .
Next, when x = 0, y = 4, therefore, .

Therefore, .

(b) Graph touches x–axis at x = –3, therefore use .
As graph passes through (0, –2), we have .

Therefore, .

(c) Graph shows turning point and another point, so use the form .
So we have, .
Then, as graph passes through (0, 6), we have .

Therefore, .

(d) As we are given three arbitrary points, we use the general equation .
From (–1, 12) we have i.e.,  – (1)
From (2, 6) we have  i.e.,  – (2)
From (3, 12) we have i.e.,  – (3)

Solving for a, b and c we have: (2) – (1):  
i.e.,  – (3)

(3) – (2):  – (4)
(4) – (3):

Substitute a = 2 into (3): .
Substitute results into (1): .
Therefore function is 

1. Express the following functions in turning point form and hence sketch their graphs.

(a) (b) (c)
(d) (e) (f)
(g) (h) (i)
(j) (k) (l)

S
o
l
u
t
i
o
n

f x( ) k x α–( ) x β–( )= f x( ) k x 1–( ) x 5–( )=
4 k 0 1–( ) 0 5–( ) 4⇔ 5k k⇔ 4

5---= = =

f x( ) 4
5--- x 1–( ) x 5–( )=

f x( ) k x 3+( )2=
2– k 0 3+( )2 2–⇔ 9k k⇔ 2

9---–= = =

f x( ) 2
9--- x 3+( )2–=

f x( ) k x α–( )2 β+=
f x( ) k x 3–( )2 2+=

6 k 0 3–( )2 2 4⇔+ 9k k⇔ 4
9---= = =

f x( ) 4
9--- x 3–( )2 2+=

f x( ) ax2 bx c+ +=
12 a 1–( )2 b 1–( ) c+ += 12 a b– c+=
6 a 2( )2 b 2( ) c+ += 6 4a 2b c+ +=
12 a 3( )2 b 3( ) c+ += 12 9a 3b c+ +=

6– 3a 3b+=
2– a b+=
6 5a b+=
8 4a a⇔ 2= =

2– 2 b b⇔+ 4–= =
12 2 4–( )– c c⇔+ 6= =

f x( ) 2x2 4x– 6+=

EXERCISES 2.4.2

y x2 2x– 1+= y x2 4x 2+ += y x2 4x– 2+=
y x2 x 1–+= y x2 x– 2–= y x2 3x 1+ +=
y x2– 2x 1+ += y x2– 2x– 2+= y 2x2 2x– 1–=
y 1

2---x2– 3x 2–+= y x2
3-----– x 2–+= y 3x2 2x– 1+=
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2. Find the axial intercepts of these quadratic functions (correct to 2 decimal places) and
hence sketch their graphs.

(a) (b) (c)
(d) (e) (f)
(g) (h) (i)
(j) (k) (l)

3. For the quadratic function , find
(a) the equation of the axis of symmetry.
(b) the coordinates of the vertex.
(c) the i. x–intercept(s) i i. y–intercept.
Hence, sketch the graph of the function.

4. For the quadratic function , find
(a) the equation of the axis of symmetry.
(b) the coordinates of the vertex.
(c) the i. x–intercept(s) ii. y–intercept.
Hence, sketch the graph of the function.

5. For what value(s) of k will the graph of 
(a) touch the x–axis (b) cut the x–axis (c) never meet the x–axis?

6. For what value(s) of k will the graph of 
(a) touch the x–axis (b) cut the x–axis (c) never meet the x–axis?

7. For what value(s) of k will the graph of 
(a) touch the x–axis (b) cut the x–axis (c) never meet the x–axis?

8. Find the equation of the quadratic function with graph
(a) (b) (c) (d)

9. Find the equation of the quadratic function with graph
(a) (b) (c) (d)

y x2 3x 2+ += y x2 x– 6–= y 2x2 5x– 3–=
y x2 4–= y x2 x 5–+= y x– 2 x 6+ +=
y x2– x 1+ += y 2x2– 3x– 5+= y 2x2 5x 3–+=
y x2

3----- 2x– 3+= y x2
2-----– x 4+ += y 3x2 2x– 4–=

f x( ) 2x2 4x– 1+=

f x( ) 7 4x 2x2–+=

y x2 3x– k+=

y kx2 5x 2+ +=

y kx2 2x– k+=

x

y

x

y

x

y
5

2                6 x

y
–4

–6
4

(2,1)

(–1, 16) (3, 16)

(2,7)

x

y

x

y

x

y

(1,2)

x

y

3

(1,3)
(–2,3)

(–2, 8)
(1, 9)

(2,0)
6

(–5,10)
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2.4.3 QUADRATIC INEQUALITIES

Quadratic inequations arise from replacing the ‘=’ sign in a quadratic by an inequality sign. 
Solving inequations can be carried out in two ways, either algebraically or graphically.
Method 1 Algebraic Method

This method relies on factorising the quadratic and then using the fact that when
two terms, a and b are multiplied, the following rules apply:

1.

2.

The same rules apply if we replace ‘ > ’ with ‘ ≥ ’  and ‘ < ’  with ‘ ≤ ’ 

(a) We start by factorising the quadratic:
Then, 
Which means either x – 2 > 0 and x – 4 > 0 i.e., x > 2 and  – (1)

or x – 2 < 0 and x – 4 < 0 i.e., x < 2 and  – (2)
Then, combining (1) and (2) we have  = .

(b) Now, .
Meaning that either 2x – 1 ≤ 0 and x + 3 ≥ 0 i.e.,  and x ≥ –3 – (1)

or 2x – 1 ≥ 0 and x + 3 ≤ 0 i.e.,  and x ≤ –3 – (2)

From result (1) we have that . 
However, the inequalities in result (2) are inconsistent, i.e., we cannot have that x is both
greater than or equal to  and less than or equal to –3 simultaneously. Therefore we

discard this inequality. Therefore,  = 

(c) This time we need some rearranging:

Then, we must have that x + 1 < 0 and x + 3 > 0 i.e., x < –1 and x > 3 – (1)
x + 1 > 0 and x + 3 < 0 i.e., x > –1 and x < 3 – (2)

This time (1) is inconsistent, so we discard it and from (2) we have –1 < x < 3.
Therefore,  = .

  ab 0 a 0 and b 0  or  a 0 and b 0<<>>⇔>

  ab 0 a 0 and b 0  or  a 0 and b 0><<>⇔<

Find
(a) (b) (c)x  x2 6x– 8 0>+{ } x  2x2 5x 3 0≤–+{ } x  x2 3 2x<–{ }

E 2.30XAMPLE

S
o
l
u
t
i
o
n

 x2 6x– 8+ x 2–( ) x 4–( )=
 x2 6x– 8 0 x 2–( ) x 4–( ) 0>⇔>+

x 4 x 4>⇒>
x 4 x 2<⇒<

x  x2 6x– 8 0>+{ } x  x 2<{ } x  x 4>{ }∪

 2x2 5x 3 0 2x 1–( ) x 3+( ) 0 ≤⇔≤–+
x 1

2---≤

x 1
2---≥

3 x 1
2---≤ ≤–

1
2---

x  2x2 5x 3 0 ≤–+{ } x  3 x 1
2---≤ ≤–   

 x2 3 2x x2 2x– 3 0 x 1+( ) x 3–( ) 0<⇔<–⇔<–

x  x2 3 2x<–{ } x  1 x<– 3<{ }
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Method 2 Graphical Method
This method relies on examining the graph of the corresponding quadratic function
and then 
1. quoting the x–values that produce y–values that lie above (or on) the 

x–axis (i.e., y > 0 or y ≥ 0) 
or 2. quoting x –values that produce y–values that lie below (or on) the x–axis

(i.e., y < 0 or y ≤ 0)
We consider inequations from Example 2.30

(a) The corresponding function in this case is .
That part of the graph corresponding to  is highlighted
in red. The values of x that correspond to these parts are

x < 2 as well as x > 4
Therefore, s.s. = 

(b) The corresponding function in this case is .
That part of the graph corresponding to  is highlighted
in red. The values of x that correspond to these parts are

Therefore, s.s. = 

(c) This time we have two functions, that of  and 
, and we want to find those values of x where
.

We do this by sketching both graphs on the same set of axes and
then finding those values of x for which  i.e., where
the graph of  lies above that of .
Once we have found the point of intersection, i.e., once we have
solved , we refer to the graph.
Now, 

    
Then,  for –1 < x < 3.
i.e.,   = .

Part (c) in Example 2.31 leads us to a process that deals with any expression of the form
, ,  or . Basically, we have the following:

Use a graphical method to find
(a) (b) (c)x  x2 6x– 8 0>+{ } x  2x2 5x 3 0≤–+{ } x  x2 3 2x<–{ }

E 2.31XAMPLE

S
o
l
u
t
i
o
n

2         4 x

y

–3          0.5 x

y

x

y

3
–1

y g x( )=

y f x( )=

g x( ) f x( )>

f x( ) x2 6x– 8+=
f x( ) 0>

x  x 2<{ } x  x 4>{ }∪

f x( ) 2x2 5x 3–+=
f x( ) 0≤

3 x 1
2---≤ ≤–

x  3 x 1
2---≤ ≤–   

f x( ) x2 3–=
g x( ) 2x=
f x( ) g x( )<

f x( ) g x( )<
y g x( )= y f x( )=

f x( ) g x( )=
f x( ) g x( ) x2 3–⇔ 2x x2 2x– 3–⇔ 0= = =

x 3–( ) x 1+( )⇔ 0=
x⇔ 3 or x 1–= =

f x( ) g x( )<
x  x2 3 2x<–{ } x  1 x<– 3<{ }

f x( ) g x( )< f x( ) g x( )> f x( ) g x( )≤ f x( ) g x( )≥
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We make use of the TI–83 to solve this problem.

Let  and , we sketch these graphs on 
the same set of axes.

Next we need to find where the two graphs intersect. That is we need to 
solve the equation . So, we have:

Using the intersect option from the CALC menu we have:

Therefore, from our results we have that  = .
Notice once again, the the graphics calculator could only provide an approximate answer for one 
of the points of intersection.

To solve an inequality between two functions,  and ,
i.e., to solve for , ,  or 

f x( ) g x( )
f x( ) g x( )< f x( ) g x( )> f x( ) g x( )≤ f x( ) g x( )≥

We proceed as follows:

1. Sketch the corresponding graphs of both   and  on
the same set of axes.

2. Find where the two graphs intersect, i.e., solve   = 
so that we find x = a and x = b.

3. Identify where one function lies above or below the other.
Then, depending on the inequality, quote the values of x that
correspond to that region (or those regions).

f x( ) g x( )

f x( ) g x( )
a                 b

y f x( )=

y g x( )=

y

x

e.g.,  and f x( ) g x( ) x  ] ∞ a ],–  ]b ∞  [,∪∈⇔> f x( ) g x( ) x a b,[ ]∈⇔≤

Use a graphical method to find x  x 2 x2– 2x+<{ }E 2.32XAMPLE

S
o
l
u
t
i
o
n

g x( ) x=

f x( ) 2 x2– 2x+=

g x( ) x= f x( ) 2 x2– 2x+=

g x( ) f x( )=
x 2 x2– 2x+=

Having found one point of intersection, we now find the other:

x  x 2 x2– 2x+<{ } x  0.5616– x 2< <{ }
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1. Find the solution set for each of the following inequalities.
(a) (b)
(c) (d)
(e) (f)

2. Find the solution set for each of the following inequalities.
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)
(j) (k) (l)
(m) (n) (o)

3. (a) For what value(s) of k is the inequation  true for all values of x?
(b) For what value(s) of k is the inequation  true for all values of x?
(c) For what value(s) of n is the inequation  true for all values of x?

4. By sketching on the same set of axes, the graphs of the functions  and , solve
the inequalities
i. ii.
(a) , (b) , 
(c) , (d) , 
(e) , (f) , 

5. On the same set of axes sketch the graphs of  and .
Hence find .

6. Given that  and , find .

7. (a) Find  for    i.   k = 2      ii.      k = 4        iii.     k = 8

(b) Find i. ii.

8. Find (a) (b)

(c) where i. k = 0 ii. k = 1

9. (a) Find  for i. k = ±1 ii. k = 2
(b) Find  = .

EXERCISES 2.4.3

x 1–( ) x 2+( ) 0> x 3+( ) x 2–( ) 0≤
x 4 x–( ) 0≤ 1 3x–( ) x 3–( ) 0>
3 2x+( ) x 1+( ) 0≥ 5 2x–( ) 3 4x–( ) 0<

x2 3x 2 0>+ + x2 x– 6 0<– 2x2 5x– 3 0≥–
x2 4 0≤– x2 x 5 0<–+ x– 2 x 6 0≤+ +
x2– x 1 0≥+ + 2x2– 3x– 5 0≥+ 2x2 5x 3 0>–+
x2 4x– 3 0<+ 2x2 x 1 0<–+ x2 3 0<+
x2– 2 0>– 2x2 7x 15≤– 3x2 5x 2>+

x2 2kx k 0>–+
x2 kx– 2 0≥+
x2 2x 2n≥+

f x( ) g x( )

f x( ) g x( )< f x( ) g x( )≥
f x( ) x 2+= g x( ) x2= f x( ) x 1–= g x( ) x2 4x– 5+=
f x( ) x2 2+= g x( ) 4x 1–= f x( ) 3x2 1–= g x( ) x 1+=
f x( ) 5 x2–= g x( ) x2 3–= f x( ) x2 3x– 3–= g x( ) x 4–=

f x( ) x 1–= g x( ) 1 x2–=
x : x 1– 1 x2–<{ }
f x( ) x2 3x 2+ += g x( ) 4 x2–= x   f x( ) g x( )≤{ }

x : x2 4x– k<{ }

x : 2x 3– 3x x2–≤{ } x : 3 x– 3 1
3---x2–≤   

x : x 2–
x 3+------------ 0>    x : 4 x–x 1+------------ 0>   

x : 1 2x–
x2 1+--------------- k>   

x : 2 x 1 3 2 x k–( )2–<+{ }
k  : 2 x 1 3 2 x k–( )2 k 0>,–<+{ } ∅
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2.4.4  SIMULTANEOUS EQUATIONS INVOLVING LINEAR –
         QUADRATIC EQUATIONS

In part (c) of Examples 2.30 and 2.31 we have already found the need to solve simultaneous 
equations where one equation was a quadratic, i.e.,  and the other was linear, i.e., 

. In this instance, we equated the two functions,  so that , 
then transposed to get a new quadratic, i.e.,  which could readily be solved for x. 
In this section we formalise the process of solving simultaneous equations involving a quadratic 
and linear expression or two quadratic expressions.

To solve a linear–quadratic system of equations it is often the case that the method of 
substitution is most appropriate. The process is as follows:

Step 1: Arrange the equations so that they are both in the form y = . . . 
i.e., y is expressed explicitly in terms of x.

Step 2: Label the two equations  – (1)
 – (2)

Step 3: Equate (1) and (2):

Step 4: Transpose to obtain a new quadratic:

Step 5: Solve for x and then find y by substituting into (1) or (2).

(a) We label the equations as follows;  – (1)
 – (2)

Equating (1) to (2) gives:
Solving we have:

   
Substituting x = – 2 into (2):

x = 1 into (2):

The solution can be expressed as two coordinate pairs: (–2,–8), (1,–2).

(b) The first step in this case is to make y the subject of the second equation and then to
substitute this into the first equation.
i.e., .

f x( ) x2 3–=
g x( ) 2x= f x( ) g x( )= x2 3– 2x=

x2 2x– 3– 0=

y ax2 bx c+ +=
y mx k+=

mx k+ ax2 bx c+ +=

ax2 b m–( )x c k–( )+ + 0=

Solve the simultaneous sytem of equations
(a) (b)y x2 3x 6–+=

y 2x 4–=
y 2x2– 4x 9+ +=

x 2y+ 7=

E 2.33XAMPLE

S
o
l
u
t
i
o
n

y x2 3x 6–+=
y 2x 4–=

2x 4– x2 3x 6–+=
0 x2 x 2–+=

⇔ x 2+( ) x 1–( )=
x⇔ 2 1,–=

y 2 2–( ) 4– 8–= =
y 2 1( ) 4– 2–= =

x 2y+ 7 2y⇔ 7 x y⇔– 1
2--- 7 x–( )= = =
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Therefore we have,  – (1)
 – (2)

Substituting [or equating] (2) into (1) gives:

 

   

Substituting into (2):

The approximate coordinate pairs for the solution to this problem are (–0.88,3.94), (3.13,1.94).

Again, we see that the discriminant can be used to determine the geometrical relationship between 
the parabola and the straight line. 

When solving the simultaneous system of equations 
 – (1)

 – (2)
which results in solving the quadratic  (after equating (1) to (2)) we have three 
possible outcomes:

Case 1 Case 2 Case 3

i.e., 
The straight line cuts the
parabola twice.

i.e., 
The straight line touches 
the parabola at one point.
We say the straight line is 
a tangent to the parabola.

i.e., 
The straight line neither 
touches nor cuts the 
parabola anywhere.

y 2x2– 4x 9+ +=
y 1

2--- 7 x–( )=
7 x–
2----------- 2x2– 4x 9+ +=

7⇔ x– 4x2– 8x 18+ +=
4⇔ x2 9x– 11– 0=

x∴ 9 9–( )2 4 4 11–( )××–±
2 4×-----------------------------------------------------------------=

9 257±
8----------------------=

0.88 3.13,–≈
y 1

2--- 7 9 257±
8----------------------–   47

16------
257
16-------------±= =

3.94 1.94,≈

y px2 qx r+ +=
y mx k+=
ax2 bx c+ + 0=

∆ b2 4ac 0>–= ∆ b2 4ac– 0= = ∆ b2 4ac 0<–=

Find the value(s) of m for which the straight line with equation  
is a tangent to the parabola with equation .

y mx 2–=
y x2 3x– 7+=

E 2.34XAMPLE
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We start by solving the system of equations as we have done previously:
 – (1)

 – (2)
equating (1) to (2):

    
Then, for the straight line to be a tangent, it means that the line and the parabola touch. This in 
turn implies that the discriminant is zero.

That is, 
  [using the diff. of two squares]
 

Then, setting  we have .
Geometrically we have:

To solve a quadratic–quadratic system of equations we use the same method of substitution 
that was used for the linear–quadratic set up.

Set up the equations as follows:  – (1)
 – (2)

Equating (1) to (2):      

Using (2): When  and when x = –1, 

Therefore, the pairs that satisfy this system of equations are  and (–1, 0).

S
o
l
u
t
i
o
n

y x2 3x– 7+=
y mx 2–=
x2 3x– 7+ mx 2–=

x2 m 3+( )x– 9+⇔ 0=

∆ m 3+( )–[ ]2 4 1 9××– m 3+( )2 36–= =
m 3 6+ +( ) m 3 6–+( )=
m 9+( ) m 3–( )=

∆ 0= m 9+( ) m 3–( ) 0 m⇔ 9 or m– 3= = =

–2

m = 3

m = –9
x

y

Solve simultaneously the system of equations y 2x2 3x 1+ +=
y 2x x2– 3+=

E 2.35XAMPLE

S
o
l
u
t
i
o
n

y 2x2 3x 1+ +=
y 2x x2– 3+=

2x2 3x 1+ + 2x x2– 3+=
3x2 x 2–+⇔ 0=

3x 2–( ) x 1+( )⇔ 0=
x∴ 2

3---  or  x 1–= =

x 2
3--- y, 2 2

3---   4
9---  – 3+ 35

9------= = = y 2– 1– 3+ 0= =

2
3---
35
9------,  
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1. Solve the following pairs of simultaneous equations.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k)

2. Solve the following simultaneous equations.
(a) (b)

(c) (d)  where a is a real number

(e) (f)

(g) (h)

3. For what value(s) of m will the straight line with equation 
(a) touch (b) intersect (c) never meet
the parabola with equation .

4. Find the distance between the points of intersection of the line with equation 
 and the parabola with equation .

5. Find the value of a such that the line  has exactly one intersection point with
the parabola with equation .

EXERCISES 2.4.4

y 2x 1+=
y x2 2x 3–+=

y x 1+=
y x2 2x 1–+=

y 3x 1–=
y 3x2 2x– 3–=

3x 2y– 3=
y x2 2x 3–+=

x 2y– 5=
y x2 4x 7–+=

x 2y+ 0=
x2 3y+ 4=

y 2x=
y x2 x 3–+=

x 2y+ 3=
y x– 2 2x 3–+=

y 3x 1+=
y x2 2x 3–+=

x y– 1=
y x2 x 5–+=

3x 2y– 3=
y x2– 2x 3–+=

y x2 4x– 7+=
y 2x2 2x+=

y 4x2 16x– 8+=
y 9x 8x2– 4–=

y 3x2 2x– 2+=
y 2x2 x 2+ +=

y 4x2 3ax 2a2–+=
y 2x2 2ax a2–+=

y x2 2x– 4+=
y 2 2x– x2–=

y x2 3x 2–+=
y 2x2 x– 2+=

y x2 4x 3+ +=
y 4x x2–=

y 5x2 x 4+ +=
y x2 5x 3+ +=

y mx 6–=

y x2=

y 2x 1+=
y x2 4x– 6+=

y 2x a+=
y x2 3x 2+ +=
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6. If the graph of the function  intersects the graph of the function
 at the point (m, k), show that the other point of intersection occurs

where .
7. For what value(s) of k is the line 2x = 3y + k  a tangent to the parabola ?

8. Show that the equations  have no real solution for all values of k.

9. For what values of k do  have no solution?

10. For what values of q do the equations  have only 1 real solution?

11. Find the value for c, for some fixed value of m, so that the straight line  is a
tangent to the parabola , a ≠ 0.

12. The parabola with equation  meets the straight line with equation
 where a and b are real constants at the points where  and

. Show that .

13. (a) Solve the simultaneous equations
i. ii.

(b) The functions  and  intersect at the points
A(a, b) and B(c, d) shown in the diagram below. 
i. Show that .
ii. Show that .

(c) i. Find the equation of the straight line passing through the points A and B
ii. Find the area of the region enclosed by the triangle OAB.

f x( ) 4x2 20x– 4–=
g x( ) 1 4x x2–+=

x 1
m----–=

y x2 3x– 4+=

y kx 1–=
y x2 k 1–( )x k2+ +=



y kx=
y kx2 3x k+ +=



y 1 q–( )x 2+=
y 1

qx------–=




y mx c+=
y2 4ax=

y ax2 x ab+ +=
y a2bx 2ab+= x x1=
x x2= x1x2 b+ 0=

y 3x2=
y 14 11x–=

y 3x2=
y x 14+=

f x( ) x 2x+= g x( ) x2– 2
3---x– 14

3------+=

3a2 11a 14–+ 0=
3c2 c– 14– 0=

A
B

y

xO

y f x( )=

y g x( )=
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3.1.1 DEFINITION

Examples: 
1.  is a polynomial of degree 4, i.e., degP(x) = 4, with a leading

  coefficient of –5.
2.  is a polynomial of degree 5, i.e., degP(x) = 5 with a leading

   coefficient of 6.
Polynomials can be rewritten in descending powers of x, .

3.  is not a polynomial, because not all terms are raised to an
integer power.

Some standard polynomials are:

3.1.2 ADDITION AND MULTIPLICATION OF POLYNOMIALS

The standard laws of algebra are readily applied to polynomials. We consider a number of 
examples to demonstrate the process of addition and multiplication of polynomials.

Degree Name General form
0 constant
1 linear
2 quadratic
3 cubic
4 quartic

ALGEBRA OF POLYNOMIALS3.1

C
H

A
P

T
E
R

 3

A polynomial function, , is an algebraic expression that takes the form

where the coefficients  are real numbers, and the power, 
n, n – 1, n – 2, . . . are integers.

P x( )
P x( ) anxn an 1– xn 1– an 2– xn 2– … a1x1 a0 an 0≠,+ + + + +=

an an 1– an 2– … a1 a0, , , , ,

The degree of a polynomial, degP(x), is the highest power of x in the expression. 

P x( ) 5x4– 2x2 x 7–+ +=

P x( ) 4x3 6x5 x2– 2+ +=

P x( ) 6x5 4x3 x2– 2+ +=
P x( ) 3x3 x2– 2 x 1–+=

P x( ) a=
P x( ) ax b+=
P x( ) ax2 bx c+ +=
P x( ) ax3 bx2 cx d+ + +=
P x( ) ax4 bx3 cx2 dx e+ + + +=

Consider the polynomials  and .
Find (a)

(b)
(c)

P x( ) 2x3 x– 3+= T x( ) x2 3–=
P x( ) 3T x( )–
P x( ) T x( )×
P x( )[ ]2

E 3.1XAMPLE
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(a)  =  – 
 =  – 
 = 

(b) = 
= 
= 
= 

(c)  =  = 
= 
= 
= 

3.1.3 DIVISION OF POLYNOMIALS

We start by recalling how we can set out a division that involves real numbers. If we consider the 
problem of dividing 10 by 3, we can quote the results in two ways:

1. 2.  
In either case, ‘11’ is the dividend, ‘4’ is the divisor, ‘2’ is the quotient and ‘3’ is the 
remainder.

We can extend this to include division of polynomials

The process of polynomial division is the same as that of long division of numbers. For example, 
when dividing 4 into 11, the long division process is set out as follows:

Therefore, we have that  or 
We now consider an example that involves division of two polynomials.

S
o
l
u
t
i
o
n

P x( ) 3T x( )– 2x3 x– 3+ 3 x2 3–( )
2x3 x– 3+ 3x2 9+
2x3 3x2– x– 12+

P x( ) T x( )× 2x3 x– 3+( ) x2 3–( )
x2 2x3 x– 3+( ) 3 2x3 x– 3+( )–
2x5 x3– 3x2 6x3– 3x 9–+ +
2x5 7x3– 3x2 3x 9–+ +

P x( )[ ]2 2x3 x– 3+( )2 2x3 x– 3+( ) 2x3 x– 3+( )
2x3 2x3 x– 3+( ) x 2x3 x– 3+( )– 3 2x3 x– 3+( )+
4x6 2x4– 6x3 2x4– x2 3x– 6x3 3x– 9+ + + +
4x6 4x4– 12x3 x2 6x– 9+ + +

11
4------ 2 3

4---+= 11 4 2 3+×=

If P(x) and D(x) are two polynomials over a given field with degP(x) ≥ degD(x) there exist 
two polynomials Q(x) and R(x) such that
 

or              where 0 ≤ degR(x) < degD(x).
Nb: If R(x) = 0 then D(x) is a factor of P(x).

P(x) = D(x) × Q(x) + R(x)
↑ ↑ ↑ ↑

dividend divisor quotient remainder
P x( )
D x( )------------ Q x( ) R x( )

D x( )------------+=

4      11
         8
         3

2   (How many 4s go into 11)

(4 × 2   = 8)
(11 – 8 = 3) [i.e., remainder is 3]

11
4------ 2 3

4---+= 11 4 2× 3+=
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Divide P(x) = x3 – 4x2 + 5x – 1 by (x – 2)E 3.2XAMPLE

x 2– x3 4x2– 5x 1–+

x3 2x2–

x2

2x2– 5x 1–+

x3 x÷ x2=

x3 4x2– 5x 1–+( ) x3 2x2–( )– 2x2–= 5x 1–+

2x2– x÷ 2x–=

x2 x 2–( )× x3 2x2–=

2x2– 4x+

x 1–

2x x 2–( )×– 2x2– 4x+=

1 “How many times does x go into x3, i.e.,                     ”

2 “Multiply (x – 2) by x2, i.e.,                                        ”

x 2– x3 4x2– 5x 1–+
x2

3 “Subtract                from                              , x3 4x2– 5x 1–+
   i.e.,                                                                                ”

x3 2x2–
x 2– x3 4x2– 5x 1–+

x2

x3 2x2–

4 “How many times does x go into –2x3, i.e.,                            ” (i.e., repeat step 1)

2x2– 5x 1–+
x3 2x2–

x 2– x3 4x2– 5x 1–+
x2 2x–

5 “Multiply (x – 2) by –2x, i.e.,                                               ” (i.e., repeat step 2)

2x2– 5x 1–+
x3 2x2–

x 2– x3 4x2– 5x 1–+
x2 2x–

2x2– 5x 1–+( ) 2x2– 4x+( )– x 1–=6 “Subtract                     from                         , i.e.,                                                                  ” 2x2– 4x+ 2x2– 5x 1–+

2x2– 4x+
2x2– 5x 1–+

x3 2x2–
x 2– x3 4x2– 5x 1–+

x2 2x– (i.e., repeat step 3)

S
o
l
u
t
i
o
n
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And so, we have that  or .
That is, we have a quotient  and remainder 1.

Note that we are always dividing the current expression by the highest degree term in the divisor, 
(x – 2). Also note that the process is stopped when the degree of the current dividend becomes 
less than that of the divisor, i.e. deg(1) < deg(x – 2).

Although the process seems to be very long, after a little practice you will be able to carry out the 
process efficiently.

x x÷ 1=7 “How many times does x go into x, i.e.,                  ” (i.e., repeat step 1)

x 1–
2x2– 4x+
2x2– 5x 1–+

x3 2x2–
x 2– x3 4x2– 5x 1–+

x2 2x– 1+

1 x 2–( )× x 2–=8 “Multiply (x – 2) by 1, i.e.,                                ” (i.e., repeat step 2)

x 1–
2x2– 4x+
2x2– 5x 1–+

x3 2x2–
x 2– x3 4x2– 5x 1–+

x2 2x– 1+

x 2–

1

6 “Subtract (x – 2) from (x – 1) , i.e.,  (x – 1) – (x – 2) = 1” (i.e., repeat step 3) 

x 1–
2x2– 4x+
2x2– 5x 1–+

x3 2x2–
x 2– x3 4x2– 5x 1–+

x2 2x– 1+

x 2–

P x( ) x 2–( ) x2 2x– 1+( ) 1+= P x( )
x 2–----------- x2 2x– 1 1

x 2–-----------+ +=
x2 2x– 1+

Divide 2x3 + 5x2 – 13    by   2x2 + x – 2.E 3.3XAMPLE
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We note that deg(–9) = 0 and deg( ) = 2. Then, as deg(–9) < deg( ) we stop 
the division process at this stage.

 or .
That is, the quotient is (x + 2) and the remainder is –9.

Notice also how we have created a ‘place holder’ by including ‘0x’ in the dividend term of our 
division process. This helps avoid arithmetic mistakes when subtracting terms.

Notice that it is not always the case that there is a constant remainder (although that will be true 
whenever we divide a polynomial by a linear polynomial). For example, dividing the polynomial 

 by the quadratic  we obtain

So that this time the remainder is a linear polynomial, –x –7.

1. Given the polynomials ,  and
 evaluate

(a) (b) (c)
(d) (e) (f)

2. Divide  by (x – 1)        
3. Divide  by (2x – 1)
4. Divide  by 
5. Divide  by (x + 1)     
6. Divide  by 
7. Divide  by (3x – 1)
8. When  is divided by (x – 2) it leaves a remainder of 5, find k.
9. When  is divided by (x +1) it leaves a remainder of 0, find k.
10. When  is divided by (x + 2) it leaves a remainder of 0, find k.
11. When  is divided by (x – 1) it leaves a remainder of 2, find k.

2x2 x 2–+
x 2+

2x3 5x2 0x– 13–+
2x3   x2 2x–+

9–

4x2 2x 13–+
4x2 2x 4–+

2x3 2x2÷ x=

x 2x2 x 2–+( )×

4x2 2x2÷ 2=

2 2x2 x 2–+( )×

1

2
3

4

2x3 5x2 0x– 13– 2x3   x2 2x–+( )–+
5

4x2 2x 13– 4x2 2x 4–+( )–+ 6

S
o
l
u
t
i
o
n

2x2 x 2–+ 2x2 x 2–+

 2x3 5x2 13–+∴ 2x2 x 2–+( ) x 2+( ) 9–= 2x3 5x2 13–+
2x2 x 2–+----------------------------------- x 2 9–

2x2 x 2–+--------------------------+ +=

2x4 3x3 5x2 13–+ + 2x2 x 2–+
2x4 3x3 5x2 13–+ +

2x2 x 2–+-------------------------------------------------- x2 x 3 x 7+
2x2 x 2–+--------------------------–+ +=

EXERCISES 3.1

P x( ) x4 x3– 2x 1–+= Q x( ) 3 x– 2x3+=
T x( ) 3x2 2–=

2T x( ) Q x( )– P x( ) 4T x( )+ T x( ) Q x( )×
P x( )Q x( ) Q x( )[ ]2 T x( )[ ]2 9P x( )–
3x2 2x– 1+
4x3 8x2– 25x 19–+
x4 3x3– x 4+ + x2 2x– 3+
2x3 5x2– 10–
x4 2x2 x–+ x2 3+
12 19x 7x2– 6x3–+
x3 2x– k+
x3 2x– k+
2x3 x2– kx 4–+
2x3 x2– kx 4–+
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Suppose that the polynomial,  is divided by  so that it 
results in a quotient  and a constant remainder R. Then, we can write 
this result as  or 
Substituting the polynomial terms into the second form we have:

Then, equating the coefficients on both sides of the equation, we have:
       
        = 
       
       

Given the ‘recursive’ nature of this result we can set it up in a table form as follows

Although we have only shown the process for a polynomial of degree 3, this works for any 
polynomial. This quick method of dividing polynomials by (x – k) is known as synthetic division. 
This method relies on the relationships between the coefficients of x in the product of the quotient 
and divisor.

The coefficients of the polynomial are: 1 2 –3 4 and the value of k is 2.
Setting up the table to make use of synthetic division we have:

1 2 –3 4
2

SYNTHETIC DIVISION3.2

A x( ) a3x3 a2x2 a1x a0+ + += x k–( )
Q x( ) b2x2 b1x b0+ +=
A x( )
x k–------------ Q x( ) R

x k–-----------+= A x( ) x k–( )Q x( ) R+=

a3x3 a2x2 a1x a0+ + + x k–( ) b2x2 b1x b0+ +( ) R+=
a3x3 a2x2 a1x a0+ + +⇔ b2x3 b1 kb2–( )x2 b0 kb1–( )x R kb0–( )+ + +=

a3 b2= b2⇒ a3=
a2 b1 kb2–= b1⇒ a2 kb2+= a2 ka3+
a1 b0 kb1–= b0⇒ a1 kb1+=
a0 R kb0–= R⇒ a0 kb0+=

k + + +

R

a3 a2 a1 a0

ka3 kb1 kb0
a3 b1 b0

multiply by k:

Add along vertical

Divide x3 + 2x2 – 3x + 4 by (x – 2)E 3.4XAMPLE

S
o
l
u
t
i
o
n
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The next step is to place the leading coefficient in the last row:

Then, we multiply 1 by 2 (i.e., k) giving an answer of 2 and placing as shown:

Next, add 2 + 2 = 4 as shown:

Multiply 4 by 2 (i.e., k) giving an answer of 8 and placing as shown:

Next, add –3 + 8 = 5 as shown:

Multiply 5 by 2 (i.e., k) giving an answer of 10 and placing as shown:

Next, add 4 + 10 = 14 as shown:

Then, the coefficients in the last row are the coefficients of the quotient and the last number 
corresponds to the remainder. This means that the quotient has a constant term of 5, the 
coefficient of x is 4, the coefficient of  is 1 and has a remainder of 14.
Therefore, we have that .

1 2 –3 4
2

1

1 2 –3 4
2 2

1

1 2 –3 4
2 2

1 4

1 2 –3 4
2 2 8

1 4

1 2 –3 4
2 2 8

1 4 5

1 2 –3 4
2 2 8 10

1 4 5

1 2 –3 4
2 2 8 10

1 4 5 14

x2
x3 2x2 3x– 4+ +
x 2–----------------------------------------- x2 4x 5 14

x 2–-----------+ + +=

Divide 3x5 – 8x4 + x2 – x + 3 by (x – 2).E 3.5XAMPLE
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We can now ‘fast track’ the process into one table. Using the coefficients of the polynomial in the 
top row we have:

And so 
or  3x5 – 8x4 + x2 – x + 3 = (x – 2)(3x4 – 2x3 – 4x2 – 7x – 15) – 27

Constructing the appropriate table with the coefficients 2; 1; –1; 5; 1 in the first row and with
k = –3, we have: 

And so 
or    2x4 + x3 – x2 + 5x + 1 = (x + 3)(2x3 – 5x2 + 14x – 37) + 112

In Example 3.6, had we wanted to divide by  then, we would have used . The 

reason being that  and to use synthetic division, we must divide by . This 

also means that if we had divided by  then .

Use Synthetic Division to find the quotients and remainders below.
1. 2x2 – 5x + 1  ÷ (x – 1)
2. 3x3 + x2 – x + 3  ÷ (x – 3)
3. 2x4 – x3 – 2x2 + 3  ÷ (x + 3)
4. 2x3 – 5x2 + 10x – 3  ÷ (2x – 1)
5. 2x4 + 3x2 – x  ÷ (x + 2)
6. 5 – 2x2 – x4 ÷ (4 – x)

3 –8 0 1 –1 3
2 6 –4 –8 –14 –30

3 –2 –4 –7 –15 –27

2 1 –1 5 1
–3 –6 15 –42 111

2 –5 14 –37 112

S
o
l
u
t
i
o
n 3x5 8x4– x2 x– 3+ +

x 2–----------------------------------------------------- 3x4 2x3– 4x2– 7x– 15– 27
x 2–-----------–=

Divide 2x4 + x3 – x2 + 5x + 1 by (x + 3).E 3.6XAMPLE

S
o
l
u
t
i
o
n

2x4 x3 x2– 5x 1+ + +
x 3+----------------------------------------------------- 2x3 5x2– 14x 37– 112

x 3+------------+ +=

2x 3–( ) k 3
2---=

2x 3– 2 x 3
2---–  = x k–

2x 3+( ) k 3
2---–=

EXERCISES 3.2
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PROOF
The degree of the remainder R(x) must be less than the degree of the divisor D(x). Therefore if 
D(x) has degree = 1, R(x) has degree = 0 and is therefore constant.

∴ if P(x) = D(x) × Q(x) + R and D(x) = (x – α) then
P(x) = (x – α) Q(x) + R (where R is a constant)

when x = α, P(α) = (α – α) Q(x) + R
∴         P(α)   = R

i.e. the remainder on division of P(x) by (x – α) is P(α).
We start by considering Examples 3.2 and 3.6. 
Example 3.2: With  P(x)  =  x3 – 4x2 + 5x – 1 and the divisor (x – 2), we have

So, 
Which agrees with the remainder we had obtained.

Example 3.6: With    P(x)  =  2x4 + x3 – x2 + 5x + 1 and the divisor (x + 3), we have

So, 
Which agrees with the remainder we had obtained.

Because of the nature of the arithmetic involved in evaluating such problems it is a good idea to 
make use of a graphics calculator. Using the TI–83 we first enter the equation and then evaluate 
the polynomial using the required value of k:
Example 3.2 Example 3.6

P(x) = x3 + x2 – x + 1
P(–1) = (–1)3 + (–1)2 – (–1) + 1

= 2
∴ the remainder when P(x) is divided by (x + 1) is 2.

THE REMAINDER THEOREM3.3

For any polynomial P(x), the remainder when divided by (x – α) is P(α).

P 2( ) 2( )3 4 2( )2– 5 2( ) 1–+ 8 16– 10 1–+ 1= = =
P 2( ) 1 remainder is 1⇒=

P 3–( ) 2 3–( )4 3–( )3 3–( )2– 5 3–( ) 1+ + +=
112=

P 3–( ) 112 remainder is 112⇒=

Find the remainder when P(x) = x3 + x2 – x + 1 is divided by (x + 1).E 3.7XAMPLE

S
o
l
u
t
i
o
n
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Let R be the remainder in each case.
(a) R = P(1) = 3(1)3 – 2(1)2 + 7(1) – 4 = 4
(b) R = P(–3) = 3(–3)3 – 2(–3)2 + 7(–3) – 4 = –124
(c) R =  

(d) R = 
Using the TI–83 we have:

1. Find the remainder when
(a)  is divided by .
(b)  is divided by .
(c)  is divided by .
(d)  is divided by .
(e)  is divided by .

2. Find the value of k if the remainder of  when divided by  is 20.

3. Find the remainder when  is divided by
(a)
(b)
(c)

4. When  is divided by  and , the remainders are 4 and 15
respectively. Find the remainder when it is divided by .

5. Find the value of k if  is exactly divisible by , where
(a)  and 
(b)  and .

Find the remainders when P(x) = 3x3 – 2x2 + 7x – 4 is divided by:
(a) (x – 1) (b) (x + 3) (c) (3x – 2) (d) (2x + 1)

E 3.8XAMPLE

S
o
l
u
t
i
o
n

P 2
3---   3 2

3---   3 2 2
3---   2– 7 2

3---   4–+ 2
3---= =

P 1
2---–   3 1

2---–   3 2 1
2---–   2– 7 1

2---–   4–+ 67
8------–= =

EXERCISES 3.3

P x( ) x3– 2x2 3+ += x 3–( )
Q x( ) 2x3 12x– 7+= x 2+( )
P x( ) 6 x x2– 2x4+ += x 1–( )
P x( ) 4x3 3x2 2x– 1+ += 2x 1–( )
Q x( ) x3 4x2– x 3–+= 3x 2+( )

x3 kx2 x– 2+ + x 2+

4x4 3x2 2x 2–+ +
x 1–
x 2+
x 1–( ) x 2+( )

2x3 ax2 bx 1+ + + x 1–( ) x 2–( )
x 1+( )

P x( ) d x( )
P x( ) x3 6x2– kx 6–+= d x( ) x 3–=
P x( ) 2x3 kx2– 1+= d x( ) 2x 1+=
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That is, if  is a factor of  then the remainder .
And, if  then  is a factor of .

PROOF
By the remainder theorem, P(x) = (x – α) × Q(x) + R for all real x

       ∴ P(α) = R
but if P(α) = 0 i.e. R = 0 then P(x) = (x – α)Q(x) + 0

 = (x – α)Q(x)
i.e. (x – α) is a factor of P(x)

For (x – 3), P(3) = 2(3)3 + 7(3)2 + 7(3) + 2 ≠ 0,   thus (x – 3) is not a factor of P(x).
For (x – 1), P(1) = 2(1)3 + 7(1)2 + 7(1) + 2 ≠ 0,   thus (x – 1) is not a factor of P(x)
For (x + 2), P(–2) = 2(–2)3 + 7(–2)2 + 7(–2) + 2 = 0,   thus (x + 2) is a factor of P(x)
Next, we divide (x + 2) into 2x3 + 7x2 + 7x + 2:

Giving a quotient of . 
Therefore, 

     = 

By the factor theorem, (x – α) is a factor of P(x) if P(α) = 0
∴ P(2)   = 24 + 4m – 10 + n 

As P(2) = 0, we have that 24 + 4m – 10 + n = 0
i.e. 4m + n  = –14 – (1)

    P(–1) = –3 + m + 5 + n
As P(–1) = 0, we have that –3 + m + 5 + n = 0

i.e. m + n  = –2 – (2)
Solving (1) and (2) simultaneously we have:
(1) – (2): 3m = –12 ∴m = –4

2 7 7 2
–2 –4 –6 –2

2 3 1 0

THE FACTOR THEOREM3.4

(x – α) is a factor of P(x) if and only if P(α) = 0

x α–( ) P x( ) R P α( ) 0= =
P α( ) 0= x α–( ) P x( )

Determine which of (x – 3), (x – 1), (x + 2) are factors of 
P(x)= 2x3 + 7x2 + 7x + 2, and hence factorise P(x) completely.

E 3.9XAMPLE

S
o
l
u
t
i
o
n

2x2 3x 1+ +
2x3 7x2 7x 2+ + + x 2+( ) 2x2 3x 1+ +( )=

x 2+( ) 2x 1+( ) x 1+( )

Determine m and n so that   3x3 + mx2 – 5x + n   is divisible by both (x – 2) 
and (x + 1). Factorise the resulting polynomial completely.

E 3.10XAMPLE

S
o
l
u
t
i
o
n
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Substituting into (2): –4 + n = –2 ∴n = 2
Hence P(x) = 3x3 – 4x2 – 5x + 2.

As we already know that (x + 1) and (x – 2) are factors of P(x), we also have that (x + 1)(x – 2) is 
a factor of P(x). All that remains then is to find the third factor. As the third factor is also a linear 
term, we use the general linear term (ax + b) and determine the value of a and b.

We write our polynomial as P(x) = (x + 1)(x – 2)(ax + b).
To find a and b we look at the coefficient of x3 and the constant term.
i.e., .
Then, as P(x) = 3x3 – 4x2 – 5x + 2 we have that .
Meaning that,  and .

∴ 3x3 – 4x2 – 5x + 2 = (x + 1)(x – 2)(3x – 1)

In the last Example we made use of the ‘identically equivalent to’ notation, i.e., ‘≡’.  You need to 
be aware that this is not the same as when we use the equality sign, ‘=’. 

For example, we have that , because this statement will be true for any 
value of x . However, we cannot have that , because this will not be true 
for all values of x. In fact it will only be true for one value of x (namely, x = 0). In such situations 
what we really want to know is ‘For what value(s) of x will ?’ Meaning 
that we need to solve for x. Notice then that when we use the ‘=’ sign we really want to solve for 
the unknown whereas when we use the ‘≡’ sign we are making a statement.

Having said this, the distinction between ‘≡’  and ‘=’ is not always adhered to when presenting a 
mathematical argument. So, when expanding the term , rather than writing 

, more often than not, it will be written as . In 
these situations, the meaning attached to the ‘=’ sign will be clear from the context of the 
problem.

A useful extension of the factor theorem allows us to find factors of any polynomial P(x), if they 
exist.

This result is useful in helping us guess potential factors of a given polynomial. For example, 
given a polynomial , we would try (as potential factors) the following

, ,  and .

P x( ) x2 x– 2–( ) ax b+( ) ax3 … 2b–+( )= =
3x3 4x2– 5x– 2 ax3 … 2b–+≡+

3 a= 2 2b b⇔– 1–= =

x 2+( )2 x2 4x 4+ +≡
x 2+( )2 x2 3x 4+ +≡

x 2+( )2 x2 3x 4+ +=

x 2+( )2
x 2+( )2 x2 4x 4+ +≡ x 2+( )2 x2 4x 4+ +=

Given a polynomial P(x) = anxn + an-1xn-1 + … + a1x + a0, then P(x) has a factor 
(px – q) if and only if p is a factor of an and q is a factor of a0.

P x( ) 2x3 3x2– 1+=
2x 1+( ) 2x 1–( ) x 1–( ) x 1+( )

Factorise the polynomial T(x) = x3 – 3x2 + 4.E 3.11XAMPLE
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T(x) can be factorised if we can find a factor (px – q) where p is a factor of 1 and q is a
factor of 4.

Factors of 1 are 1 × 1 and factors of 4 are  ±1 ×  ±4 and  ±2 × ±2,   so possible factors of
T(x) are   (x ± 1), (x ± 2), and (x ± 4).

Using the factor theorem;
for (x – 1), T(1) = 1 – 3 + 4 ≠≠≠≠ 0, thus (x – 1) is not a factor of T(x)
for (x + 1), T(–1) = –1 – 3+ 4 = 0, thus (x + 1) is a factor of T(x).

Having found one factor it is now possible to divide T(x) by (x + 1) to find all other factors. Using 
synthetic division we have:

Therefore, 
 

Let (px – q) be a factor of P(x) where p is a factor of 2, and q is a factor of 3.

Factors of 2 are 1 × 2, and factors of 3 are 1 × 3 or –1 × –3 thus possible factors of P(x) are
(x ± 1), (x ± 3), (2x ± 1), (2x ± 3).

Using the factor theorem with each of these leads to (2x – 3) as a factor of P(x). Of course, using 
the TI–83 makes life easier:

From the above screens we see that  is a factor.

Then dividing P(x) by (2x – 3) gives: 2x3 – 5x2 + x + 3 = (2x – 3)(x2 – x – 1).
Next, .

Therefore, 

1 –3 0 4
–1 –1 4 –4

1 –4 4 0

S
o
l
u
t
i
o
n

x3 3x2– 4+ x 1+( ) x2 4x– 4+( )=
x 1+( ) x 2–( )2=

Factorise P(x) = 2x3 – 5x2 + x + 3.E 3.12XAMPLE

S
o
l
u
t
i
o
n

P 3
2---   0 2x 3–( )⇔=

x2 x– 1– x2 x– 1
4---+   1

4---– 1– x 1
2---–   2 5

4---– x 1
2---– 5

2-------–   x 1
2---– 5

2-------+  = = =

P x( ) 2x 3–( ) x 1
2---– 5

2-------–   x 1
2---– 5

2-------+  =
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We start by ‘guessing’ factors:
Note that we have not tried all possible 
combinations, just enough to get the first 
factor.

Then, as ,  is a factor.

Using synthetic division we next have:

Therefore, Nb: we have , because of the  term.

 

Although we will look at sketching polynomials later on in this chapter, it is worthwhile 
mentioning at this point that we can reduce the ‘guessing game’ when looking for factors by 
looking at where the graph of the polynomial cuts the x–axis. 

In Example 3.11, using a graphics calculator to sketch the graph of T(x) = x3 – 3x2 + 4  gives:

This tells us that  when x = –1 and x = 2, which in turn means that (x + 1) and (x – 2) 
are both factors of . In fact, given that the curve touches at x = 2, it also tells us that we have 
a repeated factor, i.e., there are two factors (x – 2). From this information and the fact that the 
leading coefficient is one, we can then write .

If the leading coefficient was not one, we would have to write . Why?

2 –3 –29 –30

–3 9 30

2 –6 –20 0

Factorise P(x) = 2x3 – 3x2 – 29x – 30.E 3.13XAMPLE

S
o
l
u
t
i
o
n P 3

2---–   0= 2x 3+( )

3
2---–

P x( ) 1
2--- 2x 3+( ) 2x2 6x– 20–( )= 1

2--- 2 x 3
2---+  

1
2--- 2x 3+( ) 2x 10–( ) x 2+( )=
2x 3+( ) x 5–( ) x 2+( )=

x = –1         x = 2

T x( ) 0=
T x( )

T x( ) x 1+( ) x 2–( )2=

T x( ) k x 1+( ) x 2–( )2=
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1. Factorise fully, the following polynomials
(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) (j)

MISCELLANEOUS EXERCISES

2. The polynomial  is divided by , resulting in a quotient  and a
remainder . Find .

3. Find the remainder when 2x4 – 2x2 + x – 5 is divided by (2x + 1).

4. Find the remainder when p(x) = x3 + 2x2 – 11x – 12 is divided by (x + 4). Hence factorise
p(x).

5. Factorise g(x) = 2x3 + 9x2+ 12x + 4.

6. Factorise m(x) = x3 – 4x2 – 3x – 10.

7. Factorise  = 6x4 – 11x3 + 2x2+ 5x – 2. Noting that  = 0 represents the points
where  crosses or touches the x-axis, sketch the graph of .

8. (a) Factorise the polynomial 2 – 13x + 23x2 – 3x3 – 9x4.
(b) Find all values of x for which 2 – 13x + 23x2 – 3x3 – 9x4 = 0.
(c) Sketch the graph of the polynomial q(x) = 2 – 13x + 23x2 – 3x3 – 9x4.

9. Find the values of a and b if 6x3+ 7x2 + ax + b is divisible by (2x – 1) and (x + 1).

10. Show that the graph of y = 2x3 –3x2 + 6x + 4 cuts the x-axis at only one point.

11. x3 + ax2 – 2x + b has (x + 1) as a factor, and leaves a remainder of 4 when divided by 
(x – 3). Find a and b.

12. Show that p(x) = 2x3 – 5x2 – 9x – 1 has no factors of the form (x – k), where k is an integer.

13. Given that (x – 1) and (x – 2) are factors of 6x4 + ax3 – 17x2 + bx – 4, find a and b, and any
remaining factors.

14. A cubic polynomial gives remainders (5x + 4) and (12x – 1) when divided by 
x2 – x + 2 and x2 + x – 1 respectively. Find the polynomial.

EXERCISES 3.4

x3 19x– 30+ x3 x2 x– 10–+
x3 x2– 4x– 4+ 3x3 x2 12x– 4–+
2x3 x2– 18x– 9+ x4 3x2– 6x– 8+
x3 x2– 8x– 12+ 5x3 24x2– 36x 16–+
40 19x2– 94x 10x3–+ 5x3– 9x2– 3x– 1+

P x( ) 2x2 1– 3x 2–
x 1+( ) P x( )

f x( ) f x( )
f x( ) f x( )
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15. A cubic polynomial gives remainders (13x – 2) and (–1 – 7x) when divided by 
x2 – x – 3 and x2 – 2x + 5 respectively. Find the polynomial.

16. Given that  is a factor of , find the relationship between a, b, c
and d.

17. Given that  is a factor of , find the remainder when  is
divided by .

18. Given that , find the values of a, b, c and d.

19. Factorise the polynomial  given that when divided by  it
leaves a remainder of –3 and that  is a factor.

20. Given that  is divisible by  and  and
leaves a remainder of –18 when divided by . 
(a) Solve for m, n and k.
(b) Hence, find all linear factors of .

21.  is divisible by  and leaves a remainder of 30 when
divided by . Solve for m, n and k and hence fully factorise  into its three
linear factors.

22. The remainders when  is divided by  and  are 1 and 
10 respectively. Find k and n.

23. Show that if  is divisible by , then .

24. If the polynomial  is a factor of , find the
values of a and b.

25. The polynomial  where a, b, c and d are all integers. If p and q
are two relatively prime integers, show that if  is a factor of , then p is a
factor of d and q is a factor of a.

26. When a polynomial, , is divided by , it leaves a remainder of  and when
it is divided by  it leaves a remainder of . Find the remainder when  is
divided by .

27. (a) Prove that if  is divisible by , then 

(b) Prove that if  and  have a common factor  then
.

28. Prove that  is divisible by  for all integer values of n.

x 1+ ax3 bx2 cx d+ + +

x 3– P x( ) x3 kx2 x– 6–+= P x( )
x 2–

x3 a x 1+( )3 b x 1+( )2 c x 1+( ) d+ + +≡

T x( ) ax3 5x2– bx 4–+= x 1+
x 2–

P x( ) 2x4 mx3 nx2– 7x– k+ += x 2–( ) x 3+( )
x 1+( )

P x( )

P x( ) x3 mx2 nx k+ + += x2 4–
x 3–( ) P x( )

T x( ) kxn 3x2– 6+= x 1–( ) x 2+( )

P x( ) x4 mx2 nx k2+ + += x2 1– P x( ) x2 k2–

P x( ) x2 ax 1+ += T x( ) 2x3 16x– b+=

P x( ) ax3 bx2 cx d+ + +=
qx p–( ) P x( )

P x( ) x α– α3

x β– β3 P x( )
x α–( ) x β–( )

x3 mx n+ + x k–( )2 m
3----   3 n

2---   2+ 0=

x3 mx n+ + 3x2 m+ x k–( )
4m3 27n2+ 0=

P x( ) xn an–= x a–( )
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3.5.1 POLYNOMIAL EQUATIONS

The factor theorem has some very useful consequences, one of which allows us to solve equations 
of the form .

We have already seen how to solve linear equations, ax + b = 0 and quadratic equations,  
, in Chapter 2. Making use of the factor theorem we can solve (where solutions 

exist) for a polynomial using the following steps:

Step 1: Factorise the polynomial using the factor theorem (if necessary).
Step 2: Use the null factor law.
Step 3: Solve for the unknown.

In this case we start by factoring the ‘x’ out:

     [factorised polynomial]
 or  or  [Using null factor law]
 or x = –3 or x = –1 [Solving for x]

Let .
Then, 

. Therefore, x + 2 is a factor of .
Using synthetic division we have:

2 9 7 –6
–2 –4 –10 6

2 5 –3 0

EQUATIONS & INEQUATIONS3.5

P x( ) 0=
The expression 

    where 
is called a polynomial equation.

The roots or solutions of this equation are the zeros of .

P x( ) 0= P x( ) anxn an 1– xn 1– … a1x a0+ + + +=

P x( )

ax2 bx c+ + 0=

Solve .x3 4x2 3x+ + 0=E 3.14XAMPLE

S
o
l
u
t
i
o
n

x3 4x2 3x+ + 0 x x2 4x 3+ +( )⇔ 0= =
x x 3+( ) x 1+( )⇔ 0=
x⇔ 0= x 3+ 0= x 1+ 0=
x⇔ 0=

Solve .2x3 9x2 7x 6–+ + 0=E 3.15XAMPLE

S
o
l
u
t
i
o
n

P x( ) 2x3 9x2 7x 6–+ +=
P 1( ) 2 9 7 6 0≠–+ +=
P 1–( ) 2– 9 7– 6 0≠–+=
P 2–( ) 16– 36 14– 6–+ 0= = P x( )
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Therefore, 
      

Then, 
 or  or 

 or  or 

Again, we can take some of the guess work out of problems such as these by making use of the 
graphics calculator. In Example 3.15 we could have sketched the graph of  
and referred to where it meets the x–axis:

From the graph we have that  at  so that  is a factor of . From here 
we can then proceed to use synthetic division, fully factorise  and then solve for x as we did 
in the example.

In fact, having judiciously selected the settings on the Window screen of the graphics calculator,  
we have managed to obtain all three solutions without the need of further work!

However, as the next example will show, we cannot always rely on the graphics calculator to 
determine all the solutions to a polynomial equation.

We start by using the graphics calculator:

This time we can only obtain one obvious solution to , namely x = 1.
That is, if  then  is a factor. 
Using synthetic or long division we have 

    

P x( ) x 2+( ) 2x2 5x 3–+( )=
x 2+( ) 2x 1–( ) x 3+( )=

P x( ) 0 x 2+( ) 2x 1–( ) x 3+( )⇔ 0= =
x 2+⇔ 0= 2x 1– 0= x 3+ 0=
x⇔ 2–= x 1

2---= x 3–=

2x3 9x2 7x 6–+ +

x = –2
x = –1 x 1

2---=

P x( ) 0= x 2–= x 2+( ) P x( )
P x( )

Solve .x3 x2– 2x– 2+ 0=E 3.16XAMPLE

S
o
l
u
t
i
o
n

x = 1

x3 x2– 2x– 2+ 0=
P x( ) x3 x2– 2x– 2+= P 1( ) 0 x 1–⇔=

P x( ) x 1–( ) x2 2–( )=
x 1–( ) x 2–( ) x 2+( )=
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Therefore, 
 or  or .

Note then that the reason we couldn’t obtain obvious solutions using the graphics calculator is 
that the other solutions are irrational.

Also, we need to be careful when setting the Window screen. The settings below could lead to a 
false assumption (namely that there are repeated roots):

Solving an equation such as this requires that we first eliminate the fractional part.
So, multiplying both sides by x gives:

           
Next we let , then, either using the graphics calculator or guessing a 
zero of  we have that  and so,  is a factor. Then, using synthetic or long 
division we have,

      
Therefore,   or x = 3 or x = 2.

1. Solve the following over the real number field.
(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) (j)

P x( ) 0 x 1–( ) x 2–( ) x 2+( )⇔ 0= =
x⇔ 1= x 2= x 2–=

Solve .x2 11+ 6x 6
x---+=

E 3.17XAMPLE

S
o
l
u
t
i
o
n

x x2 11+( ) x 6x 6
x---+   x3 11x+⇔ 6x2 6+= =

x3 6x2– 11x 6–+⇔ 0=
P x( ) x3 6x2– 11x 6–+=

P x( ) P 1( ) 0= x 1–( )

P x( ) x 1–( ) x2 5x– 6+( )=
x 1–( ) x 3–( ) x 2–( )=

x2 11+ 6x 6
x--- x 1–( ) x 3–( ) x 2–( )⇔+ 0= = x∴ 1=

EXERCISES 3.5.1

x3 2x2 5x– 6–+ 0= 2x3 5x2– x 2+ + 0=
x3– 7x 6+ + 0= 6x3 31x2– 25x 12+ + 0=

2x3 3x2 4x 3–+ + 0= x3– x2 5x 3+ + + 0=
x3 2x2 7x– 4+ + 0= x3 2x2– 14x– 12– 0=
2x3 9x2 8x 2+ + + 0= 3x3 x2– 18x– 6+ 0=
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2. Solve the equation 2x3 – 13x2 + 16x – 5 = 0.

3. Solve the equation 4x3 – 4x2 – 11x + 6 = 0.

4. Solve the equation x4 – 3x3 – 3x2 + 7x + 6 = 0.

5. Solve the equation .

6. (a) Write down the equation of a polynomial with zeros –2, 3 and –4.
(b) Write down the equation of a polynomial with zeros 0.5, 2 and –1.
(c) Write down the equation of a polynomial with zeros 0.5, 2 and –0.5 and a leading

coefficient of 8.

7. Solve the equations
(a) (b)

(c) (d)

8. Solve the following to three significant figures
(a) (b)
(c)  = 0 (d)

9. Solve  given that one solution is x = –3.

10. Two solutions to the equation  are x = –3 and x = 2. Find the
other two solutions, if they exist.

11. Given that  and  are both divisible by , solve
the equation .

12. Prove that if the roots of  are in arithmetic sequence then
. Hence, find .

3.5.2 POLYNOMIAL INEQUATIONS

As with quadratic inequalities (Chapter 2), we may analogously create polynomial inequations 
such as , ,  and .

The solution of these inequations is relatively straight forward. After sketching the graph of the 
given polynomial, we note for which values of x the curve lies above, on or below the x–axis.

The other method is to make use of a sign diagram. We can use simple sign diagrams from 
factorised expressions of polynomials. These are somewhat less useful now because of the ease 
with which the graphics calculator displays all the relevant information. However, if the 
polynomial is already factorised then its use is appropriate.

x4 x3 9x2– 11x 4–+ + 0=

6x2 x+ 19 12
x------–= x2 7+ x 1

x---– 8
x2-----+=

x2 3x+
3x 4+----------------- 2

x---= x2 9+
11x2 9+--------------------- 1

2x------=

2x3 5x– 2+ 0= x3 6x2– 10x 6–+ 0=
x3 2x2– 7x 2–+ 2x4– 6x2 1–+ 0=

2x3 kx2 11x– 6–+ 0=

2x4 ax3 x2 6x b+ + + + 0=

mx4 5x– n+ x4 2x3– mx2– nx– 8– x 2–( )
x4 9x3– 3nx2– 4mx 4mn+ + 0=

x3 ax2– bx c–+ 0=
2a3 9ab– 27c+ 0= x : x3 12x2– 39x 28–+ 0={ }

P x( ) 0> P x( ) 0≥ P x( ) 0< P x( ) 0≤
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(a) Let . 
Sketching its graph using the TI–83 we have:

From the graph we see that the curve lies above the x–axis
for values of x such that –4 < x < –1 and x > 2.

.

(b) As the polynomial is already factorised, we make use of a sign diagram to solve the
inequality.
The zeros of the polynomial  =  are 1, –2 and . 
Based on the zeros we can construct our sign diagram:

Test point: Use x = 0, . 
i.e., at x = 0  is positive.

Then,  is given by the values of x for which the sign diagram 
lies below or on the x–axis. 

That is,  = .

1. Solve the following inequalities
(a) (b)
(c) (d)
(e) (f)
(g) (h)

2. Solve the following inequalities
(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) (j)
(k) (l)

Find (a) .
(b) .

x : x3 3x2 6x– 8 0>–+{ }
x : 2x 1–( ) x 2+( ) x 1–( ) 0≤{ }

E 3.18XAMPLE

S
o
l
u
t
i
o
n

–4             –1               2

P x( ) x3 3x2 6x– 8–+=

x : x3 3x2 6x– 8 0>–+{ }∴ x : 4– x 1–< <{ } x : x 2>{ }∪=

P x( ) 2x 1–( ) x 2+( ) x 1–( ) 1
2---

–2              0          11
2---

x
+ve
–veP 0( ) 1–( ) 2( ) 1–( ) 2= =

P x( )

x : 2x 1–( ) x 2+( ) x 1–( ) 0≤{ }

x : 2x 1–( ) x 2+( ) x 1–( ) 0≤{ } x : x 2–≤{ } x : 12--- x 1≤≤   ∪

EXERCISES 3.5.2

x 1–( ) x 1+( ) x 2–( ) 0> 2x 4–( ) x 2+( ) x 3–( ) 0≤
2 x–( ) x 2+( ) x 3+( ) 0≤ x x 1–( )2 0>
x 2+( )2 2x 1+( ) 0≥ x2 4–( ) x 4+( ) 0<
x 2–( ) 1 x+( )2 1 x–( ) 0< 2 x 3–( )2 2 x–( ) 0≥

x3 2x2 5x– 6–+ 0> 2x3 5x2– x 2 0≤+ +
x3– 7x 6 0≤+ + 6x3 31x2– 25x 12 0>+ +

2x3 3x2 4x 3 0≥–+ + x3– x2 5x 3 0<+ + +
x3 2x2 4 7x<+ + x3 2x2– 14x 12≥–
2x3 9x2 8x 2 0≤+ + + 3x3 x2– 6 18x<+
4x3 5x2– 3x 2≤+ x4 5x 3x3 3+>+
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3.6.1 GRAPHICAL SIGNIFICANCE OF ROOTS

We have already been making use of the graphs of polynomial functions to help us during this 
chapter. We are now in a position where we can sketch the graphs of polynomial functions as well 
as give meaning to the geometrical relationship between the polynomial expression and its graph. 
In particular we are interested in the geometrical significance of the roots of a polynomial.

The relationship between the roots of a polynomial and its graph can be summarised as follows:

SKETCHING POLYNOMIALS3.6

If the polynomial  is factorised into unique (single) factors, , , 
 , . . . so that

, where , 
the curve will cut the x–axis at each of the points .
That is, at each of these points the curve will look like one of

P x( ) x a–( ) x b–( )
x c–( )

P x( ) x a–( ) x b–( ) x c–( )…= a b c …≠ ≠ ≠
x a x, b x, c …,= = =

x                                   x                                    x                                  xa                                 a                                   a                                a

If the polynomial  is factorised and has a repeated (squared) factor , , 
and unique factors ,  , . . . so that

, where , 
the curve will touch the x–axis at x = a and cut the x–axis at each of the other 
points .
That is, at x = a the curve will look like one of

P x( ) x a–( )2
x b–( ) x c–( )

P x( ) x a–( )2 x b–( ) x c–( )…= a b c …≠ ≠ ≠

x b x, c …,= =

                                     x                                    x                                    a                                   a                                

If the polynomial  is factorised and has a repeated (cubed) factor , , 
and unique factors ,  , . . . so that

, where , 
the curve will cut the x–axis at x = a but with a change in concavity, i.e., there will 
be a stationary point of inflection at x = a and it will cut the x–axis at each of the 
other points .
That is, at x = a the curve will look like one of

P x( ) x a–( )3
x b–( ) x c–( )

P x( ) x a–( )3 x b–( ) x c–( )…= a b c …≠ ≠ ≠

x b x, c …,= =

                                     x                                    x                                    a                                   a                                
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3.6.2 CUBIC FUNCTIONS

We first consider the polynomial .
For a > 0 we have: For a < 0 we have:

All other cubic polynomials with real coefficients can be factorised into one of the following 
forms:

Some examples are shown below.

A cubic function has the general form .f x( ) ax3 bx2 cx d a 0 a b c d    ∈, , , ,≠,+ + +=

f x( ) ax3=

Stationary point of inflection

i.e., 3 identical real zeros, meaning three equal roots, and
so, a stationary point of inflection at x = k.

i.e., 2 identical real zeros and one other real zero,
meaning two equal roots and a third different root, so
that at x = k there is a turning point on the x–axis.

i.e., 3 distinct real zeros, meaning three different roots,
and so the curve will cut the x–axis at three different
points on the x–axis.

i.e., 1 real zero and an irreducible real quadratic,
meaning that there is only one root and so the curve cuts
the x–axis at only one point, x = k.

P x( ) a x k–( )3=

P x( ) a x k–( )2 x m–( )=

P x( ) a x k–( ) x m–( ) x n–( )=

P x( ) a x k–( ) x2 px q+ +( )=

P x( ) a x 1–( )2 x 4–( )= P x( ) a x 3–( ) x2 4x 5+ +( )=P x( ) a x 4–( ) x 8–( ) x 1+( )=

x                                                  x                                  3               x

y                                                          y                                                  ya > 0                                          a < 0                                       a > 0

–1            4            8
1           4

P x( ) x3 4x 2–+=

–2

y

x
Notice that in this case we cannot factorise the 
cubic into rational linear factors. The x–intercept 
can be found using the TI–83 (x = 0.4735 to 4 d.p.)
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The key to sketching polynomials is to first express them (where possible) in factored form. Once 
that is done we can use the results of §3.6.1. Of course, although we have only looked at the cubic 
function in detail, the results of §3.6.1 hold for polynomials of higher order than three.

(a) The polynomial  is already in factored form. As the factors
are unique, there are three distinct roots and so the curve cuts the x–axis at x = 1, x = –1
and x = 3.

As the leading coefficient is positive the graph has the basic shape:
The y–intercept occurs when x = 0, i.e., .

(b) The polynomial  is in factored form and has a repeated factor
 and a unique factor . That is, it has a double root at x = 1 and a single

root at x = –3. This means the curve will have a turning point on the x–axis at x = 1 and
will cut the x–axis at x = –3.

As the leading coefficient is positive the graph has the basic shape:
The y–intercept occurs when x = 0, i.e., .

(c) The polynomial  is in factored form with repeated factor . This 
means that there is a treble root at x = 2 and so, there is a stationary point of inflection
on the x–axis at x = 2.

As the leading coefficient is negative the graph has the basic shape:
The y–intercept occurs when x = 0, i.e., .

Sketch the graph of (a) .
(b) .
(c)

P x( ) x 1–( ) x 3–( ) x 1+( )=
P x( ) x 1–( )2 x 3+( )=
P x( ) 2 x–( )3=

E 3.19XAMPLE

S
o
l
u
t
i
o
n

P x( ) x 1–( ) x 3–( ) x 1+( )=

P 0( ) 1–( ) 3–( ) 1( ) 3= =

–1          1          3

Note: Turning point does not occur at (0,3).
(0,3)

y

x

P x( ) x 1–( )2 x 3+( )=
x 1–( )2 x 3+( )

P 0( ) 1–( )2 3( ) 3= =

(0,3)

y

x–3                1

P x( ) 2 x–( )3= 2 x–( )3

P 0( ) 2( )3 8= =
y

x
2

8
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Note: We leave the general discussion of the cubic polynomial function  to 
Chapter 5, except to state that this curve would look exactly like  but with its 
stationary point of inflection now located at (k, h).

(a) We have single roots at  and x = 2 and a double root at x = –1. This means that the
curve will cut the x–axis at x = 0.5 and x = 2 but will have a turning point at (–1, 0).
The y–intercept is given by .

We start by filling in the information on a set of axes and then sort of ‘join the dots’:

(b) We have a single root at  and a treble root at x = –1. This means that the
curve will cut the x–axis at x = –1 and will have a stationary point of inflection at (–1, 0).
The y–intercept is given by .

We start by filling in the information on a set of axes and then sort of ‘join the dots’:

(c) We have single roots at  and x = 1 and a treble root at x = –2. This means that the
curve will cut the x–axis at x = 0 and x = 1 and will have a stationary point of inflection
at (–2, 0).
The y–intercept is given by .

We start by filling in the information on a set of axes and then sort of ‘join the dots’:

f x( ) a x k–( )3 h+=
f x( ) ax3=

Sketch the graph of (a)
(b)
(c) .

P x( ) 2x 1–( ) x 1+( )2 x 2–( )=
P x( ) 1 x–( ) x 1+( )3=
P x( ) x x 2+( )3 x 1–( )=

E 3.20XAMPLE

S
o
l
u
t
i
o
n

x 1
2---=

P 0( ) 1–( ) 1( )2 2–( ) 2= =

y

x–1              1      2

2

y

x–1              1      2
(0,2)

Start by penciling possible cuts 
and turning points on the x–axis 
and include y–intercept:

Only possible combination 
of information leads to

x 1=

P 0( ) 1( ) 1( )3 1= =

Start by penciling possible cuts 
and turning points on the x–axis 
and include y–intercept:

y

x–1              1      2

1
y

x–1                1      
(0,1)

Only possible combination 
of information leads to

x 0=

P 0( ) 0( ) 2( )3 1–( ) 0= =

Start by penciling possible cuts 
and turning points on the x–axis 
and include y–intercept:

y

x–1              1      2

Only possible combination 
of information leads to

–2 –2         0          1

y

x
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So far we have looked at sketching graphs of polynomials whose equations have been in factored 
form. So what happens when a polynomial function isn’t in factored form? Well, in this case we 
first factorise the polynomial (if possible) and use the same process as we have used so far. We 
factorise the polynomial either by ‘observation’ or by making use of the factor theorem.

By observation, we have:
 

That is, .
This is in fact the same function as that in Example 3.19 (a) and so we have:

As always, we also have at our disposal the graphics calculator! 

We now look at obtaining the equation of a polynomial from a given set of information. If a graph 
of a polynomial has sufficient information, then it is possible to determine the unique polynomial 
satisfying all the given information.

(a) In this instance we have the curve cutting the x–axis at three distinct points, x = –2, x = 1
and x = 4, meaning that the function will have three distinct factors, namely, x + 2, x – 1
and x – 4.

Therefore, we can write down the equation , where a needs to be 
determined.
Using the point (0, –2) we have  = –2 .

Therefore, .

(b) In this instance we have the curve cutting the x–axis at one point, x = –3, and having a

Sketch the graph of .f x( ) x3 3x2– x– 3+=E 3.21XAMPLE

S
o
l
u
t
i
o
n

x3 3x2– x– 3+ x2 x 3–( ) x 3–( )–=
x2 1–( ) x 3–( )=
x 1+( ) x 1–( ) x 3–( )=

f x( ) x 1+( ) x 1–( ) x 3–( )=

–1          1          3
(0,3)

y

x

Determine the equation of the following cubic graphs
(a) (b) (c)

–2            1            4
–2 –3                2

4

    –1

(–2,4)

(3,–3)

y                                               y                                                   y

x    x           x

E 3.21XAMPLE

S
o
l
u
t
i
o
n

f x( ) a x 2+( ) x 1–( ) x 4–( )=

f 0( ) a 0 2+( ) 0 1–( ) 0 4–( )= 8a∴ 2 a⇔– 1
4---–= =

f x( ) 1
4---– x 2+( ) x 1–( ) x 4–( )=
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turning point at x = 2. Meaning that the function will have a single linear factor, x + 3,
and a repeated factor .

Therefore, we can write down the equation , where a needs to be 
determined.
Using the point (0, 4) we have  = 4 .

Therefore, .

(c) The only obvious information is that there is a turning point at x = –1 and so the
polynomial will have a repeated factor .

Therefore the polynomial will take on the form .
Then, to determine the values of a and b we use the coordinates (–2,4) and (3,–3).
At (–2,4):  – (1)
At (3,–3):  – (2)
Solving for a and b we have:
From (1)  and substituting into (2) we have 

Substituting into  we have .

Therefore, .

1. Sketch the graphs of the following polynomials
(a) (b)
(c) (d)

(e) (f)
(g) (h)
(i) (j)

(k) (l)
(m) (n)
(o) (p)
(q) (r)

(s) (t)

x 2–( )2
f x( ) a x 3+( ) x 2–( )2=

f 0( ) a 0 3+( ) 0 2–( )2= 12a∴ 4 a⇔ 1
3---= =

f x( ) 1
3--- x 3+( ) x 2–( )2=

x 1+( )2
f x( ) ax b+( ) x 1+( )2=

4 2a– b+( ) 2– 1+( )2 4⇔ 2a– b+= =
3– 3a b+( ) 3 1+( )2 3–⇔ 48a 16b+= =

b 4 2a+= 3– 48a 16 4 2a+( ) a∴+ 67
80------–= =

b 4 2a+= b 4 2 67
80------–  + 93

40------= =

f x( ) 67
80------– x 93

40------+   x 1+( )2 1
80------ 186 67x–( ) x 1+( )2= =

EXERCISES 3.6

P x( ) x x 2–( ) x 2+( )= P x( ) x 1–( ) x 3–( ) x 2+( )=
T x( ) 2x 1–( ) x 2–( ) x 1+( )= P x( ) x

3--- 1–   x 3+( ) x 1–( )=

P x( ) x 2–( ) 3 x–( ) 3x 1+( )= T x( ) 1 3x–( ) 2 x–( ) 2x 1+( )=
P x( ) x2 x 4–( )–= P x( ) 1 4x2–( ) 2x 1–( )=
T x( ) x 1–( ) x 3–( )2= T x( ) 1 x2---–   2 x 2+( )=

P x( ) x2 x 1+( ) 2x 3–( )= P x( ) 4x2 x 2–( )2=
P x( ) 1

2--- x 3–( ) x 1+( ) x 2–( )2= T x( ) x 2–( ) x 2+( )3–=
P x( ) x2 9–( ) 3 x–( )2= T x( ) 2x x 1–( ) x 3+( ) x 1+( )–=
P x( ) x4 2x3 3x2–+= T x( ) 1

4--- 4 x–( ) x 2+( )3=

T x( ) x3 x2 4–( )–= T x( ) 2x 1–( ) x2--- 1–   x 1–( ) 1 x–( )=
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2. Sketch the graph of the following polynomials
(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) (j)

3. Sketch the graph of 
(a)  where i. ii. .
(b)  where i. ii. .

4. Determine the equations of the following cubic functions

5. Determine the equation of the following functions

6. Sketch a graph of  if b > 0 and 
(a)
(b)
(c)

7. (a) On the same set of axes sketch the graphs of  and
. Find . 

(b) Hence find . 

P x( ) x3 4x2– x– 4+= P x( ) x3 6x2– 8x+=
P x( ) 6x3 19x2 x 6–+ += P x( ) x3– 12x 16+ +=
P x( ) x4 5x2– 4+= P x( ) 3x3 6x2– 6x 12–+=
P x( ) 2x4– 3x3 3x2 2x–+ += P x( ) 2x4 3x3– 9x2– x– 3+=
T x( ) x4 5x3– 6x2 4x 8–+ += T x( ) x4 2x3 3x2– 4x– 4+ +=

P x( ) x3 kx–= k b2= k b2–=
P x( ) x3 kx2–= k b2= k b2–=

(a) (b) (c)

–3            1            5
–1 –4                2

2 (1,3)
0                   3

(d) (e) (f)

(3,–10)–2
10

x                                                x                                                   x

y                                                y                                             y

–2 
–4

(4,–8)
2

(–1,6)

y     y        y

x x     x
3

(1,8)8

(a) (b) (c)

–2                  2
–8

0             3          5

(–2,4)
–2            1         3

–2

y y       y

x    x    x

f x( ) x b–( ) ax2 bx c+ +( )=
b2 4ac– 0 a 0 c 0>,>,=
b2 4ac– 0 a 0 c 0>,>,>
b2 4ac– 0 a 0 c 0>,>,<

f x( ) x a–( )3=
g x( ) x a–( )2= x y,( ) : f x( ) g x( )={ }

x: x a–( )3 x a–( )2>{ }
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4.1.1 THE BINOMIAL THEOREM

Bracketed expressions such as  are called ‘binomial’ because there are two terms in the 
bracket (the prefix bi- means two). Such expressions can be expanded using the distributive law. 
In a simple case such as  the distributive law gives:

The distributive law states that each term in the first bracket must be multiplied by each term in 
the second bracket.

The next most complicated binomial can be evaluated using the previous result:

Similarly, the fouth power of this simple binomial expression can be expanded as:

The calculations are already fairly complex and it is worth looking at these results for the 
underlying pattern. There are three main features to the pattern. Looking at the fourth power 
example above, these patterns are:

1. The powers of a. 
These start at 4 and decrease: . Remember that 

2. The powers of b. 
These start at 0 and increase: . Putting these two patterns together
gives the final pattern of terms in which the sum of the indices is always 4:

3. The coefficients complete the pattern. 
These coefficients arise because there is more than one way of producing most of
the terms. Following the pattern begun above, produces a triangular pattern of

THE BINOMIAL THEOREM4.1

C
H

A
P

T
E
R

 4

2x 3–( )7

a b+( )2

a b+( )2 a b+( ) a b+( )=
a2 ab ba b2+ + +=
a2 2ab b2+ +=

a b+( )3 a b+( ) a b+( )2=
a b+( ) a2 2ab b2+ +( )=

a3 2a2b ab2 a2b 2ab2 b3+ + + + +=
a3 3a2b 3ab2 b3+ + +=

a b+( )4 a b+( ) a b+( )3=
a b+( ) a3 3a2b 3ab2 b3+ + +( )=

a4 3a3b 3a2b2 ab3 a3b 3a2b2 3ab3 b4+ + + + + + +=
a4 4a3b 6a2b2 4ab3 b4+ + + +=

a4 a3 a2 a1 a0, , , , a0 1=

b0 b1 b2 b3 b4, , , ,

…a4 …a3b1 …a2b2 …a1b3 …b4+ + + +
4             3+1 = 4       2+2 = 4        1+3 = 4       4
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coefficients known as Pascal’s Triangle. Blaise Pascal (1623-1662) developed early
probability theory but is lucky to have this triangle named after him as it had been studied
by Chinese mathematicians long before he was born.

So, if we continue our expansions (up to and including the sixth power) we have the following:

  

Now consider only the coefficients for the above expansions. Writing down these coefficients we 
reproduce Pascal’s triangle:

       

etc.

The numbers in the body of the triangle are found by adding the two numbers immediately above 
and to either side.

An alternative to using Pascal’s Triangle to find the coefficients is to use combinatorial numbers. 
If expanding  the set of coefficients are:

which are the same as those given by Pascal’s Triangle.

Most calculators can do this. 

The TI-83 uses the MATH main menu command followed by the 
PRB (probability) sub-menu. 

x a+( )0
x a+( )1
x a+( )2
x a+( )3
x a+( )4
x a+( )5
x a+( )6

:
etc.

=
=
=
=
=
=
=
:

etc.

1
1x 1a+

1x2 2ax 1a2+ +
1x3 3x2a 3xa2 1a3+ + +

1x4 4x3a 6x2a2 4xa3 1a4+ + + +
1x5 5x4a 10x3a2 10x2a3 5xa4 1a5+ + + + +

1x6 6x5a 15x4a2 20x3a3 15x2a4 6xa5 1a6+ + + + + +
:

etc. 

1
1        1

1          2         1
1          3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

+

+ +

a b+( )5
5
0   1 5

1  , 5 5
2  , 10 5

3  , 10 5
4  , 5 5

5  , 1= = = = = =
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To calculate a combinatorial number such as , return to 
the ready mode and enter 5. Select nCr as previously described, press 
2 and press ENTER. 

In a case such as this in which it may be necessary to calculate a 
sequence of related combinatorial numbers, it is much quicker to use the replay and edit feature 
of the calculator (2nd ENTRY).

Or, we can represent nCr as a function. For example, we can set Y = 5nCrX, meaning that we 
now have a function of x, , x = 0, 1, ..., 5. 

(a)  Step 1: Making use of Pascal’s triangle we first determine the required coefficients:

Step 2: Write down each term:
                                     

Finally, combine the two steps:

Obviously, we can also combine the two steps into one:

And, with practice, you should be able to expand such expressions as we have just done.

What hapens if we have the difference of two terms rather than the sum? For example, what about 
expanding ? Well the process is the same except that this time we rewrite  as 
follows:

So, how do we proceed? Essentially in exactly the same way.

5
2   C5 2=

y 5
x  =

5
1  

5
3  

Expand x y+( )6E 4.1XAMPLE

S
o
l
u
t
i
o
n

1
1   2   1

1   3    3   11   4    6   4   11   5   10  10  5  1
1  6   15  20  15  6  1

x6y0 x5y1 x4y2 x3y3 x2y4 x1y5 x0y6

x6y0 6x5y1 15x4y2 20x3y3 15x2y4 6x1y5 x0y6+ + + + + +

x y+( )6 C6 0x6y0 C6 1x5y1 C6 2x4y2 C6 3x3y3 C6 4x2y4 C6 5x1y5 C6 6x0y6+ + + + + +=
x6y0 6x5y1 15x4y2 20x3y3 15x2y4 6x1y5 x0y6+ + + + + +=

x a–( )5 x a–( )5

x a–( )5 x a–( )+( )5=
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Step 1: Making use of Pascal’s triangle we first determine the required coefficients:

Step 2: Write down each term:
                         

i.e.,                                                                          

Combining the coefficients and the terms we have:

So basically the only difference is in the alternating negative sign.

(a) Step 1: Making use of Pascal’s triangle we first determine the required coefficients:

Step 2: Write down each term:
              

                                  –27

Combining steps one and two we have:

(b) As with (a), the term pattern must be built on (2x) and :

What about an expansion of the form ? How do we deal with this situation? Again, 
we use our two steps, however, as we did when we introduced a difference rather than a sum, we 
need to rearrange our expression slightly. We do this by writing  as  

1
1   2   1

1   3    3   11   4    6   4   11   5   10  10  5  1
1  6   15  20  15  6  1

Notice that Pascal’s triangle does not 
change due to the change in sign and so 
the coefficients remain the same whether 
it is a sum or difference.

x( )5 a( )0 x( )4 a–( ) x( )3 a–( )2 x( )2 a–( )3 x( )1 a–( )4 x( )0 a–( )5
x5 x4– a x3a2 x2a3– xa4 a5–

x a–( )5 x5 5x4a 10x3a2 10x2a3 5xa4 a5–+–+–=

Expand (a) (b)4x 3–( )3 2x 2
x---–   3E 4.2XAMPLE

S
o
l
u
t
i
o
n

1
1   2   1

1   3    3   11   4    6   4   11   5   10  10  5  1
1  6   15  20  15  6  1

4x( )3 4x( )2 3–( ) 4x( ) 3–( )2 3–( )3
64x3 48x2– 36x

4x 3–( )3 1 64x3× 3 48x2–× 3 36x× 1 27–×+ + +=
64x3 144x2– 108x 27–+=

2
x---–

2x 2
x---–   3 1 2x( )3× 2

x---–   0 3 2x( )2× 2
x---–   1 3 2x( )1× 2

x---–   2 1 2x( )0× 2
x---–   3+ + +=

8x3 24x– 24
x------

8
x3-----–+=

x 2y 1+ +( )4

x 2y 1+ +( )4 x 2y 1+( )+( )4
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and treating the sum as one made up of ‘ ’ and ‘ ’. So, we have:

Step 1: Making use of Pascal’s triangle we first determine the required coefficients:

Step 2: Write down each term:
                    

Now, the first two terms are easy enough
          

In fact, the third term is not all that bad either:

The fourth term, well we need to use Pascal’s triangle again, which will lead to:

Similarly for the fifth term:

Then, combining the coefficients with step 2 we have:

+ 

Which still needs to be expanded and then (hopefully) simplified. However, we stop here and 
leave the final simplification to you – if you feel up to it. The purpose was more to do with how to 
deal with an expansion that involves the sum of three terms instead of two. Of course, we can then 
extend this to an expansion involving the sum of four terms and so on.

1. Expand the following binomial expressions:

(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

(j) (k) (l)
(m) (n) (o) 

(p) (q) (r)

x( ) 2y 1+( )

1
1   2   1

1   3    3   11   4    6   4   11   5   10  10  5  1
1  6   15  20  15  6  1

x( )4 x( )3 2y 1+( ) x( )2 2y 1+( )2 x( ) 2y 1+( )3 2y 1+( )4

x4 2x3y x3+

x2 4y2 4y 1+ +( ) 4x2y2 4x2y x2+ +=

x 8y3 12y2 6y 1+ + +( ) 8xy3 12xy2 6xy x+ + +=

2y 1+( )4 16y4 32y3 24y2 8y 1+ + + +=

1 x4× 4 2x3y x3+[ ] 6 4x2y2 4x2y x2+ +[ ] 4 8xy3 12xy2 6xy x+ + +[ ]×+×+×+
1 16y4 32y3 24y2 8y 1+ + + +[ ]×

EXERCISES 4.1.1

b c+( )2 a g+( )3 1 y+( )3
2 x+( )4 2 2x+( )3 2x 4–( )3
2 x

7---+   4 2x 5–( )3 3x 4–( )3

3x 9–( )3 2x 6+( )3 b 3d+( )3
3x 2y+( )4 x 3y+( )5 2p 5

p---+   3

x2 2
x---–   4 q 2

p3-----+   5 x 1
x---+   3
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4.1.2 THE GENERAL TERM

We have already seen the relationship between Pascal’s triangle and its combinatorial equivalent. 
From this relationship we were able to produce the general expansion for . That is,

Where the first term,  = 

            the second term,  = 

            the third term,  = 
:      :
:      :

            the rth term,  = 

and the (r + 1)th term,  = 

It is common in examinations for questions to only ask for a part of an expansion. This is because 
the previous examples are time consuming to complete.

The fifth term is given by . Using the general term, this means that .
For this expansion we have that n = 10, therefore, 

 
Therefore the fifth term is .

x a+( )n

  x a+( )n n
0   xn n

1   xn 1– a n
2   xn 2– a2 … n

r   xn r– ar … an  + + + + + +=

t1 n
0   xn

t2 n
1   xn 1– a

t3 n
2   xn 2– a2

tr
n

r 1–   xn r 1–( )– ar 1–

tr 1+
n
r   xn r– ar

The (r +1)th term is also know as the general term. That is
  tr 1+

n
r   xn r– ar=

Find the 5th term in the expansion , when expanded in descending 
powers of x.

x 2
x---+   10E 4.3XAMPLE

S
o
l
u
t
i
o
n

t5 r 1+ 5 r⇔ 4= =

t5 10
4   x( )10 4– 2

x---   4 210 x6 16
x4------××= =

3360x2=
t5 3360x2=
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The general term for this expansion is given by 

      = 
Seeing as we want the term involving  we equate the power of x in the general term to 12:
So, .
Then, . So, the coefficient of  is in fact 112.

In this case we want the term independent of x, that is, the term that involves .
Again, we first find an expression for the general term, 

  

  

  
Notice how we had to separate the constants and the x term.
Next, we equate the power of x in the expansion to 0: .
We therefore want .
So, the term independent of x is 240.

i.  can be approximated using the expansion of  and an x value of 0.01
 using the first three terms of the series.

ii. The correct answer can be found using the power key of a calculator and is  

Find the coefficient of  in the expansion .x12 x2 2–( )8E 4.4XAMPLE

S
o
l
u
t
i
o
n

tr 1+
8
r   x2( )8 r– 2–( )r=
8
r   x16 2r– 2–( )r

x12
16 2r– 12 2r⇔ 4 r⇔ 2= = =

t3 8
2   x16 4– 2–( )2 2 8( ) x12× 4× 112x12= = = x12

Find the term independent of  in the expansion .x 2x 1
x2-----–   6E 4.5XAMPLE

S
o
l
u
t
i
o
n

x0

tr 1+
6
r   2x( )6 r– 1

x2-----–   r=

6
r   2( )6 r– x( )6 r– 1–( )r x 2–( )r=
6
r   26 r– 1–( )rx6 r– 2r–=
6
r   26 r– 1–( )rx6 3r–=

6 3r– 0 r⇔ 2= =
t3 6

2   26 2– 1–( )2x6 6– 15 16 1 x0××× 240= = =

Write the expansion of 
i. Use the first three terms of the series to approximate 
ii. Find the absolute, relative and percentage errors in making this  approximation.

1 x+( )6
1.016

E 4.6XAMPLE

S
o
l
u
t
i
o
n

1 x+( )6 1 6x 15x2 20x3 15x4+ + + += 6x5 x6+ +

1.016 1 x+( )6
1.016 1 6 0.01 15 0.012×+×+≈ 1.0615=



MATHEMATICS – Higher Level (Core)

102

1.061520150601. It is probable that most calculators will not be able to display the 12 decimal 
places of the full answer. An answer such as 1.0615201506 is sufficient for the remaining part of 
this problem

The absolute error = 

The relative error 

The percentage error %

1. Find the terms indicated in the expansions of the following expressions:

Expression Term
(a)
(b)
(c)
(d)
(e)
(f)
(g) p

2. Find the coefficients of the terms indicated in the expansions of the following expressions:

Expression Term
(a)
(b)
(c)
(d)
(e)

(f)

3. Use the first three terms in the expansion of  to find an approximate value for
. Find the percentage error in using this approximation.

4. (i) Write the expansion of .
(ii) Use the first three terms of the expansion to approximate .

1.0615 1.0615201– 2.015 10 5–×≈

2.015 10 5–×
1.016------------------------------ 1.898 10 5–×≈ ≈

1.898 10 5–× 1.898 10 3–×≈ ≈

EXERCISES 4.1.2

x 4+( )5 x3
x y+( )7 x5y2
2x 1–( )8 x3
3x 2–( )5 x4
2 3p2–( )4 p4

2p 3q–( )7 p2q5

3p 2
p---–   7

2x 5–( )8 x3
5x 2y–( )6 x2y4
x 3+( )6 x3
2p 3q–( )5 p4q
2x 3

p---–   8 x2
p6-----

q 2
p3-----+   5 q3

p6-----

1 x+( )4
1.014

5 2x+( )6
5.26
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(iii) Find the absolute error in this approximation.
(iv) Find the percentage error in this approximation.

5. Find the coefficient of  in the expansion of .

6. Find the constant term in the expansion of .

7. Find the constant term in the expansion of .

8. Find the term independent of x in the expansion of .

9. Find the term independent of x in the expansion of .

10. In the expansion of , where a is a non-zero constant, the

 coefficient of the term in  is ‘–9’ times the coefficient in . Find the value of
 the constant a.

11. If the coefficient of the  in the expansion of  is 90, find n.

12. Three consecutive coefficients in the expansion of  are in the ratio 6 : 14 : 21.
Find the value of n.

13. Find the independent term in the following expansions
(a) (b)

14. In the expansion of  the first term is 1, the second term is  and the third term
is . Find the values of a and n.

15. In the expansion of  the coefficient of  is –9 and there is no  term.
Find a and b.

16. By considering the expansion of , prove that:
(a)
(b)

x 3– x 1–( )3 1
x--- x+   6

x 1
2x------–   10

3x 1
6x------–   12

2 x–( )3 1
3x------ x–   6

2x 1
x---–   6 1

2x------ x+   6

x a
x---–   5 x a

x---+   5

x 2– x2

x2 1 3x–( )n

1 x+( )n

y 1
y---+   3 y 1

y---–   5 2x 1 1
2x2--------–+   6

1 ax+( )n 24x
252x2

x a+( )3 x b–( )6 x7 x8

1 x+( )m n+

Cm n+
1 Cm

1 Cn
1+=

Cm n+
2 Cm

2 Cm
1 Cn

1 Cn
2+ +=
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Note: This proof by induction is outside the scope of the syllabus.
A formal statement of the binomial expansion is:

 = 
The binomial theorem for positive integral index may be proved using mathematical induction. 
A preliminary result from combinatorics is required, namely . We leave its 
proof as an exercise. We can now move on to the main induction proof:

(i) Check the case k = 1: , which is true.

(ii) Assume the theorem is true for n = k:

(iii) Look at the n = k + 1. This involves multiplying each term in the expansion from (ii) first
by a and then by b. To see what happens to the general term, it is a good idea to look at two
consecutive terms in the middle of the expansion from (ii):

When this expansion has been multiplied by a, the result is: 

and when it is multiplied by b, the result is:

The expansion of  begins with , which is correct. The 
expansion ends with , which is also correct.

It now remains to prove that the general term in the middle of the expansion is also correct. 
Lining up like terms from the two parts of the expansion gives:

        
The general term is: 
  
[Using the combinatorial result given at the start of this section].

(iv) We can conclude that the binomial theroem gives the correct expansion for n = 1 from part
(i). Part (iii) indicates that the theorem gives the correct expansion for an index of 2, 3 etc.
Hence the theroem holds for all positive integral indices.

PROOF4.2

a b+( )k Cn
0akb0 Cn

1ak 1– b1 … Cn
rak r– br … Cn

ka0bk+ + + + += Cn
ran r– br

r 0=

n
∑

Cn
r Cn

r 1–+ Cn 1+
r=

a b+( )1 C1 0a1 C1 0b1+ a b+= =

a b+( )k Ck
0akb0 Ck

1akb1 … Ck
rak r– br … Ck

ka0bk+ + + + +=

a b+( )k Ck
0akb0 … Ck

r 1– ak r– 1+ br 1– Ck
r+ ak r– br … Ck

ka0bk+ + + +=

Ck
0ak 1+ b0 … Ck

r 1– ak r– 2+ br 1– Ck
r+ ak r– 1+ br … Ck

ka1bk+ + + +

Ck
0akb1 … Ck

r 1– ak r– 1+ br Ck
r+ ak r– br 1+ … Ck

ka0bk 1++ + + +

a b+( )k 1+ Ck
0ak 1+ b0 ak 1+ b0 ak 1+= =

Ck
ka0bk 1+ a0bk 1+ bk 1+= =

Ck
r 1– ak r– 2+ br 1– Ck

r+ ak r– 1+ br

Ck
r 1– ak r– 1+ br 1– Ck

r+ ak r– br 1+

Ck
rak r– 1+ br Ck

r 1– ak r– 1+ br+ Ck
r Ck

r 1–+[ ] ak r– 1+ br( )=
Ck 1+

rak r– 1+ br=
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5.1.1 RELATIONS

Consider the relationship between the weight of five students and their ages as shown below.

We can represent this information as a set of ordered pairs. 
An age of 10 years would correspond to a weight of 31kg. An 
age of 16 years would correspond to a weight of 53kg and so 
on.

This type of information represents a relation between two 
sets of data. This information could then be represented as a set 
of ordered pairs,

The set of all first elements of the ordered pair is called the domain of the relation and is 
referred to as the independent variable. The set of all second elements is called the range and 
is referred to as the dependent variable. 

For the above example, the domain = 
and the range = .

Notice that  and  are not the same! This is because the ordered pair  
provides the correct relation between age and weight, i.e., at age 10 years the weight of the 
student is 31kg. On the other hand, the ordered pair  would be informing us that at age 31 
years the weight of the student is 10kg!

(a) The domain is the set of all first elements, i.e., {0, 1, 2, 3, 4, 5}.
The range is the set of all second elements, i.e., {0, 1, 4, 9, 16, 25}.

(b) The domain is the set of all first elements, i.e., {–3, –1, 2, –2}.
The range is the set of all second elements, i.e., {4, 0, –2, 2}

RELATIONS5.1

C
H

A
P

T
E
R

 5

Age (years) Weight (kg)
10 31
12 36
14 48
16 53
18 6510 31,( ) 12 36,( ) 14 48,( ) 16 53,( ) 18 65,( ), , , ,{ }

10 12 14 16 18, , , ,{ }
31 36 48 53 65, , , ,{ }

10 31,( ) 31 10( , ) 10 31,( )

31 10( , )

Set of ordered pairs {(x, y)}Domain                                            range  defining
relationship

x–value                                  y–value
corresponds to

[independent variable]                    [dependent variable]

Summary:

Determine the domain and range for each of the following relations:
(a) .
(b) .

0 0( , ) 1 1( , ) 2 4( , ) 3 9( , ) 4 16( , ) 5 25( , ), , , , ,{ }
3– 4( , ) 1– 0( , ) 2 2–( , ) 2– 2( , ), , ,{ }

E 5.1XAMPLE

S
o
l
u
t
i
o
n
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The letter ‘X’ is often used to denote the domain and the letter ‘Y’ to denote the range. For part 
(a) this means that we could write X = {0, 1, 2, 3, 4, 5} and Y = {0, 1, 4, 9, 16, 25} and for  (b)  
we could write X = {–3, –1, 2, –2} and Y = {4, 0, –2, 2}.
This is a convention, nothing more.

Rather than giving a verbal description of how the independent variable and the dependent 
variable are related, it is much clearer to provide a mathematical rule that shows how the 
elements in the range relate to the elements in the domain.

(a) The domain of this relation is given by the x–values, i.e., {0, 1, 2, 3, 4}. We can 
therefore substitute these values into the equation y = x + 2 and determine their

 corresponding y–values. This will provide the range of the relation.
Substituting we have,

, and so on.
This produces a set of y–values {2, 3, 4, 5, 6} that defines the range.

(b) The set of ordered pairs would be {(0, 2), (1, 3), (2, 4), (3, 5), (4, 6)}.

Notice that we can describe the set of ordered pairs more formally as:
.

which is read as; 
“The set of ordered pairs x and y, such that y = x + 2, where

x is  an element of the set of values {0, 1, 2, 3, 4}.”

The information in Example 5.2 can be displayed in different ways. Both those shown below are 
visual displays – they show the mappings in different ways:

A relation is defined by the rule . 
(a) Determine the range of this relation.
(b) Express this relation as a set of ordered pairs.

y x 2 where x 0 1 2 3 4, , , ,{ }∈,+=E 5.2XAMPLE

S
o
l
u
t
i
o
n

x 0 y⇒ 0 2+ 2= = =
x 1 y⇒ 1 2+ 3= = =
x 2 y⇒ 2 2+ 4= = =

x y( , ):y x 2 x 0 1 2 3 4, , , ,{ }∈,+={ }

Mapping diagram
The mapping diagram below displays which 
y–value corresponds to a given x–value.

However it is often not easy to see the ‘pattern’ 
between the variables with this style of diagram.

Cartesian Plane
  The Cartesian plane is made up of a horizontal 
  axis (independent variable, X) and a vertical 
  axis (dependent variable,Y).

We plot the points on the grid, so that (3, 5) is 3 
units to the right and 5 units up.

0                       2
1                      3
3                    5
4                      6
2                        4

Domain (X)    Range (Y)
1
23
45
6

1  2  3 4 0 X

Y
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Notice that in the mapping diagram that uses the Cartesian plane, we have not joined the points 
together in a straight line. This is because the domain specifies that the only values of x that can 
be used must be from the set {0, 1, 2, 3, 4}, and so a value such as x = 2.4 cannot be used.

Both these visual representations are useful in displaying which values in the domain generate a 
given value in the range.  However, the Cartesian plane more readily gives a quick overview of 
what the underlying relationship between the two variables is. It is very easy (and quick) to see 
that as the x–values increase, so too do the y–values. We can do this by simply looking at the 
points on the graph and observing the ‘trend’ without really concerning ourselves with what the 
actual values are. 

We now provide a formal definition of the Cartesian plane and a relation.

5.1.2 THE CARTESIAN PLANE

The set of all ordered pairs (x, y), where  and  can also be defined by making use of 
the Cartesian product, .

Relation

A relation is any subset of the Cartesian plane and can be 
represented by a set of ordered pairs , where
the Cartesian product  ( =  ) represents the region 
covered by the whole of the Cartesian plane.

We now consider some further examples.

Note: When finding the range of a relation, it is always a good idea to sketch its graph.
(a) The equation  represents a straight line

with the restriction that . So in this case, the domain
is [0, ∞) (or . 
From the graph, the range is given by [2, ∞) (or .

The Cartesian plane is formed by constructing two real lines that 
intersect at a right-angle where the point of intersection of these two 
lines becomes the origin. The horizontal real line is usually referred 
to as the x–axis and the vertical real line is usually called the y-axis. 
This also implies that the plane has been divided into four 
quadrants. Each point on this plane is represented by an ordered 
pair (x, y) where x and y are real numbers and are the coordinates of 
the point.

y–axis

x–axisO

quadrant     quadrant

quadrant     quadrant

2nd           1st

3rd           4th

x X∈ y Y∈
X Y× x y,( ): x X y Y∈,∈{ }=

y

xO

(x, y)x y,( ){ }     ×⊆
    ×    2

Determine the domain and range of the following relations
(a) (b) (c)y 2 x x 0≥,+= y 4 x 1 x 2≤ ≤–,–= y 1 x2 x 0≥,–=

E 5.3XAMPLE

S
o
l
u
t
i
o
n O

y

x
2

y = x + 2, x ≥ 0

ran
ge

domain

y 2 x x 0≥,+=
x 0≥

0 ∞  )[,[
2 ∞  )[,[
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(b) The equation  represents a straight
line with the restriction that –1 ≤ x ≤ 2. So in this case, the
domain is [–1, 2]. 
when x = –1, y = 5 and when x = 2, y = 2
From the graph, the range is given by [2,5].

(c) For this relation the domain is specified as  or
simply [0, ∞). So we can only sketch the graph of ,
for these values of x. Using the graph we can see that the range
is  or simply (–∞, 1].

5.1.3 IMPLIED DOMAIN

So far we have looked at examples for which a domain has been specified. For example, if asked 
to find the range of the relation . Then, after sketching its graph, we would 
determine its range to be [10, ∞). However, what if we only wanted to know the range of the 
relation ? In this case, because we have not been provided with any restriction on the 
x–values, we will need to assume that we can use the largest possible set of x–values for which 
the relation is defined – this domain is known as the implied domain (or maximal domain) – in 
this case that would be the real number set, . Then, after sketching the graph of  for 
all real values of x we would have a range defined by [1, ∞).

(a) Using the TI–83 to sketch the graph of  (i.e., the
square root relation) we observe that its domain is [3, ∞).

Now, let’s take a closer look at why that is the case.
Because we are dealing with an expression that involves a square root, 
then, the term ‘inside’ the square root must be greater than or equal to 
zero (as we cannot take the square root of a negative number).

So, we must have that . Therefore, the implied domain is . 
From the graph, the range can be seen to be [0, ∞).
It should be noted that the TI–83 uses the implied domain when graphing. Also realise that from 
the sketch, we could be misled into thinking that there is a ‘gap’ at the point (3, 0). Be careful 
with this – use the graphics calculator as an aid, then, double check to make sure.

y

x2

5

–1

2ran
ge

domain

y 4 x 1 x 2≤ ≤–,–=

x:x 0≥{ }
y

x

1

10

ran
ge

domainy 1 x2–=

y:y 1≤{ }

y 1 x2 x 3≥,+=

y 1 x2+=

   y 1 x2+=

Determine the domain and range of the following relations
(a) (b) (c)y x 3–= y 2

x 3–----------------= y 3
2 x–-----------=

E 5.4XAMPLE

S
o
l
u
t
i
o
n

y x 3–=

x 3 0 x 3≥⇔≥– x: x 3≥{ }
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(b) The equation  represents the reciprocal of a square

root relation. As in (a), we must have that . 

However, this time we have another restriction – we cannot divide by 
zero and so we cannot include x = 3 in our domain. So , at x = 3, we
draw an asymptote.

We then have . This leads to a range of (0, ∞) (or ]0, ∞[).
(c) The only restriction that can be readily seen for the relation

 is that we cannot divide by zero and so, we must 
have that 2 – x ≠  0. That is, x ≠ 2. 

As it is a reciprocal relation, we have an asymptote at x = 2. So, the 
domain is given by  or simply, . 
The range can then be seen to be 

5.1.4 TYPES OF RELATIONS

Relations fall into one of four categories. These are:

1. One to one relations [one x to one y]

For any one value of x, there will be
only one corresponding value of y.

2. One to many relation [one x to many y]

There is at least one value of x for which
there exists more than one corresponding
value of y.

3. Many to one relation [many x to one y]

There are at least two different values of x that
will correspond to only one value of y.

4. Many to many [many x to many y]

There are at least two different values of x that
will correspond to at least two different values 
of y.

x = 3

y 2
x 3–----------------=

x 3 0 x 3≥⇔≥–

x 3 0 x 3>⇔>–

asymptote
x = 2

y 3
2 x–-----------=

]–∞, 2 [ ] 2,∞ [∪    \ 2{ }
   \ 0{ }

There is only one y–value 
for any given x–value.

There is one x-value for 
two y-values.

There are three x–values 
to one y–value.

There are two x–values for 
two y–values.

x1

x1

x1

x1 x2

x2 x3

y1

y1

y1

y1

y2

y2

y

y

y

y

x

x

x

x
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5.1.5 SKETCHING WITH THE GRAPHICS CALCULATOR

Why do graphs sometimes appear distorted on the graphics calculator display screen?

On most graphics calculators, the display screen is two thirds as high as it is wide. Because of 
this, when we graph a relation that describes a circle we obtain a diagram that is not a true 
geometric representation. To obtain a true geometric representation we need to use a window that 
produces a square setting. This is done by using the fact that .
For example, the window alongside shows such a setting:
i.e., 

These settings enable us to obtain a true geometric representation of 
the circle with equation . 
Re–arranging the equation to make y the subject, we have, . 
We can now graph the equations  and .
We enter both the positive and the negative equations [we do this using the VARS option]. Then 
we use the above window settings. Finally press the GRAPH command.

The final output is:

Using the window setting shown below, we obtain a distorted graph, as shown below:

NB: You can also use the ZOOM options 4:ZDecimal or 5:ZSquare to generate correct graphs.

Ymax Ymin–
Xmax Xmin–----------------------------- 2

3---=

Ymax Ymin–
Xmax Xmin–----------------------------- 4 4–( )–

6 6–( )–--------------------
8
12------

2
3---= = =

x2 y2+ 16=
x2 y2+ 16 y⇒ 16 x2–±= =

y 16 x2 –= y 16 x2––=

Determine the domain and range of the following relations.
(a) .
(b) y > 2 – x, x < 0.
(c)

x2 y2+ 4=

y 2
x2 1+-------------- 1 x 2<≤–,=

E 5.5XAMPLE
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(a) The relation  represents a circle of radius 2
units with its centre at the origin. 

Note that we can only use values of x between –2 and 2. 
For example, if we have x = 3, then we must have  

 for which there are no real solutions.
Therefore, the domain is –2 ≤ x ≤ 2 (or [–2, 2]).
The range is –2 ≤ y ≤ 2 (or [–2, 2]).
(b) This time we have a subset of the cartesian plane.

That is, we are defining a region in the plane as opposed
to a set of points lying on a curve.

The domain has already been set as {x : x < 0} (or ]–∞, 0[ ).
From our sketch, we see that the range is {y : y > 2} (or ]2, ∞[ ).

(c) This time we make use of the TI–83 to sketch the graph:

The domain has already been specified as [–1, 2[, meaning that we 
include the value x = –1 (which generates a y–value of 1) but exclude 
the value x = 2 (which would have produced a y–value of  = 0.4).
From the sketch, the range is therefore ]0.4, 2].

NB: Had we been given the relation  without a specified domain, then its implied 
domain would be ]–∞, ∞[. This time, unlike Example 5.4 (b), as   will always be greater 
than or equal to one, there is no danger of ever dividing by zero (for any value of x). This would 
have then produced a range ]0, 2].

One of the key steps in determining properties of a relation is the ability to sketch its graph. We 
have already dealt with polynomials, however, there are many other relations that you will need to 
be able to sketch. The fact that you have access to a graphics calculator will make it easier for you 
to sketch graphs, however, it is still important that you have a ‘feel’ for the shape of some 
standard relations. We will deal with a number of relations in detail throughout this book, so, at 
this stage we will provide a ‘bank’ of the graphs for some standard relations.

Relation Properties
1.  Linear relation [straight line]
2. Case (a):   m > 0, 
                      y–intercept at (0, c)
                      increasing
    Case (b):   m < 0
                      y–intercept at (0, c)
                      decreasing

y

x

2

2–2

–2

0

S
o
l
u
t
i
o
n

x2 y2+ 4=

9 y2+ 4 y2⇒ 5–= =

y

x

2

2

Notice the 
open circle.

O

1
0.4

2

–1                          2

ran
ge

2
5---

y 2
x2 1+--------------=

x2 1+

y mx c+=y                                   y

x                                   x
(a)                               (b)

c

c
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Relation Properties
1. Quadratic relation [parabola]
2. Case (a):   a > 0, 
                      y–intercept at (0, c)
                      axis of symmetry at .
    Case (b):   a < 0
                      y–intercept at (0, c)
                      axis of symmetry at .
1. Polynomial relation (of order 3) [cubic]
2. Case (a):   a > 0, 
                      y–intercept at (0, d)
                     
    Case (b):   a < 0
                      y–intercept at (0, d)
                      

1. Exponential relation [exponential]
2. Case (a):   a > 0, k > 0
                      asymptote at y = c 
                      increasing
    Case (b):   a < 0
                      asymptote at y = c
                      decreasing

NB: If a < 0, then graphs of  is 
       first reflected about the x – axis.
1. Reciprocal relation [rectangular hyperbola]
2. Case (a):   a > 0, 
                      asymptote at y = c and x = b 
    Case (b):   a > 0, k < 0
                      asymptote at y = c and x = b 

1. Square root relation [sideways parabola]
2. Case (a):   a > 0, 
                      y–intercept at (0, b)
                     increasing
    Case (b):   a < 0
                      y–intercept at (0, b)
                      decreasing
NB:  is a sideways parabola, 
       is only ‘half’ of a sideways parabola.

y ax2 bx c+ +=
y                                      y

x                                      x
(a)                                 (b)

cc
x b

2a------–=

x b
2a------–=

y ax3 bx2 cx d+ + +=
y                                      y

x                                      x
(a)                                 (b)

d

d

y a bkx c+×=
y                                      y

x                                      x
(a)                                 (b)

c c

y a bkx×=

y a
x b–----------- c+=

y                                      y

x                                      x

(a)                                 (b)

c
b

c
b

y a x b+=
y                                      y

x                                      x
(a)                                 (b)

b b

y2 x= y x=
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Remember, this ‘bank’ of relations is a mere sample of possible relations and are not necessarily 
given in their most general form.

1. State the domain and range of the following relations.
(a)
(b)
(c)

2. Find the range for each of the following.
(a) (b)
(c) (d)
(e) (f)
(g) (h)

Relation Properties
1.  Logarithmic relation [log curve]
2. Case (a):   a > 0, b > 1
                      asymptote at x = c 
                      increasing
    Case (b):   a < 0, b > 1
                      asymptote at x = c 
                      decreasing

1. Reciprocal squared relation [truncus]
2. Case (a):   a > 0, 
                      asymptote at y = c and x = b 
    Case (b):   a < 0 
                      asymptote at y = c and x = b 

1. Circular relation [circle]
2. Radius r 
3. Centre at (a, b)

NB: The equation 
        can be rewritten as
                    
       with the positive root representing the top
       half and the negative root the bottom half.

y a x c–( )blog=
y                                  y

x                                    x
(a)                                       (b)

c c

y a
x b–( )2------------------- c+=

y                                      y

x                                      x

(a)                                 (b)

c
b

c

b

x a–( )2 y b–( )2+ r2=

y 

xa

b r x a–( )2 y b–( )2+ r2=

y r2 x a–( )2– b+±=

EXERCISES 5.1

2 4( , ) 3 9–( , ) 2– 4( , ) 3 9( , ), , ,{ }
1 2( , ) 2 3( , ) 3 4( , ) 5 6( , ) 7 8( , ) 9 10( , ), , , , ,{ }
0 1( , ) 0 2,( ) 1 1( , ) 1 2( , ), , ,{ }

x y( , ):y x 1 x +∈,+={ } x y( , ):y x x 0≥,≥{ }
y x2 2x 1 x 2>,+ += y 2x x2 x ∈,–=
x2 y2+ 9 3 x 3≤ ≤–,= x2 y2– 9 x 3≥,=
y x 1 0 x 1≤<,–= y 4 x2 2 x 1<≤–,–=
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(i) (j)
(k) (l)

3. State the range and domain for each of the following relations.

4. What types of relation are the following?

5. Determine the implied domain for each of the following relations.
(a) (b) (c)

(d) (e) (f)

(g) (h) (i) , a > 0

(j) (k) (l) , a > 0

y x x 0≥,= y x 1 x 25≤ ≤,=
y 4

x 1+------------ x 0>,= x y( , ):y2 x x 1≥,={ }

3

x0–4

y

4

x

y

0

0 1 2
–2

y

x –3 3

y

x0
4

(4,0)

y

x

x

y

x = 2–1

–1

(d)                                             (e)                                             (f)

(a)                                             (b)                                             (c)

x0

y

x

y

0

y

x

y

x

y

x

x

y

(d)                                             (e)                                             (f)

(a)                                             (b)                                             (c)

y 2x
x 2+------------= y 3

9 x–----------------= y 16 x2–=

y x2 4–= xy x– 3= y 2
x2 1+--------------=

y 2
x3 1+--------------= y x a+ a 0>,= y a

x a–----------------=

x2 y2– a2= y2 x2– a2= axy y x–+ a=
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6. Find the range of the following relations.
(a) (b)

(c) (d)

(e) (f)

(g) (h) , a < 0

5.2.1 DEFINITIONS

There is a special group of relations which are known as functions. This means that every set of 
ordered pairs is a relation, but every relation is not a function. Functions then make up a subset 
of all relations.

A function is defined as a relation that is either one to one or many to one. That is a function is a 
relation for which no ordered pairs have the same first element. 

There are two ways to determine if a relation is a function.

Method 1: Algebraic approach
For Method One we use the given equation and determine the number of y–values
that can be generated from one x–value.

(a) From  we have that , then for any given value of x, say x = a, we
have that  which will only ever produce one unique y–value.
Therefore, the relation  is a function. In fact, it is a one to one function.

(b) From  we have that . Then, for any given value of 
x, say x = a (where a ≤ 2), we have that , meaning that we have two 
different y–values;  and , for the same x–value. Therefore, this
relation is not a function. In fact, it is a one–to–many relation.

y x a x 0 a 0>,<,–= y ab
x 1+------------ x 0 ab 0>,≥,=

y a2x ax2 x 1
2---a a 0>,≥,–= y a2x ax2 x 1

2---a a 0<,≥,–=

y a
x--- a a 0>,+= y a a

x2----- a 0>,–=

y 2 x a– a a 0>,–= y 2a
a2 x–

------------------=

FUNCTIONS5.2

RelationsFunctions

Determine which (if any) of the following are functions.
(a) (c)y3 x– 2= y2 x+ 2=

E 5.6XAMPLE

S
o
l
u
t
i
o
n

y3 x– 2= y 2 x+3=
y 2 a+3=

y3 x– 2=

y2 x+ 2= y2 2 x y⇔– 2 x–±= =
y 2 a–±=

y1 2 a–= y2 2 a––=
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Method 2: Vertical line Test
The method is quite simple:

Step 1 Sketch the graph of the relation.
Step 2 Make a visual check of the number of times a vertical line would cut

the graph.
Step 3 If the vertical line only ever cuts at one place for every value in the

domain the relation is a function.

(a) Clearly, we have every first element of the ordered pairs different. This means that this
relation is also a function.

(b) Using the TI–83 to provide a visual check:
From the graph shown, a vertical line drawn anywhere on the
domain for which the relation is defined, will cut the graph at
only one place.  
This relation is therefore a function.

(c) Again we make use of a visual approach to determine if the 
relation is a function.
First we write the relation in a form that will enable us to enter
it into the TI–83: 
We can therefore define the relation 
and sketch both on the same set of axes. 
Placing a vertical line over sections of the domain shows that the line cuts the graph in two
places (except at the origin). Therefore this relation is not a function.

Algebraic proof
We can also determine if a relation is a function by using algebraic means. 

y

x

No matter where 
along the graph we 
draw a vertical line, 
the graph will only 
ever be cut once. 
Therefore this 
relation is a function.

Only one cut (anywhere)

y

x

The vertical line has cut 
the graph at more than 
one point for a given 
value of x. Therefore this 
relation is a not function.

Vertical has cut the graph
at three different points
for the same x–value.

Function                                                            Not a function

Which of the following defines a function?
(a) (b)
(c) (d)

0 2( , ) 1 2( , ) 2 1( , ), ,{ } x y,( ): y x3 1 x    ∈,+={ }
y2 x x 0≥,= x y( , ):x2 y2+ 16={ }

E 5.7XAMPLE
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Cuts graph twice

y2 x y⇒ x±= =
Y1 X andY2 X–= =
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Begin by choosing a value of x that lies in the domain. For example x = 4. 
This gives the following equation: 
From which we can say that when x = 4, y = 2 and y = –2, so that there are two ordered
pairs, (4,2) and (4, –2). As we have two different y-values for one x-value this relation is
not a function. 

(d) This relation describes the equation of a circle with
radius 4 units and centre at the origin. 
The graph of this relation is shown alongside. The graph
fails the vertical line test, and so is not a function.

We now provide a formal definition together with commonly used notation for a funcion.

The set X is called the domain of f and the set Y the 
co-domain. The element y is called the image of x 
under f  and we denote this image by , the value 
of the function f at x (read as; f of x).

We write this mapping as:

We can also write this mapping as follows

1.
2.
3.

It is important to realise that the range of f is not necessarily the set Y. The range of f is actually a 
subset of Y (sometimes it could also be equal toY). Set Y, i.e., the co-domain, describes the types 
of numbers that will be produced when f  is applied to different x-values — not necessarily which 
numbers will result! The range of f  is given by the values of .

Translating the mathematical notation into English we have the following:

Notice that f describes not only the rule, , but also the domain, X.

y2 4 y⇒ 4±= =

y

x
two cuts

4

–4
–4                     4

A function f, (or a mapping f ), from a set X to a set Y is a relation that 
assigns to each element x in the set X a unique element y in the set Y. 

X Y

x Range

y f x( )=

maps onto

(rule)
y

Domain                             Co-domain

(image)

f x( )

f :x    f x( )

f :X     Y where y, f x( )=
f :X     Y y, f x( )=
y f x( ) x X∈,=

f x( )

f :X     Y where  f x( ), rule in terms of x=
“ f is such that the set X maps onto the set Y where f of x is equal to . . .”

f x( )



MATHEMATICS – Higher Level (Core)

118

(a) .
Similarly, .

(b) If the image is 28, then we want the value of x for which .
We then have,

 [Taking the cube root of both sides]
Therefore, the element of the domain that has an image of 28 is 3. 

First note that the co-domain is given by , the set of real numbers – meaning that all image 
values will be real. To determine the actual range of this function we sketch its graph.

From the graph, the only possible values of y are those for which 
y ≥ 1. In this case, because x = 0 is included in the domain, we also 
include the value y = 1 in the range. Therefore, we have a closed 
circle at the end point. 
The range of f is then given by  (or [1, ∞[).

(a) To determine the value of , we ‘replace’ the x–term in the rule of  with
 the number ‘6’ i.e.,  = 33.
(b) This time we ‘replace’ the x–term in the rule of  with ‘x + 1’:

So,  = .
(c)

   
   

For the function  find
(a) . (b) the element of the domain that has an image of 28.

f x( ) x3 1 x ∈,+=
f 1–( )  f 2( ),

E 5.8XAMPLE

S
o
l
u
t
i
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n

f x( ) x3 1 x   f 1–( )⇒∈,+ 1–( )3 1+ 1– 1+ 0= = = =
f 2( ) 23 1+ 9= =

f x( ) 28=
f x( ) 28 x3 1+⇔ 28= =

x3⇔ 27=
x⇔ 3=

Determine the range of the function .f : x:x 0≥{ }        f x( ), x 1+=E 5.9XAMPLE

S
o
l
u
t
i
o
n

  

0
1

x

y
f x( ) x 1 x 0≥,+=

y:y 1≥{ }

For the function  find
(a) (b) (c)

f x( ) x2 3 x ∈,–=
f 6( ) f x 1+( ) f x h+( ) f x( )–

E 5.10XAMPLE

S
o
l
u
t
i
o
n

f 6( ) f x( )
f 6( ) 6( )2 3– 36 3–= =

f x( )
f x 1+( ) x 1+( )2 3– x2 2x 1 3–+ += = x2 2x 2–+

f x h+( ) f x( )– x h+( )2 3– x2 3–( )–=
x2 2xh h2+ +( ) 3– x2– 3+=
2xh h2+=
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(a)

(b) To determine the range of the function g, we first need to sketch its graph.

We begin by sketching the graph of  for 
all real values of x. Then, as the domain is restricted to

. This means that we ‘remove’ the parts of
the graph that lie outside this domain. This leaves the
required part of the graph.

From our graph of g, the range of this function is given 
by {y: 2 ≤ y ≤ 6} (or [2, 6]).

(a) i.
ii.

              
So, the solution set is {–3, 3}.

iii.
     

Therefore, the solution set is .
(b) From (a) we obtained two values of x for one value of y and so  is a many–to –one

function.

Consider the function , where ,
(a) Find . (b) Determine the range of g. 

g: x: 1 x 2≤ ≤–{ } g x( ) x2 2+=
g 1–( )  g 0( ) andg 2( ), ,

E 5.11XAMPLE

S
o
l
u
t
i
o
n

g 1–( ) 1–( )2 2+ 3= =
g 0( ) 0( )2 2+ 2= =
g 2( ) 2( )2 2+ 6= =

–1 1 2

6

3

(2,6)

(–1,3)

y

x

y = g(x)

0

(0,2)

Range

y x2 2+=

x 1 2,–[ ]∈

Consider the function . 
(a) Find i. ii. {x : } iii. {x : }
(b) What type of function is f ?

f :          , where f x( ) 2 x2–=
f 5( ) f x( ) 7–= f 1 x–( ) 7–=

E 5.12XAMPLE

S
o
l
u
t
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n

f 5( ) 2 52– 2 25– 23–= = =
f x( ) 7– 2 x2–⇔ 7– x2⇔ 9= = =

x∴ 3±=

f 1 x–( ) 7– 2 1 x–( )2–⇔ 7–= =
1 x–( )2⇔ 9=
1 x–⇔ 3±=

2 4,–{ }
f x( )
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1. A function is defined as follows, .
(a) Find the value of .
(b) Evaluate the expressions i.  ii.  
(c) Find .

2. If , find (a) .
(b) .
(c) the range of .

3. For the mapping , find (a) , .
(b) a, given that .
(c) b, given that .

4. A function is defined as follows, .
(a) Find the value(s) of x such that y = 0.
(b) Sketch the graph of  and determine its range.

5. The function f is defined as  .
(a) Sketch the graph of i.  f

ii.
(b) Find i.  ii.

6. Which of the following relations are also functions?

7. Use both visual tests and algebraic tests to show that the following relations
are also functions.
(a) (b)
(c) (d)

EXERCISES 5.2

f :x    2x 3 x 0≥,+
f 0( )  f 1( ),

f x a+( ) f x a+( ) f x( )–
x: f x( ) 9={ }

f x( ) x
x 1+------------ x 0 10,[ ]∈,= f 0( )  f 10( ),

x: f x( ) 5={ }
f x( ) x

x 1+------------ x 0 10,[ ]∈,=

x     2 1
2---x

2 x ∈,– f x 1+( ) f x 1–( )
f a( ) 1=
f b( ) 10=

y x3 x2 x 2 2,–[ ]∈,–=

y x3 x2 x 2 2,–[ ]∈,–=

f :] ∞ ∞[        ,where,– f x( ) x2 4–=

y x 2 x ] ∞ ∞[,–∈,+=
x: f x( ) 4={ } x: f x( ) x 2+={ }

(a) (b) (c)

(d) (e) (f)

x     x3 2 x ]0 5[,∈,+ x     x 1 x 0 9[,[∈,+
x y,( ):y3 x 1 x   ∈,+={ } x y,( ):y x2 1 x   ∈,+={ }
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8. Use an algebraic method to decide which of the following relations are also functions.
(a) (b)

(c) (d)

(e) (f)

9. Sketch the graph of  and use it to 
(a) show that f  is a function.
(b) determine its range.

10. A function is defined by  and x ≥ 0.
(a) Determine the range of f.
(b) Find the value of a such that .

11. Consider the functions  and .
(a) Show that .
(b) If , find the constant a.

12. Which of the following functions are identical? Explain
(a)  and . (b)  and .

(c)  and . (d)  and .

13. Find the the largest possible subset X of , so that the following relations are one to one
increasing functions
(a) , where 
(b) , where 
(c) , where 
(d) , where , 

14. An isosceles triangle ABC has two side lengths measuring 4 cm and a variable altitude.
Let the altitude be denoted by x cm.
(a) Find, in terms of x, a relation for

i. its perimeter,  cm and specify its implied domain.
ii. its area,   and specify its implied domain.

(b) Sketch the graph of
i.  and determine its range.
ii.  and determine its range.

f :x    1x--- x    \ 0{ }∈, x y( , ):y2 x– 9  x 9–≥,={ }

x y( , ):y2 x2– 9  x 9–≥,={ } f x( ) 1
x2----- 1 x 0≠,+=

f x( ) 4 2x2 x ∈,–= f :x      4
x 1+------------ x    \ 1–{ }∈,

f :    x2
x2 2+-------------- x ∈,

f :x    x 10+
x 8–--------------- x 8≠,

f a( ) a=

h x( ) 1
2--- 2x 2 x–+( )= k x( ) 1

2--- 2x 2 x––( )=
2 h x( )[ ]2 h 2x( ) 1+=

h x( )[ ]2 k x( )[ ]2– a=

f x( ) x
x2-----= h x( ) 1

x---= f x( ) x2
x-----= h x( ) x=

f x( ) x= h x( ) x2= f x( ) x= h x( ) x( )2=

f  : X   → f x( ) x2 6x 10+ +=
f  : X   → f x( ) 9 x2–=
f  : X   → f x( ) x2 9–=
f  : X   → f x( ) 1

3x x2–-----------------= x 0 3,≠

p x( )
A x( ) cm2

p x( )
A x( )
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5.3.1 HYBRID FUNCTIONS AND CONTINUITY

A hybrid function is a relation that consists of more than one function, where each function is 
defined over a mutually exclusive domain. Generally, these functions take on the following form:

We first look at the domain of the function. In this instance we have that x ≥ 1 and x < 1, so in fact 
we have that  (or simply, ).

To determine the range we will need to sketch the graph of f. 
Hybrid functions can be sketched using the TI–83 (use the TEST menu)

From the graph the range is given by the set .
A few important points to note:

1. Even though x = 1 is not in the domain of the  part of the function, we
have still used x = 1 to find the value of y = 2.

2. At x = 1, we have what is known as a discontinuity.

SOME STANDARD FUNCTIONS5.3

 where f x( )
g1 x( ) x X1∈
g2 x( ) x X2∈
: :




= X i X j∩ ∅ i j≠,=

Sketch the graph of , stating its doman and range.f x( ) 2– x 1≤
x 1+ x 1>

=
E 5.13XAMPLE
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x ]–∞, ∞ [∈ x   ∈

1
y = –2

2 y = x + 1

y : y 2>{ } 2–{ }∪

y x 1+=

Sketch the graph of 

(a) State the domain of f.
(b) Find the range of f.

f x( )
x2 4– x 2–<
4 x2– 2 x 2≤ ≤–
4 x2– x 2>




=

E 5.14XAMPLE
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This time we have a hybrid function with three branches;  (a parabola), 
 (a semi-circle) and  (a parabola). Individually they 

are straight foward to sketch. In fact, it is not that much more difficult to sketch the hybrid 
function either. The ‘trick’ is to sketch each branch in its entirety and then remove those sections 
that do not belong.

(a) The domain is given by  (or simply, ).
(b) From the graph, the range can be seen to be .

Nb: 1. At x = 2, y = 0 and at x = –2, y = 0. 
2. Unlike the previous example, the graph is continous at x = ± 2.
3. We could have still made use of the TI–83 for this problem:

Continuity

Eventhough this is a rather weak ‘definition’ it does provide the basics behind the concept of 
continuity. If a relation is not continuous at some point (i.e., there is a break in the graph), we 
then say that the graph is discontinuous at that point.

S
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t
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n

y1 x2 4 x 2–<,–=
y2 4 x2– 2 x 2≤ ≤–,= y3 4 x2 x 2>,–=

–4

-2                            2

–2                    2

2

–2                        2

4

–2                      2

2

Only use the part of the 
graph for which x < 2. Only use the part of the 

graph for which x > 2.

Only use the part of the graph 
for which –2 ≤ x ≤ 2.

Final graph:

y

x

y x2 4–=

y 4 x2–=
y 4 x2–=

y y y

x

x x

]–∞,2 [ 2 2,–[ ] ]2, ∞[∪ ∪ ]–∞, ∞[=

Notice the distortion of the semi-
circle (see §5.1.5).

A graph is said to be continuous over a domain if it can be drawn without lifting 
the pen from the paper in that domain. In other words, there are no breaks.
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The three types of discontinuities that we will encounter can be summarised as follows:

‘Jump’ discontinuity ‘Asymptotic’ discontinuity ‘Missing point’ discontinuity

We begin by treating this function in the same way that we have 
treated other hybrid functions. We first sketch its graph (for an 
unknown value of a). In this instance we have drawn the graph with 
y = 1 + a lying below y = 4 ( it would make no difference if we had 
placed y = 1 + a above y = 4).

Now, for the function to be continuous there must be no jump at 
x = 1, that is, we must have the two branches meeting at x = 1.

Therefore we must have that .

At x = 3, we have .
If  is to be continuous then the two branches of the graph 
must meet at x = 3.
That is, we must have that 

     

x = a

y

x x = a

y

x
x = a

y

x

This function is continuous for 
all real values of x except at 
x = a. At x = a, there exists a 
‘jump’ discontinuity.

This function is continuous for 
all real values of x except at 
x = a. At x = a, there exists an 
‘asymptotic’ discontinuity.

This function is continuous for 
all real values of x except at 
x = a. At x = a, there exists an 
‘missing point’ discontinuity.

For what value of a will the function  be 

continuous?

y x2 a,+ x 1>
x– 4,+ x 1≤

=
E 5.15XAMPLE

(1, 3)
4

1
1 + a

y

x

S
o
l
u
t
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1 a+ 3 a⇔ 2= =

For what value of b will  be continuous?f x( ) x– 4,+ x 3>
2 x b– ,– x 3≤

=
E 5.16XAMPLE

y

x
3

1

2 3 b––

S
o
l
u
t
i
o
n

f 3( ) 2 3 b––=
f x( )

2 3 b–– 1 3 b–⇔ 1= =
3 b–∴ 1=

b⇔ 2=
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1. Sketch the graphs of the following functions

(a) (b)

(c) (d)

2. Sketch the graphs of the following functions

(a) (b)

3. Sketch the graphs of the following functions

(a) (b)

(c) (d)

4. Sketch the graphs of the following functions

(a) (b)

5. Sketch the graphs of the following functions

(a) , a > 1 (b) , a < –2

6. For what value(s) of a will the following functions be continuous? Sketch their graphs.

(a) (b)

(c) (d)

EXERCISES 5.3.1

f x( ) x– 2,+ x 3>
1, x 3≤

= f x( ) x2 2,+ x 1–>
3, x 1–≤

=

f x( ) x, x 4≥
6 x,– x 4<

= f x( )
1
x---, x 1>

2 x2,– x 1≤



=

f x( )
2,– x 0<

x 2,– 0 x 4≤ ≤
2 x 4>




= h x( )
x– , x 1–≤

1 x2,– 1 x 1< <–
x,– x 1≥




=

h x( ) x3 1,+ x 0>
1,– x 0≤

= g x( ) x 2,+ x 1>
x2 1,– x 1≤

=

f x( )
x

x 1+------------, x 0≥
1, x 0<




= f x( ) 2 x,– x 0>
x 3,+ x 0≤

=

f x( )
4,– x 2–<

x2 4,– 2– x 2≤ ≤
4 x 2>




= h x( )
2 x– , x 2–≤
2x,– 2 x 2< <–
x 2+ ,– x 2≥




=

f x( )
1

x 1+------------, x 0≥
a, x 0<




= f x( ) a x2,+ x 0>
x 3,+ x 0≤

=

f x( ) ax 1,+ x 1>
5, x 1≤

= h x( ) 2x 4,– x 2≥
a 2x,– x 2<

=

f x( ) ax3 1,– x 2>
3 x2+ , x 2≤

= h x( )
1
a---x

2 1,+ x 2≥
ax 1,+ x 2<




=
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7. Given that , sketch the graph of  for , where

a > 0. For what value(s) of a will the function  be continuous?

Sketch the graph of .

5.3.2 THE ABSOLUTE VALUE FUNCTION

The absolute value function is defined as

 

That is, sketch the graph of y = x for x ≥ 0, and then sketch the graph of y = –x for x < 0.
Similarly, the function , represents the absolute value of the linear function y = ax + b.

Parts (a) and (b) are best done by considering the functions as translations of the basic absolute 
value function. That is, the graph of  is in fact the graph of  translated two 
units to the left. While the graph of  is in fact the graph of  translated one unit 
vertically up. So, we have:

We could have used the definition to sketch the graphs above. This is done as follows:

(a) By definition, .

Then, sketch the straight line y = x – 2 for x ≥ 2 and y = 2 – x for x < 2.

(b) By definition, .

Notice that because there are no restrictions on ‘+ 1’, we add it to both branches.
Then, sketch the straight line y = x +1 for x ≥ 0 and y = 1 – x for x < 0.

1
2---

x
x2 1+-------------- 1

2---≤ ≤– f x( ) 2ax
x2 1+--------------= x ]–∞,∞[∈

h x( )
2ax
x2 1+--------------, x 1≥

4 x 1<



=

h

0

y

x
y x=y x x2 x  if x 0≥

x–  if x 0<
= = =

x   ax b+

Sketch the graph of (a)
(b)
(c)

y x 2–=
y x 1+=
y 2x 1+=

E 5.17XAMPLE
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y x 2–= y x=
y x 1+= y x=

0

y

x2

2

0

y

x
1

(a) (b)

y x 2– x 2–  if x 2 0≥–
x 2–( )–  if x 2 0<–

 x 2–  if x 2≥
2 x–  if x 2<

= = =

y x 1+ x  if x 0≥
x–  if x 0< 1+

 x 1+  if x 0≥
x– 1+  if x 0<

= = =
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(c) By definition .

Then, sketch the straight lines y = 2x + 1 for 

        and y = – 2x – 1 for 

Notice that in fact, all we have done in part (c) is
to sketch the graph of y = 2x + 1, and then reflect 
(about the x-axis) any part of the graph that was
drawn below the x-axis.

We can also make use of the TI–83 to sketch graphs of absolute value functions:

(a) Use the MATH menu and then
selecting the NUM option, we can
choose the abs( option. After
‘pasting’ the abs( command, enter
the equation as shown on the screen.

From the given graph, the range is defined as . As before, we enter the required options 
and obtain the following:

y 2x 1+ 2x 1+  if 2x 1 0≥+
2x 1+( )–  if 2x 1 0<+

 2x 1+  if x 1
2---–≥

2x– 1–  if x 1
2---–<






= = =

(0,1)
y

x0–0.5

x 1
2---–≥

x 1
2---–<

y

x

That part of the graph 
that lies below the x–axis 
is reflected so that it lies 
above the x–axis.

Find the range of the following functions
(a)
(b) 
(c)

x    3 2x– x  ∈,
y x 1+ x 1– x  ∈,+=
y x 4– 2 x ∈,–=

E 5.18XAMPLE
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y:y 0≥{ }

(b)                                                                        (c)

range = [2, ∞ [ range = [–2, ∞ [
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Notice that the TI–83 has made sketching the graph of  a relatively 
easy task. Without using the TI–83, we would need to look at the overlapping domains and then 
sketch those parts of each equation that correspond to the overlapping domains.

In this instance we have three overlapping regions:

 

 =  = 

We now look at the more general form of the absolute value function, i.e., . 
By definition we have that

However, depending on the expression of , solving the inequalities  and  
can be time consuming. So, to sketch a graph of  it is often convenient to first sketch 
the graph of  and then we reflect (about the x–axis) whatever parts of this graph lie 
below the x–axis. That is:

We start by sketching the graph of  and then
follow the above process.

That is, once we have sketched the graph of  we 
then reflect (about the x–axis) the part of the graph that lies below the 
x–axis:

y x 1+ x 1– x  ∈,+=

1

2
3

y x 1+ x 1–+ x 1+  if x 1–≥
x– 1–  if x 1–<

 x 1–  if x 1≥
1 x–  if x 1<

+= =

x 1+( ) x 1–( )+  if x 1≥
x 1+( ) 1 x–( )+      if 1 x 1<≤–
x– 1–( ) 1 x–( )+    if x 1–<


 2x if x 1≥

2 if 1 x 1<≤–
2x– if x 1–<




y f x( )=

y f x( ) f x( )  if f x( ) 0≥
f x( )–  if f x( ) 0<

= =

f x( ) f x( ) 0≥ f x( ) 0<
y f x( )=

y f x( )=

y

x

y

x

y f x( )= y f x( )=

These sections of the original graph have been reflected about the x–axis.

Sketch the graph of x    x2 4x– x  ∈,E 5.19XAMPLE

0        2      4 x

y

0        2      4 x

y

y x2 4x–=

y x2 4x–=
–4

4
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o
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f x( ) x2 4x–=

f x( ) x2 4x–=
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Sometimes, rather than considering the absolute value of the whole expression, we have 
equations for which we consider the absolute value of the independent variable only. That is, 
rather than sketching the graph of  we want to sketch the graph of . So, 
what does the graph of  look like. Obviously it will depend on the original function 

, however, we can deduce the general properties or transformation in getting from  to 
. 

We begin by considering a number of examples using the TI–83:

From these graphs it is clear that the graph of  is obtained from the graph of 
 by replacing the part of  that lies in the domain x ≤ 0 with a mirror image 

(about the y–axis) of the part of  that lies in the domain x ≥ 0.
To sketch the graph of  we discard that part of  that is sketched for x < 0 
and replace it with the reflection (about the y–axis) of  that is sketched for x ≥ 0.

y f x( )= y f x( )=
y f x( )=

f x( ) f x( )
f x( )

mirror image of y = f(x) for x ≥ 0.
y f x( )=

y f x( )= y f x( )=
y f x( )=

y f x( )= y f x( )=
y f x( )=

y

x

y

x

y f x( )= y f x( )=

Discard the part of y = f(x) for x < 0 and replace it with
the reflection about the y–axis of y = f(x) for x ≥ 0.

For each of the functions  sketch the graph of 
(a)
(b)

y f x( )= y f x( )=
f x( ) x2 4x–=
f x( ) 1 x 2+–=

E 5.20XAMPLE
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(a) We start by sketching the graph of  and then follow the process just
described:

(b) Again we start by sketching the graph of  and then follow the process
just described:

1. On separate sets of axes, sketch the graphs of the following functions for .
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

2. On separate sets of axes, sketch the graphs of the following functions for .
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

3. On separate sets of axes, sketch the graphs of the following functions for  and
determine the range of each function.
(a) (b)
(c) (d)
(e) (f)

4. On separate sets of axes, sketch the graphs of the following functions
(a) (b)

(c) (d)

S
o
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t
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f x( ) x2 4x–=

0        2      4 x

y

0        2      4 x

y

–4 –4
–4   –2

y f x( )= y f x( )=
Step 1: Discard the part of y = f(x) for x < 0. 
Step 2: Replace it with the mirror image
            (about the y–axis) of y = f(x) for x ≥ 0.

f x( ) 1 x 2+–=

x

y
y f x( )=

Step 1: Discard the part of y = f(x) for x < 0. 
Step 2: Replace it with the mirror image
            (about the y–axis) of y = f(x) for x ≥ 0. 1

–2 –1  0 x

y
y f x( )=1

1 2–

EXERCISES 5.3.2

x ∈
f x( ) 2x= f x( ) x 2+= f x( ) x 1+=
f x( ) 4x 2–= f x( ) 2x 4–= f x( ) x– 1+=
g x( ) 3 x–= f x( ) 5 1

2---x–= g x( ) 4 x–
2-----------=

x ∈
g x( ) x2 9–= h x( ) 2x x2–= h x( ) x 1–( ) 2 x+( )=
f x( ) x 3 x–( )= g x( ) x x 1+= f x( ) x3 8x2–=
f x( ) 8 x3–= f x( ) 8 x3–= f x( ) x3 1– 1–=

x ∈

f x( ) x 1+ x 1–+= f x( ) x 2+ x 2–+=
f x( ) x x+= f x( ) x x–=
f x( ) x 2+ x 2––= f x( ) x 1+ x 1––=

f x( ) x x= f x( ) x
x----- x 0≠,=

f x( ) 1
x--- 1+= f x( ) 1

x--- 1–=
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5. For each of the functions  sketch the graph of .
(a) (b) (c)
(d) (e) (f)

(g) (h) (i)

6. For each of the functions  sketch the graph of .

(a) (b)

(c) (d)

7. (a) Sketch the graphs of  and  on the same set of axes.
Hence, sketch the graph of .

(b) Find  where
i. k = 2 ii. k = 4 iii. k = 8

8. On the same set of axes, sketch the graphs of  and .
Hence, find .

5.3.3 THE EXPONENTIAL FUNCTION

The exponential function takes the form , where the independent 
variable is the exponent.

Graphs with a > 1

An example of an exponential function is . So, how does the graph of 
 compare to that of ?

We know that the graph of  represents a parabola with its vertex at the origin, and is 
symmetrical about the y–axis. To determine the properties of the exponential function we set up a 
table of values and use these values to sketch a graph of .

x –3 –2 –1 0 1 2 3 4 5
9 4 1 0 1 4 9 16 25

= 1 = 2 = 4 = 8 = 16 = 32

y f x( )= y f x( )=
f x( ) 2x2 x–= f x( ) 3 x 2–( )2+= f x( ) x3 8–=
f x( ) x 4–= f x( ) 1

x--- 1–= f x( ) x 4+=

f x( ) x 4 x–( )= f x( ) 1
x 1–----------- x 1≠,= f x( ) x 2–=

y f x( )= y f x( )=

f x( ) x 4,– x 3>
8 x2,– x 3≤

= f x( ) x3 1,– x 1>
1 x2,– x 1≤

=

f x( )
1

x 1–-----------, x 1<
x 2,+ x 1≥




= f x( ) x2 2x– , x 1≥
x 1,– x 1<

=

f x( ) x 2–= g x( ) x 2+=
y f x( ) g x( )+=

x : x 2– x 2++ k={ }

f x( ) 2 x= g x( ) 3 x–=
x : f x( ) g x( )≥{ }

f x( ) ax x  a, 0 a 1≠,>∈,=

f x( ) 2x x ∈,=
f x( ) 2x= f x( ) x2=

f x( ) x2=

f x( ) 2x=

y x2=
y 2x= 2 3– 2 2– 2 1– 20 21 22 23 24 25

1
8---= 1

4---= 1
2---=
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We can now plot both graphs on the same set of axes and compare their properties:

Notice how different the graphs of the two functions are, even though their rules appear similar. 
The difference being that for the quadratic function, the variable x is the base, whereas for the 
exponential, the variable x is the power.

We can now investigate the exponential function for different bases. Consider the exponential 
functions  and :

From the graphs we can see that  
increases much faster than  for x > 0. 
For example, at x = 1,  and 
then, at x = 2, .

However, for x < 0 we have the opposite, 
 decreases faster than .

Notice then that at x = 0, both graphs pass through 
the point (0, 1).

From the graphs we can see that for values of x less than zero, the graph of  lies below 
that of . Whereas for values of x greater than zero, then the graph of  lies 
above that of .

Exponential functions that display these properties are referred to as exponential growth 
functions.

(4,16)

(2,4)
1
0

y

x

4

16

2 4

Properties of 

1. The function increases for all 
values of x (i.e., as x increases so 
too do the values of y).

2. The function is always positive
(i.e., it lies above the x-axis).

3. As  then 
      then .
i.e., the x-axis is an asymptote.

4. When
i.   then ,
ii.   then 
iii.   then .

f x( ) 2x=

x ∞→ y ∞→
x ∞–→ y 0→

x 0> y 1>
x 0= y 1=
x 0< 0 y 1< <

f x( ) 2x=

f x( ) x2=

f x( ) 3x= g x( ) 4x=

y

x

g x( ) 3x=
f x( ) 4x=

(0, 1)

For x < 0, f(x) < g(x).

For x > 0, f(x) > g(x).

f x( ) 4x=
g x( ) 3x=

f 1( ) 4 g 1( ), 3= =
f 2( ) 16 g 2( ), 9= =

f x( ) 4x= g x( ) 3x=

f x( ) 4x=
f x( ) 3x= f x( ) 4x=

f x( ) 3x=
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What happens when 0 < a < 1?
We make use of the TI–83 to investigate such cases. Consider the case where .
Rather than using a table of values we 
provide a sketch of the curve. The graph 
shows that the function is decreasing – such 
exponential functions are referred to as 
exponential decay. In fact, from the second 
screen we can see that the graph of 

 is a reflection of  about 
the y–axis.
We note that the function  can also be written as . Meaning that 

there are two ways to represent an exponential decay function, either as  or 
. For example, the functions  and  are identical.

We can summarise the exponential function as follows:

There also exists an important exponential function known as the natural exponential function. 
This function is such that the base has the special number ‘e’. The number ‘e’, which we will 
consider in more detail in Chapter 7 has a value that is given by the expression

a 1
2---=

y 2x=
y 1

2---   x=
y 1

2---   x
= y 2x=

y 1
2---   x

= y 2 1–( )x 2 x–= =

f x( ) ax 0 a 1< <,=
f a( ) a x– a 1>,= f x( ) 1

4---   x
= g x( ) 4 x–=

       
(e.g., , )

Properties

Domain :
Range :
Asymptote : y = 0 (or x–axis)
Intercepts : Cuts y–axis at (0,1)
Other : Increases [growth]

Continuous

x     ax a 1 x ∈,>,
f x( ) 2x= f x( ) 3x=

∞ ∞,–( )=
+ 0 ∞,( )=

      
(e.g., , )

Properties

Domain :
Range :
Asymptote : y = 0 (or x–axis)
Intercepts : Cuts y–axis at (0,1)
Other : Decreases [decay]

Continuous

x     ax 0 a 1 x ∈,< <,
f x( ) 1

2---   x= f x( ) 1
3---   x=

∞ ∞,–( )=
+ 0 ∞,( )=

y

x
(0,1)

Asymptotic
behaviour.

Increasing
function

y

x
(0,1)

Asymptotic
behaviour.

Decreasing
function

  e 1 1
n---+   n 2.71828…≈

n ∞→lim=
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However, at this stage it suffices to realise that the number ‘e’ is greater than one. This means that 
a function of the form  will have the same properties as that of  for a > 1.
That is, it will depict an exponential growth. Whereas the function  will depict an 
exponential decay.

In Chapter 6 we will look at transformations of functions and consider terms such as ‘stretching’, 
‘translations’, ‘dilations’ and so on – terms that are applicable to the examples we are about to 
examine. However, at this stage, we will consider sketching exponential curves from first 
principles only (and make general observations).

(a) Making use of the TI–83 we have:

(b)

From our observations we can make the following generalisation about the graph of .

Because of the extremities between the large and small values encountered with exponential 
functions, sketching these graphs to scale is often difficult. When sketching exponential 
functions, it is important to include the main features of the graph – for example, make sure that 
the intercepts and asymptotes are clearly labelled and then provide the general shape of the curve.

f x( ) ex= f x( ) ax=
f x( ) e x–=

On the same set of axes sketch the following.
(a) (b)f x( ) 2x g x( ), 2x 1–= = f x( ) 3x g x( ), 3x 2+= =

E 5.21XAMPLE
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(1,2)
(0,1)

(2,4)

(1,1)
(2,2)

(0,1)
(1,2)

(2,4) (3,4)
g x( ) 2x 1–=f x( ) 2x=

Observations:
The graph of g(x) is the graph of f(x) moved 
(i.e., translated) one unit to the right.

Observations:
The graph of g(x) is the graph of f(x) moved 
(i.e., translated) two units to the left.

Notice that we had to change 
the window settings to see both 
graphs on the same screen.

g x( ) 3x 2+=

f x( ) 3x=
(0,9) (2,9)

(–2,1) (0,1)

y ax k±=

1. The graph of  is identical to  but moved ‘k’ units to the right.
2. The graph of  is identical to  but moved ‘k’ units to the left.

y ax k– k 0>,= y ax=
y ax k+ k 0>,= y ax=
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(a)

(b)

From our observations we can make the following generalisation about the graph of .

(a) (b)

On the same set of axes sketch the following.
(a) (b)f x( ) 2x g x( ), 2x 1–= = f x( ) 3x g x( ), 3x 2+= =

E 5.22XAMPLE
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Observations:
The graph of g(x) is the graph of f(x) moved 
(i.e., translated) one unit down. Notice too 
that the asymptote has also moved down 
one unit, from y = 0 to y = –1.

y = –1

g x( ) 2x 1–=f x( ) 2x=
(1,1)

(1,2)
(0,1)

(0,0)

New asymptote at y = –1

Observations:
The graph of g(x) is the graph of f(x) moved 
(i.e., translated) two units up. Notice too 
that the asymptote has also moved up two 
units, from y = 0 to y = 2.

g x( ) 3x 2+= f x( ) 3x=

y = 2

New asymptote at y = 2

y ax k±=

1. The graph of  is identical to  but moved ‘k’ units down.
2. The graph of  is identical to  but moved ‘k’ units up.

y ax k– k 0>,= y ax=
y ax k+ k 0>,= y ax=

On the same set of axes sketch the following.
(a) (b)f x( ) 2x g x( ), 3 2x×= = f x( ) 3x g x( ), 1

2---   3x×–= =

E 5.23XAMPLE

S
o
l
u
t
i
o
n

Observations:
The graph of g(x) is the graph of f(x) 
stretched by a factor of 3 along the y–axis. 
Notice too that the asymptote has not 
changed.

Observations:
The graph of g(x) is the graph of f(x) shrunk 
by a factor of 2  along the y–axis and 
reflected about the x–axis. Notice too that 
the asymptote has not changed.

g x( ) 3 2x×=

f x( ) 2x=

(1,6)

(1,2) g x( ) 1
2--- 3x×–=

f x( ) 3x=

(1,3)

(1,–1.5)
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From our observations we can make the following generalisation about the graph of .

Obviously we can use a combination of these ‘effects’ on the basic exponential function:

Notice that in both cases the general shape of the exponential growth remains unaltered. Only the 
main features of the graph are of interest when sketching is involved.
(a) (b)

1. On separate sets of axes sketch the graphs of the following functions and determine the
range of each function.
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

(j) (k) (l)

y k ax×=

1. The graph of  is identical to  but 
i. Stretched along the y–axis if k > 1.
ii. Shrunk along the y–axis if 0 < k < 1.

2. The graph of  is identical to  but 
i. Reflected about the x–axis and stretched along the y–axis if k < –1.
ii. Reflected about the x–axis and shrunk along the y–axis if –1 < k < 0.

y k ax× k 0>,= y ax=

y k ax× k 0<,= y ax=

Sketch the following.
(a) (b)f x( ) 2 ex 2–×= f x( ) 1

2---e
2x 1–=

E 5.24XAMPLE

S
o
l
u
t
i
o
n

y

x
–2

1 2e 2–,( )

1

y

x

1 1
2---e,  

1

0 1
2---e

1–,  

When x = 0, .

When x = 1, .

f 0( ) 1
2---e

0 1– 1
2---e

1–= =

f 1( ) 1
2---e

2 1– 1
2---e

1= =
When x = 0,  = 0.
When x = 1, .

f 0( ) 2 e0 2–×=
f 1( ) 2 e1 2–×=

EXERCISES 5.3.3

f x( ) 4x= f x( ) 3x= f x( ) 5x=
f x( ) 2.5( )x= f x( ) 3.2( )x= f x( ) 1.8( )x=
f x( ) 1

2---   x
= f x( ) 1

3---   x
= f x( ) 1

5---   x
=

f x( ) 3
4---   x

= f x( ) 5
8---   x

= f x( ) 0.7( )x=
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2. Sketch the following on the same set of axes, clearly labelling the y–intercept.
(a) where i. c = 1 ii. c = –2
(b) where i. c = 0.5 ii. c = –0.5

3. Sketch the following on the same set of axes, clearly labelling the y–intercept.
(a) where i. b = 2 ii. b = –2
(b) where i. b = 3 ii. b = – 2

4. On the same set of axes, sketch the following graphs
(a)  and (b)  and 
(c)  and (d)  and 

5. Find the range of the following functions:
(a) (b)
(c) (d)
(e) (f)

6. Sketch the graphs of the following functions, stating their range.
(a) (b)
(c) (d)

7. (a) Solve for x, if .
(b) On the same set of axes, sketch the graphs of  and .
(c) Find i. .

ii. .

8. Find the range of the following functions
(a) .
(b) .
(c) .

9. (a) Sketch the graph of , clearly labelling all intercepts with the axes
and the equation of the asymptote.

(b) Solve for x, where .

10. Sketch the graphs of the following functions
(a) (b) (c)

11. Sketch the graphs of the following functions
(a) (b) (c)

f x( ) 3x c+=
f x( ) 2 x– c+=

f x( ) b 3× x=
f x( ) b 1

2---  × x
=

f x( ) 3x= f x( ) 3 x–= f x( ) 5x= f x( ) 5 x–=
f x( ) 10x= f x( ) 10 x–= f x( ) 1

3---   x= f x( ) 1
3---   x–=

f : 0 4,[ ]       y, 2x= f : 1 3,[ ]       y, 3x=
f : 1– 2,[ ]       y, 4x= f : 1– 2,[ ]       y, 2x=
f : 2 3,[ ]       y, 2 x–= f : 1– 1,[ ]       y, 10 x–=

f  :         , where f x( ) 2ex 1+= f  :         , where f x( ) 3 ex 1––=
f  :         , where f x( ) e e x––= f  :         , where f x( ) 2 1

2---e
x–+=

x2 4x– 5– 0=
f x( ) 5 5 x–×= g x( ) 5x 4–=

x y,( ) : f x( ) g x( )={ }
x : f x( ) g x( )>{ }

f  : ] 0, ∞[       , where f x( ) e x 1+( )– 2+=
g x( ) 2 ex 1 x ]–∞, 0]∈,+×–=
x    xe x– 1 x 1 1,–[ ]∈,+

f x( ) 2x 1–=

2x 1– 3=

f x( ) 1 2x–= g x( ) 4x 2–= h x( ) 1 2x–=

f x( ) 1 2 x––= g x( ) 4– 2 x+= h x( ) 3 x– 3–=
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12. Sketch the graphs of the following functions and find their range.

(a) (b)

(c) (d)

13. Sketch the graphs of the following, and hence state the range in each case.
(a) (b)

(c) (d)

14. Sketch the graph of the functions
(a) (b)
(c) (d)
(e) (f)

15. (a) On the same set of axes, sketch  and  where a > 1.
Hence, sketch the graph of the function , where a > 1.

(b) On the same set of axes, sketch  and , where a > 1.
Hence, deduce the graph of , where a > 1.

16. Sketch the graph of the following functions and determine their range.
(a) (b)
(c) (d)
(e) (f)

5.3.4  THE LOGARITHMIC FUNCTION

The logarithmic function, with base ‘a’ is represented by the expression .
To determine the shape of its graph we start by constructing a table of values for the function 

 and comparing it with the table of values for :

x 0 1 2 4 8 16

y = –3 –2 –1 – 0 1 2 3 4
x –3 –2 –1 0 1 2 3 4

y = 1 2 4 8 16

f x( ) 2x, x 1<
3, x 1≥

= f x( ) 3 ex,– x 0>
x 3,+ x 0≤

=

f x( )
2

x 1+------------, x 1≥
3 22 x– ,– x 1<




= g x( ) 4 3 x– ,– 1 x 1< <–
4 1

3--- x ,– 1 x 12≤ ≤



=

f :         y, 2x 1
2---   x+= f :          y, 3x 1

3---   x+=

f :          y, 2x 1
2---   x–= f :          y 2x 1

2---   x–=,

g x( ) 2 x a–( ) a 0>,= h x( ) 2x a 0 a 1< <,–=
f x( ) 2 ax 2a a 1>,–×= f x( ) 2 ax 2a 0 a 1< <,–×=
g x( ) a ax a 1>,–= h x( ) a– a x– a 1>,+=

f x( ) 2 ax×= g x( ) 4 a x–×=
h x( ) ax 2a x–+=

f x( ) x a–= g x( ) ax 1+=
h x( ) x a–( ) ax 1+×=

f x( ) a x2– a 1>,= f x( ) a x2– 0 a 1< <,=
g x( ) a 1–( ) x– a 1>,= h x( ) 2 a x– a 1>,–=
f x( ) 2

ax 1–-------------- a 1>,= g x( ) ax2 a– a 1>,=

f x( ) x x 0>,alog=

f x( ) x2log= g x( ) 2x=
1
8---

1
4---

1
2---

x2log

2x 1
8---

1
4---

1
2---
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From the table of values we observe that the x and y values have interchanged! Plotting these 
results on the same set of axes, we observe that the graph of the logarithmic function is a 
reflection of the exponential function about the line y = x. So, whereas for the exponential 
function, the asymptote is the x–axis (i.e., y = 0), for the logarithmic function, the asymptote is 
the y–axis (i.e., x = 0).

So, how do the graphs of  compare to . The best 
way to see this is to sketch the graphs on the same set of axes:

Notice that for all a > 0  and .

As is the case for the exponential functions, the base ‘e’ also plays an important role when 
dealing with logarithmic functions. When using the number ‘e’ as the base for the logarithmic 
function, we refer to it as the natural logarithmic function and can write it in one of two ways:

(1,0)

(0,1) (2,1)

(1,2)

(   ,–1)1
2

(–1,   )12

y

x

y x x 0>,2log=

y 2x=

The implied domain of the basic 
logarithmic function is ]0, ∞[ and 
the y–axis is its asymptote.

y = x

y xe y,log x10 y,log x3log= = = y x2log=

(1,0)

(2,1)

y

x

y x x 0>,2log=

The implied domain of the basic logarithmic 
function with any positive base is ]0, ∞[ and has 
the y–axis as its asymptote.

y x x 0>,3log= y x x 0>,10log=(3,1)
(10,1)

Observe that each of the logarithmic functions is a 
reflection about the line y = x of its corresponding 
exponential function (of the same base).

1alog 0= aalog 1=

 f x( ) x x 0  or  f x( )>,elog x x 0>,ln= =

Sketch the following, specifying the implied domain in each case.
(a) (b)f x( ) x 2–( )3log= g x( ) 2x 3+( )2log=

E 5.25XAMPLE
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(a) We begin by looking at the domain: As we cannot have the logarithm of a negative number
we must have that . 
Therefore, domain of f = ]2, ∞[.
Note also then, that by default we have obtained 
the equation of the vertical asymptote, in this case
it is x = 2. 
When x = 3,  and
when x = 5, .

(b) This time we need to have .

Therefore, the implied domain of g = .

The vertical asymptote has the equation .
When x = –1, .
When x = 0, .

We make the following general observations:

Notice that in part (b) of example 5.25, we have  = , where 

we can still ‘see’ the equation of the asymptote as . The extra factor of ‘2’ can be viewed 
as either a dilation or a translation – we will leave further discussion of this to Chapters 6 and 7.

(a) The implied domain in this case is x > 0.
So, the vertical asymptote has the equation x = 0.
We note that the negative sign in front of the  will
have the effect of reversing the sign of the  values.
That is, the graph of  is a reflection
about the x–axis of the graph of .

S
o
l
u
t
i
o
n

x = 2

y

x(3,0)0

(5,1)

x 2 0 x 2>⇔>–

f 3( ) 13log 0= =
f 5( ) 33log 1= =

y

x

x 3
2---–=

0 32log,( )

(–1,0)

2x 3 0 x 3
2---–>⇔>+

3
2--- ∞,–  

x 3
2---–=

g 1–( ) 2– 3+( )2log 12log 0= = =
g 0( ) 0 3+( )2log 32log= =

1. The graph of  is identical to  but moved ‘k’ units to
the right and has a vertical asymptote at x = k.

2. The graph of  is identical to  but moved ‘k’ units to
the left and has a vertical asymptote at x = –k.

y x k–( )alog k 0>,= y xalog=

y x k+( )alog k 0>,= y xalog=

g x( ) 2x 3+( )2log= 2 x 3
2---+  

2log

x 3
2---–=

Sketch the following, specifying the implied domain in each case.
(a) (b)f x( ) 2 x3log–= f x( ) 1

3--- xelog=
E 5.26XAMPLE

S
o
l
u
t
i
o
n

y

x(1,0)
(3, –2)

x3log
x3log

f x( ) x3log–=
y x3log=
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The factor of 2 will have the effect of ‘stretching’ the graph of  by a factor of 2
along the y–axis. 
Also, we have that  and .

(b) This time the implied domain is ]0, ∞[.
Therefore, the equation of the asymptote is x = 0. The one
third factor in front of  will have the effect of
‘shrinking’ the graph of  by a factor of 3.
Then,  and .

Again, we have the following observations:

(a) The effect of adding 3 to the graph of 
will result in  being moved up
3 units.
Its implied domain is ]0, ∞[ and its asymptote
has equation x = 0.

(b) The effect of subtracting 2 from the graph of
 will result in  being

moved down 2 units.
Its implied domain is ]0, ∞[ and its asymptote
has equation x = 0.

(c) As we cannot have the logarithm of a negative
number we must have that .
This means that the vertical asymptote is given
by x = 3 and the graph must be drawn to the 
left of the asymptote.

y x3log=

f 1( ) 2 13log– 0= = f 3( ) 2 33log– 2–= =

y

x
(1,0)

e 1
3---,  

xelog
y xelog=

f 1( ) 1
3--- 1elog 0= = f e( ) 1

3--- eelog 1
3---= =

1. The graph of  is identical to  but 
i. Stretched along the y–axis if k > 1.
ii. Shrunk along the y–axis if 0 < k < 1.

2. The graph of  is identical to  but 
i. Reflected about the x–axis and stretched along the y–axis if k < –1.
ii. Reflected about the x–axis and shrunk along the y–axis if –1 < k < 0.

y k xalog× k 0>,= y xalog=

y k xalog× k 0<,= y xalog=

Sketch the following, specifying the implied domain in each case.
(a)        (b) (c)         g x( ) x 3+2log= g x( ) x 2–2log= g x( ) 3 x–( )2log=

E 5.27XAMPLE

y

x(1,0)
(2, 1)

(2, 4)(1, 3)
y = g(x)

y x2log=

S
o
l
u
t
i
o
n

y x2log=
g x( ) x 3+2log=

y

x

(1,–2)
(2, –1)

(2, 1)
(1, 0)

y = g(x)

y x2log=

y

x
x = 3(2,0)

0 32log,( )

y x2log= g x( ) x 2–2log=

3 x 0 x 3<⇔>–
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We make the following general observations:

1. Sketch the graph of the following functions, clearly stating domains and labelling
asymptotes.
(a) (b)
(c) (d)
(e) (f)
(g) (h)

2. Sketch the graph of the following functions, clearly stating domains and labelling
asymptotes.
(a) (b)

(c) (d)

(e) (f)

3. Sketch the graph of the following functions, clearly stating domains and labelling
asymptotes.
(a) (b) (c)
(d) (e) (f)

4. Sketch the graph of the following functions, clearly stating domains and labelling
asymptotes.
(a) (b) (c)

(d) (e) (f)

1. The graph of  is identical to  but moved ‘k’ units
vertically down and has a vertical asymptote at x = 0.

2. The graph of  is identical to  but moved ‘k’ units
vertically up and has a vertical asymptote at x = 0.

y x k–alog k 0>,= y xalog=

y x k+alog k 0>,= y xalog=

1. The graph of  is identical to  but reflected about the
 y–axis and has a vertical asymptote at x = 0.
2. The graph of  is identical to  but reflected about

the y–axis, moved ‘k’ units to the right and has a vertical asymptote at x = k.

y x–( )alog= y xalog=

y k x–( ) k 0>,alog= y xalog=

EXERCISES 5.3.4

f x( ) x 2–( )4log= f x( ) x 3+( )2log=
h x( ) x10 2+log= g x( ) 3– x3log+=
f x( ) 2x 1–( )5log= h x( ) 2 x–( )2log=
g x( ) 2 x10log= f x( ) x10 1+log–=

f x( ) 2 x2 3+log= f x( ) 10 2 x10log–=

h x( ) 2 2 x 1–( )2log= g x( ) 1
2--- 1 x–( )10log–=

f x( ) 3x 2+( )2 1–log= h x( ) 3 1
2---x 1–  

2
1+log=

f x( ) 2 xln= g x( ) 5 xln–= f x( ) x e–( )ln=
f x( ) 1 ex–( )ln= f x( ) 5 xln–= h x( ) x e–ln=

f x( ) x2log= f x( ) x210log= h x( ) xln=

g x( ) 1
x---  ln= h x( ) 1 x2–( )ln= f x( ) x2 4–( )2log=
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5. Sketch the graph of the following functions, clearly stating domains and labelling
asymptotes.
(a) (b) (c)
(d) (e) (f)

6. Given the function , sketch the graph of 
i. ii.
(a) (b)

(c) (d)

7. (a) On the same set of axes, sketch the graphs of  and
 .
(b) Find .

8. Sketch the graph of the following functions and find their range.

(a) (b)

(c) (d)

9. Sketch the graph of the following functions.
(a) (b) (c)  + 1

10. Sketch the graph of the following functions, clearly stating domains and labelling
asymptotes.
(a) (b)
(c) (d)

(e) (f)

11. Sketch the graph of  clearly labelling its asymptote, 

and intercept(s) with the axes. Hence, find .

12. Sketch the graph of (a) (b)
Given that  for all real x > 0, state the range of .

f x( ) x10log= g x( ) x 1–( )2log= h x( ) xln 1–=
h x( ) 2 xln–= f x( ) x 2+2log= f x( ) 1

x---5log=

y f x( )=
y f x( )= y f x( )=
f x( ) x–( )10log= f x( ) 1

x--- e–  ln=

f x( ) 2 ex 1–( )ln–= f x( ) x2 2x–( )2log=

f x( ) x 1–ln=
g x( ) x e–( )ln=

x : x x e–( ) 1+ln>ln{ }

f x( ) x,10log x 1≥
1 x,– x 1<

= f x( ) x2 1–( ),2log x 1≥
1 x2,– x 1<

=

f x( )
2 x,ln– x e≥

x3
e3-----, x e<




= g x( )
1 x 1–+ , x 1>

x2log 1,+ 0 x< 1≤
1 x 0≤




=

f x( ) x1
2---

log= f x( ) x 2–( )1
2---

log= f x( ) x1
3---

log=

f x( ) 2 x a–( ) a 1>,alog= f x( ) ax e–( ) a e>,ln–=
g x( ) 10 ax–( )10log 1 a 10< <,= g x( ) x ae– a 1>,ln=

g x( ) x ae–ln a 1>,= h x( ) 1 x
a---–   0 a 1< <,alog=

f x( ) 1
a--- ax 1–( ) 0 a 1< <,alog=

x : f x( ) 1
a--->   

f x( ) xln
x-------- x 0>,= g x( ) x

xln-------- x 0>,=
f x( ) e 1–≤ g x( )
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5.3.5 EQUATIONS OF THE FORM 

Case 1: n = –1
With n = –1 we have the equation  – this graph has a shape known as a 
rectangular hyperbola.

Making use of the TI–83 we make the following observations:

1. The sign of y is the same as the sign of x.

2. As x increases, values of y decrease.

3. The function is undefined at x = 0. 
At x = 0 there exists a vertical asymptote.

4. The graph never crosses (or touches) the x–axis.
The x–axis then becomes a horizontal asymptote,
having the equation y = 0.

We now formalise some of these observations and introduce some new mathematical terms.

We first consider the interval x > 0:

1. As x tends to (i.e., approaches) positive
infinity, the values of y tend to (i.e., approach)
zero from above.  i.e., As .

2. As x tends to (i.e., approaches) zero from
above, the values of y tend to (i.e., approach)
positive infinity.  i.e., As .

Next we consider the interval x < 0:

3. As x tends to (i.e., approaches) negative infinity, the values of y tend to (i.e., approach)
zero from below.  i.e., As .

4. As x tends to (i.e., approaches) zero from below, the values of y tend to (i.e., approach)
negative infinity.  i.e., As .

The expression ‘approaching zero from above’ means that a variable is approaching the value 
zero, but the values are always greater than zero. e.g., the sequence 0.1, 0.001, 0.0001, . . . 
approaches zero from above (as the values are always greater than zero).

The expression ‘approaching zero from below’ means that a variable is approaching the value 
zero, but the values are always less than zero. e.g., the sequence –0.1, –0.001, –0.0001, . . . 
approaches zero from below (as the values are always less than zero).

y xn n,,,, 1 2–,,,,–= =

y x 1– 1
x--- x 0≠,= =

undefined
at x = 0.

y

x

As x 0+ y +∞→,→

As x +∞ y 0+→,→

As x 0– y –∞→,→

As x –∞ y 0–→,→
x > 0

x < 0

1

2

3

4

x +∞ y 0+→,→

x 0+ y +∞→,→

x –∞ y 0–→,→

x 0– y –∞→,→
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As was the case for the exponential and logarithmic functions, the horizontal and vertical 
asymptotes of the basic function  can also be ‘relocated’. We summarise these 
results now:

Case 2: n = –2
With n = –2 we have the equation  – this graph has a shape known as a 
truncus. 

The reason for its name becomes obvious once we sketch its graph – it looks like the trunk of a 
tree. As before, we can make use of a table of values and plot its graph, however, this time we list 
the properties of this function and its graph:

1. Function is undefined at x = 0.

2. Asymptotes are: vertical, x = 0
horizontal, y = 0

3. The graph is symmetrical about the y–axis.

We can also make the following observations:

f x( ) 1
x--- x 0≠,=

1. The graph of  is identical to  but moved ‘k’ units to the right
and so has a vertical asymptote at x = k.

2. The graph of  is identical to  but moved ‘k’ units to the left
and so has a vertical asymptote at x = –k.

y 1
x k–----------- k 0>,= y 1

x---=

y 1
x k+------------ k 0>,= y 1

x---=

1. The graph of  is identical to  but moved ‘k’ units up and so has
a horizontal asymptote at y = k.

2. The graph of  is identical to  but moved ‘k’ units down and so
has a horizontal asymptote at y = –k.

y 1
x--- k+ k 0>,= y 1

x---=

y 1
x--- k– k 0>,= y 1

x---=

y x 2– 1
x2----- x 0≠,= =

(1,1)

1
2--- 4,  1

2---– 4,  
y

x

1. The graph of  is identical to  but moved ‘k’ units to the
right and so has a vertical asymptote at x = k.

2. The graph of  is identical to  but moved ‘k’ units to the left
and so has a vertical asymptote at x = –k.

y 1
x k–( )2------------------ k 0>,= y 1

x2-----=

y 1
x k+( )2------------------- k 0>,= y 1

x2-----=
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(a)  = ]–∞, ∞[\{0} (b)  = ]–∞, ∞[\{–1} (c)  = ]–∞, ∞[\{1}

(a) The efffect of the ‘2’ in the  term is to stretch the graph of  along the y–axis by a

factor of 2. The ‘–ve’ in front of the  term will reflect the the graph of  about the

x–axis. Adding ‘2’ to the graph of  will move the graph up ‘2’ units.
The domain of this function is given by ]–∞, ∞[ \ {0} and it has two asymptotes. The
vertical asymptote is at x = 0 and the horizontal asymptote is at y = 2.

1. The graph of  is identical to  but moved ‘k’ units up and so
has a horizontal asymptote at y = k.

2. The graph of  is identical to  but moved ‘k’ units down and
so has a horizontal asymptote at y = –k.

y 1
x2----- k+ k 0>,= y 1

x2-----=

y 1
x2----- k– k 0>,= y 1

x2-----=

Sketch the following, specifying the implied domain in each case.
(a)        (b) (c)        f x( ) 1

x--- 1+= g x( ) 1
x 1+( )2-------------------= h x( ) 1

x 1–----------- 2–=
E 5.28XAMPLE

S
o
l
u
t
i
o
n

d f dg dh
y

x
1

–1

y

x
1

–3
–2

(0,1)

y

x–1
Asymptotes: vertical, x = 0

       horizontal, y = 1
Asymptotes: vertical, x = –1

       horizontal, y = 0
Asymptotes: vertical, x = 1

       horizontal, y = –2

Sketch the following, specifying the implied domain in each case.
(a)        (b)f x( ) 2 2

x---–= g x( ) 1
2x2--------– 2+=

E 5.29XAMPLE
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2
x--- y 1

x---=
2
x--- y 2

x---=

y 2
x---–=

y

x
2

1

To find the x–intercept, set y = 0:
y 0 2 2

x---–⇔ 0 2⇔ 2
x--- x⇔ 1= = = =
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(b) Using the same argument as in part (a), except this time the original graph of  is
‘shrunk’ by a factor of ‘2’ (or stretched by a factor of 0.5) along the y–axis, reflected about
the x–axis, and moved up ‘2’ units, we have:

1. Sketch the graphs of the following functions, clearly identifying the equations of all
asymptotes and intercepts with the axes.
(a) (b)

(c) (d)

(e) (f)

(g) (h)

2. Sketch the graphs of the following functions, clearly identifying the equations of all
asymptotes and intercepts with the axes.
(a) (b)

(c) (d)

3. Given that , find a and b. Hence sketch the graph of .

4. For the given function, f, sketch the graph of i.         ii.     
(a) (b) (c)

(d) (e) (f)

y 1
x2-----=

To find the x–intercept, set y = 0:

                 

       

y 0 1
2x2--------– 2+⇔ 0 1

2x2--------⇔ 2= = =

x2⇔ 1
4---=

x⇔ 1
2---±=

y

x

2

1
2--- 0,  1

2---– 0,  

EXERCISES 5.3.5

f x( ) 1
x 2+------------ x 2–≠,= g x( ) 2

x 2–----------- x 2≠,=

f x( ) 3 1
x--- x 0≠,+= h x( ) 2 3

x--- x 0≠,–=

f x( ) 4
3 x–----------- x 3≠,= f x( ) 3

2 x 1–( )-------------------- x 1≠,=

g x( ) 1
2---

2
x 1+------------ x 1–≠,–= f x( ) 6

2 x+------------ 3 x 2–≠,–=

g x( ) 2
x2----- 1 x 0≠,+= f x( ) 4

x 1+( )2------------------- x 1–≠,–=

f x( ) 4 16
x2------ x 0≠,–= g x( ) 2– 4

x 1–( )2------------------- x 1≠,+=

2x 3+
x 1+--------------- a b

x 1+------------+= f : x    2x 3+
x 1+---------------

y f x( )= y f x( )=
f x( ) 1

x--- 1–= f x( ) 2
2 x–----------- 1+= f x( ) 2 1

x 1+------------–=

f x( ) 4
2 x–( )2-------------------= f x( ) 2 1

2x2--------–= f x( ) 2
1 x+( )2-------------------=
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5.4.1 BASIC OPERATIONS AND COMPOSITE FUNCTIONS

For any two real functions f : and g : , defined over domains 
 and  respectively, the following rules of algebra apply:

Operation Rule and Domain Example

Addition

rule:

domain:
For  and 
      , we have: 

 = 
                             = [0,∞)

.

Subtraction

rule:

domain:

The process is the same as that for 
(f  + g)(x). Using the same functions as those 
above, we have:

.

Multiplication

rule:

or 
domain:

or 

If  and 
     , we have:    
    
              = 
              = [0,∞)\{1}

That is, 
 

Division

rule:
 

domain:

If  and 
    , we have:
 domain   

                      = 
                      = 

ALGEBRA OF FUNCTIONS5.4

d f       ,y f x( )= dg      ,y g x( )=
d f dg

f g+( ) x( ) f x( ) g x( )+=

d f g+ d f dg∩=

f : 0 ∞)      f x( ), ,[ x=
g:         g x( ), x=

d f g+ d f dg∩= 0 ∞) ∩,[

f∴ g+ : 0 ∞)      f g+( ) x( ), ,[ x x+=

f g–( ) x( ) f x( ) g– x( )=

d f g– d f dg∩= f∴ g– : 0 ∞)      f g–( ) x( ), ,[ x x–=

f g×( ) x( ) f x( ) g× x( )=
fg( ) x( ) f x( )g x( )=

d f g× d f dg∩=
d fg d f dg∩=

f x( ) 2
x 1–----------- where x    \{1}∈,=

g x( ) 1 x2 wherex 0 ∞),[∈,–=
d f g× d f dg∩=

   \{1} 0 ∞),[∩

f g×( ) x( )∴ 2
x 1–----------- 1 x2–( )× 2– 1 x+( )= =

fg( ) x( ) 2– 1 x+( ) wherex 0 ∞)\ 1{ },[∈,=

f
g---   x( ) f x( )

g x( )----------- g x( ) 0≠,=

d f
g---

d f dg\ x:g x( ) 0={ }∩=

f :         f x( ), x2=
g:         g x( ), x 1+=

d f
g---

d f dg\ x:g x( ) 0={ }∩=

  \ x:x 1 0=+{ }∩
   \{–1}

f
g---   x( )∴ x2

x 1+------------ x   \ 1–{ }∈,=
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COMPOSITE FUNCTIONS

We now investigate another way in which we can combine functions, namely composition.
Consider the two functions  and . Observe what happens to the value 

 as we first apply the function  and then the function  to the image of the first 
mapping, i.e., 

Such a combination of functions leads to the question 

“Is there a third function that will enable us to produce the same result in one step?”

We consider any value x that belongs to the domain of f and follow ‘its path’:

1. This value of x, has as its image the value . 
2. The resulting number, 3x, now represents an element of the domain of g. 
3. The image of 3x under the mapping g is given by .

We can now test our result by using the value of x = 2 with the mapping .
For x = 2, we have , which agrees with our previous result.

The two critical steps in this process are:

1. That the image under the first mapping must belong to the domain of the second mapping.
2. The expression  exists.

Notation

(Notice that although f is applied first, it is placed second in the expression .)

f x( ) 3x= g x( ) x2 1+=
x 2= f x( ) g x( )

2 6 373 2× 62 1+
Value of x from
the domain of  f.

Image of 2 using
f(x) = 3x.

Image of 6 using
g(x) = x2 1+

f x( ) 3x= g x( ) x2 1+=

f x( ) 3x=

g 3x( ) 3x( )2 1+ 9x2 1+= =

x 3x 9x2 1+

Step 1                                Step 2
multiply x by 3: square (3x) and add 1

Apply f(x) rule                          Apply g(x) rule

This path will provide the end result in one step.g f x( )( )
x    9x2 1+

9 2( )2 1+ 9 4 1+× 37= =

g f x( )( )

The expression  is called the composite function of f and g and is denoted by .g f x( )( ) go f

go f

Given the functions  and , find the 
composite function .

f x( ) x2 1+= g x( ) x 1–( )ln=
go f( ) x( )

E 5.30XAMPLE
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The composite function  = 
= 
= 
= 

In Example 5.30 we have  and .

The composite function  = 
= 
= 
= 

In Example 5.31 we have  but  is 
undefined! So what went wrong? To answer this question let’s take another look at the 
composition process.

The process is made up of two stages:

Stage 1: An element from the domain of the first function,  is used to produce
an image. That is, using x = a we produce the image .

Stage 2: Using the second function, , the image, , is used to produce a
second image . 

From the diagram, the result of stage 1 is  (which belongs to the range of f ) we also observe 
that at stage 2, when using the value  (produced from stage 1) we have assumed that  
belongs to the domain of . This is where problems can arise – as seen in Example 5.31.

S
o
l
u
t
i
o
n

go f( ) x( ) g f x( )( )
f x( ) 1–( )ln
x2 1 1–+( )ln
x2ln

go f( ) 1–( ) 1–( )2ln 1ln 0= = = go f( ) 2( ) 22ln 4ln= =

Given the functions  and , find the composite 
function .

f x( ) 2 x–= g x( ) x 1–=
go f( ) x( )

E 5.31XAMPLE

S
o
l
u
t
i
o
n

go f( ) x( ) g f x( )( )
f x( ) 1–
2 x–( ) 1–
1 x–

go f( ) 1–( ) 1 1–( )– 2= = go f( ) 2( ) 1 2– 1–= =

f x( )
f a( )

g x( ) f a( )
g f a( )( )

d f

a

Stage 1

f a( )f

f a( ) r f∈
r f

g g f a( )( )

dg

Stage 2

f a( )

rg

f a( )
f a( ) f a( )

g x( )
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To overcome this difficulty we need to strengthen our definition of composition of functions as 
well as ensuring the existence of composite functions.

What we need to prove is that all values produced from stage 1, i.e., , are values in the 
domain of the function in stage 2, i.e., . Making use of a mapping diagram, we show 
the inter-relation between the range of f, , and the domain of g, .

What is the domain of ?

If we refer to the diagram alongside, we see that 

if , then .

This means that we can substitute values of x that belong to 
the domain of f directly into the expression  (once 
we have established that it exists).

For  to exist we must have that . 
Using the TI–83 we obtain the range of f  from its sketch, in this case, . 
The domain of g is (–∞,∞) (i.e., the real field).
Then, given that ,  does exist.
We are now able to determine .
First we determine the equation :  = 
       = 

       = .
Next we need the domain of . As we have seen, , .
Therefore, : .

f a( )
f a( ) dg∈
r f dg

g f x( )( )

g

f

f x( )
r f

rg

x

d f dg

go f( ) x( )
For  to exist, then .go f( ) x( ) g f x( )( )= r f dg⊆

go f

x
f g

g f x( )( )

d f dg

r f

go f

r f dg⊆ dgo f d f=

g f x( )( )

If  and , determine if  
exists, and find an expression for  if it does.

f x( ) x 1+ x 0 ∞( , )∈,= g x( ) x3 x ∈,= go f
go f

E 5.32XAMPLE

S
o
l
u
t
i
o
n

go f r f dg⊆
r f 1 ∞( , )=

1 ∞( , ) ∞– ∞( , )⊆ go f
go f
g f x( )( ) g f x( )( ) g x 1+( )

x 1+( )3
x 1+( )3 2⁄

go f dgo f d f= dgo f∴ 0 ∞( , )=
go f 0 ∞( , )      , go f( ) x( ) x 1+( )3 2⁄=
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Hint on setting out

When solving problems that involve the use of composition, it is useful to set up a domain–range 
table in order to help us determine the existence of the composition. Such a table includes 
information about the domain and range of both the functions under consideration:

The existence of  can then be established by looking at  and . Similarly, the existence of 
 can be established by comparing  and .

We first sketch the graphs of both functions to help us complete the domain–range table:
,      . We now complete the table:

Using the table we see that  exists.
We can now determine :  = .
We also have that , .
Therefore,  : , where .

Making use of the TI–83 we see that the range of  is ] 0, 1[.

For  to exist it is necessary that . To determine the range of g we need to know the 
domain of g. Using the implied domain we have that  and so, .
However, the implied domain of f is [1, ∞[ . Then, as ,  does not exist.

In order that  exists we need to have , i.e., we must have that . What 

domain range
f
g

domain range
f ]0, ∞[
g

d f r f
dg rg

gof r f dg
fog rg d f

Find  and its range, given that  and 

.

go f g x( ) 1
x 1+------------ x \ 1–{ }∈,=

f x( ) 2x x ∈,=

E 5.33XAMPLE

S
o
l
u
t
i
o
n

g x( ) 1
x 1+------------ x \ 1–{ }∈,= f x( ) 2x x ∈,=

\ 1–{ } \ 0{ }

r f dg go f⇒⊆

1
0 1
2---( , )

go f g f x( )( ) 1
f x( ) 1+--------------------= 1

2x 1+--------------
dgo f d f= dgo f∴ =

go f go f( ) x( ) 1
2x 1+
--------------=

go f

Given that  and . Does  exist? If so, define 
fully the function . If not, find a suitable restriction on the domain of g so that  exists.

f x( ) x 1–= g x( ) xln= f og
f og f og

E 5.34XAMPLE

S
o
l
u
t
i
o
n

f og rg d f⊆
dg ] 0, ∞[= rg   =
rg d f⊄ f og

f og rg [ 1, ∞[⊆ g x( ) 1≥
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remains then, is to find those values of x such that .
Now,  therefore, .

So, if the domain of g is restricted to [e, ∞[ or any subset of [e, ∞[, then  will exist.

Does ?

In general the answer is no! However, there exist situations when  =  – we 
will look at such cases in the next section.

Consider Example 5.33, where  and . 

From our previous working, we have that .

To determine if  exists, we will need to determine if . Using the domain–range 
table we have that  and . Therefore as  does exist.

We then have,  .

To determine the domain of , we use the fact that,  so that .

Then, .

Clearly then, in this case,  ≠ .

We first set up the domain–range table:

From the table we see that  and , 
and so, both  and  exist. We 

         can now determine both composite functions.
We start with :

domain range
f [0, ∞[ [1, ∞[
g [1, ∞[ [0, ∞[

g x( ) 1≥
g x( ) xln= g x( ) 1 x 1 x e≥⇔≥ln⇔≥

f og

go f f og=
f og( ) x( ) go f( ) x( )

g x( ) 1
x 1+------------ x \ 1–{ }∈,= f x( ) 2x x ∈,=

go f( ) x( ) 1
2x 1+
--------------=

f og( ) x( ) rg d f⊆
rg   \ 0{ }= d f = rg d f f og⇒⊆

f og( ) x( ) f g x( )( ) 2g x( ) 2
1

x 1+------------= = =

f og d f og dg= dg  \ 1–{ }=

f og:   \ 1–{ }       where f og( ) x( ), 2
1

x 1+------------=

f og( ) x( ) go f( ) x( )

Given  and , 
determine the functions  and  (if they exist). For the composite functions that 
exist, find the image of x = 3.

f x( ) x2 1 where x 0≥,+= g x( ) x 1 where x 1≥,–=
f og( ) x( ) go f( ) x( )

E 5.35XAMPLE

S
o
l
u
t
i
o
n

(0,1)

y

x

y

x(1,0)

y f x( )= y g x( )=

rg d f⊆ r f dg⊆
f og( ) x( ) go f( ) x( )

f og( ) x( )
f og( ) x( ) f g x( )( ) g x( )( )2 1+= = x 1–( )2 1+=
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As , we have that 

Next, we find :

          

Similarly, , and so, .

To find the image of 3, we substitute x = 3 into the final equations.
, whereas, .

1. Fully define the functions (a) (b)
given that i.  and 

ii.  and 

iii.  and 
Find the range for case (a).

2. Fully define the functions (a) (b)
given that i.  and 

ii.  and 
iii.  and 

Find the range for case (a).

3. All of the following functions are mappings of  unless otherwise stated. 
(a) Determine the composite functions  and , if they exist.
(b) For the composite functions in (a) that do exist, find their range.
i. ii.     
iii. iv.     ,

v. vi.    

vii. viii.  

ix. x.     
xi. xii.   

d f og dg 1 ∞[,[= = f og( ) x( ) x 1–( )2 1  where x 1≥,+=

go f( ) x( )
go f( ) x( ) g f x( )( ) f x( ) 1–= = x2 1+( ) 1–=

x2=

dgo f d f 0 ∞[,[= = go f( ) x( ) x2  where x 0≥,=

f og( ) 3( ) 3 1–( )2 1 22 1 5=+=+= go f( ) 3( ) 3( )2 9==

EXERCISES 5.4.1

f g+ fg
f x( ) x2= g x( ) x=
f x( ) xln= g x( ) 1

x---=

f x( ) 9 x2–= g x( ) x2 4–=

f g– f g⁄
f x( ) ex= g x( ) 1 ex–=
f x( ) x 1+= g x( ) x 1+=
f x( ) x 2–= g x( ) x 2+=

f og( ) x( ) go f( ) x( )

f x( ) x 1 g x( ),+ x3= = f x( ) x2 1 g x( ),+ x x 0≥,= =
f x( ) x 2+( )2 g x( ), x 2–= = f x( ) 1

x--- x 0≠ g x( ), , 1
x--- x 0≠,= =

f x( ) x2 g x( ), x x 0≥,= = f x( ) x2 1 g x( ),– 1
x--- x 0≠,= =

f x( ) 1
x--- x 0 g x( ),≠, 1

x2----- x 0≠,= = f x( ) x 4 g x( ),– x= =

f x( ) x3 2 g x( ),– x 2+= = f x( ) 4 x– x 4 g x( ),≤, x2= =
f x( ) x

x 1+------------ x 1–≠ g x( ), , x2= = f x( ) x2 x 1 g x( ),+ + x= =
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xiii.           xiv. 

xv.      xvi. 

4. Given the functions  and 
Find the functions (a) (b) (c)

5. Given that  and , determine the function g.

6. The functions f and g are defined by  and .
Find the composite functions (where they exist) of
(a) (b) (c)       stating the range in each case.

7. If  and , evaluate (a)
(b)

8. Given that  and , show that  is 
equal to  for all .

9. Solve the equation , where
(a)  and .
(b)  and .

10. Given that  determine the two functions g, given that
(a)  (b)

11. Find , given that  and .

Sketch the graph of  and use it to find its range.

12. (a) Given three functions, f, g and h, when would  exist?
(b) If ,  and , find .

13. Given the functions  and  find, where they exist
(a) (b) (c)
In each case find the range of the composite function.

14. Given that  and , find, where
they exist, (a) (b) .

f x( ) 2x g x( ), x2= = f x( ) 1
x 1+------------ x 1 g x( ),–≠, x 1–= =

f x( ) 2
x 1–---------------- x 1> g x( ), , x2 1+= = f x( ) 4x g x( ), x= =

f :x    2x 1 x ]–∞,∞[∈,+ g:x   x 1 x ]–∞,∞[∈,+
f og( ) go f( ) f o f( )

f :x   x 1 x ∈,+ go f :x    x2 2x 2 x ∈,+ +

f :x   x 1 x ∈,+ g:x   x 1
x--- x    \ 0{ }∈,+

f og go f gog

g:x   x3 1 x ∈,+ f :x   x x 0 ∞[,[∈, go f( ) 4( )
f og( ) 2( )

f :x   x 5 x ∈,+ h:x   x 7 x, ∈– f oh( ) x( )
ho f( ) x( ) x ∈

f og( ) x( ) 0=
f :x   x 5 x ∈,+ g:x   x2 6 x ∈,–
f :x   x2 4 x ∈,– g:x   x 1 x ∈,+

f :x   2x 1 x ∈,+
go f( ) x( ) 1

2x 1+---------------= f og( ) x( ) 1
2x 1+---------------=

ho f( ) x( ) h x( ) x2 4 x 1≥,+
4 x  x 1<,–

= f :x   x 1 x, ∈–

ho f( ) x( )

hogo f
f :x   x 1 x, ∈+ g:x   x2 x ∈, h:x   4x x ∈, hogo f( ) x( )

f x( ) e2x 1–= g x( ) 1
2--- x 1+ln( )=

f og( ) go f( ) f o f( )

h x( ) 4x 1–( ) x 1
4--->,10log= k x( ) 4x 1 x ]–∞, ∞[∈,–=

hok( ) koh( )
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15. Given the functions  and , find the largest
positive subsets of  so that (a)  exists (b)  exists.

16. For each of the following functions
(a) determine if  exists and sketch the graph of  when it exists.
(b) determine if  exists and sketch the graph of  when it exists.

17. Given the functions  and 
where S = ]0, ∞[.
(a) State the domain and range of both f and g.
(b) Giving reasons, show that  exists but  does not exist.
(c) Fully define , sketch its graph and state its range.

18. The functions f and g are given by  and .

(a) Show that  is defined. (b) Find  and determine its range.

19. Let .

(a) Sketch the graph of f.
(b) Define the composition , justifying its existence.
(c) Sketch the graph of , giving its range.

20. Consider the functions  and 
   .

(a) Sketch the graphs of f and g on the same set of axes.
(b) Prove that  exists and find its rule.
(c) Prove that  cannot exist.
(d) If a new function  is now defined, find the

largest positive subset of  so that  does exist. Find , sketch its graph
and determine its range.

21. Given that , show that  exists and find its rule.

f x( ) x2 9– x S∈,= g x( ) x 3 x T∈,–=
gof fog

fog fog
gof gof

0     1   2  3   4  5   6  7

4
3
2
1 y f x( )=

y g x( )=5 y

x

i. ii.

0     1   2  3   4  5   6  7   8   9

4
3
2
1

y f x( )=

y g x( )=

5 y

x

f  : S    where f x( )→ ex 1+= g : S    where g x( )→ 2xln=

gof fog
gof

f x( ) x 1– if x 1≥
x 1– if 0 x 1< <

= g x( ) x2 1  +=

f og f og( ) x( )

f  :            where f x( )
1
x2-----, 0 x 1≤<
1
x-------, x 1>






=+ +

fof
fof

f  : ]1, ∞[     where f x( )→ x=
g :    \{0}     where g x( )→ x2=

gof
fog

g* : S     where g* x( )→ g x( )=
fog* fog*

f x( ) ax b–
cx a–---------------= fof
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22. (a) Sketch the graphs of  and , where a > 0.
(b) Show that  exists, find its rule and state its domain.
(c) Let S be the largest subset of  so that  exists.

i. Find S.
ii. Fully define , sketch its graph and find its range.

5.4.2 IDENTITY AND INVERSE FUNCTIONS

Before we start our discusion of inverse functions, it is worthwhile looking back at a fundamental 
area of algebra – algebraic operations. The relevant algebraic properties for real numbers ,

 and  are:

Just as there exists an identity element for addition, i.e., 0 and for multiplication, i.e., 1 under the 
real number system, it seems reasonable to assume that an identity element exists when dealing 
with functions.

It should be noted that without an identity element, equations such as  and  
could not be solved under the real number system. Because we take the process for solving these 
equations for granted, sometimes we lose sight of the underpinning algebraic process that led to 
their solution. 

For example, to solve  we would write x = 5 as the next step. However, if we break the 
process down we have the following:

[Inverse element]
    [Identity]
          

So that without the identity element, we would not be able to make the last statement!

Consider the two functions  and . The composite 
functions  and  exist. The composite functions are then given by:

.
and .

For this particular example we have the result that .

Under addition Under multiplication
 Closure
 Commutativity
 Associativity
 Existence of the identity 0 : 1 : 

 Inverse element  :  : 

f x( ) 1
a---x

2= g x( ) 2a2 x2–=
f og

gof

gof

a   ∈
b   ∈ c   ∈

a b    ∈+ a b×    ∈
a b+ b a+= a b× b a×=

a b+( ) c+ a b c+( )+= a b×( ) c× a b c×( )×=
a 0+ 0 a+ a= = a 1× 1 a× a= =

a– a a–( )+ 0 a–( ) a+= = 1
a---

1
a---   a× 1 a 1

a---  ×= =

x 2+ 7= 2x 10=

x 2+ 7=

x 2+ 7 x 2 2–( )+ +⇔ 7 2–( )+= =
x 0+⇔ 5=

x⇔ 5=

f  : x       , x3 x ∈, g : x       ,x3 x ∈,
f og go f

f og( ) x( ) f g x( )( ) g x( )3 x33 x= = = =
go f( ) x( ) g f x( )( ) f x( )( )3 x3( )3 x= = = =

f g x( )( ) x g f x( )( )= =
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Using an analogy to the algebraic properties for the real number system, we introduce the identity 
function:

Identity function

We define the identity function, I, as 

If an identity function, I, exists then it must have the property that for any given function f 

As we have already seen, it is found that a function with the rule  has the required 
properties. However, unlike its counterpart in the real number system, where the identities are 
unique, the domain of the identity function is chosen to match that of the function f .

For example, if , x ≥ 0 then  where x ≥ 0. 
Whereas if ,  then  where .

The existence of the identity function leads us to investigate the existence of an inverse function.

Inverse function

Using an analogy to the real number system, the concept of an inverse requires that given some 
function , there exists an inverse function, , such that 

The ‘–1’ used in  should not be mistaken for an exponent, i.e., !

The reciprocal function, , can be written in exponent form as . Pay close attention 
to where the ‘–1’ is positioned. We highlight this difference geometrically:

Consider the function . Using the DRAW menu on the TI–83 to sketch the graphs 
of  and the reciprocal of , we immediately see how different the two graphs are.

  I x( ) x=

  foI Iof f     or    foI( ) x( ) Iof( ) x( ) f x( )  = = = =

I x( ) x=

f x( ) x= I x( ) x=
f x( ) 2x= x ] –∞, ∞ [∈ I x( ) x= x ] –∞, ∞ [∈

f f 1–

  fo f 1– I f 1– of       or       fo f 1–( ) x( ) x fo f 1–( ) x( )  = = = =

f 1– f 1– x( ) 1
f x( )-----------≠

1
f x( )----------- f x( )( ) 1–

f x( ) x 1+=
f 1– f

x = 1

y 1
f x( )-----------=

y f 1– x( )=

y f x( )=

Clearly, the inverse function and the 
reciprocal function are not the same.
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Looking back at the two functions  and  we notice that 
the function g is the reverse operation of function f, and function f  is the reverse operation of 
function g. Making use of a mapping diagram we can ‘visualise’ the process:

We can now make some observations:

1. The domain of f, , must equal the range of g,  and 
the domain of g,  must equal the range of f, .

2. For the uniqueness of ‘x’ to be guarranteed both f and g must be one-to-one functions.

We therefore have the result:

If f and g are one–to–one functions, such that ,
then g is known as the inverse of f and f as the inverse of g.

In our case we write,  and . This then brings us back to the 
notation we first introduced for the inverse function. We summarise our findings:

How do we find the inverse function? 

A guideline for determining the inverse function can be summarised as follows:

Step 1. Check that the function under investigation is a one–to–one function.
This is best done by using a sketch of the function.

Step 2. Use the expression  to solve for .
Step 3. Use the fact that  to complete the problem.

f  : x      , x3 x ∈, g : x       ,x3 x ∈,

x

f
f x( )

g f x( )( )
g

x
f

g x( )
f g x( )( )

g

1. Use an element (x) from the domain of the function f
     and obtain its image f (x). 
2. Using this image, which must be an element of the
     domain of g, we then apply g to f (x) and obtain its
     image, g( f (x)).
     Resulting in the value x that we started with.

1. Use an element (x) from the domain of the function g
    and obtain its image g (x). 
2. Using this image, which must be an element of the
    domain of f, we then apply f to g (x) and obtain its
    image, f(g(x)).
    Resulting in the value x that we started with.

d f rg
dg r f

f g x( )( ) x g f x( )( )= =

g x( ) f 1– x( )= f x( ) g 1– x( )=

For the inverse function of f ,  (read as  inverse) to exists, then

1.  must be a one to one function
2. i. the domain of  is equal to the range of , i.e., .

ii. the range of  is equal to the domain of , i.e., .
3. .

f 1– f

f
f f 1– d f r f 1–=

f f 1– d f 1– r f=
f f 1– x( )( ) x f 1– f x( )( )= =

f f 1– x( )( ) x= f 1– x( )
d f 1– r f  , and d f r f 1–= =
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We start by checking if the function is a one–to–one function.
From the graph, it is clearly the case that  is a one–to–one function.
Making use of the result that  to solve for :

Then, 
     
       

To complete the question we need the domain of . We already know that , 
therefore all we now need is the range of f, so  (using the graph of ).

That is, .

A quick sketch of the graph of f verifies that it is a one–to–one function.
We can now determine the inverse function, :

Now, , so, using the fact that 
we have:  [ After squaring both sides]

      .
To fully define  we need to determine the domain of .

We do this by using the result that . Using the graph shown above, we have that 
 . We are now in a position to fully define the inverse function.

We have, .

We can now sketch the graph of the inverse function:

Find the inverse of the function .f :x    5x 2  where x  ∈,+E 5.36XAMPLE

S
o
l
u
t
i
o
n

(0,2)
x

y f x( )=
y

f x( )
f f 1– x( )( ) x= f 1– x( )

f f 1– x( )( ) 5 f 1– x( ) 2  +=
f f 1– x( )( ) x 5 f 1– x( ) 2  +⇒ x= =

⇔ 5 f 1– x( ) x 2–=
⇔ f 1– x( ) 1

5--- x 2–( )=

f 1– d f 1– r f  =
d f 1–  = f x( )

f 1–  :           where  f 1– x( ) 1
5--- x 2–( )=

Find the inverse function of  and sketch its graph.f x( ) x 2+ x 2–≥,=E 5.37XAMPLE

S
o
l
u
t
i
o
n

–2

2
y

x

f 1– x( )

f f 1– x( )( ) f 1– x( ) 2+= f f 1– x( )( ) x=
f 1– x( ) 2+ x f 1– x( ) 2+ x2=⇔=

⇔ f 1– x( ) x2 2–=
f 1– f 1–

d f 1– r f  =
r f [0, ∞[= d∴ f 1– 0 ∞[,[=

0 2( , )

2 0( , )2–
2–

y f 1– x( )=

y f x( )=

y x=y

x

f 1– : 0 ∞)       f 1– x( ) x2 2–=, ,[
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We make two important observations:

1. The graph of  is the graph of  reflected about the line y = x.

2. Points of intersection of the graphs  and  will always occur where
both curves meet the line y = x.

The relationship between the graph of a function f and the graph of its inverse function  can 
be explained rather neatly, because all that has actually happened is that we have interchanged the 
x– and y– values, i.e., . In doing so, we find that . This 
then has the result that the graph of the inverse function  is a reflection of the graph of the 
original function  about the line with equation .

Graphing the inverse function

Because of the nature of the functions  and , when finding the points of intersection 
of the two graphs, rather than solving  = , it might be easier to solve the equations

 = x or  = x. The only caution when solving the latter two, is to always keep in mind 
the domain of the original function.

One interesting function is . It can be established that its inverse function is 

given by  i.e., . Then, as the 

two functions are identical, it is its self-inverse. Sketching the graph of  and 
reflecting it about the line y = x will show that the two graphs overlap each other. Note then, that 
self-inverse functions also intersect at points other than just those on the line y = x – basically 
because they are the same functions!

y f 1– x( )= y f x( )=

y f 1– x( )= y f x( )=

f 1–

a b,( ) b a,( )↔ d f 1– r f  , and d f r f 1–= =
f 1– x( )

f x( ) y x=

The graph of  is a reflection of the graph of  about the line .f 1– x( ) f x( ) y x=

a b,( )

b a,( )
y f x( )=

y f 1– x( )= y x=y

x

The graphs of  and  
will meet on the line y = x.

y f x( )= y f 1– x( )=

f 1– x( ) f x( )
f 1– x( ) f x( )

f 1– x( ) f x( )

f x( ) 1
x--- x 0≠,=

f 1– x( ) 1
x--- x 0≠,= f f 1– x( )( ) x 1

f 1– x( )----------------⇒ x f 1– x( )⇔ 1
x---= = =

f x( ) 1
x--- x 0≠,=
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There is a second method that we can use to find the inverse of a function.The steps required are:

Step 1. Let y denote the expression .
Step 2. Interchange the variables x and y.
Step 3. Solve for y.
Step 4. The expression in step 3 gives the inverse function, .

We work through an example using this method.

Let , giving .

Next, we interchange the variables x and y:

We now solve for y : 

         [inverting both sides]

       

Therefore, we have that          

That is, , x > 1.
We notice that the original function  and its 
inverse function  are the same. This becomes 
obvious when we sketch both graphs on the same set of 
axes.

When reflected about the line y = x, they are identical!

Again, we have an example of a self-inverse function

In our work with exponential and logarithmic functions we have already observed the ‘inverse 
relationship’ that exists between these two functions. That is, we observed that the graph of the 
curve  was simply the reflection of the graph of  about the line y = x.

When dealing with exponential and logarithmic functions we use the defining relationship 
between the exponential and logarithmic representation to help us find their inverses.
That is, we use the relationship  – when in the form , x is called 
the index, whereas when in the form , x is called the logarithm.

f x( )

f 1– x( )

Find the inverse function,  of  
and sketch its graph.

f 1– f  : ]–1, ∞[       where f x( ) 2
x 1–----------- 1+=

E 5.38XAMPLE

S
o
l
u
t
i
o
n

y f x( )= y 2
x 1–----------- 1+=

x 2
y 1–----------- 1+=

x 2
y 1–----------- 1+= x 1– 2

y 1–-----------=⇔
1

x 1–-----------
y 1–
2-----------=⇔

y 1– 2
x 1–-----------=⇔

y 2
x 1–----------- 1+=

x 1=

y 1=

y x=y

x

y f= x( ) f 1– x( )=

f 1– x( ) 2
x 1–----------- 1+=

y f x( )=
y f 1– x( )=

y xalog= y ax=

N bx x⇔ Nblog= = N bx=
x Nblog=
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We then have:

if 
then,
Similarly,

if
then

The function  is a one–to–one function and so its inverse function exists.
Using the result that  we have:

          
   [using ]

Now,  (we have obtained the range by using a sketch of )
Therefore the inverse, , is given by 

This time we make use of the second method of finding the inverse function.
Let , interchanging x and y, we have:

        
  

  [using ]
        .

Therefore, we have that .

Next, , so the inverse function is .

(1,0)

(0,1)
y xalog=

y ax=y

x

y x=

f :x      where f x( ) ax=
f 1– :x       f 1– x( ), xalog=+

f :x       f x( ), xalog=+

f 1– :x       where f 1– x( ) ax=

Find the inverse of the function .g:x     4x 2 x ∈,–E 5.39XAMPLE

S
o
l
u
t
i
o
n

g:x     4x 2 x ∈,–
g g 1– x( )( ) x=

4g 1– x( ) 2– x=
4g 1– x( ) x 2+=⇔
g∴ 1– x( ) x 2+( )4log= N bx x⇔ Nblog= =

dg 1– rg ]–2,∞[= = g x( )
g 1– g 1– :x     x 2+( ) x 2–>,4log

Find the inverse of .g : 1
2--- ∞,          , 2x 1–( ) 2+10log

E 5.40XAMPLE

S
o
l
u
t
i
o
n

y 2x 1–( ) 2+10log=
x 2y 1–( ) 2+10log=

⇔ x 2– 2y 1–( )10log=
⇔ 2y 1– 10x 2–= N bx x⇔ Nblog= =
⇔ y 1

2--- 10x 2– 1+( )=

f 1– x( ) 1
2--- 10x 2– 1+( )=

d f 1– r f ∞– ∞,( )= = f 1– :x     12--- 10x 2– 1+( ) x ∞– ∞( , )∈,
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1. Find the inverse function for each of the following.
(a) (b)
(c) (d)

(e) (f)
(g) (h)

2. Using the graph of the original function, sketch the graph of the corresponding inverse
function for each part in Question 1.

3. Find and sketch the inverse function of 
(a) . (b) .

4. Show that  is a one–to–one function, hence find its inverse, .

5. Sketch the inverse of the followingfunctions:

6. Find the inverse function (if it exists) of the following
(a) (b)
(c) (d)
(e) (f)

7. Using the graph of the original functions in Question 6, sketch the graph of their inverses. 

EXERCISES 5.4.2

f x( ) 2x 1 x ∈,+= f x( ) x3 x ∈,=
g x( ) 1

3---x 3 x ∈,–= g x( ) 2
5---x 2 x ∈,+=

h x( ) x 1+ x 1–>,= f x( ) x 1 x 0≥,+=
f x( ) 1

x 1+------------ x 1–>,= h x( ) 1
x------- 1 x 0>,–=

f x( ) x2 3 x 0≥,–= f x( ) x2 3 x 0≤,–=

f x( ) x
x2 1+

------------------ x ∈,= f 1–

–1

0 1
2---,  

x

y

(0,1)

–1 x

y

x

y

x

y
4

4

4

2

(a) (b)      (c) (d)

x

y

x

y

x

y

x

y

4

2

(e) (f)      (g) (h)

–1

2
(0,3)

2

2

(–2,4) (2,8)

–2
2

f x( ) 3x 1 x ]–∞, ∞[∈,+= f x( ) 2x 5 x ]–∞, ∞[∈,–=
f x( ) 32x 1+ x ]–∞, ∞[∈,= g x( ) 3 10x 1– x ]–∞, ∞[∈,–=
h x( ) 2

3x 1–-------------- x 0≠,= g x( ) 1
2x----- 1 x ]–∞, ∞[∈,–=
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8. Find the inverse function (if it exists) of the following functions
(a) (b)
(c) (d)
(e) (f)

9. Find the inverse function of , stating both its domain and range.
Sketch the graph of .

10. Find the inverse function of (a) , where  is real.
(b) , where  is real.

(c) , where  is real.

11. Find the inverse of . Sketch both  on the same
set of axes.

12. Find the largest possible set of positive real numbers S, that will enable the inverse
function  to exist, given that .

13. Determine the largest possible positive valued domain, X, so that the inverse function,
, exists, given that .

14. (a) Sketch the graph of . Does the inverse function,  exist?
Give a reason for your answer. 

(b) Consider the function . Find the two
largest sets S so the the inverse function, , exists.  Find both inverses and on
separate axes, sketch their graphs.

15. Find  given that  where a > 1. On the same set of axes sketch both the
graphs of  and . Find .

16. Find and sketch the inverse, , of the functions

(a) (b)

(c) (d)

f x( ) x 1+( )2 x 1–>,log= f x( ) 2x( )10 x 0>,log=
h x( ) 1 x x 0>,2log–= g x( ) x 1–( )3 1 x 1>,–log=
h x( ) 2 x 5–( )5 x 5>,log= f x( ) 2 1

3--- 1 x–( )10 x 1<,log–=

f x( ) x2 2x x 1–≥,+=
f 1–

f x( ) x– a x ]–∞, ∞[∈,+= a
h x( ) 2

x a–----------- a x a>,+= a

f x( ) a2 x2– 0 x a≤ ≤,= a

h x( ) x3– 2 x ∈,+= h x( ) and h 1– x( )

h 1– h x( ) x 2–( )2 x S∈,=

f 1– x( ) f x( ) 3x 2+
2x 3–--------------- x X∈,=

f x( ) x 1
x--- x 0>,–= f 1–

g : S     where, g x( )→ x 1
x---–=

g 1–

f 1– f x( ) x
a--- 1–=

y f x( )= y f 1– x( )= x : f x( ) f 1– x( )={ }

f 1–

f x( )
1
2---– x 1+( ), x 1>

x3,– x 1≤



= f x( ) ex 1+ , x 0≤
x e,+ x 0>

=

f x( ) x 1–( ),ln– x 2>
2 x,– x 2≤

= f x( ) x 4,+ x 0>
x 4,+ 4 x 0< <–

=
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17. (a) On the same set of axes sketch the graph of  and its
reciprocal.

(b) Find and sketch the graph of .

18. Consider the functions f and g: (a) Does  exist? Justify your answer.

19. (a) On the same set of axes, sketch the graph of  and its inverse, .

(b) The function g is given . 

i. Sketch the graph of g.
ii. Fully define its inverse, , stating why it exists.
iii. Sketch the graph of .
iv. Find .

20. Consider the functions  and .
(a) Find, where they exist, the composite functions i.

ii.
(b) With justification, find and sketch the graphs of i.

ii.
(c) Find i. ii.
(d) What conclusion(s) can you make from your results of parts (b) and (c)?
(e) Will your results of part (d) work for any two functions  and ? Explain.

21. (a) Find .
(b) If , sketch the graph of  and find .

22. Consider the functions  and .
(a) Sketch the graphs of i.  if ii.  if .
(b) With A and B as given in (a), give reasons why  will not exist.
(c) i. Find the largest set B which includes positive values, so that  exists.

ii. Fully define .
iii. On the same set of axes, sketch the graphs of  and .

f x( ) 1
a--- x a–( ) x a 0> >,ln=

f 1–

0     1   2  3   4  5   6  7

4
3
2
1

y f x( )=

y g x( )=

5 y

x

6 (b) Does  exist? Justify your answer.
If it does exist, sketch the graph of .

gof( ) 1–

gof( ) 1–

gof

f x( ) x3–= f 1– x( )

g x( )
2x 1,+ x 1–<

x3,– 1 x 1≤ ≤–
2x 1,– x 1>




=

g 1–

g 1–

x : g x( ) g 1– x( )={ }

t x( ) ex= m x( ) x=
tom( ) x( )
mot( ) x( )
tom( ) 1– x( )
mot( ) 1– x( )

t 1– om 1– x( ) m 1– ot 1– x( )

f g

x : x3 x 2–+ 0={ }
f x( ) 1

x------- 2–= y f x( )= x : f x( ) f 1– x( )={ }

f x( ) x x A∈,= g x( ) ex 2 x B∈,–=
f A = g B =

fog( ) 1–

fog( ) 1–

fog( ) 1–

fog( ) x( ) fog( ) 1– x( )
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6.1.1 HORIZONTAL TRANSLATION

A horizontal translation takes on the form .

We start by looking at the transformation of the basic parabolic graph with equation . The 
horizontal translation of  is given by . This transformation represents a 
translation along the x–axis.

In both situations, it appears as if the graphs have been translated in the ‘opposite direction’ to the 
sign of ‘a’ . That is,  has been translated 2 units back (i.e., in the negative direction), 
while  has been translated 2 units forward (i.e., in the positive direction).

The reason for this is that the transformation is applied to the x–values, not the graph!
That is, given , the graph of  is telling us to ‘Add two units to all the x–
values’. In turn, this means, that the combined x/y–axes should be moved in the positive direction 
by two units (whilst the graph of  remains exactly where it is):

Similarly, given , the graph of  is telling us to ‘Subtract one unit from all 
the x–values’. In turn, this means, that the combined x/y–axes should be moved in the negative 
direction by one unit (while maintaining the graph of  fixed at its original position):

TRANSLATIONS6.1

C
H

A
P

T
E
R

 6

f x( ) f x a–( )→

y x2=
y x2= y x a–( )2=

4

y x 4–( )2=y x2= y

x

y x 2+( )2=

y x2=y

x

(2,4)(0,4)

For example, the graph of  
represents the parabola  translated 
4 units to the right ( a = 4):

y x 4–( )2=
y x2=

Similarly, the graph of  
represents the parabola  translated 2 
units to the left (a = –2):

y x 2+( )2=
y x2=

–2

y x 2+( )2=
y x 2–( )2=

y f x( )= y f x 2+( )=

y f x( )=

–2

(0,4)
That is, pulling the x–axis along ‘+2’ units  (to 
the right), gives the appearance that the 
parabola has ‘moved’ to the left two units.y x2=

New set of axes (after being translated by ‘+2’ units)

Graph of 
remains in its
initial position. y x 2+( )2=

x

yy

x

y

(x + 2)

y f x( )= y f x 1–( )=

y f x( )=
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However, whenever we are asked to sketch a graph, rather than drawing the axes after the graph 
has been sketched, the first thing we do is draw the set of axes and then sketch the graph. This is 
why there appears to be a sense in which we seem to do the ‘opposite’ when sketching graphs that 
involve transformations.

(a) The graph of  represents a translation
along the x–axis of the graph of  by 1 unit
to the left.

(b) The graph of  represents a translation

along the x–axis of the graph of  by  unit
to the right.

The mapping from the original coordinates  to the new coordinates  can also be 
presented in vector form. That is, if the point  is translated ‘a’ units along the x–axis, the 
new coordinates would be given by 
That is,  and . 
The vector notation for such a translation is given by:

1

(0,1)

That is, pulling the x–axis along ‘–1’ unit (i.e., to 
the left), gives the appearance that the parabola
has ‘moved’ to the right one unit.

y x2=

New set of axes (after translated by ‘–1’ units)

Graph of 
remains in its
initial position.

y x 1–( )2=

x

yy

x

y

(x – 1)

Given the graph of  sketch the graph of
(a) (b)

y f x( )=
y f x 1+( )= y f x 1

2---–  =

 –2                            4

y

x

(0, 3)
y f x( )=

E 6.1XAMPLE

–3  –2                       3    4

y

x

y f x 1+( )=
(–1, 3)

y

x

y f x 1
2---–  =

3
2---– 9

2---

1
2--- 3,  

S
o
l
u
t
i
o
n

y f x 1+( )=
y f x( )=

y f x 1
2---–  =

y f x( )= 1
2---

x y,( ) x' y',( )
x y,( )

x a y,+( )

x        x + a x

y x y,( ) x' y',( )→x' x a+= y' y=

x'
y'  

x
y  

a
0  +=
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From  we than have that 

 and 
Substituting these results into the equation  we obtain the transformed equation

As  and  are only dummy variables, we can rewrite this last eqation as .

(a) Under the vector transformation we have .
Meaning that  – (1) and  – (2).

Substituting (1) and (2) into the equation  gives .
Dropping off the dashes we then have the transformed equation .
(b) Under the vector transformation we have .

Meaning that  – (1) and  – (2).
Substituting (1) and (2) into the equation  gives .
Dropping off the dashes we then have the transformed equation  or .

x'
y'  

x
y  

a
0  +=
x
y  

x'
y'  

a
0  

x
y  ⇔– x' a–

y'   x∴ x' a–= = = y y'=
y f x( )=

y' f x' a–( )=
x' y' y f x a–( )=

Under the vector translation , we have the mapping a
0   f x( ) f x a–( )→

Find the equation of the relation under the translation vector indicated.
(a) ; (b) ; .
Sketch both the original and transformed graph on the same set of axes.

x2 y2+ 9= 3
0   xy 4= 2–

0  
E 6.2XAMPLE

S
o
l
u
t
i
o
n

x'
y'  

x
y  

3
0  +=

x' x 3 x⇒+ x' 3–= = y y'=
x2 y2+ 9= x' 3–( )2 y'( )2+ 9=

x 3–( )2 y2+ 9=
x'
y'  

x
y  

2–
0  +=

x' x 2 x⇒– x' 2+= = y y'=
xy 4= x' 2+( )y' 4=

x 2+( )y 4= y 4
x 2+------------=

–3          0             3            6

3

–3

3 units

x 3–( )2 y2+ 9=x2 y2+ 9=

–2         2    4
2

x = –2

y

x

y

x

y 4
x---=

y 4
x 2+------------=

2 units

(a) (b)
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6.1.2 VERTICAL TRANSLATION

A vertical translation takes on the form .

Again we consider the transformation of the basic parabolic graph with equation . The 
vertical translation of  is given by . This transformation represents a 
translation along the y–axis.

Note that this time, when applying a vertical translation, we are consistent with the sign of b!

The reason being that although we are sketching the graph of , we are in fact 
sketching the graph of . So that this time, the transformation is applied to the 
y–values, and not the graph! 

So, if we consider the two previous examples, we have , and so, in this 
case we would be pulling the y–axis UP 2 units, which gives the appearance that the parabola has 
been moved down 2 units. 

Similarly, , so that in this case we would be pulling the y–axis DOWN 
1 unit, which gives the appearance that the parabola has been moved up 1 unit.

f x( ) f x( ) b+→

y x2=
y x2= y x2 b+=

–2

y x2 2–=

y x2=y

x

y x2 1+=

y x2=

y

x

(0,1)

For example, the graph of  
represents the parabola  translated
2 units down:

y x2 2–=
y x2=

Similarly, the graph of  represents
the parabola  translated 1 unit up:

y x2 1+=
y x2=

2 units
 down

1 unit
   up

y f x( ) b+=
y b– f x( )=

y x2 2 y 2+⇔– x2= =

–2

y x2 2–=

y

x

x

y + 2

x

yThat is, pulling the y–axis along ‘+2’ units 
(i.e., upwards), it gives the appearance  that 
the parabola has ‘moved’ down 2 units.

 or y 2 x2=+( )

Original graph stays fixed

y x2 1 y 1–⇔+ x2= =
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(a) The graph of  represents a translation
along the y–axis  of the graph of  by 3 units
in the downward direction.

(b) The graph of  represents a translation
along the y–axis of the graph of  by 2 units
in the upward direction.

The mapping from the original coordinates  to the new coordinates  can also be 
presented in vector form. That is, if the point  is translated ‘b’ units along the y–axis, the 
new coordinates would be given by 

y x2 1+=

y–1
x
x

y

x

y

(0,1)

That is, pulling the y–axis along ‘–1’ units (i.e., downwards), it 
gives the appearance  that the parabola has ‘moved’ up 1 unit.

 or y 1 x2=–( )Original graph stays fixed

Given the graph of  sketch the graph of
(a) (b)

y f x( )=
y f x( ) 3–= y f x( ) 2+=

 –2                            4

y

x

(0, 3)
y f x( )=

E 6.3XAMPLE

–3  –2                       3    4

y

x
y f x( ) 3–=

(–1, 3)                   (4, –3)

(0, 3)

(0,0)

–3  –2                       3    4

y

x

(–1, 2)
(0, 3)

(0, 5)

(4, 2)

y f x( ) 2+=

S
o
l
u
t
i
o
n

y f x( ) 3–=
y f x( )=

y f x( ) 2+=
y f x( )=

x y,( ) x' y',( )
x y,( )

x y b+,( )
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That is,  and . 
The vector notation for such a translation is given by:

From  we then have that 

 and 
Then, substituting these results into the equation  we obtain the transformed equation

As  and  are only dummy variables, we can rewrite this last eqation as .

(a) Under the vector transformation we have .
Meaning that  – (1) and  – (2).

Substituting (1) and (2) into the equation  gives .
Dropping off the dashes we then have the transformed equation .
(b) Under the vector transformation we have .

Meaning that  – (1) and  – (2).
Substituting (1) and (2) into the equation  gives .
Dropping off the dashes we then have the transformed equation  or .

x x

y

x y,( ) x' y',( )→y
y+b

x' x= y' y b+=

x'
y'  

x
y  

0
b  +=

x'
y'  

x
y  

0
b  +=
x
y  

x'
y'  

0
b  

x
y  ⇔– x'

y' b–   x∴ x'= = = y y' b–=
y f x( )=

y' b– f x'( ) y'⇒ f x'( ) b+= =
x' y' y f x( ) b+=

Under the vector translation , we have the mapping 0
b   f x( ) f x( ) b+→

Find the equation of the relation under the translation vector indicated.
(a) ; (b) ; .
Sketch both the original and transformed graph on the same set of axes.

x2 y2+ 9= 0
3   xy 4= 0

2–  
E 6.4XAMPLE

S
o
l
u
t
i
o
n

x'
y'  

x
y  

0
3  +=

y' y 3 y⇒+ y' 3–= = x x'=
x2 y2+ 9= x'( )2 y' 3–( )2+ 9=

x2 y 3–( )2+ 9=
x'
y'  

x
y  

0
2–  +=

y' y 2 y⇒– y' 2+= = x x'=
xy 4= x' y' 2+( ) 4=

x y 2+( ) 4= y 4
x--- 2–=

–3          0              3

3

–3

3 units

x2 y 3–( )2+ 9=

x2 y2+ 9=

–2         2    4
2

y

x

y

x

y 4
x---=

y 4
x--- 2–=

2 units

(a) (b)
6

y = –2
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Of course it is also possible to apply both a vertical and horizontal translation to the one graph at 
the same time. That is, the graph of  would represent the graph of  after 
it had been translated one unit to the right and two units up.

Such a combination takes on the form , representing a horizontal translation 
of ‘a’ along the x–axis and a vertical translation of ‘b’ along the y–axis.

The graph of  represents the graph of  after a translation along
the x–axis of 3 units to the right followed by a translation along the y–axis 1 unit down.

The mapping from the original coordinates  to the new 
coordinates  can also be presented in vector form. That is, if the 
point  is translated ‘a’ units along the x–axis and ‘b’ units along 
the y–axis, the new coordinates would be given by 
That is,  and . 
The vector notation for such a translation is given by:

SUMMMARY

, a > 0: translation of  along the x–axis of a units to the right.

, a > 0: translation of  along the x–axis of a units to the left.

, b > 0: translation of  along the y–axis of b units up.

, b > 0: translation of  along the y–axis of b units down.

y f x a–( )= f x( )

y f x a+( )= f x( )

y f x( ) b+= f x( )

y f x( ) b–= f x( )

y x 1–( )2 2+= y x2=

f x( ) f x a–( ) b+→

Sketch the graph of  for the graph shown.y f x 3–( ) 1–=

0      1     2

2
1

y

x

y f x( )=

E 6.5XAMPLE

S
o
l
u
t
i
o
n

y f x 3–( ) 1–= y f x( )=

0      1     2    3    4     5

2
1

y

x

y f x( )=
3 units

1 unit
y f x 3–( ) 1–=

x        x + a
x

y x y,( ) x' y',( )→

y
y+bx y,( )

x' y',( )
x y,( )

x a+ y b+,( )
x' x a+= y' y b+=

x'
y'  

x
y  

a
b  +=
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From  we than have that 

 and 
Substituting these results into the equation  we obtain the transformed equation

As  and  are only dummy variables, we can rewrite this last eqation as .

Let the new set of axis be u and v so that   .

Substituting these into , we have .

However, u and v are dummy variables, and so we can rewrite the last equation in terms of x and 
y, i.e.,  .

This represents the graph of  translated 3 units to the right (along the x–axis)  and 4 units 
up (along the y–axis). 

Notice that the original relation is in fact , so that relative to this graph, the graph of 
 has been translated 3 units to the right (along the x–axis)  and 5 units up (along 

the y–axis).

1. Find the equation of the given relation under the translation indicated.
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

x'
y'  

x
y  

a
b  +=
x
y  

x'
y'  

a
b  

x
y  ⇔– x' a–

y' b–   x∴ x' a–= = = y y' b–=
y f x( )=

y' b– f x' a–( ) y'⇒ f x' a–( ) b+= =
x' y' y f x a–( ) b+=

Under the vector translation , we have the mapping a
b   f x( ) f x a–( ) b+→

Find the equation of  under the translation .y x3 1–= 3
5  

E 6.6XAMPLE

S
o
l
u
t
i
o
n

u
v 
  x

y 
  3

5 
  u x 3+=

v y 5+= 
 or  x u 3–=

y v 5–= 
⇒+=

y x3 1–= v 5– u 3–( )3 1– v⇒ u 3–( )3 4+= =

y x 3–( )3 4+=

y x3=

y x3 1–=
y x 3–( )3 4+=

EXERCISES 6.1

y x2  4
0  ;= y x2  2–

0  ;= y x2  0
5  ;=

x2 y+ 2  2
0  ;= x2 y+ 2  0

2  ;= x2 y+ 2  0
2–  ;=

xy 8  4
0  ;= xy 8  0

1–  ;= x2 y2+ 4  1–
0  ;=

xy2 9  3
0  ;= xy2 9  0

3–  ;= x y2+ 4  4
0  ;=
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2. Consider the graphs shown below.

In each case, sketch the graph of
i. ii.
iii. iv.

3. Using translations on the graph of , sketch the graph of the following
(a) (b) (c)

4. Using translations on the graph of , sketch the graph of the following
(a) (b) (c)

5. Using translations on the graph of , sketch the graph of the following

(a) (b) (c)

6. On the same set of axes sketch the graphs of
(a)  and (b)  and 
(c)  and (d)  and 

(e)  and (f)  and 
(g)  and (h)  and 

(i)  and (j)  and 

7. Sketch the graph of the following functions, making sure to include all axial intercepts
and labelling the equations of asymptotes (where they exist).
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
(j) (k) (l)

(m) (n) (o)

–2  –1        1    2    3   4    5    6

4
3
2
1

y

x

y f x( )=
y f x( )=

y

x
–5  –4   –3  –2 –1        1    2    3   4    5

4
3
2
1

–1
–2

(a) (b)

y f x 2+( )= y f x 1–( )=
y f x( ) 3–= y f x( ) 1+=

f x( ) x=
y f x 4–( )= y f x( ) 2–= y f x 2–( ) 3+=

f x( ) 1
x---=

y f x 1+( )= y f x( ) 4–= y f x 2+( ) 3–=

f x( ) 1
x2-----=

y f x( ) 1–= y f x 1–( )= y 2 f x 3
2---–  +=

y x2 4–= y x 4–( )2= y x2 5+= y x 5+( )2=
y x2 2+= y x2 2–= y x 3

2---+   2= y x 3
2---–   2=

y x3 8–= y x 8–( )3= y x 1+( )3= y x3 1+=
y 1

x 2–( )----------------= y 1
x--- 2–= y 1

x 3+( )-----------------= y 1
x--- 3+=

y x 2–= y x 2–= y x 4+= y x 4+=

y x 2–( )2 3+= y 1
x 1+------------ 2+= y x 1–( )3 1–=

y 1
x 2–----------- 1

2---+= y x 2+( )3 8–= y x 3+( )2 9–=

y x 2– 2+= y 4 x+ 2+= y 1 x+( )2 1–=
y 1 1

3 x+------------+= y 1
x 1–( )2------------------- 1–= y 2– 1

2 x–( )2-------------------+=

y 2 1
3 x–-----------–= y 8 2 x–( )3–= y 2– x 4–+=
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8. Find the vector translation necessary for the following mappings 
(a) (b) (c)
(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

9. Express, in terms of , the transformation(s) required to map  to .
(a) , 
(b) , 
(c) , 
(d) , 
(e) , 

10. Consider the relations shown below.

Sketch the following
i. ii.
iii. iv.

11. Express, in terms of , the equation of the graph represented in Figure 2, given that the
graph in Figure 1 has the equation , –1 ≤ x ≤ 1.

x2    x2 4+ x3    x3 2– x    x 1+
1
x---    

1
x 2–----------- x4    x 2+( )4 1

x2-----    1
x2----- 4–

x3    x 2–( )3 2– 1
x---    3

1
x 2+------------+ x2    2 x 4–( )+ 2

x    3 x 2–+ 1
x3-----    1

x 3–( )3------------------- 1– f x( )    h f x k+( )+

x2 4    x 2+( )2– x3 1    x 1–( )3+ 1
x--- 2    1

x 1+------------–

f x( ) f x( ) g x( )
f x( ) x2= g x( ) x2 2x– 2+=
f x( ) x2= g x( ) x2 4x+=
f x( ) x3= g x( ) x3 6x2– 12x 8–+=
f x( ) 1

x2-----= g x( ) 1
x2 2x– 1+-------------------------- 1+=

f x( ) x3= g x( ) x3 3x2– 3x 2+ +=

(a) (b)

–3           0             3

2

–2

3
2---– 3

2---

y

x

y f x( )=

–2   –1    0      1     2      3

1

–1

y

x

y

x
(0,3)

(2,0)
–2

4

(–2,6) y

x

(c) (d)

y f x( )=

y f x( )=
y f x( )=

y f x 2+( ) 2–= y f x 2–( ) 4–=
y 3 f x 3–( )+= y 1 f x 1+( )+=

f x( )
y f x( )=

–5      –4    –3     –2     –1    0       1

2

4

–1    0       1

2

y

x

y

x

Figure 1 Figure 2
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6.2.1 DILATION FROM THE X–AXIS

Before we start our discussion it should be pointed out that other commonly used expressions for 
dilations from the x–axis are; dilation along the y–axis and dilation parallel to the y–axis – either 
of these three expressions can be used when describing this dilation.

The equation  can be written as . We have rearranged the expression so that 

we can more clearly see the effects that p has on the y–values. That is, the term  represents a 
transformation on the y–axis as opposed to a transformation on the graph of . The effect of 
‘p’ in the term  is that of a dilation from the x–axis. 

If , we shrink the y–axis (seeing as we are dividing the y–values by a number larger than 
one). Whereas if  we stretch the y–axis.

However, we still need to describe the effect this transformation has on the final appearance of the 
graph of .
We summarise these results, stating the effects on the graph of :

Realise that quoting a ‘stretch’ of factor  is the same as quoting a ‘shrink’ of factor 3. However,
it is more common that when referring to a dilation from the x–axis we are referring to a stretch. 
So a dilation from the x–axis of factor 3 would imply a stretching effect whereas a dilation from 
the x–axis of factor  would imply a shrinking effect.

The relationship between the the original coordinates  and the new coordinates  can 
be seen in the diagram below.

Unfortunately, unlike the translation vector 
of §6.1, we have no dilation vector to 
describe this transformation [although there 
does exist a dilation matrix].

DILATIONS6.2

y pf x( )= y
p--- f x( )=

y
p---

f x( )
y
p---

p 1>
0 p 1< <

f x( )
f x( )

For the curve with equation , 

|p| > 1, represents ‘stretching’   by a factor p from the x–axis.
0 < |p| < 1 , represents ‘shrinking’  by a factor  from the x–axis

y pf x( )=

f x( )
f x( ) 1

p---

1
3---

1
3---

x y,( ) x' y',( )

p
x y,( )

x' y',( ) x' x=
y' py=

Where:
y

x
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(a)  represents a dilation of factor 2 from the x–axis. This means that the graph of
 would be stretched by a factor of two along the y–axis.

(b)  represents a dilation of factor  from the x–axis. This means that the graph
of  would shrink by a factor of four along the y–axis.

(c)  needs to first be written as , which represents a dilation of factor

 from the x–axis. This means that the graph of  would shrink by a factor of
two along the y–axis.

(a) The graph of  represents a dilation of
factor 2 – i.e., the graph of  will be 
stretched by a factor of 2.
Notice how the x–intercepts are invariant – i.e.,
they have not altered after the transformation.
This is because the y–value at these points is zero,
and multiplying zero by any number will still be zero.

(b)  which represents a

dilation of factor .
– i.e., the graph of  will shrink by a
fator of 3.

Describe the effects on the graph of  when the following graphs 
are sketched (a) (b) (c)      

y f x( )=
y 2 f x( )= y 1

4--- f x( )= 2y f x( )=

E 6.7XAMPLE

S
o
l
u
t
i
o
n

y 2 f x( )=
y f x( )=

y 1
4--- f x( )= 1

4---
y f x( )=

2y f x( )= y 1
2--- f x( )=

1
2--- y f x( )=

Given the graph of  sketch the graph of
(a) (b)

y f x( )=
y 2 f x( )= 3y f x( )=

 –2                            4

y

x

(0, 3)
y f x( )=

(6, –1)

E 6.8XAMPLE

S
o
l
u
t
i
o
n

 –2                            4

y

x

(0, 3)

y 2 f x( )=

(0, 6)

(6, –2)

 –2                            4

y

x

(0, 3)
y 1

3--- f x( )=
(0, 1)

6 1
3---–,  

y 2 f x( )=
y f x( )=

3y f x( ) y⇔ 1
3--- f x( )= =

1
3---
y f x( )=
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6.2.2 DILATION FROM THE Y–AXIS

The equation  represents a transformation applied to the x–values. We now need to 

consider how this factor ‘q’ affects the graph of . The term  represents a transformation on 

the x–values as opposed to a transformation on the graph of . The effect of ‘q’ in the term  
is that of a dilation from the y–axis. 

If , we shrink the x–axis (seeing as we are dividing the x–values by a number larger than 
one). Whereas if  we stretch the x–axis (because we are dividing by a number less 
than one but greater than zero).

However, we still need to describe the effect this transformation has on the final appearance of the 
graph of .
We summarise these results, stating the effects on the graph of :

So a dilation from the y–axis of factor 2 (e.g., ) would imply a stretching effect 
whereas a dilation from the y–axis of factor  (e.g., ) would imply a shrinking effect. 
We show this in the diagram below:

y f x
q---  =

f x( ) x
q---

f x( ) x
q---

q 1>
0 q 1< <

f x( )
f x( )

For the curve with equation , 

|q| > 1, represents ‘stretching’  by a factor q from the y–axis.
0 < |q| < 1 , represents ‘shrinking’  by a factor  from the y–axis

y f x q⁄( )=

f x( )
f x( ) 1

q---

y f x 2⁄( )=
1
2--- y f 2x( )=

y

x–4a              0           2a

y

x–4a      –2a   0     a    2a

(0, –b)

(0, –b)

y f x( )=

y f 2x( )=

Multiplying the x–values by 2 – i.e., stretching the x–axis by 
a factor of 2 has the same effect as squashing the graph of 

 by a factor of 2.y f x( )=

Again, it must be remembered that the graph of  
has not changed, it is simply the illusion that the graph has 
been squashed. That is, relative to the new (stretched) x–axis, 
the graph of  appears to have been squashed.

y f x( )=

y f x( )=

Notice that the y–intercept 
has not changed!
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The relationship between the the original coordinates  and the new coordinates  can 
be seen in the diagram below.

Again, we have no dilation vector to describe 
this transformation [although there does exist a 
dilation matrix].

(a) We first express the dilation in the form : .

This means that we have a dilation from the y–axis of factor . That is, the graph of  
will ‘shrink’[or rather be squashed] by a factor of 2.
i.e., because the x–values are doubled (from the 2x term in the expression ) it seems 
reasonable to deduce that on the new set of axes the graph will be squashed by a factor of 2.

(b) The term  in the expression  implies that the new x–values will be a third of 
the original x–values, this means that the new x–axis will be compressed by a factor of 3.
This in turn will have a stretching effect on  of factor 3 (along the x–axis).

x y,( ) x' y',( )

x y,( ) x' y',( )

x' x
q---=

y' y=
Where:

y

x

1
q---

Given the graph of  sketch the graph of

(a) (b)

y f x( )=

y f 2x( )= y f x
3---  =

 –2                            4

y

x

(0, 3)
y f x( )=

(6, –1)

E 6.9XAMPLE

S
o
l
u
t
i
o
n

y f x q⁄( )= y f 2x( ) y f x 1
2---  ⁄  =⇒=

1
2--- y f x( )=

y f 2x( )=

 –2                            4

y

x

(0, 3) y f 2x( )=

(6,–1)
–1           2

(3,–1)
x
3--- y f x

3---  =

y f x( )=

 –2                            4

y

x

(0, 3)

y f x
3---  =

(6,–1)
–1           2

(18,–1)
–6                                                                                    12
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1. On the same set of axes sketch the graphs of
(a) , (b) , 

(c) , (d) , 

2. On the same set of axes sketch the graphs of
(a) , (b) , 
(c) , (d) , 

3. Consider the graphs shown below.

In each case, sketch the graph of
i. ii.
iii. iv.

4. Consider the relations shown below.

Sketch the following

i.
ii.

EXERCISES 6.2

f x( ) x2= y f 2x( )= f x( ) x= y f 4x( )=

f x( ) 1
x---= y f x

3---  = f x( ) x3= y f x
2---  =

f x( ) x2= y 2 f x( )= f x( ) x= y 4 f x( )=
f x( ) 1

x---= y 1
3--- f x( )= f x( ) x3= y 1

2--- f x( )=

–2  –1        1    2    3   4    5    6

4
3
2
1

y

x

y f x( )=
y f x( )=

y

x
–5  –4   –3  –2 –1        1    2    3   4    5

4
3
2
1

–1
–2

(a) (b)

y f 0.5x( )= y f 2x( )=
y 0.5 f x( )= y 2 f x( )=

(a) (b)

–3           0             3

2

–2

3
2---– 3

2---

y

x

y f x( )=

–2   –1    0      1     2      3

1

–1

y

x

y

x
(0,3)

(2,0)
–2

2

(–2,6) y

x

(c) (d)

y f x( )=

y f x( )=
y f x( )=

y f 2
3---x  =

y 4 f x( )=
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5. Describe the transformation(s) under the following mappings
(a)  (b) (c)

(d) (e) (f)

6. For the graph shown below, sketch each of the following on a separate set of axes.
(a) (b) (c)

7. Consider the function .

(a) Find an expression for
i. ii.
iii. iv.
v. vi.

(b) On separate sets of axes, sketch the graphs of each of the functions in part (a).

8. Given the relation , sketch the graphs of

(a) (b)

9. Given the function , sketch the graph of
(a) (b)
(c) , b > 0 (d)

10. Given the function , sketch the graph of

(a) , a, b >0 (b) , a, b > 0

x     2x 1+ x2    12--- x 2–( )2 3– 1
x---    

1
2x 1–---------------

x3    3x 2–( )3 x4    12--- 4x 2–( )4 2– x    12--- 8x 2+

y 2 f x( ) 1–= y 2 f x 1–( )= y f 2x 1–( )=

–6   –5  –4 –3  –2  –1  0     1    2   3    4    5
–2

4

x

y

g x( ) x2     if x 2≥
6 x if x 2<–
=

f x( ) g x 2+( )= h x( ) g x( ) 3–=
h x( ) 2g x( )= k x( ) g 2x( )=
k x( ) g 2x 1–( )= f x( ) 1

2---g 4x 2+( )=

f x( )
4 x 2–( )2––  if 1 x 4≤<

3x  if       x 1≤
3x–  if       x 1≤

4 x 2–( )2–  if 1 x 4≤<





=

y 1
2--- f x( )= y f 1

2---x  =

f x( ) x=
y af x( ) a 0>,= y f ax( ) a 0>,=
y bf x b+( )= y 1

a--- f a
2x( ) a 0≠,=

f x( ) 1
x2-----=

y bf ax( ) a–= y bf ax( ) a
b---–=
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We first consider reflections about the x–axis and about the y–axis. The effects of reflecting a 
curve about these axes can be seen in the diagrams below:

Reflection about the x–axis Reflection about the y–axis

We summarise the effects of these two transformations of the graph of 

Another type of reflection is the reflection about the line y = x, when sketching the inverse of a 
function. Inverse functions are dealt with in detail in Chapter 5, so here we give a summary of 
those results.

Reflection about the line y = x

REFLECTIONS6.3

(x,y)
x

y

O

(x,y)
y

xO

When reflecting about the y–axis we 
observe that the coordinates (x,y) are 
mapped to the coordinates (–x, y). 
Meaning that the y–values remain the 
same but the x–values change sign.

x' y',( ) x' x=
y' y–=

x' x–=y' y= x' y',( )

y f x( )=

, represents a reflection of  about the x–axis.
, represents a reflection of  about the y–axis.

y f– x( )= f x( )
y f x–( )= f x( )

(x,y)

y

x
O

x' y=
y' x=

x' y',( ) y = x When reflecting about the line y = x we observe 
that the coordinates (x,y) are mapped to the 
coordinates (y, x). Meaning that the x–values and 
the y–values are interchanged.

If a one-one function  undergoes such 
a reflection, we call its transformed graph the 
inverse function and denote it by .

y f x( )=

y f 1– x( )=

Given the graph of  sketch the graph of
(a) (b)

y f x( )=
y f x–( )= y f– x( )=

 –2                            4

y

x

(0, 3)
y f x( )=

(6, –1)

E 6.10XAMPLE

When reflecting about the x–axis we 
observe that the coordinates (x,y) are 
mapped to the coordinates (x, –y). 
Meaning that the x–values remain the 
same but the y–values change sign.
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(a) The graph of  represents a reflection of the graph of  about the 
y–axis:

(b) The graph of  represents a reflection of the graph of  about the 
x–axis:

We now consider a combination of the transformations we have looked at so far.

We start by considering the function , then, the expression  can be 
written in terms of  as follows:  or .
This represents

1. reflection about the y–axis [due to the ‘–x’ term]
2. translation of 4 units to the right [due to the ‘4 – x’ term]

Note: 
3. dilation of factor 2 along the y–axis [due to the ‘ ’ term]
4. reflection about the x–axis [due to the  ‘–’ in front of the ‘ ’ term]
5. translation of 3 units up [due to the ‘+3’ term]

We produce the final graph in stages:

S
o
l
u
t
i
o
n

y f x–( )= y f x( )=

 –2                            4

y

x

(0, 3)

y f x–( )=
–4                              2

y f x( )=

2 3
2---,  2– 3

2---,  

y f– x( )= y f x( )=

 –2                            4

y

x

(0, 3)

y f– x( )=
–4                              2

y f x( )= 2 3
2---,  

2 3
2---–,  

(0, –3)

Sketch the graph of .y 3 2 4 x––=E 6.11XAMPLE

S
o
l
u
t
i
o
n

f x( ) x= y 3 2 4 x––=
f x( ) y 3 2 f 4 x–( )–= y 2 f 4 x–( )– 3+=

4 x– x 4–( )–=
2 f x( )

2 f x( )

y

x

y

x

y x= y x–=
x

y
(0,2)

4
y 4 x–=

1. reflection (about y-axis)             2. translation
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The above example gave a step by step account of how to produce the final graph, however, there 
is no need to draw that many graphs to produce the final outcome. We can reduce the amount of 
work involved by including all the transformation on one set of axes and then produce the final 
graph on a new set of axes.

If we consider the function , the graph of  can be written as 

.This represents a ‘shrinking’ effect of  factor 2 from the x–axis followed by a 
reflection about the x–axis then a translation of 1 to the left and finally a translation of 2 units up.

At this stage we have not looked at the x– or y–intercepts, although these should always be 
determined.

Important note!
Note the order in which we have carried out the transformations – although there is some freedom 
in which order the transformations are carried out, there are some transformations that must be 
carried out before others.

You should try and alter the order in which the transformations in Example 6.12 have been 
carried out. For example, does it matter if we apply Step 2 before Step 1. Can Step 2 be carried 
out after Step 4?

x

y

(0,2)

4

y 2 4 x–=

3. dilation                        4. reflection (about x–axis)              5. translation

(0,4)

x

y

(0,–4)

4

y 2– 4 x–=

(0,4)

x

y

(0,–1)
4

y 3 2 4 x––=3 (4, 3)

Sketch the graph of .y 2 1
2--- x 1+( )2–=

E 6.12XAMPLE

S
o
l
u
t
i
o
n

f x( ) x2= y 2 1
2--- x 1+( )2–=

y 2 1
2--- f x 1+( )–=

x

Shrinking by factor 2 

y

1 unit across

2 units up

Reflection
about x–axis y 2 1

2--- x 1+( )2–=
x

y
(–1, 2)

0 3
2---,  2

3

1

4 Final graph:
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1. Sketch the graphs of i. ii.
for each of the following

2. The diagram shows the graph of the function .

EXERCISES 6.3

y f x–( )= y f x( )–=

(a) (b)

–3           0             3

2

–2

3
2---– 3

2---

y

x

y f x( )=

–2   –1    0      1     2      3

1

–1

y

x

y

x
(0,3)

(2,0)
–2

2

(–2,6) y

x

(c) (d)

y f x( )=

y f x( )=
y f x( )=

–2   –1   0        1      2    3

2

y

x

y f x( )=

(e) (f)

1

(1, 2)

(–1, –1)

3

y

x2
1

1

y f x( )=
y

x2–1
1

Find the equation in terms of  for each of the following graphs.
(a) (b) (c)

f x( )
y

x2–1
1

y

x–2                 1
1

y

x–2                  1
1

–1

(d) (e)y

x
1

11
2---–

y

x2–1

2
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3. Sketch the graphs of the following
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

4. The graph of  is shown. 
Use it to sketch the graphs of
(a) (b)
(c) (d)
(e) (f)
(g) (h)

(i) (j)

5. Sketch the graphs of the following functions relative to the graph of
(a)  i.

ii.
(b) . i.

ii.

(c)  . i.
ii.

6. Consider the following transformations
A: Reflection about x-axis. B: Reflection about y-axis C:
D: Squash by factor 2 along x-axis E: Stretch by factor 3 along y-axis

Sketch the graph of  under the transformations in their given order
(a) , A; C. (b) , C; A.
(c) , D; B; C.  (d) , C; D; B.
(e) , A; E; C. (f) , E; C; A.

f x( ) 3– x2 9+= f x( ) 4 1
2---x

2–= f x( ) 1 1
8---x

3–=

f x( ) x 2+( )2– 3+= f x( ) 2
1 x–-----------= f x( ) 1 1

x 2+------------–=

f x( ) x 2–( )3– 2–= f x( ) 1
2 2 x–( )--------------------= f x( ) 4 2

x2-----–=

f x( ) 3 2
1 x–-----------–= f x( ) 1 x–( )2–= f x( ) 4 9 x–=

f x( ) 2
2x 1–( )2----------------------–= f x( ) 1

2--- 2 1
4---x–= f x( ) 2 x–=

f x( ) 2 1 x 2––( )= f x( ) 4 8 x3––= f x( ) 2
2 x–----------------=

(–1, –2)

x

y (1,2)

–2                                                       2

y f x( )=

y f x 1–( )= y f x( ) 1–=
y f x 1+( )= y 1 f x( )–=
y 1 f x–( )+= y 2 f x–( )–=
y 1

2--- f x( )–= y f 2x–( )=

y 2 f 1
2---x  –= y 2– f 1 x–( )+=

f x( ) 1
x---= y f ax( ) b a 1 b 0<,>,+=

y bf a x–( ) b 0 a 0>,>,=
f x( ) 1

x2-----= y bf ax( ) a a 1 b 0<,>,–=

y f x
b---   a a 0 b 0<,>,–=

f x( ) x= y af a2 ax–( ) a 0>,=
y af a2 ax–( ) a 0<,=

1
2  

f x( )
f x( ) x 2–= f x( ) x 2–=
f x( ) x2 2x–= f x( ) x2 2x–=
f x( ) x3= f x( ) x3=
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In this section we sketch the graph of  based on the graph of . We make
observations of the behaviour of  and its reciprocal – we use the TI–83 to begin.
Example 1: Graph of  and  where :

Example 2: Graph of  and  where :

RECIPROCAL OF A FUNCTION6.4

y 1
f x( )-----------= y f x( )=

y f x( )=
y f x( )= y 1

f x( )-----------= f x( ) x=

As x→∞, →
then →0+.

f x( ) ∞
y 1

f x( )-----------=

As x→∞, →∞ f x( )

As , →  x ∞–→ f x( ) ∞–

As , →
then, →0–.

x ∞–→ f x( ) ∞–
y 1

f x( )-----------=

As x→0–, →0– 
then → .

f x( )
y 1

f x( )-----------= ∞–

As x→0+, →0+ 
then →∞.

f x( )
y 1

f x( )-----------=

→0+f x( )

→0– f x( )

(1,1)

(–1,–1)

If  then f x( ) 0> 1
f x( )----------- 0>If  then f x( ) 0< 1

f x( )----------- 0<

y f x( )= y 1
f x( )-----------= f x( ) x2=

As x→0, →0+ 
then →∞.

f x( )
y 1

f x( )-----------=

As x→∞, →∞ 
then →0+.

f x( )
y 1

f x( )-----------=
As , →∞
then, →0+.

x ∞–→ f x( )
y 1

f x( )-----------=

As , →∞x ∞–→ f x( ) As x→∞, →∞f x( )

1

If  then f x( ) 0> 1
f x( )----------- 0>

When  = 0,  is undefined and has a vertical asymptotef x( ) y 1
f x( )-----------=

asymptote for y 1
f x( )-----------=
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Examples 1 and 2 display some similar properties. Such properties will also exist in the examples 
that follow.  Rather than listing all of the observations we now list selected observations. 
Example 3: Graph of  and  where :

Example 4: Graph of  and  where :

y f x( )= y 1
f x( )-----------= f x( ) x 2–( ) x 1+( )=

1

–1

When  = 0,  is undefined 
and has a vertical asymptote

f x( ) y 1
f x( )-----------=When  = 0,  is undefined 

and has a vertical asymptote
f x( ) y 1

f x( )-----------=

 =  where y = ± 1f x( ) 1
f x( )-----------  =  where y = ± 1f x( ) 1

f x( )-----------

Where  has a minimum, say at (a, ), 
then  has a maximum at .

f x( ) f a( )
y 1

f x( )-----------= a 1
f a( )-----------,( )

min

max
x = ax = –1 x = 2

y f x( )= y 1
f x( )-----------= f x( ) 1

x--- 2+=

If the graph of y =  has a  horizontal 
asymptote at y = a (say) then the graph of 

 will have an asymptote at 

f x( )

y 1
f x( )-----------= y 1

a---=

y = 2

y 1
2---=

If the graph of y =  has a vertical 
asymptote then the graph of  will 
meet the x–axis.

f x( )
y 1

f x( )-----------=

1

–1

x 1
2---–=
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Example 5: Graph of  and  where :

We summarise our observations as follows:

y f x( )= y 1
f x( )-----------= f x( ) x 1–( )3 2+=

If the graph of y =  has a point of inflection 
at (a, ) then the graph of  will 

have a point of inflection at  .

f x( )
f a( ) y 1

f x( )-----------=

a 1
f a( )-----------,( )

x = a

1

–1

When  = 0,  is undefined 
and has a vertical asymptote

f x( ) y 1
f x( )-----------=

Observation 1: If  then . If  then .
Geometrically: Where the graph of  lies above the x–axis, so too does the graph

of . Where the graph of  lies below the x–axis, so too

does the graph of .

f x( ) 0> 1
f x( )----------- 0> f x( ) 0< 1

f x( )----------- 0<
y f x( )=

y 1
f x( )-----------= y f x( )=

y 1
f x( )-----------=

Observation 2: Where  then  is undefined. 
Geometrically: Where the graph of  cuts (or touches) the x–axis, the graph of

 has a vertical asymptote.

f x( ) 0= 1
f x( )-----------

y f x( )=
y 1

f x( )-----------=

Observation 3: Where  is of the form  then  = 0
Geometrically: Where the graph of  has a vertical asymptote, the graph of

 cuts (or touches) the x–axis.

f x( ) a
0--- a 0≠, 1

f x( )-----------
y f x( )=

y 1
f x( )-----------=

Observation 4:

Geometrically: The graph of  and the graph of  intersect along the line
y = ± 1.

f x( ) 1
f x( )----------- f x( )[ ]2⇔ 1 f x( )⇔ 1±= = =

y f x( )= y 1
f x( )-----------=
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Notice that we have not worked out the axial intercepts in the examples that were used to derive 
our observations, however, you should always find the coordinates of all axial intercepts.

Observation 5: If  as  (or ) then .
Geometrically: If the graph of  has a horizontal asymptote at y = a, then the

graph of  has a horizontal asymptote at .

f x( ) a→ x ∞→ x ∞–→ 1
f x( )----------- 1

a---→
y f x( )=

y 1
f x( )-----------= y 1

a---=

Observation 6: As ,  and as , .

Geometrically: As the graph of  increases, the graph of  decreases.

As the graph of  decreases, the graph of  increases.

f x( ) ∞→ 1
f x( )----------- 0→ f x( ) 0→ 1

f x( )----------- ∞→

y f x( )= y 1
f x( )-----------=

y f x( )= y 1
f x( )-----------=

Observation 7: If  has a stationary point at  and , then 
also has a stationary point at x = a.
[A full discussion of stationary points is found in Chapter 20].

Geometrically: 1. If the graph of  has a maximum at , then the
graph of  has a minimum at .

2. If the graph of  has a minimum at , then the
graph of  has a maximum at .

3. If the graph of  has a point of inflection at , then
the graph of  has a point of inflection at .
The point of inflection can be either stationary or non-stationary.

y f x( )= x a= f a( ) 0≠ y 1
f x( )-----------=

y f x( )= a f a( ),( )
y 1

f x( )-----------= a 1
f a( )-----------,  

y f x( )= a f a( ),( )
y 1

f x( )-----------= a 1
f a( )-----------,  

y f x( )= a f a( ),( )
y 1

f x( )-----------= a 1
f a( )-----------,  

Sketch the graph of  for each of the functions shown below.
(a) (b)

y 1
f x( )-----------=

1

–2

–3  –2  –1    0   1    2

3
2---

(–2,–1)
x = 2

y

x

y

x

E 6.13XAMPLE
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i(a) Using the observations made, we have:

To determine the points of intersection between the two graphs we recall that the graphs will meet 
along the line y = ±1. This means we would need to solve two equations,  and 

. As we have no equations, we leave the graph above as is, noting that one point of 
intersection occurs at (1, 1) while the other two occur in the domains –1 < x < 0 and –3 < x < –1.
(b)

So far we have considered sketching the graph of  based on the graph of , 

however, we could just as easily sketch the graph of  based on the graph of .

The equation  can be rewritten as  so that the factor ‘k’ represents a 

dilation of factor k along the y–axis. This means that once the graph of  is sketched, all 
that remains is to stretch (or shrink) it. If  k < 0, we also reflect the graph about the x–axis.

S
o
l
u
t
i
o
n

1

–2

–3    –2   –1    0         1      2
–1

x

y

3
2---

1
2---–,–  

3
2--- 2–,–  

Based on observations 1–7, the graph of  
has the following properties:
1. vertical asymptotes at x = –3, x = 0 and x = 2
2. (local) maximum at  and (local)

minimum at (1,1).
3. horizontal asymptote at y = 0 (i.e., x–axis).

y 1
f x( )-----------=

3
2---

1
2---–,–  

f x( ) 1=
f x( ) 1–=

Based on observations 1–7, the graph of  
has the following properties:
1. vertical asymptotes at x = 0.
2. (local) maximum at  and (local)

minimum at (2,0).
3. horizontal asymptote at .
4. meets the x–axis at (2, 0).
5. passes through the points (1, 1) and (–2, –1).
6. as , .

y 1
f x( )-----------=

2 1–,–( )

y 2
3---=

x ∞–→ 1
f x( )----------- ∞–→

3
2---

(–2,–1)
x = 2

y

x

y 2
3---=

y 1
f x( )-----------= y f x( )=

y k
f x( )-----------= y f x( )=

y k
f x( )-----------= y k 1

f x( )-----------×=

y 1
f x( )-----------=

Sketch the graphs of the following functions
(a) (b)y 4

x2 2x–-----------------= y 4
x2 2x– 5+--------------------------=

E 6.14XAMPLE
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In this example we sketch the results and then briefly comment on some observations.

(a)

(b)

Two other ‘transformations’, involving the use of the absolute value function, namely, sketching 
the graph of  and  from the graph of  have already been dealt 
with in detail in Chapter 5.

Of course there are other types of graphs that can be sketched based on the graph of . 
For example, , where, for example, we could only consider that part of  
where  or . We leave graphs such as these for the exercises.

S
o
l
u
t
i
o
n

0                  2

–4

 1

2

y

x

1 4–,( )

(1, –1)

We first sketched the graph of , located where it cuts 
the x–axis (x = 0 and x = 2) and found its turning point (1, –1).
From this graph we could deduce the following properties for 

: 

1.  place asymptotes at x = 0 and x = 2 
2.  have a turning point at (1, –1). However, because of the factor of
     ‘4’, the turning point would now be located at (1, –4).
Note: To find where the graphs of  and  meet 

we need to solve 
                                                     
3.  as .

4.  as  and as .

y x2 2x–=

y 1
x2 2x–
------------------=

y f x( )= y 4
f x( )-----------=

f x( ) 4
f x( )----------- f x( )( )2⇔ 4= =

f x( )⇔ 2±=
f x( ) ∞ 4

f x( )----------- 0+→,→

f x( ) 0+ 4
f x( )----------- ∞→,→ f x( ) 0– 4

f x( )----------- ∞–→,→

 1

5

y

x

1 4,( )
(1, 1)

0

0 4
5---,  

We note that 
1.  the graph of  lies above the x–axis,
     meaning that the graph of y =  will also lie above the
     x–axis. 
2.  as the graph of  has no x–intercepts, the graph of 
     y =  has no vertical asymptotes.
3.  the minimum of  is 4, therefore the maximum of
     .
4.  the graph of  cuts the y–axis at y = 5, so the graph
     of y =  will cut the y–axis at .

5.  as .

f x( ) x2 2x– 5+=
4
f x( )-----------

y f x( )=
4
f x( )-----------

y f x( )=
y 4

f x( )----------- 4
4--- 1= = =
y f x( )=

4
f x( )----------- y 4

5---=

f x( ) ∞ 4
f x( )----------- 0+→,→

y f x( )= y f x( )= y f x( )=

y f x( )=
y f x( )= y f x( )=

f x( ) 0≥ y f x( )[ ]2=
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1. Sketch the graphs of  for each of the following

2. On the same set of axes sketch the graphs of  and  where

(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

(j) (k) (l)

3. (a) Sketch the graph of .
(b) Using your graph in part (a), sketch the graph of 

4. Sketch the graph of .

EXERCISES 6.4

y 1
f x( )-----------=

(a) (b)

–3           0             3

2

–2

3
2---– 3

2---

y

x

y f x( )=

–2   –1    0      1     2      3

1

–1

y

x

y

x
(0,3)

(2,0)
–2

2

(–2,6) y

x

(c) (d)

y f x( )=

y f x( )=
y f x( )=

–2   –1   0        1      2    3

2

y

x

y f x( )=

(e) (f)

1

(1, 2)

(–1, –1)

3

y

x21
3
2---

y f x( )= y 1
f x( )-----------=

f x( ) x 2–= f x( ) x2 4x+= f x( ) x3 2+=
f x( ) ex 1–= f x( ) xln= f x( ) x 1–=
f x( ) 2 x–( )3= f x( ) 2 2x–= f x( ) x 1+

x------------=

f x( ) 1
x--- 2–= f x( ) 1

x2 4–-----------------= f x( ) 3 x–( )10log=

f x( ) x2 4x– 3+=
y 1

x 3–----------- 1
x 1–-----------–=

f x( ) 2 1
x 5–----------- 1

x 3–-----------–  =
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 – MISCELLANEOUS QUESTIONS

1. For the functions shown below sketch the graphs of
(a)

(b)

(c)

2. On the same set of axes sketch the graphs of
(a)  and .

(b)  and .

(c)  and .

(d)  and .

3. Consider the functions  and .
(a) On the same set of axes sketch the graphs of  and .
(b) i. Sketch the graph of .

ii. Sketch the graph of .

Let  and .
(c) Sketch the graph of

i. ii.

iii. iv.

v. vi.

EXERCISES 6.5

y 1
f x 1–( )--------------------=

y 2
f x( )-----------=

y 2
f 2x( )--------------=

1

1
2---–

–1      0         1

y

x –1       0            1
–2

y

x–2                                    2

i. ii.

y f x( )= y f x( )=

f x( ) x2 6x– 8+= y 1
f x( )-----------=

f x( ) x2 6x– 9+= y 1
f x( )-----------=

f x( ) x2 6x– 10+= y 1
f x( )-----------=

f x( ) x2 6x– 11+= y 2
f x( )-----------=

f x( ) ax a 1>,= g x( ) a x– a 1>,=
y f x( )= y g x( )=

y f x( ) g x( )+=
y f x( ) g x( )–=

u x( ) ax a x– a 1>,+= v x( ) ax a x– a 1>,–=

y 2
u x( )-----------= y 1

v x( )----------=

y 2
u x( )--------------= y 1

v x( )-------------=

y 2
u x( )-----------= y 1

v x( )----------=
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4. Consider the graph shown below

Sketch the graph of
i. ii. iii.

5. Consider the funcion , where a > 0.

(a) Sketch the graph of .
(b) Sketch the graph of  for
(c) If  sketch the graph of

i. ii. .

6. (a) Given that the curve  has turning points at (2, –16) and (–2, 16)
sketch its graph.

(b) Hence, sketch the graph of i. .
ii. .

7. On the same set of axes sketch the graphs of  and .

8. (a) On the same set of axes sketch the graphs of  and , a > 0.

Hence sketch the graph of , a > 0, x ≠ 0.

(b) Using your results from (a), sketch the graph of .

(c) Hence, show that .

1   2    3    4

2

y

x
y f x( )=

y 4
f x( )-----------= y 1

f x( )--------------= y 2
f x( )--------------=

u x( ) x2 ax– if x 0≥
a aex– if x 0<
=

y u x( )=
y a

u x( )-----------=
v x( ) x=

y uov( ) x( )= y vou( ) x( )–=

y x3 12x–=

y 12
x3 12x–--------------------=

y2 x3 12x–=

f x( ) 1
a--- x a–( ) a 1>,alog= y 1

f x( )-----------=

f x( ) 1
a---x= g x( ) a

x---=

y x2 a2+
ax-----------------=

h x( ) 1
f x( ) g x( )+----------------------------=

1
2---

ax
x2 a2+----------------- 1

2---≤ ≤–
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In §5.3.3 and §5.3.4 we looked at the exponential function,  and the logarithmic 
function,  and considered their general behaviour. In this chapter we will 
look in more detail at how to solve exponential and logarithmic equations as well as applications 
of both the exponential and logarithmic functions.

7.1.1 BASIC RULES OF INDICES

We start by looking at the notation involved when dealing with indices (or exponents). 
The expression

can be written in index form, , where n is the index (or power or exponent) and a is the base.
This expression is read as “a to the power of n.” or more briefly as “a to the n”.

For example, we have that  so that 3 is the base and 5 the exponent (or 
index).
The laws for positive integral indices are summarised below.
If a and b are real numbers and m and n are positive integers, we have that

There are more laws of indices that are based on rational indices, negative indices and the zero 
index. A summary of these laws is provided next.

Law Rule Example

1. Multiplication [same base] : 

2. Division [same base] : 

3. Power of a power [same base] : 

4. Power of a power [same power] : 

5. Division [same power] : 

6. Negative one to a power : 

EXPONENTS7.1

C
H

A
P

T
E
R

 7

f x( ) ax a 0>,=
f x( ) xa a 0>,log=

a a a … a××××
n times

an

35 3 3 3 3 3××××=

am an× am n+= 34 36× 34 6+ 310= =

am an÷ am
an------ am n–= = 79 75÷ 79 5– 74= =

am( )n am n×= 23( )5 23 5× 215= =

am bm× ab( )m= 34 74× 3 7×( )4 214= =

am bm÷ am
bm------

a
b---  m= = 53 73÷ 5

7---   3=

1–( )n 1– if n is odd
1 if n is even

= 1–( )3 1–( )5 … 1–= = =
1–( )2 1–( )4 … 1= = =
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We make the following note about fractional indices:
As , we have that for     i.

    ii.

Then, If b ≥ 0, then 
If b < 0, then 

(a)  = (b)  = 

        =        = 

        = 

        = 

        = 

Law Rule Example

1.
Fractional index Type 1
[nth root]

: .
Note: if n is even, then a ≥ 0.
          if n is odd, then .

2. Fractional index Type 2 : 
Note: if n is even, then  
          if n is odd, then .

3. Negative index : , a ≠ 0 

  

4. Zero index : 
Note: 

a1 n/ an n   ∈,=

a ∈

81 3/ 83 2= =
27–( )1 3/ 27–3 3–= =

am n/ amn=
am 0≥
a ∈

163 4/ 1634 8= =

a 1– 1
a---=

a n– 1
an----- a 0 n ∈,≠,=

2 1– 1
2--- 0.5= =

3 2– 1
32-----

1
9---= =

a0 1 a 0≠,=
0n 0 n 0≠,=

120 1=

m
n---- m 1

n---× 1
n--- m×= = b 0≥ b

m
n----  bm

1
n---× bm( )

1
n---  bmn= = =

b
m
n----  b

1
n--- m× b

1
n---    m bn( )m= = =

b
m
n----  bmn bn( )m m    n   ∈,∈,= =

b
m
n----  bmn bn( )m m    n 1 3 5 …, , ,{ }∈,∈,= =

Simplify the following
(a) (b)4x2

5y4--------   2 2x3y( )3× 3n 1+ 32+
3-----------------------

E 7.1XAMPLE

S
o
l
u
t
i
o
n

4x2
5y4--------   2 2x3y( )3× 42x2 2×

52y4 2×----------------- 23x3 3×× y1 3× 3n 1+ 32+
3----------------------- 3 3n 3+( )

3-----------------------
16x4
25y8----------- 8x9y3× 3n 3+
128
25---------x4 9+ y3 8–

128
25---------x13y 5–

128x13
25y5----------------
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(a)  = 

= 

= 

(b)  = 

 = y + x 

(a)  = 

= 

= 
= 

(b)  = 

= 
= 
= 

Simplify the following
(a) (b)4x2 y 1––( ) 2–

2x2–( )3 y 2–( )2---------------------------------- x 1– y 1–+
x 1– y 1–---------------------

E 7.2XAMPLE

S
o
l
u
t
i
o
n

4x2 y 1––( ) 2–
2x2–( )3 y 2–( )2---------------------------------- 4x2 y 1 2–×–×

8x2 3× y 2 2×–×–--------------------------------------
x2y2
2x6y 4–----------------–=
y2 4–( )–
2x6 2( )–------------------–
y6
2x4--------–

x 1– y 1–+
x 1– y 1–---------------------

1
x---

1
y---+

1
xy-----

------------ 1
x---

1
y---+   xy

1-----× xy
x-----

xy
y-----+= =

Simplify the following
(a) (b)2n 3– 8n 1+×

22n 1– 42 n–×-------------------------------- a1 3/ b1 2/×( ) 6–

a8b94
-----------------------------------

E 7.3XAMPLE

S
o
l
u
t
i
o
n

2n 3– 8n 1+×
22n 1– 42 n–×-------------------------------- 2n 3– 23( )n 1+×

22n 1– 22( )2 n–×--------------------------------------- 2n 3– 23n 3+×
22n 1– 24 2n–×----------------------------------=
2n 3– 3n 3+( )+
22n 1– 4 2n–( )+--------------------------------
24n
23-------
24n 3–

a1 3/ b1 2/×( ) 6–

a8b94
----------------------------------- a

1
3--- 6–× b

1
2--- 6–××

a8b9( )
1
4---  

----------------------------------- a 2– b 3–×
a2b

9
4---  

---------------------=

a 2– 2– b 3– 9
4---–×

a 4– b
21
4------  –

1
a4b

21
4------  

--------------
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1. Simplify the following
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

2. Simplify the following
(a) (b) (c)

(d) (e) (f)

3. Simplify the following
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

4. Simplify .

5. Simplify the following, leaving your answer in positive power form
(a) (b) (c)

(d) (e) (f)

6. Simplify the following
(a) (b) (c)

(d) (e) (f)

7. Simplify the following

(a) (b) (c)

EXERCISES 7.1.1

3y2
4x3--------  3 2x2y3( )× 3 2

3a2--------   3 1
8a6--------+ 2n 1+ 22+

2-----------------------

2x3
3y2--------  3 xy2( )× 2 2x3

4y2--------   2 12y6
8x4-----------× 3n 2+ 9+

3---------------------

4n 2+ 16–
4------------------------ 4n 2+ 16–

2------------------------ 1
2b------   4 b2

16------–

206
106-------- 122x

63( )x------------ 162y 1+
82y 1+-----------------

ab( )2x
a2xb4x--------------- xy( )6

64x6------------- 27n 2+
6n 2+--------------

x
y--   3 y

z--   2 z
x--   4×× 32n 27 243n 1–×× 252n 51 n–×

52( )n----------------------------
9n 3n 2+×

27n----------------------- 2n 42n 1+×
21 n–-------------------------- 22n 1+ 4 n–×

2n( )3----------------------------
x4n 1+

xn 1+( ) n 1–( )---------------------------- x4n2 n+
xn 1+( ) n 1–( )---------------------------- 3x( ) 3x 1+( ) 32( )

3x( )2-------------------------------------

xm( )n y2( )m
xm( ) n 1+( )y2----------------------------

34–( ) 3 2–×
3–( ) 2–--------------------------- 9y2 x 1––( ) 2–

2y2–( )3 x 2–( )3---------------------------------- x 1– y 1––
x 1– y 1–---------------------

x 2– 2x 1–+
x 1– x 2–+------------------------ 2–( )3 2 3–×

x 1–( )2 x2×--------------------------- a–( )3 a 3–×
b 1–( ) 2– b 3–---------------------------

x 1–( )2 y2( ) 1–+
x2 y2+----------------------------------- x2( ) 2– 2y+

1 2yx4+--------------------------- x h+( ) 1– x 1––
h-----------------------------------

x2 1–( ) 1– x 1+( )× x 1–( ) 3–
x 1+( ) 1– x2 1–( )2------------------------------------------- y x 1–( )2 x 1–+

x y+-------------------------------

5n 1+ 5n 1–– 2 5n 2–×– ax y– ay z– az x–×× a
1
2---  – b3

ab 1–--------------    2 1
ab------×
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(d) (e) (f)

(g) (h)

8. Simplify the following
(a) (b) (c)

(d) (e) (f)

7.1.2 INDICIAL EQUATIONS

Solving equations of the form , where the variable is the base, requires that we square 

both sides of the equation so that . However, when the variable is the 
power and not the base we need to take a different approach.

Consider the case where we wish to solve for x given that .

In this case we need to think of a value of x so that when 2 is raised to the power of x the answer 
is 8. Using trial and error, it is not too difficult to arrive at x = 3 .

Next consider the equation .
Again, we need to find a number such that when 3 is raised to that number, the answer is 27. Here 
we have that . Therefore we can rewrite the equation as .
As the base on both sides of the equality is the same we can then equate the powers, that is,

    
Such an approach can be used for a variety of equations. We summarise this process for simple 
exponential equations:

Solve for x : Example: Solve 
Step 1: Express the number N in the form                         
Step 2: Write the equation                        
Step 3: Equate exponents, x = number                     

am n+
an------------  m an m–

an------------  m n–× p 2– q 2––
p 1– q 1––--------------------- 1

1 a
1
2---  +

---------------- 1
1 a

1
2---  –

---------------–

2n 4+ 2 2n( )–
2 2n 3+( )------------------------------- a a a

x x23×
x4

----------------------- bn 1+ 8a2n 1–×
2b( )2 ab( ) n– 1+------------------------------------- 2n 6n–

1 3n–----------------

7m 1+ 7m–
7n 7n 2+–------------------------- 52n 1+ 25n+

52n 51 n++----------------------------- x 2x
1
2---  – 1+   12---  x 1+

x 1–----------------×

x
1
2---  3=

x
1
2---     2 32 x⇒ 9= =

Indicial (exponential) equations take on the general form , where the unknown 
(variable), x,  is the power

bx a=

2x 8=

23 2 2 2×× 8= =( )

3x 1+ 27=

27 33= 3x 1+ 33=

3x 1+ 27 3x 1+ 33=⇔=
x 1+⇔ 3=

x⇔ 2=

bx N= 5x 625=
bnumber 625 54=

bx bnumber= 5x∴ 54=
x⇔ 4=
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(a)
  

(b)
         

(c)

 

(a)

         

i.e., solution set is {–4}.
(b)

         

i.e., solution set is {0.5}.
(c)

        

i.e., solution set is {4}.

Solve the following
(a) (b) (c)3x 81= 2 5u× 250= 2x 1

32------=
E 7.4XAMPLE

S
o
l
u
t
i
o
n

3x 81 3x⇔ 34= =
x⇔ 4=

2 5u× 250 5u⇔ 125= =
5u⇔ 53=
u⇔ 3=

2x 1
32------ 2x⇔ 1

25-----= =
2x⇔ 2 5–=
x⇔ 5–=

Find

(a) (b) (c)x  1
2---   x 16=    x  3x 1+ 3 3={ } x  4x 1– 64={ }

E 7.5XAMPLE

S
o
l
u
t
i
o
n

1
2---   x 16 2 1–( )x⇔ 16= =

2 x–⇔ 24=
x–⇔ 4=
x⇔ 4–=

 3x 1+ 3 3 3x 1+⇔ 3 31 2/×= =
3x 1+⇔ 33 2/=
x 1+⇔ 3

2---=

x⇔ 1
2---=

 4x 1– 64 22( )x 1–⇔ 26= =
22x 2–⇔ 26=
2x 2–⇔ 6=

2x⇔ 8=
x⇔ 4=
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1. Solve the following equations.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

2. Solve the following equations.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

7.1.3 EQUATIONS OF THE FORM .

This is an extension of the previous section, in that now we will consider exponential equations of 
the form  where N can be expressed as a number having base b so that .

Consider the equation . Our first step is to express 8 as  so that we can then write

Then, equating powers we have:    
So that,    

 
 or 

Checking these values by substituting back into the origial equation shows them to be correct.
i.e., when x = 2, L.H.S =  = R.H.S
       when x = –2, L.H.S =  = R.H.S

However, had the equation been, , then the solution would have been
 [equating powers] 

        

Again, we can check that these solutions satisfy the original equation.
The thing to note here is that the solution process has not altered. Rather than having one of the 
powers represented by a constant, we now have both powers containing the variable.

EXERCISES 7.1.2

x  4x 16={ } x  7x 1
49------=    x  8x 4={ }

x  3x 243={ } x  3x 2– 81={ } x  4x 1
32------=   

x  32x 4– 1={ } x  42x 1+ 128={ } x  27x 3={ }

x  7x 6+ 1={ } x  8x 1
4---=    x  10x 0.001={ }

x  9x 27={ } x  24x 1– 1={ } x  25x 5={ }
x  16x 1

2-------=    x  4 x– 32 2={ } x  9 2x– 243={ }

b f x( ) bg x( )=

b f x( ) N= N bg x( )=

2x2 1– 8= 23
2x2 1– 8 2x2 1–⇔ 23= =

x2 1–⇔ 3=
x2 4–⇔ 0=

x 2–( ) x 2+( )⇔ 0=
x∴ 2= x 2–=

222 1– 24 1– 23 8= = =
2 2–( )2 1– 24 1– 23 8= = =

2x2 1– 25 x–=
2x2 1– 25 x– x2 1–⇔ 5 x–= =

x⇔ 2 x 6–+ 0=
x 2–( ) x 3+( )⇔ 0=

x∴ 2 or x 3–= =
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We need to first express the equation in the form  where, in this case, b = 3:

 

Again, checking our solutions we have, x = 0: L.H.S =  = R.H.S
x = 7: L.H.S =  = R.H.S

Therefore, the solution set is {0, 7}

We now have a more general statement for solving exponential equations:

It is important to realise that this will only be true if the base is the same on both sides of the 
equality sign.

1. Solve the following for the unknown
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

2. Solve for the unknown
(a) (b) (c)

(d) (e) (f)

3. Solve the following
(a)
(b)
(c)
(d)
(e)

Find .x  3x2 5x– 2+ 9x 1+={ }E 7.6XAMPLE

S
o
l
u
t
i
o
n

b f x( ) bg x( )=
3x2 5x– 2+ 9x 1+ 3x2 5x– 2+⇔ 32( )x 1+= =

3x2 5x– 2+⇔ 32x 2+=
x2 5x– 2+⇔ 2x 2+=

x2 7x–⇔ 0=
x x 7–( )⇔ 0=

x⇔ 0 or x 7= =
30 0– 2+ 9 90 1+= =
372 5 7 2+×– 316 97 1+= =

, where b > 0 and b ≠ 1.b f x( ) bg x( ) f x( )⇔ g x( )= =

EXERCISES 7.1.3

92x 1– 32x 5+= 4x 1+ 82x 4–= 252x 3+ 125x 1+=
24x 1+ 4x 2+= 162x 1– 82x 1+= 3 27x 1+× 92x 1+=

3( )x 1– 9 x– 2+= 8x 1
16x 1+--------------= 4x 2+ 8x 1–× 2=

8x 1+ 1
2x-----= 8x 1+ 2x2 1–= 3x 1– 3x2 1–=

4x2 7x– 12+ 1= 6 n2 3n– 36= 5x( )2 5x2=

x2 x– 1–( )x2 x2 x– 1–=
x 2–( )x2 x– 12– 1=
3x 4–( )2x2 3x 4–( )5x 2–=
x x2 2x– 1=
x2 x 57–+( )3x2 3+ x2 x 57–+( )10x=
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7.1.4 WHAT IF THE BASE IS NOT THE SAME?

Consider the equation . It is not possible (at this stage) to express the number 10, in 
exponent form with a base of 2. This means that our previous methods will not work.
However, we could try a numerical or even graphical approach to this problem. Clearly the value 
of x must be somewhere in the range [3,4] as  and .We explore this problem 
using the graphics calculator.
We begin by defining the two relevant equations,

 and .
Then we enter these functions using the equation editor screen:

Next, we set our domian and range.
As we have already decided that , we can set the domain 
to be 0 ≤ x ≤ 4.

We can now obtain a graphical display of the equation .

We can now find the point of intersection.
To do this we use the CALC menu and choose option 5: int 
(this will determine the intersection of the two curves).

When asked for First curve? press ENTER. Similarly, for Second 
curve? When asked to Guess?  move the cursor as close as possible 
to the point where both graphs meet and press ENTER.

We have a solution (to four decimal places) for x, i.e., x = 3.3219. We could also have used the 
ZOOM facility to obtain the same result. We do this in the next example.

At this stage, the key to being able to solve equations of the form  (where b cannot be 
easily expressed as a number having  base ‘a’), is to accurately sketch the graphs of  and 
y = b, and then to determine where the two graphs meet.

2x 10=

23 8= 24 16=

y 2x= y 10=

x 3 4,[ ]∈

2x 10=

ax b=
y ax=
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Let  and .
We enter the functions:

Using the TI–83 to sketch the given graphs, we have:
Using the TRACE key, we can move the cursor along the graph 
so that the square lies at the point where the two graphs meet.
At this stage, our ‘best solution’ is x = 3.57

We can obtain a more accurate answer by using the ZOOM 
facility and then selecting 1:ZBOX option (to ‘close–in’ on 
the point of intersection). Repeated use of the Zoom facility 
will continue to provide a more accurate solution.
After using the zoom facility once we have x = 3.5844
(The actual answer is x = 3.5849...).

Note: We can use the 0:solve function on the TI–83, 
i.e.,  solve (2^x–12,x,3) = 3.5849. . . .

However, it is the graphical approach that we wish to emphaise 
at this stage, so that the relationship between the solution, the 
roots and the graphical representation can be clearly observed.

1. Use a graphical approach to solve the following (give your answer correct to 2 d.p.).
(a) i. ii. iii.
(b) i. ii. iii.
(c) i. ii. iii.
(d) i. ii. iii.

2. Use a graphical approach to solve the following (give your answer correct to 2 d.p.).
(a) (b)
(c) (d)
(e) (f)

Solve for x, 2x 12=E 7.7XAMPLE

S
o
l
u
t
i
o
n

y1 2x= y2 12=
Y1 2^X=
Y2 12=

EXERCISES 7.1.4

2x 40= 2x 1020= 2x 6=
3x 12= 3x 80= 3x 500=
1
2---   x 1

10------= 1
2---   x 20= 1

2---   x 80=
5x 0.1= 5x 15= 5x 0.01=

x  2x 1 x–={ } x  2x x– 2+={ }
x  2 x– 4x 2+={ } x  3x 1 x2–={ }
x  3 x– x2 1–={ } x  5x 2 x 1–( )2–={ }
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7.1.5 A SPECIAL BASE 

Of all the expressions , that for which a = e is known as the exponential function. The 
exponential function is also known as the natural exponential function, in recognition of the 
important role that the value ‘e’ has. The importance of ‘e’ is that it occurs in many applications 
that arise as a result of natural phenomena. The question then remains; What is ‘e’?
We consider how an investment can earn continuously compounded interest:
If a principal amount $P is invested at an annual percentage rate r, compounded once a year, the 
amount in the balance, $A, after one year is given by . We can then 
have more frequent (quarterly, monthly, daily) compounding interest. 
For example, if we have quarterly compounding interest then each quarter will have an effective 
rate of , which will be compounded 4 times. This means that by the end of the year, the balance 

will be given by  .

If we next consider the situation where there are n compoundings per year, so that the rate per 
compounding becomes , we then have that the amount in the balance after a year (i.e., after n 

compoundings) is given by .

If we allow the number of compoundings n, to increase without bound, we obtain what is known 
as continuous compounding. We can set up a table of values for the case when r = 1.

From the table of values, we have that as the value of n increases, the value of  
approaches a fixed number. This number is given by 2.718145. . ., which happens to be an 
approximate value for the number ‘e’.

n

1      

10      

100      

1000      

10 000      

e( )
ax

A P P r×+ P 1 r+( )= =

r
4---

A 1 r
4---+   4=

r
n---

A 1 r
n---+   n=

1 1
n---+   n

1 1
1---+   1 2=

1 1
10------+   10 2.593742…=

1 1
100---------+   100 2.704813…=

1 1
1000------------+   1000 2.716923…=

1 1
10000---------------+   10000 2.718145…=

1 1
n---+   n
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That is,

This limiting expression is also known as Euler’s number.
This means that the natural base, e, is an irrational number just as the number π is. Notice then, 
the number e can be used in the same way that π is used in calculations.

Remember, treat ‘e’ as you would any other number.
(a)
(b)
(c)

(a)

(b)

  
(c)

         

1. Solve for x
(a) (b) (c) (d)

1 1
n---+   n

n ∞→lim e 2.71828…= =

Evaluate the following to 4 decimal places
(a) (b) (c)e2 e e3 2–

E 7.8XAMPLE

S
o
l
u
t
i
o
n

e2 7.3891=
e 1.6487=

e3 2– 18.0855=

Solve the following
(a) (b) (c)e2x e= e2x 3– 1

e---= ex2 1– e3x 3–=
E 7.9XAMPLE

S
o
l
u
t
i
o
n

e2x e e2x⇔ e1 2x⇔ 1= = =
x⇔ 1

2---=

e2x 3– 1
e--- e2x 3–⇔ e 1– 2x 3–⇔ 1–= = =

2x⇔ 2=
x⇔ 1=

ex2 1– e3x 3– x2 1–⇔ 3x 3–= =
x2 3x– 2+⇔ 0=

x 1–( ) x 2–( )⇔ 0=
x⇔ 1 or x 2= =

EXERCISES 7.1.5

ex e2= ex 1
e---= ex e= e 2x– 1

e---=
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2. Solve for x
(a) (b) (c)

3. Solve for x
(a) (b)

4. Solve for x
(a) (b) (c)
(d) (e) (f)

5. Solve for x, giving your answer correct to 4 decimal places
(a) (b) (c) (d)

6. Solve for x, giving your answer correct to 4 decimal places
(a) (b) (c) (d)

7. Solve for x, giving your answer correct to 4 decimal places
(a) (b) (c)

8. (a) Show that if  then  or .
(b) Show that if  then .

9. The graph of the function  is shown
alongside. 
Find the value of .

10. Find the values of a and k if the graph with equation  passes through the
points (1, e) and (–1, 2e).

There are many situations and examples where an exponentional function is an appropriate 
function to model a particular growth or decay process. For example:
1. When looking at the bacteria count of an experiment, the growth in the number of bacteria

present in the colony is accurately represented by an exponential growth model.
If there are initially 100 bacteria in a colony and the size doubles every day, we  model this
situation by making use of the exponential function, 

.

e2x e3 x–= e2 x+ e5 4x–= 1
e3x 1+------------- e2x 1–=

ex( )2 ex= ex( )2 ex 2+=

ex2 x– e2= ex2 x– e6= ex2 3x 1–+ ex 2–=
ex2 4x+ e6 x–= 1

e---   x e x2–= e x– 2+ e
1
x---  =

ex 4= ex 9= ex 25= ex 4–=

3e2x 7= 4e2x 9= 2e3x 5= 7e3x 2=

ex x– 1+= 2ex 3x– 1–= ex x 1+=

e2x 6+ 5ex= ex 3= ex 2=
e2x 5ex– 6= ex 6=

y

x

(0,8)

(2,20)

y f x( )=
f x( ) a 2x b+×=

f 3( )

f x( ) ae k– x=

EXPONENTIAL MODELLING7.2

f : 0 a       , where f t( )[,[ 100 2t a   ∈,×=



MATHEMATICS – Higher Level (Core)

210

The graph of such a model is given below.

2. Certain physical quantities decrease exponentially, for example, the decay of a radioactive  
substance, or isotope. Associated with this is the half–life, that is, the time that it takes for
the substance to decay to one half of its original amount.

A radioactive bismuth isotope has a half–life of 5 days. If there is 100 milligrams initially, then 
we can model this situation by making use of the exponential function,

Other areas where the use of exponential modelling appears include, medicine (drug dosage), 
economics (compound interest), oceanography (light penetration in an ocean), environment 
(endangered species) and many more. We shall look at a few examples of exponential modelling 
in detail.
Notice that whenever making use of an exponential function to model a real life situation, the 
domain of consideration is always restricted to . Corresponding to time, t = 0 (or x = 0), 
there exists an initial amount. This initial amount is usually denoted by a capital letter with a 
subscript of ‘0’. For example, if we are referring to the population size of bacteria, N or the 
number of radioactive  particles P, then their initial amounts would be represented by  and  
respectively, so that when t = 0,  and 
Such equations would then be given by

y

t
(0,100)

1           2

(2,400)

(1,200)

f : 0 a       , where f t( )[,[ 100 2t a   ∈,×=
Exponential growth

f  : 0 ∞)      , where f t( ),[ 100 1
2---   t 5/×=

y

t

(0,100)

5        10

(10,25)
(5,50)

f  : 0 ∞)      , where f t( ),[ 100 1
2---   t 5/×=

Exponential decay

0 ∞),[

N0 P0
N N0= P P0=

1.  [growth]
2.  [decay]

N N0 at× t 0 a 1>,≥,=
P P0 a t–× t 0 a 1>,≥,=
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(a) i. We have that when  (the initial amount of mineral).
The equation then becomes 

.

Next, when t = 6, M = 32, so that when we substitute this information into the
equation, we  have,

    

Therefore, the equation is given by, 
ii. After 10 hours, we have, 
                         =  12.699
That is, there is approximately 12.70 kg of mineral left after 10 hours of processing.

(b) We notice that the equation is of 
the form 
i.e., an exponential decay. 
Hence, we have a decreasing function:

During the chemical processing of a particular type of mineral, the amount 
M kg of the mineral present at time t hours since the process started, is given by
 
where  is the original amount of mineral present. If 128 kilograms of the mineral are reduced 
to 32 kilograms in the first six hours of the process find,
(a) i. the value of k.

ii. the quantity of the mineral that remains after 10 hours of processing.
(b) Sketch a graph of the amount of mineral present at time t hours after the process started.

M t( ) M0 2( )kt t 0 k 0<,≥,=
M0

E 7.10XAMPLE

S
o
l
u
t
i
o
n

t 0 M, 128 M0⇒ 128= = =

M t( ) 128 2( )kt× t 0 k 0<,≥,=

32 128 2( )6k× 26k⇔ 1
4---= =

26k⇔ 2 2–=
6k⇔ 2–=
k⇔ 1

3---–=

M t( ) 128 2( )
1
3---– t× t 0≥,=

M 10( ) 128 2( )
1
3---– 10××=

y

t

(0,128)

3        6

(6,32)
(3,64)

y M t( )=f  : 0 ∞)       ,where f t( ),[ a x– a 1>,=

The scrap value , $V, of some machinery after t years is given by
.

(a) What was the initial cost of the machine?
(b) What is the scrap value of the machine after 4 years?
(c) How long would it be before the scrap value reaches  $20000?
(d) The machine needs to be sold at some time when the scrap value of the machine lies

somewhere between 10000 and 15000. What time–frame does the owner have?

V t( ) 50000 0.58( )t t 0≥,=
E 7.11XAMPLE
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(a) When t = 0, we have .
That is, the machine initially cost $50000.

(b) After 4 years, we have 
That is, after 4 years, the scrap value of the machine would be $5658.25.

(c) We need to determine the value of t when V = 20000:

Then, using the TI–83 we have (using the solve facility):
That is, t = 1.68 (to 2 d.p)

(d) This time we want to solve for t where .
Now, 

  
Solving the corresponding equalities, we have:
Giving .

Notice that the graph helped in guessing the values of t that were 
used in determining the solutions. 
Using the TI–83, we can easily sketch the graph of :

1. The number of bacteria in a culture, N, is modelled by the exponential function 

where t is measured in days.
(a) Find the initial number of bacteria in this culture.
(b) Find the number of bacteria after i 3 days.

ii. 5 days.
(c) How long does it takes for the number of bacteria to grow to 4000?

2. The ‘growth’ of crystals, measured in kilograms, in a chemical solution, has been
approximately modelled by the exponential function , where W is
measured in kilograms and t in years. After 1 year in a chemical solution, the amount of
crystal in the chemical increased by 6 grams.
(a) Find the value of k.
(b) Find the amount of crystal in the chemical solution after 10 years.
(c) How long does it takes for this crystal to double in ‘size’?
(d) Sketch the graph showing the amount of crystal in the chemical solution at time t.

S
o
l
u
t
i
o
n

V 0( ) 50000 0.58( )0 50000= =

V 4( ) 50000 0.58( )4 5658.25= =

20000 50000 0.58( )t 0.4⇔ 0.58t= =

10000 V t( ) 15000≤≤
10000 V t( ) 15000 10000 50000 0.58( )t 15000≤≤⇔≤≤

0.2 0.58( )t 0.3≤ ≤⇔

2.21 t 2.95≤ ≤

y 0.58( )t t 0≥,=

1       2       3       4        5

0.30.2

EXERCISES 7.2

N 1000 20.2t× t 0≥,=

W 2 10kt t 0≥,×=
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3. It is found that the intensity of light decreases as it passes 
through water.  The intensity I units at a depth x metres 
from the surface is given by

where  units is the intensity at the surface. 
 Based on recordings taken by a diving team, it was found 

that   at a depth of 50 metres. 
(a) Find the value of k (to 5 d.p.).
(b) Find the percentage of light remaining at a depth of 20 metres.
(c) How much further would the divers need to descend, to reach a level at which the

intensity of light would be given by ?
(d) Find the depth at which the intensity would be a half of that at the surface.
(e) Sketch the graph representing the intensity of light at a depth of x metres.

4. An endangered species of animal is placed into a game reserve. 150 such animals have
been introduced into this reserve.  The number of animals, , alive t years after being
placed in this reserve is predicted by the exponential growth model .
(a) Find the number of animals that are alive after

i. 1 year ii. 2 years iii. 5 years
(b) How long will it take for the population to double?
(c) How long is it before there are 400 of this species in the reserve?
(d) Sketch a graph depicting the population size of the herd over time.

Is this a realistic model?
5. The processing of a type of mineral in a chemical solution has been found to reduce the

amount of that mineral left in the solution. Using this chemical process, the amount  kg 
of the mineral left in the solution at time t hours is modelled by the exponential decay
function , where  kg is the original amount of mineral. 
It is found that 50 kilograms of mineral are reduced to 30 kilograms in 10 hours.
(a) Write down the value of .
(b) Find the value of k (to 4 decimal places).
(c) How much of the mineral will be in the solution after 20 hours?
(d) Sketch the graph representing the amount of mineral left in the solution.
(e) Sketch the graph representing the amount by which the mineral is reduced.

6. The temperatures of distant dying stars have been modelled by exponential decay
functions. A distant star known to have an initial surface temperature of 15000˚C, is
losing heat according to the function , where  ˚C is its present
temperature, and  ˚C the temperature at time t (in millions of years).  
(a) Determine the value of .
(b) Find the temperature of this star in i. one million years,

ii. 10 million years.
(c) How long will it be before the star reaches a temperature that is half its original

surface temperature?
(d) Sketch a graph representing this situation.

x m
surface

Light source

I I0 10( ) kx– x 0≥,=

I I0 10( ) kx– x 0≥,=
I0

I 0.2I0=

I 0.1I0=

N t( )
N t( ) 150 1.05t×=

W

W W 0 10 kt–×= W 0

W 0

T T 0 10 0.1t–×= T 0
T

T 0
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7. The amount of radioactive material,  grams, decays according to the model given by the
equation , where t is measured in years. It is known that after 40
years, the amount of radioactive material present is 50 grams.
(a) Find the value of k (to 4 d.p.).
(b) Find the amount of radioactive material present after 80 years.
(c) What is the half life for this radioactive substance ? The half–life is the time taken

for the radioactive material to reach half its original amount.
(d) Sketch the graph representing the amount of radioactive material present as a 

function of time, t years.
8. The resale value, V dollars, of a structure, decreases according to the function

where t is the number of years since the structure was built.  
(a) How much would the structure have sold for upon completion?
(b) How much would the structure have sold for 10 years after completion?
(c) How long will it take for the structure to lose half its value? (Answer to 1 d.p)
(d) Sketch the graph of the structure’s value since completion.

9. The population number N in a small town in northern India is approximately modelled by
the equation , where  is the initial popluation and t is the time in
years since 1980.
The population was found to increase from 100,000 in 1980 to 150,000 in 1990.
(a) Show that  and that .
(b) Hence find the value of k (to 5 d.p.).
(c) Find the population in this town in 1997.
(d) How long (since 1980) will it be before the population reaches 250,000?

10. The healing process of certain types of wounds is measured by the decrease in the surface
area that the wound occupies on the skin. A certain skin wound has its surface area 
modelled by the equation  where S square centimetres is the
unhealed area t days after the skin received the wound.
(a) What area did the wound originally cover?
(b) What area will the wound occupy after 2 days?
(c) How long will it be before the wound area is reduced by 50%?
(d) How long will it be before the wound area is reduced by 90%?

11. In a certain city the number of inhabitants, N, at time t years since the 1st of January 1970,
is modelled by the equation .
On the 1st of January 1980, the inhabitants numbered 177629.
(a) Determine the value of k.
(b) How many people will be living in this city by

i. 1st January 2007? ii. 1st April 2007?
(c) How long will it take for the population to reach 1000000?

12. Suppose you deposited $700 into an account that pays 5.80% interest per annum.
(a) How much money will you have in the account at the end of 5 years if

i. the interest is compounded quarterly?
ii. the interest is compounded continuously?

(b) With continuous compounding, how long will it take to double your money?
(c) Sketch the graph showing the amount of money in the account for (b).

Q
Q 200 10 kt–× t 0≥,=

V 2000000 10( ) 0.01t– t 0≥,=

N N0 10kt t 0≥,×= N0

N0 100000= 1.5 1010k=

S 20 2 0.01t–× t 0≥,=

N 120000 1.04( )kt t 0 k 0>,≥,=



Exponential and Logarithmic Functions – CHAPTER 7

215

13. On the 1st of January 1988, a number of antelopes were introduced into a wildlife
reservation, free of predators. Over the years, the number of antelopes in the reservation
was recorded:

Although the exact number of antelopes that were placed in the reserve was not available,
it is thought that an exponential function would provide a good model for the number of
antelopes present in the reserve.
Assume an exponential growth model of the form , where N
represents the number of antelopes present at time t years since 1/1/80, an  is the
initial population size of the herd, and k is a positive real constant.
(a) Determine the number of antelopes introduced into the reserve.
(b) Determine the equation that best models this situation.
(c) Based on this model, predict the number of antelopes that will be present in the

reserve by the year 2008.
14. Betty, the mathematician, has a young baby who was recently ill with fever. Betty noticed

that the baby’s temperature, T, was increasing linearly, until an hour after being given a
dose of penicillin. It peaked, then decreased very quickly, possibly exponentially.
Betty approximated the baby’s temperature, above 37˚C by the function

where t refers to the time in hours after 7.00pm.
(a) Sketch the graph of .
(b) Determine the maximum temperature and the time when this occured (giving your

answer correct to to 2 d.p)

15. An equation of the form  , where a, b and c are positive constants
represents a logistic curve. Logistic curves have been found useful when describing a

 population N that initially grows rapidly, but whose growth rate decreases after t reaches a
certain value.  
A study of the growth of protozoa was found to display these characteristics. It was found
that the population was well described if c = 1.12, a = 100, and t measured time in days.
(a) If the initial population was 5 protozoa, find the value of b.
(b) It was found that the growth rate was a maximum when the population size reached

50. How long did it take for this to occur ? 
(c) Determine the optimum population size for the protozoa.

16. The height of some particular types of trees can be approximately modelled by the logistic 
function  where h is the height of the tree measured in metres and
t the age of the tree (in years) since it was planted.
(a) Determine the height of the tree when planted.
(b) By how much will the tree have grown in the first year ?
(c) How tall will the tree be after 10 years ?
(d) How tall will it be after 100 years ?

Date (day/month/year) 1/1/88 1/1/90 1/6/94 1/1/98 1/6/02 1/6/04
Number of antelopes – 120 190 260 400 485

N N0 2kt× t 0 k 0>,≥,=
N0

T t( ) t 0.82t× t 0≥,=

T t( )

N t( ) a
1 be ct–+--------------------- t 0≥,=

h 36
1 200e 0.2t–+------------------------------ t 0≥,=
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(e) How long will it take for the tree to grow to a height of
i. 10 metres ?
ii. 20 metres ?
iii. 30 metres ?

(f) What is the maximum height that a tree, whose height is modelled by this equation, 
will reach? Explain your answer.

(g) Sketch a graph representing the height of trees against time for trees whose height
can be modelled by the above function.

17. Certain prescription drugs, e.g. tablets that are taken orally, which enter the bloodstream at
a rate R, are approximately modelled by the equation  where t is
measured in minutes and a and b are appropriate constants.
When an adult is administered a 100-milligram tablet, the rate is modelled by the function

 mg/min.
The amount A mg of the drug in the bloodstream at time t minutes can then be
approximated by a second function,  mg.
(a) What is the initial rate at which the drug enters the bloodstream?
(b) How long will it take before the rate at which the drug enters the bloodstream is

halved?
(c) How long does it takes for 

i. 10 milligrams of the drug to enter the  bloodstream.
ii. 50 milligrams of the drug to enter the  bloodstream.
iii. 95 milligrams of the drug to enter the  bloodstream.

(d) How much of the drug is in the bloodstream when the drug is entering at a rate of 
4 mg/min.

(e) Sketch the graph of R and A, on the same set of axes.
(f) Will the patient ever feel the full effects of the 100-milligram drug? 

18. As consumers, we know from experience that the demand for a product tends to decrease
as the price increases. This type of information can be represented by a demand function.
The demand function for a particular product is given by , where
p is the price per unit and x is the total demand in number of units.
(a) Find the price p to the nearest dollar for a demand of

i. 1000 units.
ii. 5000 units.
iii. 10 000 units.

(b) Sketch the graph of this demand function.
(c) What level of demand will produce a price per unit of $200?

The total revenue, R,  obtained by selling x units of this product is given by .

(d) Find the revenue by selling
i. 1000 units
ii. 5000 units
iii. 10 000 units

(e) Sketch the graph of the revenue equation.
(f) Find the number of units that must be sold in order to maximize the total revenue.
(g) Determine the maximum revenue. Giving your answer to 2 d.p.

R a bt× t 0≥,=

R 5 0.95t× t 0≥,=

A 98 1 0.95t–( )=

p 500 0.6 e0.0004x×–=

R xp=
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7.3.1 WHAT ARE LOGARITHMS?

Consider the following sequence of numbers:

The relationship between the values of N and y is given by . 

Using the above table, evaluate the product . Using the above table? What for? Clearly  
there is no use for such a table. Surely this can be done using mental arithmetic (or even using a 
calculator!). There really is no need to use the above table. However, let’s explore this question 
further, in the hope that we might find something more than the answer.
We start by setting up a table of values that correspond to the numbers in question:

From the first table of sequences, we notice that the sum of the ‘N–sequence’ (i.e., 10), 
corresponds to the value of the ‘y–sequence’ (i.e., 1024).

We next consider the product , again. Setting up a table of values for the numbers in the 
sequences that are under investigation we have:

What about  ? As before, we set up the required table of values:

In each case the product of two terms of the sequence y corresponds to the sum obtained by 
adding corresponding terms of the sequence N.
Notice then that dividing two numbers from the sequence y corresponds to the result when 
subtracting the two corresponding numbers from the sequence N, 
e.g., for the sequence y:  =  16.
       for the sequence N:        =  4

This remarkable property was observed as early as 1594 by John Napier. John Napier was born 
in 1550 (when his father was all of sixteen years of age!) He lived most of his life at the family 
estate of Merchiston Castle, near Edinburgh, Scotland. Although his life was not without 
controversy, in matters both religious and political, Napier (when relaxing from his political and 

Sequence N 1 2 3 4 5 6 7 8 9 10 . . .
Sequence y 2 4 8 16 32 64 128 256 512 1024

 N 4 6 Sum(4 + 6) = 10
 y 16 64 Product = 1024

 N 3 5 Sum(3 + 5) = 8
 y 8 32 Product = 256

 N 2 6 Sum(2 + 6) = 8
 y 4 64 Product = 256

LOGARITHMS7.3

y 2N=

16 64×

8 32×

4 64×

512 32÷
9 5–
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religious polemics) would endulge in the study of mathematics and science. His amusement with 
the study of mathematics led him to the invention of logarithms. In 1614 Napier published his 
discussion of logarithms in a brochure entitled Mirifici logarithmorum canonis descriptio (A 
description of the Wonderful Law of Logarithms). Napier died in1617.
It is only fair to mention that the Swiss instrument maker Jobst Bürgi (1552–1632) conceived 
and constructed a table of logarithms independently of Napier, publishing his results in 1620, six 
years after Napier had announced his discovery.
One of the anomalies in the history of mathematics is the fact that logarithms were discovered 
before exponents were in use.
Although in this day and age of technology, the use of electronic calculators and computers, 
render the evaluation of products and quotients to a task that involves the simple push of a few 
buttons, logarithms are an efficient means of converting a product to a sum and a quotient to a 
difference. So, what are logarithms?
Nowadays, a logarithm is universally regarded as an exponent. 

From the sequence table, we have that , so that 7 is the logarithm of 128 to the base 2.
Similarly, , and so 4 is the logarithm of 81 to the base 3.

We use the following notation when using logarithms:

That is, N is the logarithm of y to the base b, which corresponds to the power that the base b 
must be raised so that the result is y.

(a) To determine the number , we ask ourselves the following question:
“To what power must we raise the number 2, so that our result is 32?”
Letting , we must find the number x such that . 
Clearly then, x = 5, and so we have that  = 5.
One convention in setting out such questions is:

       

(b) As in part (a), we ask the question 
“To what power must we raise the number 10, so that our result is 1000 ?” 
That is, 

   
So that  = 3.

Thus, if  we say that N is the logarithm of y to the base b.y bN=

27 128=
34 81=

y bN N⇔ yNlog= =

Find the following logarithms
(a) (b) (c) (d)322log 100010log 7293log 1

16------2log
E 7.12XAMPLE

S
o
l
u
t
i
o
n

322log

x 322log= 2x 32=
322log

322log x 2x⇔ 32= =
x⇔ 5=

x 1000 10x⇔10log 1000= =
x⇔ 3=

100010log
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(c) Now, 
        [This was obtained by trial and error.] 

Therefore,  = 6.
(d) Although we have a fraction, this does not alter the process:

      
        

7.3.2 CAN WE FIND THE LOGARITHM OF A NEGATIVE
        NUMBER?

To evaluate  for some base a > 0, we need to solve the equivalent statement: 
.

However, the value of  where a > 0, will always be positive, therefore there is no value of x for 
which . This means that 

We can now make our definition a little stronger:

Note: we also require that b ≠ 1, otherwise we will have that  for any value of N .

As we saw earlier, there exists a natural exponential whose base is ‘e’. In the same way we also 
have the natural logarithm, whose base is also ‘e’.
In this instance, we refer to this logarithm base ‘e’ as the natural logarithm.

We denote the natural logarithm by  or  (read as ‘el n’). i.e., .

For example, . That is, 
       

(a)
(b)

          
    

x 7293 3x⇔log 729= =
x⇔ 6=

7293log

x 1
16------ 2x⇔2log 1

16------= =

2x⇔ 1
24----- 2 4–=( )=

x⇔ 4–=

4–( )alog
x 4–( ) ax⇔alog 4–= =

ax

ax 4–=
we can not evaluate the logarithm of a negative number.

N yb y⇔log bN y 0>,= =

y 1N 1= =

xelog xln y eN N⇔ yelog= =

e2elog 2= N e2 eN⇔elog e2= =
N⇔ 2=

Find the value of x given that
(a) (b) (c)xelog 3= x 2–( )elog 0.5= 5elog x=

E 7.13XAMPLE

S
o
l
u
t
i
o
n

xelog 3 x⇔ e3 20.09≈= =
x 2–( )elog 0.5 x 2–⇔ e0.5= =

x⇔ 2 e+=
x 3.65≈∴
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(c)

Notice that your calculator has two logarithmic functions:
The log button stands for .
The ln button stands for .

1. Use the definition of a logarithm to determine

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

2. Change the following exponential expressions into their equivalent logarithmic form.

(a) (b) (c)
(d) (e) (f)

3. Change the following logarithmic expressions into their equivalent exponential form.

(a) (b) (c)
(d) (e) (f)

4. Solve for x in each of the following.
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
(j) (k) (l)

5. Solve for x in each of the following, giving your answer to 4 d.p.
(a) (b) (c)

(d) (e) (f)
(g) (h) (i)

x 5 1.61≈elog=

x10log
xelog

EXERCISES 7.3

366log 497log 2433log 644log
1
8---  

2log 1
9---  

3
log 14log 110log

21
2---

log 91
3---

log 33log 0.0110log

104 10000= 10 3– 0.001= 10y x 1+=
107 p= 2y x 1–= 24x y 2–=

x2log 9= yblog x= tblog ax=
z10log x2= y10log 1 x–= ax b–( )2log y=

x2log 4= 93log x= x4log 1
2---=

3xlog 1
2---= 2xlog 4= x5log 3=

16xlog 2= 81xlog 2= 1
3---  

x
log 3=

x 5–( )2log 4= 813log x 1+= x 4–( )3log 2=

xelog 4= 4elog x= xelog 1
2---=

exlog 1
2---= exlog 2= exlog 1–=

x 2+( )elog 4= x 2–( )elog 1= exlog 2–=
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The following logarithmic laws are a direct consequence of the definition of a logarithm and the 
index laws already established.

First law: The logarithm of a product

Proof: Let  and  so that  and .
Then, 

    

(a)
   

(b) This time we note that because the base is ‘2’ and there is a ‘4’ in one of the logarithmic
expressions, we could first try to ‘remove the ‘4’.

(a)

(b)

   

THE ALGEBRA OF LOGARITHMS7.4

x y×( )alog xa ya x 0 y 0>,>,log+log=

M xalog= N yalog= x aM= y aN=
x y× aM aN×=
x y×⇔ aM N+=
x y×( )alog⇔ M N+=
x y×( )alog⇔ xalog yalog+=

Simplify the expression
(a) (b)x 4x( )3log+3log x 4x( )2log+2log

E 7.14XAMPLE

S
o
l
u
t
i
o
n

x 4x( )3log+3log x 4x×( )3log=
4x23log=

x 4x( )2log+2log x2 42 x2log+log( )+log=
x 2 x2log+ +2log=

2 x2 2+log=

Given that  and , evaluate the following
(a) (b) (c)

palog 0.70= qalog 2=
p2alog p2q( )alog apq( )alog

E 7.15XAMPLE

S
o
l
u
t
i
o
n

p2alog p p×( )alog p palog+alog= =
2 palog=
2 0.70×=
1.40=

p2q( )alog p2alog qalog+=
2 palog qalog+=
1.40 2+=
3.40=
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(c)
   

         

Next, we must check our solutions.
When x = –4, substituting into the original equation, we have:
L.H.S =  – which cannot be evaluated (as the logarithm of a
negative number does not exist). 

Therefore,  x = –4, is not a possible solution.
When x = 2, substituting into the original equation, we have:
L.H.S = 

= 
= 3
= R.H.S

Therefore,  = .

Second law: The logarithm of a quotient

Proof: Let  and  so that  and .
Then, 

   

apq( )alog aalog palog qalog+ +=
1 0.70 2+ +=
3.70=

Find .x  x2 x 2+( )2log+log 3={ }E 7.16XAMPLE

S
o
l
u
t
i
o
n

x2 x 2+( )2log+log 3 x x 2+( )×[ ]2log⇔ 3= =
x x 2+( )⇔ 23=
x2 2x+⇔ 8=

x2 2x 8–+⇔ 0=
x 4+( ) x 2–( )⇔ 0=

x⇔ 4 or x– 2= =

4–( ) 4– 2+( )2log+2log

2( ) 2 2+( )2log+2log
82log

x  x2 x 2+( )2log+log 3={ } 2{ }

x
y--  

alog xa ya x 0 y 0>,>,log–log=

M xalog= N yalog= x aM= y aN=
x
y--

aM
aN-------=

x
y--⇔ aM N–=
x
y--  

alog⇔ M N–=

x
y--  

alog⇔ xalog yalog–=
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(a)

 = 

Note: We could then express  as .

(b)

        

Note: We could then express  as .

  

Next, we check our answer. Substituting into the original equation, we have:
L.H.S =  

Therefore,  = 

Simplify
(a) (b)100x10 xy10log–log 8x3 x22log–2

y
x--  

2log+log
E 7.17XAMPLE

S
o
l
u
t
i
o
n

100x10 xy10log–log 100x
xy------------  

10log=

100
y---------  

10log

100
y---------  

10log 10010 y10log–log 2 y10log–=

8x3 x22log–2
y
x--  

2log+log 8x3
x2--------  

2
y
x--  

2log+log=

8x2
y
x--  

2log+log=

8x y
x--×  

2log=
8y2log=

8y2log 82 y2log+log 3 y2log+=

Find x  x 2+( ) x 1–( )10log–10log 1={ }E 7.18XAMPLE

S
o
l
u
t
i
o
n

x 2+( ) x 1–( )10log–10log 1 x 2+
x 1–------------  

10
log⇔ 1= =

x 2+
x 1–------------  ⇔ 101=
x 2+⇔ 10x 10–=

12⇔ 9x=
x⇔ 4

3---=

4
3--- 2+   4

3--- 1–  
10

log–
10

log 10
3------10

1
3---10

log–log 10
3------

1
3---÷  

10
log= =

1010log=
1 = R.H.S=

x  x 2+( ) x 1–( )10log–10log 1={ } 4
3---   
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Third law: The logarithm of a power

Proof: This follows from repeated use of the First Law  or it can be shown as follows:
Let 

      [Raising both sides to the power of n]
          [Using the index laws]
          [Converting from exponential to log form]

(a)

 

(b)

  

 

Fourth law: Change of base

Proof: Let  so that 
Taking the logarithms to base k of both sides of the equation we have:

     

        

However, we have that , therefore, .

xnalog n x x 0>,alog=

M xa aM⇔log x= =
aM( )n⇔ xn=
anM⇔ xn=
nM⇔ xa nlog=
n xalog⇔ xa nlog=

Given that  and , evaluate 

(a) (b)

xalog 0.2= yalog 0.5=

x3y2alog x
y4-----alog

E 7.19XAMPLE

S
o
l
u
t
i
o
n

x3y2alog xa 3 ya 2log+log=
3 xa 2 yalog+log=
3 0.2 2 0.5×+×=
1.6=

x
y4-----alog x

y4-----   1 2/
alog 1

2---
x
y4-----  

alog= =

1
2--- x( ) y4alog–alog[ ]=
1
2--- x 4 yalog–alog[ ]=
1
2--- 0.2 4 0.5×–[ ]=
0.9–=

balog bklog
aklog------------- a k      \ 1{ }∈, ,= +

balog N= aN b=

aN( )klog bk N aklog⇔log bklog= =

N⇔ bklog
aklog-------------=

balog N= balog bklog
aklog-------------=
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Other observations include:

MISCELLANEOUS EXAMPLES

(a) Given that  then 

     

(b) Given that  then 

(a)

      

(b)

1.
2.
3.
4.

5.

aalog 1=
1alog 0=
xa 1–log xa x 0>,log–=
x1

a---
log xalog–=

a xalog x x 0>,=

Express y in terms of x if (a)
(b)

2 x10log+ 4 y10log=
xlog a by–( ) alog–log=

E 7.20XAMPLE

S
o
l
u
t
i
o
n

2 x10log+ 4 y10log= 2 4 y10 x10log–log=
2⇔ y410 x10log–log=

2⇔ y4
x-----  

10
log=

102⇔ y4
x-----=

y4⇔ 100x=
y⇔ 100x4    ( as y 0 )>=

xlog a by–( ) alog–log= xlog a by–
a---------------log=

x⇔ a by–
a---------------=

ax⇔ a by–=
by⇔ a ax–=
y⇔ a

b--- 1 x–( )=

Find x if (a) (b)64xlog 3= x10 x 2–( )10log–log 1=E 7.21XAMPLE

S
o
l
u
t
i
o
n

64xlog 3 x3⇔ 64= =
x3⇔ 43=
x⇔ 4=

x10 x 2–( )10log–log 1 x
x 2–-----------  

10
log⇔ 1= =
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We still need to check our answer: substituting  into the original equation we have:

L.H.S = 

        
 = R.H.S

Therefore. solution is .

Taking the logarithm of base 10 of both sides  gives:
   

And so,  (to 2 d.p).

Exact answer = , answer to 2 d.p = {0.76}

We first note that  can be written as .
Which in turn can be expressed as .
Therefore, making the substitution , we have that 

 =  (i.e., we have a ‘hidden’ quadratic)
Solving for y, we have:

x
x 2–-----------⇔ 101=

x⇔ 10x 20–=
9x–⇔ 20–=
x⇔ 20

9------=

x 20
9------=

20
9------10

20
9------ 2–  

10
log–log 20

9------10
2
9---  

10
log–log 20

9------
9
2---×  

10
log= =

1010log=
1=

x 20
9------=

Find . Give both an exact answer and one to 2 d.p.x   5x 2x 1+={ }E 7.22XAMPLE

S
o
l
u
t
i
o
n

5x 2x 1+=
5x 2x 1+ 5x10log⇔ 2x 1+10log= =

x 510log⇔ x 1+( ) 210log=
x 510 x 210log–log⇔ 210log=
x 510 210log–log( )⇔ 210log=

x⇔ 210log
510 210log–log------------------------------------=

x 0.75647… 0.76= =
210log

510 210log–log------------------------------------
   

Find x, where 6e2x 17 ex 12+×– 0=E 7.23XAMPLE

S
o
l
u
t
i
o
n

6e2x 17 ex×– 12+ 6 e2x× 17 ex×– 12+
6 ex( )2× 17 ex×– 12+
y ex=

6 ex( )2× 17 ex×– 12+ 6y2 17y– 12+

6y2 17y– 12+ 0 2y 3–( ) 3y 4–( )⇔ 0= =



Exponential and Logarithmic Functions – CHAPTER 7

227

So that                           
However, we wish to solve for x, and so, we need to substitute back:

                       

  or 

Taking logs of both sides of the equation , we have

                               
                              

Therefore, we have that 
   

1. Without using a calculator, evaluate the following.

(a) (b) (c)
(d) (e) (f)

2. Write down an expresion for  in terms of  and  for the following.

(a) (b) (c)

(d) (e) (f)

3. Given that , find

(a) (b) (c)

y 3
2--- or y

4
3---= =

ex 3
2---  or  ex

4
3---= =

x⇔ 3
2---ln= x 4

3---ln=

Solve for x, where 82x 1+ 45 x–=E 7.24XAMPLE

S
o
l
u
t
i
o
n

82x 1+ 45 x–=
82x 1+log 45 x– 2x 1+( ) 8log⇔log 5 x–( ) 4log= =

2x 1+( ) 23log 5 x–( ) 22log=⇔
3 2x 1+( ) 2log 2 5 x–( ) 2log=⇔

6x 3+ 10 2x 8x⇔– 7= =
 x∴ 7

8---=

EXERCISES 7.4

82 42log+log 186 26log+log 25 12.55log+log
18 63log–3log 20 52log–2log 10 52log–2log

alog blog clog

a bc= a b2c= a 1
c2-----=

a b c= a b3c4= a b2
c------=

xalog 0.09=

xa 2log xalog 1
x---  

a
log
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4. Express each of the following as an equation that does not involve a logarithm.

(a) (b)
(c) (d)
(e) (f)

5. Solve the following equations

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)

6. Simplify the following

(a) (b)      

(c) (d)      

(e) (f)       

7. Solve the following

(a) (b)
(c) (d)
(e) (f)

8. Solve for x.

(a) (b)
(c) (d)
Investigate the solution to 

x2log y2 z2log+log= y10log 2 x10log=
x 1+( )2log y2 x2log+log= x2log y 1+=
y2log 1

2--- x2log= 3 x 1+( )2log 2 y2log=

x 1+( ) x2log–2log 32log=
x 1+( ) x10log–10log 310log=
x 1+( ) x 1–( )2log–2log 4=
x 3+( )10 x10log–log x10log 210log+=
x2 1+( )10 2 x10log–log 1=
3x2 28+( )2 3x 2–( )2log–log 1=
x2 1+( )10log 1 x 2–( )10log+=
x 3+( )2log 1 x 2–( )2log–=
x 5+( ) x6log+6log 2=
x 2–( ) x 4–( )3log+3log 2=
x x 1–( )2log–2log 3 42log=
x 2+( )10 x10log–log 2 410log=

2x( ) w3log+3log x4 7y( )4log–log

2 x 3 x 1+( )alog+alog 5 xa 1
2--- 2x 3–( ) 3 x 1+( )alog+alog–log

x310
1
3--- x3y6 5 x10log–log+log 2 x2 4 1

y---  
2

3 xy2log–log–log

x 7+( )2 x2log+log 3= x 3+( )3 x 5+( )3log+log 1=
x 7+( )10 x 2–( )10log+log 1= x3 x 8–( )3log+log 2=

x2 x32log+log 4= x3 3 x3log+log 7=

x22log x2log( )2= x33log x3log( )3=
x44log x4log( )4= x55log x5log( )5=

xnnlog xnlog( )n=
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9. Solve the following, giving an exact answer and an answer to 2 d.p.

(a) (b) (c)
(d) (e) (f)
(g) (h) (i)
(j) (k) (l)

10. Solve for x

(a) (b)
(c) (d)
(e) (f)

11. Solve the following simultaneous equations

(a) (b) (c)    

12. Express each of the following as an equation that does not involve a logarithm.

(a) (b) (c)

13. Solve the following for x

(a) (b)
(c) (d)

14. Solve the following for x

(a) (b) (c)
(d) (e) (f)
(g) (h) (i)
(j) (k) (l)

15. Solve the following for x

(a) (b)
(c) (d)
(e) (f)

2x 14= 10x 8= 3x 125=
1

1 2x–-------------- 12= 34x 1+ 10= 0.8x 1– 0.4=
10 2x– 2= 2.70.3x 9= 0.2 2x– 20=

2
1 0.4x+------------------- 5= 2x

1 2x–-------------- 3= 3x
3x 3+-------------- 1

3---=

x2log( )2 x2 2–log– 0= 2x 1+ 8–( )2log x=
x2 3x– 6+( )10log 1= x10log( )2 11 x 10+10log– 0=
3x2 10x+( )xlog 3= 3x2 4x 14–+( )x 2+log 2=

xy 5x 9–=
11xlog y=

x10 y10log–log 1=
x y2+ 200=

xy 2=
2 x y2log–2log 2=

xelog ye zelog–log= 3 xelog yelog= xln y 1–=

x 1+( ) xln–ln 4= x 1+( ) xln–ln 4ln=
x 1+( ) xelog+elog 0= x 1+( ) xelog–elog 0=

ex 21= ex 2– 8= 5– e x–+ 2=
200e 2x– 50= 2

1 e x––---------------- 3= 70e
1
2---x– 15+ 60=

xln 3= 2 3x( )ln 4= x2( )ln 9=
x x 2+( )ln–ln 3= x 4+ln 1= x3( )ln 9=

e2x 3ex– 2+ 0= e2x 4ex– 5– 0=
e2x 5ex– 6+ 0= e2x 2ex– 1+ 0=
e2x 6ex– 5+ 0= e2x 9ex– 10– 0=
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16. Solve each of the following

(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) (j)

Some examples of where the logarithmic functions are used can be found in:
i. the measurement of the magnitude of an earthquake (better known as the Richter scale),

where the magnitude R of an earthquake of intensity I is given by , where
 is a certain minimum intensity.

ii. the measurement of children’s weight (better known as The Ehrenberg relation) is given 
by , where W kg is the average weight for children aged 5
through to 13 years and h is the height measured in metres.

iii. the brightness of stars, given by the function , where  is the light
flux of the faintest star visible to the naked eye (having magnitude 6), and m is the
magnitude of brighter stars having a light flux L.

(a) The first test occurs at time t = 0, so that

That is, the average score on the first test was 90%.

(b) i. After six months we have that t = 6. Therefore, .
That is, the average score on the test after six months was 73%.

ii. After 2 years we have that t = 24. Therefore, .
That is, the average score on the test after two years was 62%.

4x 1– 132= 55x 1– 31 2x–=
32x 1+ 7 3x×– 4+ 0= 22x 3+ 7 2x 1+×– 5+ 0=
3 42x 1+ 2 4x 2+×–× 5+ 0= 32x 3x 2+– 8+ 0=
2 x 4log+log 9x 2–( )log= 2 2x 4log–log 2x 1–( )log=

2x3 813log+log 9= x2 2xlog+log 2=

LOGARITHMIC MODELLING7.5

R I
I0
----  

10
log=

I0

W10log 2.4 0.8h+10log=

m 6 2.5 L
L0
-----  

10
log–= L0

After working through an area of study, students in year 7 sat for a test 
based on this unit. Over the  following two years, the same students were retested on several 
occasions. The average score was found to be modelled by the function

 where t is measured in months.
(a) What was the average score on the first test?
(b) What was the score after i. 6 months? ii. 2 years?
(c) How long should it be before the test is re–issued, if the average score is to be 80?

S 90 20 t 1+( ) 0 t 24≤ ≤,10log–=

E 7.25XAMPLE

S
o
l
u
t
i
o
n

S 90 20 0 1+( )10log– 90 20 1log– 90= = =

S 90 20 6 1+( ) 73≈10log–=

S 90 20 24 1+( ) 62≈10log–=
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(c) We need to find t when S = 80. Using the given equation we have:
 

That is, 
Therefore, the students should be retested in approximately 2 months time.

1. The loudness of a sound, as experienced by the human ear, is based on its intensity level.
This intensity level is modelled by the logarithmic function 
where d is measured in decibels and corresponds to a sound intensity I and  (known as
the threshold intensity) is the value of I that corresponds to be the weakest sound that can
be detected by the ear under certain conditions.  
(a) Find the value of d when I is 10 times as great as  (i.e., ).
(b) Find the value of d when I is 1000 times as great as .
(c) Find the value of d when I is 10000 times as great as .

2. A model, for the relationship between the average weight W kilograms and the height h
metres for children aged 5 through to 13 years has been closely approximated by the
function 
(a) Based on this model, determine the average weight of a 10-year-old child who is

1.4 metres tall.
(b) How tall would an 8 year old child weighing 50 kg be?

 (c) Find an expression for the weight, W, as a function of h.
(d) Sketch the graph of W kg versus h m.
(e) Hence, or otherwise, sketch the graph of h m versus W kg .

3. A measure of the ‘energy’ of a star can be related to its brightness. To determine this
‘energy’ stars are classified into categories of brightness called magnitudes.  Those
considered to be the least ‘energetic’ are labelled as the faintest stars. Such stars have a
light flux given by , and are assigned a magnitude 6. Other brighter stars having a light

flux L are assigned a magnitude m by means of the formula .
(a) Find the magnitude m of a star, if relative to the faintest star, its light flux L is such

that .
(b) Find an equation for L in terms of m and .
(c) Sketch the general shape of the function for L (as a function of m).

80 90 20 t 1+( ) 20 t 1+( )10log⇔10log– 10= =

t 1+( )10log⇔ 1
2---=

t 1+⇔ 10=
t⇔ 10 1–=

t 2.16≈

EXERCISES 7.5

d 10 I
I0
----  

10
log=

I0

I0 I 10I0=
I0
I0

W10log 2.410 0.80h+log=

L0

m 6 2.5 L
L0
-----  

10
log–=

L 100.5L0=
L0
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(d) Hence, or otherwise, sketch the graph of the function .

4. For some manufacturers, it is important to consider the failure time of their computer
chips. For Multi–Chips Pty Ltd, the time taken before a fraction x of their computer chips
fail has been approximated by the logarithmic function , where c is
some positive constant and time t is measured in years.
(a) Define the domain for this function.
(b) Determine how long will it be before 40% of the chips fail, when

i. c = 0.1 ii. c = 0.2 iii. c = 0.3
(c) How does the value of c affect the reliability of a chip?
(d) Find an expression for the fraction x of chips that will fail after t years.
(e) For the case where c = 0.10, sketch the graph of x versus t. Hence, sketch the graph

of  where c = 0.10.

5. Logarithms have been found useful in modelling economic situations in some countries.
Pareto’s law for capitalist countries states that the relationship between annual income,
$ I and the number, n, of individuals whose income exceeds $ I  is approximately
modelled by the function  where a and k are real positive
constants.  
(a) Find and expression for I that does not involve logarithms.
(b) By varying the values of a and b, describe their effects on 

i. the income $ I.
ii. the number of people whose income exceeds $ I.

6. After prolonged observations of our environment, it became obvious that the thickness of
the ozone layer had being affected by the production of waste that had taken place over
many years. The thickness of the ozone layer has been estimated by making use of the
function , where  is the intensity of a particular wavelength of
light from the sun before it reaches the atmosphere,  is the intensity of the same
wavelength after passing through a layer of ozone x centimetres thick, and k is the
absorption constant of ozone for that wavelength. 
The following table has some results based on available data for one region of the Earth’s
atmosphere:

(a) Based on the above table, find the approximate thickness of the ozone layer in this
region of the atmosphere, giving your answer to the nearest hundredth of a
centimetre.

(b) Obtain an expression for the intensity , in terms of k,  and x.
(c) What would the percentage decrease in the intensity of light with a wavelength of

 cm be, if the ozone layer is 0.20 centimetre thick?
(d) For a fixed value of , how does k relate to the intensity ?

k

1.10

m 6 2.5 L
L0
-----  

10
log–=

t 1
c--- 1 x–( )10log–=

t 1
c--- 1 x–( )10log–=

I10log a k n10log–10log=

λ10 0log λ10log– kx= λ0
λ

λ0 λ0
λ-----

3200 10 8–× k 0.40≈

λ λ0

3200 10 8–×
λ0 λ
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1. Find the coefficient of  in the expansion of .

2. A function f is defined by .
(a) Sketch the graph of f.
(b) Find i. the domain of the inverse function, .

ii. the rule of the inverse function, .
(c) Sketch the graph of  on the set of axes used in (a).

3. Find the coefficient of  in the expansion of .

4. Let  and . 
(a) Find i. ii.
(b) State all values of x for which  is defined.
(c) State all values of x for which  is defined.

5. (a) Sketch the graph of  , locating the stationary points and giving their 
y-coordinates.

(b) Sketch on the same set of axes the graph of . 

6. Let  and 
(a) Find the coordinates of the points of intersection of the graphs f and g.
(b) Sketch on the same set of axes the graphs of f and g.

7. (a) Let  and . Find .
(b) Consider the function , where  and the domain S of  is the

largest set of real numbers for which  is defined.
Specify S, and the range of .

(c) Define completely the inverse function , given that it exists.

8. For the graph shown, sketch, on different sets of axes, the graphs of

(a)
(b)
(c)
(d)
(e)
(f)

REVISION SET A - PAPER 1 & PAPER 2 STYLE QUESTIONS

x2 2x 1–( )7

f  :          , where f x( ) ex 1–=

f 1–

f 1–

f 1–

x6 2x 1
2---–   10

f x( ) x= g x( ) 4 x2–=
f g 2( )( ) g f 2( )( )

f g x( )( )
g f x( )( )

y 4 x2 x4–( )=

y 1
4 x2 x4–( )------------------------=

f x( ) 1 3
x--- x 0≠,–= g x( ) x2 3x–=

g x( ) ex= h x( ) x= h g 4elog( )( )
f f x( ) g h x( )( )= f

f x( )
f

f 1–

–2  –1  0     1    2    3   4–1
–2

4
3
2
1

y

x

y f x( )=
y 2 f x( )+=
y f 2x( )=
y f x 1–( )=
y f x( )=
y f 1– x( )=
y f x( )=
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9. Given that 
(a) i. Find 

ii.
(b) i. Find .

ii. Simplify .

10. (a) Solve for x, where i.
ii.

(b) Consider the function  defined by, 
Find i. the range of .

ii.
iii.

11. (a) Solve for x, where i.
ii.

(b) Consider the function 
Find i. the values of x for which  is defined.

ii. the range of .
iii.  (to 2 d.p.)
iv.  (to 2 d.p.)

12. (a) Given that , find  where , and specify all
values of x for which  is defined.

(b) The curves with equations  and  meet at O and P, where O is the 
origin. Find the coordinates of P.

13. (a) Solve each of the following equations for x, giving exact values in terms of the
natural logarithm, ‘ln’ or in terms of ‘e’.
i.
ii.

(b) If , find .

(c) i. If  and , write down expressions for 
and .

ii. For what values of x is  defined?

14. Find the value of c for which the coefficient of  in the expansion of  is 70.

f x( ) x3=
f 8( )

x: f x( ) 8={ }
f x h+( ) f x( )–

f x h+( ) f x( )–
h-------------------------------------- h 0≠,

x 1–( ) x 4–( ) 10=
x 3+( )e xelog–log 1=

f f  :                  , where f x( ) 3 1
x 2–-----------+=   \ 2{ }

f
1

f 2.5( )----------------
f 1– 2.5( )

x 3–( ) x 4–( ) x=
4 3x+( )elog 2=

f x( ) xe 1 x–( )elog–log=
f

f
f 0.8( )( ) 1–

f 1– 0.8( )

f x( ) 1 x–
1 x+------------= g f x( )( ) g x( ) 1 1

x---–=
g f x( )( )

y 8x= y x2=

3x 6=
3x 1+( )e 4 x–( )elog–log 4elog=

f x( ) x 1
x 1+------------ x 0>,+= f 1– 3( )

f x( ) x 1–= g x( ) 1
x2-----= f g x( )( )

g f x( )( )
f g x( )( )

x4 2x c+( )7
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15. (a) Find the solutions to the equation , giving exact values.
(b) Sketch the graph of the function , clearly labelling and

giving the coordinates of the turning points on the curve.
(c) If S = , find k such that 

i. ii. iii.

16. The graph of  is shown in the diagram.
Using different sets of axes for each graph, sketch 
the graphs of each of the following, showing clearly 
any intercepts with the axes and any asymptotes:
(a)
(b)
(c)
(d) .

17. (a) Find k such that the equation  has exactly one solution.
(b) Factorise .
(c) Solve 

18. (a) For what value of x is ?

(b) Find the term independent of a in the expansion .

(c) Solve 

19. (a) i. Factorise the polynomial  .
ii. Find .

(b) Find the value of a if the equations  and  are
i. parallel.
ii. perpendicular.

20. (a) The coefficient of x in the expansion of  is . Find the value(s) of a.

(b) Divide  by .
(c) For what value of x is ?

21. (a) Solve for x, the inequality .
(b) Find the equation of the line which passes through both the intersection of 

 and  and the point (0, 0).
(c) Simplify . 

x3 3x2– 9x– 11+ 0=
f x( ) x3 3x2– 9x– 11+=

x : f x( ) k+ 0={ }
n S( ) 1= n S( ) 2= n S( ) 3=

–2  –1  0     1    2    3   4    5–1
–2

5
4
3
2

y

x
y f x( )=

1
–3

–3

y f x( )=

y 2
3--- f x( )=

y f x–( )=
y f x( ) 1+=
y 1

f x( )-----------=

2x2 kx 2k+ + 0=
6x3 19x2 x 6–+ +

2x 3– 3<

2
x 1–( )---------------- 1

2--->

a 1
a---–   8

2x4 x3 6x2– x 2+ + + 0=

P x( ) 2x3 x2 13x– 6+ +=
x P x( ) 0>{ }

2x 3y+ 6= 6x ay+ 9=

x 1
ax2--------+   7 7

3---

4x4 6x3– 3x 5–+ 2x 1–( )
x2 4–

x-------------- 0>

2x 3– x 2+<

x y+ 2= 2x 3y+ 8=
x3 y3–
x3 y3+---------------- x y–( )2 xy+

x2 xy y2+ +-------------------------------×
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22. Find a and b such that  is exactly divisible by .

23. Consider the system of equations  and .
(a) Show that this system of equations imply that  and .
(b) Hence solve the system of equations.

24. (a) Show that , where .
(b) i. If  prove that .

ii. Hence express  and  in the form a + bp.
(c) Solve for x where .

25. (a) Solve the equation .
(b) Find the term independent of .

(c) Factorise .
(d) . Given that x = 1 is a zero of  and that when  is

divided by x the remainder is –7, find a and b.

26. Given that , (a) show that  is a factor of .
(b) factorise  completely.
(c) find .

27. (a) Find k if the equation  has no real roots. 
(b) Find the constants p and q such that  is a common factor to both the 

polynomials  and . 

(c) Find i. . ii. .

28. Given that n is a positive integer and that a and b are real constants, find a and b if
.

29. (a) i. Show that if  then .

ii. Hence find .

(b) i. Find an expression for y in terms of x, if .
ii. Solve the system of equations .

30. Find the term of  in the expansion .

x4 4x2 ax b+ + + x2 x 2–+

5x 252y⋅ 1= 35x 9y⋅ 1
9---=

x 4y+ 0= 5x 2y 2+ + 0=

N 11≤ N 10 2x x2–+=
p2 1 p+= p3 1 2 p+=

p5 p 5–

1 2x–( ) 2 3x–( ) 3 4x–( ) 0<

8x 0.253x 1–=
2x 1

x---–   12

P x( ) x3 5x2 5x 3–+ +=
P x( ) x a–( )3 b+= P x( ) P x( )

f x( ) 3 7x– 5x2 x3–+= 3 x–( ) f x( )
f x( )

x f x( ) 0>{ }

x2 k 3+( )x– k 6+( )+ 0=
x 2–( )

x3 x2– 2 px– 3q+ qx3 px2– x 2+ +

x 2
x 1+------------ x

x 6+------------>    x x 4+
x 1–------------ 1<   

1 ax+( )n 1 6x– 81
5------x2 bx3 …+ + +=

a 1
a---+ 10

3------= 3a2 10a– 3+ 0=

x 3x 3 x–+ 10
3------=   

6 x 3–( )log+log 2 ylog=
6 x 3–( )log+log 2 ylog=

2y x– 3=

x5 1 2x+( )8
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31. Solve for x: (a)
(b)
(c)

32. Write down the largest possible domain and range for the following functions
(a) (b) (c)

33. ABCD is a square of side length one unit. Points E and F are taken on [AB] and [AD]
respectively such that AE = AF = x.
(a) Show that the area, y sq units, of the quadrilateral CDFE is gven by

.
(b) Find the maximum area of the quadrilateral.

34. The diagram shows a sketch of the part of 
the graph of  for .
The line x = 2c is a line of symmetry of the graph.
Sketch on separate axes the graphs of

i. , for ,
ii. , for .

35. (a) On the same set of axes, sketch the graphs of each of the following
i. ii.

(b) Rumours of an immanent take-over by a large electronics company has forced the
value of shares in Smith Electronics to rise. Unfortunately, only one week after the
rumour started, the large electronics company declared that the take-over would
not take place. The value of shares in Smith electronics t weeks after the rumour
started can be represented by

.
where  is measured in cents.
i. Sketch the graph of the function V.
ii. What was the value of shares in Smith Electronics before the rumour

started?
iii. What is the maximum value that shares in Smith Electronics reaches?
iv. Mr Brown bought shares in Smith Electronics before the rumour of a take-

over. If he is prepared to sell them at 50% profit, when should he sell his
shares?

36. (a) On the same set of axes, sketch the graphs of 
and , where a > 0 and .

(b) Find a.

37. Find and sketch the inverse of .

2x 1– 4=
2x 1–( )2 4=

2x 1–( )2log 4=

f x( ) 4 x–= g x( ) 4 x–= h x( ) 4 x–( )alog=

y 1
2--- 1 x x2–+( )=

c                2c

d

0

(c, d)
y

x

y f x( )= 0 x 2c≤ ≤

y f x( )= 0 x 4c≤ ≤
y f x c–( )= 2c x 4c≤ ≤

y x2 2x– 2+= y 1
x2 2x– 2+--------------------------=

V t( ) 400
t2 2t– 2+------------------------ t 0≥,=

V t( )

f  : 0 a,[ ]       , where f x( ) 1
3---x2=

g : 0 a,[ ]       , where g x( ) 4x x2–= g a( ) f a( )=

g x( ) 1
2--- x e–( ) x e>,elog=
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38. The minimum value of the function,  is , a > 0, b > 0.
(a) State the i. maximal domain of f.

ii. range of f.
(b) Sketch the graph of f, giving the coordinates of the x-intercept.
(c) Find the coordinates of the point where the graph of f meets the straight line

with equation .
(d) Find the relationship between b and x at the point where the graph of f meets the

straight line with equation .

39. A biologist is observing the growth of two bacterial cultures during an experiment on a
new drug. After a number of experiments the biologist observes that the growth of one
culture and the decrease in the other culture can be approximated by mathematical
functions.

 is the number of cells in the first culture after t hours. The number of cells started
with in this culture is 900 and the biologist notes that all the cells have died after 5 hours.

 is the number of cells in the second culture after t hours and grows according to the
function, .
(a) If  is a function of the form , find the values of a and b.
(b) Copy and complete the table for t and .

(c) What is the initial number of cells for the second culture?
(d) As time increases, what is the limiting value of the number of cells for ?
(e) After what time is the number of cells in the second culture greater than 500?
(f) Using the same diagram, draw the graphs of  and .

40. The water tank shown is used to top up the level of
water in a bird pond. The tank is initially full. When
the tap is opened, water flows from a hose connected
to the bottom of the tank into the bird pond. The 
height of the water in the tank, h cm, at a time t hours
after the tap has been opened is modelled by the function
h, with the rule

(a) What is the initial height of water in the tank?
(b) What is the value of h after 4 hours?
(c) When, to the nearest hour, will the tank be empty if water is allowed to continue to

flow out?
(d) Give the maximal domain and range for the function h .
(e) Explain briefly why an inverse function,  exists. Find its rule and domain.
(f) On the same set of axes, draw the graphs of  and .
(g) When (to the nearest 0.1 of an hour) will the tank be two-thirds full?

t 1 2 3.5 5

f x( ) ax bx( )elog= a
be------–

y a belog( )x=

y a belog=

A t( )

B t( )
B t( ) 1000

1 49e 2t–+------------------------=
A t( ) at2 b+

B t( )

B t( )

B t( )

A t( ) B t( )

bird pond

tank

h t( ) 0.13t 12.25–( )2=

h 1–

h h 1–
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41. Solve the system of equations .

42. Let 

(a) Sketch the graph of f.
(b) State the range of f.
(c) Is f a continuous function?

43. Find the coefficient of  in the expansion of .

44. Let functions f and g be defined by  and
.

(a) If a is a negative real number, what is the greatest real number b such that g has an
inverse function?

(b) What is the least value of a for which  exist?
(c) If a and b have the values found in (a) and (b), state, with reason, whether or not

 exists.
45. Find the middle term in the expansion of .

46. (a) Find the inverse,  of .
(b) On the same set of axes, sketch the graphs of  and .
(c) Will there exists a value of x for which  = ?

If so, find it.

47. Let  and g : [0, ∞[ 
i. Show that one of the  and  exists but the other does not.
ii. If h is the one which does exist, define h and state its range.

48. A function f is defined by 
i. Sketch the graph of f and show that an inverse function  exists.
ii. Find the domain of  and find .
iii. Sketch the graph of  on the same set of axes as the graph of f.

49. Find the coefficient of  in the expansion of .

50. Solve completely the following system of linear equations .

x y z–+ 9=
3x 4y 3z+ + 2=
4x 5y 3z+ + 5=

f x( )
1 x 0<

2 x– 0 x 1≤ ≤
x 1– x 1>




=

x4 1 x x2+ +( ) 1 x–( )9

f  : 1 1,–[ ]       , where f x( ) 1 x2–=
g : a b,[ ]       , where g x( ) 1 x2–=

fog

gof
x2 1

2x------–   10

g 1– g x( ) x2 2x 3 x 1–≥,+ +=
g x( ) g 1– x( )

g x( ) g 1– x( )

f  :           where f x( ) 4 x2–=       , where g x( ) x=
fog gof

f  :         , where f x( ) 1 e x––=
f 1–

f 1– f 1– x( )
f 1–

x3 1 x–( )5 1 x+( )7

3x y 2z+ + 0=
2x– 3y z–+ 0=
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51. (a) Let  and . State, with reasons,
whether or not  and  exist.

(b) Find all real values of x for which  is real.

52. Solve the simultaneous equations .

53. (a) Solve the simultaneous equations .

(b) Let . If S is the set of all real values of x for

which  is defined, find S. 

54. (a) Let . Define the inverse function .
(b) Let . Explain why one of  and  is

defined and one is not. 
(c) If F is the one which is defined, find  and sketch the graph of F.

55. (a) Find the two values of t for which the system of equations  does

not have a unique solution for x, y and z.
(b) Show that, for one of these values of t, no solution exists.
(c) For the other value of t, find the solution set.

56. When a colony of wasps was studied, its population was found to be approximated by the
model , where P is the population of wasps, and t days is the time
from the start of the study.
(a) i. What was the population of the wasp colony when the study began?

ii. What was the population of the wasp colony 10 days after the study began?
(b) Sketch, on a set of axes, a graph of the population P against the time t.
(c) In a sentence, describe how the population of the wasp colony was changing.

Over the same period of time a second wasp colony was also studied. Its population, Q,
was found to be approximated by the model .
(d) i. What was the population of this second colony when the study began?

ii. What was its population 10 days after the study began?
(e) On the same set of axes as (b), sketch the graph of the population Q against time.
(f) In a sentence, describe how the population of the wasp colony was changing.
(g) Using you graph, estimate the population when the populations of the two wasps

colonies are the same.
(h) i. By solving an appropriate equation, show that when the two wasp colonies

have equal numbers, then  where .
ii. Hence, find the exact time when the two wasp colonies have equal numbers.

f x( ) x2= g: ] –∞, 3 ]        , where g x( ) 3 x–=
fog gof

x2 3–( )elog( )elog

x y+ 2=
x y– z– 5–=

x 3y z+ + 9=

x 2y z–+ 2=
2x 3y z+ + 6=
4x 7y z–+ 10=

f  : S       , where f x( ) 2 x–
3 x+------------  

elog=

f x( )

f  : 0 ∞[       , where f x( ),[ 2 x–= f 1–

g : 0 ∞[       , where g x( ),[ x= f 1– og go f 1–

F x( )

x y– 2z– 3–=
tx y z–+ 3t=

x 3y tz+ + 13=

P t( ) 50e0.1t t 0≥,=

Q t( ) 500 450e 0.1t– t 0≥,–=

k2 10k– 9+ 0= k e0.1t=
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8.1.1 ARITHMETIC SEQUENCES

A sequence is a set of quantities arranged in a definite order.
1, 2, 3, 4, 5, 6,..............     –1, 2, –4, 8, –16....1, 1, 2, 3, 5, 8, 13....

are all examples of sequences. When the terms of a sequence are added, we obtain a series. 
Sequences and series are used to solve a variety of practical problems in, for example, business.
There are two major types of sequence, arithmetic and geometric. This section will consider 
arithmetic sequences (also known as arithmetic progressions, or simply A.P). The characteristic 
of such a sequence is that there is a common difference between successive terms. For example:
1, 3, 5, 7, 9, 11, . . . (the odd numbers) has a first term of 1 and a common difference of 2.
18, 15, 12, 9, 6, . . . has a first term of 18 and a common difference of –3 (sequence is decreasing).

The terms of a sequence are generally labelled . The ‘nth term’ of a sequence 
is labelled . In the case of an arithmetic sequence which starts with a and has a common 
difference of d, the nth term can be found using the formula:

 where 

In this case a = 7 and d = 4 because the sequence starts with a 7 and each term is 4 bigger
than the one before it, i.e., d = 11 – 7 = 4. Therefore the nth term is given by 

That is, 
         = 83 [n = 20 corresponds to the 20th term] 

The data is:  and when n = 10,  [i.e., 10th term is 57].
This gives, 

  

Using , we then have .

ARITHMETIC SEQUENCES & SERIES8.1

C
H

A
P

T
E
R

 8

u1 u2 u3 u4 …un, , , ,
un

un a n 1–( )d+= d u2 u1– u3 u2– …= = =

For the sequence 7, 11, 15, 19, . . . , find the 20th term.E 8.1XAMPLE

S
o
l
u
t
i
o
n

un 7 n 1–( ) 4×+=
un 4n 3+=
u20∴ 4 20 3+×=

An arithmetic sequence has a first term of 120 and a 10th term of 57. Find 
the 15th term.

E 8.2XAMPLE

S
o
l
u
t
i
o
n

a 120= u10 57=
u10 120 10 1–( )d+ 57 120 9d+⇔ 57= = =

d∴ 7–=

un a n 1–( )d+= un 120 n 1–( ) 7–( )×+ 127 7n–= =
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Therefore, when n = 15, .

In this instance we know neither the first term nor the common difference and so we will
need to set up equations to be solved simultaneously.
The data is:   – (1)

  – (2) 

We first solve for ‘d’: (2) – (1) :   
Substituting into (1):
To find the 24th term we use the general term  with n = 24:

 

The values can be seen as a sequence: $25600, $25510, $25420 etc.
In this case a = 25600 and d =25510 – 25600 = –90 so that:

 

The car will be worth less than $15000 after 119 months

Using a Graphics Calculator

Most graphic calculators have an automatic memory facility (usually called Ans) that stores the 
result of the last calculation as well as an ability to remember the actual calculation. This can be 
very useful in listing a sequence.

u15 127 7 15×– 22= =

An arithmetic sequence has a 7th term of 16.5 and a 12th term of 24. Find 
the 24th term.

E 8.3XAMPLE

S
o
l
u
t
i
o
n

u7 a 6d+ 16.5= =
u12 a 11d+ 24= =

5d 7.5 d⇔ 1.5= =
a 6 1.5×+ 16.5 a⇔ 7.5= =

un a n 1–( )d+=
u24 7.5 24 1–( ) 1.5×+ 42= =

A car whose original value was $25600 decreases in value by $90 per 
month. How long will it take before the car’s value falls below $15000?

E 8.4XAMPLE

S
o
l
u
t
i
o
n

un 25600 n 1–( ) 90–( )×+=
25690 90n  –=

15000∴ 25690 90n–=
90⇔ n 25690 15000–=
n⇔ 118.777=

List the arithmetic sequence 5, 12, 19, 26,......E 8.5XAMPLE
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The sequence has a first term of 5. Enter this and press
ENTER or EXE. 
The common difference of the sequence is 7 so enter + 7. 
The display will show Ans + 7 which means ‘add 7 to the
previous answer. 
From here, every time you press ENTER (or EXE), you
will repeat the calculation, generating successive terms of
the sequence.

However, the TI–83 is much more sophisticated than this. It is possible to set up a sequence rule 
on the TI–83. To do this we use the MODE key to switch to Seq mode and this changes the 
Equation editor screen from Y= to a sequence version (instead of the usual function form).

There are three sequence forms; ,  and , which can be accessed on the home 
screen using the 2nd function key with 7, 8 and 9 respectively. Once these equations are defined 
we can plot their sequence graph.

We now consider Example 8.2, where we obtained the sequence  and wished to 
determine the 15th term.

The TI–83 has many features that can be used with sequences. Become familiar with all of them.

S
o
l
u
t
i
o
n

u n( ) v n( ) w n( )

un 127 7n–=

Setting into sequence mode                       Define sequence equation                       Use 2nd key ‘7’ to call up u.
We can also use other features of the TI–83. For example, set up the sequence in a table format:

We can plot the sequence:
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1. (a) Show that the following sequences are arithmetic.
(b) Find the common difference.
(c) Define the rule that gives the nth term of the sequence.

i. {2, 6, 10, 14, . . . }  ii. {20, 17, 14, 11, . . . }
iii. { 1, –4, –9, . . . }  iv. {0.5, 1.0, 1.5, 2.0, . . . }
v. {y + 1, y + 3, y + 5, . . . } vi. {x + 2, x, x – 2, . . . }

2. Find the 10th term of the sequence whose first four terms are 8, 4, 0, –4.
3. Find the value of x and y in the arithmetic sequence {5, x, 13, y, . . . }.
4. An arithmetic sequence has 12 as its first term and a common difference of –5. Find its
 12th term.
5. An arithmetic sequence has –20 as its first term and a common difference of 3. Find its
 10th term.
6. The 14th term of an arithmetic sequence is 100. If the first term is 9, find the common

difference.
7. The 10th term of an arithmetic sequence is –40. If the first term is 5, find the common
 difference.
8. If n + 5, 2n + 1 and 4n – 3 are three consecutive terms of an arithmetic sequences, find n.
9. The first three terms of an arithmetic sequence are 1, 6, 11. 

(a) Find the 9th term.
(b) Which term will equal 151?

10. Find x and y given that  and  are the first four terms of an
 arithmetic sequence.
11. For each of the following sequences

(a) , n ≥ 1. (b) , n ≥ 1.
determine
i. its common difference
ii. its first term

12. The third and fifth terms of an A.P are x + y and x – y respectively. Find the 12th term.
13. The sum of the fifth term and twice the third of an arithmetic sequence equals the twelth

term. If the seventh term is 25 find an expression for the general term, .

14. For a given arithmetic sequence,  and . Find
(a) the common difference.
(b) .

EXERCISES 8.1.1

4 3 x y, ,– 2 3 2–

un 5– 2n+= un 3 4 n 1+( )+=

un

un m= um n=

un m+
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8.1.2 ARITHMETIC SERIES

If the terms of a sequence are added, the result is known as a series.
The sequence: 1, 2, 3, 4, 5, 6, . . . 
gives the series: 1 + 2 + 3 + 4 + 5 + 6 + . . .
and the sequence:  –1, –2, –4, –8, –16 . . . 
gives the series:  (–1) + (–2) + (–4) + (–8) + (–16) + . . . 

[or – 1– 2 – 4 – 8 – 16 – . . . 

The sum of the terms of a series is referred to as , the sum of n terms of a series. 
For an arithmetic series, we have

For example, if we have a sequence defined by , then the sum of the first 8 
terms is given by 

Again, the screen display of the TI–83 shows how readily we can 
obtain the sum. Once the sequence has been stored as a List, use the 
sum( operation to obtain the answer.
There will be many cases in which we can add the terms of a series in this way. If, however, there 
are a large number of terms to add, a formula is more appropriate. 
There is a story that, when the mathematician Gauss was a child, his teacher was having problems 
with him because he always finished all his work long before the other students. In an attempt to 
keep Gauss occupied for a period, the teacher asked him to add all the whole numbers from 1 to 
100. 

‘5050’ Gauss replied immediately. 
It is probable that Gauss used a method similar to this:

1   2 3 4 5 6 .....,, 96 97 98 99 100
100 99 98 97 96 95 .....,, 5 4 3 2 1
101 101 101 101 101 101 .....,, 101 101 101 101 101

Adding each of the pairings gives 100 totals of 101 each. This gives a total of 10100. This is the 
sum of two sets of the numbers 1 + 2 + 3 + ... + 98 + 99 +100 and so dividing the full answer by 2 
gives the answer 5050, as the young Gauss said, 5050.
It is then possible to apply the same approach to such a sequence, bearing in mind that the 
sequence of numbers must be arithmetic.

Sn

Sn u1 u2 u3 … un+ + + +=
a a d+( ) a 2d+( ) ………… a n 1–( )d+ + + + +=

un 6 4n n 1≥,+=

S8 u1 u2 u3 … u8+ + + +=
10 14 18 … 38+ + + +=
192=
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Applying this process to the general arithmetic series we have:

Each of the pairings comes to the same total. 

Here are some examples: 1st pairing:
2nd pairing:
3rd pairing:

:       :       :    :          :
There are n such pairings so             +               = 
That is,                      
Giving the formula, for the sum of n terms of a sequence

This formula can now be used to sum large arithmetic series:

We have the following information:  and .
Then, the sum to n terms is given by 
So that the sum to 20 terms is given by

   

We have the following information:  and .

Then, with n = 35 we have 

 

a a+d a+2d . . . a+(n–3)d a+(n–2)d a+(n–1)d
a+(n–1)d a+(n–2)d a+(n–3)d . . . a+2d a+d a

a a n 1–( )d+[ ]+ 2a n 1–( )d+=
a d+( ) a n 2–( )d+[ ]+ 2a n 1–( )d+=
a 2d+( ) a n 3–( )d+[ ]+ 2a n 1–( )d+=

Sn Sn n 2a n 1–( )d+[ ]×
2Sn n 2a n 1–( )d+[ ]=

Sn n
2--- 2a n 1–( )d+[ ]=

Find the sum of 20 terms of the series –2 + 1 + 4 + 7 + 10 +. . .E 8.6XAMPLE

S
o
l
u
t
i
o
n

a u1 2–= = d u2 u1– 1 2–( )– 3= = =
Sn n

2--- 2a n 1–( )d+[ ]=

S20 20
2------ 2 2–( )× 20 1–( ) 3×+[ ]=
10 4– 19 3×+[ ]=
530=

Find the sum of 35 terms of the series 38---–
1
8---–
1
8---
3
8---
5
8--- ……+ + + +

E 8.7XAMPLE

S
o
l
u
t
i
o
n

a u1 3
8---–= = d u2 u1– 1

8---–
3
8---–  – 1

4---= = =

S35 35
2------ 2

3
8---–× 35 1–( )14---+ 17.5 3

4---– 34 1
4---×+= =

13558---=
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From the given information we have:  – (1) 
&:
i.e., 

 – (2) 
The pair of equations can now be solved simultaneously:

(2) – (1):  
Substituting result into (1) we have :
This establishes that the series is 8 + 4 + 0 + (–4) + (–8) +. . . 
So the first term is 8 and the sum of the first ten terms is .

Using the TI–83 we have, using the 
general term 

The series is: 20 + 23 + 26 + .....
The question implies that the company is looking at the total number of computers sold,
so we are looking at a series, not a sequence. 
The question asks how many terms (months) will be needed before the total sales
reach more than 1000. From the given information we have: a = 20, d = 23 – 20 = 3.
Therefore, we have the sum to n terms given by  

Next, we determine when :
       

We solve for n use either of the following methods:
Method 1: Quadratic formula          Method 2: Graphics Calculator Solve function

An arithmetic series has a third term of 0. The sum of the first 15 terms is –
300. What is the first term and the sum of the first ten terms?

E 8.8XAMPLE

S
o
l
u
t
i
o
n

u3 a 2d+ 0= =
S15 15

2------ 2a 14d+[ ] 300–= =
15a 105d+ 300–=
a 7d+ 20–=∴

5d 20 d⇔– 4–= =
a 2 4–×+ 0 a⇔ 8= =

S10 10
2------ 16 9 4–×+[ ] 100–= =

un 8 n 1–( ) 4–×+ 12 4n–= =

A new business is selling home computers. They predict that they will sell 
20 computers in their first month, 23 in the second month, 26 in the third and so on, in arithmetic 
sequence. How many months will pass before the company expects to sell their thousandth 
computer.

E 8.9XAMPLE

S
o
l
u
t
i
o
n Sn n

2--- 2 20 n 1–( ) 3×+×[ ]=
n
2--- 3n 37+[ ]=

Sn 1000= n
2--- 3n 37+[ ] 1000 3n2 37n+⇔ 2000= =

3n2 37n 2000–+⇔ 0=

n 37– 372 4 3 2000–××–±
2 3×---------------------------------------------------------------------=

20.37  or  32.7–( )=
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Method 3: Table of values

Notice that we have entered the expression for  as the sequence rule for u(n). In fact, the series 
itself is made up of terms in a sequence of so-called partial sums, often called a sum sequence.
That is, we have that  forms a sequence.

The answer then, is that the company will sell its thousandth computer during the 20th month.

1. Find the sum of the first ten terms in the arithmetic sequences
(a) {1, 4, 7, 10, . . . } (b) {3, 9, 15, 21, . . . } (c) { 10, 4, –2, . . . .}.

2. For the given arithmetic sequences, find the sum, , to the requested number of 
 terms.

(a) {4, 3, 2, . . . } for  n = 12
(b) { 4, 10, 16, . . . } for n = 15
(c) {2.9, 3.6, 4.3, . . . } for n = 11

3. Find the sum of the following sequences:
(a) {5, 4, 3, . . . , –15}
(b) {3, 9, 15, . . . , 75}
(c) {3, 5, 7, . . ., 29}

4. The weekly sales of washing machines from a retail store that has just opened in a new
housing complex increases by 2 machines per week. In the first week of January 1995, 24
machines were sold.
(a) How many are sold in the last week of December 1995?
(b) How many machines did the retailer sell in 1995?
(c) When was the 500th machine sold?

5. The fourth term of an arithmetic sequence is 5 while the sum of the first 6 terms is 10.
Find the sum of the first nineteen terms.

6. Find the sum of the first 10 terms for the sequences defined by
(a) (b)

7. The sum of the first eight terms of the sequence  is given by
. Find a and b.

S21 1000>

Sn

S1 S2 S3 …, , ,{ } 15 33 54 …, , ,{ }=

EXERCISES 8.1.2

Sn

un 2– 8n+= un 1 4n–=

x x2y x3y2 …,ln,ln,ln{ }
4 a x b yln+ln( )



Sequences and Series – CHAPTER 8

249

8.1.3 SIGMA NOTATION

There is a second notation to denote the sum of terms. This other notation makes use the Greek 
letter  as the symbol to inform us that we are carrying out a summation.
In short,  stands for ‘The sum of . . . ’.

This means that the expression .

For example, if , i.e., an A.P with first term a = 2 and common difference d = 5,

the expression  would respesent the sum of the first n terms of the 
sequence. So, the sum of the first 3 terms would be given by

      =                2             +              7               +            12
      =     21

Properties of 

1.  is distributive. That is, .

2. , for some constant value k.

3. , i.e., adding a constant term, k, n times is the same as multiplying k by n.

(a)  = 
       = 7 + 9 + 11 + 13 + 15
       = 55

(b)  = 

…∑
…∑

ui
i 1=

n
∑ u1 u2 u3 … un 1– un+ + + + +=

ui 2 5 i 1–( )+=

Sn 2 5 i 1–( )+[ ]
i 1=

n
∑=

S3 2 5 i 1–( )+[ ]
i 1=

3
∑ 2 5 1 1–( )+[ ] 2 5 2 1–( )+[ ] 2 5 3 1–( )+[ ]+ += =                     i = 1                         i = 2                         i = 3

∑
∑ ui vi+[ ]

i 1=

n
∑ ui vi

i 1=

n
∑+

i 1=

n
∑=

kui
i 1=

n
∑ k ui

i 1=

n
∑=

k
i 1=

n
∑ kn=

Given that  and that  find

(a) (b) (c)

ui 5 2i+= vi 2 5i–=

ui
i 1=

5
∑ 2ui vi–[ ]

i 1=

5
∑ 5ui 2vi+[ ]

i 1=

1000
∑

E 8.10XAMPLE

S
o
l
u
t
i
o
n

ui
i 1=

5
∑ u1 u2 u3 u4 u5+ + + += 5 2+[ ] 5 4+[ ] 5 6+[ ] 5 8+[ ] 5 10+[ ]+ + + +

2ui vi–[ ]
i 1=

5
∑ 2ui( ) vi–( )

i 1=

5
∑+

i 1=

5
∑ 2 ui vi

i 1=

5
∑–

i 1=

5
∑=
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Now,  

and    [Using properties]
        = –65
Therefore,  = 110 – (–65) = 175

(c)  = 

   = 

   = 
   = 29 000  [ i.e., 29×1000] 

In this example we have tried to show that there are a number of ways to obtain a sum. It is not 
always necessary to enumerate every term and then add them. Often, an expression can first be 
simplified.

 – MISCELLANEOUS QUESTIONS

1. Find the twentieth term in the sequence 9, 15, 21, 27, 33, . . .
2. Fill the gaps in this arithmetic sequence: –3, _, _, _, _, _, 12.
3. An arithmetic sequence has a tenth term of 17 and a fourteenth term of 30. Find the

common difference. 

4. If  for an arithmetic sequence, find the first term and the
common difference.

5. Find the sum of the first one hundred odd numbers.
6. An arithmetic series has twenty terms. The first term is –50 and the last term is 83, find the

sum of the series.
7. Thirty numbers are in arithmetic sequence. The sum of the numbers is 270 and the last

number is 38. What is the first number?
8. How many terms of the arithmetic sequence: 2, 2.3, 2.6, 2.9, . . .  must be taken before

the terms exceed 100?

2 ui
i 1=

5
∑ 2 55× 110= =

vi
i 1=

5
∑ 2 5i–( )

i 1=

5
∑ 2( ) 5 i

i 1=

5
∑–

i 1=

5
∑ 2 5 5 1 2 3 4 5+ + + +[ ]–×= = =

2ui vi–[ ]
i 1=

5
∑
5ui 2vi+[ ]

i 1=

1000
∑ 5 5 2i+( ) 2 2 5i–( )+[ ]

i 1=

1000
∑
25 10i 4 10i–+ +[ ]

i 1=

1000
∑
29

i 1=

1000
∑

EXERCISES 8.1.3

u59 1
10------=  and u100 1– 1920------=
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9. Brian and Melissa save $50 in the first week of a savings program, $55 in the second
 week, $60 in the third and so on, in arithmetic progression. How much will they save in

ten weeks? How long will they have to continue saving if their target is to save $5000?
10. A printing firm offers to print business cards on the following terms:

$45 for design and typesetting and then $0.02 per card. 
(i) What is the cost of 500 cards from this printer?
(ii) How many cards can a customer with $100 afford to order?

11. A children’s game consists of the players standing in a line with a gap of 2 metres between
each. The child at the left hand end of the line has a ball which s/he throws to the next
child in the line, a distance of 2 metres. The ball is then thrown back to the first child who
then throws the ball to the third child in the line, a distance of 4 metres. The ball is then
returned to the first child, and so on until all the children have touched the ball at least
once.

(a) If a total of five children play and they make the least number of throws so that only
the leftmost child touches the ball more than once:
i. What is the largest single throw?
ii. What is the total distance travelled by the ball?

(b) If seven children play, what is the total distance travelled by the ball?
(c) If n children play, derive a formula for the total distance travelled by the ball.
(d) Find the least number of children who need to play the game before the total

distance travelled by the ball exceeds 100 metres.
(e) The children can all throw the ball 50 metres at most

i. What is the largest number of children that can play the game?
ii. What is the total distance travelled by the ball?

12. Find each sum,
(a) (b) (c)

13. If  and  find

(a) (b) (c)

14. (a) Show that for an arithmetic sequence, , where  is the nth term
and  is the sum of the first n terms.

(b) Find the general term, , of the A.P given that .

2metres 2metres2metres 2metres

etc....

k
k 1=

100
∑ 2k 1+( )

k 1=

100
∑ 3k 5+( )

k 1=

51
∑

ui 3– 4i+= vi 12 3i–=

ui vi+( )
i 1=

10
∑ 3ui 4vi+( )

i 1=

10
∑ uivi

i 1=

10
∑

un Sn Sn 1––= un
Sn

un ui
i 1=

n
∑ n

2--- 3n 1–( )=
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8.2.1 GEOMETRIC SEQUENCES

Sequences such as 2, 6, 18, 54, 162, . . . and 200, 20, 2, 0.2, . . .  in which each term is obtained by 
multiplying the previous one by a fixed quantity are known as geometric sequences. 
The sequence: 2, 6, 18, 54, 162, . . .  is formed by starting with 2 and then multiplying by 3 to get 
the second term, by 3 again to get the third term, and so on.
For the sequence 200, 20, 2, 0.2, . . . , begin with 20 and multiplied by 0.1 to get the second term, 
by 0.1 again to get the third term and so on.
The constant multiplier of such a sequence is known as the common ratio.
The common ratio of 2, 6, 18, 54, 162,.... is 3 and of 200, 20, 2, 0.2,...... it is 0.1.
The nth term of a geometric sequence is obtained from the first term by multiplying by 
n–1 common ratios. This leads to the formula for the 

The first term is a = 2. The common ratio r = 3 =  and n, the required term, is 10. 
Use the formula to solve the problem:  

In this case, a = 20,  and n = 15.
Using the general term , the 15th term is given by

     

GEOMETRIC SEQUENCES & SERIES8.2

nth term of a geometric sequence:  where 
and n is the term number, a the first term and r is the common ratio.

un a rn 1–×= r u2
u1
----- … un

un 1–
-----------= = =

Find the tenth term in the sequence 2, 6, 18, 54, 162, . . .E 8.11XAMPLE

S
o
l
u
t
i
o
n

6
2---

18
6------=

un a rn 1–×=
u10 2 3 10 1–( )×=

2 39×=
39366=

Find the fifteenth term in the sequence 200, 20, 2, 0.2,  . . . E 8.12XAMPLE

S
o
l
u
t
i
o
n

r 20
200---------

1
10------ 0.1= = =

un a rn 1–×= u15 200 0.1 15 1–( )×=
200 0.114×=
2 10 12–×=
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The sequence , . . . has a common ratio of r = .

Using the general term , we have

   

Many questions will be more demanding in terms of the way in which you use this formula. You 
should also recognise that the formula can be applied to a range of practical problems.
Many of the practical problems involve growth and decay and can be seen as similar to problems 
studied in Chapter 7.

From the given information we can set up the following equations:
 – (1) 

&  – (2) 

As with similar problems involving arithmetic sequences, the result is a pair of
simultaneous equations. In this case these can best be solved by dividing (2) by (1) to get:

Substituting results into (1) we have:

Therefore, the 10th term is given by
There are two solutions: 48, 24, 12, 6, . . . (for the case r  = 0.5) & 48, –24, 12, –6, . . . (r = –0.5).

Find the eleventh term in the sequence , . . . 1 1
2---
1
4---
1
8---–, ,– 1
16------, ,E 8.13XAMPLE

S
o
l
u
t
i
o
n

1 1
2---
1
4---
1
8---–, ,– 1
16------, , 1 2⁄–

1-------------
1
2---–=

un a rn 1–×= u11 1 1
2---–   11 1–( )×=

1
2---–   10=

0.000977≈

A geometric sequence has a fifth term of 3 and a seventh term of 0.75. Find 
the first term, the common ratio and the tenth term.

E 8.14XAMPLE

S
o
l
u
t
i
o
n

u5 a r4× 3= =
u7 a r6× 0.75= =

a r6×
a r4×--------------

0.75
3---------- r2 0.25 r⇔=⇔ 0.5±= =

a 1
2---±   4 3 a⇔ 48= =

u10 48 0.5±( )9× 3
32------±= =

Find the number of terms in the geometric sequence: 
0.25, 0.75, 2.25, . . . , 44286.75.

E 8.15XAMPLE
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The sequence 0.25, 0.75, 2.25, . . . , 44286.75 has a first term a = 0.25 and a common ratio
. In this problem it is n that is unknown. Substitution of the data into the

formula gives:
The equation that results can be solved using logarithms (see Chapter 7).

(a) If the car loses 15% of its value each year, its value will fall to 85% (100% – 15%) of its
value in the previous year. This means that the common ratio is 0.85 (the fractional
equivalent of 85%). Using the formula, the sequence is:  
i.e. $34000, $28900, $24565, $20880.25, . . . 

(b) The value after six years have passed is the seventh term of the sequence. This is because
the first term of the sequence is the value after no years have passed.

 or $12823.

(c) This requires solution of the equation :

This means that the car’s value will fall to $10000 after about 7 years 6 months.

S
o
l
u
t
i
o
n

r 0.75
0.25---------- 3= =

un 0.25 3 n 1–( )× 44286.75= =

Or, by making use of the TI–83

0.25 3 n 1–( )× 44286.75=
3∴ n 1–( ) 177147=
3 n 1–( )10log⇔ 17714710log=

n 1–( )⇔ 310log 17714710log=

n⇔ 1– 17714710log
310log------------------------------=

n 1–∴ 11=
n⇔ 12=

A car originally worth $34000 loses 15% of its value each year. 
(a) Write a geometric sequence that gives the year by year value of the car.
(b) Find the value of the car after 6 years.
(c) After how many years will the value of the car fall below $10000?

E 8.16XAMPLE

S
o
l
u
t
i
o
n

un 34000 0.85 n 1–( )×=

u7 34000 0.856× 12823≈=

10000 34000 0.85n×=

Or, by making use of the TI–83
10000 34000 0.85n×=
0.85n 0.2941=
0.85n( )10log 0.294110log=

n 0.8510log 0.294110log=

n 1– 0.294110log
0.8510log-----------------------------=

n 7.53≈
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A quantity can be increased by 2% by multiplying by 1.02. Note that this is different from
finding 2% of a quantity which is done by multiplying by 0.02. 
The sequence is:  etc. with a = 12500, r = 1.02.

It is also necessary to be careful about which term is required. In this case, the population
at the start of 1970 is the first term, the population at the start of 1971 the second term, and
so on. The population at the start of 1980 is the eleventh term and at the start of 2010 we
need the forty-first term:

In all such cases, you should round your answer to the level given in the question or, if no such 
direction is given, round the answer to a reasonable level of accuracy. In this question, the 
original population appears to have been given to the nearest 100 and so it is hardly reasonable to 
give a higher level of accuracy in the answer.

Using a Graphics Calculator

As with arithmetic sequences, geometric sequences such as 50, 25, 12.5, . . .  can be listed using a 
graphics calculator. For this sequence we have a = 50 and r = 0.5, so, 
We first set the MODE to Seq and then enter the sequence rule:

1. Find the common ratio, the 5th term and the general term of the following sequences
(a) 3, 6, 12, 24, . . . (b) 3, 1, (c)

(d) (e) (f)

The number of people in a small country town increases by 2% per year. If 
the population at the start of 1970 was 12500, what is the predicted population at the start of the 
year 2010?

E 8.17XAMPLE

S
o
l
u
t
i
o
n

12500 12500 1.02 12500 1.022×,×,

u41 12500 1.0240×=
27600≈

un 50 0.5( )n 1–=

un

n

Plot of sequence:

EXERCISES 8.2.1

1
3---
1
9--- …, , 2 25---

2
25------

2
125--------- …, , , ,

1 4 16 64 …, ,–, ,– ab a ab---
a
b2----- …, , , , a2 ab b2 …, ,,
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2. Find the value(s) of x if each of the following are in geometric sequence
(a)
(b)

3. The third and seventh terms of a geometric sequence are  and 12 respectively. 
(a) Find the 10th term.
(b) What term is equal to 3072?

4. A rubber ball is dropped from a height of 10 m and bounces to reach  of its previous
height after each rebound. Let  is the ball’s maximum height before its nth rebound.
(a) Find an expression for .
(b) How high will the ball bounce after its 5th rebound.
(c) How many times has the ball bounced by the time it reaches a maximum height of

 m.

5. The terms  are in a geometric sequence. Find the value(s) of k.

6. A computer depreciates each year to 80% of its value from the previous year. When
bought the computer was worth $8000.
(a) Find its value after

i. 3 years
ii. 6 years

(b) How long does it take for the computer to depreciate to a quarter of its purchase
price.

7. The sum of the first and third terms of a geometric sequence is 40 while the sum of its
second and fourth terms is 96. Find the sixth term of the sequence.

8. The sum of three successive terms of a geometric sequence is  while their product is
125. Find the three terms.

9. The population in a town of 40,000 increases at 3% per annum. Estimate the town’s
population after 10 years. 

10. Following new government funding it is expected that the unemployed workforce will
decrease by 1.2% per month. Initially there are 120,000 people unemployed. How large an
unemployed workforce can the government expect to report in 8 months time.

11. The cost of erecting the ground floor of a building is $44,000, for erecting the first floor it
costs $46,200, to erect the second floor costs $48,510 and so on. 
Using this cost structure
(a) How much will it cost to erect the 5th floor?
(b) What will be to total cost of erecting a building with six floors?

3 x 48, ,
5
2--- x

1
2---, ,

3
4---

5
6---

un
un

6250
1296------------

k 4 5k 4 k 20+,+,+

35
2------
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8.2.2 GEOMETRIC SERIES

When the terms of a geometric sequence are added, the result is a geometric series. 
For example:
The sequence 3, 6, 12, 24, 48, . . . gives rise to the series: 3 + 6 + 12 + 24 + 48 + . . .
and, the sequence  leads to the series 

Geometric series can be summed using the formula that is derived by first multiplying the series 
by r:

This formula can also be written as: . It is usual to use the version of the 
formula that gives a positive value for the denominator. And so, we have:

(a) In this case a = 2, r = 2 and n = 9.
Because r = 2 it is more convenient to use: 

Using this version of the formula gives positive values for the numerator and denominator. The 
other version is correct but gives negative numerator and denominator and hence the same 
answer.

24 16 1023--- 7
1
9--- …,–,,–, 24 16 1023--- 7

1
9---– …++–

Sn a ar ar2 ar3 ………… arn 3– arn 2– arn 1–+ + + + + + +=
r Sn× ar ar2 ar3 ………… arn 3– arn 2– arn 1– arn+ + + + + + +=

Sn r Sn×– a arn    (subtracting the second equation from the first)–=
Sn 1 r–( ) a 1 rn–( )=

Sn a 1 rn–( )
1 r–----------------------=

Sn a r
n 1–( )
r 1–----------------------= r 1≠,

The sum of the first n terms of a geometric series, , where r ≠ 1 is given by
 or 

Sn
Sn a 1 rn–( )

1 r–---------------------- r 1<,= Sn a r
n 1–( )
r 1–----------------------= r 1>,

Sum the following series to the number of terms indicated.
(a) 9 terms.
(b) 7 terms.
(c) 12 terms.
(d) 10 terms.

2 4 8 16 …+ + + +
5 15– 45 135– …+ +
24 18 27

2------
81
8------ …+ + + +

20 30– 45 67.5– …+ +

E 8.18XAMPLE

S
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t
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n

Sn a rn 1–( )
r 1–----------------------=

S9 2 29 1–( )
2 1–----------------------=
1022=
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(b)  a = 5, r = –3 and n = 7.

              or

(c) a = 24, r = 0.75 and n = 12.

 This version gives the positive values.

(d) a = 20, r = –1.5 and n = 10.

When using a calculator to evaluate such expressions, it is advisable to 
use brackets to ensure that correct answers are obtained. For both the 
graphics and scientific calculator, the negative common ratio must be 
entered using the +/– or (–) key.

Other questions that may be asked in examinations could involve using both formulas. A second 
possibility is that you may be asked to apply sequence and series theory to some simple problems.

From the given information we have:  – (1) 
  – (2) 

The result is a pair of simultaneous equations in the two unknowns. The best method of
solution is substitution:

From (1): . Substituting into (2): 

Sn a 1 rn–( )
1 r–----------------------=

S7 5 1 3–( )7–( )
1 3–( )–------------------------------=
2735=

Sn a rn 1–( )
r 1–----------------------=

S7 5 3–( )7 1–( )
3–( ) 1–------------------------------=

2735=

Sn a 1 rn–( )
1 r–----------------------=

S12
24 1 3

4---   12–  

1 3
4---  –

----------------------------------=

92.95907=

Sn a 1 rn–( )
1 r–----------------------=

S10 20 1 1.5–( )10–( )
1 1.5–( )–----------------------------------------=
453.32031–=

The 2nd term of a geometric series is –30 and the sum of the first two terms 
is –15. Find the first term and the common ratio.

E 8.19XAMPLE

S
o
l
u
t
i
o
n

u2 30 ar∴– 30–= =
S2 15 a r2 1–( )

r 1–----------------------∴– 15–= =

a 30–
r---------=

30–
r--------- r2 1–( )
r 1–---------------------------- 15 30–( ) r2 1–( )

r r 1–( )--------------------------------- 15–=⇔–=
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The series is 15 – 30 + 60 – 120 + 240 – . . . which meets the conditions set out in the question.

The problem is best looked at from the last payment of $2500 which has just been made
and which has not earned any interest. 
The previous payment has earned one lot of 9% interest and so is now worth . 
The previous payment has earned two years’ worth of compound interest and is worth

. 
This process can be continued for all the other payments and the various amounts of
interest that each has earned. They form a geometric series:

The total amount saved can be calculated using the series formula:

The family will save about $37,982.

1. Find the common ratios of these geometric sequences:
(a) 7, 21, 63, 189, . . . (b) , . . . (c) 1, –1, 1, –1, 1, . . .

(d) , . . . (e) 64, 80, 100, 125, . . . (f) , . . .

30 r 1+( ) r 1–( )–
r r 1–( )-------------------------------------------∴ 15–=
30 r 1+( )–⇔ 15r–=
30r–⇔ 30– 15r–=

r⇔ 2–=
a∴ 30–

r---------
30–
2–--------- 15= = =

A family decide to save some money in an account that pays 9% annual 
compound interest calculated at the end of each year. They put $2500 into the account at the 
beginning of each year. All interest is added to the account and no withdrawals are made. How 
much money will they have in the account on the day after they have made their tenth payment?

E 8.20XAMPLE

S
o
l
u
t
i
o
n

2500 1.09×

2500 1.09× 2

2500 2500 1.09 2500 1.092× …… 2500 1.099×+ + +×+
Last payment First payment

Sn a rn 1–( )
r 1–----------------------=

S10 2500 1.0910 1–( )
1.09 1–-----------------------------------------=

37982.32=

EXERCISES 8.2.2

12 4 43---
4
9---, , ,

9 3 1 1
3---–
1
9---, , ,–, 27 18 12 8–, ,–,
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2. Find the term indicated for each of these geometric sequences:
(a) 11, 33, 99, 297, . . .    10th term. (b)   1, 0.2, 0.04, 0.008, . . .15th term.
(c) , . . .   9th term. (d)   , . . . 6th term.

(e) , . . .   6th term.

3. Find the number of terms in each of these geometric sequences and the sum of the
numbers in each sequence:
(a) 4, 12, 36, . . . , 236196 (b)   11, –22, 44, . . . , 704
(c) 100, –10, 1, . . . , – (d)   48, 36, 27, . . . ,

(e) , , , . . . , (f)    100, 10, 1, . . . , 

4. Write the following in expanded form and evaluate.

(a) (b) (c)

(d) (e)   

5. The third term of a geometric sequence is 36 and the tenth term is 78,732. Find the first
term in the sequence and the sum of these terms.

6. A bank account offers 9% interest compounded annually. If $750 is invested in this
account, find the amount in the account at the end of the twelfth year.

7. When a ball is dropped onto a flat floor, it bounces to 65% of the height from which it was
dropped. If the ball is dropped from 80 cm, find the height of the fifth bounce.

8. A computer loses 30% of its value each year.
(a) Write a formula for the value of the computer after n years.
(b) How many years will it be before the value of the computer falls below 10% of its

original value?
9. A geometric sequence has a first term of 7 and a common ratio of 1.1. How many terms

must be taken before the value of the term exceeds 1000?
10. A colony of algae increases in size by 15% per week. If 10 grams of the algae are placed in

a lake, find the weight of algae that will be present in the lake after 12 weeks. The lake will
be considered ‘seriously polluted’ when there is in excess of 10000 grams of algae in the
lake. How long will it be before the lake becomes seriously polluted?

11. A geometric series has nine terms, a common ratio of 2 and a sum of 3577. Find the first
term.

9 6 4 8
3---–, ,–, 21 9 277------

81
49------, , ,

1
3---–
1
4---–
3
16------–

9
64------–, , ,

10 5– 6561
1024------------

1
8---

9
32------–

81
128---------

6561
2048------------ 10 10–

1
2---   k

k 1=

7
∑ 2i 4–

i 1=

6
∑ 2

3---   j
j 1=

4
∑

3–( )s
s 1=

4
∑ 2 t–

t 1=

6
∑
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12. A geometric series has a third term of 12, a common ratio of  and a sum of 32 . Find
the number of terms in the series.

13. A geometric series has a first term of 1000, seven terms and a sum of 671 . Find the
common ratio. 

14. A geometric series has a third term of 300, and a sixth term of 37500. Find the common
ratio and the sum of the first fourteen terms (in scientific form correct to two significant
figures). 

15. A $10000 loan is offered on the following terms: 12% annual interest on the outstanding
debt calculated monthly. The required monthly repayment is $270. How much will still be
owing after nine months. 

16. As a prize for inventing the game of chess, its originator is said to have asked for one grain
of wheat to be placed on the first square of the board, 2 on the second, 4 on the third, 8 on
the fourth and so on until each of the 64 squares had been covered. How much wheat
would have been the prize? 

8.2.3 COMBINED A.PS AND G.PS

There will be occasions on which questions will be asked that relate to both arithmetic and
geometric sequences and series.

When solving these sorts of question, write the data as equations, noting that a is the same for 
both sequences. Let  denote the general term of the A.P and  the general term of the G.P.
We then have:

, , 
i.e.,  – (1) 

 – (2) 

(1) represents the information ‘The third term of the geometric sequence is the same as the tenth 
term of the arithmetic sequence with both being 48’.
(2) represents ‘The tenth term of the arithmetic sequence is four times the second term of the 
geometric sequence’.
There are three equations here and more than one way of solving them. One of the simplest is:

From (1)  and so substituting into (2) :  – (3)
Also from (1) we have:  – (4)

1
2---–

1
16------

7
8---

A geometric sequence has the same first term as an arithmetic sequence. 
The third term of the geometric sequence is the same as the tenth term of the arithmetic sequence 
with both being 48. The tenth term of the arithmetic sequence is four times the second term of the 
geometric sequence. Find the common difference of the arithmetic sequence and the common 
ratio of the geometric sequence.

E 8.21XAMPLE

S
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n

un vn

u10 a 9d+ 48= = v3 ar2 48= =
a 9d+ ar2 48= =

u10 4v2 a 9d+ 4ar=⇒=

a 9d+ 48= 48 4ar ar⇔ 12= =
ar2 48 ar( )r⇔ 48= =
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Substituting (3) into (4):
Substituting result into (1):
Substituting result into (1):

The common ratio is 4 and the common difference is 5.
It is worth checking that the sequences are as specified:
Geometric sequence: 3, 12, 48
Arithmetic sequence: 3, 8, 13, 18, 23, 28, 33, 38, 43, 48

1. Consider the following sequences:
Arithmetic: 100, 110, 120, 130, . . .
Geometric: 1, 2, 4, 8, 16, . . . 
Prove that:
The terms of the geometric sequence will exceed the terms of the arithmetic sequence
after the 8th term.
The sum of the terms of the geometric sequence will exceed the sum of the terms of the
arithmetic after the 10th term.

2. An arithmetic series has a first term of 2 and a fifth term of 30. A geometric series has a
common ratio of –0.5. The sum of the first two terms of the geometric series is the same as
the second term of the arithmetic series. What is the first term of the geometric series?

3. An arithmetic series has a first term of –4 and a common difference of 1. A geometric
series has a first term of 8 and a common ratio of 0.5. After how many terms does the sum
of the arithmetic series exceed the sum of the geometric series?

4. The first and second terms of an arithmetic and a geometric series are the same and are
equal to 12. The sum of the first two terms of the arithmetic series is four times the first
term of the geometric series. Find the first term of each series. If the A.P has d = 4.

5. Bo-Youn and Ken are to begin a savings program. Bo-Youn saves $1 in the first week $2 in
the second week, $4 in the third and so on, in geometric progression. Ken saves $10 in the
first week, $15 in the second week, $20 in the third and so on, in arithmetic progression.
After how many weeks will Bo-Youn have saved more than Ken?

6. Ari and Chai begin a training program. In the first week Chai will run 10km, in the second
he will run 11km and in the third 12km, and so on, in arithmetic progression. Ari will run
5km in the first week and will increase his distance by 20% in each succeeding week.
(a) When does Ari’s weekly distance first exceed Chai’s?
(b) When does Ari’s total distance first exceed Chai’s?

7. The Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, . . .  in which each term is the sum of the
previous two terms is neither arithmetic nor geometric. However, after the eighth term (21)

12r 48 r⇔ 4= =
a 16× 48 a⇔ 3= =
3 9d+ 48 d⇔ 5= =

EXERCISES 8.2.3
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the sequence becomes approximately geometric. If we assume that the sequence is
geometric:
(a) What is the common ratio of the sequence (to four significant figures)?
(b) Assuming that the Fibonacci sequence can be approximated by the geometric

sequence after the eighth term, what is the approximate sum of the first 24 terms of
the Fibonacci sequence?

8.2.4  CONVERGENT SERIES

If a geometric series has a common ratio between –1 and 1, the terms get smaller and smaller as n 
increases. 
The sum of these terms is still given by the formula:

For .

This means that if the common ratio of a geometric series is between –1 and 1, the sum of the 
series will approach a value of  as the number of terms of the series becomes large i.e., the 
series is convergent.

(a) 16 + 8 + 4 + 2 + 1 + . . .  
In this case 

(b)

There are a variety of applications for convergent geometric series. The following examples 
illustrate two of these.

Sn a 1 r
n–( )

1 r–----------------------= r 1≠,

1 r 1 rn 0 as n ∞ Sn a
1 r–-----------=⇒→→,< <–

If , the infinite sequence has a sum given by .r 1< S∞ a
1 r–-----------=

a
1 r–-----------

Find the sum to infinity of the series
(a) 16 + 8 + 4 + 2 + 1 + . . . 
(b) 9 6– 4 8

3---–
16
9------ …–+ +

E 8.22XAMPLE
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a 16 r, 1
2---= = S∞⇒ a

1 r–-----------
16
1 1
2---–

------------ 32= = =

9 6– 4 8
3---–
16
9------ –+ +

a 9 r, 2
3---–= = S∞⇒ a

1 r–-----------
9

1 2
3---–  –

-------------------- 5.4= = =

Use an infinite series to express the recurring decimal 0. 6  as a
rational number.

4̇ 2̇E 8.23XAMPLE
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 can be expressed as the series: 0.462 + 0.000462 + 0.000000462 + . . .
or

This is a geometric series with 

 It follows that 

The ball bounces in a vertical line and does not move
sideways. On each bounce after the drop, the ball moves both
up and down and so travels twice the distance of the height of
the bounce.
Distance 

All but the first term of this series are geometric 

Distance   = 

1. Evaluate:
(i) (ii)
(iii) (iv)

2. Use geometric series to express the recurring decimal  as a mixed number.

3. Biologists estimate that there are 1000 trout in a lake. If none are caught, the population
will increase at 10% per year. If more than 10% are caught, the population will fall. As an
approximation, assume that if 25% of the fish are caught per year, the population will fall
by 15% per year. Estimate the total catch before the lake is ‘fished out’. If the catch rate is
reduced to 15%, what is the total catch in this case? Comment on these results.

S
o
l
u
t
i
o
n

0.462..
462
1000------------ 462

1000000--------------------- 462
1000000000------------------------------ …+ + +

a 462
1000------------= r, 1

1000------------=

S∞ a
1 r–-----------

462
1000------------

1 1
1000------------–

---------------------
462
1000------------
999
1000------------
------------ 462

999---------= = = =

A ball is dropped from a height of 10 metres. On each bounce the ball 
bounces to three quartes of the height of the previous bounce. Find the distance travelled by the 
ball before it comes to rest (if it does not move sideways).

E 8.24XAMPLE

S
o
l
u
t
i
o
n

10m
7.5m

10 15 15 3
4---× 15 3

4---   2× …+ + + +=

a 15 r, 3
4---= =

10 S∞+= 10 15
1 3
4---–

------------+= 70m

EXERCISES 8.2.4

27 9 3 1
3--- …+ + + + 1 3

10------
9
100---------

27
1000------------– …+ +–

500 450 405 364.5 …+ + + + 3 0.3– 0.03 0.003– 0.0003 …–+ +

23.232323…
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4. Find the sum to infinity of the sequence 45, –30, 20, . . . 
5. The second term of a geometric sequence is 12 while the sum to infinity is 64. Find the

first three terms of this sequence.
6. Express the following as rational numbers

(a) . (b) . (c) .

7. A swinging pendulum covers 32 centimetres in its first swing, 24 cm on its second swing,
18 cm on its third swing and so on. What is the total distance this pendulum swings before
coming to rest?

8. The sum to infinity of a geometric sequence is  while the sum of the first three terms is
13. Find the sum of the first 5 terms.

9. Find the sum to infinity of the sequence 

10. (a) Find i. , . ii. , .

(b) i. Hence, show that , 

ii. Using the above result, show that .

11. (a) Find i. , . ii. , .

(b) i. Hence, show that , 

ii. Using the above result, show that .

   – MISCELLANEOUS QUESTIONS

1. 2k + 2, 5k + 1 and 10k + 2 are three successive terms of a geometric sequence. Find the
 value(s) of k.

2. Evaluate 

3. Find a number which, when added to each of 2, 6 and 13 gives three numbers in
 geometric sequence.

0 3 6̇ 0 3̇ 7̇ 2 1 2̇

27
2------

1 3 1 1
3 1+---------------- …, , ,+

t–( )i
i 0=

n
∑ t 1< t–( )i

i 0=

∞
∑ t 1<

1 x+( )ln x 12---x2– 1
3---x3

1
4---x4– …+ += x 1<

2ln 1 1
2---–
1
3---
1
4---– …+ +=

t2–( )i
i 0=

n
∑ t 1< t2–( )i

i 0=

∞
∑ t 1<

arctanx x 13---x3– 1
5---x5

1
7---x7– …+ += x 1<

π
4--- 1 1

3---–
1
5---
1
7---– …+ +=

EXERCISES 8.2.5

1 2 3 … 10+ + + +
1 1
2---
1
4--- … 1

512---------+ + + +
--------------------------------------------------
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4. Find the fractional equivalent of
(a) (b) (c)

5. Find the sum of all intergers between 200 and 400 that are divisible by 6.
6. Find the sum of the first 50 terms of an arithmetic progression given that the 15th term is
 34 and the sum of the first 8 terms is 20.
7. Find the value of p so that p + 5, 4p + 3 and 8p – 2 will form successive terms of an

arithmetic progression.

8. For the series defined by , find  and hence show that the sequence is
arithmetic.

9. How many terms of the series  must be taken to give a sum of 11 ?

10. If , find the value of x.

11. Logs of wood are stacked in a pile so that there are 15 logs on the top row, 16 on the next
 row, 17 on the next and so on. If there are 246 logs in total,

(a) how many rows are there?
(b) how many logs are there in the bottom row?

12. The lengths of the sides of a right angled triangle form the terms of an arithmetic
 sequence. If the hypotenuse is 15 cm in length, what is the length of the other two sides?
13. The sum of the first 8 terms of a geometric series is 17 times the sum of its first four terms.
 Find the common ratio.
14. Three numbers a, b and c whose sum is 15 are successive terms of a G.P, and b, a, c are

successive terms of an A.P.  Find a, b and c.

15. The sum of the first n terms of an arithmetic series is given by .
(a) Calculate .
(b) Find the first three terms of this series.
(c) Find an expression for the nth term.

16. An ant walks along a straight path. After travelling 1 metre it stops, turns through an angle
of 90˚ in an anticlockwise direction and sets off in a straight line covering a distance of
half a metre. Again, the ant turns through an angle of 90˚ in an anticlockwise direction and
sets off in a straight line covering a quarter of a metre. The ant continues in this manner
indefinitely.
(a) How many turns will the ant have made after covering a distance of  metres?
(b) How far will the ant ‘eventually’ travel?

2.38̇ 4.6̇2̇ 0.41717…

Sn 3n2 11n–= tn

6 3 3
2--- …+ + + 13

16------

1 2x 4x2 …+ + + 3
4---=

Sn n 3n 1+( )
2-----------------------=

S1  and  S2

63
32------
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8.3.1 COMPOUND INTEREST

We have already come across some practical examples of the use of G.Ps in the area of finance. In 
this section we further develop these ideas and look at the area of compound interest and 
superannuation.

Thus, after 20 years the $600 amounts to $2796.57.

Looking closely at the terms of the sequence, they form a G.P:
 

where a = 600 and r = 1.08.

Developing a formula for compound interest

In general, if $P is invested at r% p.a. compound interest, it grows according to the sequence

End of year 1 value = $600 + 8% × $600
= $600(1.08)

End of year 2 value = $600(1.08) + 8% × $600(1.08)
= $600(1.08) + 0.08  × $600(1.08)
= $600(1.08)[1 + 0.08]
= $600(1.08)2 

End of year 3 value = $600(1.08)2 + 8% × $600(1.08)2 

= $600(1.08)2 + 0.08 × $600(1.08)2
= $600(1.08)2[1 + 0.08]
= $600(1.08)3 

          
End of year 20 value = $ 600(1.08)20 

COMPOUND INTEREST AND 
SUPERANNUATION

8.3

Find what $600 amounts to in 20 years if it is invested at 8% p.a. 
compounding annually.

E 8.25XAMPLE

S
o
l
u
t
i
o
n

600 1.08( ) 600 1.08( )2 600 1.08( )3 … 600 1.08( )20, ,,,

P 1 r
100---------+   P 1 r

100---------+   2 P 1 r
100---------+   3 … P 1 r

100---------+   n, ,,,
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where a =  and r =  so that

8.3.2 SUPERANNUATION

the 1st $1000 will be invested for 20 years at 12% p.a.
the 2nd $1000 will be invested for 19 years at 12% p.a.
the 3rd $1000 will be invested for 18 years at 12% p.a.

:
:

the 20th $1000 will be invested for 1 year at 12% p.a.
Finding the amount compounded annually using , we have:

        :
        :

To find the total of her investment after 20 years, we need to add the separate amounts:

= $80, 698.74
Thus her total investment amounts to $80,698.74

P 1 r
100---------+   1 r

100---------+  

 where  is the amount after n time periods.An P 1 r
100---------+   n= An

A woman invests $1000 at the beginning of each year in a superannuation 
scheme. If the interest is paid at the rate of 12% p.a. on the investment (compounding annually), 
how much will her investment be worth after 20 years?

E 8.26XAMPLE

S
o
l
u
t
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t1 =
t2 =
t3 =

t20 =
A P 1 r

100---------+   n=

t1 1000 1 12
1000------------+   20= 1000 1.12( )20=

t2 1000 1 12
1000------------+   19= 1000 1.12( )19=

t3 1000 1 12
1000------------+   18= 1000 1.12( )18=

t20 1000 1 12
1000------------+   1= 1000 1.12( )1=

Total 1000 1.12( )20 1000 1.12( )19 1000 1.12( )18 … 1000 1.12( )1+ + + +=
1000 1.12( )20 1.12( )19 1.12( )18 … 1.12( )1+ + + +[ ]=
1000 1.12 1 1.12( )20–( )

1 1.12–--------------------------------------------                   Using  Sn a 1 rn–( )
1 r–----------------------= =
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Amount borrowed = $ 2000, r = 1% per month = 0.01 and n = 4 × 12 = 48 months
Let the monthly instalment be = $ M and the amount owing after n months = $
Our aim is to find $M i.e., the amount of each instalment.
After 1 month (after paying the 1st instalment), we have:

                               
After 2 months

                    

After 3 months

                    

After 4 months

                    

: :
: :

After n months, we then have 

thus, .
Now, the loan is repaid after 48 months, meaning that , therefore, solving for M  we 
have

The denominator is a G.P with a = 1, r = 1.01 and n = 48, so that 

Therefore,            
That is, each instalment must be $52.67.

Linda borrows $2000 at 1% per month reducible interest. If she repays the 
loan in equal monthly instalments over 4 years, how much is each instalment?

E 8.27XAMPLE
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An

A1 2000  interest M–+ 2000 2000 0.01 M–×+= =
2000 1.01( ) M–=

A2 A1 1.01 M–× 2000 1.01( ) M–[ ] 1.01 M–×= =
2000 1.01( )2 1.01 M M–×–=
2000 1.01( )2 M 1.01 1+( )–=

A3 A2 1.01 M–× 2000 1.01( )2 M 1.01 1+( )–[ ] 1.01 M–×= =
2000 1.01( )3 M 1.01 1+( ) 1.01 M–×–=
2000 1.01( )3 M 1.012 1.01 1+ +[ ]–=

A4 A3 1.01 M–× 2000 1.01( )3 M 1.012 1.01 1+ +( )–[ ] 1.01 M–×= =
2000 1.01( )4 M 1.013 1.012 1.01+ +( )– M–=
2000 1.01( )4 M 1.013 1.012 1.01 1+ + +[ ]–=

An 2000 1.01( )n M 1 1.01 1.012 1.013 … 1.01n 1–+ + + + +[ ]–=
A48 2000 1.01( )48 M 1 1.01 1.012 1.013 … 1.0147+ + + + +[ ]–=

A48 0=

0 2000 1.01( )48 M 1 1.01 1.012 1.013 … 1.0147+ + + + +[ ]–=
2000⇔ 1.01( )48 M 1 1.01 1.012 1.013 … 1.0147+ + + + +[ ]=

M⇔ 2000 1.01( )48
1 1.01 1.012 1.013 … 1.0147+ + + + +[ ]-------------------------------------------------------------------------------------------------=

1 1.01 1.012 1.013 … 1.0147+ + + + +[ ] S48 1 1 1.0148–( )
1 1.01–-------------------------------- 61.22261= = =

M 2000 1.01( )48
61.22261-------------------------------- 52.67= =
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The total paid = 52.67 × 48 = 2528.16 so that the interest paid = 2528.16 – 2000 = 528.16
That is, she ends up paying $ 528.16 in interest.

Although it is important that you understand the process used in the examples shown, it is also 
important that you can make use of technology. We now look at how the TI–83 can help us ease 
the pain of long calculations.
The TI–83 has a number of financial functions which enable 
computational ease. In particular, it has a TVM Solver. The TVM 
Solver displays the time-value-of-money (TVM) variables. In short, 
given four variable values, the TVM Solver solves for the fifth 
variable. To access the finance screen simply press

  [FINANCE] 

Then, it is a matter of entering the 4 known pieces of information and 
then letting the TVM Solver do the rest.
Note: When using the TI–83 financial functions, you must enter
 cash inflows (cash received) as positive numbers and cash

outflows (cash paid) as negative numbers.
Once you have entered your data, there are two ways in which you can then obtain the value of 
the unknown variable.
Method 1: Place the cursor (using the arrow keys) on the TVM variable for which you
 want to solve. Press  [SOLVE]. The answer is computed, displayed
 in the TVM Solver screen and stored to the appropriate TVM variable.
Method 2: You need to leave this window by pressing   , and return again
 to the finance menu, by pressing  [FINANCE]. Select the variable you
 wish to solve for and then press .

We now illustrate this process using the previous example. In this example we have the known 
quantities: Linda borrowed $2000, 

I% = 1 and N (= 4 × 12) = 48
FV = 0 (i.e., loan is fully repaid)
PMT = ? (the monthly repayment required)

That is, once we have entered the information, we then make use of method 1 while at the TVM 
Solver screen:

Notice that in the second screen there is a square next to the PMT variable. This is to indicate 
which variable has just been calculated.

 2nd  ENTER 

 ALPHA 

 2nd  QUIT 
 2nd 
 ENTER 

PV∴ 2000–=
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1. To how much will $1000 grow to if it is invested at 12% p.a. for 9 years, compounding
annually?

2. A bank advertises an annual interest rate of 13.5% p.a. but adds interest to the account
monthly, giving a monthly interest rate of 1.125%. Scott deposits $3500 with the bank.
How much will he withdraw in 20 months time?

3. To what amount will $900 grow to if it is invested at 10% p.a. for 7 years, compounding
every 6 months?

4. A man borrows $5000 at 18% p.a. over a period of 5 years, with the interest compounding
every month. Find to the nearest dollar the amount owing after 5 years.

5. Find the total amount required to pay off a loan of $20,000 plus interest at the end of 5
years if the interest is compounded half yearly and the rate is 12%.

6. A man invests $500 at the beginning of each year in a superannuation fund. If the
 interest is paid at the rate of 12% p.a. on the investment (compounding annually), how

much will his investment be worth after 20 years?
7. A woman invests $2000 at the beginning of each year into a superannuation fund for a
 period of 15 years at a rate of 9% p.a. (compounding annually). Find how much her
 investment is worth at the end of the 15 years.
8. A man deposits $3 000 annually to accumulate at 9% p.a. compound interest. How much
 will he have to his credit at the end of 25 years? Compare this to depositing $750 every

three months for the same length of time and at the same rate. Which of these two options
gives the better return?

9. A woman invests $200 at the beginning of each month into a superannuation scheme for a
period of 15 years. Interest is paid at the rate of 7% p.a. and is compounded monthly. How
much will her investment be worth at the end of the 15 year period?

10.    Peter borrows $5000 at 1.5% per month reducible interest. If he repays the loan in equal
 monthly instalments over 8 years, how much is each instalment, and what is the total

interest charged on the loan? Compare this to taking the same loan, but at a rate of 15%
p.a. flat rate.

11.    Kevin borrows $7500 to be paid back at 12.5% p.a. monthly reducible over a period of 7
years. What is the amount of each monthly instalment and what is the total interest
charged on the loan. Find the equivalent flat rate of interest.

EXERCISES 8.3
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9.1.1 REVIEW OF TRIGONOMETRIC FUNCTIONS FOR 
        RIGHT-ANGLED TRIANGLES

The trigonometric functions are defined as ratio functions in a right-angled triangle. As such 
they are often referred to as the trigonometric ratios.
The trigonometric ratios are based on the right-angled triangle 
shown alongside. Such right-angled triangles are defined in 
reference to a nominated angle. In the right-angled triangle 
ABC the longest side [AB] (opposite the right-angle) is the 
hypotenuse. Relative to the angle  of size , the side 
BC is called the opposite side while the side AC is called the 
adjacent side. 
The trigonometric ratios are defined as

Note then, that .

There also exists another important relation between the side lengths of a right-angled triangle. 
This relationship, using Pythagoras’s Theorem is 

Do not forget to adjust the mode of your calculator to degree mode when necessary. On the TI–
83, this is done by pressing MODE and then selecting the Degree mode. As angles can be quoted 
in degrees ‘ ’, minutes ‘ ’ and seconds ‘ ’  we make use of the DMS option under the ANGLE 
menu (accessed by pressing 2nd APPS) to convert an angle quoted as a decimal into one quoted 
in degrees, minutes and seconds.

9.1.2 EXACT VALUES

There are a number of special right-angled triangles for which exact values of the trigonometric 
ratios exist. Two such triangles are shown below:

From these triangles we can tabulate the trigonometric ratios as follows:

TRIGONOMETRIC RATIOS9.1

C
H

A
P

T
E
R

 9

A                                            C

B

θ°
a

b

c
BAC∠ θ°

, ,  θ°sin opposite
hypotenuse--------------------------- a

c--- = =  θcos ° adjacent
hypotenuse--------------------------- b

c--- = =  θtan ° opposite
adjacent-------------------- a

b--- = =

θ°tan θ°sin
θ°cos-------------- θ 0≠cos,=

  a2 b2+ c2=

° ′ ″

45°

45°
1

1

2

30°

60°
1

2

3
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(a) We label the sides relative to the given angle:
As the sides involved are the adjacent (adj) and the hypotenuse (hyp). The 
appropriate ratio is the cosine ratio, i.e., . Then, substituting
the information into the expression we can solve for x:

 
 (to 4 d.p)

A quick word about using the TI–83. Below we show that depending on the mode setting we 
obtain different values. In particular, note that in Case B, even though the mode setting was in 
radians, we were able to over ride this by using the degree measure, ‘˚’, under the ANGLE menu. 

Case A: Case B: Case C:

(b) We label the sides relative to the given angle.
The sides involved are the adjacent (adj) and the opposite (opp) the 
appropriate ratio is the tangent ratio, i.e., . Then,
substituting the information into the expression we can solve for x:

           (to 4 d.p) 
(c) We label the sides relative to the given angle.

The sides involved are the opposite (opp) and the hypotenuse (hyp).
The appropriate ratio is the sine ratio, i.e., . Then,
substituting the information into the expression we can solve for x:

1

θ θ°sin θ°cos θ°tan

30 1
2---

3
2-------

1
3-------

45 1
2-------

1
2-------

60 3
2-------

1
2--- 3

Find x in each of the following triangles (correct to 4 d.p)
(a) (b) (c)

40˚
3.5 cm

x cm
60˚8.2 cm x cm 20˚x cm

10 cm
E 9.1XAMPLE

S
o
l
u
t
i
o
n

40˚
3.5 cm

x cmadj

hyp

θcos adj
hyp---------=

40°cos x
3.5------- 3.5 40°cos×⇔ x= =

 x∴ 2.6812=

60˚
8.2 cm x cm

opp adjθtan opp
adj---------=

60°tan 8.2
x------- x 60°tan⇔ 8.2 x⇔ 8.2

60°tan-----------------= = =
 x∴ 4.7343=

20˚x cm
10 cm

opp

hyp

θsin opp
hyp---------=
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       (to 4 d.p) 

(a) The important sides are the opposite and hypotenuse. So,

   

The TI–82/83 calculators accept angle inputs using the 2nd ANGLE menu. Option 1 allows 
entry of angles in degrees irrespective of the MODE setting of the calculator. Option 2 allows the 
entry of degrees, minutes, seconds.
The problem would be solved using the keying sequence 

16.3÷ 39 2nd ANGLE 1 17 2nd ANGLE 2 ENTER.

(b) When using a calculator to find an angle, option 4 of the 2nd ANGLE menu will allow
you to display an answer in degree, minute, second format. 

Any of the three trigonometric ratios will do, but when finding angles, 
it is generally best to use the cosine ratio. The reason for this should 
become apparent as this chapter progresses. 

 
rounded to the nearest second.

20°sin x
10------ 10 20°sin×⇔ x= =

 x∴ 3.4202=

Find x and  in the following triangles
(a) (b)

θ

39˚17´

y

16.3cm 3

4

5
θ

E 9.2XAMPLE

S
o
l
u
t
i
o
n

39˚17´

y

16.3 cm
39°17′sin 16.3

y---------- y 39°17′sin× 16.3=⇔=

y⇔ 16.3
39°17′sin------------------------=

y∴ 25.7 cm=

sin

θcos 4
5---= θ cos 1– 4

5---    θ∴ 36°52′12″≈=⇒

Using the triangle shown, find
(a) i. AB

ii.
iii.

(b) If  find .

αcos
αtan

αcos 0.2= 90° α–( )sin

b a

A B

C

α

E 9.3XAMPLE
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(a) Using Pythagoras’s Theorem we have 
         

(b)

(c)

(d) , but .
      i.e., 

Often we are dealing with non right-angled triangles. However, these can be ‘broken up’ into at 
least two right-angled triangles, which then involves solving simultaneous equations. This is 
illustrated in the next example.

We start by ‘breaking-up’ the triangle into two right-angled triangles as follows:
Using :

 – (1) 
We now need to determine x and y.
Using :

   – (2) 
and

   – (3) 
Therefore, substituting (3) and (2) into (1) we have:

          = 0.5209

  

Note that we have not rounded down our answer until the very last step.

S
o
l
u
t
i
o
n

AC2 AB2 BC2  b2∴+ AB2 a2+= =
AB2⇔ b2 a2–=
AB⇒ b2 a2–=

αcos AB
AC--------

b2 a2–
b---------------------= =

αtan CB
AB--------

a
b2 a2–

---------------------= =

90° α–( )sin AB
AC--------= αcos AB

AC--------  90° α–( )sin∴ αcos= =
90° α–( )sin 0.2=

Find the angle  in the diagram shown.
Note that .

θ
ACB 90°≠∠

A                                                            B

C

40˚θ
20 cm

10 cm
E 9.4XAMPLE

S
o
l
u
t
i
o
n

A                                                            B

C

40˚θ P
x20 – x

10y
∆ACP
θtan PC

AP--------
y

20 x–--------------= =

∆BPC
40°sin PC

BC--------
y
10------= =

y⇔ 10 40°sin=
40°cos BP

BC--------
x
10------= =

x⇔ 10 40°cos=

θtan 10 40°sin
20 10 40°cos–------------------------------------=

θ∴ tan 1– 0.5209( )=
27.5157=
27°31′=
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1. The parts of this question refer to the triangle shown. Complete the
blank spaces in this table, giving lengths correct to three significant
figures and angles correct to the nearest degree. 

a cm b cm c cm A B C
1. 1.6 90˚ 23˚
2. 98.3 90˚ 34˚
3. 33.9 90˚ 46˚
4. 30.7 90˚ 87˚
5. 2.3 90˚ 33˚
6. 77 90˚ 51˚
7. 44.4 68.4 90˚ 57˚
8. 12.7 13˚ 90˚
9. 94.4 52˚ 90˚
a cm b cm c cm A B C

10. 71.8 64.6 48˚ 90˚
11. 34.1 43˚ 90˚
12. 2.3 87˚ 90˚
13. 71.5 63˚ 90˚
14. 33.5 6.5 90˚
15. 6.1 7.2 90˚
16. 30 7.3 90˚
17. 29.0 2.0 90˚
18. 34.5 88.2 90˚
19. 24.0 29.7 90˚
20. 46.2 90˚ 27˚
21. 59.6 41.8 90˚ 35˚
22. 6.8 90˚ 37˚
23. 14.9 41˚ 90˚ 49˚
24. 16.1 41˚ 90˚ 49˚
25. 33.3 68˚ 90˚ 22˚
2. Find the exact value of x in each of the following

EXERCISES 9.1

A B

C
ab

c

x

60˚ 60˚2

30˚
x

(a) (b) (c)

105˚
45˚

x

10

(d) (e) (f)

30˚ 30˚
8 3

x
45˚

60˚
4

x 45˚

2

60˚

x 1215

x 10
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3. Using the triangle on the right, show that
(a)
(b)
(c)

4. Find the exact value of x in each of the following.

5. Show that 

Applications that require the use of trigonometric ratios and right-angled triangles are many and 
varied. In this section we consider a number of standard applications to highlight this.

9.2.1 ANGLE OF ELEVATION AND DEPRESSION

Note that the angle of depression and elevation for the same line of sight are alternate angles.

c a

b
θ

90° θ–( )sin θcos=
90° θ–( )cos θsin=
90° θ–( )tan 1

θtan-----------=

50
30˚           45˚

x
30˚

30˚

x

20

(a) (b)

θα

β

Y

X

Z

O

x

OZ x θ α α βtancos+sin( )tan
θ βtan–tan--------------------------------------------------------------=

APPLICATIONS9.2

The angle of elevation is the angle of the line of sight above 
the horizontal of an object seen above the horizontal θ

Horizontal

Line of sight

The angle of depression is the angle of the line of sight 
below the horizontal of an object seen below the horizontal θ

Horizontal

Line of sight

Object

Object

An observer standing on the edge of a cliff 82 m above sea level sees a ship 
at an angle of depression of 26˚. How far from the base of the cliff is the ship situated?

E 9.5XAMPLE
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We first draw a diagram to represent this situation:
Let the ship be at point S, x metres from the base 
of the cliff, B, and let O be where the observer is
standing.
Using the right-angled triangle OBS we have:

         

Therefore, the ship is 168 m from the base of the cliff.

Let the height of building B be x m and that of
building A be y m.

Note that we are using the fact that for the same line of sight, 
the angle of depression and elevation is equal.

The height difference between the two buildings must
then be (y – x) m.

We now have two right-angled triangles to work with:

Substituting (2) into (1) we have:

That is, building B is 57.77 m

26˚
26˚

x m
82 m

B

O

S

S
o
l
u
t
i
o
n

26°tan 82
x------ x 26°tan⇔ 82= =

x⇔ 82
26°tan-----------------=

168.1249…=

The angle of depression from the roof of building A to the foot of a second 
building, B, across the same street and 40 metres away is 65˚. The angle of elevation of the roof 
of building B to the roof of building A is 35˚. How tall is building B?

E 9.6XAMPLE

B
A

40
65˚

35˚

x

y – x
y

S
o
l
u
t
i
o
n

B
A

40

65˚

y

B
A

40

35˚
y – x

35˚ 65˚

35°tan y x–
40-----------=

y x–⇔ 40 35°tan=
65°tan y

40------=
y⇔ 40 65°tan=– (1) – (2)

40 65°tan x– 40 35°tan=
x⇔ 40 65° 40 35°tan–tan=
x∴ 57.7719…=
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9.2.2 BEARINGS

In the sport of orienteering, participants need to be skilled in handling bearings and reading a 
compass. Bearings can be quoted by making reference to the North, South, East and West 
directions or using true bearings. We look at each of these.

Compass bearings
These are quoted in terms of an angle measured East, West, North or South, or somewhere 

in between. For example, North 30˚ East, expressed as N30˚E, informs us that from the North 
direction we rotate 30˚ towards the East and then follow that line of direction. The following 
diagrams display this for a number of bearings.

True bearings
These are quoted in terms of an angle measured in a clockwise direction from North (and 

sometimes a capital T is attached to the angle to highlight this fact). So, for example, a bearing of 
030˚T would represent a bearing of 30˚ in a clockwise direction from the North – this 
corresponds to a compass bearing of N30˚E. Using the above compass bearings we quote the 
equivalent true bearings:

First step is to draw a diagram.
As  we can make use of Pythagoras’s
Theorem:   

 [taking +ve square root] 
Let  so that . 

        
Therefore, bearing is 
That is, B has a bearing of 98.97˚T from O and is (approx) 13.6 km away.

N
30˚

E

N

60˚ E
North 30˚ East
(or N30˚E)

S(or E60˚N)

South 30˚ East
(or S30˚E)
(or E60˚S)

N
40˚

EW
North 40˚W
(or N40˚W)
(or W50˚N)

N
30˚

E

N

60˚ E
030˚T

S

150˚T N
40˚

EW
320˚T

Janette walks for 8 km North-East and then 11 km South-East. Find the 
distance and bearing from her starting point.

E 9.7XAMPLE

S
o
l
u
t
i
o
n O

45˚
45˚ θ

A
45˚45˚

B

11 km

x km

8 km

OAB∠ 90°=
x2 82 112+=
x∴ 13.60=

θ AOB∠= θtan 11
8------= θ∴ tan 1– 11

8------  =
53.97°=

45° θ+ 45° 53.97°+ 98.97°= =
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As always, we start with a diagram.
Using  we have, 

 – (1)
Using  we have, 

 – (2) 
Equating (1) and (2) we have,  

Substituting this result into (2) we have,
   

           
Then, using  and Pythagoras’s Theorem, we have

That is, the light is 4.5 km from the ship (at the second sighting).
Can you see a much quicker solution? Hint – think isosceles triangle.

1. (a) Change the following compass bearings into true bearings
i. N30˚E ii. N30˚W iii. S15˚W iv. W70˚S

(b) Change the following true bearings into compass bearings
i. 025˚T ii. 180˚T iii. 220˚T iv. 350˚T

2. The angle of depression from the top of a building 60 m high to a swing in the local
playground is 58˚. How far is the swing from the foot of the building?

3. From a point A on the ground, the angle of elevation to the top of a tree is 52˚. If the tree is
14.8 m away from point A, find the height of the tree.

The lookout, on a ship sailing due East, observes a light on a bearing of 
056˚T. After the ship has travelled 4.5 km, the lookout now observes the light to be on a bearing 
of 022˚T. How far is the light source from the ship at its second sighting?

E 9.8XAMPLE

S
o
l
u
t
i
o
n

N
56˚

68˚
4.5O                                    A            B

C

b a

c

OBC∆ 34°tan BC
OB--------

a
4.5 c+----------------= =

a∴ 4.5 c+( ) 34°tan=
ABC∆ 68°tan BC

AB--------
a
c---= =

a∴ c 68°tan=
c 68°tan 4.5 c+( ) 34°tan=
c 68°tan 4.5 34° c 34°tan+tan=

c 68° 34°tan–tan( )⇔ 4.5 34°tan=
c⇔ 4.5 34°tan

68° 34°tan–tan( )--------------------------------------------=
c∴ 1.6857=

a 4.5 34°tan
68° 34°tan–tan( )-------------------------------------------- 68°tan×=

a∴ 4.1723=
ABC∆

b2 a2 c2+=
4.17232 1.68572+=

b∴ 20.2496=
4.4999=

EXERCISES 9.2
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4. Find the angle of elevation from a bench to the top of an 80 m high building if the bench is
105 m from the foot of the building.

5. Patrick runs in a direction N60˚E and after 45 minutes finds himself 3900 m North of his
starting point. What is Patrick’s average speed in ms–1.

6. A ship leaves Oldport and heads NW. After covering a distance of 16 km it heads in a
direction of N68˚22'W travelling a distance of 22 km where it drops anchor. Find the
ship’s distance and bearing from Oldport after dropping anchor.

7. From two positions 400 m apart on a straight road, running in a northerly direction, the
bearings of a tree are N36˚40'E and E33˚22'S. What is the shortest distance from the tree
to the road?

8. A lamp post leaning away from the sun and at 6˚ from the vertical, casts a shadow 12 m
long when the sun’s angle of elevation is 44˚. Assuming that the level of the ground where
the pole is situated is horizontal, find its length.

9. From a window, 29.6 m above the ground, the angle of elevation of the top of a building is
42˚, while the angle of depression to the foot of the building is 32˚. Find the height of the
building.

10. Two towns P and Q are 50 km apart, with P due west of Q. The bearing of a station from
town P is 040˚T while the bearing of the station from town Q is 300˚T. How far is the
station from town P?

11. When the sun is 74˚ above the horizon, a vertical flagpole casts a shadow 8.5 m onto a
horizontal ground. Find the shadow cast by the sun when it falls to 62˚ above the
horizontal.

12. A hiker walks for 5km on a bearing of 053˚ true (North 53˚ East). She then turns and
walks for another 3km on a bearing of 107˚ true (East 17˚ South).
(a) Find the distance that the hiker travels North/South and the distance that she travels

East/West on the first part of her hike.
(b) Find the distance that the hiker travels North/South and the distance that she travels

East/West on the second part of her hike.
(c) Hence find the total distance that the hiker travels North/South and the distance that

she travels East/West on her hike.
(d) If the hiker intends to return directly to the point at which she started her hike, on

what bearing should she walk and how far will she have to walk?
13. A surveying team are trying to find the height of a hill. They take a ‘sight’ on the top of the

hill and find that the angle of elevation is 23˚27´. They move a distance of 250 metres on
level ground directly away from the hill
and take a second ‘sight’. From this point,
the angle of elevation is 19˚46´. 
Find the height of the hill, correct 
to the nearest metre.

250m
19˚46´ 23˚27´
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When dealing with problems in three dimensions, we draw the figures in perspective, so that a 
model can be more accurately visualised. This does not mean that you must be an artist, simply 
that you take a little time (and a lot of practice) when drawing such diagrams. The key to many 3–
D problems is locating the relevant right–angled triangles within the diagram. Once this is done, 
all of the trigonometric work that has been covered in the previous two sections can be applied. 
As such, we will not be learning new theory, but rather developing new drawing and modelling 
skills. Some typical examples of solids that may be encountered are:

      Cuboid ABCD, EFGH             Right Pyramid V, ABCD             Wedge ABC, DEF
We look at two basic concepts and drawing techniques to help us.
1. A line and a plane:

A line will always cut a plane at some point (unless the line 
is parallel to the plane). To find the angle between a line and 
a plane construct a perpendicular from the line to the plane 
and complete a right–angled triangle. In our diagram, we 
have that the segment  is projected onto the plane. A 
perpendicular,  is drawn, so that a right–angled 
triangle, ABC is completed. The angle that the line then 
makes with the plane is given by  (which can be found by using the trig–ratios).

2. A plane and a plane:

To find the angle between two planes ABCD and ABEF 
(assuming that they intersect), take any point P on the 
intersecting segment  and draw  and  on 
each plane in such a way that they are perpendicular to 

. Then, the angle between  and   ( ) is 
the angle between the two planes.

RIGHT ANGLES IN 3–DIMENSIONS9.3

A B
CD

E F GH V

A B

CD

A

B

C

D

E

F

A

B

CθAB[ ]
BC[ ]

θ

A B

C

θ
D

P

Q

RF                                      E

AB[ ] PQ[ ] PR[ ]

AB[ ] PQ[ ] PR[ ] θ

A cube ABCD, EFGH has a side length measuring 6 cm. 
(a) Find the length of the segment .
(b) The length of the diagonal .
(c) The angle that the diagonal  makes with the base.

AC[ ]
AG[ ]
AG[ ]

E 9.9XAMPLE
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First we need to draw a cube:
(a) Now the base of the cube is a square, so that ,

i.e., we have a right–angled triangle, so we can use
Pythagoras’s Theorem:   

(b) This time we have that , therefore, 

(c) Using triangle ACG, 

      

We start by illustrating this information on a 3–D diagram (Note that North–South and
West–East are drawn on a plane. It is necessary to do this otherwise the diagram will not
make sense).
Let the cliff be h metres high. The distance
from X to the base of the cliff be x metres
and the distance from Y to the base of the
cliff be y metres.

As , then 

But, , of which we know neither h or y. 

However, using triangle XOV, we have that .

A B

CD

E F
GH

6
6

A B

CD

E F
GH

6
6

A B

CD

E F
GH

6
6θ

6

6

S
o
l
u
t
i
o
n

ABC∠ 90°=

AC2 AB2 BC2+=
62 62+=
72=

AC∴ 72 8.49≈=

ACG∠ 90°=
AG2 AC2 CG2+=

72( )2 62+=
108=

AC∴ 108 10.39≈=

θtan CG
AC-------- θtan∴ 6

72----------= =

θ tan 1– 6
72----------  =

35.26°=
35°16′=

From a point X, 200 m due South of a cliff, the angle of elevation of the top 
of the cliff is 30˚. From a point Y, due East of the cliff, the angle of elevation of the top of the cliff 
is 20˚. How far apart are the points X and Y?

E 9.10XAMPLE

S
o
l
u
t
i
o
n

h

y
x= 200

Y

X

O

V
North

EastCliff

30˚
20˚

XOY∠ 90°= XY 2 x2 y2+=
2002 y2+=

20°tan h
y---=

30°tan h
200--------- h⇒ 200 30°tan×= =
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Therefore, we have that 
That is,      
Therefore, 

          = 140648.4289
  .

That is, X and Y are approximately 375 m apart.

1. For the diagram shown, determine the angle of inclination between the plane 
(a) ABCD and the base, EABH (Figure 1).
(b) ABC and the base EBFA (Figure 2).

2. A right pyramid with a rectangular base and a vertical
height of 60 cm is shown in the diagram alongside.
The points X and Y are the midpoints of the sides
[AB] and [BC] respectively
Find
(a) the length, AP.
(b) the length of the edge [AV].
(c) the angle that the edge AV makes with the

base ABCD.
(d) the length, .
(e) The angle that the plane BCV makes with the

base.

3. The diagram alongside shows a rectangular box with
side lengths AB = 8 cm, BC = 6 cm and CG = 4 cm.
Find the angle between
(a) the line [BH] and the plane ABCD.
(b) the lines [BH and [BA].
(c) the planes ADGF and ABCD.

20°tan 200 30°tan×
y-------------------------------- y⇔ 200 30°tan×

20°tan--------------------------------= =
y 317.25=

XY 2 x2 y2+ 2002 200 30°tan×
20°tan--------------------------------   2+= =

XY 375.0312=

EXERCISES 9.3

A

B

C

D

E

H

12 cm
10 cm

A

B

C

E

F

4 cm
4 cm

16 cm
6 cm 6 cm

Figure 1. Figure 2.

P

V

A B

CD

X

Y

20 cm

16 cmYV

A B
CD

E F GH

8 cm
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4. For the wedge shown alongside, given that the
angle between the lines EA and ED is 50˚find
(a) the length of [AE].
(b) the .

5. From a point A, 100 m due South of a tower, the angle of elevation of the top of the tower
is 40˚. From a point B, due East of the tower, the angle of elevation of the top of the tower
is 20˚. How far apart are the points A and B?

6. For the triangular prism shown alongside find
(a) the value of h 
(b) the value of 
(c) the angle that the plane ABV makes with the

base ABC.

7. The angle of depression from the top of a tower to a point X South of the tower, on the
ground and 120 m from the foot of the tower is 24˚. From point Y due West of X the angle
of elevation to the top of the tower is 19˚.
(a) Illustrate this information on a diagram.
(b) Find the height of the tower.
(c) How far is Y from the foot of the tower?
(d) How far apart are the points X and Y?

8. A mast is held in a vertical position by four ropes of length 60 metres. All four ropes are
attached at the same point at the top of the mast so that their other ends form the vertices
of a square when pegged into the (level) ground. Each piece of rope makes an angle of
54˚ with the ground.
(a) Illustrate this information on a diagram.
(b) How tall is the mast?

9. A symmetrical sloping roof has
dimensions as shown in the diagram.
Find
(a) the length of [FM].
(b) the angle between the plane

BCEF and the ground.
(c) the angle between the plane ABF

and the ground 
(d) the total surface area of the roof.

A

B

C

D

E

F20˚

500 cm

AEB∠

30˚
60˚45˚

h

α
A B

C

V

200

α

2c

2b
2a

h

A

B

C
D

F

E

M



Mensuration – CHAPTER 9

287

10. The angle of elevation of the top of a tower from a point A due South of it is 68˚. From a
point B, due East of A, the angle of elevation of the top is 54˚. If A is 50 m from B, find
the height of the tower.

11. A tower has been constructed on the bank of a long straight river. From a bench on the
opposite bank and 50 m downstream from the tower, the angle of elevation of the top of
the tower is 30˚. From a second bench on the same side of the tower and 100 m upstream
from the tower, the angle of elevation of the top of the tower is 20˚. Find
(a) the height of the tower.
(b) the width of the river.

12. A right pyramid of height 10 m stands on a square base of side lengths 5 m. Find
(a) the length of the slant edge.
(b) the angle betwen a sloping face and the base.
(c) the angle between two sloping faces.

13. A camera sits on a tripod with legs 1.5 m long. The feet rest on a horizontal flat surface
and form an equilateral triangle of side lengths 0.75 m. Find
(a) the height of the camera above the ground.
(b) the angles made by the legs with the ground.
(c) the angle between the sloping faces formed by the tripod legs.

14. From a point A due South of a mountain, the angle of elevation of the mountaintop is .
When viewed from a point B, x m due East of A, the angle of elevation of the mountaintop 
is . Show that  the height, h m, of the mountain is given by .

Given any triangle with sides a and b, and the included angle θ, the area, A, is given by

However,  and so, we have that 

where θ is the angle between sides a and b.
Note that the triangle need not be a right-angled triangle. 
Because of the standard labelling system for triangles, the term

 is often replaced by , given the expresion .

A similar argument can be used to generate the formulas: 

α

β h x α βsinsin
sin2α sin2β–

------------------------------------=

AREA OF A TRIANGLE9.4

θ

a

b

h

A

B

C

c

A 1
2---bh=

θsin h
a--- h⇔ a θsin×= =

   A 1
2---b a θsin××    =

θsin Csin Area 1
2---ab Csin=

Area 1
2---bc Asin 1

2---ac Bsin= =
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Based on the given information we can contruct the
following triangle:
Meaning that, the required area, A, is given by

                         = 28.9
That is, the area is 28.9 cm2.

Since all the measurements of the triangle are known, any one of the three formulas could
be used. Many people remember the formula as ‘Area equals half the product of the
lengths of two sides times the sine of the angle between them’.

1. Find the areas of these triangles that are labelled using standard notation. 
a cm b cm c cm A B C

(a) 35.94 128.46 149.70 12˚ 48˚ 120˚
(b) 35.21 54.55 81.12 20˚ 32˚ 128˚
(c) 46.35 170.71 186.68 14˚ 63˚ 103˚
(d) 33.91 159.53 163.10 12˚ 78˚ 90˚
(e) 42.98 25.07 48.61 62˚ 31˚ 87˚
(f) 39.88 24.69 34.01 84˚ 38˚ 58˚
(g) 43.30 30.26 64.94 34˚ 23˚ 123˚
(h) 12.44 2.33 13.12 68˚ 10˚ 102˚

Find the area of the triangle PQR given that PQ = 9 cm, QR = 10 cm and 
.PQR∠ 40°=

E 9.11XAMPLE

S
o
l
u
t
i
o
n

Q

P R

9 cm 10 cm
40˚

A 1
2---ab θsin 1

2--- 9 10 40°sin×××= =

The diagram shows a triangular children’s playground.
Find the area of the playground 29.2m

27.78m
46.68m

34˚110˚

36˚

E 9.12XAMPLE

S
o
l
u
t
i
o
n

Area 1
2--- 27.78 46.68 36°sin××× 381m2= =

Area 1
2--- 27.78 29.2 110°sin××× 381m2= =

Area 1
2--- 29.2 46.68 34°sin××× 381m2= =

EXERCISES 9.4
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a cm b cm c cm A B C
(i) 43.17 46.44 24.15 67˚ 82˚ 31˚
(j) 23.16 32.71 24.34 45˚ 87˚ 48˚
(k) 50.00 52.91 38.64 64˚ 72˚ 44˚
(l) 44.31 17.52 48.77 65˚ 21˚ 94˚
(m) 12.68 23.49 22.34 32˚ 79˚ 69˚
(n) 42.37 42.37 68.56 36˚ 36˚ 108˚
(o) 40.70 15.65 41.26 77˚ 22˚ 81˚

2. A car park is in the shape of a parallelogram. 
The lengths of the sides of the car park are given in
metres.
What is the area of the car park?

3. The diagram shows a circle of radius 10 cm. AB is a diameter
of the circle. AC = 6 cm.
Find the area of the shaded region, giving an exact answer.

4. The triangle shown has an area of 110 . Find x.

5. Find the area of the following
(a) (b) (c)

6. A napkin is in the shape of a quadrilateral with diagonals 9 cm and 12 cm long. The angle
between the diagonals is 75˚. What area does the napkin cover when laid out flat?

7. A triangle of area 50  has side lengths 10 cm and 22 cm. What is the magnitude of the
included angle?

8. A variable triangle OAB is formed by a straight line passing
through the point  on the Cartesian plane and cutting
the x–axis and y–axis at A and B respectively. 
If , find the area of  in terms of a, b and .

9. Find the area of  for the given diagram.

275m

320m

52˚

A

B

C

65˚
14 cm

x cm

cm2

7

5
68

12
50˚ 14

120˚ 35˚

cm2

P a b,( )

O A

B
y

xθ

P a b,( )

OAB∠ θ= OAB∆ θ

9 cm30˚

20 cmA B

C

D

ABC∆
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9.5.1 THE SINE RULE

Previous sections dealt with the trigonometry of right-angled triangles. The trigonometric ratios 
can be used to solve non right-angled triangles. There are two main methods for solving non 
right-angled triangles, the sine rule and the cosine rule (which we look at later in this chapter). 
Both are usually stated using a standard labelling of the triangle. This uses capital letters to label 
the vertices and the corresponding small letters to label the sides opposite these vertices.

Using this labelling of a triangle, the sine rule can be stated as: 

Note: the sine rule can only be used in a triangle in which an angle and the side opposite that 
angle are known.
So, why does this work?
Using the results of the last section and labelling a triangle 
in the standard manner we have:

, 

and 
However, each of these are equal, meaning that 

Similarly,

Combining these results we have that 

So, when should/can we make use of the sine rule?
Although the sine rule can be used for right-angled triangles, it is more often used for situations 
when we do not have a right-angled triangle, and when the given triangle has either of the 
following pieces of information:

NON RIGHT-ANGLED TRIANGLES9.5

A

B
Ca

bc
α

β γ

Asin αsin=
Bsin βsin=
Csin γsin=

a
Asin-----------

b
Bsin-----------

c
Csin------------= = or Asin

a-----------
Bsin

b-----------
Csin

c------------= =

A

B

C

ac

b
Area 1

2---bc Asin=

Area 1
2---ac Bsin=

Area 1
2---ab Csin=

1
2---ac Bsin 1

2---bc A Basin⇔sin b A a
Asin-----------⇔sin b

Bsin-----------= = =

1
2---ac Bsin 1

2---ab C c Bsin⇔sin b C c
Csin------------⇔sin b

Bsin-----------= = =

a
Asin-----------

b
Bsin-----------

c
Csin------------= =
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(a) Two angles and one side (b) Two sides and a non-included angle

(
(a) Firstly, label the triangle using the standard method of

lettering. ‘Solve the triangle’ means find all the angles and
the lengths of all the sides. Since two of the angles are
known, the third is; . 
The lengths of the remaining sides can be found using the
known pairing of side and angle, b and B.

   

That is, BC is 17.5 cm (correct to one d.p).
Similarly, the remaining side can be calculated:

       

That is, AB is 18.4 cm (correct to one d.p).

Either the length CB, AB or AC can be 
given and the triangle can be ‘solved’.
i.e., we can find the length of every side 
and every angle.
In this case, if we are give the length 
AB, we need , which can be 
found using 

ACB∠
ACB∠ 180° α– β–=

In this case, we first need to determine 
angle B using .
Once we have angle B, we can the find 
angle C and then the length AB.

αsin
a-----------

Bsin
b-----------=

A                                             B 

C

B                                            C

A

α

α

β

b

a

Solve the following triangles giving the lengths of the sides in centimetres, 
correct to one decimal place and angles correct to the nearest degree.
(a) (b)

83˚

47˚ 23.8 cm

92.4 cm
28.7 cm

42˚

E 9.13XAMPLE

83˚

47˚
23.8 cmA

B

C
a

b

c

S
o
l
u
t
i
o
n

C 180° 47°– 83°– 50°= =

a
Asin-----------

b
Bsin-----------

a
47°sin----------------

23.8
83°sin----------------=⇔=

a 23.8 47°sin×
83°sin---------------------------------=

17.5369…=

c
Csin------------

b
Bsin-----------

c
50°sin----------------

23.8
83°sin----------------=⇔=

c∴ 23.8 50°sin×
83°sin---------------------------------=

18.3687…=
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(b) This triangle is different from the previous example in
that only one angle is known. It remains the case that a
pair of angles and an opposite side are known and that the
sine rule can be used. The angle A must be found first.

         

The answer to the first part of the question is 12˚ correct to the nearest degree. It is important, 
however, to carry a much more accurate version of this angle through to subsequent parts of the 
calculation. This is best done using the calculator memory.
The third angle can be found because the sum of the three angles is 180˚.
So, 

An accurate version of this angle must also be carried to the next part of the calculation. Graphics 
calculators have multiple memories labelled A, B, C etc. and students are advised to use these in 
such calculations.
The remaining side is:  

That is, AB is 111.7 cm (correct to one d.p)

Use the sine rule to complete the following table, which refers to the 
standard labelling of a triangle.
a cm b cm c cm A B C

1. 48.2 29˚ 141˚
2. 1.2 74˚ 25˚
3. 11.3 60˚ 117˚
4. 51.7 38˚ 93˚
5. 18.5 11.4 68˚
6. 14.6 15.0 84˚
7. 7.3 16˚ 85˚
8. 28.5 39˚ 124˚
9. 0.8 0.8 82˚
10. 33.3 36˚ 135˚
11. 16.4 52˚ 84˚

92.4 cm42˚

A

B

Ca
b

c

28.7 cmAsin
a-----------

Bsin
b-----------

Asin
28.7----------- 42°sin

92.4----------------=⇔=

Asin⇔ 28.7 42°sin×
92.4---------------------------------=

0.207836=
A∴ 0.2078361–sin=

11.9956°=
11°59′44″=

C 180° 12°– 42°– 126°= =

c
126°sin-------------------

28.7
12°sin---------------- c 28.7 126°sin

12°sin------------------------------=⇔=
c∴ 111.6762…=

EXERCISES 9.5.1

A

B

C

a

b

c
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a cm b cm c cm A B C
12. 64.3 24˚ 145˚
13. 30.9 27.7 75˚
14. 59.1 29˚ 102˚
15. 9.8 7.9 67˚
16. 54.2 16˚ 136˚
17. 14.8 27.2 67˚
18. 10.9 3˚ 125˚
19. 17.0 15˚ 140˚
20. 40.1 30˚ 129˚

Making use of the sine rule we have:

  

That is, B = 43˚10'
However, from our diagram, the angle ABC should have been greater than 90˚! That is, we should 
have obtained an obtuse angle (90˚ < B < 180˚) rather than an acute angle (0˚ < B < 90˚).
So, what went wrong?
This example is a classic case of what is known as the ambiguous case, in that, from the given 
information it is possible to draw two different diagrams, both having the same data. we show 
both these triangles:

Case 1 Case 2

Notice that the side BC can be pivoted about the point C and therefore two different triangles can 
be formed with BC = 10. This is why there are two possible triangles based on the same 
information.

In the solution above, B =  – representing Case 2. However, our diagram is represented by 
Case 1! Therefore, the correct answer is .

For the triangle shown, find the angle ABC.

A                            B

C
20 cm

10 cm
20˚

E 9.14XAMPLE

S
o
l
u
t
i
o
n

Asin
a-----------

Bsin
b-----------

20°sin
10----------------⇔ Bsin

20-----------= =

Bsin⇔ 20 20°sin
10-----------------------=

B∴ sin 1– 2 20°sin( )=
43.1601…=

A                            B

C
20 cm

10 cm
20˚

20 cm
20˚

10 cm

A                                                               B

C

43°10′
180 43°10′– 136°50′=
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9.5.2 THE AMBIGUOUS CASE

From Example 9.14, it can be seen that an ambiguous case can arise when using the sine rule. In 
the given situation we see that the side CB can be pivoted about its vertex, forming two posible 
triangles.
We consider another such triangle.

Applying the sine rule to the triangle gives:
 

Next, we have,

There is, however, a second solution that results 
from drawing an isosceles triangle BCE. This 
creates the triangle AEC which also fits the data. 
The third angle of this triangle is 37˚ and the third 
side is:

The original data is ambiguous in the sense that there are two triangles that are consistent with it. 

You should also notice that the two angles in the solution are 66˚ and 114˚ and that 
sin66˚ = sin114˚. (That is, sin 66˚ = sin(180˚ – 66˚) = sin 114˚. This will be developed further in 
Chapter 10).

In fact, we can go one step further and make the following statement:

Draw diagrams showing the triangles in which AC = 17 cm, BC = 9 cm and 
A = 29˚ and solve these triangles.

E 9.15XAMPLE

S
o
l
u
t
i
o
n

A B

C

17cm 9cm

29˚ 66˚

85˚

18.5cm

Bsin
17-----------

29°sin
9---------------- Bsin 17 29°sin×

9-----------------------------=⇔=
0.91575=

B∴ 66°=

C 180° 29°– 66°– 85°= =
c
85°sin----------------

9
29°sin---------------- c⇔ 18.5= =

A B

C

17cm
9cm

29˚ 66˚66˚
9cm

114˚
E11.2cm

AE
37°sin----------------

9
29°sin---------------- AE⇔ 11.2= =

A B

C

17cm 9cm

29˚ 66˚

85˚

18.5cm A B

C

17cm

29˚
9cm

114˚

37˚

11.2cm

If we are given two sides of a triangle and the magnitude of an angle opposite one of 
the sides, there may exist one, two or no possible solutions for the given information.
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We summarise our findings:

Type 1
Given the acute angle  and the side lengths a and b, there are four possible outcomes:

Notice that the number of solutions depends on the length a relative to the perpendicular height, 
h, of the triangle as well as the length b.  Where the height h is based on the right-angled triangle 
formed in each case, i.e., .
So that 
– if a < h, then the triangle cannot be completed.
– if a = h, then we have a right-angled triangle.
– if a > b, then we have a triangle that is consistent with the given information.
– if h < a < b, then the side BC can be pivoted about the vertex C, forming two triangles.

The table above reflects the case where  is acute. What if  is obtuse?

Number of s Necessary 
condition

Type of triangle that can be formed

None a < h In this case, the triangle cannot 
be constructed.

One a = h In this case we have formed a 
right-angled triangle.

One a > b
In this case there can be only 
one triangle that is consistent 
with the given information.

Two h < a < b

In this case there are two 
possible triangles,  and 

. This is because BC 
can be pivoted about C and 
still be consistent with the 
given information.

α

αsin h
b--- h⇔ b αsin= =

∆

A

C

B
α

a
b

h b αsin=

A

C

B
α
b

a h b αsin= =

A

C

Bα
ab

h b αsin=

A

C

B
α

a
b

h b αsin=
B′

∆ABC
∆AB′C

α α
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Type 2

Given the obtuse angle  and the side lengths a and b, there are two possible outcomes:

We first determine the value of  and compare it to the value a :
Now, 
Therefore we have that  (= 45.89) < a (= 50) < b (= 80)
meaning that we have an ambiguous case.
Case 1: Case 2:

Number of s Necessary 
condition

Type of triangle that can be formed

None a ≤ b In this case, the triangle cannot 
be constructed.

One a > b
In this case there can be only 
one triangle that is consistent 
with the given information.

α

∆

A

C

B
α

a
b

A

C

B
α

ab

Find  for the triangle ABC given that a = 50, b = 80 and A = 35˚.ABC∠E 9.16XAMPLE

S
o
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u
t
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n

b αsin
b αsin 80 35°sin 45.89= =

b αsin

80 50

35˚
A                                                        B

C

80
50

35˚
A                                                        B

C

B'

BC has been 
pivoted about 
vertex C.

Using the sine rule, , we have

 

Asin
a-----------

Bsin
b-----------=

35°sin
50---------------- Bsin

80----------- Bsin⇔ 80 35°sin
50-----------------------= =

B∴ 66°35′=

From case 1, the obtuse angle  is given 
by 180˚ – 66˚35' = 113˚25'.
This is because  is an isosceles 
triangle, so that 

B'

B'CB∆
AB'C∠ 180° CB'B∠–=
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We start by drawing the triangle with the given information:
Using the sine rule we have

    
Which is imposible to solve for as the sine of an angle can
never be greater than one.
Therefore no such triangle exists.

Find the two solutions to these triangles which are defined using the standard labelling:
a cm b cm A

1. 7.4 18.1 20˚
2. 13.3 19.5 14˚
3. 13.5 17 28˚
4. 10.2 17 15˚
5. 7.4 15.2 20˚
6. 10.7 14.1 26˚
7. 11.5 12.6 17˚
8. 8.3 13.7 24˚
9. 13.7 17.8 14˚
10. 13.4 17.8 28˚
11. 12.1 16.8 23˚
12. 12 14.5 21˚
13. 12.1 19.2 16˚
14. 7.2 13.1 15˚
15. 12.2 17.7 30˚
16. 9.2 20.9 14˚
17. 10.5 13.3 20˚
18. 9.2 19.2 15˚
19. 7.2 13.3 19˚
20. 13.5 20.4 31˚
21. Solve the following triangles

(a)
(b)
(c)
(d)

Find  for the triangle ABC given that a = 70, c = 90 and A = 75˚.ACB∠E 9.16XAMPLE

S
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A                                  B

C

70

90
75˚

Csin
90------------ 75sin

70------------- Csin⇔ 90 75sin
70--------------------= =

Csin∴ 1.241…=

EXERCISES 9.5.2

A B

C

ab

c

α 75° a, 35 c, 45= = =
α 35° a, 30 b, 80= = =
β 40° a, 22 b, 8= = =
γ 50° a, 112 c, 80= = =
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9.5.3 APPLICATIONS OF THE SINE RULE

Just as in the case of right-angled triangles, the sine rule becomes very useful. In particular, it 
means that previous problems that required the partitioning of a non right-angled triangle into two 
(or more) right-angled triangles can be solved using the sine rule.
We start by considering Q.13., Exercise 9.2: 

Labelling the given diagram using the 
standard notation we have:

With 
and 

Then, using the sine rule,

         

Then, using  we have,

 = 523.73
So, the hill is 524 m high (to nearest metre). 
A much neater solution (as opposed to solving simultaneous equations – as was required 
previously).

1. A short course biathlon meet requires the competitors to run in the direction S60˚W to
their bikes and then ride S40˚E to the finish line, situated 20 km due South of the starting
point. What is the distance of this course?

2. A pole is slanting towards the sun and is making an angle of 10˚ to the vertical. It casts a
shadow 7 metres long along the horizontal ground. The angle of elevation of the top of the
pole to the tip of its shadow is 30˚. Find the length of the pole, giving your answer to 2 d.p.

A surveying team are 
trying to find the height of a hill. They take a 
‘sight’ on the top of the hill and find that the 
angle of elevation is 23˚27´. They move a 
distance of 250 metres on level ground directly 
away from the hill and take a second ‘sight’. 
From this point, the angle of elevation is 19˚46´. 
Find the height of the hill, correct to the nearest metre.

250m
19˚46´ 23˚27´

E 9.17XAMPLE

250 m
19˚46´ 23˚27´A B

C

P

h

S
o
l
u
t
i
o
n

β 180 23°27′– 156°33′= =
γ 180 19°46′– 156°33′– 3°41′= =

b
156°33′sin---------------------------

250
3°41′sin---------------------=

b⇔ 250 156°33′sin
3°41′sin-------------------------------------=

1548.63…=
ACP∆

19sin °46′ h
b--- h⇔ b 19sin °46′= =

EXERCISES 9.5.3
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3. A statue A, is observed from two other statues B and C which are 330 m apart. The angle
between the lines of sight AB and BC is 63˚ and the angle between the lines of sight AC
and CB is 75˚. How far is statue A from statue B?

4. Town A is 12 km from town B and its bearing is 132˚T from B. Town C is 17 km from A
and its bearing is 063˚T from B. Find the bearing of A from C.

5. The angle of elevation of the top of a building from a park bench on level ground is 18˚.
The angle of elevation from a second park bench, 300 m closer to the base of the building
is 30˚. Assuming that the two benches and the building all lie on the same vertical plane,
find the height of the building.

6. (a) A man standing 6 metres away from a lamp post casts a shadow10 metres long on a
horizontal ground. The angle of elevation from the tip of the shadow to the lamp
light is 12˚. How high is the lamp light?

(b) If the shadow is cast onto a road sloping at 30˚ upwards, how long would the
shadow be if the man is standing at the foot of the sloping road and 6 metres
from the lamp post?

7. At noon the angle of elevation of the sun is 72˚ and is such that
a three metre wall AC, facing the sun, is just in the shadow due to
the overhang AB.
The angle that the overhang makes with the vertical wall is 50˚.
(a) Copy and illustrate this information on the diagram shown.
(b) Find the length of the overhang.
At 4 p.m. the angle of elevation of the sun is 40˚ and the shadow
due to the overhang just reaches the base of the window.
(c) How far from the ground is the window?

8. The lookout on a ship sailing due East at 25 km/h observes a reef N62˚E at a distance 
of 30 km.
(a) How long will it be before the ship is 15 km from the reef, assuming that it

continues on its easterly course.
(b) How long is it before it is again 15 km from the reef?
(c) What is the closest that the ship will get to the reef?

9. The framework for an experimental design for a kite is shown.
Material for the kite costs $12 per square cm.
How much will it cost for the material if it is to
cover the framework of the kite.

10. A boy walking along a straight road notices the top of a tower at a bearing of 284˚T. After
walking a further 1.5 km he notices that the top of the tower is at a bearing of 293˚T. How
far from the road is the tower?

A

B

window3 m

C

18 cm30˚

40 cmA B

C

D
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9.5.4 THE COSINE RULE

Sometimes the sine rule is not enough to help us solve for
a non right-angled triangle. For example, in the triangle
shown, we do not have enough information to use the sine
rule. That is, the sine rule only provided the following:

where there are too many unknowns.
For this reason we derive another useful result, known as the cosine rule. The cosine rule may be 
used when
1. two sides and an included angle are given:

This means that the third side can be determined
and then we can make use of the sine rule (or the
cosine rule again).

2. three sides are given:
This means we could then determine any of the
angles.

The cosine rule, with the standard labelling of the triangle has three versions: 

The cosine rule can be remembered as a version of Pythagoras’s Theorem with a correction 
factor. We now show why this works.
Consider the case where there is an acute angle at A. Draw a perpendicular from C to N as
shown in the diagram.
In  we have

    – (1) 

In  we have
    – (2) 

Equating (1) and (2) we have,

However, from  we have that 
Substituting this result for x, we have 

Although we have shown the result for an acute angle at A, the same rule applies if A is obtuse.

B

C

A
a

14

18
30˚

a
30°sin----------------

14
Bsin-----------

18
Csin------------= =

B

C

Aα
a

c

B

C

Aa
c

b

a2 b2 c2 2bc Acos–+=
b2 a2 c2 2ac Bcos–+=
c2 a2 b2 2ab Ccos–+=

A

B

C

a

b

c
x

c – x

h

N

∆ANC b2 h2 x2+=
h2⇔ b2 x2–=

∆BNC a2 h2 c x–( )2+=
h2⇔ a2 c x–( )2–=

a2 c x–( )2– b2 x2–=
a2 c2– 2cx x2–+⇔ b2 x2–=

a2⇔ b2 c2 2cx–+=
∆ANC Acos x

b--- x⇔ b Acos= =

a2 b2 c2 2cb Acos–+=
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(a) The data does not include an angle and the opposite side so
the sine rule cannot be used. The first step, as with the sine
rule, is to label the sides of the triangle. Once the triangle
has been labelled, the correct version of the cosine rule must
be chosen. In this case, the solution is:

The remaining angles can be calculated using the sine rule. Again, it is important to carry a high 
accuracy for the value of c to the remaining problem:

 
Finally, 

(b) In this case, there are no angles given. The cosine rule can
be used to solve this problem as follows:

Next, use the sine rule:
So that C = 180˚ – 75˚ – 21˚ = 84˚
The three angles, correct to the nearest degree are A = 75˚, B = 21˚ & C = 84˚.

Solve the following triangles giving the lengths of the sides in centimetres, 
correct to one decimal place and angles correct to the nearest degree.
(a) (b)

10.5 cm

6 cm

69˚

6.8 cm2.4 cm

6.6 cm

E 9.18XAMPLE

S
o
l
u
t
i
o
n

10.5 cm

6 cm

69˚

A

B

C
a

b
c

c2 a2 b2 2ab Ccos–+=
c2 10.52 62 2 10.5 6 69°cos×××–+=

101.0956=
a 10.1=

Bsin
b-----------

Csin
c------------ Bsin 6 69°sin×

10.0546--------------------------=⇔= B 34°=∴
A 180° 34°– 69°– 77°= =

6.8 cm2.4 cm

6.6 cm

A

B
C

a

b
ca2 b2 c2 2bc Acos–+=

6.62 2.42 6.82 2 2.4 6.8 Acos×××–+=
2 2.4 6.8 Acos××× 2.42 6.82 6.62–+=

Acos 2.42 6.82 6.62–+
2 2.4 6.8××------------------------------------------=

0.25858=
A 75.014°=

75°1′=
Bsin

b-----------
Asin

a----------- Bsin 2.4 75sin×
6.6--------------------------- B∴=⇔ 20°34′= =
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Solve the following triangles
a cm b cm c cm A B C

1. 13.5 16.7 36˚
2. 8.9 10.8 101˚
3. 22.8 12.8 87˚
4. 21.1 4.4 83˚
5. 10.6 15.1 74˚
6. 13.6 20.3 20˚
7. 9.2 13.2 46˚
8. 23.4 62.5 69˚
9. 9.6 15.7 41˚
10. 21.7 36.0 36.2
11. 7.6 3.4 9.4
12. 7.2 15.2 14.3
13. 9.1 15.8 52˚
14. 14.9 11.2 16.2 63˚ 42˚ 75˚
15. 2.0 0.7 2.5
16. 7.6 3.7 9.0
17. 18.5 9.8 24.1
18. 20.7 16.3 13.6
19. 22.4 29.9 28˚
20. 7.0 9.9 42˚
21. 21.8 20.8 23.8
22. 1.1 1.3 89˚
23. 1.2 0.4 85˚
24. 23.7 27.2 71˚
25. 3.4 4.6 5.2

9.5.5 APPLICATIONS OF THE COSINE RULE

We start with a diagram:
Note that 
Using the cosine rule we have,

That is, she is (approximately) 30.57 km from her starting point.

EXERCISES 9.5.4

A cyclist rode her bike for 22 km on a straight road heading in a westerly 
direction towards a junction. Upon reaching the junction, she headed down another straight road 
bearing 200˚T for a distance of 15 km. How far is the cyclist from her starting position?

E 9.19XAMPLE

N
EW

N

20˚
N

E

22

15
A

B

C

S
o
l
u
t
i
o
n

ABC∠ 90° 20°+ 110°= =

AC2 152 222 2 15 22 110°cos××–+=
A⇒ C 225 484 660 0.3420…–( )×–+=
AC∴ 30.5734…=
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The question does not give the bearing of the first
leg of the trip so the diagram can show this in any
direction. H is the harbour, I the island and T the
point where the yacht makes its turn.
The angle in the triangle at T is 180˚ – 38˚ = 142˚.
The problem does not contain an angle and the
opposite side and so must be solved using the
cosine rule.

That is, distance from the harbour to the port is 17.1 km (to one d.p)

We will need to find an angle. In this case we determine
the largest angle, which will be the angle opposite the
longest side.
From our diagram we have

  

To find the volume of sand we first need to find the surface area of the sandpit.
Area =  .

Therefore, volume of sand required is  .

A yacht starts from a harbour and sails for a distance of 11 km in a straight 
line. The yacht then makes a turn to port (left) of 38˚ and sails for 7 km in a straight line in this 
new direction until it arrives at a small island. Draw a diagram that shows the path taken by the 
yacht and calculate the distance from the harbour to the island. 

E 9.20XAMPLE

S
o
l
u
t
i
o
n H

I

T

h

i

t 38˚

t2 h2 i2 2hi Tcos–+=
72 112 2 7 11 142°cos×××–+=
291.354=

t∴ 17.1=

A triangular sandpit having side lengths 5 m, 4 m and 8 m is to be 
constructed to a depth of 20 cm. Find the volume of sand required to fill this sandpit.

E 9.21XAMPLE

S
o
l
u
t
i
o
n

4
5

8

A                        C

B

0.2 m

82 42 52 2 4 5 Ccos××–+=
64∴ 16 25 40 Ccos–+=
Ccos⇔ 16 25 64–+

40------------------------------=
23
40------–=

C∴ 125°6′=

1
2---ab Csin 1

2--- 4 5 125°6′( )sin××× 8.1815= = m2

0.2 8.1815× 1.64= m3
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1. Thomas has just walked 5 km in a direction N70˚E when he realises that he needs to walk
a further 8 km in a direction E60˚S.
(a) How far from the starting point will Thomas have travelled?
(b) What is his final bearing from his starting point?

2. Two poles, 8 m apart are facing a rugby player who is 45 m from the left pole and 50 from
the right one. Find the angle that the player makes with the goal mouth.

3. The lengths of the adjacent sides of a parallelogram are 4.80 cm and 6.40 cm. If these
sides have an inclusive angle of , find the length of the shorter diagonal.

4. During an orienteering venture, Patricia notices two rabbit holes and estimates them to be
50 m and 70 m away from her. She measures the angle between the line of sight of the two
holes as 54˚. How far apart are the two rabbit holes?

5. To measure the length of a lake, a surveyor chooses three points. Starting at one end of the
lake she walks in a straight line for 223.25 m to some point X, away from the lake. She
then heads towards the other end of the lake in a straight line and measures the distance
covered to be 254.35 m. If the angle between the paths she takes is 82˚25', find the width
of the lake.

6. A light airplane flying N87˚W for a distance of 155 km, suddenly needs to alter its course
and heads S 34˚E for 82 km to land on an empty field. 
(a) How far from its starting point did the plane land.
(b) What was the plane’s final bearing from its starting point?

 – MISCELLANEOUS EXERCISES

1. The diagram shows a triangular building plot. The distances
are given in metres. Find the length of the two remaining sides
of the plot giving your answers correct to the nearest hundredth
of a metre.

2. Xiang is standing on level ground. Directly in front of him and 32 metres away is a
flagpole. If Xiang turns 61˚ to his right, he sees a post box 26.8 metres in front of him.
Find the distance between the flagpole and the post box.

3. A triangular metal brace is part of the structure of a bridge.
The lengths of the three parts are shown in metres. 
Find the angles of the brace.

4. Find the smallest angle in the triangle whose sides have length 35.6 cm, 58.43 cm and
52.23 cm.

EXERCISES 9.5.5

40°

EXERCISES 9.5.6

103˚

32˚
72.81 m

3.35 m

2.771 m4.118 m
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5. Ayton is directly north of Byford. A third town, Canfield, is 9.93km from Ayton on a
bearing of 128˚ true. The distance from Byford to Canfield is 16.49km. Find the bearing of
Canfield from Byford. 

6. A parallelogram has sides of length 21.90 cm and 95.18 cm. The angle between these
sides is 121˚. Find the length of the long diagonal of the parallelogram.

7. A town clock has ‘hands’ that are of length 62cm and 85cm. 
(a) Find the angle between the hands at half past ten.
(b) Find the distance between the tips of the hands at half past ten.

8. A shop sign is to be made in the shape of a triangle. The
lengths of the edges are shown. Find the angles at the
vertices of the sign.

9. An aircraft takes off from an airstrip and then flies for 16.2 km on a bearing of 066˚ true.
The pilot then makes a left turn of 88˚ and flies for a further 39.51 km on this course
before deciding to return to the airstrip.
(a) Through what angle must the pilot turn to return to the airstrip?
(b) How far will the pilot have to fly to return to the airstrip?

10. A golfer hits two shots from the tee to the
green.
How far is the tee from the green?

11. The diagram shows a parallelogram. Find the
length of the longer of the two diagonals.

12. A triangle has angles 64˚, 15˚ and 101˚. The shortest side is 49 metres long. What is the
length of the longest side?

13. The diagram shows a part of the support structure for
a tower. The main parts are two identical triangles,
ABC and ADE.
AC = DE = 27.4cm and BC = AE = 23.91cm
The angles ACB and AED are 58˚.
Find the distance BD.

449.3 cm

375.3 cm 297 cm

Tee

Green

121˚
217m

75m

21.55 cm

35.5cm

43˚

AB

C

D

E
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14. The diagram shows a design for the frame of a piece of
jewellery. The frame is made of wire. 
Find the length of wire needed to make the frame.

15. A triangular cross-country running track begins with the runners running North for 2050
metres. The runners then turn right and run for 5341 metres on a bearing of 083˚ true.
Finally, the runners make a turn to the right and run directly back to the starting point.
(a) Find the length of the final leg of the run.
(b) Find the total distance of the run.
(c) What is the angle through which the runners must turn to start the final leg of the

race?
(d) Find the bearing that the runners must take on the final leg of the race. 

16. Show that for any standard triangle ABC, .

17. A sandpit in the shape of a pentagon ABCDE is to be
built in such a way that each of its sides are of equal length,
but its angles are not all equal. 
The pentagon is symmetrical about DX, where X is the
midpoint of AB.
The angle AXE and BXC are both 45˚ and each side
is 2 m long.
(a) Find .
(b) Find the length of EX.
(c) How much sand is required if the sandpit is 30 cm deep? Give your answer to three

decimal place.
18. A triangular region has been set aside for a housing development which is to be divided

into two sections. Two adjacent street frontages, AB and AC measuring 100 m and 120 m
respectively. With the 100 m frontage running in an easterly direction, while the 120 m
frontage runs in a north-east direction. A plan for this development is shown alongside.
Give all answers to the nearest metre.
(a) Find the area covered by the housing development.
During the development stages, an environmental group
specified that existing trees were not to be removed from
the third frontage. This made it difficult for the surveyors to
measure the length of the third frontage.
(b) Calculate the length of the third frontage, BC.
The estate is to be divided into 2 regions, by bisecting the angle at A with a stepping wall
running from A to the frontage BC. 
(c) How long is this stepping wall?

23˚

56˚ 56˚

23˚
1.42 cm1.42 cm

Acos
a------------

Bcos
b------------

Ccos
c-------------+ + a2 b2 c2+ +

2abc----------------------------=

X
45˚ 45˚A                                  B

E                                                     C

D

XEA∠

A                                   B

C

120 m

100 m
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We start by drawing a diagram to depict the situation, producing both a perspective and
aerial diagram:

                    Figure 1 Figure 2

In figure 1,  and thus, .
In figure 2,  (= 360˚ – bearing of A from C),  (alternate to

) and  (complementary to ) and thus, 
(using the angle sum of a triangle).

In  we have (using the sine rule) that 

But,  (from above), 

       

        = 33 (to the nearest metre)
That is, the height of the tower (to the nearest metre) is 33 m.

MORE APPLICATIONS IN 3–D9.6

A vertical tower PA is due West of a point B. From C, bearing 210˚ and 
500 m from B, the bearing of the foot of the tower A is 290˚, and the angle of elevation of the top 
of the tower P is 1.5˚. The points A, B and C are on level ground. Given that h is the height of the 
tower, show that  and find the height to the nearest metre.h 250 3 1.5°tan

20°sin-----------------------------------=

E 9.22XAMPLE

S
o
l
u
t
i
o
n

P

A

C

B

N
N

A

C

B

70˚ 30˚

S

PA h PCA∠, 1.5°= = h AC 1.5°tan×=
NCA∠ 70°= NCB∠ 30°=

CBS∠ ABC∠ 60°= CBS∠ CAB∠ 20°=

ABC∆ AC
60°sin----------------

500
20°sin---------------- AC⇔ 500

20°sin---------------- 60°sin×= =

AC h
1.5°tan------------------= h

1.5°tan------------------∴ 500
20°sin---------------- 60°sin×=

h⇔ 1.5°tan 500
20°sin---------------- 60°sin××=

1.5° 500
20°sin----------------× 3

2-------×tan=
250 3 1.5°tan

20°sin-----------------------------------=
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1. A rectagular box is constructed as shown, with
measurements HG = 10 cm, ,

. Find the height of the box.

2. From a point A due South of a vertical tower, the angle of elevation of the top of the
 tower is 15°, and from a point B due West of the tower it is 32°. If the distance from A to B

is 50 metres, find the height of the tower.
3. From a point P, the angle of elevation of the top of a radio mast due North of P is 17°.

From Q, due West of the radio mast, the angle of elevation is 13°. Given that P and Q are
130 m apart, show that  h, the height of the mast, can be given by 

and find h to the nearest m.
4. From a point due South of a radio tower, an observer measures the angle of elevation to the

top of the tower to be 41 °. A second observer is standing on a bearing of 130° from the
base of the tower, and on a bearing of 50° from the first observer. If the height of the tower
is 45m, find the distance between the two observers, and the angle of elevation of the top
of the tower as measured by the second observer.

5. A small plane is flying due east at a constant altitude of 3 km and a constant speed of
 120 km/h. It is approaching a small control tower that lies to the South of the plane’s path.

At time to the plane is on a bearing of 300° from the tower, and elevated at 4.5°. How long
does it take for the plane to be due North of the tower, and what is its angle of elevation
from the tower at this time?

6. A plane is flying at a constant altitude h with a constant speed of 250km/h. At 10:30 AM it
passes directly over a town T heading towards a second town R. A fisherman located next
to a river 50km due South of T observes the angle of elevation to the plane to be 4.5°.
Town R lies on a bearing of 300° from where the fisherman is standing, and when the
plane flies directly over R, the angle of depression to the fisherman is 2.5°. At what time
does the plane pass directly over town R?

7. Frank and Stella are walking along a straight road heading North, when they spot the top
of a tower in the direction N E, behind low lying trees. The angle of elevation to the top
of the tower is . After walking d m along the road they notice that the tower is now
N E of the road and that the angle of elevation of the top of the tower is now . Let the
height of the tower be h m.
(a) Find the distance of the tower from the i. first sighting.

ii. second sighting.
(b) Find an expression of the height, h m, of the tower.
(c) How much further must Stella and Frank walk before the tower is located in an

easterly direction?

EXERCISES 9.6

E
H G

C
B

F

A
DhFHE∠ 30°=

CEG∠ 15°=

h 130
732 772tan+tan

-------------------------------------------=

θ°
α°

φ° β°
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9.7.1 RADIAN MEASURE OF AN ANGLE

So far we have been dealing with angles that have been measured in degrees. However, while this 
has been very useful, such measurements are not suitable for many topics in mathematics. 
Instead, we introduce a new measure, called the radian measure.
The degree measure of angle is based on dividing the complete circle into 360 equal parts known 
as degrees. Each degree is divided into sixty smaller parts known as minutes, and each minute is 
divided into sixty seconds.
Decimal parts of a degree can be converted into degrees, minutes and seconds using the 2nd 
ANGLE menu and selecting option 4. 

This can be useful as calculators generally produce answers in the decimal format. It should also 
be noted that the degree, minute, second angle system is the same as the hours minutes seconds 
system that we use to measure time. The above screen could be interpreted as 2.456˚ and is equal 
to 2 degrees 27 minutes and 21.6 seconds or as 2.456 hours which is the same as 2 hours 27 
minutes and 21.6 seconds. 
The degree system is arbitrary in the sense that the decision was made (in the past and due to 
astronomical measurements) to divide the complete circle into 360 parts. The radian system is an 
example of a natural measurement system. 

Two radians is the angle that gives an arc length of twice the radius, etc., giving a natural linear 
conversion between the measure of a radian, the arc length and the radius of a circle.
A complete circle has an arc length of 2πr. It follows that a complete circle corresponds to 

 radians. This leads to the conversion factor between these two systems:
360˚ = 2π radians or 180˚ = π radians (often written as )

So, exactly how large is a radian? 
Using the conversion above, if 360˚ = 2 , then  = 

That is, the angle which subtends an arc of length 1 unit in
a circle of radius 1 unit, is 1 radian.

ARCS, SECTORS AND SEGMENTS9.7

One radian is defined as the size of angle needed to cut off an arc of the 
same length as the radius.

2πr
r--------- 2π=

πc

πc 1c 360
2π--------- 57.2957°≈

1 1
1c
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More generally we have:

All conversions between the two systems follow this ratio. It is not generally necessary to convert 
between the systems as problems are usually worked either entirely in the degree system (as in 
the previous sections) or in radians (as in the functions and calculus chapters). In the case of arc 
length and sector areas, it is generally better to work in the radian system. 

Using the above conversion factors we have:
(a)  or 

(b)

(c)

9.7.2 ARC LENGTH

As the arc length AB of a circle is directly proportional to the angle
which AB subtends at its centre, then, the arc length AB is a fraction of
the circumference of the circle of radius r.
So, if the angle is , then the arc length is  of the circumference.

Then, the (minor) arc length, AB, denoted by l, is given by .

i.e., 

The longer arc AB, called the major arc, has a length of 2πr – l.

To convert from degrees to radians, multiply angle by .

To convert from radians to degrees, multiply angle by .

πc
180---------
180
πc---------

Convert
(a) 70˚ into radians (b)  into degrees (c)  into degrees2.34c π

6---
c

E 9.23XAMPLE

S
o
l
u
t
i
o
n

70° 70 πc
180---------× 7πc

18--------= = 1.2217c

2.34c 2.34 180°
π-----------× 134.0721° 134°4′20″= = =

π
6---
c π

6---
180°
π-----------× 30°= =

r
θc

l
A

B
O

θc θ
2π------

l θ
2π------ 2πr× rθ= =

  l rθc=

Using the circle shown, find the arc length AB.
8 cm

l

A

B

O 110˚

E 9.24XAMPLE
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First we need to convert 110˚ into radian measure.

Then, the arc length, l, is given by, 

Therefore, the arc length is 15.36 cm.

9.7.3 AREA OF SECTOR

The formula for the area of a sector is derived as follows:
If a sector is cut from a circle of radius r using an angle at the centre of θ 
radians, the area of the complete circle is . The fraction of the circle 
that forms the sector is  of the complete circle, so the area of the 

sector is .

i.e., 

Area of sector = 

The perimeter is made up from two radii (14 cm) and the arc 

The perimeter is  cm.

S
o
l
u
t
i
o
n

110° 110 πc
180---------× 11πc

18-----------= =

l rθ 8 11π
18---------× 44π

9---------= = =
15.3588…=

r
θc

l
A

B
O

πr2
θ
2π------

πr2 θ
2π------×

1
2---r2θ=

  A 1
2---r2θc

 =

Find the area and perimeter of the sector shown

3π/4
7 cm

E 9.25XAMPLE

S
o
l
u
t
i
o
n

1
2--- 72× 3π

4------×
147π
8------------=  cm2

l rθ 7 3π
4------×

21π
4---------= = =

14 21π
4---------+

Find the area and perimeter of the shaded part of the diagram. The radius of 
the inner circle is 4 cm and the radius of the outer circle is 9 cm.

π/6

E 9.25XAMPLE



MATHEMATICS – Higher Level (Core)

312

The angle of the shaded segment = 
The shaded area can be found by subtracting the area of the sector in the smaller circle
from that in the larger circle.

Shaded area = 

The perimeter is made up from two straight lines (each 9 – 4 = 5 cm long) and two arcs. 
Perimeter =  cm.

1. Find the areas and perimeters of the following sectors:
Radius Angle Radius Angle

i. 2.6cm ii. 11.5cm

iii. 44cm iv. 6.8m

v. 0.64cm vi. 7.6cm

vii. 324m viii. 8.6cm

ix. 6.2cm x. 76m
xi. 12cm 30˚ xii. 14m 60˚
xiii. 2.8cm 120˚ xiv. 24.8cm 270˚
xv. 1.2cm 15˚

2. A cake has a circumference of 30cm and a uniform height of 7cm. A slice is to be cut from
the cake with two straight cuts meeting at the centre. If the slice is to contain 50  of
cake, find the angle between the two cuts, giving the answer in radians to 2 significant
figures and in degrees correct to the nearest degree.

3. The diagram shows a part of a Norman arch.
The dimensions are shown in metres. 
Find the volume of stone in the arch, giving
your answer in cubic metres, correct to three
significant figures.

S
o
l
u
t
i
o
n

2π π
6---–

11π
6---------

c=

1
2--- 92× 11π

6---------× 1
2--- 42× 11π

6---------×– 11π
12--------- 92 42–( ) 59 712------π cm2= =

10 4 11π
6--------- 9 11π

6---------×+×+ 10 143π
6------------+=

EXERCISES 9.7

π
3---

π
4---

π
4---

2π
3------

3π
4------

5π
6------

π
10------

7π
6------

4π
3------

11π
6---------

cm3

1.2 m

0.2m
0.3 m
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4. In the diagram, find the value of the angle A in radians, correct
to three significant figures, if the perimeter is equal to 40cm.

5. The diagram shows a design for a shop sign.
The arcs are each one quarter of a complete
circle. The radius of the smaller circle is 7 cm
and the radius of the larger circle is 9cm. 
Find the perimeter of the shape, correct to the
nearest centimetre.

6. Find the shaded area in the diagram. 
The dimensions are given in centimetres. O is
the centre of the circle and AT is a tangent.
Give your answer correct to three significant
figures.

7. The diagram shows a running track. The perimeter of the inside line is 400 metres and the
length of each straight section is 100 metres.

(a) Find the radius of each of the semi-circular parts of the inner track.
(b) If the width of the lane shown is 1 metre, find the perimeter of the outer boundary

of the lane.
A second lane is added on

 the outside of the track.
The starting positions of
runners who have to run
(anti-clockwise) in the
two lanes are shown.
(c) Find the value of

angleA˚ (to the
nearest degree) if
both runners are to
run 400 metres.

11cm

A

O A

T

3 cm 7 cm

START/
FINISH

A
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8. Find the angle subtended at the centre of a circle of radius length 12 cm by an arc which
forms a sector of area 80 sq. cm

9. Find the angle subtended at the circumference of a circle of radius length 10 cm by an arc
which forms a sector of area 75 sq. cm

10. A chord of length 32 cm is drawn in a circle of radius 20 cm.
(a) Find the angle it subtends at the centre.
(b) Find :

i.    the minor arc length.
ii.   the major arc length.

(c) Find the area of the minor sector.
11. Two circles of radii 6 cm and 8 cm have their centres 10 cm apart. Find the area
 common to both circles.
12. Two pulleys of radii 16 cm and 20 cm have their centres 

40 cm apart. Find the length of the piece of string that will
be required to pass tightly round the circles if the string
does not cross over.

13. Two pulleys of radii 7 cm and 11 cm have their centres 24 cm apart. Find the length of the
piece of string that will be required to pass tightly round the circles if
(a) the string cannot cross over.
(b) the string crosses over itself.

14. A sector of a circle has a radius of 15 cm and an angle of 216˚. The sector is folded in such
a way that it forms a cone, so that the two straight edges of the sector do not overlap. 
(a) Find the base radius of the cone.
(b) Find the vertical height of the cone.
(c) Find the semi–vertical angle of the cone.

15. A taut belt passes over two discs of radii 12 cm and 4 cm as shown in the diagram.
(a) If the total length of the

belt is 88 cm, show that

(b) On the same set of axes,
sketch the graphs of 
i.    ii.    .

(c) Hence find , giving your answer to two d.p.

16. The diagram shows a disc of radius 40 cm with parts of it
painted. The smaller circle (having the same centre as the
disc) has a radius of 10 cm. What area of the disc has not
been painted in red?

2α

1 5.5 π– α–( ) αtan=

y 1
αtan------------= y 5.5 π– α–=
α : 1 5.5 π– α–( ) αtan={ }

20 cm

20 cm

20 cm
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10.1.1 THE UNIT CIRCLE

We saw in Chapter 9 that we were able to find the sine, cosine and tangent of acute angles 
contained within a right-angled triangle. We extended this to enable us to find the sine and cosine 
ratio of obtuse angles. To see why this worked, or indeed why it would work for an angle of any 
magnitude, we need to reconsider how angles are measured. To do this we start by making use of 
the unit circle and introduce some definitions. 

From this point on we define the angle  as a real number that is measured in either degrees or 
radians. So that, an expression such as  will imply that  is measured in degrees as 
opposed to the expression  which would imply that  is measured in radians. In both 
cases, it should be clear from the context of the question which one it is.
From the work in §9.7 we have the following conversions between degrees and radians and the 
exact value of their trigonometric ratios:

Note that  is undefined. We will shortly see why this is the case.

By convention, an angle  is measured in terms of the rotation of a ray OP from the positive 
direction of the x–axis, so that a rotation in the anticlockwise direction is described as a positive 
angle, whereas a rotation in the clockwise direction is described as a negative angle.

Let the point  be a point on the circumference of the unit 
circle, , with centre at the origin and radius 1 unit.

With OP making an angle of  with the positive direction of the 
x–axis, we draw the perpendicular from P to meet the x–axis at M. 
This then provides the following definitions:

1

1 0 –

TRIGONOMETRIC RATIOS10.1

C
H

A
P

T
E
R

 1
0

θ
180° θ–( )sin θ

πc θ–( )sin θ

θ θsin θcos θtan
30° πc

6-----= 1
2---

3
2-------

1
3-------

45° πc
4-----= 1

2-------
1
2-------

60° πc
3-----= 3

2-------
1
2--- 3

90° πc
2-----=

90°tan

θ

P(x,y)

x

y

O M
y

x
1
θ

P x y,( )
x2 y2+ 1=

θ

θsin MP
OP--------- y-coordinate of P

OP----------------------------------------- y
1--- y= = = =

θcos MP
OP--------- x-coordinate of P

OP----------------------------------------- x
1--- x= = = =

θtan MP
OM---------- y-coordinate of P

x-coordinate of P----------------------------------------- y
x--= = =
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Note that this means that the y-coordinate corresponds to the sine of the angle . That the 
x-coordinate corresponds to the cosine of the angle  and that the tangent,. . . , well, for the 
tangent, let’s revisit the unit circle, but this time we will make an addition to the diagram.
Using the existing unit circle, we draw a tangent at
the point where the circle cuts the positive x-axis, Q.
Next, we extend the ray OP to meet the tangent at R.

Using similar triangles, we have that .
That is,  – which means that the value of the tangent 
of the angle  corresponds to the y-coordinates of point R cut off 
on the tangent at Q by the extended ray OP.

Also, it is worth noting that  (as long as ).

That is, 

From our table of exact values, we note that  was undefined. This can be observed from 
the above diagram. If , P lies on the y-axis, meaning that OP would be parallel to QR, 
and so, P would never cut the tangent, meaning that no y-value corresponding to R could ever be 
obtained.

Using a table of values for  on the TI-83, we see how the
tangent ratio increases as  increases to 90˚ and in particular 
how it is undefined for .

10.1.2 ANGLE OF ANY MAGNITUDE

From the unit circle we have seen how the trigonometric ratios of an acute angle can be obtained 
– i.e., for the sine ratio we read off the y–axis, for the cosine ratio, we read off the x-axis and for 
the tangent ratio we read off the tangent. As the point P is located in the first quadrant, then x ≥ 0, 
y ≥ 0 and . Meaning that we obtain positive trigonometric ratios.

So, what if P lies in the second quadrant?
We start by drawing a diagram for such a situation:
From our diagram we see that if P lies in the second quadrant, the 
y-value is still positive, the x-value is negative and therefore the 
ratio,  is negative. 
This means that, ,  and .

θ
θ

P(x,y)

x

y

O M
y

x
1
θ Q

R

tangent

PM
OM--------- RQ

OQ--------- RQ
1--------= =

θtan RQ=
θ

θtan PM
OM--------- y

x--
θsin
θcos------------= = = θ 0≠cos

θtan θsin
θcos------------ θ 0≠cos,=

90°tan
θ 90°=

θtan
θ
θ 90°=

y
x-- 0 x 0≠,≥

P(x,y)

x

y

Oθ

y
x--

θ 0>sin θ 0<cos θ 0<tan
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In a similar way, we can conclude that if , 
i.e., the point P is in the third quadrant, then,

, 
 

and therefore the ratio

For the fourth quadrant we have, , so that
, 
 

and therefore the ratio

So far, so good. We now know that depending on which quadrant an angle lies in, the sign of the 
trigonometric ratio will be either positive or negative. In fact, we can summarise this as follows:

However, knowing the sign of a trigonometric ratio reflects only half the information. We still 
need to determine the numerical value. We start by considering a few examples:

Consider the value of . Using the unit circle we have:
By symmetry we see that the y-coordinate of Q and the 
y-coordinate of P are the same and so, .
Therefore, 

Note that  and , so that in 

radian form we have, .
In other words, we were able to express the sine of an angle in the second quadrant in terms of the 
sine of an angle in the first quadrant. In particular, we have that

Or, 

P(x,y)

x

y

O
θ

180° θ 270°< <

y-value is negative θ 0<sin⇒
x-value is negative θcos 0<⇒
y
x---value is positive θ 0>tan⇒

P(x,y)
x

y

O
θ

270 θ 360< <
y-value is negative θ 0<sin⇒
x-value is positive θ 0>cos⇒
y
x---value is negative θ 0<tan⇒

S     A
T    C

All ratios are
positive

Sine is +ve
cosine is –ve
tangent is –ve

Tangent is +ve
sine is –ve
cosine is –ve

Cosine is +ve
sine is –ve
tangent is –ve

y

x
This may be usefully recalled 
from the following diagram, or 
by use of a mnemonic sentence

All Stations To City

P(–x,y)

x

y

O
150°

30°

Q(x,y)
150°sin

150°sin 30°sin=
150°sin 1

2---=

150° 150 π
180---------× 5π

6------= = 30° π
6---=

5π
6------sin π

6---sin 1
2---= =

   If  0° θ 90° 180 θ–( )sin,< < θ  sin=

   If  0c θ πc
2----- πc θ–( )sin,< < θ  sin=
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Next, consider the value of . Using the unit circle we have:

By symmetry we see that the x-coordinate of P has the same
magnitude as the x-coordinate of Q but is of the opposite sign.
So, we have that .
Therefore, .

Similarly, as  and , .
In other words, we were able to express the cosine of an angle in the third quadrant in terms of the 
cosine of an angle in the first quadrant. In particular, we have that

Or, 

As a last example we consider the value of . This time we need 
to add a tangent to the unit circle cutting the positive x–axis: 
By symmetry we see that the y-coordinate of P has the same
magnitude as the y-coordinate of Q but is of the opposite sign.
So, we have that .
Therefore, .
Similarly, as  and , .

In other words, we were able to express the tangent of an angle in the 
fourth quadrant in terms of the tangent of an angle in the first quadrant. 
In particular, we have that

Or, 

P(–x,–y)

x

y

O
225˚ 45˚

Q(x,y)

225°cos

225°cos 45°cos–=
225°cos 1

2-------–=

225° 3πc
4--------= 45° πc

4-----= 3πc
4--------cos πc

4-----cos– 1
2-------–= =

   If  0° θ 90° 180 θ+( )cos,< < θcos–  =

   If  0c θ πc
2----- πc θ+( )cos,< < θcos–  =

P(1,–y)

x

y

O
60˚

300˚

Q(1,y)
300°tan

300°tan 60tan °–=
300°tan 3–=

300° 5πc
3--------= 60° πc

3-----= 5πc
3--------tan πc

3-----tan– 3–= =

   If  0° θ 90° 360 θ–( )tan,< < θtan–  =

   If  0c θ πc
2----- 2πc θ–( )tan,< < θtan–  =

In summary we have:

To find the sine of , i.e.,  we read off the y–value of P.
So that,
To find the cosine of , i.e.,  we read off the x–value of P.
So that,  
To find the tangent of , i.e.,  we read off the y*–value of R.
So that,

P(a,b)

x

y

O

b

a

1
θ

R(1,y*)
tangent

y*θ θsin
θsin b=

θ θcos
θcos a=

θ θtan
θtan b

a--- y*= =
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(a) Step 1: Start by drawing the unit circle:
Step 2: Trace out an angle of 120˚
Step 3: Trace out the reference angle in the first

quadrant. In this case it is 60˚.
Step 4: Use the symmetry between the reference angle

and the given angle.
Step 5: State relationship and give answer;

(b) Step 1: Start by drawing the unit circle:
Step 2: Trace out an angle of 210˚
Step 3: Trace out the reference angle in the first

quadrant. In this case it is 30˚.
Step 4: Use the symmetry between the reference angle

and the given angle.
Step 5: State relationship and give answer;

(c) Step 1: Start by drawing the unit circle:
Step 2: Trace out an angle of  
Step 3: Trace out the reference angle in the first

quadrant. In this case it is .
Step 4: Use the symmetry between the reference angle

and the given angle.
Step 5: State relationship and give answer;

(c) Step 1: Start by drawing the unit circle:
Step 2: Trace out an angle of  
Step 3: Trace out the reference angle in the first

quadrant. In this case it is .
Step 4: Use the symmetry between the reference angle

and the given angle.
Step 5: State relationship and give answer;

Find the exact values of
(a) (b) (c) (d)120cos ° 210sin ° 7π

4------cos 5π
4------tan

E 10.1XAMPLE

x

y

O

120˚

60˚

x

y

O
210˚

30˚

x

y

O

π
4---

7π
4------

x

y

O
π
4---

5π
4------

S
o
l
u
t
i
o
n

120°cos 60°cos– 1
2---–= =

210sin ° 30sin °– 1
2---–= =

7π
4------ 315°=( )

π
4---

7π
4------cos π

4---cos 1
2-------= =

5π
4------ 225°=( )

π
4---

5π
4------tan π

4---tan 1= =
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The results we have obtained, that is, expressing trigonometric ratios of any angle in terms of 
trigonometric ratios of acute angles in the first quadrant (i.e., reference angles)  are known as 
trigonometric reduction formulae. There are too many formulae to commit to memory, and so 
it is advisible to draw a unit circle and then use  symmetry properties as was done in 
Examples 10.1. We list a number of these formulae in the table below, where  (= 90˚).

Note: From this point on angles without the degree symbol or radian symbol will mean an angle 
measured in radian mode.

There is another set of results that is suggested by symmetry through the fourth quadrant:

There are other trigonometric reduction formulae, where   or . These 
formulae however, are expressed in terms of their variation from the vertical axis. 
That is:

Quadrant  in degrees  in radians

2
     
     
     

     
     
     

3
     
     
     

     
     
     

4
     
     
     

     
     
     

Quadrant  in degrees or  in radians

4
           
           
           

0 θ π
2---< <

θ θ
180° θ–( )sin θsin=
180° θ–( )cos θcos–=
180° θ–( )tan θtan–=

π θ–( )sin θsin=
π θ–( )cos θcos–=
π θ–( )tan θtan–=

180° θ+( )sin θsin–=
180° θ+( )cos θcos–=
180° θ+( )tan θtan=

π θ+( )sin θsin–=
π θ+( )cos θcos–=
π θ+( )tan θtan=

360° θ–( )sin θsin–=
360° θ–( )cos θcos=
360° θ–( )tan θtan–=

2π θ–( )sin θsin–=
2π θ–( )cos θcos=
2π θ–( )tan θtan–=

θ θ
θ–( )sin θsin–=
θ–( )cos θcos=
θ–( )tan θtan–=

0 θ π
2---< < 0 θ 90°< <

x

y

O
θ π

2--- θ–

Quadrant   in radians      or        in degrees

1

 ,     

 ,     

 ,     

θ θ
π
2--- θ–  sin θcos= 90° θ–( )sin θcos=

π
2--- θ–  cos θsin= 90° θ–( )cos θsin=

π
2--- θ–  tan θcot= 90° θ–( )tan θcot=
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Note the introduction of a new trigonometric ratio, . This is one of a set of three other 
trigonometric ratios known as the reciprocal trigonometric ratios, namely cosecant, secant and 
cotangent ratios. These are defined as

Note then, that 

x

y

O
θ

π
2--- θ+

Quadrant   in radians      or        in degrees

2

 ,     

 ,   

 ,   

θ θ
π
2--- θ+  sin θcos= 90° θ+( )sin θcos=

π
2--- θ+  cos θsin–= 90° θ+( )cos θsin–=

π
2--- θ+  tan θcot–= 90° θ+( )tan θcot–=

x

y

O
θ

3π
2------ θ–

Quadrant   in radians      or        in degrees

3

 , 

 ,   

 , 

θ θ
3π
2------ θ–  sin θcos–= 270° θ–( )sin θcos–=

3π
2------ θ–  cos θsin–= 270° θ–( )cos θsin–=

3π
2------ θ–  tan θcot= 270° θ–( )tan θcot=

x

y

O
θ3π

2------ θ+

Quadrant   in radians      or        in degrees

4

 , 

 ,   

 , 

θ θ
3π
2------ θ+  sin θcos–= 270° θ+( )sin θcos–=

3π
2------ θ+  cos θsin= 270° θ+( )cos θsin=

3π
2------ θ+  tan θcot–= 270° θ+( )tan θcot–=

θcot

cosecant ratio : cosecθ 1
θsin----------- θ 0≠sin,=

secant ratio : secθ 1
θcos------------ θ 0≠cos,=

cotangent ratio : cotθ 1
θtan----------- θ 0≠tan,=

θcot 1
θtan----------- θcos

θsin------------ θ 0≠sin,= =
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(a) From the reduction formulae, we have that .
Therefore,  = –0.3.

(b) From the reduction formulae, we have that .
Therefore,  = –0.3.

(c) From the reduction formulae, we have that .

Therefore,  = 0.3.

(a) .
(b) .
(c) . However, we only have a value for .

To determine the value of  that corresponds to  we make use of a
right-angled triangle where .
Construct a right-angled triangle ABC, where 
so that  and  .
Then, from Pythagoras’s theorem, we have

Therefore, as .

However, as , then  is in the first quadrant and so, .
Now that we have the value of  we can complete the question:

Given that , where find

(a) (b) (c)

θsin 0.3= 0 θ π
2---< <

π θ+( )sin 2π θ–( )sin π
2--- θ–  cos

E 10.2XAMPLE

S
o
l
u
t
i
o
n

π θ+( )sin θsin–=
π θ+( )sin

2π θ–( )sin θsin–=
π θ+( )sin

π
2--- θ–  cos θsin=

π
2--- θ–  cos

Given that  and find

(a) (b) (c)

θcos k= 0 θ π
2---< <

π θ+( )cos 2π θ–( )cos π
2--- θ+  cos

E 10.3XAMPLE

S
o
l
u
t
i
o
n

π θ+( )cos θ π θ+( )cos∴cos– k–= =
2π θ–( )cos θ 2π θ–( )cos∴cos k= =
π
2--- θ+  cos θsin–= θcos

θsin θcos k=

A                                  C

B

θ
k

1
θcos k=

BAC∠ θ=
AC k= AB 1= i.e., θcos AC

AB-------- k
1--- k= = =  

12 k2 BC2 BC⇔+ 1 k2–±= =
θsin BC

AB-------- θsin⇒ 1 k2–±
1--------------------- 1 k2–±= = =

0 θ π
2---< < θ θ 0 θsin 1 k2–=∴>sin

θsin
π
2--- θ+  sin θsin–= π

2--- θ+  sin∴ 1 k2––=
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Part (c) in Example 10.3 shows a useful approach, i.e., contstructing a right-angled triangle to 
help in determining the trigonometric ratio of one of the six trig ratios based on any one of the 
remaining five trig ratios.

As we are looking for trigonometric ratios based solely on that of the sine ratio, we start
by constructing a right-angled triangle satisfying the
relationship,  
In this case, as 
(using the simplest ratio).
Using Pythagoras’s theorem, we have

(a) . 

However, as , .

(b) .

(c) .

But, .

However, as , .

Therefore, .

(a)

(b)

Given that  and find
(a) (b) (c)

θsin k= 0 θ π
2---< <

θtan cosecθ π θ+( )sec

E 10.4XAMPLE

S
o
l
u
t
i
o
n

A                                  C

B

θ
k1θsin k=

θsin opp
hyp--------- k opp

hyp---------⇒ BC
AB--------

k
1---= = = =

12 k2 AC2 AC⇔+ 1 k2–±= =
θtan opp

adj--------- k
1 k2–±---------------------= =

0 θ π
2---< < θ 0 θtan∴>tan k

1 k2–
------------------=

cosecθ 1
θsin----------- cosecθ∴ 1

k---= =

π θ+( )sec 1
π θ+( )cos-------------------------- 1

θcos------------–= =

θcos adj
hyp--------- 1 k2–±

1--------------------- 1 k2–±= = =

0 θ π
2---< < θ 0 θcos∴>cos 1 k2–=

π θ+( )sec 1
1 k2–

------------------–=

Find the exact values of
(a) (b) (c) (d)45°sec cosec150° 11π

6---------cot 0sec
E 10.5XAMPLE

S
o
l
u
t
i
o
n

45°sec 1
45°cos----------------- 1

1
2-------  ------------ 2= = =

cosec150° 1
150°sin-------------------

1
30°sin----------------

1
1
2---  
-------- 2= = = =
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(c)

(c)

(a) This time we are searching for those values of  for which .
To do this we make use of the unit circle:
From the unit circle, we draw a horizontal chord 
passing the y–axis at y = 0.5.
Then, in the first quadrant, from our table of exact values
we have that .
However, by symmetry, we also have that .

Therefore,  if  or .

(b) This time we are searching for those values of  for which .
From the unit circle, we extend the ray OP so that it cuts
the tangent line at R.
Using the exact values, we have  
(as our first value).
And, by symmetry, we also have that .

Therefore,  or .

(c)
Therefore,       or 

11π
6---------cot 1

11π
6---------  tan

----------------------- 1
π
6---–  tan

-------------------- 1
π
6---tan–

--------------- 1
1
3-------  –

---------------- 3–= = = = =

0sec 1
0cos----------- 1

1--- 1= = =

Find (a)
(b)
(c)

θsin 1
2--- 0° θ 360°< <,=

θtan 3– 0 θ 2π< <,=
θsec 1 0 θ 2π< <,=

E 10.6XAMPLE

S
o
l
u
t
i
o
n

θ θsin 1
2---=

x

y

O 30˚

150˚0.5θ 30°=
150°sin 1

2---=

θsin 1
2--- 0° θ 360°< <,= θ 30°= 150°

θ θtan 3–=

x

y

O

3–

π
3---

2π
3------

x

y

2π

R

π π
3---–  tan 2π

3------tan 3–= =

2π π
3---–  tan 3–=

θ 2π
3------= θ 5π

3------=

θsec 1 1
θcos------------⇔ 1 θcos⇔ 1= = =

θ 0= θ 2π=
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(a)
      

(b)
    = 

1. Convert the following angles to degrees.
(a) (b) (c) (d)

2. Convert the following angles to radians.
(a) 180˚ (b) 270˚ (c) 140˚ (d) 320˚

3. Find the exact value of

(a) (b) (c) (d)
(e) (f) (g) (h)
(i) (j) (k) (l)
(m) (n) (o) (p)
(q) (r) (s) (t)

4. Find the exact value of

(a) (b) (c) (d)
(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Simplify

(a) (b) , where .π θ+( )sin
2π θ–( )cos-----------------------------

π
2--- θ+   π

2--- θ–  cossin
π θ+( )cos----------------------------------------------------- 0 θ π

2---< <

E 10.7XAMPLE

S
o
l
u
t
i
o
n

π θ+( )sin
2π θ–( )cos----------------------------- θsin–

θcos--------------=
θtan–=

π
2--- θ+   π

2--- θ–  cossin
π θ+( )cos----------------------------------------------------- θ θsincos

θcos–-----------------------=
θsin–

EXERCISES 10.1

2π
3------

3π
5------

12π
10--------- 5π

18------

120°sin 120°cos 120°tan 120°sec
210°sin 210cos ° 210tan ° 210cot °
225°sin 225cos ° 225tan ° cosec 225°
315°sin 315cos ° 315tan ° 315sec °
360°sin 360cos ° 360tan ° cosec360°

πsin πcos πtan πsec
3π
4------sin 3π

4------cos 3π
4------tan cosec3π4------

7π
6------sin 7π

6------cos 7π
6------tan 7π

6------cot
5π
3------sin 5π

3------cos 5π
3------tan 5π

3------sec
7π
4------sin 7π

4------cos 7π
4------tan cosec7π4------
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5. Find the exact value of
(a) sin(–210˚) (b) cos(–30˚) (c) tan(–135˚) (d) cos(–420˚)
(e) cot(–60˚) (f) sin(–150˚) (g) sec(–135˚) (h) cosec(–120˚)

6. Find the exact value of

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

7. Find the coordinates of the point P on the following unit circles.
(a) (b) (c) (d)

8. Find the exact value of

(a) (b)

(c) (d)

9. Show that the following relationships are true

(a) , where 

(b) , where .

(c) , where .

(d) , where  and .

10. Given that  and  find

(a) (b) (c)

π
6---–  sin 3π

4------–  cos 2π
3------–  tan 4π

3------–  sec

3π
4------–  cot 7π

6------–  sin π
3---–  cot 7π

6------–  cos

cosec 2π
3------–   11π

6---------–  tan 13π
6---------–  sec 7π

3------–  sin

60˚

P
y

x
120˚

P
y

x
225˚

P

y

x
330˚

P

y

x

11π
6---------

5π
6------

5π
6------

11π
6---------cossin–cossin 2 π

6---
π
6---cossin

π
3---

π
6---tan–tan

1 π
3---

π
6---tantan+

--------------------------------- π
4---

π
3---

π
4---
π
3---sinsin+coscos

2θsin 2 θ θcossin= θ π
3---=

2θcos 2cos2θ 1–= θ π
6---=

2θtan 2 θtan
1 tan2θ–----------------------= θ 2π

3------=

θ φ–( )sin θ φ φ θcossin–cossin= θ 2π
3------= φ π

3---–=

θsin 2
3---= 0 θ π

2---< <

π θ+( )sin 2π θ–( )sin π
2--- θ+  cos
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11. Given that  and  find

(a) (b) (c)

12. Given that  and  find

(a) (b) (c)

13. Given that  and  find
(a) (b) (c)

14. Given that  and  find
(a) (b) (c)

15. Given that  and  find

(a) (b) (c)

16. Given that  and  find
(a) (b) (c)

17. Given that  and  find

(a) (b) (c)

18. Simplify the following

(a) (b) (c)

(d) (e) (f)

19. If , find all values of x such that
(a) (b) (c)

(d) (e) (f)

θcos 2
5---= 0 θ π

2---< <

π θ–( )cos θsec π
2--- θ–  sin

θtan k= 0 θ π
2---< <

π θ+( )tan π
2--- θ+  tan θ–( )tan

θsin 2
3---= 0 θ π

2---< <
θcos θsec π θ+( )cos

θcos 4
5---–= π θ 3π

2------< <
θsin θtan π θ+( )cos

θtan 4
3---–= π

2--- θ π< <

θsin π
2--- θ+  tan θsec

θcos k= 3π
2------ θ 2π< <

π θ–( )cos θsin θcot

θsin k–= π θ 3π
2------< <

θcos θtan cosec π2--- θ+  

π θ–( ) π
2--- θ+  cossin

π θ+( )sin-----------------------------------------------------
π
2--- θ+   π

2--- θ–  cossin
sin2θ-----------------------------------------------------

π
2--- θ–  sin
θcos--------------------------

π θ+( ) θcottan 2π θ–( )cosecθcos θsec
cosecθ----------------

0 θ 2π≤ ≤
xsin 3

2-------= xcos 1
2---= xtan 3=

xcos 3
2-------–= xtan 1

3-------–= xsin 1
2---–=
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10.2.1 THE FUNDAMENTAL IDENTITY

We have seen a number of important relationships between trigonometric ratios. Relationships 
that are true for all values of  are known as identities. To signal an identity (as opposed to an 
equation) the equivalence symbol is used, i.e., ‘ ’.  

For example, we can write , as this statement is true for all values of x. 
However, we would have to write , as this relationship is only true for some 
values of x (which need to be determined).
One trigonometric identity is based on the unit circle 

Consider the point  on the unit circle, 
 – (1) 

From the previous section, we know that 
 – (2) 
 – (3) 

Substituting (2) and (3) into (1) we have: 
or

 – (4) 

This is known as the fundamental trigonometric identity. Note that we have not used the identity 
symbol, i.e., we have not written . This is because more often than not, it will 
be ‘obvious’ from the setting as to whether a relationship is an identity or an equation. And so, 
there is a tendency to forgo the formal use of the identity statement and restrict ourselves to the 
equality statement.

By rearranging the identity we have that  and . Similarly 
we obtain the following two new identities:

Divide both sides of (4) by :
           – (5) 

Divide both sides of (4) by :
          – (6) 

In summary we have:

TRIGONOMETRIC IDENTITIES10.2

θ
≡

x 1+( )2 x2 2x 1+ +≡
x 1+( )2 x 1+=

x

y

O

P x y,( )

θ

x2 y2+ 1=

x θcos=

y θsin=P x y,( )
x2 y2+ 1=

x θcos=
y θsin=

θcos( )2 θsin( )2+ 1=

  sin2θ cos2θ+ 1=

sin2θ cos2θ 1≡+

sin2θ 1 cos2θ–= cos2θ 1 sin2θ–=

cos2θ sin2θ cos2θ+
cos2θ--------------------------------- 1

cos2θ------------- sin2θ
cos2θ------------- cos2θ

cos2θ-------------+⇔ 1
cos2θ-------------= =

tan2θ 1+⇔ sec2θ=

sin2θ sin2θ cos2θ+
sin2θ--------------------------------- 1

sin2θ------------ sin2θ
sin2θ------------ cos2θ

sin2θ-------------+⇔ 1
sin2θ------------= =

1 cot2θ+⇔ cosec2θ=

  sin2θ cos2θ+ 1=
tan2θ 1+ sec2θ=
1 cot2θ+ cosec2θ =
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(a) Although we solved problems like this in §10.1 by making use of a right-angled triangle,
we now solve this question by making use of the trigonometric identities we have just
developed.
From  we have 

     

Now, as , this means the angle is in the third quadrant, where the sine value is 

negative. Therefore, we have that 

(b) Using the identity , we have .

(a) From the identity  we have 

       

Therefore, as . However, , meaning that  is in the 

third quadrant. And so, the cosine is negative. That is, .

(b) Now, , but, 

          

Therefore, .

If , where , find (a) (b)θcos 3
5---–= π θ 3π

2------≤ ≤ θsin θtan
E 10.8XAMPLE

S
o
l
u
t
i
o
n

  sin2θ cos2θ+ 1= sin2θ 3
5---–   2+ 1 sin2θ 9

25------+⇔ 1= =

sin2θ⇔ 16
25------=

θsin∴ 4
5---±=

π θ 3π
2------≤ ≤

θsin 4
5---–=

θtan θsin
θcos------------= θtan 4– 5⁄( )

3– 5⁄( )------------------ 4
3---= =

If , where , find (a) (b)θtan 5
12------= π θ 3π

2------≤ ≤ θcos cosecθE 10.9XAMPLE

S
o
l
u
t
i
o
n

tan2θ 1+ sec2θ= 5
12------  

2
1+ sec2θ sec2θ⇔ 25

144--------- 1+= =

sec2θ∴ 169
144---------=

θsec∴ 13
12------±=

θcos 1
θsec----------- θcos⇒ 12

13------±= = π θ 3π
2------≤ ≤ θ

θcos 12
13------–=

cosecθ 1
θsin-----------= θtan θsin

θcos------------ θsin⇔ θ θ θsin∴costan 5
12------

12
13------–×= = =

5
13------–=

cosecθ 1
5 13⁄–( )--------------------- 13

5------–= =
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(a)

   

(b)

      

Simplify the following expressions
(a) (b)θ θ θsintan+cos θcos

1 θsin+--------------------
1 θsin–

θcos--------------------–
E 10.10XAMPLE

S
o
l
u
t
i
o
n

θ θ θsintan+cos θ θsin
θcos------------ θsin+cos=

θ sin2θ
θcos------------+cos=

cos2θ sin2θ+
θcos---------------------------------=

1
θcos------------=
θsec=

θcos
1 θsin+--------------------

1 θsin–
θcos--------------------– cos2θ

1 θsin+( ) θcos------------------------------------- 1 θsin–( ) 1 θsin+( )
1 θsin+( ) θcos--------------------------------------------------–=

cos2θ
1 θsin+( ) θcos------------------------------------- 1 sin2θ–

1 θsin+( ) θcos-------------------------------------–=
cos2θ 1– sin2θ+
1 θsin+( ) θcos------------------------------------------=
cos2θ sin2θ+( ) 1–
1 θsin+( ) θcos-----------------------------------------------=
1 1–

1 θsin+( ) θcos-------------------------------------=
0=

Show that .1 2cos2θ–
θ θcossin-------------------------- θ θcot–tan=

E 10.11XAMPLE

S
o
l
u
t
i
o
n

R.H.S θ θcot–tan=
θsin
θcos------------ θcos

θsin------------–=
sin2θ cos2θ–

θ θcossin--------------------------------=
1 cos2θ–( ) cos2θ–

θ θcossin-----------------------------------------------=
1 2cos2θ–
θ θcossin--------------------------=

L.H.S=
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1. Prove the identity
(a) (b)

(c) (d)
(e) (f)
(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o)

2. Prove the following
(a)
(b)
(c)
(d)
(e)

(f)
(g)

3. Eliminate  from each of the following pairs
(a) (b)
(c) (d)
(e)

4. (a) If , find i. ii.

(b) If , find i. ii.

5. Solve the following, where 
(a) (b)
(c) (d)

EXERCISES 10.2.1

θ θ θcoscot+sin cosecθ= θsin
1 θcos+---------------------

1 θcos+
θsin---------------------+ 2cosecθ=

sin2θ
1 θcos–--------------------- 1 θcos+= 3cos2x 2– 1 3sin2x–=
tan2xcos2x cot2xsin2x+ 1= θ θsin2θsec–sec θcos=
sin2θ 1 cot2θ+( ) 1– 0= 1

1 φsin–--------------------
1

1 φsin+--------------------+ 2sec2φ=
θcos

1 θsin+-------------------- θtan+ θsec= 1 θsin–
θcos-------------------- θcos

1 θsin+--------------------=
1

x xtan+sec----------------------------- x xtan–sec= x cos2x
1 xsin+--------------------+sin 1=

φ cosecφ+sec
φ φcot+tan---------------------------------- φ φcos+sin= x 1+sin

xcos-------------------- x x 1+cos–sin
x x 1–cos+sin--------------------------------------=

x xsec+tan x x 1–sec+tan
x x 1+sec–tan--------------------------------------=

x xcos+sin( )2 x xcos–sin( )2+ 2=
sec2θcosec2θ sec2θ cosec2θ+=
sin4x cos4x– x xcos+sin( ) x xcos–sin( )=
sec4x sec2x– tan4x tan2x+=
sin3x cos3x+

x xcos+sin-------------------------------- 1 x xcossin–=

x cosecx–cot( )2 x 1–sec
x 1+sec--------------------=

2b x xcossin( )2 b2 cos2x sin2x–( )2+ b2=

θ
x k θ y,sin k θcos= = x b θ y,sin a θcos= =
x 1 θ y,sin+ 2 θcos–= = x 1 b θ y,sin– 2 a θcos+= =
x θ 2 θ y θ 2 θcos–sin=,cos+sin=

θtan 3
4--- π θ 3π

2------≤ ≤,= θcos cosecθ

θsin 3
4---

3π
2------ θ 2π≤ ≤,–= θsec θcot

0 θ 2π≤ ≤
4 θsin 3cosecθ= 2cos2θ θsin 1–+ 0=
2 θsin– 2cos2θ= 2sin2θ 2 3 θcos+=
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6. Prove  .

7. If , prove that .

8. If  and , prove that .

9. Given that , find (a) (b)

10. (a) If , find the values of
i. ii.

(b) Hence, deduce the value of , where k is a positive integer.

11. If , find, in terms of x, 

(a) (b) (c)

12. Find (a) the maximum value of (b) the minimum value of
i. ii. iii.

13. (a) Given that  and , find b.
(b) Hence, find all values of  that satisfy the relationship described in (a).

14. Find (a) the maximum value of (b) the minimum value of
i. ii.

15. Given that , find (a) , .
(b) , .

16. (a) Given that , find .

(b) Given that , find i.
ii.

17. Find
(a) the value(s) of , where , .
(b) the values of , where .

18. Given that , find all values of x, such that .

sin2x 1 ncot2x+( ) cos2x 1 ntan2x+( )+ sin2x n cot2x+( ) cos2x n tan2x+( )+=

k φsec m φtan= φ φtansec mk
m2 k2–-----------------=

x ksec2φ mtan2φ+= y lsec2φ ntan2φ+= x k–
k m+-------------

y l–
l n+-----------=

θtan 2a
a2 1–-------------- 0 θ π

2---< <,= θsin θcos

x xcos+sin 1=
sin3x cos3x+ sin4x cos4x+

sinkx coskx+

φtan 1
x2 1–

------------------– π
2--- φ π< <,=

φ φcos+sin φ φcos–sin sin4φ cos4φ–

cos2θ 5+ 5
3sin2θ 2+------------------------- 2cos2θ θ 1–sin+

b φsin 1= b φcos 3=
φ

53 θ 1–sin 31 2 θcos–

θ θcossin k= θsin θcos+( )2 θsin θ 0>cos+
sin3θ cos3θ+ θsin θ 0>cos+

φsin 1 a–
1 a+------------ 0 φ π

2---< <,= φtan

φsin 1 a– π
2--- φ π< <,= 2 φcos–

φcot

xcos xcot 4 cosecx xtan–( )= 0 x π< <
xsin 3 xcos 2 1

xcos----------- 0 x 2π≤ ≤,+=

2xsin 2 x xcossin= 2 2xsin x 0 x π≤ ≤,tan=
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10.2.2 COMPOUND ANGLE IDENTITIES

As we have seen in the previous section, there are numerous trigonometric identities. However, 
they were all derived from the fundamental identities. In this section we develop some more 
fundamental identities (which will lead us to more identities). This set of fundamental identities 
are known as compound angle identities. That is, identities that involve the sine, cosine and 
tangent of the sum and difference of two angles.

We start with the sine of the sum of two angles, :
A commonly given proof of these identities is again only valid for acute angles:
In the figure, ∠AOE = α + β. The construction lines are 
drawn with the right angles indicated. Since ∠DCO = α 
(alternate angles) and ∠DCE = 90˚ – α, it follows that 
∠AOE = α. Therefore, we have,

  

It is now possible to prove the difference formula, replacing  by  we have

 (  and )

And so we have the addition and difference identities for sine:

A similar identity can be derived for the cosine function (using the same diagram):

      

Similarly, from this and replacing  by  we have that 

α β+( )sin

O
αβ

A B

C
D

E

α β+( )sin AOEsin AE
OE--------= =
AD DE+

OE-----------------------=
AD
OE--------- DE

OE--------+=
BC
OE-------- DE

OE--------+=
BC
OC-------- OC

OE--------× DE
EC--------

EC
OE--------×+=

α βcos× α βsin×cos+sin=
β β–

α β–( )sin α β–( )+( )sin=
α β–( ) α β–( )sincos+cossin=
α β α βsincos–cossin=

β–( )cos βcos= β–( )sin βsin–=

α β+( )sin α β α βsincos+cossin=
α β–( )sin α β α βsincos–cossin=

α β+( )cos OA
OE--------- OB AB–

OE-----------------------= =
OB
OE-------- AB

OE--------–=
OB
OE-------- CD

OE--------–=
OB
OC-------- OC

OE--------× CD
EC--------

EC
OE--------×–=

α β α βsinsin–coscos=

β β– α β–( )cos α β α βsinsin+coscos=
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And so we have the addition and difference identities for cosine:

Also, the tangent addition identity can be proved as follows:

 using 

Again, if we replace  by  we have .

And so we have the addition and difference identities for tangent:

As a special case of the compound identities we have obtained so far, we have a set of identities 
known as the double angle identities.
Using the substitution θ = α = β we obtain the identities:

i.e., substituting θ = α = β into  we obtain
     

Similarly, substituting θ = α = β into  we obtain
    

The second of these can be further developed to give:

and

α β+( )cos α β α βsinsin–coscos=
α β–( )cos α β α βsinsin+coscos=

α β+( )tan α β+( )sin
α β+( )cos---------------------------=
α β α βsincos+cossin
α β α βsinsin–coscos-------------------------------------------------------=
α β α βsincos+cossin

α βcoscos-------------------------------------------------------
α β α βsinsin–coscos

α βcoscos------------------------------------------------------
-------------------------------------------------------=

α βtan+tan
1 α βtantan–---------------------------------=

θsin
θcos------------ θtan=

β β– α β–( )tan α βtan–tan
1 α βtantan+---------------------------------=

α β+( )tan α βtan+tan
1 α βtantan–---------------------------------=

α β–( )tan α βtan–tan
1 α βtantan+---------------------------------=

2θsin 2 θ θcossin=
2θcos cos2θ sin2θ–=

α β+( )sin α β α βsincos+cossin=
θ θ+( )sin θ θ θ θsincos+cossin=

2θsin∴ 2 θ θcossin=

α β+( )cos α β α βsinsin–coscos=
θ θ+( )cos θ θ θ θsinsin–coscos=

2θcos∴ cos2θ sin2θ–=

2θcos cos2θ sin2θ– cos2θ 1 cos2θ–( )– 2cos2θ 1–= = =
2θcos cos2θ sin2θ– 1 sin2θ–( ) sin2θ– 1 2sin2θ–= = =
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Finally, we have a double angle identity for the tangent; .
Summary of double angle identities:

We have seen how trigonometric identities can be used to solve equations, simplify expressions 
and to prove further identities. We now illustrate this using the new set of identities.

   
 

 

2θtan 2 θtan
1 tan2θ–----------------------=

2θsin 2 θ θcossin=
2θcos cos2θ sin2θ–=

2cos2θ 1–=
1 2sin2θ–=

2θtan 2 θtan
1 tan2θ–----------------------=

Simplify the expression: .3αsin
αsin--------------- 3αcos

αcos----------------–
E 10.12XAMPLE

S
o
l
u
t
i
o
n

3αsin
αsin--------------- 3αcos

αcos----------------– 3α α 3α αsincos–cossin
α αcossin--------------------------------------------------------------=

3α α–( )sin
α αcossin-----------------------------=
2αsin

1
2--- 2αsin
------------------=

2=

Prove the identity .3αcos 4cos3α 3 αcos–=E 10.13XAMPLE

S
o
l
u
t
i
o
n

3αcos 2α α+( )cos=
2α α 2α αsinsin–coscos=

2cos2α 1–( ) α 2 α α αsincossin–cos=
2cos3α α 2sin2α αcos–cos–=
2cos3α α 2 1 cos2α–( ) αcos–cos–=
2cos3α α 2 α 2cos3α+cos–cos–=
4cos3α 3 αcos–=

Using a compound identity, show that 3π
2------ θ–  cos θsin–=

E 10.14XAMPLE
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L.H.S = 

= 
= 
= 
= R.H.S

We start by drawing two right-angled triangles satisfying the given conditions:

(a)
However, we cannot simply substitute the above ratios into this expression as we now need
to consider the sign of the ratios.
As  then  and as  then .

Therefore, 

(b)
As  then  and as  then .

Therefore, 

(c)

As  then  and as  then .

Therefore, 

S
o
l
u
t
i
o
n

3π
2------ θ–  cos

3π
2------   θ 3π

2------   θsinsin+coscos
0 θ 1–( ) θsin×+cos×
θsin–

If  and , where  and , find
(a) (b) (c)

θsin 3
5---= φcos 12

13------––= 0 θ π
2---≤ ≤ π φ 3π

2------≤ ≤
θ φ+( )sin θ φ+( )cos θ φ–( )tan

E 10.15XAMPLE

S
o
l
u
t
i
o
n

θ φ
35

4 12

13
5

 

 

θcos 4
5---=

θtan 3
4---=

 

 

φsin 5
13------=

φtan 5
12------=

θ φ+( )sin θ φ φ θcossin+cossin=

0 θ π
2---≤ ≤ θcos 4

5---= π φ 3π
2------≤ ≤ φsin 5

13------–=

θ φ+( )sin 3
5---

12
13------– 5

13------– 4
5---×+× 56

65------–= =

θ φ+( )cos θ φ θ φsinsin–coscos=
0 θ π

2---≤ ≤ θcos 4
5---= π φ 3π

2------≤ ≤ φsin 5
13------–=

θ φ+( )cos 4
5---

12
13------–× 3

5---
5
13------–×– 33

65------–= =

θ φ–( )tan θ φtan–tan
1 θ φtantan+--------------------------------=

0 θ π
2---≤ ≤ θtan 3

4---= π φ 3π
2------≤ ≤ φtan 5

12------=

θ φ–( )tan
3
4---

5
12------–

1 3
4---

5
12------×+

------------------------- 16
63------= =
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We start by drawing the relevant right-angled triangle:
(a)

         

(b)  = 

(c)

(a)

       

(b)

  

  

Note: we used the fact that  to
‘break up’ the angle.

If , where  find
(a) (b) (c)

θsin 2
7---= π

2--- θ π≤ ≤
2θsin 2θcos 2θtan

E 10.16XAMPLE

S
o
l
u
t
i
o
n

θ 27

3 5
2sin θ 2 θ θcossin 2 2

7---
3 5
7----------–××= =

12 5
49-------------–=

2θcos 1 2sin2θ– 1 2 2
7---  

2×–= = 41
49------

2θtan 2θsin
2θcos---------------

12 5
49-------------–
41
49------

----------------- 12 5
41-------------–= = =

Find the exact value of (a) (b)15°cos 5π
12------tan

E 10.17XAMPLE

S
o
l
u
t
i
o
n

15°cos 45° 30°–( )cos 45° 30° 45° 30°sinsin+coscos= =
1
2-------

3
2-------

1
2-------

1
2---×+×=

3 1+
2 2----------------=

5π
12------tan 3π

12------
2π
12------+  tan

3π
12------tan 2π

12------tan+

1 3π
12------

2π
12------tantan–

---------------------------------------
π
4---tan π

6---tan+

1 π
4---

π
6---tantan–

---------------------------------= = =

1 1
3-------+

1 1 1
3-------×–

-------------------------=

3 1+
3 1–----------------=

5π
12------ 5 π

12------× 5 15°× 75° 45° 30°+ 3 π
12------ 2 π

12------×+×= = = = =
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(a) L.H.S = 

       

= R.H.S

(a) L.H.S = 

    = R.H.S
(b) R.H.S = 

         

  = L.H.S

Notice that when proving identities, when all else fails, then express everything in terms of sine 
and cosine. This will always lead to the desired result – even though sometimes the working 
seems like it will only grow and grow – eventually, it does simplify. Be persistent.
To prove a given identity, any one of the following approaches can be used:
1. Start with the L.H.S and then show that L.H.S = R.H.S
2. Start with the R.H.S and then show that R.H.S = L.H.S
3. Show that L.H.S = p, show that R.H.S = p
4. Start with L.H.S = R.H.S .
When using approaches 1., and 2., choose whichever side has more to work with.

Prove that 2φ φsin+sin
2φ φ 1+cos+cos------------------------------------------- φtan=

E 10.18XAMPLE

S
o
l
u
t
i
o
n

2φ φsin+sin
2φ φ 1+cos+cos------------------------------------------- 2 φ φ φsin+cossin

2cos2φ 1– φ 1+cos+------------------------------------------------------=
φ 2 φ 1+cos( )sin
φ 2 φ 1+cos( )cos------------------------------------------=
φsin
φcos------------=
φtan=

Prove that (a)
(b)

2α α 2αcos+tansin 1=
2 2βcot β βtan–cot=

E 10.19XAMPLE

S
o
l
u
t
i
o
n

2α α 2αcos+tansin 2 α α αsin
αcos------------ 1 2sin2α–( )+×cossin=

2sin2α 1 2sin2α–+=
1=

β βtan–cot βcos
βsin------------ βsin

βcos------------–=
cos2β sin2β–

β βcossin---------------------------------=
2βcos

1
2--- 2βsin
------------------=

2 2βcos
2βsin---------------=

2 2βcot=

L.H.S = R.H.S⇒
L.H.S – R.H.S = 0⇒
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Now, 

and    

(a)

    
(b) In this instance, as the statement needs to be true for all values of  we will determine the

values of R and  by setting .
Now, 
Therefore, we have that 

 – (1) 
 – (2) 

Dividing (2) by (1) we have

Substituting into (1) we have .

Therefore, 

Find all values of x, such that , where .2xsin xcos= 0 x 2π≤ ≤E 10.20XAMPLE

S
o
l
u
t
i
o
n

2xsin x 2 x xcossin⇔cos xcos= =

x

y

O
270˚=

x

y

O
150˚=

90˚= π23π
2

30˚= π6

5π
6

2 x x xcos–cossin⇔ 0=
x 2 x 1–sin( )cos⇔ 0=

xcos⇔ 0  or  xsin 1
2---= =

xcos 0 0 x 2π x⇔≤ ≤, π
2---

3π
2------,= =

xsin 1
2--- 0 x 2π x⇔≤ ≤, π

6---
5π
6------,= =

(a) Simplify 
(b) Express  in the form , where R and  are real numbers. Hence

find the maximum value of .

2 θ π
4---+  sin

θ θsin–cos R θ α+( )cos α
θ θsin–cos

E 10.21XAMPLE

S
o
l
u
t
i
o
n

2 θ π
4---+  sin 2 θ π

4--- θ π
4---sincos+cossin 2 θ 1

2------- θ 1
2-------×cos+×sin= =

θ θcos+sin=
θ

α R θ α+( ) θ θsin–cos≡cos
R θ α+( )cos R θ α θ αsinsin–coscos[ ] R θ α R θ αsinsin–coscos= =

R θ α R θ α θ θsin–cos≡sinsin–coscos
R θ αcoscos⇒ θ R αcos⇔cos 1= =
R θ αsinsin⇒ θ R αsin⇔cos 1= =
R αsin
R αcos---------------- 1

1--- αtan⇔ 1 α∴ π
4---= = =

R π
4---cos 1 R 1

2-------×⇔ 1 R∴ 2= = =

θ θ 2 θ π
4---+  cos≡sin–cos
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Then, as the maximum value of the cosine is 1, the maximum of  is .

We are required to find the values of R & θ such that . 
Use the appropriate identity to expand the left hand side:

 (R > 0)

The values of R & θ must give an identity that is true for all values of θ. This means that
both sides of the identity must have the same amount of cosθ and sinθ on each side. We
must next equate coefficients of these variables.

Equating the coefficients of cosθ gives:  – (1) 
Equating the coefficients of sinθ gives:  – (2) 

Squaring and adding gives: 

 

Dividing (2) by (1) gives:

    

It follows that . This helps in finding the solution of the 
equation, which can be re-written as . The solution now follows:

An extension of the compound and double angle identities is that of half angle identities, also 
referred to as t substitution identities. 
Sometimes it is useful to make a substitution by letting .

2 θ π
4---+  cos 2

Express  in the form . 
Hence solve the equation  on the interval [–1,1], to 2 decimal places.

3 θ 4 θsin–cos R θ α±( )cos
3 θ 4 θsin–cos 2=

E 10.22XAMPLE

S
o
l
u
t
i
o
n

R. θ α–( ) 3 θ 4 θsin–cos≡cos

R θ α R θ α 3 θ 4 θsin–cos≡sinsin+coscos

R αcos 3=
R αsin 4–=

R2cos2α R2sin2α+ 32 4–( )2+=
R2 cos2α sin2α+( ) 9 16+=

R2 25=
R 5=

R αsin
R αcos---------------- 4

3---–=

αtan 4
3---–=

α 0.927c–≈

5. θ 0.927c+( ) 3 θ 4 θsin–cos≈cos
5. θ 0.927c+( )cos 2=

5. θ 0.927c+( )cos 2=
θ 0.927c+( )cos 0.4=
θ 0.927c+ 1.159c± …=

θ 0.23  the only solution in the given interval.≈

t θ
2---  tan=

If θ
2---tan t   then θsin 2t

1 t2+-------------  and θcos 1 t2–
1 t2+-------------≡≡≡
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This can be viewed (at least for acute angles) as a right–angled 
triangle
The hypotenuse of the triangle can be found using the theorem of 
Pythagoras:

 

Two further identities follow: . These are useful in both calculus 
and trigonometry.

. 
Make the substitution: 

The equation becomes: 

    . 

Other solutions are outside the interval.

Note: The section on half angle identities has been added as an extension to the prescribed H.L 
syllabus. You should not expect to have questions that refer directly to half-angle identities in 
your examinations, however, such questions can be approached indirectly.

1. Expand the following
(a) (b) (c)
(d) (e) (f)

2φtan 2 φtan
1 tan2φ–----------------------  making the substitution  φ≡ θ

2---=  gives:  θtan
2 θ

2---tan

1 tan2θ2---–
----------------------≡ 2t

1 t2–-------------=

2t
θ

h 1 t2+=

1 t2–
h 2t( )2 1 t2–( )2+ 4t2 1 2t2– t4+ += =

1 2t2 t4+ +=
1 t2+( )2=

1 t2+=
θsin 2t

1 t2+-------------  and θcos 1 t2–
1 t2+-------------≡≡

Solve the equation .θ θcos+sin 1 π θ π≤ ≤–,=E 10.23XAMPLE

S
o
l
u
t
i
o
n

θ θcos+sin 1 π θ π≤ ≤–,=
θ
2---tan t θsin⇒ 2t

1 t2+-------------  and θcos 1 t2–
1 t2+-------------≡≡≡

2t
1 t2+-------------

1 t2–
1 t2+-------------+ 1 2t 1 t2–+ 1 t2+=⇔=

0 2t2 2t–=
t 0 1,=
θ
2---tan 0 θ

2---⇒ 0 θ⇒ 0= = =
θ
2---tan 1 θ

2---⇒ π
4--- θ⇒ π

2---= = =

EXERCISES 10.2.2

α φ+( )sin 3α 2β+( )cos 2x y–( )sin
φ 2α–( )cos 2θ α–( )tan φ 3ω–( )tan
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2. Simplify the following
(a) (b)
(c) (d)
(e) (f)

(g) (h)
(i)

3. Given that  and , evaluate
(a) (b) (c)

4. Given that  and , evaluate
(a) (b) (c)

5. Given that , evaluate
(a) (b) (c) (d)

6. Given that , evaluate
(a) (b) (c) (d)

7. Find the exact value of
(a) (b) (c) (d)

8. Given that , evaluate
(a) (b) (c) (d)

9. Prove the following identities:
(a) (b)
(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

2α 3β 3β 2αcossin–cossin 2α 5β 2α 5βsinsin–coscos
x 2y 2y xcossin+cossin x 3y x 3ysinsin+coscos
2α βtan–tan

1 2α βtantan+------------------------------------
x y–( ) ytan+tan

1 x y–( ) ytantan–---------------------------------------------
1 φtan–
1 φtan+--------------------

1
2------- α β+( ) 1

2------- α β+( )cos+sin
x 2y+( ) x 2y–( ) x 2y+( ) x 2y–( )cossin+sincos

θsin 4
5--- 0 θ π

2---≤ ≤,= φcos 5
13------ π φ 3π

2------≤ ≤,–=
θ φ+( )sin θ φ+( )cos θ φ–( )tan

θsin 3
5---– π θ 3π

2------≤ ≤,= φcos 12
13------ π φ 3π

2------≤ ≤,–=
θ φ–( )sin θ φ–( )cos θ φ+( )tan

θsin 5
6---–

3π
2------ θ 2π≤ ≤,=

2θsin 2θcos 2θtan 4θsin

xtan 3– π
2--- x π≤ ≤,=

2xsin 2xcos 2xtan 4tan x

5π
12------sin 105°sin 11π

12---------cos 165°tan

xtan a
b--- π x 3π

2------≤ ≤,=
2xsin cosec2x 4xcos 2xtan

x 2xcot–cot ec2xcos= x y+( ) x y–( )sinsin sin2x sin2y–=
sec2x 1 tan2x+= θ φ+( ) θ φ–( )tan+tan 2 2θsin

2θ 2φcos+cos-------------------------------------=

cos4α sin4α– 1 2sin2α–= 1
y ycossin----------------------

ycos
ysin-----------– ytan=

1 2ycos+
2ysin------------------------ 2ysin

1 2ycos–------------------------= θ π
2---+  csc θsec=

3xcos x 4sin2x xcos–cos= 1 2θsin+
2θcos----------------------- θ θsin+cos

θ θsin–cos-----------------------------=

x xcsc+cot( )2 1 xcos+
1 xcos–---------------------= 3αsin 3 α 4sin3α–sin=
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(m) (n)

(o) (p)

(q) (r)

(s) (t)

10. Prove that (a) .
(b)
(c)

(d)

11. For the right-angled triangle shown, prove that
(a) (b)

(c) (d)

12. Find the exact value .

13. Given that , prove that .

14. Solve the following for 
(a) (b) (c)

15. (a) Given that , express R and  in terms of a and b.
(b) Find the maximum value of .

16. (a) Given that , express R and  in terms of a and b.
(b) Find the minimum value of .

17. Using the t–substitution, prove that .

18. Show that if  then . Hence find the exact value of .

2xcos 1 tan2x–
1 tan2x+----------------------= 2 θsin2θcot 2θsin=

φ
2---  tan φ φcot–csc= 2 xcsc x

2---  
x
2---  cot+tan=

β βsin+cos 2βcos
β βsin–cos-----------------------------= α βtan+tan α β+( )sin

α βcoscos--------------------------=
θ
2---

2sin 1 θcos–
2---------------------= sin3x cos3x+

x xcos+sin-------------------------------- 1 1
2--- 2xsin–=

1 x xcos+sin+
1 x xcos–sin+-------------------------------------- 1

2---xcot=
4xcos 8cos4x 8cos2x– 1+=

sin4φ 3
8---

1
8--- 4φ 1

2--- 2φcos–cos+=

xsin
2 1

2---xtan

1 tan212---x+
-------------------------=

A C

B
a

b

c2αsin 2ab
c2---------= 2αcos b2 a2–

c2----------------=

1
2---αsin c b–

2c-----------= 1
2---αcos c b+

2c------------=

π
8---tan

α β γ+ + π= 2α 2β 2γsin+sin+sin 4 α β γsinsinsin=

0 x 2π≤ ≤
xsin 2xsin= xsin 2xcos= 2xtan 4 xtan=

asinθ b θ R θ α+( )sin≡cos+ α
5 4 θ 3 θcos+sin+

acosθ b θ R θ α–( )cos≡sin+ α
2 12 θ 5 θsin+cos+

π
4---

1
2---x+  tan x xtan+sec=

t π
12------tan= t2 2 3t+ 1= π

12------tan
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10.3.1 THE SINE, COSINE AND TANGENT FUNCTIONS

As we saw at the begining of this chapter, there is an infinite set of angles all of which give values 
(when they exist) for the main trigonometric ratios. We also noticed that the trigonometric ratios 
behave in such a way that values are repeated over and over. This is known as periodic behaviour. 
Many real world phenomena are periodic in the sense that the same patterns repeat over time. The 
trigonometric functions are often used to model such phenomena which include sound waves, 
light waves, alternating current electricity and other more approximately periodic events such as 
tides and even our moods (i.e., biorythms).
Notice how we have introduced the term trigonometric function, replacing the term trigonometric 
ratio. By doing this we can extend the use of the trigonometric ratios to a new field of problems 
described at the end of the previous paragraph.
When the trigonometric functions are used for these purposes, the angles are almost always 
measured in radians (which is a different way of measuring angles). However there is no reason 
why we cannot use degrees. It will always be obvious from the equation as to which mode of 
angle we are using, an expression such as  will imply (by default) that the angle is measured 
in radians, otherwise it will be written as , implying that the angle is measured in degrees.

What do trigonometric functions look like?

The sine and cosine values have displayed a periodic nature. Meaning that if we were to plot a 
graph of the sine values versus their angles or the cosine values versus their angles, we could 
expect their graphs to demonstrate periodic behaviour. We start by plotting points.

The sine function:

Notice that as the sine of angle  corresponds to the y–value of a point P on the unit circle, as P 
moves around the circle in an anti–clockwise direction, we can measure the y–value and plot it on 
a graph as a function of  (as shown above).

0 30 45 60 90 120 135 150 180 . . . 330 360
0.0 0.5 0.71 0.87 1.0 0.86 0.71 0.5 0.0 . . . –0.5 0.0

TRIGONOMETRIC FUNCTIONS10.3

xsin
x°sin

θ
θ°sin

180˚ 360˚

1

540˚
30˚
60˚

90˚135˚

30˚ 60˚
330˚

P θ°sin

90˚ 270˚

–1

θ˚

θ

θ
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Feature of sine graph: 1. Maximum value = 1, Minimum value = –1
2. Period = 360˚ (i.e., graph repeats itself every 360˚)
3. If P moves in a clockwise direction, y–values continue in their

periodic nature (see dashed part of graph).

The cosine function:

Plotting these points on a  versus –axis, we have:

Feature of cosine graph: 1. Maximum value = 1, Minimum value = –1
2. Period = 360˚ (i.e., graph repeats itself every 360˚)
3. If P moves in a clockwise direction, x–values continue in their

periodic nature.
There is a note to be made about using the second method (the one used to obtain the sine graph) 
when dealing with the cosine graph. As the cosine values correspond to the x–values on the unit 
circle, the actual cosine graph should have been plotted as shown below. However, for the sake of 
consistency, we convert the ‘vertical graph’ to the more standard ‘horizontal graph’:

0 30 45 60 90 120 135 150 180 . . . 330 360
1.0 0.87 0.71 0.5 0.0 –0.5 –0.71 –0.87 –1.0 . . . 0.87 1.0

θ
θcos °

θcos ° θ

180–180 360

1

–1

540 720–360 θ

θcos °

90 270

–180

cosθ

θ

90˚
180˚
270˚
360˚
540˚

x–value

x

y x–value =

90˚ 180˚ 270˚  360˚  540˚ θ0˚

1

–1

P
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There are some common observations to be made from these two graphs;
1. We have that the period of each of these functions is 360˚. 

This is the length that it takes for the curve to start repeating itself.
2. The amplitude of the function is the distance between the centre line (in this case

the -axis) and one of the maximum points. In this case, the amplitude is 1.  

The sine and cosine functions are useful for modelling wave phenomena such as sound, light, 
water waves etc.

The third trigonometric function (tangent) is defined as  and so is defined for all 
angles for which the cosine function is non-zero.
The angles for which the tangent function are not defined correspond to the x-axis intercepts of 
the cosine function which are . At these points the graph of the tangent 
function has vertical asymptotes. 
The period of the tangent function is 180˚, which is half that of the sine and cosine functions. 
Since the tangent function has a vertical asymptote, it cannot be said to have an amplitude. It is 
also generally true that the tangent function is less useful than the sine and cosine functions for 
modelling applications. The graph of the basic tangent function is:

When sketching these graphs using the TI–83, be sure that the WINDOW settings are appropriate 
for the MODE setting. In the case of degrees we have:
Step 1. Make sure that the calculator is in degree mode. Failure to do this could be disastrous!
Step 2. Select an appropriate range 
Step 3. Enter the function rule.

θ

θtan θsin
θcos------------=

90°± 270°± 450°± …, , ,

180˚–180˚ 90˚–90˚
θ

θtan
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As we mentioned at the start of this section, angles measured in radians are much more useful 
when modelling situations that are cyclic or repetitive. And, although we have sketched the 
graphs of the sine, cosine and tangent functions using angles measured in degrees, it is reassuring 
to know that the shape of the graph does not alter when radians are used. The only difference 
between the graphs then is that 90˚ would be replaced by , 180˚ by π and so on. We provide 
these graphs with the corresponding observations.

10.3.2 TRANSFORMATIONS OF TRIGONOMETRIC 
          FUNCTIONS

We now consider some of the possible transformations that can be applied to the standard sine 
and cosine function and look at how these transformations affect the basic properties of both 
these graphs
1. Vertical translations

Functions of the type ,  and  represent 
vertical translations of the curves of ,  and  respectively. If  the graph 
is moved vertically up and if  the graph is moved vertically down.

π
2---

period 2π
amplitude 1

period 2π
amplitude 1

, 

period π
no amplitude

f  :          f x( ), xsin=

f  :          f x( ), xcos=

f  :          f x( ), xtan= x π
2---

3π
2------

5π
2------ …, , ,≠

–2π         –π           0              π           2π           3π   

1

–1

y

x

–2π         –π           0              π           2π           3π   

1

–1

y

x

             –π              0              π             2π             3π   

1

–1

y

x

x π
2---= x 3π

2------=x π
2---–=

2π

1

2π

1

π

f x( ) x( ) c+sin= f x( ) x( )cos c+= f x( ) x( ) c+tan=
x( )sin x( )cos x( )tan c 0>

c 0<
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That is, adding or subtracting a fixed amount to a trigonometric function translates the graph 
parallel to the y-axis.

A graph sketch should show all the important features of a graph. In this case, the axes scales are 
important and should show the correct period (2π) and range [–3,–1].

2. Horizontal translations

Functions of the type ,  and  where 
 are horizontal translations of the curves ,  and  respectively. 

So that ,  and  
are translations to the right.

while that of ,  and  
are translations to the left.

Sketch the graphs of the functions for x values in the range –2π to 4π.
(a) (b)y x( )sin 1+= y x( )cos 2–=

E 10.24XAMPLE

x

y
2

–2π            –π                                  π                2π              3π             4π

y x( )sin 1+=

y x( )sin=

x

y

–1

–3

–2π            –π                                  π                2π              3π             4π

1

y x( )cos 2–=

y x( )cos=(b)

range = [0, 2]

range = [–3, –1]

(a)S
o
l
u
t
i
o
n

f x( ) x α±( )sin= f x( ) x α±( )cos= f x( ) x α±( )tan=
α 0> xsin xcos xtan

f x( ) x α–( )sin= f x( ) x α–( )cos= f x( ) x α–( )tan=

f x( ) x α+( )sin= f x( ) x α+( )cos= f x( ) x α+( )tan=

For –2π ≤ x ≤ 4π, sketch the graphs of the curves with equations
(a) (b) (c)y x π

4---–  cos= y x π
3---+  cos= y x π

6---–  tan=
E 10.25XAMPLE

x

y

π–π 2π

1

–1

3π 4π–2π π
4---

y x π
4---–  cos=

y x( )cos=

(a) This is the basic cosine graph 
translated  units to the right.π

4---
S
o
l
u
t
i
o
n
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Of course, it is also possible to combine vertical and horizontal translations, as the next example 
shows.

3. Dilations

Functions of the form ,  and  are dilations of 
the curves ,  and  respectively, parallel to the y-axis. 

In the case of the sine and cosine functions, the amplitude becomes  and not 1. This dilation
does not affect the shape of the graph. Also, as the tangent function extends indefinitely, the term 
amplitude has no relevance.

x

y

π–π 2π

1

–1

3π 4π–2π π
3---–

y x π
3---+  cos=

y x( )cos=

(b) This graph is the basic cosine graph 
translated   units to the left.π

3---

(c)

x

y

π–π 2π 3π 4π–2π

π
3---– 2π

3------

This is the tangent graph translated  
units to the right. This also translates 
the asymptotes  units to the right.

π
6---

π
6---

4π
3-------– 5π

3-------

Sketch the graphs of the function , –2π ≤ x ≤ 4π.f x( ) x π
4---–  sin 2+=

E 10.26XAMPLE

Basic sine graph translated  units right and 2 up.π
4---

x

y

π–π 2π 3π 4π–2π

1

3

2

π
4---

3π
4------

‘2 up’
f x( ) x π

4---–  sin 2+=

y x( )sin=

π
4--- right

S
o
l
u
t
i
o
n

f x( ) a xsin= f x( ) a x( )cos= f x( ) a x( )tan=
x( )sin x( )cos x( )tan

a
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Functions of the form ,  and  are dilations of 
the curves ,  and  respectively, parallel to the x-axis. 

This means that the period of the graph is altered. It can be valuable to remember and use the 
formula that relates the value of b to the period  of the dilated function:

1. The graph of  will show b cycles in 2π radians, meaning that its period
will be given by .

2. The graph of  will show b cycles in 2π radians, meaning that its period
will be given by .

3. The graph of  will show b cycles in π radians, meaning that its period
will be given by .

Note: In the case of the tangent function, whose original period is π, the period is .

Sketch the graphs of the following functions for –2π ≤ x ≤ 4π.
(a) (b)f x( ) 2 xcos= f x( ) 1

3--- xsin=
E 10.27XAMPLE

S
o
l
u
t
i
o
n

x

y

π–π 2π

1

–1
3π 4π–2π

2

–2

(a)

amp = 2

This is the cosine graph (broken line) 
with an amplitude of 2.

(b) This is the sine graph (broken line) 
with an amplitude of .1

3---

x

y

π–π 2π 3π 4π–2π

–1

1

1
3---–

1
3---

amp = 13---

f x( ) bx( )cos= f x( ) bx( )sin= f x( ) bx( )tan=
x( )sin x( )cos x( )tan

τ

f x( ) bx( )cos=
τ 2π

b------=

f x( ) bx( )sin=
τ 2π

b------=

f x( ) bx( )tan=
τ π

b---=

τ π
n---=
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(a) . The value of n is 2 so the period is . Note that this
means that the period is half that of the basic sine function.

(b) . In this case the value of  and the period .
The graph is effectively stretched to twice its original period.

(c) In this case, with , the value of  and the period .

Sketch graphs of the following functions for x values in the range –2π to 4π.
(a) (b) (c)f x( ) 2x( )sin= f x( ) x

2---  cos= f x( ) 2x( )tan=
E 10.28XAMPLE

S
o
l
u
t
i
o
n

f x( ) 2x( )sin= τ 2π
n------

2π
2------ π= = =

x

y

π–π 2π

1

–1

3π 4π–2π

f x( ) 2x( )sin=
x( )sin

f x( ) x
2---  cos= n 1

2---= τ 2π
n------

2π
1 2⁄---------- 4π= = =

x

y

π–π 2π

1

–1

3π 4π–2π

x( )cos
f x( ) 1

2---x  cos=

f x( ) x
4---  tan= n 1

4---= τ π
n--- 4π= =

x

y

π–π 2π
1

–1 3π 4π–2π

x( )tan

f x( ) x
4---  tan=
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4. Reflections

Recall that the graph of  is the graph of  reflected about the x–axis, while 
that of  is the graph of  reflected about the y–axis.

 is the basic cosine graph (broken line) reflected in the x-axis. 

 is the basic sine graph reflected in the y-axis. 

5. Combined transformations

You may be required to combine some or all of these transformations in a single function. The 
functions of the type

Care must be taken with the horizontal translation. 
For example, the function  has a horizontal translation of  to the 

left, not ! This is because  = . i.e., if the 

y f x( )–= y f x( )=
y f x–( )= y f x( )=

f x( ) xcos–=

x

y

π–π 2π

1

–1

3π 4π–2π

cosx

f x( ) xcos–=

f x( ) x–( )sin=

x

y

π–π 2π

1

–1

3π 4π–2π

sinx

f x( ) xsin–=

 and 
have:
1. an amplitude of |a| (i.e., the absolute value of a).
2. a period of 
3. a horizontal translation of c units, 
4. a vertical translation of d units, 

  f x( ) a b x c+( )[ ] d+sin=  f x( ) a b x c+( )[ ] d+cos=

2π
b------

c 0  to the left c 0 to the right⇒<,⇒>
d 0  up d 0 down⇒<,⇒>

f x( ) 2 3x π
2---+   1–cos= π

6---

π
2--- f x( ) 2 3x π

2---+   1–cos= 2 3 x π
6---+   1–cos
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coefficient of x is not one, we must first express the function in the form .

Similarly we have

(a) . This graph has an amplitude of 2, a period of π, a horizontal

translation of  units to the right and a vertical translation of 1 unit up.

(b) . The transformations are a reflection in the x-axis, a dilation of

factor 2 parallel to the x-axis and a translation of  right and 2 up.

a b x c+( )[ ] d+cos

has:
1. no amplitude (as it is not appropriate for the tan function).
2. a period of 
3. a horizontal translation of c units, 
4. a vertical translation of d units, 

  f x( ) a b x c+( )[ ] d+tan=

π
b---

c 0  to the left c 0 to the right⇒<,⇒>
d 0  up d 0 down⇒<,⇒>

Sketch graphs of the following functions for x values in the range –2π to 4π.
(a) (b)

(c)

f x( ) 2 2 x π
4---–   1+sin= f x( ) 1

2--- x π
3---–   2+cos–=

f x( ) 1
2---

1
2--- x π

2---–  tan–=

E 10.29XAMPLE

S
o
l
u
t
i
o
n

f x( ) 2 2 x π
4---–   1+sin=

π
4---

x

y

π–π 2π

3

–1
3π 4π–2π

f x( ) 2 2 x π
4---–   1+sin=

f x( ) xsin=

f x( ) 1
2--- x π

3---–   2+cos–=

π
3---

x

y

π–π 2π

3

3π 4π–2π

1
2

f x( ) 1
2--- x π

3---–   2+cos–=

f x( ) xcos=
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(b) . The transformations are a reflection in the x-axis, a vertical

dilation with factor , a horizontal dilation with factor 2 and a translation of  to the
right.

Again we see that a graphics calculator is very useful in such situations – in particular it allows 
for a checking process.
Example 10.28 (a)  could be sketched as follows:
Step 1. Make sure that the calculator is in radian mode.

Failure to do this could be disastrous!

Step 2. Enter the function rule. Remember to use the π key
where necessary. 
Do not use approximations such as 3.14

Step 3. Select an appropriate range. This may not be the ZTrig
option (7) from the ZOOM menu. 
However, this is probably a good place to start.

In this case, the viewing window is suitable, though it should be noted 
that it is not the specified range of x values [–2π,4π].

f x( ) 1
2---

1
2--- x π

2---–  tan–=

1
2---

π
2---

x

y

π–π 2π 3π 4π–2π π
2---

x π
2---–= x 3π

2------=

1

f x( ) 1
2---

1
2--- x π

2---–  tan–=

f x( ) xtan=
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Step 4. Adjust the viewing window using the WINDOW menu.
In this case it would be wise to select the correct set of x
values.

Finally use GRAPH to display the graph.

1. State the period of the following functions

(a) (b)

(c) (d)

(e) (f)

2. State the amplitude of the following functions

(a) (b)

(c) (d)

3. Find the period and, where appropriate, the amplitude of the following functions.

(a) (b)
(c) (d)
(e) (f)

(g) (h)

(i) (j)

EXERCISES 10.3

f x( ) 1
2---xsin= f x( ) 3xcos=

f x( ) x
3---tan= g x( ) x

2--- π–  cos=

g x( ) 4 πx 2+( )sin= g x( ) 3 π
2--- 2x–  tan=

f x( ) 5 2xsin= g x( ) 3 x
2---cos–=

g x( ) 4 5 2x( )cos–= f x( ) 1
2--- 3x( )sin=

y 2 xsin= y 3 x
3---cos=

y 3 xtan= 2 x 2π–( )tan
y 4 2 x π

6---+   1+sin–= y 2 3 2x π–( )cos–=

y 2 x
6---tan–= y 1

4--- 3 x 3π
4------–   5+cos=

y 4 x 4–
3-----------   3–tan= y 2

3---–
3
4--- x 3π

5------+     5+cos=
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4. Sketch the graph of the curve with equation given by

(a) (b)

(c) (d)

(e) (f)

(g) (h)

5. Sketch the graph of the curve with equation given by

(a) (b)

(c) (d)

(e) (f)

(g) (h)

6. Sketch the graph of the curve with equation given by

(a) (b)

(c) (d)

(e) (f)

(g) (h)

7. Sketch graphs of the following functions for x values in the interval [–2π,2π].

(a) (b)

(c) (d)

(e) (f)

(g) (h)

y 3 x 0 x 2π≤ ≤,cos= y x
2--- π x π≤ ≤–,sin=

y 2 x
3---   0 x 3π≤ ≤,cos= y 1

2--- 3x 0 x π≤ ≤,sin–=

y 4 x
2---   0 x 2π≤ ≤,tan= y 2x–( ) π x π

4---≤ ≤–,tan=

y 1
3--- 3x–( ) π3---– x π

3---≤ ≤,cos= y 3 2x–( ) π 0 π≤ ≤–,sin=

y 3 x 3+ 0 x 2π≤ ≤,cos= y x
2--- 1– π x π≤ ≤–,sin=

y 2 x
3---   2– 0 x 3π≤ ≤,cos= y 1

2--- 3x 2+ 0 x π≤ ≤,sin–=

y 4 x
2---   1– 0 x 2π≤ ≤,tan= y 2x–( ) 2+ π x π

4---≤ ≤–,tan=

y 1
3--- 3x–( ) 1

3---+ π
3---– x π

3---≤ ≤,cos= y 3 2x–( ) 2– π 0 π≤ ≤–,sin=

y 3 x π
2---+   0 x 2π≤ ≤,cos= y x

2--- π–   π x π≤ ≤–,sin=

y 2 x
3---
π
6---+   0 x 3π≤ ≤,cos= y 1

2--- 3x 3π+( ) 0 x π≤ ≤,sin–=

y 4 x
2---
π
4---–   0 x 2π≤ ≤,tan= y 2x– π+( ) π x π

4---≤ ≤–,tan=

y 1
3--- 3x– π–( ) π3---– x π

3---≤ ≤,cos= y 3 2x– π
2---–   π 0 π≤ ≤–,sin=

y 2x( )sin= y x
2---  cos–=

y 3 x π
4---–  tan= y 2 x π

2---–  sin=

y 1 2 2x( )sin–= y 2 x π–
2------------  cos–=

y 3 1
2--- x π

4---+   3–tan= y 3 x π
4---+  cos=
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(i) (j)

(k) (l)

(m) (n)

8. (a) i. Sketch one cycle of the graph of the function .
ii. For what values of x is the function  not defined?
iii. Hence, sketch one cycle of the graph of the function .

(b) i. Sketch one cycle of the graph of the function . 
ii. For what values of x is the function  not defined?
iii. Hence, sketch one cycle of the graph of the function .

(c) i. Sketch one cycle of the graph of the function . 
ii. For what values of x is the function  not defined?
iii. Hence, sketch one cycle of graph of the function .

10.4.1 THE INVERSE SINE FUNCTION

The trigonometric functions are many to one which means that, unless we are careful about 
defining domains, their inverses are not properly defined. The basic graphs of the sine function 
and its inverse (after reflection about the line y = x for the arcsinx function) are:

The inverse as depicted here is not a function (as it is one:many). This is inconvenient as the 
inverse trigonometric functions are useful. The most useful solution to this problem is to restrict 
the domain of the function to an interval over which it is one to one. In the case of the sine 
function, this is usually taken as , though this is not the only possible choice, it is one that 

y 2 1
3--- x 2π

3------+   1–sin= y 3 2x π+( )tan=

y 4
x π

2---+
2------------

    
sin= y 2 2 x π–( )

3--------------------  sin–=

y 2 πx( )cos= y 2 π x 1+( )[ ]sin=

f x( ) xsin=
y 1

f x( )-----------=
g x( ) cosecx=

f x( ) xcos=
y 1

f x( )-----------=
g x( ) xsec=

f x( ) xtan=
y 1

f x( )-----------=
g x( ) xcot=

INVERSE TRIGONOMETRIC FUNCTIONS10.4

x

y

π–π 2π

1

–1

x

y

π

–π

2π

1–1

xsin arc x or sin 1– xsin

π
2---– π

2---,
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allows for consistency to be maintained in literature and among mathematicians. The function 
thus defined is written with a capital letter: . The graphs are:

Notice then that the domain of  = range of  = [–1, 1] 
           and the range of  = domain of  = .

When these restrictions are adhered to, we refer to  (which is sometimes denoted by 
) as the principal value of . For example, , 

however,  has only one value (the principal value), so that .
From our fundamental indentity property of inverse functions, i.e., , 
we have that

Therefore,  only if –1 ≤ x ≤ 1. 
This then means that sometimes we can provide a meaningful interpretation to expressions such 
as  and  – as long as we adhere to the relevant restrictions.

Notice also that .

(a) As  exists. Therefore, .

(b) As  exists. Now, .
(c) As  does not exist.

f x( ) Sin x( ) x π
2---– π

2---,∈,=

x

y

1

–1

y Sinx=

π
2---

π
2---–

π
2---

π
2---–

–1                         1

y

x

y Sin 1– x=

Sin 1– x Sinx
Sin 1– x Sinx π

2---
π
2---,–

Sin 1– x
Arcsinx arcsinx arcsin 1

2---  
π
6--- or 

5π
6------ or 

7π
6------ or …–=

Arcsin 1
2---   Arcsin 1

2---  
π
6---=

fo f 1– x( ) f 1– of x( ) x= =

 and Sin Sin 1– x( ) x 1 x 1≤ ≤–,= Sin 1– Sinx( ) x π
2--- x π

2---≤ ≤–,=

Sin Sin 1– x( ) x Sin 1– Sinx( )= =

Sin 1– x( )sin Sin 1– xsin( )

Sin 1– x–( ) Sinx–=

Give the exact value of
(a) (b) (c) (d)Sin 1– 1

2--- Arcsin 3
2-------–   Sin 1– 1.3( ) Sin 1– πsin( )

E 10.30XAMPLE

S
o
l
u
t
i
o
n

1
2--- 1 1,–[ ] Sin 1– 1

2---⇒∈ Sin 1– 1
2---

π
6---=

3
2------- 1 1,–[ ] Arcsin 3

2-------–  ⇒∈– Arcsin 3
2-------–   Arcsin 3

2-------  – π
3---–= =

1.3 1 1,–[ ] Sin 1– 1.3( )⇒∉
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(d) As  exists. So, .
Note that ! Why?

10.4.2 THE INVERSE COSINE FUNCTION

For similar reasons as those for the sine function, the cosine function,  being 
a many to one function, with its inverse,  (or ) needs to be 
restricted to the domain [0,π], to produce a function that is one to one.
The function , –1 ≤ y ≤ 1 (with a capital ‘C’) will have the inverse 
function defined as . The graphs of these functions are:

Notice then that the domain of  = range of  = [–1, 1] 
and the range of  = domain of  = .

When these restrictions are adhered to, we refer to  (which is sometimes denoted by 
) as the principal value of .

From our fundamental indentity property of inverse functions, i.e., , 
we have that

Therefore,  only if 0 ≤ x ≤ 1. 
This then means that sometimes we can provide a meaningful interpretation of expressions such 
as  and  – as long as we adhere to the relevant restrictions.
Note also that in this case, .

πsin 1 1,–[ ] Sin 1– πsin( )⇒∈ Sin 1– πsin( ) Sin 1– 0( ) 0= =
Sin 1– πsin( ) π≠

x x ] ∞ ∞[,–∈,cos
arccosx 1 x 1≤ ≤–, cos 1– x 1 x 1≤ ≤–,

y Cos x( ) x 0 π,[ ]∈,=
f x( ) Cos 1– x( ) 1 x 1 0 y π≤ ≤,≤ ≤–,=

x

y

1

–1

y Cosx=

π

π

π
2---

–1                         1

y

x

y Cos 1– x=

π
2---

π

Cos 1– x Cosx
Cos 1– x Cosx 0 π,[ ]

Cos 1– x
Arccosx arccosx

fo f 1– x( ) f 1– of x( ) x= =

 and Cos Cos 1– x( ) x 1 x 1≤ ≤–,= Cos 1– Cosx( ) x 0 x π≤ ≤,=

Cos Cos 1– x( ) x Cos 1– Cosx( )= =

Cos 1– x( )cos Cos 1– xcos( )
Cos 1– x–( ) Cos 1– x( )–≠

Give the exact value of
(a) (b) (c)Cos 1– 1

2--- Arccos 3
2-------–   Cos 1– 3π

2------  cos  
E 10.31XAMPLE
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(a) As  exists. Therefore, .

(b) As  exists.

Let , then, .

(c) As  exists. .

Notice that .

(a) Let .

Then, .

(b) Let  exists.
However, this time we cannot obtain an exact value for x, 
so we make use of a right-angled triangle:
Therefore, from the triangle we have that .

i.e., .

(c) Let  exists.

Then, .

Therefore, 

S
o
l
u
t
i
o
n

1
2--- 1 1,–[ ] Cos 1– 1

2---⇒∈ Cos 1– 1
2---

π
3---=

π

π
2---

–1                         1

y

x

y Cos 1– x=

5π
6------

3
2-------–

3
2-------– 1 1,–[ ] Cos 1– 3

2-------–  ⇒∈

y Cos 1– 3
2-------–  = Cosy 3

2------- 0 y π≤ ≤,–=

y⇔ π π
6---–=

5π
6------=

3π
2------   1 1,–[ ] Cos 1– 3π

2------  cos  ⇒∈cos Cos 1– 3π
2------  cos   Cos 1– 0( ) π

2---= =

Cos 1– 3π
2------  cos   3π

2------≠

Give the exact value of
(a) (b) (c)Arccos 1

2-------    sin Sin 1– 1
4---    cos π

2--- Cos 1– 3
4---  –  sin

E 10.32XAMPLE

S
o
l
u
t
i
o
n

Arccos 1
2-------   x  ∴ as  12------- 0 1,[ ]  Arccos 1

2-------  ⇒∈ π
4---= =

Arccos 1
2-------    sin x( )sin π

4---sin 1
2-------= = =

Sin 1– 1
4---   x  as 14--- 1 1,–[ ] Sin 1– 1

4---  ⇒∈∴=

x
14

42 12– 15=xcos 15
4----------=

Sin 1– 1
4---    cos xcos 15

4----------= =

Cos 1– 3
4---   θ  as 34--- 1 1,–[ ] Cos 1– 3

4---  ⇒∈∴=

π
2--- Cos 1– 3

4---  –  sin π
2--- θ–  sin θcos= =

π
2--- Cos 1– 3

4---  –  sin Cos 1– 3
4---    cos 3

4---= =
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(a) As  and  then both  and  exist.
Using the compound angle formula for sine, we have that

= 

= 

However, we now need to construct two right-angled triangles to evaluate the first part of the 
expression. Let  and  so that we have the following triangles:

Meaning that 

and 

Therefore,  = 

(b) As  exists. Next, let , i.e., .
Then, using the double angle formula for cosine, we have

 = 

 

10.4.3 THE INVERSE TANGENT FUNCTION

The tangent function can be made one:one by restricting its domain to the open interval . 

.

Give the exact value of
(a) (b)Cos 1– 1

3---   Sin 1– 3
4---  +  sin 2Sin 1– 2

5-------    cos
E 10.33XAMPLE

S
o
l
u
t
i
o
n

1
3--- 1 1,–[ ]∈ 3

4--- 1 1,–[ ]∈ Cos 1– 1
3---   Sin 1– 3

4---  

Cos 1– 1
3---   Sin 1– 3

4---  +  sin

Cos 1– 1
3---     Sin 1– 3

4---     Sin 1– 3
4---     Cos 1– 1

3---    cossin+cossin

Cos 1– 1
3---     Sin 1– 3

4---     3
4---

1
3---×+cossin

x Cos 1– 1
3---  = y Sin 1– 3

4---  =

1

3 34
2 2

7x

y
Cos 1– 1

3---    sin xsin 2 2
3----------= =

Sin 1– 3
4---    cos ycos 7

4-------= =

Cos 1– 1
3---   Sin 1– 3

4---  +  sin 2 2
3----------

7
4-------× 3

4---
1
3---×+ 2 14 3+

12----------------------=
2
5------- 1 1,–[ ] Sin 1– 2

5-------  ⇒∈ θ Sin 1– 2
5-------  = Sinθ 2

5-------=

2Sin 1– 2
5-------    cos 2θ( )cos 1 2sin2θ–=

1 2 θsin[ ]2–=
1 2 2

5-------
2–=

3
5---–=

π
2---– π

2---,  

f x( ) Tan x( ) x π
2---– π

2---,  ∈,=
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The function , –∞ < y < ∞, (with a capital ‘T’) will have the inverse 
function defined as . The graphs of these functions are:

Notice then that the domain of  = range of  = (–∞, ∞) 
and the range of  = domain of  = .

When these restrictions are adhered to, we refer to  (which is sometimes denoted by 
) as the principal value of .

From our fundamental indentity property of inverse functions, i.e., , 
we have that

Therefore,  only if . 
As we saw with the sine and cosine functions, it may also be possible to evaluate expressions 
such as  and .
For example, , however, .

Note also that 

(a) As  exists. Then, we let , so that .
Next we construct an appropriate right-angled triangle:
So,  =  = 

y Tan x( ) x π
2---– π

2---,  ∈,=
f x( ) Tan 1– x( ) ∞ x ∞< <–,=

x

y

1

–1

y Tanx=

π
2---

π
2---–

π
2---

π
2---–

y

x
y Tan 1– x=

Tan 1– x Tanx
Tan 1– x Tanx π

2---– π
2---,  

Tan 1– x
Arctanx arctanx

fo f 1– x( ) f 1– of x( ) x= =

 and Tan Tan 1– x( ) x ∞ x ∞< <–,= Tan 1– Tanx( ) x π
2---– x< π

2---<,=

Tan Tan 1– x( ) x Tan 1– Tanx( )= = π
2---– x< π

2---<

Tan 1– x( )tan Tan 1– xtan( )
Tan 1– 1( )tan π

4---  tan 1= = Tan 1– 2π
3------tan   Tan 1– 3–( ) π

3---–= =

Tan 1– x–( ) Tan x( )–=

Give the exact value of
(a) (b)Sin 1– 3

5---–    tan 2Tan 1– 1
3---    sin

E 10.34XAMPLE

S
o
l
u
t
i
o
n

3
5--- 1 1,–[ ] Sin 1– 3

5---–  ⇒∈– θ Sin 1– 3
5---  = Sinθ 3

5---=

35
4

θSin 1– 3
5---–    tan Sin– 1– 3

5---    tan θ–( )tan θtan– 3
4---–= =
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(b) As  exists. Let .
Next we construct an appropriate right-angled triangle:
Then,  = 

    

It is these restricted functions that are programmed into most calculators, spreadsheets etc.
If the calculator is set in radian mode, some sample calculations are:

If the calculator is set in degree mode, the results are:

Note that, when using a calculator in radian mode, answers that are multiples of π can be difficult 
to find. Not many of us know that 0.5235987756 is . It can be a good idea to work on the 
calculator in degrees, even when the final answers are required in radians. Thus, in the above 
example,  could be a good way to infer the exact 
radian answer. It is not a good idea to work with approximations, unless you are told to do so.

(a)  from a calculator in degree mode. The radian answer is – .

(b)  from a calculator in degree mode. The radian answer is .

1
3--- ∞ ∞,–( ) Tan 1– 1

3---  ⇒∈ Tan 1– 1
3---   θ Tanθ∴ 1

3---= =

1
3

θ
10

2Tan 1– 1
3---    sin 2θsin 2 θ θcossin=

2 1
10---------- 3

10----------××=
3
5---=

Sin 1
2---

1– π
6---=

Cos 3
2-------

1– π
6---=

Tan 1–1– π
4---–=

Sin 1
2---

1– 30°=

Cos 3
2-------

1– 30°=

Tan 1–1– 45°–=

π
6---

Cos 3
2-------

1– 30°= Cos 3
2-------

1–⇒ 30 π
180---------× π

6---= =

Find the principal values of the following 
(a) (b) (c)Sin 1

2---–  1– Cos 1
2-------–  1– Tan 31–

E 10.35XAMPLE

S
o
l
u
t
i
o
n

Sin 1
2---–  1– 30°–= π

6---

Cos 1
2-------–  1– 135°= 3π

4------
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(c)  from a calculator in degree mode. The radian answer is .

1. Find the principal values of the following, giving answers in radians:
(a) (b) (c)
(d) (e) (f)

(g) (h) (i)
(j) (k) (l)
(m) (n) (o)

2. Solve the following equations, giving exact answers
(a)      (b)             (c)     

3. Prove (a)

(b)

(c)

4. Solve for x, where 

5. Find the exact value of
(a) (b)

(c) (d)

(e) (f)

6. Find the exact value of
(a) (b)

Tan 31– 60°= π
3---

EXERCISES 10.4

Tan 11– Arc 1sin Arc 1–cos
Sin 3

2-------
1– Cos 1

2-------
1– Tan 3–1–

Tan 21– Sin 0.7–1– Arc 0.1tan
Arc 0.3cos Sin 0.6–1– Tan 51–

Cos 31– Tan 30–1– Sin 7
8---  

1–

Arctanx 3π
4------= Arcsin 2x( ) π

3---= Arccos 3x( ) 5π
4------=

Arctan 4( ) Arctan 3
5---  – π

4---=

Sin 1– 4
5---   Sin 1– 4

5---–  + 0=

Sin 1– 3
5---   Tan 1– 7

24------  + Cos 1– 3
5---  =

Arctan 3x( ) Arctan 2x( )– Arctan 1
5---  =

π
2--- Cos 1– 2

3---  –sin π
2--- Sin 1– 1

3---–  +cos

Tan 1– 3–( )[ ]cos Cos 1– 4
5---    tan

Sin 1– 1
3---–    sec Tan 1– 1–( )( )cot

Sin 1– 3
5---   Sin 1– 4

5---  +sin Sin 1– 3
5---   Sin 1– 4

5---–  +sin
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(c) (d)

(e) (f)

(g) (h)

7. Prove that (a) (b)
(c)

8. Prove that (a)
(b)
(c) , for all real x and y,  xy ≠ 1.

(d) , for all real x and y,  xy ≠ –1.

9. Find (a) , where –1 ≤ k ≤ 1, k ≠ 0.
(b) , where k is a real number.

10. (a) State the implied domain of the following functions and sketch their graphs
(a) (b)

(c) (d)

11. (a) Prove that , for all real x.

(b) Prove that , for all real x.

12. (a) On the same set of axes sketch the graphs of  and .
(b) Hence, deduce the value of k, where

i.
ii.

(c) On a separate set of axes, sketch the graph of .
13. Prove that if  then .

Hence, find .

Tan 1– 4
3---   Cos 1– 5

13------  –cos Tan 1– 4
3---   Tan 1– 3

4---  +tan

2Arcsin 2
3---    sin 2Tan 1– 1

2---–    cos

2Cos 1– 2
5-------    tan 2Sin 1– 1

2---–    cos

Sin 1– 7
25------   Cos 1– 24

25------  = Tan 1– 1
2---   Tan 1– 1

3---  + π
4---=

Tan 1– 1( ) Tan 1– 2( ) Tan 1– 3( )+ + π=

Sin 1– x Cos 1– 1 x2– 0 x 1≤ ≤,=
Cos 1– x Sin 1– 1 x2– 0 x 1≤ ≤,=
Tan 1– x Tan 1– y+ Tan 1– x y+

1 xy–--------------  =

Tan 1– x Tan 1– y– Tan 1– x y–
1 xy+---------------  =

Cos 1– k( )tan
Tan 1– k( )cos

f x( ) Sin 1– x
2---  

π
2---+= f x( ) Cos 1– 2x( ) π–=

g x( ) 2Sin 1– x 1–( )= h x( ) Cos 1– x 2+( ) π2---–=

Sin 1– x
1 x2+

------------------   Tan 1– x=

Cos 1– 1
1 x2+

------------------   Tan 1– x=

y Cos 1– x= y Sin 1– x=

Cos 1– x Sin 1– x+ k 1 x 0≤ ≤–,=
Cos 1– x Sin 1– x+ k 0 x 1≤ ≤,=

y Cos 1– x Sin 1– x 1 x 1≤ ≤–,+=
n 1> Arctan 1

n---   Arctan 1
n 1+------------  – Arctan 1

1 n n 1+( )+------------------------------  =

Arctan 1
1 i i 1+( )+---------------------------  

i 1=

n
∑
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We have already encountered solutions to trigonometric equations as part of a general observation 
in this chapter. There are two basic methods that can be used when solving trigonometric 
equations;

Method 1. Use the unit circle as a visual aid.
Method 2. Use the graph of the function as a visual aid.

The method you choose depends entirely on what you feel comfortable with. However, it is 
recommended that you become familiar with both methods.

10.5.1 SOLUTION TO ,  & 

The equation  produces an infinite number of solutions. This can be seen from the 
graph of the sine function. 

Using the principal angle  and symmetry, the solutions generated are

For x ≥ 0:

  

For x < 0: 

That is, 

or,  , where n is an integer (including zero).

The solution  is known as the general solution. However, in this course, 

there will always be some restriction on the domain. For example, solve , , 

which would then give  as its solutions. 

TRIGONOMETRIC EQUATIONS10.5

xsin a= xcos a= xtan a=
xsin 1

2---=

x

y

π–π 2π

1

–1

3π 4π–2π

f x( ) xsin=

π
6---

π π
6---– 3π π

6---–2π π
6---+π– π

6---–2π– π
6---+ .    .    ..    .    .

1
2---

π
6---  

x π
6--- π

π
6--- 2π

π
6--- 3π

π
6--- …,–,+,–,=

π
6---

5π
6------

13π
6---------

17π
6--------- …, , , ,=

x π– π
6--- 2– π π

6--- 3– π π
6--- …,–,+,–=

7π
6------

11π
6---------

19π
6--------- …,–,–,–=

xsin 1
2--- x⇔ … 7π

6------
11π
6---------

19π
6---------
π
6---

5π
6------

13π
6---------

17π
6--------- …, , , , ,–,–,–,= =

x nπ 1–( )n π
6---×+=

x nπ 1–( )n π
6---×+=

xsin 1
2---= 2π– x π< <

x 7π
6------

11π
6---------
π
6---

5π
6------, ,–,–=
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The same problem could have been solved using Method 1. We start by drawing a unit circle and 
we continue to move around the circle until we have all the required solutions within the domain 
restriction. Again, the use of symmetry plays an important role in solving these equations.
For x ≥ 0:

For x < 0:

Again, for the restricted domain  , we have  if .

The process is identical for the cosine and tangent function.

(a) Step 1: Find the reference angle: .
Step 2: Sketch the cosine graph (or use the unit circle):

Step 3: Use the reference angle and symmetry to obtain solutions.
Therefore, solutions are, 

      
Step 4: Check that i. all solutions are within the domain

ii. you have obtained all the solutions in the domain.
(Use the graphics calculator to check).

x

y

O

x π
6---=

1
2---

x

y

O

x π π
6---–=

1
2---

x

y

O

x 2π π
6---+=

1
2---

outside domain

x

y

O

x 2– π π
6---+=

1
2---

x

y

O

x π π
6---––=

x

y

x 3π– π
6---–=

1
2---

outside domain

1
2---

2π– x π< < xsin 1
2---= x 7π

6------
11π
6---------
π
6---

5π
6------, ,–,–=

Solve the following, for , giving answers to 4 decimal places if 
no exact answers are available.
(a) (b) (c)

0 x 4π≤ ≤

xcos 0.4= xtan 1–= 5 x 2–cos 0=

E 10.36XAMPLE

S
o
l
u
t
i
o
n

x Cos 1– 0.4( ) 1.1593= =

x

f x( ) xcos=

Cos 1– 0.4( )

2π Cos– 1– 0.4( )

2π Cos+ 1– 0.4( )

4π Cos– 1– 0.4( )

π            2π           3π           4π

y

x Cos 1– 0.4( ) 2π Cos 1– 0.4( ) 2π Cos 1– 0.4( ) 4π Cos 1– 0.4( )–,+,–,=
1.1593 5.1239 7.4425 11.4071, , ,=
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Using the TI–83 we count the number of intersections for  and :

(b) Step 1: Find reference angle (in first quadrant): .
Step 2: Sketch the tangent graph (or use the unit circle):

Step 3: Use the reference angle and symmetry to obtain solutions.
Reference angle is . 

Therefore solutions are 

    
From the TI–83 display, we see that there are four solutions. 
Then, as the four solutions obtained all lie in the interval [0, 4π] 
Step 4 is satisfied.

(c)
i.e.,    

Which is in fact, identical to the equation in part (a) and so, we have that 
     

Part (c) in Example 10.36 highlights the fact that it is possible to transpose a trigonometric 
equation into a simpler form, which can readily be solved. Rather than remembering (or tryingt to 
commit to memory) the different possible forms of trigonometric equations and their specific 
solution processes, the four steps used (with possibly some algrebraic manupulation) will always 
transform a (seemingly) difficult equation into one having a simpler form, as in Example 10.36.

y 0.4= y xcos=

4 solutions are
required.

Tan 1– 1( ) π
4---=

x

y

π 2π 3π 4π
1

π
4---

–1

π π
4---– 2π π

4---– 3π π
4---– 4π π

4---–

reference angle:

π
4---

x π π
4--- 2π π

4--- 3π π
4--- 4π π

4---–,–,–,–=
3π
4------

7π
4------

11π
4---------

15π
4---------, , ,=

–1

y

x

5 x 2–cos 0 5 xcos⇔ 2 xcos⇔ 2
5---= = =

xcos 0.4=

x 1.1593 5.1239 7.4425 11.4071, , ,=
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Some forms of trigonometric equations are:
, , , , 

And of course, then there are equations involving the secant, cosecant and cotangent functions.
But even the most involved of these equations, e.g., , can be reduced to a 
simpler form:
1. Transpose:

 
2. Substitute:

Then, setting  and , we have  which can be readily
solved.

3. Solve for new variable:
So that the solutions to  are .

4. Solve for original variable:
We substitute back for  and solve for :

All that remains is to check that all the solutions have been obtained and that they all lie in
the restricted domain.

The best way to see how this works is through a number of examples.

(a) Let , so that we now solve the equation .
From Example 10.36 (a) we already have the solutions, namely;

  
  

However, we want to solve for x not . So, we substitute back for x:
i.e.,     

   

To check that we have all the solutions, we sketch the graphs of
 and  over the domain 0 ≤ x ≤ 2π.

The diagram shows that there should be four solutions.

kx( )sin a= x c+( )cos a= kx c+( )tan a= b kx c+( )cos a= b kx c+( ) d+sin a=

b kx c+( ) d+sin a=

b kx c+( ) d+sin a b kx c+( )sin⇔ a d–= =
kx c+( )sin⇔ a d–

b------------=

kx c+ θ= a d–
b------------ m= θsin m=

θsin m= θ θ1 θ2 θ3 …, , ,=

θ x
kx c+ θ1 θ2 θ3 …, , ,=

kx⇔ θ1 c θ2 c θ3 c …,–,–,–=

x⇔ θ1 c–
k-------------- θ2 c–

k-------------- θ3 c–
k-------------- …, , ,=

Solve the following, for 
(a) (b)

0 x 2π≤ ≤
2x( )cos 0.4= 1

2---x  tan 1–=

E 10.37XAMPLE

S
o
l
u
t
i
o
n

θ 2x= θcos 0.4=

θ Cos 1– 0.4( ) 2π Cos 1– 0.4( ) 2π Cos 1– 0.4( ) 4π Cos 1– 0.4( )–,+,–,=
1.1593 5.1239 7.4425 11.4071, , ,=

θ

2ππ

2x 1.1593 5.1239 7.4425 11.4071, , ,=
x∴ 0.5796 2.5620 3.7212 5.7045, , ,=

y 2x( )cos= y 0.4=
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(b) This time, to solve  we first let  so that we now need to solve the
simpler equation .
From Example 10.35 (b) we have that 

However, we want to solve for x, not . So, we substitute for x:

To check that we have all the solutions, we sketch the graphs of
 and  over the domain 0 ≤ x ≤ 2π.

The diagram shows that there should be only one solution.
Therefore, the only solution is .

There is of course another step that could be used to help us predetermine which solutions are 
valid. This requires that we make a substitution not only into the equation, but also into the 
restricted domain statement. 
In Example 10.36 (b), after setting  to give , we next adjust the restricted 

domain as follows: .
So, from  we now have .
That is, we have the equivalent equations:

:

:

1
2---x  tan 1–= θ 1

2---x=
θtan 1–=

θ π π
4--- 2π π

4--- 3π π
4--- 4π π

4---–,–,–,–=
3π
4------

7π
4------

11π
4---------

15π
4---------, , ,=
θ

1
2---x

3π
4------

7π
4------

11π
4---------

15π
4---------, , ,=

2ππ
x∴ 3π

2------
7π
2------

11π
2---------

15π
2---------, , ,=

y 1
2---x  tan= y 1–=

x 3π
2------=

θ 1
2---x= θtan 1–=

θ 1
2---x x⇔ 2θ= =

0 x 2π≤ ≤ 0 2θ 2π 0 θ π≤ ≤⇔≤ ≤

1
2---x  tan 1 0 x 2π≤ ≤,–=

2ππ
x∴ 3π

2------=
π
2---

3π
2------

θtan 1 0 θ π≤ ≤,–=

ππ
2--- θ 3π

4------
1
2---x∴ 3π

4------= =
x∴ 3π

2------=

π
4---

3π
4------
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(a) .
Let .
New domain:
Therefore, we have, 
The reference angle is , then, by symmetry we have

All solutions lie within the original specified domain, .

.

Let 

Next, . [Obtain x in terms of θ] 
New domain:

  
Therefore, our equivalent statement is .

              

      
But we still need to find the x-values:

Solve , 4 3x( )sin 2= 0° x 360°≤ ≤E 10.38XAMPLE

S
o
l
u
t
i
o
n

4 3x( )sin 2 3x( )sin⇔ 0.5 0° x 360°≤ ≤,= =
θ 3x θsin⇒ 0.5= =

0° x 360° 0° θ3--- 360° 0° θ 1080°≤ ≤⇔≤ ≤⇔≤ ≤
θsin 0.5 0° θ 1080°≤ ≤,=
30°

y

180 360

1

–1

540 720            900      1080

f θ( ) θsin=
1
2---

θ30˚

θ∴ 30° 180° 30° 360° 30° 540° 30° 720° 30° 900° 30°–,+,–,+,–,=
3x∴ 30° 150° 390° 510° 750° 870°,,,,,=
x∴ 10° 50° 130° 170° 250° 290°,,,,,=

0° x 360°≤ ≤

Solve , for .2 x
2---
π
2---+   3–cos 0= π– x 4π≤ ≤

E 10.39XAMPLE

S
o
l
u
t
i
o
n

2 x
2---
π
2---+   3–cos 0 x

2---
π
2---+  cos⇔ 3

2------- π– x 4π≤ ≤,= =

x
2---
π
2---+ θ θcos⇒ 3

2-------= =
x
2---
π
2---+ θ x

2---⇔ θ π
2--- x⇔– 2θ π–= = =

π– x 4π π– 2θ π– 4π 0 2θ 5π≤≤⇔≤ ≤⇔≤ ≤
0 θ 5π

2------≤ ≤⇔

θ

f θ( ) θcos=

π
6--- 2π π

6---–
2π π

6---+

π            2π         

y
θcos 3

2------- 0 θ 5π
2------≤ ≤,=

θ∴ π
6--- 2π π

6--- 2π π
6---+,–,=

π
6---

11π
6---------

13π
6---------, ,=
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Therefore, substituting  back into the solution set, we have:

And, we notice that all solutions lie within the original specified domain, .

(a)
  

The reference angle is 

Therefore, 
       

(b) In this case we make use of the double angle identity, .

          

Solving for : . Solving for : 

We solved two separate equations, giving the solution, .

θ x
2---
π
2---+=

x
2---
π
2---+ π

6---
11π
6---------

13π
6---------, ,=

x⇔ π+ π
3---

11π
3---------

13π
3---------, ,=

x⇔ 2π
3------

8π
3------

10π
3---------, ,–=

π– x 4π≤ ≤

Solve the following, for .
(a) (b) (c)

0 x 2π≤ ≤
2 xsin 3 xcos= 2 2xsin 3 xcos= xsin 2xcos=

E 10.40XAMPLE

S
o
l
u
t
i
o
n

x

y

π 2π
1

–1

reference angle: Tan 1– 1.5( ) π Tan 1– 1.5( )+

2 xsin 3 x xsin
xcos-----------⇔cos 3

2--- 0 x 2π≤ ≤,= =
xtan⇔ 1.5 0 x 2π≤ ≤,=

Tan 1– 1.5( ) 0.9828≈

x Tan 1– 1.5( ) π Tan 1– 1.5( )+,=
0.9828 4.1244,≈

2xsin 2 x xcossin=
2∴ 2xsin 3 x 2 2 x xcossin( )⇔cos 3 xcos= =

4⇔ x x 3 xcos–cossin 0=
x 4 x 3–sin( )cos⇔ 0=

xcos 0 xsin, 3
4---= =

xcos 0= x π
2---

3π
2------,= xsin 3

4---= x Sin 1– 3
4---   π Sin 1– 3

4---  –,=

f x( ) xcos=

π
2---

π            2π         

y

3π
2-------

x

y
1

–1

3
4------

0                π           2π

Sin 1– 3
4---   π Sin 1– 3

4---  –

x

f x( ) xsin=

x 0 Sin 1– 3
4---  
π
2--- π, Sin 1– 3

4---  
3π
2------,–,,=
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(c) This time we make use of the cosine double angle formula, .

Again, we have two equations to solve.
Solving for : Solving for :

Therefore, solution set is .

As the next example shows, the amount of working required to solve trigonometric equations can 
be significantly reduced, especially if you know the exact values (for the basic trigonometric 
angles) as well as the symmetry properties (without making use of a graph). However, we 
encourage you to use a visual aid when solving such equations.

2xcos 1 2sin2x–=
∴ xsin 2xcos=

xsin⇔ 1 2sin2x–=
2sin2x x 1–sin+⇔ 0=

2 x 1–sin( ) x 1+sin( )⇔ 0=
xsin⇔ 1

2--- or xsin 1–= =

xsin 1
2---= xsin 1–=

x

y

π 2π

1

–1

f x( ) xsin=

π
6--- π π

6---–

1
2---

x

y

π 2π

1

–1

f x( ) xsin=

3π
2------

1
2---

x π
6---

5π
6------

3π
2------, ,=

Solve the equation 4 x xcossin 3 2π x 2π≤ ≤–,=E 10.41XAMPLE

S
o
l
u
t
i
o
n

4 x xcossin 3 2π x 2π≤ ≤–,=
2 2xsin 3  using  2θsin 2 θ θcossin≡=

2xsin 3
2-------=

2x … 11π–
3------------ 10π–

3------------ 5π–
3---------

4π–
3---------
π
3---

2π
3------

7π
3------

8π
3------ …, , , , , , , ,=

x 11π–
6------------ 5π–

3---------
5π–
6---------

2π–
3---------
π
6---
π
3---

7π
6------

4π
3------, , , , , , ,=
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1. If , find:
(a) (b) (c)

(d) (e) (f)

2. If , find:
(a) (b) (c)

(d) (e) (f)

3. If , find:
(a) (b) (c)

(d) (e) (f)

4. If  or , find:
(a) (b)

(c) (d)

(e) (f)

(g) (h)

5. If  or , find:
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)        
(m) (n) (o)

EXERCISES 10.5

0 x 2π≤ ≤
xsin 1

2-------= xsin 1
2---–= xsin 3

2-------=

3xsin 1
2---= x

2---  sin 1
2---= πx( )sin 2

2-------–=

0 x 2π≤ ≤
xcos 1

2-------= xcos 1
2---–= xcos 3

2-------=

x
3---  cos 1

2---= 2x( )cos 1
2---= π

2---x  cos 2
2-------–=

0 x 2π≤ ≤
xtan 1

3-------= xtan 1–= xtan 3=

x
4---  tan 2= 2x( )tan 3–= π

4---x  tan 1–=

0 x 2π≤ ≤ 0 x 360≤ ≤
x° 60°+( )sin 1

2---= x° 30°–( )cos 3
2-------–=

x° 45°+( )tan 1–= x° 20°–( )sin 1
2-------=

2x π
2---–  cos 1

2---= π
4--- x–  tan 1=

2x π+( )sec 2= 2x π
2---+  cot 1=

0 x 2π≤ ≤ 0 x 360≤ ≤
x°cos 1

2---= 2 x 3+sin 0= 3 xtan 1=

5 x°sin 2= 4sin2x 3– 0= 1
3------- x 1+tan 0=

2 x π
3---+  sin 1–= 5 x 2+( ) 3–cos 0= x π

6---–  tan 1
3-------=

2 2x 1+cos 0= 2x 3–tan 0= 2 x°sin 5 x°cos=
2cosec x

2---   4= 1
2--- 2x( )cot 0= x

3---  sec 2–=
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6. Solve the following equations for the intervals indicated, giving exact answers:

(a) (b)

(c) (d)
(e)   (f)
(g) (h)

7. Find (a) .
(b) .

8. If  find:
(a) (b) (c)

9. If  find:
(a) (b)
(c) (d)

10. (a) Express  in the form .
(b) Solve .

11. (a) Express  in the form .
(b) Solve .

12. Find x if .

13. (a) Sketch the graph of .

(b) Hence, find i. .

ii. .

14. (a) i. On the same set of axes sketch the graphs of  and
 for 0 ≤ x ≤ 2π.

ii. Find .
(b) i. On the same set of axes sketch the graphs of  and

 for 0 ≤ x ≤ 2π.
ii. Find .

θ θcossin 1
2--- π θ π≤ ≤–,= cos2θ sin2θ– 1

2---
π
2--- θ π

2---≤ ≤–,–=

Atan 1 tan2A–
2----------------------- π A π≤ ≤–,= θsin

1 θcos+--------------------- 1 π θ π≤ ≤–,–=
cos2x 2 x π x π≤ ≤–,cos= 2xsec 2 0 x 2π≤ ≤,=
2sin2x 3 xcos– 2 0 x 2π≤ ≤,= 2xsin 3 x 0 x 2π≤ ≤,cos=

3tan2x xtan+ 2 0 x 2π≤ ≤,=
tan3x tan2x+ 3 x 3 0 x 2π≤ ≤,+tan=

0 x 2π≤ ≤
sin22x 1

4---– 0= tan2 x
2---   3– 0= cos2 πx( ) 1=

0 x 2π≤ ≤
sec2x 2 xsec+ 8= sec2x 2 x 4+tan=
cot2x 3 xcot– 0= 6cosec2x 8 xcot+=

3 x xcos+sin R x α+( )sin
3 x xcos+sin 1 0 x 2π≤ ≤,=

x 3 xcos–sin R x α+( )sin
x 3 xcos–sin 1– 0 x 2π≤ ≤,=

2 x π
3---+   2 x π

3---–  sin+sin 3 0 x 2π≤ ≤,=

f x( ) x 0 x 4π≤ ≤,sin=

x x 1
2--->sin    x 0 x 4π< <{ }∩

x 3 x 1–<sin{ } x 0 x 4π< <{ }∩

f x( ) xsin=
g x( ) xcos=

x x x 0 x 2π≤ ≤,cos<sin{ }
f x( ) 2xsin=

g x( ) xcos=
x 2x x 0 x 2π≤ ≤,cos<sin{ }
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15. Show that ,

where n is an integer.

16. Find (a) i. .

ii.

(b) .
(c) .

17. Given that the quadratic equation  has equal roots, find
(a) .
(b) the roots of the quadratic.

18. (a) Show that .
(b) Using the substitution , show that  becomes .
(c) Hence find the exact values of the roots of the equation .

19. Find 

20. (a) Given that , show that .
(b) Hence, or otherwise show that if  and  are the roots of the quadratic in

(a), then 

21. (a) Solve 

(b) Hence, find .

22. Prove that if , .

23. Using the inequality , prove that , where .

24. Find all real values of x and y such that .
[Hint: let  and show that ].

x : 3 x xsin–cos 1 x ∈,={ } x : x 2nπ π
6---+=    x : x 2nπ π

2---–=   ∪=

x : xsin αsin x     0 α π
2---< <,∈,=   

x : xsin αsin x     0 α π
2---< <,∈,≥   

x : 3xsin 2sin x x   ∈,={ }
x : 3xcos 2xsin x   ∈,={ }

x2 8 θx 3 θcos+cos– 1=
θ 0 θ 2π≤ ≤,

3θcos 4cos3θ 3 θcos–=
t 2 θcos= t3 3t 1+= 3θcos 1

2---=
x3 3x– 1– 0=

x x 2x 3xcos+cos+cos 0 π x π< <–,={ }

2 2x 2xcos+sin a= 1 a+( )tan2x 4 x a+tan– 1=
x1tan x2tan

x1 x2+( )tan 2=

x° : 3 xsin ° 1
x°sin-------------– 2 0 x 360≤ ≤,=   

x° : 3 xsin ° 1
x°sin-------------< 2 0 x 360≤ ≤,+   

0 α1 α2 … αn π
2---< < < < < α1 α1 α2 … αnsin+ +sin+sin

α1cos α2cos … αncos+ ++---------------------------------------------------------------------- αntan< <tan

x
2---

x
2--->tan x x 1

4---x3–>sin 0 x π
2---< <

sin4x cos4y 2+ + 4 x ycossin=
u x v,sin ycos= = u2 1–( )2 v2 1–( )2 2 u v–( )2+ + 0=
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Functions of the type considered in the previous section are useful for modelling periodic 
phenomena. These sorts of applications usually start with data that has been measured in an 
experiment. The next task is to find a function that ‘models’ the data in the sense that it produces 
function values that are similar to the experimental data. Once this has been done, the function 
can be used to predict values that are missing from the measured data (interpolation) or values 
that lie outside the experimental data set (extrapolation).

We start by entering the data as lists and then plotting them using the TI–83:

This does suggest that the depth is varying periodically. It appears that the period is 
approximately 13 hours. This is found by looking at the time between successive high tides.  This 
is not as easy as it sounds as the measurements do not appear to have been made exactly at the 
high tides. This means that an estimate will need to be made based upon the observation that 
successive high tides appear to have happened after 3, 16 and 32 hours. Next, we look at the 
amplitude and vertical translation. Again, because we do not have exact readings at high and low 
tides, these will need to be estimated. The lowest tide recorded is 14.98 and the highest is 17.49. 
A first estimate of the vertical translation is  and the amplitude is 

APPLICATIONS10.6

The table shows the depth of water at the end of a pier at various times 
(measured, in hours after midnight on the first day of the month.)

Plot the data as a graph. Use your results to find a rule that models the depth data. Use your 
model to predict the time of the next high tide.

t (hr) 0 3 6 9 12 15 18 21 24 27 30 33
d (m) 16.20 17.49 16.51 14.98 15.60 17.27 17.06 15.34 15.13 16.80 17.42 15.89

E 10.42XAMPLE

S
o
l
u
t
i
o
n

Using two different scales 
can provide graphs that do 
not really resemble each 
other. 

Although both display a 
periodic nature, the second 
seems to reflect the need for 
a circular trigonometric 
function to model the 
behaviour.

17.49 14.98+
2--------------------------------- 16.235=
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. Since the graph starts near the mean depth and moves up it seems likely 
that the first model to try might be:
Notice that the dilation factor (along the x–axis) is found by using the result that if 

.

The model should now be ‘evaluated’ which means testing how well it fits the data. This can be 
done by making tables of values of the data and the values predicted by the model and working to 
make the differences between these as small as possible. This can be done using a scientific or 
graphics calculator.

 

17.7 16.235– 1.465=
y 1.465 2πt

13--------   16.235+sin×=

τ 13 2π
n------⇒ 13 n∴ 2π

13------= = =

The model shown is quite good in that the errors are small with 
some being positive and some being negative. The function used 
is  and this can now be used to 
predict the depth for times that measurements were not made. 
Also, the graph of the modelling function can be added to the 
graph of the data (as shown).

d 1.465 2πt
13---------   16.235+sin×=

The modelling function can also be used to predict depths into the future (extrapolation). The next high tide, for 
example can be expected to be 13 hours after the previous high tide at about 29.3 hours. This is after 42.3 hours.

During the summer months, a reservoir supplies water to an outer suburb 
based on the water demand, , where t measures the 
number of days from the start of Summer (which lasts for 90 days).
(a) Sketch the graph of .
(b) What are the maximum and minimum demands made by the community over this

period?

D t( ) 120 60 π
90------t   0 t 90≤ ≤,sin+=

D t( )

E 10.43XAMPLE

S
o
l
u
t
i
o
n

90

120

180
y m3( )

t (days)

y d t( ) 0 t 90≤ ≤,=

120 units

45

(a) The features of this function are:
Period =  days

Amplitude = 60
Translation = 120 units up.

We ‘pencil in’ the graph of  
and then move it up 120 units:

2π
π
90------( )
--------- 180=

y 60 π
90------t  sin=
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(b) The minimum is 120  and the maximum is 180 .

(a) The amplitude is 20 mmHg and the period is given by  seconds.

(b) The maximum is given by (100 + amplitude) = 100 + 20 =120.
(c) One full cycle is 1.2 seconds long:

(d) Even though we have drawn the graph, we will now solve the relevant equation:

         

m3 m3

When a person is at rest, the blood pressure, P millimetres of mercury at any 
time t seconds can be approximately modelled by the equation

(a) Determine the amplitude and period of P.
(b) What is the maximum blood pressure reading that can be recorded for this person?
(c) Sketch the graph of , showing one full cycle.
(d) Find the first two times when the pressure reaches a reading of 110 mmHg.

P t( ) 20 t 5π
3------t   100 t 0≥,+cos–=

P t( )

E 10.44XAMPLE

S
o
l
u
t
i
o
n

2π
5π
3------( )

---------- 6
5--- 1.2= =

120
110
100
 90
 80
 70
 60
 50
 40
 30
 20
 10

0.6                      1.2 t (sec)

P (mmHg)
P t( ) 20 t 5π

3------t   100+cos–=
Note that the graph has been drawn as 
opposed to sketched. That is, it has been 
accurately sketched, meaning that the 
scales and the curve are accurate. Because 
of this we can read directly from the 
graph. 
In this case, P = 110 when t = 0.4 and 0.8.

P t( ) 110 110⇔ 20 5π
3------t   100+cos–= =

10⇔ 20 5π
3------t  cos=

5π
3------t  cos⇔ 1

2---–=

5π
3------t∴ π Cos– 1– 1

2---   π Cos 1– 1
2---  +,=

5π
3------⇔ t 2π

3------
4π
3------,=

t⇔ 2
5---

4
5---,=

Reference angle is Cos 1– 1
2---  

π
3---=
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1. The table shows the temperature in an office block over a 36 hour period.

(a) Estimate the amplitude, period, horizontal and vertical translations.
(b) Find a rule that models the data.
(c) Use your rule to predict the temperature after 40 hours. 

2. The table shows the light level (L) during an experiment on dye fading.

(a) Estimate the amplitude, period, horizontal and vertical translations.
(b) Find a rule that models the data.

3. The table shows the value in $s of an industrial share over a 20 month period.

(a) Estimate the amplitude, period, horizontal and vertical translations.
(b) Find a rule that models the data.

4. The table shows the population (in thousands) of a species of fish in a lake over a 22 year
period.

(a) Estimate the amplitude, period, horizontal and vertical translations.
(b) Find a rule that models the data.

5. The table shows the average weekly sales (in thousands of $s) of a small company over a
15 year period.

(a) Estimate the amplitude, period, horizontal and vertical translations.
(b) Find a rule that models the data.

6. The table shows the average annual rice production, P, (in thousands of tonnes) of a
province over a 10 year period.

t (hr) 0 3 6 9 12 15 18 21 24 27 30 33 36
T ˚C 18.3 15.0 14.1 16.0 19.7 23.0 23.9 22.0 18.3 15.0 14.1 16.0 19.7

t (hr) 0 1 2 3 4 5 6 7 8 9 10
L 6.6 4.0 7.0 10.0 7.5 4.1 6.1 9.8 8.3 4.4 5.3

Month 0 2 4 6 8 10 12 14 16 18 20
Value 7.0 11.5 10.8 5.6 2.1 4.3 9.7 11.9 8.4 3.2 2.5

Year 0 2 4 6 8 10 12 14 16 18 20 22
Pop 11.2 12.1 13.0 12.7 11.6 11.0 11.6 12.7 13.0 12.1 11.2 11.2

Time 0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
Sales 3.5 4.4 7.7 8.4 5.3 3.3 5.5 8.5 7.6 4.3 3.6

t (yr) 0 1 2 3 4 5 6 7 8 9 10
P 11.0 11.6 10.7 10.5 11.5 11.3 10.4 11.0 11.6 10.7 10.5

EXERCISES 10.6
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(a) Estimate the amplitude, period, horizontal and vertical translations.
(b) Find a rule that models the data.

7. The table shows the depth of water (D metres) over a 5 second period as waves pass the
end of a pier.

(a) Estimate the amplitude, period, horizontal and vertical translations.
(b) Find a rule that models the data.

8. The population (in thousands) of a species of butterfly in a nature sanctuary is modelled by
the function:

where t is the time in weeks after scientists first started making population estimates.
(a) What is the initial population?
(b) What are the largest and smallest populations?
(c) When does the population first reach 4 thousand butterflies?

9. A water wave passes a fixed point. As the wave passes, the depth of the water (D metres) at
time t seconds is modelled by the function:

(a) What are the greatest and smallest depths?
(b) Find the first two times at which the depth is 6.8 metres.

10. The weekly sales (S) (in hundreds of cans) of a soft drink outlet is modelled by the
function:

t is the time in months with t = 0 corresponding to January 1st 1990,
(a) Find the minimum and maximum sales during 1990.
(b) Find the value of t for which the sales first exceed 1500 (S = 15).
(c) During which months do the weekly sales exceed 1500 cans?

11. The rabbit population,  thousands, in a northern region of South Australia is modelled
by the equation , where t is measured in months after
the first of January.
(a) What is the largest rabbit population predicted by this model?
(b) How long is it between the times when the population reaches consecutive peaks?
(c) Sketch the graph of  for 0 ≤ t ≤ 24.
(d) Find the longest time span for which  ≥ 13.5.
(e) Give a possible explanation for the behaviour of this model.

t (sec) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
D 11.3 10.8 10.3 10.2 10.4 10.9 11.4 11.7 11.8 11.5 11.0

P 3 2 3πt
8--------  sin+= 0 t 12≤ ≤,

D 7 1
2---

2πt
5--------   t 0>,cos+=

S 13 5.5 πt
6----- 3–   t 0>,cos+=

R t( )
R t( ) 12 3 π

6---t   0 t 24≤ ≤,cos+=

R t( )
R t( )
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12. A hill has its cross-section modelled by the function,
,

where  measures the height of the hill relative to the horizontal distance x m from O.
(a) Determine the values of

i. k. 
ii. b. 
iii. a. 

(b) How far, horizontally from O, would an ant
climbing this hill from O be, when it first 
reaches a height of 1 metre?

(c) How much further, horizontally, will the ant
have travelled when it reaches the same height
of 1 metre once over the hill and on its way 
down?

13. A nursery has been infested by two insect pests: the Fruitfly and the Greatfly. These 
insects appear at about the same time that a particular plant starts to flower. The number of
Fruitfly (in thousands), t weeks after flowering has started is modelled by the function

.
Whereas the number of Greatfly (in thousands), t weeks after flowering has started is
modelled by the function

(a) Copy and complete the following table of values, giving your answers correct to
the nearest hundred.

(b) On the same set of axes draw the graphs of
i. .
ii. .

(c) On how many occassions will there be equal numbers of each insect?
(d) For what percentage of the time will there be more Greatflies than Fruitflies?

14. The depth,  metres, of water at the entrance to a harbour at t hours after midnight on a
particular day is given

(a) Sketch the graph of  for .
(b) For what values of t will

i. , .
ii. , .

Boats requiring a minimum depth of b metres are only permitted to enter the harbour when
the depth of water at the entrance of the harbour is at least b metres for a continuous period
of one hour.
(c) Find the largest value of b, correct to two decimal place, which satisfies this

condition.

t 0 0.5 1 1.5 2 2.5 3 3.5 4
F(t)
G(t)

h : 0 2,[ ]      h x( ), a b kx( )cos+=
h x( )

2.0
x (m)

4

1.0

h (m)

O

F t( ) 6 2 πt( ) 0 t 4≤ ≤,sin+=

G t( ) 0.25t2 4 0 t 4≤ ≤,+=

F t( ) 6 2 πt( ) 0 t 4≤ ≤,sin+=
G t( ) 0.25t2 4 0 t 4≤ ≤,+=

d t( )

d t( ) 12 3 π
6---t   0 t 24≤ ≤,sin+=

d t( ) 0 t 24≤ ≤

d t( ) 10.5= 0 t 24≤ ≤
d t( ) 10.5≥ 0 t 24≤ ≤
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11.1.1 INTRODUCTION

Complex numbers are often first encountered when solving a quadratic equation of the type for 
which there are no real solutions, e.g.,  or  (because for both 
equations the discriminant, , is negative). However, the beginning1 of complex 
numbers is to be found in the work of Girolamo Cardano (1501-1576), who was resolving a 
problem which involved the solution to a reduced cubic equation of the form 

. Although others later improved on the notation and the mechanics of 
complex algebra, it was the work found in his book, Ars magna, that led to the common usage of 
complex numbers found today.

11.1.2 Notation and 

The set of complex numbers is denoted by . That 
is, a complex number, z, is ‘made up’ of two parts; ‘x’ and ‘iy’ . The ‘x-term’ is called the real 
part and the ‘y-term’ is the imaginary part (i.e., the part attached to the ‘i’, where ). It is 
important to note the following:

1. The complex number  is a single number (even though there are ‘two parts’, it
is still a single value).

2. The real part of , denoted by  is . That is,  .
The imaginary part of , denoted by  is . That is,  .
This means that the complex number  can be written as 

Notice that the imaginary part is not ‘ ’ but simply ‘y’ !

(a) We have that  and .
Therefore, the real part of  is 2 and the imaginary part of  is 3.

(b) Similarly,  and .
That is, the real part of  is 3 and the imaginary part of  is –9.

1.  See An Imaginary Tale, The Story of , by Paul J. Nahim.

COMPLEX NUMBERS11.1

C
H

A
P

T
E
R

 1
1

x2 1+ 0= x2 2x 5+ + 0=
∆ b2 4ac–=

1–

x3 ax+ b a 0 b 0>,>,=

i2 1–=

  C z:z x iy  where x y R i2 1–=,∈,,+={ }=

i2 1–=

z x iy+=

z Re z( ) x Re z( ) x=
z Im z( ) y Im z( ) y=

z z Re z( ) Im z( )i+=
iy

For each of the following complex numbers, state the real and imaginary 
parts of (a)              (b)     z 2 3i+= w 3 9i–=

E 11.1XAMPLE

S
o
l
u
t
i
o
n

Re z( ) Re 2 3i+( ) 2= = Im z( ) Im 2 3i+( ) 3= =
z z

Re w( ) Re 3 9i–( ) 3= = Im w( ) Im 3 9i–( ) 9–= =
w w

If , find the values of x and y for which  and 
.

z 2xi y2 1–+= Im z( ) 8=
Re z( ) 0=

E 11.2XAMPLE
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We first need to determine what the real and imaginary parts of  are.
We have that . 

 . 
Similarly, 

        .

11.1.3 USING THE TI–83 WITH COMPLEX NUMBERS

The TI-83 has the capability to work with complex numbers. There are three modes that can be 
used on TI–83: 

Real   : Real number form 
a + bi : Rectangular-complex number form 
re^ i : Polar-complex number form 

To select the required form, press 
MODE and then use the arrow keys
to select either the a + bi mode or the 
re^ i mode.

After setting the graphic calculator to Rectangular-complex number 
form, we can make use of the complex (CPX) menu to help 
determine the complex and imaginary parts of the given numbers.

Press MATH and then use the arrow keys to move the cursor to CPX. 
Once that is done, select the required option(s), in this case, real( and 
imag(:
(a)                              (b)                       (c)

Notice: In (b)., we have that , and so, .
In (c)., we have that , and so, .

S
o
l
u
t
i
o
n

z 2xi y2 1–+=
Im z( ) Im 2x( )i y2 1–( )+[ ] 2x= =

I∴ m z( ) 8 2x⇔ 8 x⇔ 4= = =
Re z( ) Re 2x( )i y2 1–( )+[ ] y2 1–= =

Re z( )∴ 0 y2 1–⇔ 0 y⇔ 1±= = =

θ

θ

State the real and imaginary parts for each of the complex numbers
(a) (b) (c)z 7– 2i+= z 3i–= z 8=

E 11.3XAMPLE

S
o
l
u
t
i
o
n

z 3i– 0 3i–= = Re 3i–( ) Re 0 3i–( ) 0= =
z 8 8 0i+= = Im 8( ) Im 8 0i+( ) 0= =



Complex Numbers – CHAPTER 11

385

11.1.4 THE ALGEBRA OF COMPLEX NUMBERS

Working with ‘  ’

Since we have that , then . 
Meaning that . Similarly, , etc.
General results for expressions such as  can be determined. We leave this to the set of exercises 
at the end of this section.

Operations

For any two complex numbers  and , the following hold true

Equality:
Two complex numbers are equal, if and only if their real parts are equal and their
imaginary parts are equal.

That is,                   

Addition:
The sum of two (or more) complex numbers is made up of the sum of their real parts
plus the sum of their imaginary parts (multiplied by ‘i’). 

That is,                     

Subtraction:
The difference of two (or more) complex numbers is made up of the difference of
their real parts plus the difference of their imaginary parts (multiplied by ‘i’). 

That is,                  

Multiplication:
When multiplying two (or more) complex numbers, we complete the operation
as we would with normal algebra. However, we use the fact that  when
simplifying the result. 

That is, 

Conjugate:
The conjugate of , denoted by  or  is the complex number .
Note that 

That is, when a complex number is multiplied with its conjugate, the result is a real number. 
 and  are known as conjugate pairs. 

i
i 1–= i2 1–=

i3 i2 i× 1 i×– i–= = = i4 i2 i2× 1– 1–× 1= = =
in

z1 a ib+= z2 c id+=

  z1 z2 a ib+⇔ c id a⇔+ c and b d= = = =

  z1 z2+ a ib+( ) c id+( )+ a c+( ) b d+( )i  += =

  z1 z2– a ib+( ) c id+( )– a c–( ) b d–( )i  += =

i2 1–=

 z1z2 a ib+( ) c id+( ) ac adi bci bdi2+ + + ac bd–( ) ad bc+( )i  += = =

z x iy+= z z* z* x iy–=
  zz* x iy+( ) x iy–( ) x2 xyi– xyi y2i2–+ x2 y2  += = =

z x iy+= z* x iy–=



MATHEMATICS – Higher Level (Core)

386

Division:
When dividing two complex numbers, we multiply the numerator and denominator by the
conjugate of the denominator (this has the effect of 'realising' the denominator).

That is,

Note: It is important to realise that these results are not meant to be memorised. Rather, you 
should work through the multiplication or division in question and then simplify the result.

Recall: Two complex numbers are equal if and only if their corresponding real parts and 
imaginary parts are equal.

So, .
That is,  if and only if x = 4 and y = 3.

Equating the real and imaginary parts, we have:
.

                         
                         
                    
                       

The only possible solution must be x = –1 (as it is the only common value for both real and 
imaginary parts that satisfies their equations simultaneously).

Again, as we are equating two complex numbers, we need to determine the simultaneous solution 
brought about by equating their real parts and imaginary parts:
From  we have 

  
 – Eq. 1. and  – Eq. 2.

Solving simultaneously, we have: 2 × (Eq. 1.):  – Eq. 3.
3 × (Eq. 2.):  – Eq. 4.

Adding, (Eq. 3.) + (Eq. 4.), we have:       

   z1
z2
---- a ib+

c id+-------------- a ib+
c id+-------------- c id–

c id–-------------× ac bd+
c2 d2+------------------   bc ad–

c2 d2+------------------   i   += = =

Find the values of x and y if .z x y 2–( )i w,+ 4 i and z+ w= = =E 11.4XAMPLE

S
o
l
u
t
i
o
n

z w x y 2–( )i+⇔ 4 i x⇔+ 4 and y 2– 1= = = =
z w=

Find the value(s) of x if .z x 2–( )2 4xi w,– 9 4i and z+ w= = =E 11.5XAMPLE

S
o
l
u
t
i
o
n

z w x 2–( )2 4xi–⇔ 9 4i x 2–( )2⇔+ 9 and 4x– 4= = = =
x2 4x– 4+⇔ 9 and x 1–= =
x2 4x– 5–⇔ 0 and x 1–= =

x 5–( ) x 1+( )⇔ 0 and x 1–= =
x⇔ 5 or x 1 and x– 1–= = =

Find the real values x and y given that .3 2i–( ) x iy+( ) 12 5i–=E 11.6XAMPLE

S
o
l
u
t
i
o
n

3 2i–( ) x iy+( ) 12 5i–= 3x 3yi 2xi– 2yi2–+ 12 5i–=
3x 2y+( ) 3y 2x–( )i+⇔ 12 5i–=

3x 2y+⇔ 12= 3y 2x– 5–=
6x 4y+ 24=
9y 6x– 15–=

13y 9=
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Therefore, . Then, substituting into Eq. 1. we have:

.

So, we have the solution pair, .

(a) .
(b)  
(c)

          
(d)

The above operations can also be evaluated using the TI-83:
a., and b. c., and d.

(a) .
(b) .

Using the TI–83, we have:

Notice that  is evaluated to a decimal approximation. So, although the TI–83 helps, because 
you are often asked to provide exact answers, you need to be able to do these problems without 
the aid of the TI–83.

y 9
13------=

3x 2 9
13------×+ 12 3x⇔ 138

13--------- x⇔ 46
13------= = =

x 46
13------ y, 9

13------= =

Given that  and  evaluate the following:
(a) (b) (c) (d)

z 3 i+= w 1 2i–=
z w+ 2z 3w– zw w2

E 11.7XAMPLE

S
o
l
u
t
i
o
n

z w+ 3 i+( ) 1 2i–( )+ 3 1+( ) 1 2–( )i+ 4 i–= = =
2z 3w– 2 3 i+( ) 3 1 2i–( )– 6 2i 3– 6i+ + 3 8i+= = =
zw 3 i+( ) 1 2i–( ) 3 1 2i–( ) i 1 2i–( )+ 3 6i– i 2i2–+ 3 5i– 2+= = = =

5 5i–=
w2 1 2i–( ) 1 2i–( ) 1 2i– 2i 4i2+– 1 4i– 4– 3– 4i–= = = =

Find the conjugate of (a) (b) z 2 6i+= w 3i 1–=E 11.8XAMPLE

S
o
l
u
t
i
o
n

z 2 6i z*⇒+ 2 6i+ 2 6i–= = =
w 3i 1 w*⇒– 3i 1– 3i– 1–= = =

3
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We first multiply the numerator and the denominator by . We use the conjugate of the 
denominator so that we can ‘realise’ the denominator:

                          

(a) .
Note then, that .

(b)
Note then, that .

  
  
  

With  and  we have .
As  will always have a fixed value of 1, its maximum value is also 1.

Express the complex number  in the form .1 4i–
1 5i+-------------- u iv+

E 11.9XAMPLE

S
o
l
u
t
i
o
n

1 5i–

Using the TI–83, we have:1 4i–
1 5i+-------------- 1 4i–

1 5i+-------------- 1 5i–
1 5i–--------------× 1 5i– 4i– 20i2+

1 5i– 5i 25i2–+
-----------------------------------------= =

1 9i– 20–
1 25+--------------------------=
19– 9i–
26---------------------=

19
26------– 9

26------i–=

If , find    (a)  (b) .z x iy+= z z*+ z z*–E 11.10XAMPLE

S
o
l
u
t
i
o
n

z z*+ x iy+( ) x iy–( )+ 2x 2Re z( )= = =
Re z( ) 1

2--- z z*+( )=
z z*– x iy+( ) x iy–( )– 2yi 2Im z( )i= = =

Im z( ) 1
2i----- z z*–( )=

If  and  express  in the form 
, where . Hence find the maximum value of .

z θ i θsin+cos= w α i αcos+sin= zw
p qi+ p q   ∈, p2 q2+

E 11.11XAMPLE

S
o
l
u
t
i
o
n

zw θ i θsin+cos( ) α i αcos+sin( )=
θ α θ αi θ αi θ αi2cossin+sinsin+coscos+sincos=
θ α θ αi θ αi θ αcossin–sinsin+coscos+sincos=
θ α θ αcossin–sincos( ) θ α θ αsinsin+coscos( )i+=
α θ–( )sin α θ–( )icos+=

p α θ–( )sin= q α θ–( )cos= p2 q2+ sin2 α θ–( ) cos2 α θ–( )+ 1= =
p2 q2+
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We start by realising the denominator: 

  

  
  

1. Find (a)            (b)             (c)     for each of the following:
i. ii. iii.
iv. v. vi.

2. If  and , find in simplest form (i.e., expressed as ), the
 following

(a) (b) (c)
(d) (e) (f)

3. If  and , find in simplest form (i.e., expressed as ), the
 following

(a) (b) (c)
(d) (e) (f)

4. For the complex numbers  and , express each of the following
in the form :
(a) (b) (c)

(d) (e) (f)

5. Simplify the following
(a) (b) (c)
(d) (e) (f)

Simplify the expression .β i βsin+cos
β i βsin–cos-------------------------------

E 11.12XAMPLE

S
o
l
u
t
i
o
n

β i βsin+cos
β i βsin–cos------------------------------- β i βsin+cos

β i βsin–cos------------------------------- β i βsin+cos
β i βsin+cos-------------------------------×=

cos2β 2 β βi sin2β–cossin+
cos2β sin2β+--------------------------------------------------------------------=

cos2β sin2β–( ) 2 β βicossin+
1-------------------------------------------------------------------------=

2βcos 2βisin+=

EXERCISES 11.1

Re z( ) Im z( ) z*
z 2 2i+= z 3– 2i+= z 5i– 6+=
z 2

5---i–= z 3 i+
2-----------= 2z 1 3i– z–=

z 4 i–= w 3 2i+= u iv+

z w+ z w– z2

2z 3w– z*w iw

z 2 i+= w 3– 2i+= u iv+

z w+ z w– iz2

z2 i2w– zw iw

z 1 i–= w 2i 3–=
u iv+

1
z---

w
z----

z 1+
i-----------

z 2– 2i
w 3+------------- z*

w*-------

2 4i+( ) 3 2i–( ) 1 i–( )3 1 2i+( )2i
i

1 2i+-------------- 1 2i+
i-------------- 1 i–( )i

i– 2+( )--------------------



MATHEMATICS – Higher Level (Core)

390

6. Given that  and , find

(a) (b) (c)

7. Find the real numbers x and y such that:
(a) (b) (c)

8. (a) Simplify  for i. n = 0, 1, 2, 3, 4, 5
ii. n = –1, –2, –3,–4, –5

(b) Evaluate i.      ii.          iii.          iv.     

9. Find the real numbers x and y, for which .

10. Show that for any complex numbers  and ,
(a) (b)
(c) (d)
(e) (f)

11. (a) Prove that  is purely imaginary or zero for all complex numbers  and .
(b) Prove that  is real for all complex numbers  and .

12. Given that , where , find the condition(s) under which
(a)  is real (b)  is purely imaginary.

13. (a) Find the real values of x and y, such that . 
Hence, determine , expressing your answer in the form , where
u and v are both real numbers and u > 0.

(b) Find , expressing your answer in the form , where u and v are
 both real numbers and u > 0.

14. Simplify the following
(a) (b) (c)

15. Find the real values x and y for which
(a) . (b) .

16. Find the complex number z given that , giving your answer in the form 
a + ib, where a and b are real.

17. Find the complex number z which satisfies the equation .

z 3 2i+= w 1
1 i–----------=

Re w( ) Im zw( ) Re z
w----  

2x 3i+ 8 6yi–= x iy+ 2 3i+( )2= x iy+( ) i–( ) 5=

in

i10 i15 i90 i74

x yi+( ) 5 2i–( ) 18– 15i+=

z x iy+= w a bi+=
z w+( )* z* w*+= z w–( )* z* w*–=
zw( )* z*w*= z2( )* z*( )2=
z
w----   * z*

w*-------= z*( )* z=

zw zw– z w
zw zw+ z w

w z 1–
z 1+-----------= z x iy+=

w w

x iy+( )2 8 6i–=
8 6i– u iv+

3 4i– u iv+

1 i+( )3 1 i–( )3– 1 i+( )3 1 i–( )3+ 1 i+( )3
1 i–( )3------------------

x y–( ) 4i+ 9 yi+= 2x 3y+( ) x3i– 12 64i–=

5z 2i+ 5 2iz+=

z 1 2i+( ) 1 2i–=
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18. The complex number z satisfies the equation . If  find all real
values of u and v.

19. If , find (a) (b)

20. (a) Show that i. . ii.

(b) Show that  if k is a positive integer.

21. Find the complex number(s) , satisfying the equation .

22. Express the following in the form , where p and q are real numbers.
(a)
(b)
(c)
(d) 
(e)

23. For the complex number defined as , show that
(a) (b)

Assuming now that , show that

(c) , where 

and , where .

24. (a) Given that , find the values of x and y. Hence, find .
(b) If , find the value of .
(c) If , find an expression for  in terms of x and y.

25. The equation , where b is a real number, has as its solution a real
number. Determine this solution and hence determine the value of b.

26. Express the following in the form  where a and b are real numbers.
(a) (b)

z2 i– 2z 1–= z u iv+=

z 2 i–
1 i+-----------= Re z2( ) Im z2( )+ Re z 1

z---+   Im z 1
z---+  +

1 i+
1 i–----------- i= 1 i+

1 i–-----------   2
1–=

1 i+
1 i–-----------   4k

1=

z a bi+= 1 z2+
1 z2–-------------- i=

p qi+
θ i θsin+cos( ) α i αsin+cos( )
θ i θsin+cos( ) αcos i αsin–( )

r1 θ ir1 θsin+cos( ) r2 α ir2 αsin+cos( )
x θ i θsin–cos–( ) x θ i θsin+cos–( )
x α i αcos+sin+( ) x α i αcos–sin+( )

z θ( ) i θ( )sin+cos=
z2 2θ( ) i 2θ( )sin+cos= z3 3θ( ) i 3θ( )sin+cos=

zk kθ( ) i kθ( )sin+cos=

C i S 1–( )+ 1 zn–
1 z–-------------= C 1 θ( ) 2θ( ) … n 1–( )θ( )cos+ +cos+cos+=

S 1 θ( )sin 2θ( )sin … n 1–( )θ( )sin+ +++= 0 θ π
2---< <

x iy+( )2 8 6i+= 8 6i+
2 3i+( ) 3 4i–( ) p qi+= p2 q2+
x iy+( )2 a ib+= a2 b2+

z b i z 4–( )+ + 0=

a bi+
2θ i 2θsin+cos
θcos i θsin+-------------------------------------- θcos i θsin+

3θ i 3θsin–cos-------------------------------------
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27. Let the complex matrix . Find

(a) (b) (c) (d) , where n is a positive integer.

28. (a) Find  given that .

(b) Show i. that . ii. when .
(c) Hence show that .
(d) Deduce an expression for .
(e) Hence, show that i. . ii.  .

11.2.1 THE ARGAND DIAGRAM

Unlike real numbers (which can be described geometrically by the 
position they occupy on a one dimensional number line), complex 
numbers require the real and imaginary parts to be described. The 
geometrical representation best suited for this purpose would be
2- dimensional. Any complex number  may be represented 
on an Argand diagram, either by using

a.  the point , or
b.  the position vector 

That is, we make use of a plane that is similar to the standard Cartesian plane, to represent the 
complex number . This means that the x-axis represents the  value and the y–
axis represents the  value.

(a) With , we have  and
. Therefore, we may represent the 

complex number  by the point P(1,3) 
on the Argand diagram:

A αi 0
0 βi–=

A2 A4 A 1– A4n

dy
dθ------ y θ i θsin+cos=

i dθ
dy------⋅ 1

y---= θ 0 y, 1= =
eiθ θ i θsin+cos=

e iθ–

xcos 1
2--- eix e ix–+( )= xsin 1

2i----- eix e ix––( )=

GEOMETRICAL REPRESENTATION 
OF COMPLEX NUMBERS

11.2

P x y,( )

Re z( )

Im z( )

O x

y
z x iy+=

P x y,( )
OP

z x iy+= Re z( )
Im z( )

Represent each of the following complex numbers on an Argand diagram
(a) (b) (c)z 1 3i+= z 2– i+= z 2i–=

E 11.13XAMPLE

Re z( )

Im z( )

1   2    3   4
1
2
3
4 P 1 3,( )

S
o
l
u
t
i
o
n

z 1 3i+= x Re z( ) 1= =
y Im z( ) 3= =

z 1 3i+=
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Similarly for (b) and (c) we have:

11.2.2 GEOMETRICAL PROPERTIES OF COMPLEX NUMBERS

The modulus of z

The modulus of a complex number  is a measure of 
the length of  and is denoted by   . That is, 

.

The modulus of z  is also called the magnitude of z. We can 
determine the length by using Pythagoras’s theorem:

That is, if .

The modulus of z is also written as r, i.e., .
Notice then, that 

The Argument of z

The argument  of a complex number  is a measure of 
the angle which  makes with the positive  – axis 
and is denoted by  and sometimes by , which stands 
for the phaze of z. If  is this angle, we then write, .

If 

Notice the use of capital ‘A’ rather than lower case ‘a’. Using , implies that we are 
referring to the Principal argument value, that is, we have restricted the range in which the 
angle  lies.

Re z( )

Im z( )

–2  –1         1    2
1
2
3
4

P 2 1,–( )
Re z( )

Im z( )

–2  –1         1    2–1
–2
–3 P 0 2–,( )

1
(b)                                                   (c)

P x y,( )

Re z( )

Im z( )

O x

y

r z x2 y2+= =

z x iy+=
z x iy+= z

mod z( ) z=

OP( )2 x2 y2+=
OP∴ x2 y2+=

   z x iy  then, mod z( )+ z x2 y2+  = = =

r z=
  z x2 y2+ z*z  = =

P x y,( )

Re z( )

Im z( )

O x

y

θ

z x iy+=
z x iy+= Re z( )

z( )arg ph z( )
θ θ z( )arg=

  π θ π  then θ,≤<– Arg z( )=

θ Arg z( )=

θ
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(a)
Notice that we only square the real and imaginary parts of the complex number. That is,
we do not use  because this would give !

(b) In the same way we have: .

When finding the principal argument of a complex number, an Argand diagram can be used as an 
aid. This will always enable us to work with right–angled triangles. Then we can make use of the 
diagram to find the restrictions on the required angle, i.e., .

(a) We first represent  on an Argand diagram:
From the triangle OPM, we have that

  

Therefore, the principal argument of , is .

(b) Again, we start by using an Argand diagram:

From the triangle OPM, we have that
    

Therefore, .

So that (the principal argument) .

Notice that we only make use of  to help us determine  [i.e., ]

Find the modulus of the following complex numbers  
(a) (b)z 4 3i+= z 1– 2i+=

E 11.14XAMPLE

S
o
l
u
t
i
o
n

z 4 3i z∴+ 4( )2 3( )2+ 25 5= = = =

3i 4( )2 3i( )2+ 16 9– 7= =

z 1– 2i  z∴+ 1–( )2 2( )2+ 5= = =

Find the principal argument of the following complex numbers  
(a) (b) (c)z 1 i+= z 1– 2i+= 1– 3i–

E 11.15XAMPLE

S
o
l
u
t
i
o
n

  π θ π  then θ,≤<– Arg z( )  =

1

1

Re z( )

Im z( )

θ

P

M
O

z 1 i+=

θtan PM
OM--------- 1

1---= =

θ∴ Tan 1– 1( )=
θ⇒ π

4---  or 45°( )=

z Arg z( ) π
4---=

Re z( )

Im z( )

θ

2

–1
α

P

M
O

αtan PM
OM--------- 2

1---= =

α∴ Tan 1– 2( )=
α⇒ 63°26′=
θ 180 63°26′– 116°34′= =

Arg z( ) 116°34′=

α θ α θ+ π  or 180°( )=
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(c) From the triangle OPM, we have that
      

Therefore,   .
So that (the principal argument) 

Notice that because we are ‘moving’ in a clockwise direction, 
the angle is negative.
Notice that in the last example, although , we could have written 

 (using ‘small’ ‘a’).

Using the TI–83

The TI-83 has the capability to evaluate the angle; angle(, and the modulus; abs(, of a complex 
number expressed in rectangular form (i.e., expressed in the form ).

angle(        For    For 
There are two angle settings in the
MODE menu, the default setting is
in radian mode, whilst the second
answer is in degree mode:

abs( For                       For 
The absolute value function returns 
the magnitude (or modulus) of a 
complex number:

(a)  First, we need to determine the complex number :
.

Then we have, 
(b) First, we need to determine the complex number :

.
                                      

Re z( )

Im z( )

θ
–1

α

3–P

M
Oαtan PM

OM--------- 3
1-------= =

α∴ Tan 1– 3( )=
α⇒ 60°=
θ 180 60°– 120°= =

Arg z( ) 120°–=

Arg z( ) 120°–=
z( )arg 180° 60°+ 240°= =

z x iy+=

z 1 i+= z 1– 3i–=

z 1 i+= z 1– 3i–=

If  and , find (a)
(b)

Find the minimum value of .

z 1 2i+= w x i–= z 4+
z w+

z w+

E 11.16XAMPLE

S
o
l
u
t
i
o
n

z 4+
z 4+ 1 2i+( ) 4+ 5 2i+= =

5 2i+ 25 4+ 29= =
z w+

z w+ 1 2i+( ) x i–( )+ x 1+( ) i  x 1+( ) i+∴+ x 1+( )2 1+= = =
x2 2x 2+ +=
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Now, . The minimum value will occur 
when  is a minimum. But, the minimum value of  is 1, therefore the 
minimum of  is  = 1.

Adding complex numbers - geometric representation

The addition of two complex numbers  and  can be considered in the 
same way as the addition of two vectors. That is, if  and  are 
represented by directed line segments from the origin  their sum,  
can also be represented by a directed line segment from the origin . 

Subtracting complex numbers - geometric representation

Subtracting two complex numbers  and  can be considered in the 
same way as subtracting two vectors. That is, if  and  are represented 
by directed line segments from the origin . Subtracting   from , i.e.,  we obtain 

 which can also be represented by a directed line segment from the origin 
. 

x2 2x 2+ + x2 2x 1+ +( ) 1+ x 1+( )2 1+= =
x 1+( )2 1+ x 1+( )2 1+

x 1+( )2 1+ 1

z1 x1 iy1+= z2 x2 iy2+=
z1 x1 iy1+= z2 x2 iy2+=

0 0i+ x1 x2+( ) y1 y2+( )i+
0 0i+

z1

z2

z1 z2+

Re(z)

Im(z)

x1x2

y1

y2

x1 x2+

y1 y2+

e.g., if  and  then z1 6 2i+= z2 4– 4i+= z1 z2+ 2 6i+=

z1 x1 iy1+= z2 x2 iy2+=
z1 x1 iy1+= z2 x2 iy2+=

0 0i+ z2 z1 z1 z2–
x1 x2–( ) y1 y2–( )i+

0 0i+

z1

z2

z1 z2–
Re(z)

Im(z)

x1x2

y1

y2

x1 x2–

y1 y2–

e.g., if  and  then z1 2 6i+= z2 4– 4i+= z1 z2– 6 2i+=
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The similarities between complex numbers and vectors in two dimensions (see Chapter 26)  make 
much of the theory interchangable. Often, complex numbers are represented by the same notation 
as used in vector theory. For example, if the point P on the Argand diagram represents the 
complex number  then the vector  would represent the same point. 
However, at this stage we will concentrate on features that deal directly with the complex 
numbers field.

Properties of the modulus function

We summarise a number of important properties of the modulus function and leave their proofs as 
exercises.

1.   Addition  
i.   If 

ii.  If 

2.   Subtraction            
     If 

3.   Product     
i.   If 

ii.  If 

iii. If 

4.   Quotient
     If 

5.   Conjugate
     If 

6.   Negation
     If 

Observations of the argument function

We now consider a number of examples that will reveal some properties of the argument function 
as well as cautions when using arg(z) as opposed to Arg(z).

z 2 3i+= OP 2 3,[ ]=

  z w C  then z w+ z w  +≤,∈,

  z1 z2 …zn C  then z1 z2 … zn+ + + z1 z2 … zn
 + +≤,∈, ,

  z w C  then z w– z w  –≥,∈,

  z w C  then z w×,∈, z w×  =

  z1 z2 …zn C  then z1 z2× …× zn×,∈, , z1 z2× … zn×  =

  z1 z2 …zn C and z1 z2 … zn then === z1 z2× …× zn×,∈, , z n  =

  z w C  then z
w----,∈, z

w------ w 0  ≠,=

  z C  then z,∈ z*  =

  z C  then z– 1– z×=,∈ 1– z× z  = =



MATHEMATICS – Higher Level (Core)

398

Although, we should be drawing an Argand diagram to help us determine the principal 
arguments, we will use the TI–83 as an aid to help us ‘discover’ some properties about the 
argument function.

Notice that if , we would need to draw a diagram to determine the 
corresponding angle that lies in the region . On the other hand, if all we wanted was 

, then whatever answer we determine will be acceptable (because  does not 
need to be in the interval (–π,π]).

As in the previous example, we use the TI–83 to help us with the calculations.
)

And so, we have that 1.  [always]
2.  [sometimes]

In the same way we can find results for when complex numbers are divided.

For the complex numbers  and  find:
(a)
(b)
(c)

z 1 i+= w 1 3i+=
Arg z( )
Arg w( )
Arg zw( )

E 11.17XAMPLE

S
o
l
u
t
i
o
n

(a) For , we have  = 45˚

(b) For , then  = 60˚

(c) Finally, we have that  = 105˚
We notice that 45˚ + 60˚ = 105˚
So, in this case we have that
                       

z 1 i+= Arg z( )

w 1 3i+= Arg w( )

Arg zw( )

 Arg zw( ) Arg z( ) Arg w( )   +=

Arg z( ) Arg w( ) π π ],–(∉+
π π ],–(

zw( )arg zw( )arg

For the complex numbers  and  find z 1– i+= w 1 3i+= Arg zw( )E 11.18XAMPLE

S
o
l
u
t
i
o
n

This time we see that 
.

What we do have is, .

But the angle corresponding to 195˚ which lies in 
the interval(–π,π] is in fact –165˚ (as seen in the
 diagram).

Arg z( ) Arg w( )+ 135° 60°+ 195° Arg zw( )≠= =

arg z( ) arg w( )+ 195° zw( )arg= =

195˚
–165˚

Re z( )
Im z( )

zw( )arg z( ) w( )arg+arg=
Arg zw( ) Arg z( ) Arg w( )+=
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Properties of the argument function

If , , , . . . , , then:

1.   Multiplication
i.

ii.            

iii.

2. Division
i.   

ii.    

3. Conjugate 

BEWARE! The above rules do not necessarily hold when finding the Principal Argument.
It should also be noted that arg(0) is undefined.

Using the properties for the division of two complex numbers we have:
1. .

Then, using the power properties we have:
2.  = .

We next determine  and 
Using the TI–83, with the mode setting to degrees we can determine the angles. We can then 
convert to radians.

z1( )arg θ1= z2( )arg θ2= z3( )arg θ3= zn( )arg θn=

  z1z2( )arg z1( ) z2( )arg+arg θ1 θ2+= =

  z1z2…zn( )arg z1( ) z2( ) … zn( )arg+ +arg+arg=

θ1 θ2 … θn  + + +=

  z1
n( )arg n z1( )arg×=

i.e.  z1
n( )arg, z1 z1 … z1×××( )arg θ1 θ1 … θ1+ + + nθ1= = =                  n  times      n  times

  z1
z2
----  arg z1( ) z2( )arg–arg=

  1
z2
----  arg z2( )  arg–=

  z1*( )arg z1( )arg– θ1–= =

Find  if  and Arg z2
w3------   z 1 i–= w 3– i+=

E 11.19XAMPLE

S
o
l
u
t
i
o
n

z2
w3------  arg z2( )arg w3( )arg–=

z2
w3------  arg z2( )arg w3( )arg–= 2 z( )arg 3 w( )arg–

z( )arg w( )arg
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So, we have  = –45˚ and  = 150˚.
Therefore,  = –90˚ – 450˚ = –540˚
i.e., . 

To work out the principal value,  we use a diagram and see that 
–540˚ corresponds to –180˚ or 180˚. But, as we want the principal value 
we must use 180˚. So,  = 180˚ (or π).

1. Show the following complex numbers on an Argand diagram:
(a) (b) (c) (d)
(e) (f) (g) (h)

2. For the complex number , represent the following on an Argand diagram:
(a) i.            ii.            iii.            iv.  
What is the geometrical effect of multiplying a complex number by ?
(b) i.            ii.           iii.  
Describe the geometrical significance of each of the operations in part b.

3. If  and , show each of the following on an Argand diagram:
(a) (b) (c) (d)

(e) (f) (g) (h)

4. Find the modulus and argument of:
(a) (b) (c) (d)

(e) (f) (g) (h)

5. Consider the two complex numbers  and .
(a) Find 
(b) Find i.   ii.   

z( )arg w( )arg
2 z( )arg 3 w( )arg–

z2
w3------  arg 540°–=

–540˚ Re(z)

Im(z)
Arg z2

w3------  

Arg z2
w3------  

EXERCISES 11.2

2 i+ 6i– 4 3i– 2 1 i–( )
3 1 i–( )– 1 2i+( )2 1

2i----- 2
1 i+-----------

z 1 i+=
zi zi2 zi3 zi4

i
z* z z*+ z z*–

z1 1 2i+= z2 1 i+=
z12

1
z2
---- z1z2 2z1 z2–

z1z2 z1 z2+ z1
z2
---- z2

z1
----

1 3i+ 1 3– i 1 2i+ 3i
1
2---– 3

2-------i– 1
2------- i 1+( ) 6 1 1

2---i–   2

z a bi+= w a– bi+=
z w zw, ,

Arg z w+( ) Arg z w–( )
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6. If , find i.      ii.    

7. If  and , verify the following
(a)
(b)
(c)
(d)
(e)
What is the geometrical significance of part d.?

8. If  and , find .

9. Given that , find (a)      (b)          (c)     .

10. If , show that  is real and positive.

11. A complex number  is such that  is purely imaginary, show that .

12. (a) If  and , show that .
(b) Find  if  and .

13. (a) If the complex number  satisfies the equations  and

 , show that .
(b) If  and  are two complex numbers such that , show that 

.

14. Determine the modulus and argument of each of the complex numbers:
(a) (b) (c)

15. If  find . hence, find .

16. Determine the modulus and argument of each of the complex numbers:
(a) (b) (c)

17. Find the modulus and argument of
(a) (b) (c) 1 + 

z x 3–( ) i x 3+( )+= z x: z 6={ }

z 2 i+= w 1– i–=
z 2 zz*=
zw z w=
w3 w 3=
z w+ z w+≤
Arg zw( ) Arg z( ) Arg w( )+=

w z 1+
z 1–-----------= z 1= Re w( )

w 5= 3w– w 2iw

Arg z( ) 0= z

w w Arg w( ) π
2---±=

z( )arg π
6---= z x iy+= 3y x=

z z 1– 1= z i–( )arg 0=

z z 1+( )arg π
6---=

z 1–( )arg 2π
3------= z 1

2--- 1 3i+( )=
w z z w– z w+=

z( ) w( )arg–arg π
2--- or 3π2------=

3 4i– 2
1 i+----------- 1 i–

1 i+-----------

z 1 i+= Arg z( ) Arg 1
z4----  

θ i θsin+cos θ i θcos+sin θ i– θsincos

1 i αtan+ α i–tan θ i θsin+cos
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18. (a) i. Express  in the form .

ii. Let  be the angle as shown in the diagram.
Use part i. to find , clearly explaining your
reason(s).

(b) Hence, find  where .

19. (a) Find i. the modulus
ii. the principal argument

of the complex number .
(b) On an Argand diagram, for the case , interpret geometrically the

relationship .

20. If , prove that i. .

ii. .

So far we have been dealing with complex numbers of the form , where  and  are 
real numbers. Such a representation of a complex number is known as a rectangular 
representation.

However, the position of a complex number on an Argand diagram has also been
described by its magnitude (i.e., its modulus) and the angle which it makes with the positive 

–axis. When we represent a complex number by making use of its modulus and argument, 
we say that the complex number is in  polar form.

To convert from the rectangular form to the polar form, we make the following observations:
From triangle OBP, we have that

1.     

2.     

Therefore, we can rewrite the complex number z as follows:

    

A 1 3,( )

B 3 1,( )

α
O

Y

X

1 3i+
3 i+------------------ u vi+

α
α

Arg z( ) z 1 3i+
3 i+------------------   7

=

1 θ i θsin–cos–
0 θ π< <

1 θ i θsin–cos– 2 θ
2---   θ π–

2------------  cos i θ π–
2------------  sin+  sin=

z θ i θsin+cos= 2
1 z+----------- 1 i θ

2---  tan–=

1 z+
1 z–----------- i θ

2---  cot=

POLAR FORM OF COMPLEX 
NUMBERS

11.3

z x iy+= x y

Re z( )

P x y,( )

Re z( )

Im z( )

O
θ

z x iy+=

y r θsin=

x r θcos= B

θ( )sin BP
OP-------- y

r-- y⇒ r θ( )sin= = =

θ( )cos OB
OP-------- x

r-- x⇒ r θ( )cos= = =

z x iy+ r θ( ) ir θ( )sin+cos= =
r θ i θsin+cos( )=
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When  is expressed in the form , we say that z is in polar 
form.
Often, we abbreviate the expression  to
 

When converting from rectangular to polar form, the angle  refers to the Principal argument.

It is advisable to draw a diagram when converting from rectangular to polar form:
(a)

Step 1     Find :    

Step 2     Find :     

Therefore, 
(b)

Step 1     Find :    

Therefore, .

Step 2     Find :     

Therefore, 

We have that . Also, from the diagram, we see that .

Therefore, .

z x iy+=   z r θ i θsin+cos( )=

z r θ i θsin+cos( )=
z r c osθ i s in θθθθ+( ) rcis θ( )= ={ { { { r    c           i s     

θ

Express the following complex numbers in polar form
(a)      (b)  z 3 i+= z 1– i–=

E 11.20XAMPLE

S
o
l
u
t
i
o
n

1

3
Re z( )

Im z( )

θ

θ θ( )tan 1
3------- θ∴ π

6---= =

r r 12 3( )2+ 2= =

z 3 i+ 2 π
6--- i π

6---sin+cos   2cis π
6---  = = =

Re w( )Im w( )
θ

–1

–1
Arg(w)

θ θ( )tan 1
1--- θ∴ π

4---= =

Arg w( ) 3π
4------–=

r r 12 1( )2+ 2= =

z 1– i– 2 3π
4------–   i 3π

4------–  sin+cos   2cis 3π
4------–  = = =

Express the following complex numbers in polar form;     
(a)      (b)z 2i= z 4–=

E 11.21XAMPLE

S
o
l
u
t
i
o
n

π
2--- Re z( )

Im z( )
z 2i=

(a) r 2i 2= = θ π
2---=

z 2i 2cis π
2---  = =
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This time, we have that . Also, from the diagram, we see 
that .
Therefore, .

Let . Therefore, we have  [‘expanding’ cis-term]

Properties of cis

We summarise three properties of the  function:

1.

Proof:

2.

Proof:

3.

Proof:

Notice that if we let  and , the last two results become:

A. B.

π
Re z( )

Im z( )

z 4–=

(b) r 4– 4= =
θ π=

z 4– 4cis π( )= =

Convert  into cartesian form.2cis 3π
4------  E 11.22XAMPLE

S
o
l
u
t
i
o
n

z 2cis 3π
4------  = z 2 3π

4------   i 3π
4------  sin+cos  =

 2 1
2-------– 1

2-------i+  =

1– i+=

θ
cis θ( )

   cis θ( ) 1   =

 cis θ( ) θ( ) i θ( )sin+cos θcos( )2 θsin( )2+ 1 1 = = = =

 cis θ( ) cis φ( )× cis θ φ+( )  =

cis θ( ) cis φ( )× θ( ) i θ( )sin+cos( ) φ( ) i φ( )sin+cos( )×=
θ φ θ φsinsin–coscos( ) i θ φ φ θcossin+cossin( )+=
θ φ+( ) i θ φ+( )sin+cos=

cis θ φ+( )=

  cis θ( )
cis φ( )--------------- cis θ φ–( )  =

 cis θ( )
cis φ( )--------------- cis θ( )

cis φ( )--------------- cis φ–( )
cis φ–( )------------------×  =cis θ φ–( )

cis φ φ–( )------------------------ cis θ φ–( )
cis 0( )------------------------ cis θ φ–( )= = =

z1 r1cis θ( )= z2 r2cis φ( )=

z1 z2× r1r2cis θ φ+( )= z1
z2
---- r1

r2
----cis θ φ–( )=
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That is, , and .

As well as,  and .
Which correspond to our earlier observations.

(a) i.

ii. .

(b) i.

ii.

(c) i.
ii. To determine the principal argument, first sketch a

diagram: So, although
, we have that .

We start by letting   

We next rearrange the expression into the required form, .

z1 z2×( )arg θ φ+ z1( ) z2( )arg+arg= = z1
z2
----  arg θ φ– z1( ) z2( )arg–arg= =

z1 z2× r1 r2× z1 z2×= = z1
z2
---- r1

r2
---- z1

z2
-------= =

Given that  and  
(a) Find  in: i. Polar form ii. Cartesian form

(b) Find  in: i. Polar form ii. Cartesian form
(c) Determine the value of i. ii.

z1 2cis π
3---  = z2 3cis 3π

4------  =
z1z2
z1
z2
----

z1z2( )arg Arg z1z2( )

E 11.23XAMPLE

S
o
l
u
t
i
o
n

z1z2 2cis π
3---   3cis 3π

4------  × 2 3cis π
3---

3π
4------+  × 6cis 13π

12---------  = = =

6cis 13π
12---------   6 13π

12--------- 13π
12---------sin+cos  =

5.7956– 1.5529i–=

z1
z2
----

2cis π
3---  

3cis 3π
4------  

----------------------- 2
3---cis

π
3---

3π
4------–   2

3---cis
5π
12------–  = = =

2
3---cis

5π
12------–   2

3---
5π
12------–   i 5π

12------–  sin+cos  =
0.1725 0.6440i–=

13π
12--------- π π

12------+=

11π
12---------–

z1z2( )arg z1( ) z2( )arg+arg π
3---

3π
4------+ 13π

12---------= = =

z1z2( )arg 13π
12---------= Arg z1z2( ) 11π

12---------–=

Express  in polar form where –π/2 < θ < 0.1 θcos i θsin–+E 11.24XAMPLE

S
o
l
u
t
i
o
n

z 1 θcos+( ) i θsin– 1 2cos2 θ
2---   1–+ i 2 θ

2---   θ
2---  cossin–= =

2cos2 θ
2---   2 θ

2---   θ
2---   icossin–=

rcis α( ) r α i asin+cos[ ]=



MATHEMATICS – Higher Level (Core)

406

Now, 

So we have that  and as  and .

That is, .

De Moivre’s Theorem

We have already seen that if  and , then .
Next, if  (say), we then have that

.
That is, .
Similarly, .
That is, .
In general then, we have that .

De Moivre’s Theorem states:

Proof: (By Mathematical Induction)
Let  be the proposition that .
For n = 1, we have that 
Therefore,  is true for n = 1.

Assume now that  is true for n = k, that is, . 
Then, for n = k + 1, we have 

Therefore, we have that  is true whenever  is true. Therefore, as  is true, by 
the Principle of Mathematical Induction,  is true for n = 1, 2, 3, . . . .
Note that the case n = 0 is the trivial case.

2cos2 θ
2---   2 θ

2---   θ
2---   icossin– 2 θ

2---   θ
2---   i θ

2---  sin–coscos=

2 θ
2---   θ

2---–   i θ
2---–  sin+coscos=

2 θ
2---   π θ

2---–   i π θ
2---–  sin+coscos–=

r 2– θ
2---  cos= π

2--- θ 0 θ
2---   0 r 0>⇒<cos⇒< <– α π θ

2---–  =

1 θcos i θsin–+ 2– θ
2---   cis π θ

2---–   π
2--- θ 0< <–,cos=

z1 r1cis θ( )= z2 r2cis φ( )= z1 z2× r1r2cis θ φ+( )=
z1 z2 z rcis θ( )= = =

z2 z z× rcis θ( ) rcis θ( )× r2cis θ θ+( )= = =
z2 r2cis 2θ( )=
z3 z z2× rcis θ( ) r2cis 2θ( )× r3cis θ 2θ+( )= = =
z3 r3cis 3θ( )=

zn rncis nθ( )=

  r θ i θsin+cos( )( )n rn θ i θsin+cos( )n rn nθ( ) i nθ( )sin+cos( )= =

P n( ) rcis θ( )( )n rncis nθ( )=
L.H.S rcis θ( )( )1 rcis θ( ) r1cis 1 θ×( ) R.H.S= = = =

P n( )
P n( ) rcis θ( )( )k rkcis kθ( )=

rcis θ( )( )k 1+ rcis θ( )( )k rcis θ( )( )=
rkcis kθ( ) rcis θ( )( )=
rk 1+ cis kθ( )cis θ( )=
rk 1+ cis kθ θ+( )=
rk 1+ cis k 1+( )θ( )=

P k 1+( ) P k( ) P 1( )
P n( )
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Notice that De Moivre’s Theorem holds for all integral values of n, both positive and negative, 
i.e.,  as well as rational values of n, i.e., .

Graphical properties of De Moivre’s Theorem

For the complex number , we have

1.

i.e.,  and .

2.

i.e.,  and .

Conjugate powers in polar form

De Moivre’s Theorem provides a direct method of establishing the following result:

Let . 
This means that  and

 .

Therefore, we have that .
Using De Moivre’s Theorem, we have 

 

 

 

n 0{ }∪∈ n ∈

θ

rcis θ( )
r2cis 2θ( )

2θ

θ–
1
r---cis θ–( )

Im(z)

Re(z)

z rcis θ( )=

z 1– rcis θ( )( ) 1– 1
r---cis θ–( )= =

z 1– z 1– 1
r---= = z 1–( )arg θ–=

z2 rcis θ( )( )2 r2cis 2θ( )= =
z2 z 2 r2= = z2( )arg 2θ=

  If z rcis θ( ) then z( )n zn( )  = =

Find  using De Moivre’s Theorem3 i+( )5E 11.25XAMPLE

S
o
l
u
t
i
o
n

3

1
θ

3 i+

Re z( )

Im z( )z 3 i+=
r 3 i+ 3( )2 12+ 2= = =

θ Tan 1– 1
3-------   π

6---= =

z 3 i+ 2cis π
6---  = =

3 i+( )5 25cis 5π
6------   32cis 5π

6------  = =

32 5π
6------   i 5π

6------  sin+cos  =

32 3
2-------– 1

2---i+  =

16 3– 16i+=
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Let . 
This means that  and

      .

Therefore, we have that .
Using De Moivre’s Theorem, we have 

   

 

We first convert both numerator and denominator into polar form.
 [standard result] & 

Therefore,  = .

(a) We first convert each term into its polar form:
,

Find  using De Moivre’s Theorem.1– i+( ) 4–E 11.26XAMPLE

S
o
l
u
t
i
o
n

1

θ
Re z( )

Im z( )1– i+

1–
Arg z( )

z 1– i+=
r 1– i+ 1–( )2 12+ 2= = =
θ Tan 1– 1

1---   π
4--- Arg z( )∴ 3π

4------= = =

z 1– i+ 2cis 3π
4------  = =

1– i+( ) 4– 2( ) 4– cis 4 3π
4------×–   1

2( )4
--------------cis 3π–( )= =

1
4--- 3π–( ) i 3π–( )sin+cos( )=
1
4--- 1– 0i+( )=
1
4---–=

Express  in polar form.1 i+
1 i–( )3-----------------

E 11.27XAMPLE

S
o
l
u
t
i
o
n

1 i+ 2cis π
4---  = 1 i– 2cis π

4---–   1 i–( )3∴ 2( )3cis 3π
4------–  = =

1 i+
1 i–( )3-----------------

2cis π
4---  

2 2cis 3π
4------–  ---------------------------------- 1

2---cis
π
4---   3π

4------–  – 1
2---cis π( )= = = 1

2--- π 1
2---i πsin+cos

Simplify (a) (b)1 i+( )5 1 i–( )5+ 1 i+( )5 1 i–( )5E 11.28XAMPLE

S
o
l
u
t
i
o
n

1 i+ 2cis π
4---   1 i+( )5∴ 2( )5cis 5 π

4---×   4 2cis 5π
4------  = = =

1 i– 2cis π
4---–   1 i–( )5∴ 2( )5cis 5 π

4---–×   4 2cis 5π
4------–  = = =
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Next, 

   = 

And so,  = .

(b) Using the previous results we have,  = 

     = 
     = 
     = 32

Notice that whenever we add or multiply the complex numbers  and  a purely 
real complex number will always result. This can seen as follows:
1. Adding

      

2. Multiplying

      

Now,  [see example 11.24] Similarly, .

Then, 

   

And so,  – Eq.1. and  – Eq. 2.
Then, dividing Eq. 2. by Eq. 1. we have:

4 2cis 5π
4------   4 2cis 5π

4------–  + 4 2 5π
4------cos i 5π

4------sin+   5π
4------–cos i 5π

4------–sin+  +=

4 2 1
2-------– 1

2-------i+   1
2-------– 1

2-------i–  +

1 i+( )5 1 i–( )5+ 4 2 2
2-------– 8–=

1 i+( )5 1 i–( )5 4 2cis 5π
4------   4 2cis 5π

4------–  ×

32cis 5π
4------

5π
4------–  

32cis 0( )

rcis θ( ) rcis θ–( )

rcis θ( ) rcis θ–( )+ r cis θ( ) cis θ–( )+[ ]=
r θ i θsin+cos( ) θ–( ) i θ–( )sin+cos( )+[ ]=
r θ i θsin+cos( ) θ i θsin–cos( )+[ ]=
r 2 θcos[ ]=
2r θcos=

rcis θ( ) rcis θ–( )× r2 cis θ( ) cis θ–( )×[ ]=
r2 cis θ θ–( )[ ]=
r2cis 0( )=
r2=

If , prove that .1 cisθ+( ) 1 cis2θ+( ) a bi+= b a 3θ
2------  tan=

E 11.29XAMPLE

S
o
l
u
t
i
o
n

1 cisθ+ 2 θ
2---   cis θ

2---  cos= 1 cis2θ+ 2 θcisθcos=

a bi+ 2 θ
2---   cis θ

2---   2 θcisθcos×cos 4 θ
2---   θcis θ

2--- θ+  coscos= =

4 θ
2---   θcis 3θ

2------  coscos=

a 4 θ
2---   θ 3θ

2------  coscoscos= b 4 θ
2---   θ 3θ

2------  sincoscos=



MATHEMATICS – Higher Level (Core)

410

1. Express each of the following complex numbers in polar form
(a) (b) (c)

2. Express each of the following complex numbers in polar form
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

3. Express each of the following complex numbers in cartesian form

(a) (b) (c)

(d) (e) (f)

4. Simplify the following
(a) (b) (c)

5. If  and , find the following, giving your answer in the
 form .

(a) (b) (c)

6. (a) If , show that .

(b) If , show that i.  ii.

7. If   and , find
(a) (b) (c)
(d) (e) (f)

b
a---

4 θ
2---   θ 3θ

2------  sincoscos

4 θ
2---   θ 3θ

2------  coscoscos
------------------------------------------------------- 3θ

2------   b∴tan atan 3θ
2------  = = =

EXERCISES 11.3

1 i+ 1– i+ 1– i–

2 2i+ 3 i+ 4 4i–
3 4i+ 2– i+ 2– 3i–

3– i+ 1
2---

3
2-------i– 3 i–

2cis π
2---   3cis π

6---   2cis π
4---–  

5cis 3π
2------   8– cis π

3---–   2
3-------cis

7π
3------  

2 i+
1 2i–--------------------- zz*

z 2-------- Arg z( ) Arg z*( )+

z 2cis π
4---  = w 1 3i+=

u iv+
w* z* wz

z x iy+= z z 2

z-------+ 2Re z( )=

z x iy+= z z= zz z 2=

z 1 i+= w 1– 3i+=
z w zw
Arg z( ) Arg w( ) Arg zw( )
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8. Express each of the following in the form 
(a) (b) (c)
(d) (e) (f)

9. Express each of the following in the form 
(a) (b) (c)
(d) (e) (f)

10. Express each of the following in the form 
(a) (b) (c)

(d) (e) (f)

11. Find each of the following, expressing your answer in the form .
(a)   (b)    (c)  

(d)   (e)    (f)  

12. (a) Prove that , for all integer values of k.
(b) Using part a., evaluate the following

i.  ii. iii. .

13. Simplify the following

a. b. c.

14. (a) Express  and  in the form . Hence, express  in
the form .

(b) Use part a., to find the exact value of  i.       ii.  

15. Use De Moivre’s theorem to prove that .

16. (a) If , show that 
i.   
ii.  

x iy+
1 i+( )5 1– i+( )4 2 2i+( )3

3– i+( )4 3 i–( )5 3 4i–( )3

x iy+
1 i+( ) 5– 1– i+( ) 4– 2 2i+( ) 3–

3– i+( ) 4– 3 i–( ) 5– 3 4i–( ) 3–

x iy+
2cis π

2---     3
3cis π

6---     4
2cis π

4---–     2–

5cis 3π
2------     3–

8– cis π
3---–     1– 2

3-------cis
7π
3------     4

x iy+
1 i+( )3 2 2i–( )4 3 i+( )2 1 i–( )2 2 2 3i+( )3

i 1–( )2-----------------------------

3 i+( )4 1 3i+( )4 3 4i+( )4
3 4i–( )2--------------------- 1 i+( )4

1 i–( )2------------------

cis θ 2kπ+( ) cis θ( )=

cis 37π( ) cis 43π–( ) cis 29
2------π  

cis π( )cis 3π
2------–   2cis π

12------   6cis π
6---  ×

8cis π
8---  

2cis π
2---–  ---------------------------

cis π
4---   cis π

3---   x iy+ cis 7π
12------  

x iy+
7π
12------  sin 7π

12------  cos

if z rcis θ( ) then z( )n zn( )= =

z cis θ( )=
z2 2θ( ) i 2θ( )sin+cos=
z2 cos2θ sin2θ–( ) i 2 θ θcossin( )+=
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Hence, show that i.
ii.
iii.

(b) Using the same approach as that in part a., derive the following identities:
i.    
ii.   
iii.  

17. If , prove that i.  ii.     

18. If , show that , , is real, only if .

19. Simplify the expression . Hence, show that  where 
k is a positive integer.

20. Consider the complex number  for any integer k such that .

(a) Show that  for any integer n.
(b) Show that . Hence, or otherwise, show that .
(c) Find the value of b, given that .

21. If n is a positive integer, show that .

22. Simplify the expression .

23. If  and  express  in terms of  and .

24. (a) If  and , prove that .

(b) If , prove that .

25. If  and ,  find i. ii.      

2θsin 2 θ θcossin=
2θcos cos2θ sin2θ–=
2θtan 2 θtan

1 tan2θ–----------------------=

3θsin 3 θ 4sin3θ–sin=
3θcos 4cos3θ 3 θcos–=
3θtan 3 θ tan3θ–tan

1 3tan2θ–----------------------------------=

z cisθ= zn 1
zn----+ 2 nθcos= zn 1

zn----– 2i nθsin=

z x iy y 0≠,+= w z
1 z2+( )-------------------= 1 z2 0≠+ z 1=

1 i θtan+
1 i θtan–---------------------- 1 i θtan+

1 i θtan–----------------------   k 1 i kθtan+
1 i kθtan–-------------------------=

z cis 2kπ
5---------  = z 1≠

zn 1
zn----+ 2 2nkπ

5-------------  cos=
z5 1= 1 z z2 z3 z4+ + + + 0=

z 1
z---+   2

z2 1
z2----+   2+ b=

1 i+( )n 1 i–( )n+ 2
n
2--- 1+ nπ

4------  cos⋅=

1 cis θ–( )+( )3
1 cis θ( )+( )3-----------------------------------

u cisθ= v cisα= u
v---

v
u---+ θ α

cisα a= cisβ b= α β–( )sin b2 a2–
2ab----------------i=

1 cisθ+( ) 1 cis2θ+( ) a bi+= a2 b2+ 16cos2θcos2 θ
2---  =

z 1= Arg z( ) θ= 0 θ π
2---< < 2

1 z2–------------- 2
1 z2–-------------  arg
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11.4.1 QUADRATIC EQUATIONS

We start this section by looking at equations of the form  where the 
discriminant, . Such equations will produce complex solutions.

We start the same way we would when dealing with any quadratic expression:
 [complete the square]

    
     [difference of two squares]
    

To solve  = 0, we have,  or .
Therefore, the two complex solutions are .
Notice that the solutions are conjugate pairs.

Rather than factorising the equation, we will use the quadratic fomula.

         

         

Therefore, the two complex solutions are .
Again, notice the conjugate pair that make up the solution.

Quadratics also come in a ‘hidden form’. For example, the equation  can be 
considered to be a ‘hidden form’. i.e., letting  we have . And so we can 
then solve the quadratic in w. We could then obtain solutions for z.

POLYNOMIALS OVER THE 
COMPLEX FIELD

11.4

ax2 bx c+ + 0=
∆ b2 4ac 0<–=

Factorise, over the complex number field, . Hence, solve the
equation  = 0 over the complex field.

z2 2z 2+ +
z2 2z 2+ +

E 11.30XAMPLE

S
o
l
u
t
i
o
n

z2 2z 2+ + z2 2z 1+ +( ) 1+=
z 1+( )2 1+=
z 1+( )2 i2–=
z 1 i+ +( ) z 1 i–+( )=

z2 2z 2+ + z 1 i+ +( ) z 1 i–+( ) 0 z⇔ 1– i–= = z 1– i+=
z 1– i z,– 1– i+= =

Solve the equation  = 0 over the complex field.z2 3z 5+ +E 11.31XAMPLE

S
o
l
u
t
i
o
n

z2 3z 5+ + 0 z⇔ 3– 32 4 1 5××–±
2 1×---------------------------------------------------= =

3– 11–±
2---------------------------=

3– 11i±
2--------------------------=

z 3
2---– 11

2----------i z,+ 3
2---– 11

2----------i–= =

z6 4z3 5–+ 0=
w z3= w2 4w 5–+ 0=
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We start by letting  so that the equation  is transformed into the 
quadratic .
Then, we have 

    
         

Therefore, we have that  or  or  or .
That is, we have four solutions, two real and two complex (again, the complex solutions are 
conjugate pairs).

1. Factorise the following over the complex number field.
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

2. Solve the following over the complex number field
(a) (b) (c)
(d) (e)  (f)
(g) (h)  (i)

3. Solve the following over the complex number field
(a) (b) (c)

4. Factorise the following over the complex number field:
(a) (b) (c)
(d) (e) (f)

11.4.2 POLYNOMIAL EQUATIONS (OF ORDER ≥ 3)

We now look at some of the more general polynomial equations that provide a combination of 
real and imaginary roots and factors. The important thing to remember is that the laws for real 
polynomials hold equally well for complex polynomials. 

A polynomial,  of degree n in one variable is an expression of the form

If the coefficients,  are real, the polynomial is a polynomial over the real 
number field, while if they are complex numbers, the polynomial is a polynomial over the 

Solve the equation  over the complex field.z4 4z2 5–+ 0=E 11.32XAMPLE

S
o
l
u
t
i
o
n

w z2= z4 4z2 5–+ 0=
w2 4w 5–+ 0=

w2 4w 5–+ 0 w 5+( ) w 1–( )⇔ 0= =
z2 5+( ) z2 1–( )⇔ 0=

z 5i–( ) z 5i+( ) z 1–( ) z 1+( )⇔ 0=
z 5i= z 5i–= z 1= z 1–=

EXERCISES 11.4.1

x2 6x– 10+ x2 4x 13+ + x2 2x– 2+
z2 4z 5+ + z2 3z– 4+ z2 10z 30+ +
4w2 4w 17+ + 3w2 6w– 6+ 2w2– 8w 11–+

z2 4z 8+ + 0= z2 z– 3+ 0= 3z2 3z– 1+ 0=
2w2 5w 4+ + 0= w2 10w 29+ + 0= w2 16+ 0=
w2 12w 40+ + 0= 3z2 18z 30+ + 0= 9z2 25+ 0=

z4 3z2– 4– 0= w4 8w2– 9– 0= z4 5z2– 36– 0=

z2 25+ z2 49+ z2 4z 5+ +
z2 6z 11+ + z4 2z2 8–+ z4 z2– 6–

P z( )
anzn an 1– zn 1– … a1z a0+ + + +

an an 1– … a1 a0, , , ,
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complex field. We shall, however, concentrate on polynomials over the real field.

We state some standard results:

Remainder Theorem

Factor Theorem

Fundamental Theorem of Algebra

This theorem is the basis for the next important result:

We have already observed, in Examples 11.30, 11.31 and 11.32 the occurence of conjugate pairs 
when solving quadratics with real coefficients. We now state another result.

Conjugate Root Theorem (C.R.T)

Grouping like terms, we have: 
       i.e.,  

And so, 
Therefore, we have that   
We observe that two of the roots are conjugate pairs, and when we look at the polynomial, we see 
that all of the coefficients are real (as expected from the C.R.T).

If a polynomial  is divided by a linear polynomial , the remainder is .P x( ) x a–( ) P a( )

If, when a polynomial   is divided by a linear polynomial , the remainder 
 is zero, then  is a factor of .

P x( ) x a–( )
P a( ) x a–( ) P x( )

Every polynomial equation of the form , , of degree  has at least 
one complex root.

P z( ) 0= z C∈ n ∈

A polynomial , , of degree , can be expressed as the product of n 
linear factors and hence, produce exactly n solutions to the equation .

Pn z( ) z C∈ n ∈
Pn z( ) 0=

The complex roots of a polynomial equation with real coefficients occur in conjugate 
pairs.

Factorise the polynomial , hence solve 
.

z3 3z2– 4z 12–+
z3 3z2– 4z 12–+ 0=

E 11.33XAMPLE

S
o
l
u
t
i
o
n

z3 3z2– 4z 12–+ z2 z 3–( ) 4 z 3–( )+ z2 4+( ) z 3–( )= =
z3 3z2– 4z 12–+ z 2i–( ) z 2i+( ) z 3–( )=

z3 3z2– 4z 12–+ 0 z 2i–( ) z 2i+( ) z 3–( )⇔ 0= =
z 2i or z 2i or z– 3= = =
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As all of the coefficients of the polynomial are real, it means that the C.R.T applies. That is, given 
that  is a root, so too then, is .
Therefore, we have two factors, namely,  and .
This means that  is also a factor.
As in the last example, we can factorise by inspection:

That is, knowing that we are looking for a cubic, and given that we already have a quadratic 
factor, then we are left with a linear factor, which we have as . Then, comparing the 
coefficients of the  term and the constant term we must have that

 and .
That is, 
Therefore, the roots are .

Given that  is a factor of , then, by the factor theorem we must 
have that .

So, 
       

The TI-83 is useful in situations that involve simple evaluation of 
complex numbers.

Let . Using trial and error (or at least factors of 10), we have:
 is not a factor.

 is a factor.
Therefore, .
Comparing coefficients of the leading term and constant term we have:

 and 
Therefore, .
then, comparing the coefficient of the  term, we have that .

Given that  is a root of the equation , 
find the other roots.

z 1 i–= 2z3 7z2– 10z 6–+ 0=E 11.34XAMPLE

S
o
l
u
t
i
o
n

z 1 i–= z 1 i+=
z 1– i+ z 1– i–

z 1– i+( ) z 1– i–( ) z2 2z– 2+=

2z3 7z2– 10z 6–+ az b+( ) z2 2z– 2+( )=

az b+( )
z3

a 2= 2b 6 b 3–=⇔–=
2z3 7z2– 10z 6–+ 2z 3–( ) z2 2z– 2+( )=

1 i 1 i 3
2---,+,–

If  is a factor of , find the value of k.z 1– i+ P z( ) z3 2z2 6z– k+ +=E 11.35XAMPLE

S
o
l
u
t
i
o
n

z 1– i+ P z( ) z3 2z2 6z– k+ +=
P 1 i–( ) 0=

1 i–( )3 2 1 i–( )2 6 1 i–( )– k+ + 0 8– k+⇔ 0= =
k⇔ 8=

Solve the equation , where z is a complex number.z3 4z2– 9z 10–+ 0=E 11.36XAMPLE

S
o
l
u
t
i
o
n

P z( ) z3 4z2– 9z 10–+=
P 1( ) 1 4– 9 10–+ 4–= = z 1–( )∴
P 2( ) 8 16– 18 10–+ 0 z 2–( )⇒= =

P z( ) z 2–( ) az2 bz c+ +( )=

a 1= 2c– 10 c⇔– 5= =
P z( ) z 2–( ) z2 bz 5+ +( )=

z2 b 2– 4 b∴– 2–= =
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So,  [completing the square]
    
    

Therefore, 
And so,  or  or .

Realise that we could have used long or synthetic division to factorise  to the stage
. Both methods are equally valid.

Also, rather than using trial and
error you could use your graphics 
calculator to help find a first real 
factor.

We first factorise the quartic using the method of grouping

Note: Be careful not to proceed as follows: . Solving in
this manner is incorrect because z is a complex number and so there must be 4 solutions.

Now,  [difference of two cubes]
         [completing the square]

        

         [difference of two squares]

Therefore, 

    or  or  or .

1. Factorise the following over the complex number field
(a) (b) (c)

P z( ) z 2–( ) z2 2z– 5+( ) z 2–( ) z2 2z– 1+( ) 4+[ ]= =
z 2–( ) z 1–( )2 4+[ ]=
z 2–( ) z 1– 2i+( ) z 1– 2i–( )=

P z( ) 0 z 2–( ) z 1– 2i+( ) z 1– 2i–( )⇔ 0= =
z 2= z 1 2i–= z 1 2i+=

P z( )
P z( ) z 1–( ) z2 3z– 10+( )=

2

Solve the equation  where z is a complex number.z4 4z3 z– 4–+ 0=E 11.37XAMPLE

S
o
l
u
t
i
o
n

z4 4z3 z– 4–+ z3 z 4+( ) z 4+( )–=
z3 1–( ) z 4+( )=

z3 1–( ) z 4+( ) 0 z∴ 1 4–,= =

z3 1–( ) z 4+( ) z 1–( ) z2 z 1+ +( ) z 4+( )=
z 1–( ) z2 z 1

4---+ +   1 1
4---–+ z 4+( )=

z 1–( ) z 1
2---+   2 3

4---+ z 4+( )=

z 1–( ) z 1
2---

3
2-------i+ +   z 1

2---
3

2-------i–+   z 4+( )=

z4 4z3 z– 4–+ 0 z 1–( ) z 1
2---

3
2-------i+ +   z 1

2---
3

2-------i–+   z 4+( )⇔ 0= =

z⇔ 1= z 1
2---– 3

2-------i–= z 1
2---– 3

2-------i+= z 4–=

EXERCISES 11.4.2

z3 2z2 z 2+ + + z3 9z2– z 9–+ z3 2z2– 2z 4–+
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2. Factorise the following over the complex number field
(a) (b) (c)
(d) (e) (f)

3. Solve each of the following over the complex number field
(a) (b)
(c) (d)
(e) (f)

4. Given that  is a root of , find all three roots.

5. Given that  is a factor of , solve the equation
 = 0 over the complex number field.

6. Given that , find all three linear factors of 

7. Find all complex numbers, z, such that  and  is a
solution to the equation.

8. Factorise the following
(a) (b)

9. Given that  is a root of , where a is a real number, find
all the roots to this equation.

10. Given that  is a root of , where a and b are real numbers,
find all the roots of this equation.

11. Given that  is a root of , find the other roots.

12. Given that  is a zero of , find a and hence factorise .

13. Given that  and  are factors of , factorise .

14. Solve the following over the real number field.
(a) (b)
(c) (d)

15. Write down an equation of the lowest possible degree with real coefficients such that its
roots are
(a) (b) (c) (d)     

16. Verify that  is a root of the equation  and hence
 find the other roots.

w3 2w 12–+ z3 5z2– 9z 5–+ z3 z2 2–+
x4 3x2– 4– w3 2w– 4+ z4 625–

z3 7z2– 31z 25–+ 0= z3 8z2– 25z 26–+ 0=
z4 3z3– 2z2– 10z 12–+ 0= 2w3 3w2 2w 2–+ + 0=
6z4 11z3– z2 33z 45–+ + 0= z3 7z2 16z 10+ + + 0=

1
2--- 1– 3i+( ) 3z3 2z2 2z 1–+ + 0=

z 1– 2i–( ) 2z3 3z2– 8z 5+ +
2z3 3z2– 8z 5+ +

P 2 3i–( ) 0= z3 7z2– 25z 39–+

z4 z3– 6z2 z– 15+ + 0= z 1 2i+=

2z3 z2– 2z 1–+ z4 z2 12–+

2 i– z3 az2 z 5+ + + 0=

2 3i+ z3 az2 b+ + 0=

2 i– 2z3 9z2– 14z 5–+ 0=

4 i– P z( ) z3 az2 33z 34–+ += P z( )

z 2– z 1– i– P z( ) z3 az2– 6z b+ += P z( )

z6 7z3 8–+ 0= z6 9z3– 8+ 0=
z4 2z2– 3– 0= z4 4z2– 5– 0=

3 2 i–, 2 1 1 i+, , 1 3i 3,– 1 2i 2– 3i+,+

z 1– 3i+= z4 4z2– 16z– 16– 0=
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17. Given that  is a root of  and , solve
the equation completely.

18. If  show that  = 0.

19. Show that , and hence show that the roots of
 are 0, .

11.4.3 SOLUTION TO EQUATIONS OF THE FORM 

Definition The nth root of the complex number  are the solutions of the equation
.

We summarise the approaches available to solve equations of the general form .

Geometrically, we have that the nth roots of a complex number are represented in an Argand 
diagram as the vertices of a regular polygon of n sides, inscribed in a circle of radius , and 
spaced at intervals of  from each other.

The steps involved in solving equations of the form  (even for the case that y = 0) are:

Step 1. Express  in polar form, 

Step 2. Realise that , where k is an integer, because everytime
that you add another 2π, you return to the same position.

Step 3. Use De Moivre’s theorem:

z a ib+= z4 z3– 6z2– 11z 5+ + 0= Re z( ) 2=

zn z n–+ 2 nθ( )cos= 5z4 z3– 6z2– z– 5+ 0 10cos2θ θ 8–cos–⇒=

5θcos 16 θ5 20 θ3 5 θcos+cos–cos=
x 16x4 20x2– 5+( ) 0= π

10------   3π
10------   7π

10------   9π
10------  cos,cos,cos,cos

zn x iy+=
x iy+

zn x iy+=

zn x iy+=

Solving equations of the form .

1. a factorisation technique or use

2. De Moivre’s theorem, together with the result that the n distinct nth roots of
  are given by

That is,

zn x iy+=

r θ i θsin+cos( )

r
1
n--- θ 2kπ+

n-------------------   i θ 2kπ+
n-------------------  sin+cos   k, 0 1 2 … n 1–, , , ,=

  zn x iy z⇒+ r
1
n--- θ 2kπ+

n-------------------   i θ 2kπ+
n-------------------  sin+cos   k, 0 1 2 … n 1  –, , , ,= = =

rn

2π
n------

zn x iy+=

x iy+ rcis θ( )

rcis θ( ) rcis θ 2kπ+( )=

zn rcis θ 2kπ+( ) z∴ rcis θ 2kπ+( )[ ]
1
n--- r

1
n---  cis θ 2kπ+

n-------------------  = = =
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Step 4. Use n values of k, usually start at k = 0, 1, . . . and end at k = n–1. This will produce
the n required solutions

We consider two cases. The first will be when  is equal to a real number, i.e.,  and the 
second case will be when  is equal to a complex number.

Case 1.   is equal to a real number

Solving these equations can sometimes be done directly. For example,  can be solved by 
first  rewriting the equation as  and then factorising  as follows

 
which then produces the solution set . On the otherhand, the equation  might 
require considerably more work. 

Solving  can also be viewed as finding the 4th root of 81, i.e., . Again, 
realise that the 4th root of 81 produces 4 possible answers. In both instances we can use one of 
two methods to solve the equation. Either make use of a factorisation process or make use of 
De Moivre’s theorem.

(a) The fourth roots of 16 are given by the solutions to the equation .
This means that 

  

Notice that we had to make use of the fact that  to factorise the term . By using 
this ‘trick’ we were able to convert a sum of two squares to a difference of two squares (and so 
enabling us to factorise).

(b) Next we make use of the nth root approach. For this problem, we have that n = 4, 
meaning that k = 0, 1, 2, 3. 
Step 1.  [expressing 16 in polar form].
Step 2. .

Step 3.        

z r
1
n---  cis θ

n---   r
1
n---  cis θ 2π+

n----------------   r
1
n---  cis θ 4π+

n----------------   … r
1
n---  cis θ 2 n 1–( )π+

n---------------------------------  , ,,,=

zn zn x=
zn

zn
z4 81=

z4 81– 0= z4 81–
z4 81– z2 9–( ) z2 9+( ) z 3–( ) z 3+( ) z 3i–( ) z 3i+( )= =

3 3i±,±{ } z4 81–=

z4 81– 0= z 811 4/=

Find the 4th roots of 16 by using    (a) factorisation,     
(b) the ‘nth root method’

E 11.38XAMPLE

S
o
l
u
t
i
o
n

z4 16=
z4 16 z4 16–⇔ 0= =

z2( )2 42–⇔ 0=
z2 4–( ) z2 4+( )⇔ 0=

z 2–( ) z 2+( ) z2 2i( )2–( )⇔ 0=
z 2–( ) z 2+( ) z 2i–( ) z 2i+( )⇔ 0=

z⇔ 2 or 2 or 2i or – 2i–=

2i( )2– 4= z2 4+

16 16cis 0( )=
z4 16cis 0( ) 16cis 0 2kπ+( ) k, 0 1 2 3, , ,= = =

z∴ 16
1
4---cis 0 2kπ+

4-------------------   k, 0 1 2 3, , ,= =
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Step 4.  [Using k = 0, 1, 2, 3]
           

In this case there was not a lot a difference between the two methods, in that the factorisation was 
fairly straight forward. 

Geometrically, the solutions can be found on the 
Argand diagram and are equidistant from the origin 
and are equally spaced at 90˚ on a circle of radius 2 units.

nth roots of unity

Given , we rewrite it as  

Thus, the nth roots of unity are equally spaced around the unit circle with centre at the origin and 
forming the vertices of a regular n sided polygon.

Note then that for the case where  is equal to a real number we express  as x + 0i.
This will mean that 

  

  

Setting  we have, 
     
     
  

Therefore, we have .

z∴ 2cis 2kπ
4---------   k, 0 1 2 3, , ,= =

z 2cis 0( ) 2cis π
2---   2cis π( ) 2cis 3π

2------  ,,,=
z∴ 2 2i 2 2i–,–,,=

Im(z)

Re(z)
2

2i

–2

–2i

O

zn 1= zn 1 0 i 0sin+cos( )=
1 0 2kπ+( ) i 0 2kπ+( )sin+cos( )=

z⇒ 1
1
n--- 0 2kπ+

n-------------------   i 0 2kπ+
n-------------------  sin+cos  =

z⇔ 2kπ
n---------   i 2kπ

n---------  sin+cos    where k, 0 1 2 … n 1–( ), , , ,= =

zn zn
zn x 0 i 0sin+cos[ ] zn⇒ x 0 2kπ+( ) i 0 2kπ+( )sin+cos[ ]= =

zn∴ xcis 2kπ( )=

z∴ x
1
n--- cis 2kπ

n---------   k, 0 1 2 …n 1–, , ,= =

Find the 6th roots of 64, leaving your answer in polar form.E 11.39XAMPLE

S
o
l
u
t
i
o
n

z6 64= z6 64 0i+ 64 cis 0( ) i 0( )sin+[ ]= =
64cis 0( )=
64cis 0 2kπ+( )=

z∴ 641 6/ cis 2kπ
6---------   k, 0 1 2 3 4 5, , , , ,= =

z 2cis πk
3------   k, 0 1 2 3 4 5, , , , ,= =
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So that, 

Case 2.    is equal to a complex number

The process for solving these equations does not change. We proceed with two examples.

This time we need to solve the equation .
Had the equation been , then factorisation would have been appropriate. However, as it 
stands, the preferred method this time is the nth root method.
First we convert to polar form, i.e.,  = .

Therefore, we have that, 

                  

That is,  or  or 
The diagram shows the position of the 3 roots. Notice that all three roots lie on a circle of radius 2 
units and each root is equally spaced on the circle. Note also that the roots do not occur in 
conjugate pairs as there is a complex coefficient in .

We start by expressing  in its polar form: .

Then, set 

So that, .

z 2cis 0( ) 2cis π
3---   2cis 2π

3------   2cis π( ) 2cis 4π
3------   2cis 5π

3------  ,,,,,=

zn

Find the cube roots of .8iE 11.40XAMPLE

S
o
l
u
t
i
o
n

z3 8i=
z3 8=

z3 8i 8cis π
2---  = = 8cis π

2--- 2kπ+  

z 8
1
3---cis

π
2--- 2kπ+

3-------------------
    

k, 0 1 2, ,= =

2cis
π
2--- 2kπ+

3-------------------
    

k, 0 1 2, ,==

2cis π
6---   2cis 5π

6------   2cis 9π
6------  ,,=

2 3
2-------

1
2---i+   2 3

2-------– 1
2---i+   2 0 i–( ),,=

5π
6------ π

6---

–2

Re z( )

Im z( )
3 1,–( ) 3 1,( )

z 3 i+= z 3– i+= z 2i–=

z3 8i=

Find the four fourth roots of . Give your answer in polar form.1 i 3+E 11.41XAMPLE

S
o
l
u
t
i
o
n

1 i 3+ 1 i 3+ 2cis π
3---  =

z4 2cis π
3---   2cis π

3--- 2kπ+   2cis π 6kπ+
3-------------------  = = =

z 24 cis π 6kπ+
12-------------------   k, 0 1 2 3, , ,= =
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For k = 0, ;  k = 1, ;

k = 2, ;  k = 3, 

               

Therefore, the four roots of  lie on the
circumference of a circle of radius  units
and are evenly separated by an angle of .
Again notice that the roots in this instance
do not occur in conjugate pairs.

The square root of a complex number

As a special case of the nth roots, of a complex number, we now consider the square root of a 
complex number. However, this time we will use a different method altogether, bearing in mind 
that the previous method is still applicable. This approach will be entirely dependent on algebra.

The only assumption we make here, is that the roots to the equation  are complex 
numbers.
Therefore, we have that  takes on the form  where a and b are real numbers to be 
determined.
Let  be an answer of . 
Squaring both sides gives  and 
So that, 
This gives, 

                           [equating real and imaginary parts]
Solving simultaneously:         
Therefore, we have                     

                       
                are the only solutions as a is a real number.

Therefore, we have that . i.e., a = 2, b = 1 and a = –2, b = –1.
Meaning that the square roots are given by .

z 24 cis π
12------  = z 24 cis π 6π+

12----------------   24 cis 7π
12------  = =

z 24 cis π 12π+
12-------------------   24 cis 13π

12---------  = = z 24 cis π 18π+
12-------------------   24 cis 19π

12---------  = =

24 cis 11π
12---------–  = 24 cis 5π

12------–  =
Im(z)

Re(z)
O 24 (= radius)

1 i 3+
24

π
2---

Find the square roots of .3 4i+E 11.42XAMPLE

S
o
l
u
t
i
o
n

z2 3 4i+=

3 4i+ a ib+

z a ib+= z 3 4i+=
z2 a ib+( )2= z2 3 4i+=

3 4i+ a ib+( )2=
3 4i+ a2 b2– 2abi+=

a2 b2–⇔ 3 and 2ab 4= =
b 2

a--- a2 2
a---   2

–⇒ 3= =
a4 3a2– 4–⇔ 0=

a2 4–( ) a2 1+( )⇔ 0=
a∴ 2±=

a 2 b⇒± 1±= =
z 2 i and z+ 2– i–= =
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1. Use the nth root method to solve the following:
(a) (b) (c)
(d) (e) (f)

2. Find the fourth roots of –4 in the form  and hence factorise  into linear
 factors.

3. Find the square roots of 
(a) (b) (c) .
Represent these roots on an Argand diagram.

4. Find the cube roots of
(a) (b) (c)
Represent these roots on an Argand diagram.

5. Solve the following equations
(a) (b) (c)
(d) (e) (f)
Represent these roots on an Argand diagram.

6. (a) Find the cube root of unity.
(b) Hence, show that if , then .

7. Three points, of which  is one point, lie on the circumference of a circle of radius
2 units and centre at the origin. If these three points form the vertices of an equilateral
triangle, find the other two points.

8. If  are the cube roots of unity, prove that
(a) (b) (c)

9. Given that  is a complex root of the equation  and is such that it has the 
smallest positive argumant, show that  and  are the other complex roots.
(a) Hence show that .
(b) Factorise  into real linear and quadratic factors.

Hence deduce that i.

ii.

10. Show that the roots of  are .

EXERCISES 11.4.3

z3 27= z3 27i= z3 8i–=
z4 16–= z4 81i= z6 64–=

x iy+ z4 4+

i 3 4i+ 1– 3i+

1 i– 1– 3i+ i

z4 1 i+= z4 i= z3 i+ 0=
z4 8 8 3i–= z3 64i= z2 3 i+=

w3 1= 1 w w2+ + 0=

1 i 3+

1 w1 and w2,
w1 w2 w22= = w1 w2+ 1–= w1w2 1=

w z5 1– 0=
w2 w3, w4

1 w w2 w3 w4+ + + + 0=
z5 1–

2 2π
5------   4π

5------  cos+cos   1–=

4 2π
5------   4π

5------  coscos 1–=

z 1–( )6 z 1+( )6+ 0= i i 5π
12------   i π

12------  cot±,cot±,±
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In this section we produce a number of proofs to some of the theorems that were simply stated 
and used in this chapter.

11.5.1 THE TRIANGLE INEQUALITY

The triangle inequality states that the length measure of a side 
of a triangle does not exceed the sum of the length measures of 
the other two sides.
That is.

Before we begin the proof we revisit some results:
1.

Proof:

2.

Proof:
     

          [from 1.]
Now, = 

= 
= 
=  +  – [  – ]
= 

Then, as ≤  . [from 2.]
So, as  and , we have that  .

11.5.2 DE MOIVRE’S THEOREM

We used the method of mathematical induction to prove De Moivre’s theorem for the case where 
n was a positive integer. 

i.e., , where n is a positive integer

We now proceed with the case where n is a negative integer and then where n is a rational number.

Case 1.   n is a negative integer

If n is a negative integer, put n = –m, where m is a positive integer.
Then,  = 

         = 

MISCELLANEOUS PROOFS11.5

z
wz w+

Im(z)

Re(z)
z w+ z w+≤

zw zw+ 2Re zw( )=
zw zw+ zw z w( )+ zw zw( )+ 2Re zw( )= = =

2 z w zw zw+( ) 0≥–
z w z w zw Re zw( ) zw Re zw( ) 0≥–⇒≥= =

2 zw 2Re zw( ) 0≥–∴
2 z w zw zw+( ) 0≥–⇒

z w+ 2 z w+( ) z w+( )= z w+( ) z w+( )
zz zw wz ww+ + +
z 2 w 2 zw zw+( )+ +
z 2 w 2+ 2 z w 2 z w zw zw+( )
z w+( )2 2 z w zw zw+( )–[ ]–

2 z w zw zw+( ) 0≥– z w+( )2
z w+ 0≥ z w+( ) 0≥ z w+ z w+≤

zn θ i θsin+cos[ ]n nθ( ) i nθ( )sin+cos= =

zn z m– 1
zm-----

1
mθ( ) i mθ( )sin+cos--------------------------------------------------= = = 1

mθ( ) i mθ( )sin+cos-------------------------------------------------- mθ( ) i mθ( )sin–cos
mθ( ) i mθ( )sin–cos--------------------------------------------------×

mθ( ) i mθ( )sin–cos
1--------------------------------------------------
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Then, as  and  we have have that 
 = .

Therefore,  for n being a negative integer.

Case 2.   n is a rational number

As we have looked at integers, we now consider rational numbers of the form .

So, let  where p and q are integers.

Then, we have 

Therefore,  is one of the values of . In fact it is one of the 
qth roots of . And so, the theorem is proved for all rational values of n.

11.5.3   FUNDAMENTAL THEOREM OF ALGEBRA

The fundamental theorem of algebra states that every polynomial equation  where  
 is of degree n, and n is a positive integer has a solution, say,  such that  = 0. 

Then, by the factor theorem, it must be the case that  is a factor of . 
Therefore, we have that  = 0 where  is itself a polynomial of 
degree n – 1.
So, applying the fundamental theorem again, the equation  = 0 also has a solution, say 

, so that  = 0 where  is a polynomial of degree n – 2.

Continuing in this manner, after n applications we have that

where  is a contant. 
And so, we find that there are  solutions, namely,  to the polynomial equation 

. Notice also that the theorem does not tell us if the solutions are distinct – it simply 
tells us that there are n solutions.

11.5.4   CONJUGATE ROOT THEOREM

From the fundamental theorem of algebra we have that . Then, it must be the case that 
. Let  so that 

= 
= 

And so, as . That is,  is also a solution.

x–( )cos x( )cos= x–( )sin x( )sin–=
mθ( ) i mθ( )sin–cos m– θ( ) i m– θ( )sin+cos= nθ( ) i nθ( )sin+cos

zn nθ( ) i nθ( )sin+cos=

p
q---

n p
q--- q 0≠,=

p
q---θ   i p

q---θ  sin+cos
q

pθ( ) i pθ( )sin+cos θ i θsin+cos[ ]p= =

p
q---θ   i p

q---θ  sin+cos θ i θsin+cos( )p q/

θ i θsin+cos[ ]p

P z( ) 0=
P z( ) z1 P z1( )

z z1–( ) P z( )
P z( ) z z1–( )Pn 1– z( )= Pn 1– z( )

Pn 1– z( )
z2 P z( ) z z1–( ) z z2–( )Pn 2– z( )= Pn 2– z( )

P z( ) z z1–( ) z z2–( )… z zn–( )P0 z( )=
P0 z( )

n z1 z2 … zn, , ,
P z( ) 0=

P z( ) 0=
P z( ) 0 P z( )⇒ 0= = P z( ) anzn an 1– zn 1– … a1z a0+ + + +=
P z( ) anzn an 1– zn 1– … a1z a0+ + + + anzn an 1– zn 1– … a1z a0+ + + += =

anzn an 1– zn 1– … a1z a0+ + + +
P z( )

P z( ) 0 P z( )⇒ 0= = z
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12.1.1 THE PRINCIPLES OF MATHEMATICAL INDUCTION
         AND PROOFS

Induction is an indirect method of proof which is used in cases where a direct method is either not 
possible or not convenient. It involves the derivation of a general rule from one or more particular 
cases. i.e., the general rule is induced. This is the opposite to deduction, where you use the 
general rule to provide detail about a particular case. For example, we know that 60 is divisible by 
1, 2, 3, 4, 5 and 6, but does it follow that 60 is divisible by all positive integers?

This can be checked, as the positive odd integers form an arithmetic progression with a = 1 and 
d = 2. The sum of the first n terms is given by

 where a is the first term, l is the last term

In this case the general result was easy to guess, but remember that a guess is not a proof. 
Thankfully in this example we had a method (sum of an AP) to verify our guess. This will not 
always be the case.

Consider the expression   for values of n from 1 to 4 as shown in the table 
below:

The expression appears to produce the successive powers of 3, and so we could assume, based on 
the results in this table, that  .

n 1 2 3 4
3 9 27 81

MATHEMATICAL INDUCTION12.1

C
H

A
P

T
E
R

 1
2

Consider the pattern: 1 = 
1 + 3 = 
1 + 3 + 5 = 
1 + 3 + 5 + 7 = 

The pattern shows that the sum of the first two positive odd integers is a perfect square, the sum 
of the first three positive odd integers is a perfect square and the sum of the first four positive odd 
integers is a perfect square. Can we then say, based on the first few lines of this pattern, that:

1 + 3 + 5 + 7 + … + (2n – 1) = 
i.e., the sum of the first n odd positive integers is a perfect square, ?

12
22
32
42

n2

n2

E 12.1XAMPLE

S
o
l
u
t
i
o
n

Sn
n
2--- a l+( )=
n
2--- 1 2n 1–+( )=
n2=

4n3 18n2– 32n 15–+

4n3 18n2– 32n 15–+

4n3 18n2– 32n 15–+ 3n=
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Can we then say that this will always be the case, and if so, what would you predict the value of 
the expression to be when n = 5? Check to see if your prediction is correct.
Many formulas which we may guess or develop from 
simple cases can be proved using the principle of 
mathematical induction. This method of proof relies 
upon a similar principle to that of ‘domino stacking’. 
In the process of domino stacking, one domino is first 
pushed over, thus causing a series of dominoes to fall. 
Before each successive domino will fall, the preceding 
domino must fall.

With induction, for each expression to be true, the 
expression before it must also be true. The process can be summarised into four steps:

Step 1:
the first expression must be true (the first domino falls)

Step 2:
assuming that a general expression is true (assume that some domino in the series falls)

Step 3:
prove that the next expression is true (prove that the next domino in the series falls)

Step 4:
if all of these events happen then we know by induction that all of the expressions are true
and thus the original formula is true (all the dominoes will fall).

First we need to state what our proposition is. We do this as follows:
Let  be the proposition that 1 + 3 + 5 + 7 + … + (2n – 1) =  for all n ≥ 1.
Next we proceed with our four steps:
Step 1: test for n = 1

LHS   =  1
RHS   =  12

  =  1
∴ LHS = RHS
∴ the proposition  is true for n = 1 (the first domino falls!)

Step 2: assume that  is true for n = k (a general domino falls)
i.e.,        1 + 3 + 5 + 7 + … + (2k – 1) = 

Step 3: test the proposition for n = k + 1 (prove that the next domino falls)
i.e.,  we wish to prove that 1 + 3 + 5 + …+ (2k – 1) + {2(k + 1) – 1} = (k + 1)2
Now,

           LHS = 1 + 3 + 5 + … + (2k – 1) + (2k + 1)
= k2 + (2k + 1) [as  1 + 3 + 5 + … + (2k – 1) = k2 from Step 2]
= (k + 1)2
= RHS ∴  is true for n = k + 1

etc.

Prove by induction that the sum of the first n odd numbers is .
That is, 1 + 3 + 5 + 7 + … + (2n – 1) =  for all n ≥ 1.

n2

n2

E 12.2XAMPLE

S
o
l
u
t
i
o
n

P n( ) n2

P n( )

P n( )
k2

P n( )
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Step 4: Thus, if the proposition is true for n = k (Step 2), then it is true for n = k + 1. As it is
true for n = 1, then it must be true for n = 1 + 1 (n = 2). As it is true for n = 2 then it
must hold for n = 2 + 1 (n = 3) and so on for all positive integers n.

An alternative way of looking at mathematical induction is to think of the problem as a series of 
assertions. If the first assertion is true, and then each assertion which is true is followed by a true 
assertion, then all of the assertions in the sequence are true.

Step 1: The formula is actually a series of assertions:
n = 1: 1 =  

n = 2: 1 + 2 =  

n = 3: 1 + 2 + 3 =   etc.
The first assertion is obviously true so we now need to prove that the assertion following each true 
assertion is itself true.
Step 2: Suppose the kth assertion is true, i.e., 1 + 2 + 3 + ... + k  =  
Step 3: Now add the (k + 1)th term i.e., k + 1)  to both sides of this equation, obtaining

Step 4: But this is equivalent to the (k + 1)th assertion, which is true if the kth assertion is
true. We have thus shown that the assertion following each true assertion is also
true, and thus by mathematical induction the formula given is true for all n.

Let  be the proposition that  for n ≥ 1.

Step 1:  is true for n = 1 since  i.e., L.H.S = R.H.S

Prove that the formula  is true for all 
positive integral n.

1 2 3 … n+ + + + 1
2---n n 1+( )=

E 12.3XAMPLE

S
o
l
u
t
i
o
n

1
2--- 1 2××
1
2--- 2 3××
1
2--- 3 4××

k k 1+( )
2--------------------

1 2 3 … k k 1+( )+ + + + + k k 1+( )
2-------------------- k 1+( )+=

k k 1+( ) 2 k 1+( )+
2----------------------------------------------=

k 1+( ) k 2+( )
2----------------------------------=

Prove by induction that .12 22 32 … n2+ + + + 1
6---n n 1+( ) 2n 1+( )=

E 12.4XAMPLE

S
o
l
u
t
i
o
n

P n( ) 12 22 32 … n2+ + + + 1
6---n n 1+( ) 2n 1+( )=

P n( ) 12 1
6--- 1× 2 3×× 1= =
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Step 2: Assume that  is true for n = k,    
i.e., 

Step 3: Test the result for n = k + 1
Adding the (k + 1)th  term i.e., (k + 1)2 to both sides gives:

= 

= 

= 

= 

= 

i.e., it is of the form  where .
Step 4: Which is the (k + 1)th assertion. Thus, if the proposition is true for n = k, then it is

true for  n = k + 1. As it is true for n = 1, then it must be true for n = 1 + 1 (n = 2).
As it is true for n = 2 then it must hold for n = 2 + 1 (n = 3) and so on for all positive
integers n. 

So, by the principle of mathematical induction,  is true for all n ≥ 1, where n is an
integer.

1. Prove by induction that for all n 
(a) 1 + 4 + 7 + … + (3n – 2)  =  n(3n – 1)
(b) 1 + 5 + 9 + … + (4n – 3)  =  n(2n – 1)
(c) 2 + 4 + 6 + … + 2n  =  n(n + 1)
(d) 5 + 10 + 15 + … + 5n  =  n(n + 1)
(e) 6 + 12 + 18 + … + 6n  =  3n(n + 1)
(f) 1 + 2 + 4 + 8 + … + 2n - 1  =  2n – 1
(g) 1 + r + r2 + … + rn - 1  =  

(h) 12 + 32 + 52 + … + (2n – 1)2  =  n(4n2 – 1)

(i) 12 – 22 + 32 – … + (–1)n - 1n2  =  (–1)n - 1n(n + 1)

P n( )
12 22 32 … k2+ + + + 1

6---k k 1+( ) 2k 1+( )=

12 22 32 … k2 k 1+( )2+ + + + + 1
6---k k 1+( ) 2k 1+( ) k 1+( )2+
1
6--- k 1+( ) k 2k 1+( ) 6 k 1+( )+{ }
1
6--- k 1+( ) 2k2 7k 6+ +( )
1
6--- k 1+( ) k 2+( ) 2k 3+( )
1
6--- k 1+( ) k 1+( ) 1+[ ] 2 k 1+( ) 1+[ ]

1
6---a a 1+( ) 2a 1+( ) a k 1+=

P n( )

EXERCISES 12.1
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5
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1
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2---
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In this section we consider simple propositions involving divisibility and inequalities.

Let  be the proposition that  (i.e.,  is divisible by 8) for all n ≥ 1.

Step 1: The proposition is true when n = 1 since 91 – 1 = 8 which is divisible by 8

Step 2: Assume  holds true for n = k,   i.e., assume that  where m is an
integer.

Step 3: Prove is true for n = k + 1. i.e., prove that  9k + 1 – 1  is divisible by 8
Now 9k + 1 – 1 = 9(9k) – 1

 =  9(8m + 1) – 1 [as  9k = 8m + 1 (from Step 2)]
 =  72m + 8
 =  8(9m + 1) which is divisible by 8

Therefore,  is true for n = k + 1.
Step 4: That is, if the proposition holds for n = k, it also holds for n = k + 1. As it is true for

n = 1 it is then true for n = 2, and so on, and thus the proposition is true for all n ≥ 1.

Let  be the proposition that 2n > n   for all n ≥ 1.
Step 1:  is true when n = 1 since L.H.S = 21 = 2 > 1 = R.H.S

Step 2: Assume that  holds for n = k; i.e., that  2k > k

Step 3: Prove that  is true for n = k + 1 i.e., show that   2k + 1 > k + 1.
From Step 2.,  above,    2k  > k

 2×2k  > 2k [multiplying both sides by 2]
But, 2×2k = 2k + 1    ∴2k + 1 > 2k
Now, k ≥ 1 so  2k = k + k  ≥ k + 1  and hence    2k + 1  > k + 1
i.e.   holds for n = k + 1 if it holds for n = k.

Step 4: Thus as  holds for n = 1, it holds for n = 1 + 1  and so on for all values of 
n ≥ 1.

FURTHER EXAMPLES PART 112.2

Prove that  is divisible by 8 for all n ≥ 1 where n is an integer.9n 1–E 12.5XAMPLE
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P n( ) 9n 1 8– 9n 1–

P n( ) 9k 1– 8m=

P n( )

P n( )

Prove by induction that 2n > n   for all n ≥ 1.E 12.6XAMPLE
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P n( )

P n( )
P n( )

P n( )

P n( )
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When dealing with inequalities it is often useful to re-formulate the question and show that the 
given expression is greater or less than zero (as required).

Let  be the proposition 3n  > 1 + 2n  for n > 1.

Step 1: First we rearrange 3n  > 1 + 2n as 3n  – 2n – 1 >  0.
Next we test for n = 2.
L.H.S = 32 – 2×2 – 1 = 4 > 0 = R.H.S
Thus  is true for n = 2

Step 2: Assume that  is true for n = k, i.e., assume that  3k – 2k – 1 > 0

Step 3: Prove  is true for n = k + 1 i.e.  show that   3k + 1 – 2(k + 1) – 1 > 0
LHS =  3k + 1 – 2(k + 1) – 1

= 3×3k – 2k – 3
= 3×3k – 6k – 3 + 4k
= 3(3k – 2k – 1) + 4k
> 0    [since 3k – 2k – 1 > 0 (from Step 2) and 4k > 0]

Step 4: Hence if the proposition holds for n = k, it also holds for n = k + 1. As it is true for 
n = 2 it is then true for n = 3, and so on. 
∴ the proposition  is true for all n > 1.

1. By induction, prove that
(a) 9n + 2 – 4n   is divisible by 5 for all  n ≥ 1
(b) n3 – n   is divisible by 3 for all  n > 1
(c) n3 + 2n is a multiple of 3 for all  n ≥ 1
(d) 7n + 2   is divisible by 3 for all n ≥ 1
(e) 9n + 1 – 8n – 9 is divisible by 64 for all n ≥ 1
(f) 2n ≥ 1 + n for all n ≥ 1
(g) n + 1 < 3n for all n ≥ 1
(h) 1 + n2 < (1 + n)2 for all n ≥ 1
(i) n < 1 + n2 for all n ≥ 1
(j) 7n – 3n, n ≥ 1 is divisible by 4 

[Hint: 7k + 1 – 3k + 1 =  (7k + 1 – 7×3k) + (7×3k – 3k + 1)]

Prove by induction that 3n  > 1 + 2n  for n > 1.E 12.7XAMPLE
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P n( )

P n( )
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EXERCISES 12.2
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We now consider more difficult propositions involving inequalities, divisibility and sums.

Let  be the proposition that n3 + 5n  is divisible by 6  for all n ≥ 1.
Step 1: Test for n = 1

13 + 5 × 1 = 6  which is divisible by 6 and so the proposition is true for n = 1
Step 2: Let  be true for n = k,  i.e., , m is an integer. 

Step 3: Test for n = k + 1
(k + 1)3 + 5(k + 1) = k3 + 3k2 + 3k + 1 + 5k + 5

= (k3 + 5k) + 3k2 + 3k + 6
= 6m + 3k2 + 3k + 6 [from Step 2]
= 6m + 6 + 3k(k + 1)

Now k(k + 1) is an even number and thus it has a factor of 2 (the product of two consecutive 
integers is even). Thus the product 3k(k + 1) can be written as  3 × 2 × q   where q is the quotient 
of k(k + 1) and 2.

∴   LHS = 6m + 6 + 6q  
    = 6(m + 1 + q) which is divisible by 6

Step 4: Thus, if the proposition is true for n = k  then it is true for n = k + 1 as proved. As it
is true for  n = 1, then it must be true for n = 1 + 1 (n = 2). As it is true for n = 2 then
it must hold for n = 2 + 1 (n = 3) and so on for all positive integers n.
That is, by the principle of mathematical induction  is true.

Let  be the proposition  for all .

Step 1: The proposition is true when n = 1 as

Step 2: Assume that  is true for n = k, i.e., assume that: 

FURTHER EXAMPLES PART 212.3

Prove by induction that n3 + 5n  is divisible by 6  for all n ≥ 1.E 12.8XAMPLE
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P n( ) k3 5k+
6----------------- m k3 5k+⇔ 6m= =
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Prove by induction that  for all .x 180° n×+( )sin 1–( )n x( )sin= n ∈ +E 12.9XAMPLE
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P n( ) x 180° n×+( )sin 1–( )n x( )sin= n ∈ +

x 180°+( )sin x 180°( ) x 180°( )sincos+cossin=
1–( ) xsin=

P n( )
x 180° k×+( )sin 1–( )k x( )sin=
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Step 3: Now, to prove that  is true for n = k + 1
sin[x + (k + 1)×180˚] =  sin[(x + k×180˚) + 180˚]

=  sin(x + k×180˚)cos180˚ + cos(x + k×180˚)sin180˚
= (–1)sin(x + k×180˚)
= (–1) (–1)ksinx [from Step 2]
= (–1)k+1sinx

i.e.  holds for n = k + 1 if it holds for n = k.

Step 4: Thus, if the proposition is true for n = k then it is true for n = k + 1 as proved. As it
is true for n = 1, then it must be true for n = 1 + 1 (n = 2). As it is true for n = 2 then
it must hold for n = 2 + 1 (n = 3) and so on for all positive integers n.

That is, by the principle of mathematical induction,  is true.

Let  be the proposition that 
However, when dealing with sigma notation it can be helpful to write the first few terms of the 

sequence: .

Step 1:  is true for n = 1 since L.H.S =  = R.H.S.

Step 2: Assume that  is true for n = k, i.e.,  =  2k(k – 2).

Step 3: Test  for n = k + 1:
Adding the (k + 1)th term,  [4(k + 1) – 6]  to both sides gives

 + [4(k + 1) – 6]  = 2k(k – 2) + [4(k + 1) – 6] [from Step 2]

   =  2k2 – 4k + 4k – 2
   =  2(k2 – 1)
   =  2(k + 1)(k – 1)
   =  2(k + 1)[(k + 1) – 2]

which is the (k + 1)th assertion. 
That is,  is true for n = k + 1.

Step 4: Thus, if the proposition is true for n = k, then it is true for n = k + 1. As it is true for
n = 1, then it must be true for n = 1 + 1 (n = 2). As it is true for n = 2 then it must

P n( )

P n( )

P n( )

Prove that .4r 6–( )
r 1=

n
∑ 2n n 2–( ) for all n ∈= +
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hold for n = 2 + 1 (n = 3) and so on for all positive integers n.
That is, by the principle of mathematical induction,  is true.

1. Prove the following using the principle of mathematical induction for all  .

(a)

(b)

(c)

(d)
(e)

(f)

(g)
(h)
(i)

(j)

(k)
(l)  for all n ≥ 3, x > 0
(m)  for all integers n ≥ 4.
(n)
(o)
(p)  for all n > 3.
(q)  is divisible by 5.
(r) , n ≥ 1.
(s) Prove that the maximum number of points of intersection of n ≥ 2 lines in a plane is

.

P n( )
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Mathematics can be considered to be the study of patterns. A useful ability in maths can be 
forming a rule to describe a pattern. Of course any rule that we develop must be true in all 
relevant cases and mathematical induction provides one method of proof.

12.4.1 THE TH TERM OF A SEQUENCE

To begin the solution, consider the possibilities for n = 3, 4, 5

Let dn represent the number of diagonals in an n-sided polygon. The value for dn is shown in the 
table for values of n up to n = 6 (construct the next few diagrams in the pattern to verify and 
extend this table).

Plotting the points related to the variables n and dn 
(above) suggests that the relationship between them 
could be quadratic, and so we might assume that

.

Substituting the first 3 values for n gives:

n = 3 ⇒ 0 = 9a + 3b + c
n = 4 ⇒ 2 = 16a + 4b + c
n = 5 ⇒ 5 = 25a + 5b + c

Solving these three equations for a, b and c gives   
 a = , b = , and c = 0 and thus .

When n = 6,   d6 =  =  9,  which corresponds to the tabulated value for n = 6 above.

So far we have formed a conjecture that the number of diagonals in an n-sided convex polygon is 

n 3 4 5 6
dn 0 2 5 9

FORMING CONJECTURES12.4

n

Find the number of diagonals that can be drawn in an n-sided convex 
polygon.

E 12.11XAMPLE

S
o
l
u
t
i
o
n

3 4 5 6

2

4

6

8

n

dn

dn an2 bn c+ +=

1
2---

3
2---– dn

1
2---n2 3

2---n– n n 3–( )
2--------------------= =

6 6 3–( )
2--------------------
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given by .  This formula remains a conjecture until we prove that it is true for 
values of n ≥ 3.
Proof:
Let  be the proposition that the number of diagonals that can be drawn in an n-sided convex 
polygon is given by  for n ≥ 3.

Step 1:  is true for n = 3 as   = 0 which is the number of diagonals in a
3 sided polygon.

Step 2: Assume that  is true for a k-sided polygon i.e., that  .
We consider the effect that adding an extra side will have on the result.

Step 3: Looking at the tabulated values for n and dn you should see that adding an extra
side to an n-sided polygon produces an extra (n – 1) diagonals, and so we can say
that

dk+1 = dk + the extra diagonals added by the extra side
=  dk + (k – 1)
=   + (k – 1)

=  

=  

=  
Step 4: Which is the (k + 1)th assertion. 

Thus, if the proposition is true for n = k, then it is true for n = k + 1. As it is true for
n = 3, then it must be true for n = 3 + 1 (n = 4). As it is true for n = 4 then it must
hold for n = 4 + 1 (n = 5) and so on for all integers n ≥ 3.
That is, by the principle of mathematical induction,  is true.

Another useful way to find the general term from a given sequence is called the Method of 
Differences. This method is useful when the general term of a sequence can be expressed as a 
polynomial.

To illustrate this method, consider the sequence  2, 12, 36, 80, 150, 252, … . Our aim is to find an 
expression for the nth term i.e. Un.

Form a difference array as shown on the next page. Each entry in the difference rows of the array 
is found, as the name suggests, from the difference between the two terms above.

dn
n n 3–( )

2--------------------=

P n( )
dn

n n 3–( )
2--------------------=

P n( ) d3
3 3 3–( )

2--------------------=

P n( ) dk
k k 3–( )

2-------------------=

k k 3–( )
2-------------------

k k 3–( ) 2 k 1–( )+
2---------------------------------------------- k2 k– 2–

2----------------------=
k 1+( ) k 2–( )

2----------------------------------
k 1+( ) k 1+( ) 3–[ ]

2------------------------------------------------

P n( )
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Notice that eventually there will be a line where all differences are equal (only if the relationship 
really is a polynomial). For any polynomial sequence, this line of equal differences is not 
coincidental and will always occur. Construct a difference array for the first 6 terms of the 
polynomials defined by

P(n) = n4 – n3 and  P(n) = 3n3 – 5n2 – 1.

From these arrays, you should notice that the line of equal differences occurs in the 4th row  for 
the polynomial of degree 4, and the 3rd row for the polynomial of degree 3.

Generalising, we can say that a sequence having its nth differences equal, can be expressed as a 
polynomial of degree n. 

We now need to look at how this generalisation  can help us find the nth term of a given sequence.

Consider the general sequence with terms  U1, U2, U3, … , Un ,  then the difference array is as 
follows:

Note that  ∆iUj  represents the jth difference in the ith row of the array
Each entry in the given array is the sum of the term preceding it and the term below it to the left.

Thus   U2 – U1 = ∆1U1 ⇒ U2 = U1 + ∆1U1
U3 – U2 = ∆1U2 ⇒ U3 = U2 + ∆1U2
∆1U2 – ∆1U1 = ∆2U1⇒ ∆1U2 = ∆1U1 + ∆2U1
etc.

Now      U3 =  U2 + ∆1U2
=  (U1 + ∆1U1) + (∆1U1 + ∆2U1) [from the above expressions for U2 and ∆1U2]
=  U1 + 2∆1U1 + ∆2U1

Similarly it can be shown that   U4 = U1 + 3∆1U1 + 3∆2U1 + ∆3U1,  and following this method we 
can form an expression for each term of the sequence in terms of U1.

Looking at the expressions for U2, U3, and U4 notice that the numerical coefficients are those of 
the binomial theorem. Note though that the coefficients for the 4th term are those of the binomial 

Sequence 2 12 36 80 150 252 ...
1st  differences 10 24 44 70 102 ...
2nd differences 14 20 26 32 ...
3rd differences 6 6 6 ...

Sequence U1 U2 U3 U4 U5…

1st  differences ∆1U1 ∆1U2 ∆1U3 ∆1U4 …

2nd differences ∆2U1 ∆2U2 ∆2U3 …

3rd differences ∆3U1 ∆3U2 ∆3U3 …
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expansion of exponent 3, the coefficients for the 3rd term are those of the binomial expansion of 
exponent 2.

We can now form a conjecture that an expression for  Un  in terms of  U1 is given by 
Un = U1 + (n – 1)∆1U1 + ∆2U1 + … + ∆rU1 + … + ∆n-1U1

The proof of this result is left as an exercise for the student [Hint: recall from work on the 
Binomial theorem that  ].

Applying this to our earlier sequence of 2,  12,  36,  80,  150,  252, ... 
For this sequence the row of equal differences was the third, thus we utilise the terms of Un up to 
∆3U1.

U1 = 2,  ∆1U1 = 10,  ∆2U1 = 14,  ∆3U1 = 6 and so
Un =  2 + 10(n – 1) + 14  + 6

=  2 + 10(n – 1) + 14  + 6
=  2 + 10(n – 1) + 7(n2 – 3n + 2) + (n3 – 6n2 + 11n – 6)
=  n3 + n2

All that now remains is to prove this result true for all values of n ≥ 1. This is left for the student.

1. Deduce an expression for the nth term in each sequence below.

(a) 4, 6, 8, 10, ... (b) 3, 8, 13, 18, ...
(c) ... (d) 3, 9, 27, 81, …

(e) 2, 5, 10, 17, 26, … (f) ...

(g) ... (h) ...

2. Find an expression for the nth terms of each sequence below using the method of
differences, and then prove your expressions true.

(i) 5, 10, 17, 26, 37, … (ii) 1, 8, 19, 34, 53, …

(iii) –1, 4, 21, 56, 115, … (iv) 5, 2, –13, –55, –145, –310, –583, ...

(v) 7, 19, 31, 37, 31, 7, ...

n 1–
2   n 1–

r  

n
r  

n
r 1–  + n r+

r  =

n 1–
2   n 1–

3  
n 1–( ) n 2–( )

1.2---------------------------------- n 1–( ) n 2–( ) n 3–( )
1.2.3---------------------------------------------------
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12.4.2 THE SUM TO  TERMS OF A SEQUENCE

In an earlier example we were given the task of proving that:
12 + 22 + 32 + … + n2  =  n(n + 1)(2n + 1).

This was proved to be true, but a further question now arises -  from where did the initial 
expression for the sum of the terms of the sequence come?

Recall from your work on Series and Sequences that given a sequence  the 
related series is . Often the sum to n terms of a series can be easily 
found, especially when the series is an arithmetic or geometric progression.

Our task now is to develop a method of finding an expression for the sum to n terms of any given 
series. The method involved relies upon the result that follows.

If we can find a function  such that  then:

Proof
If we have the function  then:    

   
   

        :

    
Adding the respective sides of this together we get:

       
The trick with this procedure is in choosing the correct function . Consideration of the 
following examples should provide some insight into how this can be done.

If  is given in terms of a polynomial i.e., , then let  be a polynomial with 
degree one more than the degree of .

Hence as  let  and then 

n

1
6---

u1 u2 u3 … un, , , ,
sn u1 u2 u3 … un+ + + +=

f n( ) un f n 1+( ) f n( )–=

  sn u1 u2 u3 … un+ + + + f n 1+( ) f 1( )  –= =

f n( ) u1 f 2( ) f 1( )–=
u2 f 3( ) f 2( )–=
u3 f 4( ) f 3( )–=

un 1– f n( ) f n 1–( )–=
un f n 1+( ) f n( )–=

u1 u2 u3 … un+ + + + f 2( ) f 1( )–[ ] f 3( ) f 2( )–[ ] f 4( ) f 3( )–[ ] …+ + +=
f n( ) f n 1–( )–[ ] f n 1+( ) f n( )–[ ]+ +

sn∴ f n 1+( ) f 1( )–=
f n( )

Find an expression for the sum to n terms of the series 
12 22 32 … n2+ + + +

E 12.12XAMPLE

S
o
l
u
t
i
o
n

un un P n( )= f n( )
P n( )

P n( ) n2= f n( ) an3 bn2 cn d+ + +=
f n 1+( ) a n 1+( )3 b n 1+( )2 c n 1+( ) d+ + +=
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Now       

Equating the coefficients of the powers of n from the left and right sides gives:

3a = 1,   3a + 2b = 0,   a + b + c = 0
Solving gives a = , b = , c = . 

Therefore, we have:        

Now,   

          [the ‘d’ terms cancelled] 

This formula was proved earlier in this chapter.

Consider  then: 

Now , i.e. 

Equating and solving for a gives a = –2  = , 

Therefore, 

This result can be proved by induction.

un f n 1+( ) f n( )–=
n2∴ a n 1+( )3 b n 1+( )2 c n 1+( ) d an3 bn2 cn d+ + +[ ]–+ + +=

3an2 3a 2b+( )n a b c+ +( )+ +=

1
3---

1
2---–

1
6---

f n( ) 1
3---n3 1

2---n2– 1
6---n d+ +=

f n 1+( ) 1
3--- n 1+( )3 1
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f 1( ) 1
3---

1
2---

1
6---+– d+=

d=

sn u1 u2 u3 … un+ + + +=
f n 1+( ) f 1( )–=
1
3--- n 1+( )3 1

2--- n 1+( )2– 1
6--- n 1+( )+=

n n 1+( ) 2n 1+( )
6-----------------------------------------=

Find the sum to n terms of the series .1
2---

1
4--- …

1
2n-----+ + +

E 12.13XAMPLE

S
o
l
u
t
i
o
n

f n( ) a
2n-----= f n 1+( ) a

2n 1+-----------=

un f n 1+( ) f n( )–= 1
2n-----

a
2n 1+----------- a

2n-----–=

f n 1+( )∴ 2–
2n 1+-----------= 1

2n-----– f 1( ) 1–=
1
2---

1
4--- …

1
2n-----+ + + f n 1+( ) f 1( )– 1

2n-----– 1+ 1 1
2n-----–= = =



MATHEMATICS – Higher Level (Core)

442

We have that  [Using the identity ]

Then, .

However, we also have that (using )

      , where 

Therefore, 

         [Using ]

   

        

And so, .

That is,  = .

1. Find the sum to n terms of the sequences below and then prove your results true.
(a) 2 + 5 + 10 + 17 + … + (n2 + 1)
(b) 1 + 8 + 27 + 64 + ... + n3
(c)
(d) 13 + 33 + 53 + ... + (2n – 1)3
(e) 1.3 + 2.4 + 3.5 + ... + n(n + 2)
(f)

Find the sum of the series .sin2θ sin22θ sin23θ … sin2nθ+ + + +E 12.14XAMPLE
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For questions 2 to 7, find the required general result and then prove your answer using
Mathematical Induction.

2. 1, 3, 6, 10, 15, … are called triangular numbers.

Denoting the nth triangular number as tn, find a formula for tn.

3. Find the size of each angle in a regular n-sided polygon.

4. Find the maximum number of pieces that can be formed making n straight cuts across a
circular pizza (pieces don’t have to be of equal size).

5. Find the number of squares of all sizes on an n × n chess board.
6. Prove that a three digit number is divisible by 3 if the sum of its digits is divisible by 3.

7. The pattern below is formed by taking a single square, and adding a congruent square on
each edge. How many squares will there be in the nth repetition of this pattern?

8. In each of these circles, each dot is joined to every other one. Into how many pieces is each
circle divided? If a circle is drawn with n dots, what is the maximum number of regions
that can be formed if all dots are joined in the same manner?

9. You are given five black discs and five white discs which are arranged in a line as shown:

The task is to get all of the black discs to the right hand side and all of the white discs to
the left hand side. The only move allowed is to interchange two neighbouring discs.

What is the smallest number of moves that need to be made?
becomesi.e.
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How many moves would it take if we had n  black discs and n  white discs arranged
alternatively?

Suppose the discs are arranged in pairs

How many moves would it take if there were n  each of black and white?

Now suppose that you have three colours, black, white and green.

The task here is to get all the black discs to the right, all the green discs to the left and the
white discs to the middle. What is the smallest number of moves required if there are n
discs of each colour?

10. Prove that  sinθ + sin3θ + ... + sin(2n – 1)θ  = 

11. Prove that 
[Hint: consider the coefficient of xn in the expansion of  (1 + x)n(1 + x)n ]

12. Consider placing a point inside a triangle so that non-intersecting lines are drawn from the
point to the vertices of the triangle, creating partitions of the larger triangle into smaller
triangles. How many partitioned triangles do we have?

Now consider the same problems as above, but this time with two points inside the larger
triangle. How many partitioned triangles do we now have?

Make a proposition for the above situation when n points are placed inside the triangle.
Use the principle of mathematical induction to prove your proposition.

B W G B W G B W G B

nθ2sin
θsin----------------

n
0  

2 n
1  

2 n
2  

2 … n
n  

2+ + + + 2n( )!
n!( )2-------------=
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1. (a) In the sequence , what term will the number 96 be?
(b) In a city there was on average a crime rate every 90 minutes. This represented an

increase of 10% over the previous year. In the previous year there was on average a
crime every x minutes. Find x.

(c) Find x given that .
(d) A series is defined as . What is the smallest

value of n such that ?

2. (a) Given that  and  are three consecutive terms of an arithmetic
sequence. Show that   and  are also three consecutive terms of an
arithmetic sequence.

(b) The 3rd term of an A.P is 6 and the 5th term is –4. Find the sum of the first 10 terms
 of the A.P.
3. Three towns are positioned so that Blacktown is 15 km north of Acton and Capetown is 

32 km north-east of Acton. Give all answers to 1 d.p.
(a) Draw a triangle representing the locations of the three towns Acton, Blacktown and

Capetown labelling the towns A, B and C respectively. Making sure to label all
distances and angles.

(b) Calculate the straight-line distance between Blacktown and Capetown.
(c) Determine the angle BCA.
An aeroplane is 3.0 km directly above Blacktown at point P. The points A, P and C form a
triangle.
(d) Determine how far the plane is from the point A which represents the town Acton.
(e) Calculate the size of angle APC.

4. Three companies A, B and C are competitors and are keen to compare sales figures for the
period July 2003 to June 2004 inclusive.
Company A had sales of $35,400 in July 2003 and increased sales by an average 3% per
month over the period.
Company B had sales of $32,000 in July 2003 and increased sales by an average of $1859
per month over the period.
Company C had sales of $48,000 in July 2003 and unfortunately found that their sales
decreased by an average of 8% per month over the period.
(a) Calculate to the nearest hundred dollars;

i. the sales figures for each of the companies in June 2004.
ii. the total sales figures for each of the companies for the twelve month period

July 2003 to June 2004 inclusive. 
(b) Calculate, correct to one decimal place, the average percentage increase in sales per

month over the period for company B.
(c) Assuming that the given sales trends continue beyond June 2004:

i. calculate how many months from July 2003 Company A will take to reach a
total sales target of $600,000.

ii. will Company C ever reach a total sales target of $600,000? Give reasons.

REVISION SET B - PAPER 1 & PAPER 2 STYLE QUESTIONS

2 212--- 3 312--- …,, ,,
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a2 b2, c2



MATHEMATICS – Higher Level (Core)

446

5. Given that , find (a) (b) (c)

6. (a) In an infinite G.P, the sum of the first three terms is equal to seven eighths of the
sum to infinity. Find the common ratio, r.

(b) A plant is 50 cm high when it is first observed. One week later it has grown 10 cm,
and each week thereafter it grows 80% of the previous week’s growth. Given that
this pattern continues, what will be the plants ultimate height?

7. (a) Show that 
(b) Solve the equation .
(c) Find the exact value of .

8. (a) Evaluate i. ii. iii.
(b) Prove, using the principle of mathematical induction, that

.

9. (a) Prove that .
(b) Solve .

10. Prove by mathematical induction that  is divisible by 6 for all n ≥ 2.

11. (a) For a certain A.P,  and . Find the value of .
(b) The nth term of the series  is given by .

i. Find the values of A, B and 

ii. Evaluate .

12. (a) Find the square root of .
(b) Simplify .
(c) i. Show that , where z is a complex number.

ii. Hence solve the equation .

13. (a) Solve for  if .
(b) Find 
(c) i. Find  and  so that , R > 0 and .

ii. Hence, find .

w 3 2i–
1– i+---------------= w w∗ Im w( )

1 2Acos–
1 2Acos+------------------------- tan2A=

2sec2θ θ 3–tan+ 0 0 θ 180°≤ ≤,=
Tan105° Tan15°+

1
2!-----

2
3!-----

k
k 1+( )!-------------------

1
2!-----

2
3!-----

3
4!----- … n

n 1+( )!-------------------+ + + + 1 1
n 1+( )!-------------------–=

2xsin
1 2xcos+------------------------ xtan=

2cos2θ θsin+ 1 0 θ 2π≤ ≤,=

n3 n–

u3 7= u6 16= u10
5 2 5

6--- …+ + + un A
2n-----

B
3n-----+=

u4

un
n 1=

∞
∑

7– 24i+
cis θ( )( )9 cis 3θ( )( ) 5–

cis 2θ–( )( )4---------------------------------------------------
zn z n–+ 2 nθcos=

3z4 2z3 z2 2z 3+ + + + 0=

θ 4sin2θ 3 0 θ 2π≤ ≤,=
θ : sin2θ θ 0 θ 2π≤ ≤,sin={ }

R α 3 x x R x α+( )cos≡sin–cos 0 α π
2---< <

x 3 x xsin–cos 1 0 x 2π≤ ≤,={ }
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14. Prove by induction that  for all positive integers n.

15. (a) If , state the greatest and least value of  and the
positive values of x for which these occur.

(b) Solve for  in the range ]0, 2π[ where .
(c) Prove that .

16. The first three terms of a sequence are 68, 62, 56.
(a) Write a formula for the nth term, 
(b) If the last term of the sequence is p, how many terms are there in the sequence?
(c) Find a simplified expression for the sum of n terms of the sequence in terms of p,

and hence find the value of p that gives the maximum possible sum.

17. Show that  is a root of the polynomial  and hence resolve 
 into irreducible factors over the 

(a) real number field.
(b) complex number field.

18. In the triangle ABC, AB = 5, BC = 3, CA = 4. D is a point on [AB] such that .
Find the exact value of CD.

19. Given that  and , find i. ii.

20. Two vertical masts BD and CE, each of height h, have their base B and C on level ground
with C to the east of B. Point A lies on the same level as B and C and is due south of B.
The angle of elevation of D from A is  and angle DAE = . If the angle of elevation of E
from A is , show that .

21. Use mathematical induction to prove .

22. (a) Solve for  where .
(b) i. Simplify .

ii. Hence solve , .

23. (a) If , express z and  in the form  where x and y are real.
(b) If , find the complex number .
(c) Find all complex numbers z, such that .

11n 1 10–

g x( ) 17
5 3sin2x–------------------------ x ∈,= g x( )

θ 2sin2θ 3 θcos=
2θsin

1 2θcos–------------------------ θcot=

un

1 i+ P x( ) x3 x2 4x– 6+ +=
P x( )

BCD∠ π
6---=

z1 2– i+
1 3i–---------------= z2 3– i+

2 i+---------------= z1
z2
----  arg z1

z2
----

θ φ
α αsin θ φcossin=

r r 1+( )
r 1=

n
∑ 1

3---n n 1+( ) n 2+( )=

θ 2 θ 4 θcot–tan cosecθ 0° θ 360°≤ ≤,=
θsin

1 θcos–---------------------
θsin

1 θcos+---------------------+
θsin

1 θcos–---------------------
θsin

1 θcos+---------------------+ 4
3-------= 0 θ 2π≤ ≤

3 i+( )z 4 2 i–( )= z2 x iy+
a 3 i–

2 i+----------- b, 7 i+
2 3i–--------------= = a b+

a b–------------
z4 3z3 2z2– 3z 1+ + + 0=
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24. The complex number  is given by . Show that  and show
that  is a root of the equation .

25. Prove by mathematical induction, that  is divisible by 5 where .

26. . Find k.

27. (a) A geometric sequence has a first term 2 and a common ratio 1.5. Find the sum of
the first 11 terms.

(b) Find the number of terms of the sequence 3, 7, 11, . . .  required to sum to 820.
(c) For what values of x will the sum  exist?
(d) Find the first four terms of the sequence defined by .
(e) Find the nth term of the sequence defined by the difference equation

, with .
(f) Robyn borrows $10000 from a bank. Interest at 18% per annum is calculated

monthly on the amount of money still owing. Robyn repays $600 each month.
How much does Robyn owe the bank after the first 12 repayments?

28. Let  and .
(a) Find .
(b) Write down the maximum value of .

29. The sides of a triangle have lengths 7cm, 8cm and 13cm respectively. Find
(a) the size of its largest angle, (b) the area of the triangle.

30. A photographer’s tripod stands on a horizontal
floor, with its feet A, B and C at the vertices of
an equilateral triangle of side length 0.6 metres.
Each leg is 1.2 metres long. 
The line [AM] meets the side [BC] at right angles
where M is the mid-point of [BC]. The point G is
the centroid of triangle ABC, that is,

.
(a) Calculate i. the length of [AM]

ii. the length of [AG]
(b) Calculate the height above the floor of the

top, V, of the tripod.
(c) Calculate the angle which a leg makes with the floor.

31. (a) Find the values of x between 0 and 2π for which .
(b) Sketch, on the same set of axes, the graphs of  and  for

values of x from 0 to 2π. Hence find .

w w 1– i 3+= w2 4– 2w–=
w w3 8– 0=

81 32n× 22n– n ∈

Tan 1– 4( ) Tan 1– 3
5---  – k=

1 1 x–( ) 1 x–( )2 1 x–( )3 …+ + + +
un 1+ 2un n u1,+ 1= =

un 1+ un 3–= u1 20=

f x( ) 2x π
6---+= g x( ) 1 3 xsin–=

g f 0( )( )
g f x( )( )

0.6 m

1.2 m

A B

C

V

M
G

AG 2
3---AM=

xsin 3 xcos=
y xsin= y 3 xcos=

x x 3 x 0 x 2π≤ ≤,cos>sin{ }



Revision Set B – Paper I & Paper II Style Questions

449

32. A rectangular pyramid VABCD has a
base measuring 24 cm by 18 cm Each
slant edge measures 17 cm.
Find
(a) the height of the pyramid.
(b) the angle which a slant edge

makes with the base.

33. (a) If , find , , , .
(b)   If  and , express the following in the form

 where a and b are real numbers.
         i. ii. iii. iv.

v.  where  is the conjugate of .

34. (a) Express  in polar form. 
State i. ii. . Hence express  in Cartesian form.

(b) Given  is a solution of , find all complex
number solutions.

35. If  and , find  and  and hence, evaluate .

36. (a) Find the values of x which satisfies the equation: , 0 ≤ x ≤ 2π.

(b) Make use of these values in sketching the graph of  for
 labelling the intercepts with the axes.  Also find one turning point.

37. (a) Mr F. Nurke has been working at the firm of Snyde & Shyster for 6 years. He
started work on an annual salary of $10,000, and each year this has increased by
10%. Find the total amount he has earned with the firm.

(b) The first term in a geometric sequence is a negative number, the second is 3 and the
fourth is 9. Find the first and third terms.

38. (a) The graph on the right represents the function
definded by .
Find the values of a and b.

(b) Find .

(c) Find n(S), if S = 

24 cm

18 cm

17 cm

A
B

D C

V

z 3 i–= z Arg z( ) z7 Arg z7( )
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z14 z1 z1
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2 x π
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y 2 x π
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2π
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x
6f x( ) acos bx( )=

x : 2 2x( )cos 3 π x 3π
2------< <,=   

x : 3x( )sin 3x( ) 0 x π≤ ≤,cos={ }
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39. A, P and Q are three points in that order in a straight
line. The bearing of P and Q from A is 310˚. From
another point B, 1 kilometre due west of A, the
bearing of P is 053˚; and Q is due north of B.
(a) Copy and complete the diagram, clearly 

showing the position of P and Q and all
relevant angles and distances.

(b) Calculate, to the nearest metre,
i. the distance from point P from point B?
ii. distance from P to Q,

40. A sector OAB is to be cut from a circle of cardboard with
radius 25 cm, and then folded so that radii OA and OB are
joined to form a cone, with a slant height 25 cm. 
If the vertical height of the cone is to be 20 cm, what must
the angle  be (in degrees)?

41. A girl walking due east along a straight horizontal road observes a church spire on a true
bearing of 076˚. After walking 1500 metres further she observes the spire on a true bearing
of 067˚. 
(a) Draw a diagram for this situation.
(b) How far is the church from the road (to the nearest metre)?

42. A monument consists of a truncated square pyramid ABCD, EFGH, of height 2.2 metres,
surmounted by a square pyramid V ABCD, of height 0.2 metres, as shown in the diagram.
The square ABCD has edge 0.5 metres and
the square EFGH has edge 0.8 metres.
Find:
(a) the inclination of a sloping triangular

face to the base.
(b) the surface area of one of the sloping 

triangular faces.
(c) the total surface area of all the sloping

faces of the monument.
(d) the monument needs to be rendered with

two coats of a cement mix. The cost per
square metre for this cement mix is set at
$32.00. How much will it cost to render
the monument if it labour costs will total
$300.00?

43. (a) Find  given that .
(b) If  and , find i. ii.

(c) Given that  is a zero of the polynomial , find a.

B                                                      A

N

α°A O
B

α°

0.2 m

2.2 m

0.8 m

0.5 mA                               B

D                              C

E                                                    F

H                                                 G

V

z2 2iz– z 2 i+=
z 2cis π

3---  = w 3cis 7π
12------  = z2

w3------ Arg z2
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2i P z( ) 2z3 3z2 az– 12+ +=
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44. (a) Given that , find the exact value of .

(b) Find the i. domain ii. range of .

(c) Find the range of the function .
(d) The equation of the graph shown is given by

.
Find the values of i. a.

ii. k.
(e) The function 

has an inverse function, . Determine the domain of  and sketch .

45. As part of a long term research project, economists from the Department of Agriculture
have been recording the price of a bale of wool and a bushel of wheat on a weekly basis.
The economists started collecting the information on the 1st January 2004.
After some time they realized that the the price for each item could be reasonably
approximated by mathematical functions.
The price, in dollars per bale of wool is given by .
The price, in dollars per bushel of wheat is given by .

In each case, t is the number of weeks from the 1st January 2004 (so that 1st January 
corresponds to t = 0, 8th January corresponds to t = 1 and so on).
(a) Determine the price of wool and wheat on the following dates:

i. 29 January 2004 (after 4 weeks).
ii. 20th May 2004 (after 20 weeks).
iii. 2nd August 2004 (after 35 weeks).

(b) Give the amplitude and period of the function W.
(c) Use the following information to help you sketch the graphs of W and P.

(d) What is the maximum price that the wheat reaches?
(e) Estimate, from the graph, during which weeks, after the 1st January 2004, the

price of wool and the price of wheat are equal.
46. The owner of ‘Sandra’s Health Foods’ decides that even though there is a recession, now

is the time to expand by opening another shop. To complete the expansion she intends to
borrow $50000. After discussions with her bank manager, they come to an agreement
where she can borrow $50000 at 10% compounded annually. Sandra agrees to repay the
loan at a fixed rate of $6000 per year at the end of the year (i.e., after the interest has been
calculated).
(a) Calculate the amount she owes the bank at the end of the first, second and third

year.

t 5 15 25 50 t 10 15 25 50
19.05 13.45 10 20 23.2 26.26 26.48 17.31

2αtan 2 π
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4---+=
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2--- 2x π
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xπ

6g x( ) a 1 kxcos–( )=

f : π
3---

π
3---,–        , where f x( ) xtan=

f 1– f 1– f 1–

W t( ) 15 5 π
25------t  cos+=

P t( ) 3te 0.05t– 5+=
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(b) Calculate the amount she owes at the end of the tenth year.
(c) How many years will it take her to repay the debt?
Being conscious of her financial affairs, Sandra decides that on her retirement she wishes
to establish an annuity. She wants an annuity which will pay her a fixed amount of $2000
per month at the end of each month for thirty years. She can invest with a broker at 9% p.a.
compounded monthly.
(d) How much should she invest in order to establish this annuity?

47. Towers of cards can be built as follows:
The first stage has 2 cards in one layer.
The second stage has 4 cards in the bottom
layer, a card resting on top which supports
another 2 cards. The third stage has 6 cards
in the bottom layer, 2 cards resting on top
which supports a second stage tower.
(a) i. Draw a four stage tower.

ii. How many cards are used in building this tower?
(b) The following sequence represents the number of cards used to build each tower:

2, 7, 15, . . . . Find the next four terms of the sequence.
(c) If  = the number of cards used to build an n-stage tower then there is a difference

equation of the form . Find a and b.
(d) How many cards would be needed to make a ten-stage tower?
(e) Find a formula for  in terms of n.
(f) Prove by mathematical induction, your proposition in (e).

48. The depth (  metres) of the water at a certain point on the coast, at time t hours after
noon on a particular day, is given by

                                               
(a) What is the depth of the water at noon?
(b) What is the depth of the water at i. high tide?

ii. low tide?
(c) At what time on that afternoon will low tide occur?
(d) Sketch the graph of  for .
(e) On that afternoon the local people are building a bicentennial bonfire on a rock

shelf at the point. They estimate that they can go to and fro to work on the rock
shelf only when the depth of water at the point is less than 2.25 metres. Between
what times can they plan to work on the rock shelf at building the bonfire?

49. A block of land has measurements as shown in the diagram.
Calculate its area in hectares, correct to 3 decimal places.
(1 hectare = 10000 square metres)

50. Find 

I                  II                           III
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51. (a) Find the values of x between –π and π for which .

(b) Sketch the graph of .

(c) Hence find the value of x between –π and π for which .

52. From an observation point A, the true bearing of a landmark C is 051˚ and the bearing of
another landmark D is 284˚. From another observation point B, 1000 metres due north of
A, the bearing of C is 115˚ and the bearing of D is 224˚.
Find the distance between C and D, correct to the nearest metre.

53. The temperature A˚C inside a house at time t hours after 4:00 am is given by

and the temperature B˚C outside the house at the same time is given by
.

(a) Find the temperature inside the house at 8:00 am.
(b) Write down an expresion for , the difference between the inside and

outside temperatures.
(c) Sketch the graph of D for 0 ≤ t ≤ 24.
(d) Determine when the inside temperature is less than the outside temperature.

54. A surveyor measures the angle of elevation of the top of a mountain from a point at sea
level as 20˚. She then travels 1000 metres along a road which slopes uniformily uphill
towards the mountain. From this point, which is 100 metres above sea level, she measures
the angle of elevation as 23˚. Find the height of the mountain above sea level, correct to he
nearest metre.

55. The number of cancer cells in a solution is believed to increase in such a way that at the
end of every hour, there are % more cells than at the end of the previous hour. Dr. Bac
Teria, who is in charge of this experiment, has been recording the cell counts.
Unfortunately, because of his preoccupation with another experiment he has been rather
neglectful. The only available readings are shown in the table below:

(a) The number of cells, , in the solution at the end of every hour is thought to
be modelled by a geometric progression. That is, , t = 1, 2, . . . 
i. Show that .
ii. Find the values of  and .

(b) Copy and complete the table above.
(c) When is the first time that the number of cells in the solution exceeds 258259?
(d) At the end of every hour a new identical solution is set up in the same way that the

first one was. How many cells will there be altogether at the end of a 24 hours run
of introducing a new solution at the end of every hour.

t 1 2 3 4 5 6
2420 3221
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56. (a) In Figure 1., A square having side length 2 cm has a quarter of a circle drawn
within it as shown in the diagram below. 
Find the area of the shaded region in Figure 1.

(b) Figure 2 consists of the same diagram as Figure 1 but this time a second square is
drawn so that its diagonal line coincides with that of the original square and its
corner meets the quarter circle. Once again, a quarter of a circle is drawn within the
smaller square as shown.
Find the area of the shaded region in Figure 2.

The process is then continued, as in Figure 3, so that the shaded areas in each of the
figures, form a sequence, , where  is the measure of the shaded area in
Figure 1,   is the measure of the shaded area in Figure 2,  and so on.
(c) i. Show that the sequence  is in fact geometric.

ii. Find the common ratio.
iii. Write down an expression for the nth term, .
iv. What would the area of 5th shaded region be if we continued drawing

figures using the same method?
(d) i. Find the sum of the first 5 shaded regions.

ii. If the process was to continue indefinitely, what would the areas of the
shaded regions add to?

(e) What type of a sequence would the arc lengths of the quarter circle form? Explain.
57. A finite triangular grid can be made of equilateral triangles. Illustrated below is a grid of

order 2, named so because the least number of arcs used in a path from the node A to any
of the nodes 1, 2 or 3 is two. A is a vertex of a second order triangular grid and the
opposite side has a set of nodes labelled 1, 2, 3 with additional nodes B and C.
BC2 is an example of a small triangle.
(a) Draw a finite triangular grid of order 1 and of order 3.
(b) For a finite triangular grid of order 2 how many small triangles

are there?
(c) For a finite triangular grid of order 3, 4 and 5 how many small

triangles are there?
(d) How many small triangles are there in a finite triangular grid of

order n?
(e) How many nodes are there for a triangular grid of order 1, 2, 3 and 4?
(f) The number of nodes for an nth order triangular grid is given by .

Determine the values of a, b and c.
(g) Use mathematical induction to prove the proposition in (f).
(h) As n tends to infinity, what does the ratio of the number of nodes to the number of

small triangles tend to? Comment on this result.

2 cm

2 cm

2 cm

2 cm

2 cm

2 cm

Figure 1                                                   Figure 2                                             Figure 3

A1 A2 A3 …, , , A1
A2

A1 A2 A3 …, , ,

An

1            2            3

B              C

A

1
2--- an2 bn c+ +( )
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13.1.1 DATA COLLECTION

Statistics is the science of getting ‘facts from figures’ and involves the collection, organisation 
and analysis of sets of observations called data. The data represents individual observations to 
which we can assign some numerical value or categorise in some way that identifies an attribute.
The set from which the data is collected is known as the population. The population can be finite 
or infinite, however, the data collected will be a subset from this population. Such a subset is 
called a sample. The process of gathering the data is known as sampling. Once we have our 
sample, we use characteristics of the sample to draw conclusions about the population. This is 
known as making statistical inferences. Note that statistical inference is quite different from 
simply collecting data and then displaying or summarising it as a ‘diagram’ – which is known as 
descriptive statistics.
The method that is used in collecting the sample affects the validity of the inferences that can or 
should be made. The aim then is to obtain a sample that is representative of the population.
This concept can be represented as follows:

One approach to reduce bias in the sample we acquire is to use a random sampling process. By 
doing this we stand a better chance of obtaining samples that reflect the population as a whole.

13.1.2 TYPES OF DATA

Data can be classified as numerical or categorical –
1. Numerical data: These are made up of observations that are quantative and so have

a numerical value associated with them.
For example, if the data is to represent heights, then the data would
be collected as numerical values, e.g., 172 cm, 165 cm, etc.

2. Categorical data: These are made up of observations that are qualitative (which are
sometimes also known as nominal data).
For example, if the data is to represent hair colour, then the data
would be collected as qualitative data e.g., black, brown, blue, etc.
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13.1.3 DISCRETE AND CONTINUOUS DATA

As a rule of thumb, discrete data are sets of data that can be counted, which distinguishes it 
from continuous data that are sets of data that are measured.

1. Micro Inc. produces 14,500 electrical components each month. Of these, 2000 are
randomly selected and tested.
The test reveals 42 defective components.
(a) What is i. the population size.

ii. the sample size.
(b) Give an estimate of the number of defectives produced during that month.

2. A salmon farm is attempting to determine the number of salmon in its reservoir. On
Monday 300 salmon were caught, tagged and then released back into the reservoir. The
following Monday 200 salmon were caught and of these 12 were tagged.
(a) Comment on the sampling procedure. Is the sample size large enough? Is

there a bias involved?
(b) Estimate the the number of salmon in the reservoir.

3. A manufacturer wishes to investigate the quality of his product – a measuring instrument
that is calibrated to within a 0.01 mm reading accuracy. The manufacturer randomly
selects 120 of these instruments during one production cycle. She finds that 8 of the
instruments are outside the accepted measuring range. One production cycle produces
1500 of these measuring instruments.
(a) What is i. the population size.

ii. the sample size.
(b) Give an estimate of the number of unacceptable instruments produced during a

complete production cycle.
(c) In any given week there are 10 production cycles. How many unacceptable

instruments can the manufacturer expect at the end of a week. Comment on your
result.

4. Classify the following as categorical or numerical data.
(a) The winning margin in a soccer game.
(b) The eye colour of a person.
(c) The number of diagrams in a magazine.
(d) The breed of a cat.
(e) The fire-hazard levels during summer.

5. Classify the following as discrete or continuous data.
(a) The number of cats in a town.
(b) The length of a piece of string.
(c) The time to run 100 metres.
(d) The number of flaws in a piece of glass.
(e) The volume of water in a one litre bottle.

EXERCISES 13.1
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13.2.1 PRODUCING A FREQUENCY DIAGRAM

The following figures are the heights (in centimetres) of a group of students:
156 172 168 153 170 160 170 156 160 160 172 174
150 160 163 152 157 158 162 154 159 163 157 160
153 154 152 155 150 150 152 152 154 151 151 154

These figures alone do not give us much information about the heights of this group of people. 
One of the first things that is usually done in undertaking an analysis is to make a frequency table. 
In this case as there are a large number of different heights, it is a good idea to group the height 
data into the categories (or classes) 148-150, 151-153, 154-156, etc. before making a tally. 

Each height is recorded in the appropriate row of the tally column. Finally, the frequency is the 
number of tally marks in each row. As a check, the total of the frequency column should equal the 
count of the number of data items. In this case there are 36 heights.
The choice of class interval in making such a 
frequency table is generally made so that there 
are about ten classes. This is not inevitably the 
case and it is true to say that this choice is an 
art rather than a science. The objective is to 
show the distribution of the data as clearly as 
possible. This can best be seen when the data 
is shown graphically. There are a number of 
ways in which this can be done. In the present 
example, we are dealing with heights. Since 
heights vary continuously, we would most 
usually use a histogram to display the 
distribution.

Heights Tally Frequency
148-150 √√√ 3
151-153 √√√√√√√√ 8
154-156 √√√√√√√ 7
157-159 √√√√ 4
160-162 √√√√√√ 6
163-165 √√ 2
166-168 √ 1
169-171 √√ 2
172-174 √√√ 3

FREQUENCY DIAGRAMS13.2
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There are two details connected with the construction of histograms that you should not ignore. 
Firstly, as far as the horizontal scales are concerned, we are representing the continuous variable 
‘height’. The first class interval represents all the people with heights in the range 148 to 150cm. 
Since these have been rounded to the nearest whole centimetre, anyone with a height from 147.5 
to 150.5cm, or [147.5,150.5), will have been placed in this class. Similarly, anyone with a height 
in the range [150.5,153.5) will be categorised in the class 151-153cm. If you want to label the 
divisions between the blocks on the histogram, technically these should be 147.5, 150.5 etc. 
Secondly, in a histogram, it is the area of the bars and not their height that represents the number 
of data items in each class. To be completely correct, we should give the area as a measure of the 
vertical scale. This definition allows us to draw histograms with class intervals of varying widths. 
This is sometimes done to smooth out the variations at the extremes of a distribution where the 
data is sparse. This aspect will not be considered in this chapter. 
Once we have drawn a histogram, it should be possible to see any patterns that exist in the data. In 
this case, there is a big group of students with heights from about 150 to 160cm. There are also
quite a few students with heights significantly 
larger than this and very few with heights 
below the main group. The distribution has a 
much larger ‘tail’ at the positive end than at the 
negative end and is said to be positively 
skewed. Such patterns can also be seen using 
other graphical devices. Such as a line graph:

The same patterns are evident from this 
diagram as were seen from the histogram.

13.2.2 USING A GRAPHICS CALCULATOR

Data can be entered on the calculator either as separate figures from the original data or as a 
frequency table. In both cases, the data is entered as a list. 
To enter the original data, press the STAT key and choose EDIT from 
the screen menus. If necessary, press 4 followed by the keys L1 (2nd 
1), L2 (2nd 2) etc. ENTER to clear any previous lists. Next select 
STAT EDIT. The data can now be entered as a column under L1.

The data can now be displayed as a statistical graph. As with other 
types of graph, the appropriate window must be set. In the present case, 
the x data range should be set at  145 to 175. The Xscl setting 
determines the width of class interval that will be used. 

Next, any Cartesian graphs must be cleared. Press Y= and clear any 
rule that you see. The statistical plotting facility must now be activated. 
Press 2nd STAT PLOT. Choose plot 1 and turn it on by using the 
arrows to the word On and then press ENTER. Also select the 
histogram symbol from the list of available plot types. We entered the 
data as L1 so we must select this as the source of the data. Finally, 
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because each height was entered separately, the frequency must be defined as 1. 
Pressing GRAPH should now display the histogram. This should be 
similar to that produced earlier.

One advantage of using a calculator to produce such plots is that, 
once the data has been stored, the conditions of the plot can be 
varied rapidly. For example, if the Xscl is changed to 1, the class 
interval of the frequency table becomes 1 and the histogram is as 
shown.

If the data is presented as a grouped list (frequency table), the x 
values should be entered as L1 and the frequencies as L2. In the 
case of the height data, the mid-point of each class interval (149, 
152, 155 etc.) should be entered in L1. The STAT PLOT 
instructions must also be set to record the fact that the frequencies 
are stored in L2 before statistical plots or calculations will be 
successful.

1. The following figures are the weights (in grams) of a group of fish sampled from a
 reservoir:

226 233 233 244 224 235 238 244
222 239 233 243 221 230 237 240
225 230 236 242 222 235 237 240
220 235 238 243 222 232 232 242
229 231 234 241 228 237 237 245
229 231 237 244 225 236 235 240

(a) Construct a frequency table using the following class intervals:
218-220, 221-223, 224-226 etc. grams.

(b) Draw a histogram showing this distribution.
2. In a study of the weights of a sample of semi-precious gem-stones, the following results

were obtained (grams):
1.33 1.59 1.82 1.92 1.46 1.57 1.82 2.06
1.59 1.70 1.81 2.02 1.24 1.53 1.69 2.01
1.57 1.62 1.61 1.93 1.11 1.90 1.79 1.91
1.19 1.53 1.90 1.90 1.17 1.97 1.92 2.06
1.41 1.64 1.83 1.90 1.11 1.81 1.83 1.90
1.15 1.68 1.82 1.98 1.39 1.54 1.92 2.04

(a) Construct a frequency table using the following class intervals:
 [1.1,1.2), [1.2,1.3), [1.3,1.4) etc. grams.

(b) Draw a histogram showing this distribution.

EXERCISES 13.2
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3. Make a frequency table and draw a histrogram for the following sets of data.
Set A: 

21.1 28 26.9 31.9 23.7 28.8 27.9 31.3
21.5 26.8 27.4 31.2 21.4 29.9 29.4 31.5
20.4 25.1 25.8 33.6 23.7 25.6 29.1 30.3
21.5 28.2 28.2 31.3 22.4 25.7 25.1 30.3
21.9 29.1 28.7 30.1 21.8 27.8 29.1 34.3
22.5 25.2 25.5 32.9 22.3 29 27.2 33.3

Set B
7 6 5 70 9 9 25 72
7 7 4 72 8 9 28 73
9 9 9 72 6 7 27 71
7 7 9 70 6 8 27 73
8 5 26 73 5 6 26 70
9 9 28 73 5 8 26 71

Compare the two data sets.

13.3.1 MEASURE OF CENTRAL TENDENCY

After using a graphical presentation of some sort to look at the general pattern of the data, we 
would usually calculate some representative ‘statistics’. The aim of producing these is to reduce 
the amount of data to a small number of figures that represent the data as well as possible. In the 
case of the height data we have been studying, we have already observed that the heights group 
around the range 150-160 cm. This is sometimes known as a ‘central tendency’ and we have 
several ways in which we measure this:

13.3.2 MODE

This is the most frequent class of data. In the present case there were more students in the 
151-153 cm class than any other so we would give this class as the mode. It is possible for some 
data to have more than one mode. We describe this as being bimodal, trimodal etc. The mode 
tends only to be used when there is no alternative such as when we are collecting data on the 
television stations that people like best.

13.3.3 MEAN 

This is the measure commonly (and incorrectly) called average. Numeric data is added and the 
result is divided by the number of items of data that we have.
Notation: The notation used for the mean depends on whether or not we are claiming to have

the mean of all (the population) or part (a sample) of the possible data set. 
In the case of the students, we appear to have a small group of 36 selected from all the possible 
students in this age group and so we are looking at a sample. It is generally quite clear whether 
any set of data refers to a population (such as a census) or a sample (such as a poll).

The population mean is denoted by µ and a sample mean by .

STATISTICAL MEASURES 113.3
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For a data set x, with n items both means are calculated in the same way: 

The symbol Σ means ‘add all the following’.
If the data is presented in the form of a frequency table in which each item of data  is present 
with a frequency of , then the formula becomes:

For the height data, we have two ways of approaching this calculation. One way is to return to the 
original data and add it all up. 
The total is 5694. There are 36 measurements so: 

Alternatively we can use the grouped data formula. There is a convenient way of doing this if we 
add an extra column to the orginal frequency table:

From the table:
 and  so .

This method of calculating the mean will not necessarily give exactly the same answer as the 
mean calculated from the original data as we have made the assumption that all the students with 
heights in the range 148-150 cm had a height of 149 cm. This will not generally be a seriously 
inaccurate assumption as the students with heights below this figure (148 cm) will be balanced by 
those with heights above this (150 cm). In this case, the difference is quite small. 

Heights Mid-height Frequency
148-150 149 3 447
151-153 152 8 1216
154-156 155 7 1085
157-159 158 4 632
160-162 161 6 966
163-165 164 2 328
166-168 167 1 167
169-171 170 2 340
172-174 173 3 519

Totals: 36 5700

Mean x∑
n---------

1
n--- x∑= =

xi
f i

Mean f ixi∑
f i∑----------------=

Mean 5694
36------------ 158.16667= =

f h×

f i∑ 36= f i hi×∑ 5700= Mean f i hi×∑
f i∑---------------------- 5700

36------------ 158.33333= = =
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13.3.4 MEDIAN

The median is found by arranging all the data in order of size and selecting the middle item. For 
the heights data, there is an even number of figures and so there is not a middle number. In this
situation, we take the mean of the middle two data items.

The middle heights are the 18th and 19th (156 and 157cm) so the median is 156.5cm.
It is usual to take the mean of the two numbers to give an answer to represent the median, 
however, there are a number of interpolations that can be used. For our purposes however, we will 
continue to use the mean of the two observations.

When there are  observation, i.e., there is an odd number of observations, the median 
corresponds to the th observation (after they have been placed in order from lowest 
to highest). 
e.g For the data set {2, 4, 12, 7, 9} we first list the data from lowest to largest: 2, 4, 7, 9, 12. 

Here n = 5 and so the middle observation is the rd observation. i.e., 7.

1. For the data set of Exercise 13.2 Q.1., find the mode, mean and median weights.
2. For the data set of Exercise 13.2 Q.2., find the mode, mean and median weights.
3. For the data sets of Exercise 13.2 Q.3., find the mode, mean and median weights.
4. The following numbers represent the annual salaries of the emplyoyees of a small

company.
$20910 $20110 $20390 $20170 $20060 $20350
$21410 $21130 $21340 $21360 $21360 $21410
$20350 $20990 $20690 $20760 $20880 $20960
$21240 $21060 $21190 $21400 $76000 $125000

(a) Find the mean salary.
(b) Find the median salary.
(c) Which of the two figures is the better representative measure of salary?

Order 1 2 3 4 5 6 7 8 9
Ht: 150 150 150 151 151 152 152 152 152

10 11 12 13 14 15 16 17 18
153 153 154 154 154 154 155 156 156
19 20 21 22 23 24 25 26 27
157 157 158 159 160 160 160 160 160
28 29 30 31 32 33 34 35 36
162 163 163 168 170 170 172 172 174

2n 1+
2n 1+( ) 1+

2------------------------------

5 1+
2------------ 3=
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5. The selling prices for the properties in a suburb over June 2004 were:
$191000 $152000 $152000 $181000
$180000 $163000 $169000 $189000
$184000 $169000 $167000 $172000
$190000 $169000 $159000 $172000
$202000 $162000 $160000 $154000
$181000 $166000 $163000 $196000
$201000 $154000 $166000 $154000
$178000 $164000 $157000 $185000
$177000 $169000 $157000 $172000
$195000 $150000 $163000 $1150000
$186000 $166000 $151000 $1155000
$185000 $151000 $168000 $1200000

(a) Find the mean selling price.
(b) Find the median selling price.
(c) Which of the two figures is the better representative measure of selling price?

6. For the figures given below, calculate the mean from the original data.
5 16 15 17 9 16 19 15
6 17 10 16 8 13 13 19
7 16 18 18 8 18 19 18
6 17 19 16 7 13 17 19
9 14 17 19 9 16 17 19
8 18 16 15 8 18 16 15

(a) Use the frequency table method with class intervals 4-6, 7-9 etc. to calculate the
mean of the data.

(b) Use the frequency table method with class intervals 1-5, 6-10 etc. to calculate the
mean of the data.

13.4.1 MEASURES OF SPREAD

So far we have only looked at ways of measuring the central tendency of a set of data. This is not 
necessarily the only feature of a data set that may be important. The following sets of data are test 
results obtained by a group of students in two tests in which the maximum mark was 20.
Test 1.

4 12 11 10 5 10 12 12 6 8 19 13 3
7 11 13 4 9 12 10 6 13 19 11 3 12
14 11 6 13 16 11 5 10 12 13 7 8 13
14 6 10 12 10 7 10 12 10

Test 2.
9 8 10 10 8 9 10 11 8 8 11 10 9
8 11 10 9 8 10 11 8 9 11 10 9 8
11 11 9 9 11 10 8 9 11 10 8 9 11
11 8 8 11 10 8 9 10 10

The means of the two data sets are fairly close to one another (Test 1, 10.1, Test 2, 9.5). However, 

STATISTICAL MEASURES 213.4
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there is a substantial difference between the two sets which can be seen from the frequency 
tables.
Test 1

Test 2

The marks for Test 1 are quite well spread out across the available scores whereas those for Test 2 
are concentrated around 9, 10 & 11. This may be important as the usual reason for setting tests is 
to rank the students in order of their performance. Test 2 is less effective at this than Test 1 
because the marks have a very small spread. In fact, when teachers and examiners set a test, they 
are more interested in getting a good spread of marks than they are in getting a particular value 
for the mean. By contrast, manufacturers of precision engineering products want a small spread 
on the dimensions of the articles that they make. Either way, it is necessary to have a way of 
calculating a numerical measure of the spread of data. The most commonly used measures are 
variance, standard deviation and interquartile range.

13.4.2 VARIANCE AND STANDARD DEVIATION

To calculate the variance of a set of data, the frequency table can be extended as follows:
Test 1

The third column in this table measures the amount that each mark deviates from the mean mark 

Mark 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Freq. 2 2 2 4 3 2 1 8 5 8 6 2 0 1 0 0 2

Mark 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Freq. 0 0 0 0 0 13 11 12 12 0 0 0 0 0 0 0 0

Mark (M) Frequency
3 2 –7.10 100.82
4 2 –6.10 74.42
5 2 –5.10 52.02
6 4 –4.10 67.24
7 3 –3.10 28.83
8 2 –2.10 8.82
9 1 –1.10 1.21
10 8 –0.10 0.08
11 5 0.90 4.05
12 8 1.90 28.88
13 6 2.90 50.46
14 2 3.90 30.42
15 0 4.90 0.00
16 1 5.90 34.81
17 0 6.90 0.00
18 0 7.90 0.00
19 2 8.90 158.42

Total: 640.48

M µ– f M µ–( )2
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of 10.10. Because some of these marks are larger than the mean and some are smaller, some of 
these deviations are positive and some are negative. If we try to calculate an average deviation 
using these results, the negative deviations will cancel out the positive deviations. To correct this 
problem, one method is to square the deviations. Finally, this result is multiplied by the frequency 
to produce the results in the fourth column. 

The last row is calculated: . 

The total of the fourth column is divided by the number of data items (48) to obtain the variance 
of the marks:

The measure most commonly used is the square root of the variance (remember that we squared 
the deviations). A measure that is known as the standard deviation of the marks. In the previous 
case: 

Repeating this calculation for the second set of marks:

This figure is about one third of the figure calculated for Test 1. This reflects the fact that Test 2 
has not spread the students very well. 
In summary, the variance and population standard deviation are calculated using the formulas:

Of course, all of this type of mechanical work is very tedious, and seldom is it the case that we are 
required to work our way through these calculations. Statisticians (or anyone required to produce 
statistics such as these) would generally use a statistical package of some sort, where data could 
be easily transferred and then manipulated by any number of different commands. However, it is 
not necessary to have access to high powered statistical packages. Spreadsheets are widely used 
to produce the same results . 
In many areas of this course we have seen (and will continue to see) how powerful the graphics 
calculator is. In the area of statistics, the TI-83 comes into its own. Once the data is entered as a 
list, it becomes a very powerful tool. And so, as we have said many a time before, make sure that 
you become familiar with all that your graphics calculator has to offer.

Mark (M) Frequency
8 13 –1.48 28.475
9 11 –0.48 2.534
10 12 0.52 3.245
11 12 1.52 27.725

Total: 61.979

2 3 10.10–( )2× 2 50.41× 100.82= =

Variance 640.48
48---------------- 13.34= =

Standard deviation 13.34 3.65= =

M m– f M m–( )2

Variance 61.979
48---------------- 1.291= =

Standard deviation 1.291 1.136= =

Variance f i xi µ–( )2∑
f i∑--------------------------------= Population Standard Deviation f i xi µ–( )2∑

f i∑--------------------------------=
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13.4.3 USING A GRAPHICS CALCULATOR

Standard deviation can be calculated directly by first entering the 
data as a list. 
For Test 2, this is best done with the marks as list 1 and the 
frequencies as list 2.

Next, use STAT CALC to access the 1-VarStats menu. Next, you 
must nominate the two lists that contain the data. List 1 is 2nd 1 and 
list 2 is 2nd 2. The two list names must be separated by a comma.

Finally, press ENTER. This screen gives the mean, , the sum of 
the data, , and the sum of the squares of the data, . 

Sx is known as the sample standard deviation. This is the same as 
the standard deviation discussed above but with one less than the 
number of data items in the denominator (47 in this case).

 is the population standard deviation discussed above.

Sample standard deviation? Population standard deviation? What’s it all about? Unfortunately 
there are regional variations (as well as in textbooks) in the notation and the language that is used 
to define these terms.
When we refer to the sample variance, it suggests that we are finding the variance of a sample 
and by default, the sample is a subset of a population and so we are in fact finding an estimate of 
the population variance. This estimate is known as the unbiased estimate of the population 
variance. 
The unbiased estimate of the population variance, , is given by .

The standard deviation of the sample is given by the square root of , i.e., , which 
corresponds to the value Sx that is produced by the TI-83.

The variance of a population, , is given by . The standard deviation 

then is . 

To differentiate between division by n and division by n – 1 we use  for division by n and  
for division by n – 1. Giving the relationship .

Then, as the population variance, , is generally unknown,  serves as an estimate of .

On the TI–83 we have that Sx =  and  = .

x( )
Σx Σx2

σσσσx

σ2 sn 1–2
1
n 1–------------ f i xi x–( )2

i 1=

n∑=

sn 1–2 sn 1–2

σ2 σ2 1
n--- f i xi x–( )2
i 1=

n∑=

σ σ2=

sn2 sn 1–2

sn 1–2
n
n 1–------------sn2=

σ2 sn 1–2 σ2

sn 1– σσσσx sn
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It is therefore important that you are familiar with the notation that your calculator uses for 
sample standard deviation (unbiased) and population standard deviation. 

1. The weights (kg) of two samples of bagged sugar taken from a production line 
Sample from machine A

1.95 1.94 2.02 1.94 2.07 1.95 2.02 2.06
2.09 2.09 1.94 2.01 2.07 2.05 2.04 1.91
1.91 2.02 1.92 1.99 1.98 2.09 2.05 2.05
1.99 1.97 1.97 1.95 1.93 2.03 2.02 1.90
1.93 1.91 2.00 2.03 1.94 2.00 2.02 2.02
2.03 1.96 2.04 1.92 1.95 1.97 1.97 2.07

Sample from machine B
1.77 2.07 1.97 2.22 1.60 1.96 1.95 2.23
1.79 1.98 2.07 2.32 1.66 1.96 2.05 2.32
1.80 1.96 2.06 1.80 1.93 1.91 1.93 2.25
1.63 1.97 2.08 2.32 1.94 1.93 1.94 2.22
1.76 2.06 1.91 2.39 1.98 2.06 2.02 2.23
1.75 1.95 1.96 1.80 1.95 2.09 2.08 2.29

(a) Find the mean weights of the bags in each sample.

(b) Use the formula  to calculate the sample standard deviations
of each sample.

(c) Use the formula  to calculate the population standard
deviations of each sample.

2. The following frequency table gives the numbers of passengers using a bus service over a
week long period.

(a) Find the mean number of passengers carried per trip.
(b) Find the population standard deviation of the number of passengers carried per trip.

3. The number of matches per box in a sample of boxes taken from a packing machine was:

Find the mean and sample standard deviation of the number of matches per box.

Passengers 0-4 5-9 10-14 15-19 20-24 25-29
Frequency 3 5 11 15 10 7

Matches 47 48 49 50 51 52
Frequency 3 6 11 19 12 9

EXERCISES 13.4
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13.5.1 QUARTILES

We have already seen that there is more than one way of measuring central tendency and the same 
is true of measures of spread. The median is, in some circumstances, a good measure of central 
tendency. Following on from this, we can define quartiles, the data items that are one quarter and 
three quarters of the way through a list.
The following data represent the number of employees absent from work over a nine day period:

2, 6, 5, 4, 7, 1, 0, 5, 2. 
Firstly, we order the data to get 0, 1, 2, 2, 4, 5, 5, 6, 7. 
The median is the middle figure:

The median divides the distribution into an upper and lower group. The lower quartile is the 
middle figure of the lower group and the upper quartile is the middle figure of the upper group. As 
with finding the median, it may be necessary when dealing with a group with an even number of 
data items to take the mid point between two numbers. This is the case with the current data set. 
The lower quartile is 1.5 and the upper quartile is 5.5. 
When dealing with large data sets or grouped data, there is an alternative method of finding the 
median and quartiles based on cumulative frequency.
This is calculated as follows:
These figures represent the numbers of customers in a small cinema:

The cumulative frequency is calculated by ‘accumulating’ the frequencies as we move down the 
table. Thus the figure 25 in the shaded box means that on 25 occasions there were fewer than 40 
customers.

Customers Frequency Cumulative 
Frequency

0-9 1 1
10-19 4 5
20-29 9 14
30-39 11 25
40-49 32 57
50-59 23 80
60-69 10 90
70-79 9 99
80-89 1 100

STATISTICAL MEASURES 313.5
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Cumulative frequencies can now be used to produce a cumulative frequency curve:

The cumulative frequency curve or ogive has effectively placed the data in order. This now 
enables us to read off estimates of the median and quartiles. The median is half way along the list 
of data. Since there are 100 figures, the median point is at 50. Technically this should be figure 
number 51, however, this method only produces an approximate figure and we seldom worry 
about this distinction. Reading across from 50 and down to the‘customers’ scale gives a figure of 
about 48 customers as the median. Similarly, the lower quartile can be found at a cumulative 
frequency of 25. Reading across from this figure to the graph and then to the horizontal axis gives 
a lower quartile of approximately 40 customers. Similarly, the upper quartile is about 57 
customers.
The difference between the two quartiles is known as the inter-quartile range. In this case, the 
inter-quartile range is 57 – 40 = 17 customers. This is, like the standard deviation, a measure of 
the spread of the data. For these cinema attendance figures, the standard deviation is about 16 
customers. It is not necessarily the case that these two measures of spread give similar answers. 
When comparing two data sets, choose which measure of spread you wish to use and use that 
measure throughout the analysis. Do not try to compare the inter-quartile range of one data set 
with the standard deviation of another. 
In choosing which measure of spread to use, we generally use the quartiles and the median for a 
data set that contains a very few numbers that are very unusual. Such data are known as 
outliers.The data sets in Exercise 13.3 Questions 4 & 5 are examples of this type of data 
containing outliers. The standard deviation and mean are much more sensitive to outliers than are 
the median and inter-quartile range. Of course, you will need to look at a data set that has outliers 
and decide whether or not you want to minimise their effect on the representative statistics that 
you calculate.
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13.5.2 BOX PLOT

Using a graphics calculator

The median and inter-quartile range of a data set can be found directly using a graphics 
calculator. The data can either be entered as a list or as a frequency table using two lists.
The data set: 5.7, 4.2, 7.9, 3.1, 9.4, 4.2, 7.7 & 8.0  
can be entered as a single list.

The statistics of this set can be calculated in the same way as the 
mean and standard deviation were calculated previously. The 
appropriate figures are found on the second screen (use the down 
arrow). This screen gives the five figure summary of the data: 
Minimum = 3.1, lower quartile = 4.2, median = 6.7, 
upper quartile = 7.95 and maximum = 9.4.
 
The five figure summary can be displayed using a graph known
as a box-plot. This can be displayed on the TI-83 by choosing 2nd 
STAT PLOT, turning on plot 1 and selecting the box-plot icon. An 
appropriate viewing window will also need to be set. The TRACE 
function can be used to identify the five figure summary. The diagram 
shows the median. 
NB: The first box-plot icon produces a box plot showing any outliers.

The second box-plot icon produces a box plot with the whiskers running to the outliers.
To construct a box-plot (also known as a box and whisker plot), draw an appropriate horizontal 
scale. For this data set, a horizontal scale of 1 to 10 with marks every unit is appropriate. The box 
plot can now be drawn:

In the same way, the five figure summary for grouped data can be found by entering the data as 
list 1 and the frequencies as list 2. This frequency table gives the numbers of goals scored in 20 
soccer matches:

Enter the goals as L1 and the frequencies as L2.

Goals 0 1 2 3 4 5
Frequency 3 5 5 4 2 1

0 2 4 6 8 10
Mininum Q1 Median Q3 Maximum
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Next use the STAT CALC menu and identify the two lists that 
contain the data.

Press enter and use the down arrow to access the median part of the 
display.

1. Find the median, quartiles and inter-quartile range of these data sets:
(a) 5, 6, 2, 8, 9, 2, 7, 0, 5, 3
(b) 2.8, 4.9, 2.8, 0.9, 3.3, 5.8, 2.9, 3.7, 6.9, 3.3, 5.1
(c) 142, 167, 143, 126, 182, 199, 172, 164, 144, 163, 192, 101, 183, 153
(d) 0.02, 0.25, 1.72, 0.93, 0.99, 1.62, 0.67, 1.42, 1.75, 0.04, 1.12, 1.93
(e) 1200, 2046, 5035, 4512, 7242, 6252, 5252, 8352, 6242, 1232

2. Find the median, quartiles and inter-quartile range of these grouped data sets:
(a)

(b)

(c)

(d)

(e)

x 0 1 2 3 4 5
Frequency 1 3 6 6 7 1

x 10 11 12 13 14 15
Frequency 12 45 56 78 42 16

x 1.0 1.5 2.0 2.5 3.0 3.5
Frequency 2 4 9 9 2 1

x 10 20 30 40 50 60
Frequency 4 8 15 19 20 5

x 0 5 10 15 20 25
Frequency 0 3 0 6 7 5

EXERCISES 13.5
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3. The weekly expenses paid to a group of employees of a small company were
$25 $0 $10 $10
$55 $0 $12 $375
$75 $445 $7 $2

(a) Find the mean weekly expense.
(b) Find the population standard deviation of the expenses.
(c) Find the median weekly expense.
(d) Find the quartiles and the inter-quartile range of the expenses.
(e) Which of these statistics are the best representatives of the expenses data?

4. The table shows the numbers of cars per week sold by a dealership over a year. 

(a) Find the mean weekly sales.
(b) Find the population standard deviation of the sales.
(c) Find the median weekly sales.
(d) Find the quartiles and the inter-quartile range of the sales.

5. The table shows the weekly turnover of a small shop over a period during Spring and
Summer.

(a) Find the mean weekly sales.
(b) Find the population standard deviation of the sales.
(c) Construct a cumulative frequency table and draw the cumulative frequency curve.
(d) Find the median weekly sales from your graph.
(e) Find the quartiles and the inter-quartile range of the sales from your graph.

6. Plot the cumulative frequency curves for these data and hence estimate the median,
quartiles and inter-quartile range of the data.

Cars sold 0 1 2 3 4 5
Number of weeks 2 13 15 12 7 3

Sales ($) $0-$99 $100-$199 $200-$299 $300-$399
Number of weeks 2 9 15 7

x 0-4 5-9 10-14 15-19 20-24 25-29
Frequency 2 5 11 9 7 2
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 – MISCELLANEOUS EXERCISES

1. Identify the sample and the population in each of these situations.
(a) The University of Arkansas tests a new AIDS drug on 100 randomly chosen

 patients suffering from the disease. After a year of treatment, 42 patients had
shown positive signs of recovery and 10 patients had died. The remainder appeared
unchanged by the treatment.

(b) The Australian Government surveys 1000 working aged people in NSW to
 determine unemployment figures in that state.

(c) John asks all members of his IB higher maths class what theme they would like for
the Nappa Valley High School senior dance.

2. Classify each of the following as discrete or continuous variables:
(a) The grade received by a student.
(b) The number of people in a passing car.
(c) The playing time of a movie.
(d) Cups of coffee drunk by your maths teacher in a day.
(e) Rainfall in Bali in a month.
(f) The length of a king cobra.
(g) The mass of silica in a sample of 1 kg of earth.

3. Two tetrahedral dice are rolled 60 times, and the sum of their scores recorded:
2, 3, 4, 5, 6, 7, 8, 4, 4, 6, 3, 5, 5, 6, 5, 8, 5, 5,4, 4, 2, 7, 6, 4, 5, 5, 3, 8, 7, 5, 5, 4, 4, 3, 7, 6, 
6, 5, 5, 5, 6, 4, 5, 6, 3, 4, 5, 6, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 8, 7 
(a) Construct a frequency table from this data and draw the histogram.
(b) Complete the cumulative frequency distribution and draw a cumulative frequency

graph
4. Choose suitable classes to group the data in each of these situations:

(a) About 15 classes are to be used to group 300 scores which range from 207 to 592.
(b) About 18 classes are to be used to group 900 scores which range from 112 to 418.
(c) SAT scores from 500 students are to be grouped. The lowest score is 458 and the

highest score is 784. Use approximately 15 classes.
5. The weights of 50 year 9 students are measured to the nearest kg and recorded. Construct

a frequency table using class intervals of 5kg and draw the histogram. Complete the
cumulative frequency distribution and draw a cumulative frequency graph.

41   54   37   55   52   60   45   56   56   47
54   51   64   53   64   57   65   40   73   53
57   46   76   56   46   59   55   63   48   43
47   72   41   51   67   44   53   63   58   63
50  49   56   57   48   55   55   53   63   35

EXERCISES 13.6
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6. A group of 100 IB students was given a maths test that was graded out of 20. The
 following is the distribution of the marks obtained:

(a) Write down the mode. 
(b) Draw a cumulative frequency graph 
(c) Calculate the mean. 
(d) Find the median.
(e) Find the upper and lower quartiles. 
(f) Another group of 50 students had a mean mark of 17.16 on the same test.

 Calculate the mean of the entire group of 150 students.
7. A biologist measures the lengths of 60 mature fern fronds to the nearest centimeter.
 The results are summarized in the table below:

(a) Write down the modal class. 
(b) Draw a cumulative frequency graph 
(c) Calculate the mean. 
(d) Find the median.

8. For a mathematics project, Eun-Kee timed the length of 30 popular Korean songs to the
nearest second. His raw data is presented below:

185    230     205     215     217     206    192    187    207     245     205   181
216    227     239     214     242     248    193    222    217     219     204    234
227    236     234     217     186     236

(a) Complete the frequency and cumulative frequency distribution table using class
intervals of 10 seconds.

(b) Use your table to calculate the mean.
(c) Re-calculate the mean using the raw data.

mark 9 10 11 12 13 14 15 16 17 18 19
number of 
students 1 1 3 5 8 13 19 24 14 10 2

Frond Length (cm) Frequency
10 – 14 2
15 – 19 6
20 – 24 8
25 – 29 10
30 – 34 15
35 – 39 9
40 – 44 6
45 – 49 4
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9. The masses of a sample of new potatoes were measured to the nearest gram and are
   summarized below. Calculate the mean of the data.

10. Foodcity supermarket recorded the length of time, to the nearest minute, that a sample of
200 cars was parked in their car park. The results were:

(a) Draw the cumulative frequency curve and use it to estimate the upper and
 lower quartiles. 

(b) Estimate the 80th percentile. 
(c) Estimate the percentage of cars parking for more than 50 minutes.
(d) Calculate the mean time parked for the sample of cars.

11. The heights of 10 students, to the nearest centimeter, are as follows. State the range
 and use a table to calculate the standard deviation.

172 169 163 175 182 170 165 176 177 169

Mass (g)       Frequency
10 – 19 2
20 – 29 14
30 – 39 21
40 – 49 73
50 – 59 42
60 – 69 13
70 – 79 9
80 – 89 4
90 – 99 2

Time (minutes) Frequency
0 – 14 13
15 – 29 23
30 – 44 32
45 – 59 33
60 – 74 27
75 – 89 20
90 – 104 12
105 – 119 11
120 – 134 10
135 – 149 11
150 – 165 8
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12. The scores of 25 students in a quiz out of 10 are presented below. Use a table to calculate
the mean and standard deviation.

7    6    7    4    5  6    4    8    7    6
8    4    5    5    6   7   5    7    4    3
6    4    9   5    7

Verify your results by using the statistical functions found on your calculator.
13. A scientific researcher weighs a random sample of 30 lizards and records their weights to

the nearest gram. Use your calculator to find the sample mean and standard deviation.
Provide an unbiased estimate of the population standard deviation.

21   18   15   20   18   17   12   23   19   19
17  20   13   15   17    21   18   14   13   18
22   17   15   12   25   15   16   18   16   17

14. The scores of 100 students in a test out of 10 were:

(a) Find the median. 
(b) State the range. 
(c) Find the upper and lower quartiles. 
(d) State the inter-quartile range. 
(e) Calculate the mean. 
(f) Calculate the standard deviation.

15. For a mathematics project, Eun-Kee timed the length of 30 popular Korean songs to
 the nearest second. His raw data is presented in Q.8 and below:

185     230     205     215     217     206     192     187    207     245     205     181 
216     227     239     214     242     248     193     222    217     219     204     234  

           227     236     234     217     186     236
Use your calculator to find the standard deviation, and provide an estimate of the

 standard deviation of all Korean popular songs.
16. The masses of a sample of new potatoes were measured to the nearest gram and are
 summarized in Q.9 and below. Estimate the standard deviation of weights of new potatoes.

score 3 4 5 6 7 8 9 10
frequency 5 11 19 24 21 12 6 2

Mass (g)       Frequency
10 – 19 2
20 – 29 14
30 – 39 21
40 – 49 73
50 – 59 42
60 – 69 13
70 – 79 9
80 – 89 4
90 – 99 2
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14.1.1 DEFINITION

Permutations

Permutations represents a counting process where the order must be taken into account. 

For example, the number of permutations of the letters A, B, C and D, if only two are taken at a 
time, can be enumerated as

AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, BC

That is, AC is a different permutation from CA (different order).

Instead of permutation the term arrangement is often used.

This definitions lead to a number of Counting Principles which we now look at.

14.1.2 MULTIPLICATION PRINCIPLE

For example, if a die is rolled twice, there are a total of  possible outcomes.

For example, if a person has three different coloured pairs of pants, four different shirts, five 
different ties and three different coloured pairs of socks, the total number of different ways that 
this person can dress is equal to  ways.

Because of the common usage of this expression, we use the factorial notation. That is, we write

which is read as n factorial. Notice also that 0! is defined as 1, i.e., 0! = 1.

For example, in how many ways can 4 boys and 3 girls be seated on a park bench? In this case 
any one of the seven children can be seated at one end, meaning that the adjacent position can be 

MULTIPLICATION PRINCIPLE14.1

C
H

A
P

T
E
R

 1
4

Rule 1: If any one of n different mutually exclusive and exhaustive events can occur on each 
of k trials, the number of possible outcomes is equal to .nk

62 36=

Rule 2: If there are  events on the first trial,  events on the second trial, and so on, and 
finally,  events on the kth trial, then the number of possible outcomes is equal to 

.

n1 n2
nk

n1 n2 … nk×××

3 4 5 3××× 180=

Rule 3: The total number of ways that n different objects can be arranged in order is equal 
to .n n 1–( )× n 2–( )× …3 2 1×××

n! n n 1–( )× n 2–( )× …3 2 1×××=
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filled by any one of the remaining six children, similarly, the next adjacent seat can be occupied 
by any one of the remaining 5 children, and so on . . . . 
Therefore, in total there are  possible arrangements.
Using the TI–83, we have:
Enter 7:                     Select MATH and PRB:   Select option 4: ! and press ENTER:

We start by visualising this situation:
Consider the case where John uses Road 1 first. 
The possibilities are:

Road 1 then a, 
Road 1 then b, 
Road 1 then c, 
Road 1 then d.

That is, there are 4 possible routes.

Then, for each possible road from A to B there are another 4 leading from B to C.

All in all, there are  different ways John can get from A to C via B.

In travelling from P to Q there are:
3 = 1 × 3 × 1 paths (along P to A to B to Q)
6 = 1 × 3 × 2 × 1 paths (along P to C to D to E to Q)
2 = 1 × 2 paths (along P to F to Q)

In total there are 3 + 6 + 2 = 11 paths

7 6× 5× 4 3 2 1×××× 7! 5040= =

John wishes to get from town A to town C via town B. There are three roads 
connecting town A to town B and 4 roads connecting town B to town C. In how many different 
ways can John get from town A to town C?

E 14.1XAMPLE
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A
B

C

A
B

CRoad 1 a
b
c
d

4 4 4+ + 3 4× 12= =

Using the following street network, 
in how many different ways can a person get from point P 
to point Q if they can only move from left to right P                C                 D                 E              Q

A                     B

F

E 14.2XAMPLE
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We think of this problem as follows:

The golfer has 3 possible drivers to use and so the first task can be carried out in 3 ways.
The golfer has 4 possible tees to use and so the second task can be carried out in 4 ways.
The golfer has 5 golf balls to use and so the third task can be carried out in 5 ways.

Using the multiplication principle, there are a total of 3 × 4 × 5 = 60 ways to take the first hit.

14.1.3 PERMUTATIONS

Based on the definition given in §14.1.1 we have the following rule:

For example, the total number of arrangements of 8 books on a bookshelf if only 5 are used is 
given by .

When using the TI–83, we can either use the same approach as in the previous example or use the 
nPr function:
Type the first number, 8, then select MATH and PRB, then select option 2:nPr, enter the second 
number, 5, and then press ENTER:

A golfer has 3 drivers, 4 tees and 5 golf balls. In how many ways can the 
golfer take his first hit.

E 14.3XAMPLE
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Rule 4: Permutations:
The total number of ways of arranging n objects, taking r at a time is given by

Notation: We use the notation  (read as “n–p–r’) to denote .

That is, .

n!
n r–( )!------------------

Pn
r

n!
n r–( )!------------------

Pn
r

n!
n r–( )!------------------=

P8 5
8!

8 5–( )!------------------ 8!
3!----- 6720= = =

In how many ways can 5 boys be arranged in a row
(a) using three boys at a time?
(b) using 5 boys at a time?

E 14.4XAMPLE
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We have 5 boys to be arranged in a row with certain constraints.
(a) The constraint is that we can only use 3 boys at a time. In other words, we want the 

number of arrangements (permutations) of 5 objects taken 3 at a time.
From rule 4: n = 5, r = 3, 

Therefore, number of arrangements =  = 
(b) This time we want the number of arrangements of 5 boys taking all 5 at a time.

From rule 4: n = 5, r = 5, 
Therefore, number of arrangements =  = 

Box method

Problems like Example 14.4 can be solved using a method known as “the box method”. In that 
particular example, part (a) can be considered as filling three boxes (with only one object per box) 
using 5 objects:

The first box can be filled in 5 different ways (as there are 5 possibilities available). Therefore we 
‘place 5’ in box 1:

Now, as we have used up one of the objects (occupying box 1), we have 4 objects left that can be 
used to fill the second box. So, we ‘place 4’ in box 2:

At this stage we are left with three objects (as two of them have been used). Meaning that there 
are 3 possible ways in which the third box can be filled. So, we ‘place 3’ in box 3:

This is equivalent to saying, that we can carry out the first task in 5 different ways, the second 
task in 4 different ways and the third task in 3 different ways. Therefore, using the multiplication 
principle we have that the total number of arrangements is .

Comparing this to the expression  we have 
       = 
       = 60 

i.e., the last step in the evaluation process is the same as the step used in the ‘box method’.

S
o
l
u
t
i
o
n

P5 3
5!

5 3–( )!------------------= 120
2--------- 60=

P5 5
5!

5 5–( )!------------------= 120
0!--------- 120=

 Box 1               Box 2             Box 3

 Box 1               Box 2             Box 3
5

 Box 1               Box 2             Box 3
5                      4

 Box 1               Box 2             Box 3
5                      4                     3

5 4 3×× 60=

P5 3
5!

5 3–( )!------------------= 5!
5 3–( )!------------------ 5!

2!-----
5 4 3 2 1××××

2 1×----------------------------------------= =
5 4 3××

Vehicle licence plates consist of two letters from a 26–letter alphabet, 
followed by a three–digit number whose first digit cannot be zero. How many different licence 
plates can there be?

E 14.5XAMPLE
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We have a situation where there are five positions to be filled:

That is, the first position must be occupied by one of 26 letters, similarly, the second
position must be occupied by one of 26 letters. The first number must be made up of one
of nine different digits (as zero must be excluded), whilst the other two positions have 10
digits that can be used. Therefore, using Rule 2, we have:
Total number of arrangements = .

(a) Consider the five boxes

Only the digits 4 and 5 can occupy the first box (so as to obtain a number greater than 
40 000). So there are 2 ways to fill box 1:

Box 2 can now be filled using any of the remaining 5 digits. So, there are 5 ways of filling
box 2:

We now have 4 digits left to be used. So, there are 4 ways of filling box 3:  

Continuing in this manner we have:

Then, using the multiplication principle we have  arrangements.

Otherwise, we could have relied on rule 4 and obtained 
(b) As in part (a), only the digits 4 and 5 can occupy the first box.

If repetition is allowed, then boxes 2 to 5 can each be filled using any of the 6 digits:

Using the multiplication principle there are  arrangements.

S
o
l
u
t
i
o
n

Letter Letter Number Number Number

26 26 9 10 10×××× 608400=

How many 5-digit numbers greater than 40 000 can be formed from the 
digits 0, 1, 2, 3, 4, and 5 if
(a) there is no repetition of digits allowed?
(b) repetition of digits is allowed?

E 14.6XAMPLE
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 Box 1         Box 2         Box 3        Box 4         Box 5

 Box 1         Box 2         Box 3        Box 4         Box 5
2

 Box 1         Box 2         Box 3        Box 4         Box 5
2             5

 Box 1         Box 2         Box 3        Box 4         Box 5
2             5             4

 Box 1         Box 2         Box 3        Box 4         Box 5
2             5             4             3            2

2 5 4 3 2×××× 240=

2 P5 4× 2 120× 240= =

 Box 1         Box 2         Box 3        Box 4         Box 5
2             6             6             6            6

2 6 6 6 6×××× 2592=
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However, one of these arrangements will also include the number 40 000. Therefore, the number 
of 5 digit numbers greater than 40 000 (when repetition is allowed) is given by 2592 – 1 = 2591.

   

  

Using the TI–83 to solve this polynomial, we have:

i.e., n = 5.

The word ‘HIPPOPOTAMUS’ is made up of 12 letters, unfortunately, they are not all
different! Meaning that although we can swap the three P’s with each other, the word will
remain the same. 
Now, the total number of times we can re–arrange the Ps (and not alter the word) is 3! = 6
times (as there are three Ps). Therefore, if we ‘blindly’ use Rule 2, we will have increased
the number of arrangements 6 fold. 
Therefore, we will need to divide the total number of ways of arranging 12 objects by 6.
That is, . 
However, we also have 2 Os, and so, the same argument holds. So that in fact, we now
have a total of  arrangements.

This example is a special case of permutations with repetitions:

Find n if .Pn
3 60=E 14.7XAMPLE
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n = 5

Pn
3 60 n!

n 3–( )!------------------⇔ 60= =
n n 1–( ) n 2–( ) n 3–( )!

n 3–( )!--------------------------------------------------------⇔ 60=
n n 1–( ) n 2–( )⇔ 60=

n3 3n2– 2n+⇔ 60=
n3 3n2– 2n 60–+⇔ 0=

How many different arrangements of the letters of the word 
HIPPOPOTAMUS are there?

E 14.8XAMPLE
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12!
3!-------- 79833600=

12!
3! 2!×---------------- 39916800=

Rule 5: The number of permutations of n objects of which  are identical,  are 

identical, . . . ,  are identical is given by .

n1 n2

nk
n!

n1! n2! … nk!×××----------------------------------------------
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1. A, B and C are three towns. There are 5 roads linking towns A and B and 3 roads linking
towns B and C. How many different paths are there from town A to town C via town B?

2. In how many ways can 5 letters be mailed if there are 
(a) 2 mail boxes available?
(b) 4 mail boxes available?

3. There are 4 letters to be placed in 4 letter boxes. In how many ways can these letters be
mailed if
(a) only one letter per box is allowed?
(b) there are no restrictions on the number of letters per box?

4. Consider the cubic polynomial .
(a) If the coefficients, a, b and c come from the set { –3, –1, 1, 3}, find the number of

possible cubics if no repetitions are allowed.
(b) Find the number of cubics if the coefficients now come from { –3, –1, 0, 1, 3}

(again without repetitions).

5. The diagram alongside shows the possible 
routes linking towns A, B, C and D.

A person leaves town A for town C. How many
different routes can be taken if the person is
always heading towards town C

6. In how many different ways can Susan get dressed if she has 3 skirts, 5 blouses, 6 pairs of
socks and 3 pairs of shoes to chose from?

7. In how many different ways can 5 different books be arranged on a shelf?

8. In how many ways can 8 different boxes be arranged taking 3 at a time?

9. How many different signals can be formed using 3 flags from 5 different flags.

10. Three Italian, two Chemistry and four Physics books are to be arranged on a shelf.
In how many ways can this be done 
(a) if there are no restrictions?
(b) if the Chemistry books must remain together?
(c) if the books must stay together by subject?

11. Find n if .

12. 5 boys and 5 girls, which include a brother-sister, pair are to be arranged in a straight
line. Find the number of possible arrangements if
(a) there are no restrictions.
(b) the tallest must be at one end and the shortest at the other end.
(c) the brother and sister must be i. together ii. separated

EXERCISES 14.1

p x( ) ax3 bx2 5x– c+ +=

A                                                  B

D                                                  C

Pn
2 380=
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13. In how many ways can the letters of the word Mississippi be arranged?

14. In how many ways can three yellow balls, three red balls and four orange balls be arranged
in a row if the balls are identical in everyway other than their colour?

15. In a set of 8 letters, m of them are the same and the rest different. If there are 1680 possible
arrangements of these 8 letters, how many of them are the same?

Combinations

On the otherhand, combinations represent a counting process where the order has no importance. 
For example, the number of combinations of the letters A, B, C and D, if only two are taken at a 
time, can be enumerated as:

AB, AC, AD, BC,BD, CD,

That is, the combination of the letters A and B, whether written as AB or BA, is considered as 
being the same.

Instead of combination the term selection is often used.

For example, in how many ways can 5 books be selected from 8 different books? In this instance, 
we are talking about selections and therefore, we are looking at combinations. Therefore we have, 
the selection of 8 books taking 5 at a time is equal to 

.
Using the TI–83 we can make use of the nCr function:
Type the first number, 8, then select MATH and PRB, then select option 3:nCr, enter the second 
number, 5, and then press ENTER:

COMBINATIONS14.2

Rule 6: Combinations:
The total number of ways of selecting n objects, taking r at a time is given by

Notation: We use the notation  (read as “n–c–r’) to denote .

That is, . Note:Sometimes  is used instead of .

n!
n r–( )!r!-----------------------

n
r 
  n!

n r–( )!r!-----------------------

n
r 
  n!

n r–( )!r!-----------------------= Cn
r

n
r 
 

8
5 
  8!

8 5–( )!5!------------------------ 8!
3!5!---------- 56= = =
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First we look at the number of ways we can select the women members (using Rule 6):
We have to select 3 from a possible 5, therefore, this can be done in  ways.
Similarly, the men can be selected in  ways.
Using Rule 2, we have that the total number of possible committees = .

Case 1: Husband included
If the husband is included, the wife must be 
removed (so that she cannot be included). We 
then have to select 2 more men from the 
remaining 6 men and 2 women from the 
remaining 4 women. 
This is done in  ways

Case 2: Wife included
If the wife is included, the husband must be 
removed. We then have to select 3 men from the 
remaining 6 men and 1 woman from the 
remaining 4 women.
This is done is  ways

Therefore there are a total of +  = 90 + 80 = 170 possible committees.

1. In how many ways can 5 basketball players be selected from 12 players?

2. A tennis club has 20 members. 
(a) In how many ways can a committee of 3 be selected.
(b) In how many ways can this be done if the captain must be on the committee?

A sports committee at the local hospital consists of 5 members. A new 
committee is to be elected, of which 3 members must be women and 2 members must be men. 
How many different committees can be formed if there were originally 5 women and 4 men to 
select from?

E 14.9XAMPLE
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C5 3 10=
C4 2 6=

C5 3 C4 2× 60=

A committee of 3 men and 2 women is to be chosen from 7 men and 5 
women. Within the 12 people there is a husband and wife. In how many ways can the committee 
be chosen if it must contain either the wife or the husband but not both?

E 14.10XAMPLE
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committee
Husband

2

2

6 men left

4 women left

wife removed C6 2 C4 2× 90=

committee
Wife

3

1

6 men left

4 women left

husband removed

C6 3 C4 1× 80=

C6 2 C4 2× C6 3 C4 1×

EXERCISES 14.2
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3. In how many ways can 3 red balls, 4 blue balls and 5 white balls be selected from 5 red
balls, 5 blue balls and 7 white balls?

4. In how many ways can 8 objects be divided into 2 groups of 4 objects?

5. A cricket training squad consists of 4 bowlers, 8 batsmen, 2 wicket keepers and 4 fielders. 
From this squad a team of 11 players is to be selected. In how many ways can this be done
if the team must consist of 3 bowlers, 5 batsmen, 1 wicket keeper and 2 fielders?

6. A class consists of 12 boys of whom 5 are prefects. How any committees of 8 can be
formed if the committee is to have
(a) 3 prefects?
(b) at least 3 prefects?

7. In how many ways can 3 boys and 2 girls be arranged in a row if a selection is made from
6 boys and 5 girls?

8. If  show that . Hence find n.

9. In how many ways can a jury of 12 be selected from 9 men and 6 women so that there are 
at least 6 men and no more than 4 women on the jury.

10. Show that . Hence find n if .

 – MISCELLANEOUS QUESTIONS

1. Five different coloured flags can be run up a mast. 
(a) How many different signals can be produced if all five flags are used?
(b) How many different signals can be produced if any number of flags is used?

2. In how many different ways can 7 books be arranged in a row?

3. In how many different ways can three boys and four girls be seated in a row?
In how many ways can this be done if 
(a) no two girls are sitting next to each other, 
(b) the ends are occupied by girls?

4. In how many different ways can 7 books be arranged in a row if
(a) 3 specifed books must be together,
(b) two specified books must occupy the ends.

5. A school council consists of 12 members, 6 of whom are parents, 2 are students, the
 Principal and the remainder are teachers. The school captain and vice–captain must be on
 the council. If there are 10 parents and 8 teachers nominated for positions on the school

council, how many different committees can there be?

n
3   56= n3 3n2– 2n 336–+ 0=

n 1+
3   n 1–

3  – n 1–( )2= n 1+
3   n 1–

3  – 16=

EXERCISES 14.3
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6. A committee of 5 men and 5 women is to be selected from 9 men and 8 women.
How many possible committees can be formed?
Amongst the 17 people, there is a married couple. If the couple cannot serve together, how
many committees could there be?

7. A sports team consists of 5 bowlers (or pitchers), 9 batsmen and 2 keepers (or back–stops).
How many different teams of 11 players can be chosen from the above squad if the team
consists of
(a) 4 bowlers (pitchers), 6 batsmen and 1 keeper (back–stop)?
(b) 6 batsmen (pitchers) and at least 1 keeper (back–stop)?

8. Twenty people are to greet each other by shaking hands. How many hand shakes are there?

9. How many arrangements of the letters of the word “MARRIAGE” are possible?

10. How many arrangements of the letters of the word “COMMISSION” are possible?

11. A committee of 4 is to be selected from 7 men and 6 women. In how many ways can this
be done if
(a) there are no restrictions?
(b) there must be an equal number of men and women on the committee?
(c) there must be at least one member of each sex on the committee?

12. Prove that       (a) .      (b) .

13. A circle has n points on its circumference. How many chords joining pairs of points can be
drawn?

14. A circle has n points on its circumference. What is the maximum number of points of
intersection of chords inside the circle?

15. (a) Show that .
(b) In how many ways can 8 boys be divided into two unequal sets?

16. Whilst at the library, Patrick decides to select 5 books from a group of 10. In how many
different ways can Patrick make the selection?

17. A fish tank contains 5 gold coloured tropical fish and 8 black coloured tropical fish.
 (a) In how many ways can five fish be selected?

(b) If a total of 5 fish have been selected from the tank, how many of these contain two
gold fish?

18. In how many ways can 4 people be accommodated if there are 4 rooms available?

19. A car can hold 3 people in the front seat and 4 in the back seat. In how many ways can 7
people be seated in the car if John and Samantha must sit in the back seat and there is only
one driver?

n
r 
  n

r 1+  + n 1+
r 1+  = Pn 1+

r Pn
r r Pn

r 1–×+=

2n n
r 
 

r 0=

n
∑=
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20. In how many ways can six men and two boys be arranged in a row if:
(a) the two boys are together?
(b) the two boys are not together?
(c) there are at least three men separating the boys?

21. In how many ways can the letters of the word “TOGETHER” be arranged? In how many
of these arrangements are all the vowels  together?

22. In how many ways can 4 women and 3 men be arranged in a row, if there are 8 women and
5 men to select from?

23. In how many ways can 4 women and 3 men be arranged in a circle? In how many ways
can this be done if the tallest woman and shortest man must be next to each other?

24. In how many ways can 5 maths books, 4 physics books and 3 biology books be arranged
on a shelf if subjects are kept together?

25. How many even numbers of 4 digits can be formed using 5, 6, 7, 8 if
(a) no figure is repeated?
(b) repetition is allowed?

26. 5 men and 5 women are to be seated around a circular table. In how many ways can this be
done if the men & women alternate?

27. A class of 20 students contains 5 student representatives. A committee of 8 is to be
formed. How many different committees can be formed if there are
(a) only 3 student representatives?
(b) at least 3 student representatives?

28. How many possible juries of 12 can be selected from 12 women & 8 men so that there are
 at least 5 men and not more than 7 women?

29. In how many ways can 6 people be seated around a table if 2 friends are always
(a) together?
(b) separated?
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We are often faced with statements that reflect an element of likelihood, For example, “It is likely 
to rain later in the day” or “What are the chances that I roll a six?”. Such statements relate to a 
level of uncertainty (or indeed, a level of certainty). It is this element of likelihood in which we 
are interested. In particular, we need to find a measure of this likelihood — i.e., the associated 
probability of particular events.

15.1.1 PROBABILITY AS A LONG–TERM RELATIVE
         FREQUENCY

An experiment is repeated in such a way that a series of independent and identical trials are 
produced, so that a particular event  A is observed to either occur or not occur. We let N be the 
total number of trials carried out and n(A) (or ) be the number of times that the event A was 
observed. 
We then call the ratio   the relative frequency of the event A. This value provides 
some indication of the likelihood of the event A occuring. 

In particular, for large values of N we find that the ratio  tends to a number called the 
probability of the event A, which we denote by  or .

As , this number, , must lie between 0 and 1 (inclusive), i.e., .

A more formal definition is as follows:

If a random experiment is repeated N times, in such a way that each of the trials is identical and 
independent, where  is the number of times event A has occured after N trials, then

.

It is possible to provide a graph of such a situation, which 
shows that as N increases, the ratio  tends towards 
some value p, where in fact, .

Such a graph is called a relative frequency graph.

15.1.2 THEORETICAL PROBABILITY

When the circumstances of an experiment are always identical, we can arrive at a value for the 
probability of a particular event by using mathematical reasoning, often based on an argument 
reflecting some form of symmetry (i.e., without the need to repeatedly perform the experiment). 
This type of probability is called theoretical probability.

PROBABILITY15.1

C
H

A
P

T
E
R

 1
5

A

n A( )
N------------ or A

N------  

n A( )
N------------

p A( ) P A( )

0 n A( ) N≤≤ P A( ) 0 P A( ) 1≤≤

n A( )
As N ∞,n A( )

N------------ P A( )→→

n A( )
N------------

N
p

n A( )
N------------

p P A( )=
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For example, when we roll a die, every possible outcome, known as the sample space, can be 
listed as  (sometimes the letter  is used instead of U). The probability of 
obtaining a “four” (based on considerations of symmetry of equal likelihood) is given by . 
Such a probability seems obvious, as we would argue that; 

“Given there are six possible outcomes and each outcome is equally likely to occur
(assuming a fair die), then the chances that a “four” occurs must be one in six, i.e., .”

15.1.3 LAWS OF PROBABILITY

We will restrict our arguments to finite sample spaces. Recall, that a sample space is the set of 
every possible outcome of an experiment, and that an event is any subset of the sample space. 
This relationship is often represented with a Venn diagram:

15.1.4 DEFINITION OF PROBABILITY

If an experiment has equally likely outcomes and of these the event A is defined, then the 
theoretical probability of event A occuring is given by

Where  is the total number of possible outcomes in the sample space, U, (i.e., ).

As a consequence of this definition we have what are known as the axioms of probability:

Note:
Two events A and B are said to be mutually exclusive 
(or disjoint) if they have no elements in common, 
i.e., if  .

U 1 2 3 4 5 6, , , , ,{ }= ε
1
6---

1
6---

UAThe Venn diagram shows the sample 
space U, with the event A, as a subset.

 = P A( ) n A( )
n U( )------------= Number of outcomes in which A occurs

Total number of outcomes in the sample space---------------------------------------------------------------------------------------------------------------

n U( ) n U( ) N=

1.
2.  and 

That is, if , then the event A can never occur.
 implies that the event A is a certainty.

3. If A and B are both subsets of U and are mutually exclusive, then
 .

0 P A( ) 1≤≤
P ∅( ) 0= P ε( ) 1=

A ∅=
A U=

P A B∪( ) P A( ) P B( )+=

A

B

U

A B∩ ∅=

A fair die is thrown. List the sample space of the experiment and hence find 
the probability of observing: (a) a multiple of 3

(b) an odd number.
Are these events mutually exclusive?

E 15.1XAMPLE
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(a) The sample space is .
Let A be the event ‘obtaining a multiple of 3’. 
We then have that A = {3, 6}. Therefore, .

(b) Let B be the event ‘obtaining an odd number’. 
Here B = {1, 3, 5} and so .

In this case, A = {3, 6} and B = {1, 3, 5}, so that . Therefore, as 
A and B are not mutually exclusive.

Let H denote the event a head is showing and T the event a tail is showing. This means that
the sample space (with two coins) is given by .

(a) The event that two tails are showing is given by the event , therefore, we have 
that .

(b) The event that one tail is showing is given by , therefore, we have that 
.

Let D denote the event “a diamond card is selected”. 
This means that  as there are 13 diamond cards in a standard deck of cards.

Therefore, .

S
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i
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n

U 1 2 3 4 5 6, , , , ,{ }=

P A( ) n A( )
n U( )------------ 2

6---
1
3---= = =

P B( ) n B( )
n U( )------------ 3

6---
1
2---= = =

A B∩ 3{ }= A B ∅≠∩

Two coins are tossed. Find the probability that: 
(a) two tails are showing (b) a tail is showing.

E 15.2XAMPLE
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U HH HT T H TT,,,{ }=
TT{ }

P TT{ }( ) n TT{ }( )
n U( )---------------------- 1

4---= =
HT TH,{ }

P HT TH,{ }( ) n HT TH,{ }( )
n U( )---------------------------------- 2

4---
1
2---= = =

A card is drawn from a standard deck of 52 playing cards. What is the 
probability that a diamond card is showing?

E 15.3XAMPLE

S
o
l
u
t
i
o
n

n D( ) 13=

P D( ) n D( )
n U( )------------ 13

52------ 1
4---= = =
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15.1.5 PROBLEM SOLVING STRATEGIES IN PROBABILITY

When dealing with probability problems it is often useful to use some form of diagram to help 
‘visualize’ the situation. Diagrams can be in the form of

It is fair to say that some types of diagrams lend themselves well to particular types of problems. 
These will be considered in due course.

In this instance, we make use of a lattice diagram to display all possible outcomes. From
the diagram, we can list the required event (and hence find the required probability):

Let S denote the event “A sum of seven is observed”. From the lattice diagram, we see that
there are 6 possibilities where a sum of seven occurs.
In this case we have

.

Therefore, we have that 

1. From a bag containing 6 white and 4 red balls, a ball is drawn at random.  
What is the probability that the ball selected is
(a) red (b) white (c) not white

2. From an urn containing 14 marbles of which 4 are blue and 10 are red, a marble is
 selected at random. What is the probability that

(a) the marble is blue (b) the marble is red

3. A letter is chosen at random from the letters of the alphabet.  What is the probability that 
(a) the letter is a vowel (b) the letter is a consonant

1. Venn diagrams.
2. Tree diagrams.
3. Lattice diagrams.
4. Karnaugh maps (probability tables).
5. As a last resort, any form of diagram that clearly

displays the process under discussion (e.g. flow chart).

Find the probability of getting a sum of 7 on two throws of a die.E 15.4XAMPLE

S
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1 2 3 4 5 61
2
3
4
5
6

S 1 6,( ) 2 5,( ) 3 4,( ) 4 3,( ) 5 2,( ) 6 1,( ), , , , ,{ }=

P S( ) n S( )
n U( )------------ 6

36------ 1
6---= = =

EXERCISES 15.1
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4. A coin is tossed twice.  List the sample space and find the probability of observing
(a) two heads.
(b) at least one head.

5. A coin is tossed three times.  List the sample space and find the probability that
(a) two heads, show uppermost.
(b) at least two heads show uppermost.
(c) three heads or three tails are showing.

6. A letter is chosen at random from the word FERTILITY.  Find the probability that the
letter chosen is
(a) a T (b) an I (c) a consonant (d) a vowel.

7. A bag has 20 coins numbered from 1 to 20.  A coin is drawn at random and its number is
noted. 
What is the probability that the coin drawn
(a) has an even number on it?
(b) has a number that is divisible by 3?
(c) has a number that is divisible by 3 or 5?

8. A die is rolled twice. Use a lattice diagram to illustrate the sample space. What is the
probability of observing
(a) at least one five (b) a four and a three
(c) a pair (d) a sum of eight

9. A family has three children. List the sample space and hence find the probability that
(a) there are 3 boys.
(b) there are 2 boys and 1 girl.
(c) there are at least two girls.

10. A card is selected from a pack of 52 cards.  Find the probability that the card is
(a) red (b) a heart (c) red and a heart

11. From an urn containing 16 cubes of which 6 are red, 4 are white and 6 are black, a cube
 is drawn at random. 

Find the probability that the cube is
(a) red (b) white (c) black (e) red or black

12. A coin and a die are tossed simultaneously. Draw a lattice diagram to depict this
 situation. 

(a) Using your lattice diagram, list the sample space.
(b) What is the probability of observing a tail and an even number?

13. A die is thrown three times. Find the probability of observing
(a) three sixes.
(b) three even numbers.
(c) two odd numbers.
Hint: You might need to draw a three dimensional lattice diagram.
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From the axioms of probability we can develop further rules to help solve problems that involve 
chance. We illustrate these rules with the aid of Venn diagrams.

Although we now have a number of ‘formulas’ to help us solve problems that involve probability, 
using other forms of diagrams to clarify situations and procedures should not be overlooked.

Event Set language Venn diagram Probability result

The complement of A is 
denoted by .

 is the complement to 
the set A, i.e., the set of 
elements that do not 
belong to the set A.

 is the probability 
that event A does not 
occur.

The intersection of 
A and B : 

 is the intersection 
of the sets A and B, i.e., 
the set of elements that 
belong to both the set A 
and the set B.

 
is the probability that 
both A and B occur.

The union of events A 
and B : 

 is the union of the 
sets A and B, i.e., the set 
of elements that belong to 
A or B or both A  and B.

 is the 
probability that either 
event A or event B (or 
both) occur. From this we 
have what is known as 
the ‘Addition rule’ for 
probability:

If  the 
events A and B are said to 
be disjoint. That is, they 
have no elements in 
common.

If  the sets A 
and B are mutually 
exclusive.

If A and B are mutually 
exclusive events then 
event A and event B 
cannot occur 
simultaneously, i.e.,
        

Therefore:

PROBABILITY & VENN DIAGRAMS15.2

A′
A ′

A A′
U

P A ′( ) 1 P A( )–=
P A ′( )

A B∩
A B∩

A

U

B

A B∩

P A B∩( )

A B∪
A B∪

A

U

B

A B∪

P A B∪( )

A B∩ ∅= A B∩ ∅= A
U

B

A B∩ ∅= n A B∩( ) 0=
P A B∩( )⇒ 0=

A card is randomly selected from an ordinary pack of 52 playing cards. 
Find the probability that it is either a ‘black card’ or a ‘King’.

E 15.5XAMPLE

P A B∪( ) P A( ) P B( ) P A B∩( )–+=

P A B∪( ) P A( ) P B( )+=
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Let B be the event ‘A black card is selected.’ and K the event ‘ A King is selected’.
We first note that event B has as its elements the Jack of spades(J♠), the Jack of clubs
(J♣), the Queen of spades(Q♠), the Queen of clubs(Q♣) and so on. 
This means that 
B ={K♠,K♣,Q♠,Q♣,J♠,J♣,10♠,10♣,9♠,9♣,8♠,8♣,7♠,7♣,6♠,6♣,5♠,5♣,4♠,4♣,3♠,
        3♣,2♠,2♣,A♠,A♣} and
K = {K♠, K♦, K♥, K♣}, so that  = {K♠, K♣}.
Using the addition rule,  
we have      .

Note the importance of subtracting  as this represents the fact that we have included the event 
{K♠, K♣} twice when finding B and K.

We now consider one of the problems from Exercise 15.1, but this time we make use of the 
addition rule.

Let T denote the event “The number is divisible by 3” and S, the event “The number is
divisible by 5”.
Using the addition rule we have 
Now,  so that .
Therefore, we have  and .

This means that .

(a) Using the addition formula we have, 
      

(b) Using the complementary formula, we have .

(c) To determine , we need to use a Venn diagram:
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B K∩
P B K∪( ) P B( ) P K( ) P B K∩( )–+=
P B K∪( ) 26

52------ 4
52------ 2

52------–+ 7
13------= =

2
52------

A bag has 20 coins numbered from 1 to 20.  A coin is drawn at random and 
its number is noted. What is the probability that the coin has a number that is divisible by 3 or by 
5?

E 15.6XAMPLE
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P T S∪( ) P T( ) P S( ) P T S∩( )–+=
T 3 6 9 12 15 18, , , , ,{ } and S 5 10 15 20, , ,{ }= = T S∩ 15{ }=

P T( ) 6
20------ and P S( ) 4

20------= = P T S∩( ) 1
20------=

P T S∪( ) 6
20------ 4

20------ 1
20------–+ 9

20------= =

If , find 
(a) (b) (c)

p A( ) 0.6 p B( ), 0.3 and p A B∩( ) 0.2= = =
p A B∪( ) p B′( ) p A B′∩( )

E 15.7XAMPLE

S
o
l
u
t
i
o
n

p A B∪( ) p A( ) p B( ) p A B∩( )–+=
p A B∪( )⇒ 0.6 0.3 0.2–+ 0.7= =

p B′( ) 1 p B( )– 1 0.3– 0.7= = =

p A B′∩( )
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Using the second Venn diagram we 
are now in a position to form a new 
formula:

.
 

.

We begin by drawing a tree diagram to describe the situation:

From the tree diagram we have a sample space made up of eight possible outcomes:
{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

(a) Let X be the event “Obtaining three tails.”, so X = {TTT}. Therefore .
(b)  Although we can answer this question by using the tree diagram, we make use of
 complementary events to solve this problem.

Notice that “At least one head.” is the complement of no heads.
Therefore, p(At least one head) = .

1. A letter is chosen at random from the letters of the word TOGETHER. 
(a) Find the probability of selecting a T.
(b) Find the probability of selecting a consonant.
(c) Find the probability of not selecting an E.

2. A card is drawn at random from a standard deck.
(a) Find the probability that the card is an ace.

A B A B

A A B′∩B′
p A B′∩( ) p A( ) p A B∩( )–=

 p∴ A B′∩( ) 0.6 0.2– 0.4= =

A coin is tossed three times. Find the probability of
(a) obtaining three tails (b) obtaining at least one head.

E 15.8XAMPLE
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T

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

First toss       Second             Third     Sample Space

P X( ) 1
8---=

P X′( ) 1 P X( )– 1 1
8---– 7

8---= = =

EXERCISES 15.2
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(b) Find the probability that the card is black.
(c) Find the probability that the card is an ace and black.
(d) Find the probability that the card is an ace or black.

3. A letter is selected at random from the alphabet. Find the probability that the letter is a
vowel or comes from the word ‘helpful’.

4. The events A and B are such that ,  and .
Find 
(a) (b) (c)  

5. The events A and B are such that ,  and .
Using a Venn diagram (where appropriate) find:
(a) (b) (c) .

6. The events A and B are such that ,  and .
Using a Venn diagram (where appropriate) find:
(a) (b) (c) .

7. A coin is tossed three times. 
(a) Draw a tree diagram and from it write down the sample space.

Use the results from part (a) to find the probability of obtaining
(b) only one tail.
(c) at least 2 tails.
(d) 2 tails in succession.
(e) 2 tails.

8. In a class of 25 students it is found that 6 of the students play both tennis and chess, 10
play tennis only and 3 play neither.  A student is selected at random from this group.

Using a Venn diagram, find the probability that the student.
(a) plays both tennis and chess.
(b) plays chess only.
(c) does not play chess.

9. A blue and a red die are rolled together (both numbered one to six).
(a) Draw a lattice diagram that best represents this experiment.
(b) Find the probability of observing an odd number.
(c) Find the probability of observing an even number with the red die.
(d) Find the probability of observing a sum of 7
(e) Find the probability of observing a sum of 7 or an odd number on the red die.

10. A card is drawn at random from a standard deck of 52 playing cards. Find the probability
that the card drawn is
(a) a diamond.
(b) a club or spade.
(c) a black card or a picture card.
(d) a red card or a queen.

P A( ) 0.5= P B( ) 0.7= P A B∩( ) 0.2=

P A B∪( ) P B′( ) P A′ B∩( )

p A( ) 0.35= p B( ) 0.5= p A B∩( ) 0.15=

p A′( ) p A B∪( ) p A B′∪( )

p A( ) 0.45= p B( ) 0.7= p A B∩( ) 0.20=

p A B∪( ) p A′ B′∩( ) p A B∩( )′( )
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11. A and B are two events such that ,  and .
 (a) Given that , find p.

Use a Venn Diagram to help you find the following:
(b)
(c) .

12. In a group of 30 students 20 hold an Australian passport, 10 hold a Malaysian passport and
8 hold both passports. The other students hold only one passport (that is neither Australian
nor Malaysian). A student is selected at random.
(a) Draw a Venn diagram which describes this situation.
(b) Find the probability that the student has both passports.
(c) Find the probability that the student holds neither passport. 
(d) Find the probability that the student holds only one passport.

15.3.1 INFORMAL DEFINITION OF CONDITIONAL PROBABILITY

Conditional probability works in the same way as simple probability. The only difference is that 
we are provided with some prior knowledge (or some extra condition about the outcome). So 
rather than considering the whole sample space, , given some extra information about the 
outcome of the experiment, we only need to concentrate on part of the whole sample space, . 
This means that the sample space is reduced from  to . Before formalising this section, we 
use an example to highlight the basic idea.

(a) This part is straight forward: U = { 1, 2, 3, 4, 5, 6}, and so P(‘Two’) = .
(b) This time, because we know that an even number has occured, we have a new 

sample space, namely  = {2, 4, 6}. The new sample size is .
Therefore, P(‘Two’ given that an even number showed up) = .

15.3.2 FORMAL DEFINITION OF CONDITIONAL PROBABILITY

P A( ) p= P B( ) 2 p= P A B∩( ) p2=
P A B∪( ) 0.4=

P A′ B∪( )
P A′ B′∩( )

CONDITIONAL PROBABILITY15.3

ε
ε*

ε ε*

(a) In the toss of a die, find the probability of obtaining a ‘Two’.
(b) After tossing a die, it is noted that an even number appeared, what is the probability that

it is a ‘Two’ ?

E 15.9XAMPLE
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1
6---

U* n U*( ) 3=
1
3---

If A and B are two events, then the conditional probability of event A given event B is 
found using , . P A B( ) P A B∩( )

P B( )----------------------- = P B( ) 0≠
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We first draw a lattice diagram:

From the diagram we see that the new sample space is made up 
of 21 outcomes (black boxes) and the event we want (circled) 
consists of 4 outcomes.
Then,  and . 

Therefore, .

Let A be the event “the first cube is red” and B be the event “the second cube is red”.
This means that the event  must be “both cubes are red”.
Now,  (as there are 2 red cubes from a total of 6 cubes in the box).
The value of  depends on whether the selection is carried out with or without
replacement. 

(a) If the first cube selected is red and it is not replaced, then we only have 1 red cube
 left (in the box) out of a total of five cubes. 

So, the probability that the second cube is red given that the first is red is . 

That is .

Note 1. If A and B are mutually exclusive then .
2. From the above rule, we also have the general Multiplication rule:

It should also be noted that usually .

P A B( ) 0=

 P A B∩( ) P A B( ) P B( ) ×=

 P A B( ) P B A( ) ≠

Two dice numbered one to six are rolled onto a table. Find the probability of 
obtaining a sum of five given that the sum is seven or less.

E 15.10XAMPLE
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1 2 3 4 5 61
2
3
4
5
6P X=5( ) X 7≤( )∩( ) 4

36------= P X 7≤( ) 21
36------=

P X=5 X 7≤( )
4
36------
21
36------
------ 4

21------= =

A box contains 2 red cubes and 4 black cubes. If two cubes are chosen at 
random, find the probability that both cubes are red given that
(a) the first cube is not replaced before the second cube is selected.
(b) the first cube is replaced before the second cube is selected.

E 15.11XAMPLE
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A B∩
p A( ) 2

6---
1
3---= =

P B( )

1
5---

p B A( ) 1
5---= P⇒ A B∩( ) P B A( ) P A( )× 1

5---
1
3---× 1

15------= = =
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(b) This time, because the cube is replaced, the probability that the second cube is red given
that the first one is red is still . 

So that, .

(a) , therefore we need to find .
Using the addition rule we have 

      0.6  = 0.5 + 0.3 –  
    = 0.2

Therefore, 

(b) .

(c)

15.3.3 INDEPENDENCE

The events A and B are said to be statistically independent if the probability of event B occuring is 
not influenced by event A occuring. 

Therefore we have the mathematical definition:

However, a more convenient definition for independence can be given as follows:

This definition can be used as a test to decide if two events are independent. However, as a rule of 
thumb, if two events are ‘physically independent’ then they will also be statistically independent.

There are a few points that should always be considered when dealing with independence:

1
3---

P B A( ) 1
3---= P A B∩( )⇒ P B A( ) P A( )× 1

3---
1
3---× 1

9---= = =

Two events A and B are such that ,  and 
. 

Find (a) . (b) (c)

P A( ) 0.5= P B( ) 0.3=
P A B∪( ) 0.6=

P A B( ) P B A( ) P A′ B( )

E 15.12XAMPLE

S
o
l
u
t
i
o
n

P A B( ) P A B∩( )
P B( )-----------------------= P A B∩( )

P A B∪( ) P A( ) P B( ) P A B∩( )–+=
P A B∩( )

 P∴ A B∩( )
P A B( ) P A B∩( )

P B( )----------------------- 0.2
0.3------- 2

3---= = =

P B A( ) P B A∩( )
P A( )----------------------- 0.2

0.5------- 0.4= = =

P A′ B( ) P A′ B∩( )
P B( )------------------------- P B( ) P A B∩( )–

P B( )------------------------------------------ 0.3 0.2–
0.3--------------------- 1

3---= = = =

Two events A and B are independent if, and only if,
 and P A B( ) P A( )= P B A( ) P B( )=

A and B are independent if, and only if 
 P A B∩( ) P A( ) P B( ) ×=
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1. Never assume that two events are independent unless you are absolutely certain that they
are independent.

2. How can you tell if two events are independent ?
A good rule of thumb is:
If they are physically independent, they are mathematically independent.

3. Make sure that you understand the difference between mutually exclusive events 
and independent events.
Mutually exclusive means that the events A and B have nothing in common and so
there is no intersection. i.e., .
Independent means that the outcome of event A will not influence the outcome of 
event B i.e., .

4. Independence need not only be for two events, it can be extended, i.e., if the events
 A, B and C are each independent of each other then

5. Showing that two events, A and B are independent, requires three steps:
Step 1 Evaluate the product .
Step 2 Determine the value of  using any means (other than step 1)
 i.e., use grids, tables, Venn diagrams, . . .

That is, you must not assume anything about A and B. 
Step 3 If the answer using Step 1 is equal to the answer obtained in Step 2,

 then and only then will the events be independent. Otherwise, they are not
independent.
Notice that not being independent does not therefore mean that they are

 mutually exclusive. They simply aren’t independent. That’s all.

6. Do not confuse the multiplication principle with the the rule for independence;
Multiplication principle is 
Independence is given by 

Let the  and  denote the events “An even number on the first die.” and “An even
number on the second die.” respectively.
In this case, the events are physically independent, i.e., the outcome on one die will not
influence the outcome on the other die, and so we can confidently say that  and  are
independent events.

Therefore, we have .

A B∩ ∅ P A B∩( )⇒ 0= =

P A B∩( ) P A( ) P B( )×=

P A B C∩ ∩( ) P A( ) P B( ) P C( )××=

P A( ) P B( )×
P A B∩( )

P A B∩( ) P A B( ) P B( )×=
P A B∩( ) P A( ) P B( )×=

Two fair dice are rolled. Find the probability that two even numbers will 
show up.

E 15.13XAMPLE

S
o
l
u
t
i
o
n

E1 E2

E1 E2

P E1 and E2( ) P E1 E2∩( ) P E1( ) P E2( )× 1
2---

1
2---× 1

4---= = = =
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Let  denote the event “Debra wins the 100 m race.” and , the event “Debra wins the
200 m race.”. 

(a) If Debra wins only one race she must either 
win the 100 m and lose the 200 m or 
win the 200 m and lose the 100 m.

That is, we want  or 
we can multiply the probabilities because the events are independent (why?):
 .
Therefore, the required probability is 0.28 + 0.18 = 0.46

Notice that if  and  are independent, then so too are their complements.

(b) Winning both races means that Debra will win the 100 m and 200 m race.
Therefore, we have  .

Notice how we have made repeated use of the word ‘and’, this emphasizes the fact that we are 
talking about the intersection of events.

(a) Let  denote the event that the i th seed germinates. 
This means that 
It is reasonable to assume that each seed will germinate independently of the other.
Therefore, P(All four seeds germinate) = 

      = 
      = 
      = 0.4096

(b) Now, p(At least one seed will germinate)  = 1 – p(No seeds germinate).
P(Any one seed does not germinate)   =  = 0.2
Therefore, P(At least one seed will germinate) = 1 –  = 1 – .

Debra has a chance of 0.7 of winning the 100 m race and a 60% chance of 
winning the 200 m race. 
(a) Find the probability that she only wins one race.
(b) Find the probability that she wins both races.

E 15.14XAMPLE

S
o
l
u
t
i
o
n

W 1 W 2

P W 1 W 2′∩( ) P W 1( ) P W 2′( )× 0.7 0.4× 0.28= = =

P W 2 W 1′∩( ) P W 2( ) P W 1′( )× 0.6 0.3× 0.18= = =

W 1 W 2

P W 1 W 2∩( ) P W 1( ) P W 2( )× 0.7 0.6× 0.42= = =

Four seeds are planted, each one having an 80% chance of germinating. 
Find the probability that 
(a) all four seeds will germinate.
(b) at least one seed will germinate.

E 15.15XAMPLE

S
o
l
u
t
i
o
n

Gi
P G1( ) P G2( ) P G3( ) P G4( ) 0.8= = = =

P G1 G2 G3 G4∩ ∩ ∩( )
P G1( ) P G2( ) P G3( ) P G4( )×××
0.8( )4

P Gi′( )
P Gi′( )( )4 0.2( )4 0.9984=
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We begin by drawing a diagram of the situation:

From our diagram we notice that 
there are two possible sample spaces 
for the second selection. 

As an aid, we make use of a tree diagram, where  denotes the event “A white ball is selected 
on the ith trial” and  denotes the event “A red ball is selected on the ith trial”.

The event “Only one white” occurs if the first ball is white and the second ball is red, or the first 
ball is red and the second ball is white.

1. Two events A and B are such that  p(A) = 0.6, p(B) = 0.4 and . Find
the probability of the following events:
(a) (b) (c) (d)

A bag contains 5 white balls and 4 red balls.  Two balls are selected in such 
a way that the first ball drawn is not replaced before the next ball is drawn. 
Find the probability of selecting exactly one white ball.

E 15.16XAMPLE

S
o
l
u
t
i
o
n

5 W 4 R
Select one ball

Stage 1 Stage 2

4W 4 R 5 W 3 R
After the first selection the bag wouldcontain one of the situations shown:

W i
Ri

5 W 4 R

4W 4 R

5 W 3 R

5
9---

4
9---

4
8---

4
8---

5
8---

3
8---

5
9---

4
8---× 20

72------=

5
9---

4
8---× 20

72------=

4
9---

5
8---× 20

72------=

4
9---

3
8---× 12

72------=

W 1

W 2 W 1

R2 W 1
W 2 R1

R2 R1

R1

P One White ball( ) P W 1 R2∩( ) P R1 W 2∩( )+=
P R2 W 1( ) P W 1( )× P W 2 R1( ) P R1( )×+=
4
8---

5
9---

5
8---

4
9---×+×=

5
9---=

EXERCISES 15.3

p A B∩( ) 0.3=

A B∪ A B B A A B′
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2. A and B are two events such that ,  and 
Find the probability of the following events:
(a) (b) (c) (d)

3. Urn A contains 9 cubes of which 4 are red. Urn B contains 5 cubes of which 2 are red. A
cube is drawn at random and in succesion from each urn.
(a) Draw a tree diagram representing this process.
(b) Find the probability that both cubes are red.
(c) Find the probability that only 1 cube is red.
(d) If only 1 cube is red, find the probability that it came from urn A.

4. A box contains 5 red, 3 black, and 2 white cubes. A cube is randomly drawn and has its
colour noted.  The cube is then replaced, together with 2 more of the same colour.  A
second cube is then drawn.  
(a) Find the probability that the first cube selected is red.
(b) Find the probability that the second cube selected is black.
(c) Given that the first cube selected was red, what is the probability that the second

cube selected is black?

5. A fair coin, a double-headed coin and a double-tailed coin are placed in a bag. A coin is
randomly selected. The coin is then tossed.
(a) Draw a tree diagram showing the possible outcomes.
(b) Find the probability that the coin lands with a tail showing uppermost.
(c) In fact, the coin falls “heads”, find the probability that it is the “double-headed”

coin.

6. Two unbiased coins are tossed together.  Find the probability that they both display heads
given that at least one is showing a head.

7. A money box contains 10 discs, 5 of which are yellow, 3 of which are black and 2 green.
Two discs are selected in succession, with the first disc not replaced before the second is
selected.  
(a) Draw a tree diagram representing this process.
(b) Hence find the probability that the discs will be of a different colour.
(c) Given that the second disc was black, what is the probability that both were black?

8. Two dice are rolled. Find the probability that the faces are different given that the dice
show a sum of 10.

9. Given that , and that A and B are independent events.
Find the probability of the event 
(a) (b) (c) (d)

10. The probability that an animal will still be alive in 12 years is 0.55 and the probability that
its mate will still be alive in 12 years is 0.60. 
Find the probability that
(a) both will still be alive in 12 years.
(b) only the mate will still be alive in 12 years.
(c) at least one of them will still be alive in 12 years.
(d) the mate is still alive in 12 years given that only one is still alive in 12 years.

p A( ) 0.3= p B( ) 0.5= p A B∪( ) 0.55=

A B B A A B′ A′ B′

p A( ) 0.6= p B( ) 0.7=

A B∪ A B∩ A B′ A′ B∩
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11. Tony has a 90% chance of passing his maths test, whilst Tanya has an 85% chance of
passing the same test.  If they both sit for the test, find the probability that
(a) only one of them passes.
(b) at least one passes the test.
(c) Tanya passed given that at least one passed.

12. The probability that Rory finishes a race is 0.55 and the probability that Millicent
 finishes the same race is 0.6.  Because of team spirit, there is an 80% chance that
 Millicent will finish the race if Rory finishes the race. 

Find the probability that
(a) both will finish the race.
(b) Rory finishes the race given that Millicent finishes.

13.  If A and B are independent events, show that their complementary events are also
independent events.

14. A student runs the 100 m, 200 m and 400 m races at the school athletics day. He has an
80% chance of winning any one given race. Find the probability that he will

 (a) win all 3 races.
(b) win the first and last race only.
(c) win the second race given that he wins at least two races.

15. Dale and Kritt are trying to solve a physics problem.  The chances of solving the problem
are Dale—65% and Kritt— 75%. Find the probability that
(a) only Kritt solves the problem.
(b) Kritt solves the problem.
(c) both solve the problem.
(d) Dale solves the problem given that the problem was solved.

16. A coin which is weighted in such a way that there is a 70% chance of it landing heads.
The coin is tossed three times in succession, find the probability of observing
(a) three tails.
(b) two heads.
(c) two heads given that at least one head showed up.

15.4.1 LAW OF TOTAL PROBABILITY

Using the Venn diagram, for any event A, we have that 
 

      
As these two events are mutually exclusive, we have:

However, 

and .

BAYES’ THEOREM15.4

A
B

ε
B′

A A ε∩ A B B′∪( )∩= =
A B∩( ) A B′∩( )∪=

P A( ) P A B∩( ) P A B′∩( )+=
P A B( ) P A B∩( )

P B( )----------------------- P A B∩( )⇒ P B( ) P× A B( )= =

P A|B′( ) P A B′∩( )
P B′( )------------------------- P A B′∩( )⇒ P B′( ) P× A B′( )= =
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Which leads to the Law of Total Probability.

Although this expression might look daunting, in fact, it 
represents the result that we would obtain if a tree diagram 
was used:

We begin by setting up a tree diagram, where  
denotes the event “A Black cube is observed on ith 
selection” and  denotes the event “A White cube 
is observed on ith selection”. 

A black cube could have been observed on the second 
selection if
i. the first cube selected was white (i.e., ), or
ii. the first cube selected was black (i.e., ).

Therefore, .

15.4.2 BAYES’ THEOREM FOR TWO EVENTS

As we saw earlier, conditional probability provides a mean by which we can adjust the 
probability of an event in light of new information. Bayes’ Theorem, developed by Rev. Thomas 
Bayes (1702–1761), does the same thing, except this time it provides a means of adjusting a set of 
associated probabilities in the light of new information. 

For two events, we have:

Again, the formula might seem daunting, however, it is only making use of a tree diagram.

 P A( )∴ P B( ) P A B( ) P B′( ) P A B′( ) ×+×=

B
A B′∩

A B∩A B

A B′
B′

A box contains 3 black cubes and 7 white cubes. A cube is drawn from the 
box. Its colour noted and a cube of the other colour is then added to the box. A second cube is 
then drawn.  What is the probability that the second cube selected is black?

E 15.17XAMPLE

S
o
l
u
t
i
o
n

B2 B1∩

B2 W1∩B2 W1

B2 B1

W1

B1

7
10------

3
10------

4
10------

2
10------

Bi

W i

B2 W 1
B2 B1

P B2( ) P B2 W 1∩( ) P B2 B1∩( )+ 7
10------ 4

10------ 3
10------ 2

10------×+× 17
50------= = =

  P A B( ) P A B∩( )
P B( )----------------------- P A( ) P B A( )×

P A( ) P B A( ) P A′( ) P B A′( )×+×-------------------------------------------------------------------------------------  = =

A box contains 3 black cubes and 7 white cubes. A cube is drawn from the 
box. Its colour noted and a cube of the other colour is then added to the box. A second cube is 
then drawn.  If both cubes are of the same colour, what is the probability that both cubes were in 
fact white?

E 15.18XAMPLE



Probability – CHAPTER 15

507

Following on from the previous example, we have the same tree diagram:

We require: P(Both White given that both are of the same colour)

Now, the probability that they are of the same colour is given by the probability that they are both 
white or both black, i.e., .
Next: P(Both White given both are the same colour) 

= 

Let the event A denote the event “driver wears a seatbelt’ and B denote the event “Driver
speeds”. Using a tree diagram we have:

S
o
l
u
t
i
o
n

B2 B1∩

B2 W 1∩B2 W 1

B2 B1

W 1

B1

7
10------

3
10------

4
10------

2
10------

W 2 W 1

W 2 B1

6
10------

8
10------

W 2 W 1∩

W 2 B1∩

P W 2 W 1∩( ) B2 B1∩( )∪( )

P W 2 W 1 W 2 W 1∩( ) B2 B1∩( )∪∩( )
P W 2 W 1∩( ) W 2 W 1∩( ) B2 B1∩( )∪( )∩( )

P W 2 W 1∩( ) B2 B1∩( )∪( )-------------------------------------------------------------------------------------------------------------=

P W 2 W 1∩( )
P W 2 W 1∩( ) P B2 B1∩( )+------------------------------------------------------------------=

P W 2 W 1( ) P W 1( )×
P W 2 W 1( )P W 1( ) P B2 B1( )P B1( )+---------------------------------------------------------------------------------------=

6
10------ 7

10------×
6
10------ 7

10------× 2
10------ 3

10------×+
-------------------------------------------=

7
8---=

In a small country town, it was found that 90% of the drivers would always 
wear their seatbelts. On 60% of occasions, if a driver was not wearing a seatbelt they would be 
fined for speeding. Whereas if they were wearing a seatbelt, they would be fined for speeding 
20% of the time. Find the probability that a driver who was fined for speeding was wearing a 
seatbelt.

E 15.19XAMPLE

S
o
l
u
t
i
o
n

B A

B A′
A 0.9

0.1 0.6

0.2

A′



MATHEMATICS – Higher Level (Core)

508

We need to find, Pr(Driver was wearing a seatbelt| driver was booked for speeding)

Therefore,  
So, P(that a driver who was booked for speeding was in fact wearing a seatbelt) = 0.75

1. Two machines, A and B produce 40% and 60% of the daily output respectively. Each
machine also produces a total of 3% and 5% respectively, of items that are defective. 
(a) An item is selected at random. Find the probability that it is defective.
(b) An item is selected and is found to be defective. Find the probability that it came

from machine B.

2. At the Heights International School, it is found that 12% of the male students and 7% of
the female students are taller than 1.8 m. Sixty percent of the school is made up of female
students.
(a) A student selected at random is found to be taller than 1.8m. What is the

 probability that the student is a female?
(b) A second student selected at random is found to be shorter than 1.8m. What is the

probability that the student is a male?

3. A box contains 4 black cubes and 6 white cubes. A cube is drawn from the box. Its colour
noted and a cube of the other colour is then added to the box. A second cube is then drawn.  
(a) If both cubes are of the same colour, what is the probability that both cubes were in

fact white?
(b) The first ball is replaced before the second ball is added to the box.

What is the probability that both cubes were white given that both cubes were of
the same colour?

4. An urn, labelled A, contains 8 cards numbered 1 through 8 whilst a second urn, labelled B,
contains five cards numbered 1 through five. An urn is selected at random and from that
urn a card is selected. Find the probability that the card came from urn A given that it is
an even numbered card.

5. (a) An event A can occur only if one of the mutually exclusive events  or 
occurs. Show that 

(b) Of the daily output, machines A and B produce items of which 2% are defective,
whilst machine C produces items of which 4% are defective. Machines B and C
produce the same number of items, whilst machine A produces twice as many
items as machine B. 

P A B( )=
P A B∩( )

P B( )-----------------------  =
P A( ) P B A( )×

P A( ) P B A( ) P A′( ) P B A′( )×+×-------------------------------------------------------------------------------------=

P A B( ) 0.9 0.2×
0.9 0.2 0.1 0.6×+×------------------------------------------------- 18

24------= =

EXERCISES 15.4

B1 B2, B3

P A( ) P B1( ) P A B1( ) P B2( ) P A B2( ) P B3( ) P A B3( )×+×+×=
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i.   An item is selected at random. Find the probability that it is defective.
ii.  An item is selected and is found to be defective. Find the probability that it
     came from machine B.

6. A box contains N coins, of which m are fair coins whilst the rest are double–headed coins. 
(a) A coin is selected at random and tossed. 

i.   What is the probability of observing a head?
ii.  Given that a head was observed, what is the probability that the double–headed
coin was selected?

(b) This time, a coin is selected at random and tossed n times. What is the probability
that it was a fair coin, if it showed up heads on all n tosses?

7. A population of mice is made up of 75% that are classified as ‘M+’, of which, 30% have a
condition classified as ‘N–’.  Otherwise, all other mice have the  ‘N–’ condition. A mouse
selected at random is classified as having the N–’ condition. What is the probability that
the mouse comes from the ‘M+’ classification group?

8. A survey of the adults in a town shows that 8% have liver problems. Of these, it is also
found that 30% are heavy drinkers, 60% are social drinkers and 10% are non–drinkers. Of
those that did not suffer from liver problems, 5% are heavy drinkers, 65% are social
drinkers and 30% do not drink at all.
(a) An adult is selected at random. What is the probability that this person is a heavy

drinker?
(b) If a person is found to be a heavy drinker, what is the probability that this person

has liver problems?
(c) If a person is found to have liver problems, what is the probability that this person

is a heavy drinker?
(d) If a person is found to be a non–drinker, what is the probability that this person has

liver problems?

9. The probability that a person has a deadly virus is 5 in one thousand. A test will correctly
diagnose this disease 95% of the time and incorrectly on 20% of occasions.
(a) Find the probability of this test giving a correct diagnosis.
(b) Given that the test diagnoses the patient as having the disease, what is the

probability that the patient does not have the disease?
(c) Given that the test diagnoses the patient as not having the disease, what is the

 probability that the patient does have the disease?

10. The probability that a patient has a virus is 0.03. A medical diagnostic test will be able
to determine whether the person in question actually has the virus. If the patient has the
virus, the medical test will produce a positive result 90% of the time whilst if the patient
does not have the virus, it will produce a negative result 98% of the time.
(a) What proportion of all tests provide a positive result?
(b) If the test shows a positive result, what is the probability that the patient actually

has the virus?
(c) If the test shows a negative result, what is the probability that the patient does not

have the virus?

11. The probability that a day of the week will be dry or wet is related to the state of the
 previous day in the following manner:

If it is dry one day, the chances of it being dry the next is 0.8.
If it is wet one day, the chances of it being dry the next is 0.4
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(a) Given that Monday is dry, what is the probability that Tuesday is wet?
(b) Given that Monday is dry, what is the probability that Tuesday is wet and

 Wednesday is dry?
(c) Given that Monday is dry, what is the probability that Wednesday is dry?
Define the conditional probability matrix, , for i = 1, 2, 3, ..., as follows:

(d) Find,  and .
(e) Verify that 
(f) Show that .
(g) Use part f. to find the probability that Thursday will be dry, given that Monday was

dry.

Because enumeration is such an important part of finding probabilities, a sound knowledge of 
permutations and combinations can help to ease the workload involved.

The total number of arrangements of all 8 books is 8! = 40320
To determine the number of arrangements that contain the three maths books together we
make use of the box method:

We now have 6 boxes to arrange, giving a total of 6! arrangements.
However, the three maths books (within the red box) can also be arranged in 3! ways.
Therefore, there are  ways this can be done.

So, P(maths books are together) =   = 

                 

Pi

Pi
p Day i is dry Day i 1 is dry–( ) p Day i is wet Day i 1 is dry–( )
p Day i is dry Day i 1 is wet–( ) p Day i is wet Day i 1 is wet–( )=

P1 P2
P2 P1( )2=
Pi 1+ PiP1=

USING PERMUTATIONS AND 
COMBINATIONS IN PROBABILITY

15.5

Three maths books, three chemistry books and two physics books are to be 
arranged on a shelf. What is the probability that the three maths books are together?

E 15.20XAMPLE
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6 books

3 books

6! 3!× 4320=
6! 3!×

8!---------------- 6! 3!×
8 7 6!××-----------------------= 6

8 7×------------
3
28------=

A committee of 5 is randomly chosen from 8 boys and 6 girls. Find the 
probability that the committee consists of at least 3 boys.

E 15.21XAMPLE



Probability – CHAPTER 15

511

The possibilities are:

The total number of committees with at least 3 boys is 840 + 420 + 56 = 1316
However, the total number of committees of 5 from 14 is .

If X denotes the number of boys on the committee, then .

1. Five red cubes and 4 blue cubes are placed at random in a row. Find the probability that
(a) the red cubes are together.
(b) both end cubes are red.
(c) the cubes alternate in colour.

2. Five books of different heights are arranged in a row. Find the probability that
(a) the tallest book is at the right end.
(b) the tallest and shortest books occupy the end positions.
(c) the tallest and shortest books are together.
(d) the tallest and shortest books are never next to each other.

3. Three cards are dealt from a pack of 52 playing cards. Find the probability that
(a) 2 of the cards are kings.
(b) all three cards are aces.
(c) all three cards are aces given that at least one card is an ace.

4. The letters of the word LOTTO are arranged in a row. What is the probability that the Ts
are together?

5. A committee of 4 is to be selected from 7 men and 6 women. Find the probability that
(a) there are 2 women on the committee.
(b) there is at least one of each sex on the committee.

6. A basketball team of 5  is to be selected from 12 players. Find the probability that
(a) the tallest player is selected.
(b) the captain and vice-captain are selected.
(c) either one, but not both of the captain or vice-captain are selected.

7. Find the probability of selecting one orange, one apple and one pear from five oranges,
four apples and three pears.

Boys Girls No. of Selections
3 2

4 1

5 0

S
o
l
u
t
i
o
n

8
3  

6
2  × 840=

8
4  

6
1  × 420=

8
5  

6
0  × 56=

14
5   2002=

p X 3≥( ) 1316
2002------------ 94

143---------= =

EXERCISES 15.5
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8. Three red cubes, four blue cubes and six yellow cubes are arranged in a row. Find the
probability that
(a) the cubes at each end are the same colour.
(b) the cubes at each end are of a different colour.

9. A sample of three light bulbs is selected from a box containing 15 light bulbs. It is known
that five of the light bulbs in the box are defective.
(a) Find the probability that the sample contains a defective.
(b) Find the probability that the sample contains at least two defectives.

10. Eight people of different heights are to be seated in a row. What is the probability that 
(a) the tallest and shortest persons are sitting next to each other?
(b) the tallest and shortest occupy the end positions?
(c) there are at least three people sitting between the tallest and shortest?

11. Eight people of different heights are to be seated in a row. The shortest and tallest in this
group are not seated at either end. What is the probability that
(a) the tallest and shortest persons are sitting next to each other?
(b) there is one person sitting between the tallest and shortest?

12. A committee of four is to be selected from a group of five boys and three girls. Find the
probability that the committee consists of exactly two girls given that it contains at least
one girl.

13. A bag contains 6 red marbles and 4 white marbles. Three marbles are randomly selected.
Find the probability that
(a) all three marbles are red.
(b) all three marbles are red given that at least two of the marbles are red.

14. Four maths books, two chemistry books and three biology books are arranged in a row. 
(a) What is the probability that the books are grouped together in their subjects?
(b) What is the probability that the chemistry books are not grouped?

15. A contestant on the game show “A Diamond for your Wife” gets to select 5 diamonds
from a box. The box contains 20 diamonds of which 8 are fakes. 

(a) Find the probability that the contestant will not bring a real diamond home for his
wife.

Regardless of how many real diamonds the contestant has after his selection, he can only
take one home to his wife. A second contestant then gets to select from the remaining 15
diamonds in the box. But only gets to select one diamond. 

(b) What is the probability that this second contestant selects a real diamond?

16. Light bulbs are sold in packs of 10. A quality inspector selects two bulbs at random
without replacement. If both bulbs are defective the pack is rejected. If neither are 
defective the pack is accepted. If one of the bulbs is defective the inspector selects two
more from the bulbs remaining in the pack and rejects the pack if one or both are
defective. What are the chances that a pack containing 4 defective bulbs will in fact be
accepted?
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16.1.1 CONCEPT OF A RANDOM VARIABLE

Consider the experiment of tossing a coin twice. The sample space, S, (i.e., the list of all possible 
outcomes) of this experiment can be written as S = {HH, HT, TH, TT}.
We can also assign a numerical value to these outcomes. For example, we can assign the number

0 to the outcome {HH}, 
1 to the outcomes {HT, TH} and 
2 to the outcome {TT}.

These numerical values are used to represent the number of times that a tail was observed after 
the coin was tossed.
The numbers 0, 1 and 2 are random in nature, that is, until the coins are tossed we have no idea 
as to which one of the outcomes will occur. We define a random variable as follows:
A random variable, X (random variables are usually denoted by capital letters), which can take 
on exactly n numerical values, each of which corresponds to one and only one of the events in the 
sample space is called a discrete random variable.
Note that the values that correspond to the random variables X, Y, Z . . . are denoted by their 
corresponding lower case letters, x, y, z . . . . For the example above, X = {x: x = 0, x = 1, x = 2}.

16.1.2 DISCRETE RANDOM VARIABLE

A discrete random variable is one in which we can produce a countable number of outcomes. 
Because of this, discrete random variables are usually associated with a counting process. For 
example, the number of plants that will flower, the number of defective items in a box or the 
number of items purchased at a supermarket store. 
We can display this concept using a simple diagram such as the one below:

To obtain the sample space, we may need to carry out an experiment. However, as we shall see, 
there are many types of random variables that already possess their own sample spaces, random 
outcomes and associated probability values. We will deal with these later.

DISCRETE RANDOM VARIABLES16.1

C
H

A
P

T
E
R

 1
6

  :
 3
 2
 1
 0
–1
–2
  :

   

Sample space Random variableε     (outcome)
X

Probability
P X x=( )

1

0 Note that the probability of any event must 
always lie between 0 and 1, inclusive.

We write 
‘The probability that the random variable 
X = x is p’ as:
                P(X = x) = p.
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(a) In the experiment of tossing a coin three times the sample space is given by
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT},

where the event {HTH} represents the observation, Head, Tail, Head in that order.
(b) This means that on any one trial of this experiment, we could have obtained either 

0 heads, 1 head, 2 heads or 3 heads. 
Therefore, the random variable X has as its possible values the numbers 0, 1, 2, 3.
That is, X = 0 corresponds to the event {TTT}, that is, no heads.

X = 1 corresponds to the events {TTH, THT, HTT}, that is, one head.
X = 2 corresponds to the events {THH, HTH, HHT}, that is, two heads.
X = 3 corresponds to the event {HHH}, that is, three heads.

Once we have our sample space, we can look at the chances of each of the possible outcomes. In 
all there are 8 possible outcomes.
So that the chances of observing the event {HHH} would be , i.e., . 
To find , we observe that the outcome ‘X = 2’ corresponds to {THH, HTH, HHT}. 
So that in this case there is a chance of 3 in 8 of observing the event where ‘X = 2’. 
Continuing in this manner we have

 = 

= 

= 

=   

16.1.3 PROBABILITY DISTRIBUTIONS

We can describe a discrete random variable by making use of its probability distribution. That is, 
by showing the values of the random variable and the probabilities associated with each of its 
values. 
A probability distribution can be displayed in any one of the following formats:

1. Tabular form
2. Graphical representation 

(With the probability value on the vertical axis, and the values of the random 
variable on the horizontal axis.)

3. Function 
(A formula that can be used to determine the probability values.)

Consider the experiment of tossing a coin three times in succession.
(a) List all possible outcomes.
(b) If the random variable X denotes the number of heads observed, list the values that X can

have and find the corresponding probability values. 

E 16.1XAMPLE
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1
8--- P X 3=( ) 1

8---=
P X 2=( )

P X 0=( ) P {HHH}( )= 1
8---

P X 1=( ) P {TTH, THT, HTT}( )= 3
8---

P X 2=( ) P {HHT, HTH, THH}( )= 3
8---

P X 3=( ) P {HHH}( )= 1
8---
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Let the random variable X denote the number of heads observed in three tosses of a coin.
1. Tabular form:

2. Graphical representation:

3. Function: , where .

16.1.4 PROPERTIES OF THE PROBABILITY FUNCTION

We can summarise the features of any discrete probability function as follows:
1. The probability for any value of X must always lie between 0 and 1 (inclusive).

That is,  for all values of .

2. For the n mutually exclusive and exhaustive events,  that make up the 
sample space , then, the sum of the corresponding probabilities must be 1.

That is,

Where  is the probability of event  occuring.

Any function that does not abide by these two rules cannot be a probability function.

x 0 1 2 3

Use each of the probability distribution representations discussed to display 
the results of the experiment where a coin is tossed three times in succession.

E 16.2XAMPLE
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p X x=( ) 1
8---

3
8---

3
8---

1
8---

1 2 30 x

p X x=( )

1
8---

3
8---

p X x=( ) 3
x   1

2---   3 x, 0 1 2 3, , ,= = 3
x   3!

3 x–( )!x!-----------------------=

0 P X xi=( ) 1≤≤ xi

A1 A2 … An, , ,
ε

P X xi=( )
i 1=

i n=
∑ P X x1=( ) P X x2=( ) … P X xn=( )+ + + 1= =

P X xi=( ) Ai

Consider the random variable X with probability function defined by 
,   and .

Determine the value of .
P X 0=( ) α= P X 1=( ) 2α= P X 2=( ) 3α=

α

E 16.3XAMPLE
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Because we are given that this is a probability function, then summing all the probabilities
must give a result of 1.
Therefore we have that 

 

(a) Using the fact that the sum of all the probabilities must be 1, we have

        

Therefore, .

(b) Now, 

However, we know that .

Therefore, .

(a)  i. We begin by evaluating the probability for each value of x:
  = , [Using the notation ].

  = ,       = ,

   = ,       = 

S
o
l
u
t
i
o
n

P X 0=( ) P X 1=( ) P X 2=( )+ + 1=
α 2α 3α+ +∴ 1=

6α⇔ 1=
α⇔ 1

6---=

The probability distribution of the random variable X is represented by the 
function 
Find (a) the value of k (b) .

P X x=( ) k
x-- x, 1 2 3 4 5 6, , , , ,= =

P 3 X 5≤ ≤( )
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P X 1=( ) P X 2=( ) … P X 6=( )+ + + k
1---

k
2---

k
3---

k
4---

k
5---

k
6---+ + + + + 1= =

147k
60------------⇔ 1=

k 60
147--------- 20

49------= =

P 3 X 5≤ ≤( ) P X 3=( ) P X 4=( ) P X 5=( )+ + k
3---

k
4---

k
5---+ + 47k

60---------= = =

k 60
147---------=

P 3 X 5≤ ≤( ) 47
60------

60
147---------× 47

147---------= =

A discrete random variable X has a probability distribution defined by the 
function  where .
(a) Display this distribution using i. a table form ii. a graphical form
(b) Find i. ii.

P X x=( ) 4
x   2

5---   x 3
5---   4 x–

= x 0 1 2 3 4, , , ,=

P X 2=( ) P 1 X 3≤ ≤( )

E 16.5XAMPLE

S
o
l
u
t
i
o
n

p X 0=( ) C4 0
2
5---   0 3

5---   4 0–
= 81

625--------- 4
x   C4 x=

p X 1=( ) C4 1
2
5---   1 3

5---   3= 216
625--------- p X 2=( ) C4 2

2
5---   2 3

5---   2= 216
625---------

p X 3=( ) C4 3
2
5---   3 3

5---   1= 96
625--------- p X 4=( ) C4 4

2
5---   4 3

5---   0= 16
625---------
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We can now set up this information in a table:

ii. Using the table found in part i., we can construct the following graph:

(b) i. From our probability table, we have that P(X = 2) = .
ii. The statement  requires that we find the probability of the random

variable X taking on the values 1, 2 or 3. This amounts to evaluating the sum of the
corresponding probabilities. 
Therefore, we have   = 

                  =            +            +      
        = 

16.1.5 CONSTRUCTING PROBABILITY FUNCTIONS

When we are given the probability distribution, we can determine the probabilities of events. 
However, there is still one issue that we must deal with:

How do we obtain the probabilities in the first place ?
Sometimes we recognise a particular problem and know of an existing model that can be used. 
However, resolving this question is not always an easy task, as this often requires the use of 
problem solving skills and modelling skills as well as interpretive skills.

We start by drawing a diagram that will help us visualise the situation:

x 0 1 2 3 4
P X x=( ) 81

625--------- 216
625--------- 216

625--------- 96
625--------- 16

625---------

1 2 3 40 x

P X x=( ) 216
265---------

81
265---------

216
625---------

P 1 X 3≤ ≤( )

P 1 X 3≤ ≤( ) P X 1=( ) P X 2=( ) P X 3=( )+ +
216
625--------- 216

625--------- 96
625---------

528
625---------

A bag contains 5 white cubes and 4 red cubes.  Two cubes are selected in 
such a way that the first cube drawn is not replaced before the next cube is drawn. Find the 
probability distribution of X, where X denotes the number of white cubes selected from the bag.

E 16.6XAMPLE
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5 W 4 R

Select one cubeStage 1 Stage 2

4W 4 R 5 W 3 R
After the first selection the bag wouldcontain one of the situations shown:
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Next, we set up the corresponding tree diagram:

We are now in a position to complete the probability table.

a. Let K denote the event that Kirsty is successful, so that  and let B denote the
event that Bridget is successful, so that .
Now, the event ‘X = 0’ translates to ‘noboby is successful’:
That is, .

Similarly, the event ‘X = 1’ translates to ‘only one is successful’:
That is, .

Lastly, the event ‘X = 2’ translates to ‘both are successful’:
That is, 

We can now construct a probability distribution for the random variable X:

0 1 2

0 1 2
0.05 0.35 0.60

5 W 4 R

W

R

4W 4 R

5 W 3 R

W

W
R

R

5
9---

4
9---

4
8---

4
8---

5
8---

3
8---

X = 2

1
1

0X = 

X = 
X = 5

9---
4
8---× 20

72------=

5
9---

4
8---× 20

72------=

4
9---

5
8---× 20

72------=

4
9---

3
8---× 12

72------=

First selection Second selection

x

P X x=( ) 12
72------

40
72------

20
72------

Two friends Kirsty and Bridget, independently applied for different jobs. 
The chances that Kirsty is successful is 0.8 and the chances that Bridget is successful is 0.75. 
(a) If X denotes the number of successful applications between the two friends, find the
 probability distribution of X.
(b) Hence find the probability that i. both are successful

ii. that if one is successful, it is Kirsty.

E 16.7XAMPLE
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P K( ) 0.8=
P B( ) 0.75=

P X 0=( ) P K′ B′∩( ) P K′( ) P B′( )× 0.2 0.25× 0.05= = = =

P X 1=( ) P K B′∩( ) P K′ B∩( )+ 0.8 0.25× 0.2 0.75×+ 0.35= = =

P X 2=( ) P K B∩( ) P K( ) P B( )× 0.8 0.75× 0.6= = = =

x
P X x=( )



Discrete Random Variables – CHAPTER 16

519

(b) i. P(Both successful) = P(X = 2) = 0.60
ii. P(K|Only one is successful) =  = 

          = 

1. Find the value of k, so that the random variable X describes a probability distribution.

2. The discrete random variable Y has the following probability distribution

(a) Find the value of .
(b) Find i.

ii.

3. A delivery of six television sets contains 2 defective sets. A customer makes a random
purchase of two sets from this delivery. The random variable X denotes the number of
defective sets purchased by the customer.
(a) Find the probability distribution table for X.
(b) Represent this distribution as a graph.
(c) Find .

4. A pair of dice are rolled. Let Y denote the sum showing uppermost.
(a) Determine the possible values that the random variable Y can have.
(b) Display the probability distribution of Y in tabular form.
(c) Find P(Y = 8).
(d) Sketch the probability distribution of Y.

5. A fair coin is tossed 3 times.
(a) Draw a tree diagram representing this experiment.
(b) Display this information using both graphical and tabular representations.
(c) If the random variable Y denotes the number of heads that appear uppermost, find

P(Y ≥ 2| Y ≥1).
6. The number of customers that enter a small corner newsagency between the hours

of 8 p.m and 9 p.m can be modelled by a random variable X having a probability
distribution given by .
(a) Find the value of k.

1 2 3 4 5
0.25 0.20 0.15 k 0.10

1 2 3 4

P K X=1{ }∩( )
P X=1{ }( )-------------------------------------- P K B′∩( )

P X=1{ }( )--------------------------
0.20
0.35---------- 0.5714=( )

EXERCISES 16.1

x
P X x=( )

y
P Y y=( ) β 2β 3β 4β

β
P Y 2=( )
P Y 2>( )

P X 1≤( )

P X x=( ) k 3x 1+( )  where x, 0 1 2 3 4, , , ,= =
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(b) Represent this distribution in i. tabular form.
ii. graphical form.

(c) What are the chances that at least 2 people will enter the newsagency between
8 p.m and 9 p.m on any one given day?

7. The number of cars passing an intersection in the country during the hours of 4 p.m
 and 6 p.m follows a probability distribution that is modelled by the function

.
Where the random variable X denotes the number of cars that pass this intersection
between 4 p.m and 6 p.m.
(a) Find i. ii.
(b) Find the probability of observing at least three cars passing through this 

intersection during the hours of 4 p.m and 6 p.m.
8. The number of particles emitted during a one hour period is given by the random

variable X, having a probability distribution
, find .

9. A random variable X has the following probability distribution

(a) Find the probability distribution of .
(b) Find i. ii. .

10. A bakery has six indistinguishable muffins on display. However, two of them have been
filled with strawberry jam and the others with apricot jam. Claire, who hates strawberry
jam, purchases two muffins at random. Let N denote the number of strawberry jam
muffins Claire buys. Find the probability distribution of the random variable N.

11. A box contains four balls numbered 1 to 4. A ball is selected at random from the box and
its number is noted.
(a) If the random variable X denotes the number on the ball, find the probability

distribution of X.
After the ball is placed back into the box, a second ball is randomly selected.
(b) If the random variable S denotes the sum of the numbers shown on the balls after

the second draw, find the probability distribution of S.
12. A probability distribution function for the random variable X is defined by

Find (a) .
(b)

0 1 2 3

P X x=( ) 0.1( )x
x!--------------e 0.1– x, 0 1 2 3 …, , , ,= =

P X 0=( ) P X 1=( )

P X x=( ) 4( )x
x!----------e 4– x, 0 1 2 3 …, , , ,= = P X 4>( )

x

P X x=( ) 1
6---

1
2---

1
5---

2
15------

Y X2 2X–=
P Y 0=( ) P Y 3<( )

P X x=( ) k 0.9( )x× x, 0 1 2 …, , ,= =
P X 2≥( )
P 1 X 4<≤( )
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16.2.1 CENTRAL TENDENCY AND EXPECTATION

For a discrete random variable X with a probability distribution defined by , we define 
the expectation of the random variable X as

Where  is read as “The expected value of X”.  is interpreted as the mean value of X 
and is often written as  (or simply ). Often we write the expected value of X as 

. This is in contrast to the mode which is the most common value(s) and the 
median which is the value with half the probabilities below and half above the median value.

16.2.2 SO WHAT EXACTLY DOES  MEASURE?

The expected value of the random variable is a measure of the central tendency of X. That is, it 
is an indication of its ‘central position’– based not only on the values of X, but also the 
probability weighting associated with each value of X. That is, it is the probability–weighted 
average of its possible values.

To find the value of  using the formula  we take each possible 

value of , multiply it by its associated probability  (i.e., its ‘weight’) and then add 
the results. The number that we obtain can be interpreted in two ways:

1. As a probability–weighted average, it is a summary number that takes into
account the relative probabilities of each  value.

2. As a long–run average, it is a measure of what one could expect to observe if the
experiment was repeated a large number of times. 
For example, when tossing a fair coin a large number of times (say 500 times) and
the random variable X denotes the number of tails observed, we would expect to
observe 250 tails, i.e., . 

Note: Although we would expect 250 tails after tossing a coin 500 times, it might be that we do
 not observe this outcome! For example, if the average number of children per ‘family’ in

Australia is 2.4, does this mean we expect to see 2.4 children per‘family’?

In short, we might not be able to observe the value  that we obtain.

MEAN AND VARIANCE16.2

P X x=( )

  E X( ) xiP X xi=( )
i 1=

i  = n
∑=

x1 P X x1=( )× x2 P X x2=( ) … xn P X xn=( )  ×+ +×+=

E X( ) E X( )
µX µ

xP X x=( )∑

E X( )

E X( ) E X( ) xiP X xi=( )
i 1=

i  = n
∑=

xi P X xi=( )

xi

E X( ) 250=

E X( )
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The mode is X = 4 (the most probable) and the median 3 (half are above and half below 3–
this is probably best done by sketching the cdf of X).
To find the mean of X we use the formula :

That is,  = 3
Therefore, X has a mean value of 3.

Because the die is fair we have the following probability distribution:

Then,

=  = 3.5

Notice then, that in the case above we obtain an expected value of 3.5, even though the random 
variable X does not actually take on the value 3.5! This is the same as when a census might report 
that the average number of children per family is 2.4, where clearly, there cannot be 2.4 children 
in any family.
Do not forget to use your graphics calculator for such tasks. To do so, enter the data as lists, then 
multiply the lists and add the results in the resulting list:

1 2 3 4 5 6

For the random variable X with probability distribution defined by

Find the mode, median and mean values of X.

1 2 3 4x

P X x=( ) 1
10------

2
10------

3
10------

4
10------
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E X( ) xiP X xi=( )
i 1=

i  = n
∑=

E X( ) 1 1
10------×   2 2

10------×   3 3
10------×   4 4

10------×  + + + 1
10------

4
10------

9
10------

16
10------+ + += =

A fair die is rolled once. If the random variable X denotes the number 
showing, find the expected value of X.
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x

P X x=( ) 1
6---

1
6---

1
6---

1
6---

1
6---

1
6---

E X( ) 1 1
6---×   2 1

6---×   3 1
6---×   4 1

6---×   5 1
6---×   6 1

6---×  + + + + +=
21
6------

xP X x=( )∑
Expected value

xP X x=( ) values



Discrete Random Variables – CHAPTER 16

523

16.2.3 PROPERTIES OF THE EXPECTATION (FUNCTION)

NB: Be careful not to assume that  is the same as , i.e., .
      Nor does  equal , i.e., .

In general, we have that  with  being a notable
exception.

(a)

(b)
Notice that !

(c) First we simplify the expression by ‘expanding’ and using some of the properties:

Again, making use of the graphics calculator can make the arithmetic in problems such as the one 

1. , where a is a constant.
That is, the expected value of a constant is the constant itself.

2.  , where a is a constant.

3.  .

Where  is some real valued function of the random variable X.

4.  where a and b are constants.

Note: This is a special case of 3., where in this case,  

E a( ) a=

E aX( ) aE X( )=

E f X( )( ) f xi( ) P X xi=( )×
i i=

i  = n
∑=

f X( )

E aX b+( ) axi b+( ) P X xi=( )×
i i=

i  = n
∑ aE X( ) b+= =

f X( ) aX b+=

E X2( ) E X( )( )2 E X2( ) E X( )( )2≠
E 1
X----   1

E X( )------------- E 1
X----   1

E X( )-------------≠
E f X( )( ) f E X( )( )≠ f X( ) aX b+=

For the probability distribution shown below

Find (a) (b) (c)

0 1 2 3x

P X x=( ) 1
6---

1
2---

1
5---

2
15------

E X( ) E X2( ) E X2 3X 1–+( )
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E X( ) xP X x=( )∑ 0 1
6---× 1 1

2---× 2 1
5---× 3 2

15------×+ + + 1.3= = =

E X2( ) x2P X x=( )∑ 02 1
6---× 12 1

2---× 22 1
5---× 32 2

15------×+ + + 2.5= = =
E X( )( )2 1.3( )2 1.69 E X2( )≠= =

E X2 3X 1–+( ) E X2( ) E 3X( ) E 1( )–+=
E X2( ) 3E X( ) 1–+=
2.5 3 1.3 1–×+=
5.4=
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above much easier to deal with:

(a) Let X denote the player’s “winnings” on any one throw.
 Therefore, X = {8, 6, 4, –7}.

Notice that a loss of $7.00 is represented by –7.
The probabilities corresponding to the random numbers in the set X
can be determined by finding the proportion of area for each of the
values. 

For example, to win $8.00, the player must first hit the board, and then the dart must land in the 
inner circle (having a radius of 1 unit). Therefore, we have

.

Similarly, , 

 
and

Therefore, we have that .
That is, the player can expect to lose $0.94 (this is considered as a long–run average loss).

(b) Because , the game is unfair. 
A fair game would have .

x–values x2-values

xP X x=( )∑

xP X x=( ) values
x2P X x=( ) valuesP X x=( ) values

x2P X x=( )∑
A dart board consisting of concentric circles of radius 1, 2 and 3 units is 

placed against a wall. Upon throwing a dart, which lands at some random location on the board, a 
player will receive $8.00 if the smaller circle is hit, $ 6.00 if the middle annular region is hit and 
$ 4.00 if the outer annular region is hit. However, should the player miss the dart board altogther, 
they would lose $ 7.00. The probability that the player misses the dart board altogether is 0.5. 
(a) How will the player fare in this game?
(b) What can you say about this game?
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P X 8=( ) 1
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π 12×
π 32×---------------× 1

18------= =

P X 6=( ) 1
2---

π 22 π 12×–×
π 32×------------------------------------× 1
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P X 4=( ) 1
2---

π 32 π 22×–×
π 32×------------------------------------× 5

18------= =
P X 7–=( ) 0.5=

E X( ) 8 1
18------× 6 1

6---× 4 5
18------ 7 1

2---×–×+ + 17
18------– 0.94–≈= =

E X( ) 0<
E X( ) 0=
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16.2.4 VARIANCE

Although we now have a means by which we can calculate a measure of the central tendency of a 
random variable, an equally important aspect of a random variable is its spread. For example, the 
mean of the three numbers, 100, 110 and 120 is 110. Similarly, the mean of the three numbers 10, 
100, and 220 is also 110. Yet clearly, the values in the second set of data have a wider spread than 
those in the first set of data. The variance (or more so, the standard deviation) provides a better 
measure of this spread.
The variance of a discrete random variable may be considered as the average of the squared 
deviations about the mean. This provides a measure of the variability of the random variable or 
the probability dispersion. The variance associated with the random variable X is given by

However, for computational purposes, it is often better to use the alternative definition:

The variance is also denoted by  (read as “sigma squared”), i.e.,  .

We also have the standard deviation, given by

, 

which also provides a measure of the spread of the distribution of X.

What is the difference between the Var(X) and the Sd(X)?

Because of the squared factor in the equation for  (i.e., ), the 
units of  are not the same as those for X. However, because the Sd(X) is the square root of 
the , we have “adjusted” the units of  so that they now have the same units as the 
random variable X.

The reason for using the Sd(X) rather than the  is that we can make clearer statistical 
statements about the random variable X (in particular, statements that relate to an overview of the 
distribution).

  Var X( ) E X µ–( )2( ) x µ–( )2P X x=( )  
i 1=

i  = n
∑= =

  Var X( ) E X2( ) E X( )( )2– E= X2( ) µ2  –=

σ2 Var X( ) σ2=

Sd X( ) σ Var X( )= =

Var X( ) Var X( ) E X2( ) µ2–=
Var X( )

Var X( ) Var X( )

Var X( )

The probability distribution of the random variable X is shown below:

Find (a) The variance of X. (b) The standard deviation of X.

–2 –1 0 1 2x

P X x=( ) 1
64------

12
64------

38
64------

12
64------

1
64------

E 16.12XAMPLE
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(a) First we need to find  and :

and 

Therefore, .

(b) Using  , we have that, .

16.2.5 PROPERTIES OF THE VARIANCE

(a)

(b) To evaluate , we need :
Now, 

Therefore, .

(c)
However, .

S
o
l
u
t
i
o
n

E X( ) E X2( )
E X( ) xP X x=( )∑ 2– 1

64------× 1–( ) 12
64------× 0 38

64------× 1 12
64------× 2 1

64------×+ + + + 0= = =

E X2( ) x2P X x=( )∑ 2–( )2 1
64------× 1–( )2 12

64------× 02 38
64------× 12 12

64------× 22 1
64------×+ + + + 1

2---= = =

Var X( ) E X2( ) µ2– 1
2--- 02– 1

2---= = =

Sd X( ) σ Var X( )= = Sd X( ) σ 1
2--- 0.707≈= =

1. If a is a constant, then .
That is, there is no variability in a constant!

2.  , where a is a constant.

3.  , where a and b are constants.

Var a( ) 0=

Var aX( ) a2Var X( )=

Var aX b+( ) a2Var X( )=

A random variable X has a probability distribution defined by

Find (a) (b) (c)

0 1 2 3 4x

P X x=( ) 1
16------

3
16------

7
16------

3
16------

2
16------

E X( ) Var 4X 2+( ) Sd 3 X–( )

E 16.13XAMPLE
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E X( ) 0 1
16------× 1 3

16------× 2 7
16------× 3 3

16------ 4 2
16------×+×+ + + 17

8------= =

Var 4X 2+( ) E X2( )
E X2( ) 02 1

16------× 12 3
16------× 22 7

16------× 32 3
16------ 42 2

16------×+×+ + + 45
8------= =

Var 4X 2+( ) 42Var X( ) 16 45
8------

17
8------   2–   16 71

64------× 71
4------= = = =

Sd 3 X–( ) Var 3 X–( )=
Var 3 X–( ) 1–( )2Var X( ) 71

64------  Sd 3 X–( )∴ 71
64------ 1.05≈= = =
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1. A discrete random variable X has a probability distribution given by.

(a) Find the mean value of X.
(b) Find the variance of X.

2. The discrete random variable Y has the following probability distribution

(a) Find the mean value of  Y.
(b) Find i. ii.

(c) Find i. ii.

3. A random variable X has the following probability distribution

(a) Find i. ii. iii.  .
(b) Find i. ii.

 (c) If , find
i. ii.

4. A delivery of six television sets contains 2 defective sets. A customer makes a random
purchase of two sets from this delivery. The random variable X denotes the number of
defective sets the customer purchased. Find the mean and variance of X.

5. A pair of dice are rolled. Let Y denote the sum showing uppermost.
(a) Find 
(b) Find 

6. How many tails would you expect to observe when a fair coin is tossed 3 times.
7. The number of customers that enter a small corner newsagency between the hours

of 8 p.m and 9 p.m can be modelled by a random variable X having a probability
distribution given by .

1 2 3 4 5
0.25 0.20 0.15 0.3 0.10

1 2 3 4
0.1 0.2 0.3 0.4

0 1 2 3

EXERCISES 16.2

x
P X x=( )

y
P Y y=( )

Var Y( ) Sd Y( )
E 2Y( ) E 1

Y---  

x

P X x=( ) 1
6---

1
2---

1
5---

2
15------

E X( ) E X2( ) E X2 2X–( )
Sd X( ) Var 3X 1+( )

Y 1
X 1+-------------=
E Y( ) E Y 2( )

E Y( )
Var Y( )

P X x=( ) k 2x 1+( )  where x, 0 1 2 3 4, , , ,= =
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(a) Find the value of k.
(b) How many customers can be expected to enter the newsagency between 8 and 9 p.m?
(c) Find the standard deviation of X.

8. A discrete random variable Y has its probability distribution function defined as

(a) Find k.
(b) Given that the function, F, is defined by , find

i. ii.
(c) Find

i. the expected value of Y
ii. the variance of Y
iii. the expected value of 

9. A dart board consisting of consecutive circles of radius 1, 2 and 3 units is placed against a
wall. A player throws darts at the board, each dart landing at some random location on the
board. The player will receive $9.00 if the smaller circle is hit, $7.00 if the middle annular
region is hit and $4.00 if the outer annular region is hit. Should players miss the board
altogether, they would lose $k each time. The probability that the player misses the dart
board is 0.5. Find the value of k if the game is to be fair.

10. A box contains 7 black cubes and 3 red cubes. Debra selects three cubes from the
box without replacement. Let the random variable N denote the number of red cubes

 selected by Debra.
(a) Find the probability distribution for N.
(b) Find i. ii. .
Debra will win $2.00 for every red cube selected and lose $1.00 for every black

 cube selected. Let the random variable W denote Debra’s winnings.
(c) If W = aN + b, find a and b. Hence, find .

11. (a) A new gambling game has been introduced in a casino:
A player stakes $8.00 in return for the throw of two dice, where the player wins as
many dollars as the sum of the two numbers showing uppermost.
How much money can the player expect to walk away with?

(b) At a second casino, a different gambling game has been set up:
A player stakes $8.00 in return for the throw of two dice, if  two sixes come up, the
player wins $252.
Which game would be more profitable for the casino in the long run?

12. Given that , find
(a) (b) (c)

13. Given that  and , find
(a) (b) (c)

–2 –1 0 1
k 0.2 3k 0.4

y
P Y y=( )

F y( ) P Y y≤( )=
F 1–( ) F 1( )

Y 1+( )2

E N( ) Var N( )

E W( )

Var X( ) 2=
Var 5X( ) Var 3X–( ) Var 1 X–( )

Var X( ) 3= µ 2=
E 2X2 4X– 5+( ) Sd 4 1

3---X–   E X2( ) 1 E X 1+( )2( )–+
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14. A store has eight toasters left in its storeroom. Three of the toasters are defective and
should not be sold. A salesperson, unaware of the defective toasters, selects two toasters
for a customer. Let the random variable N denote the number of defective toasters the
customer purchases. Find
(a) .
(b) .

15. (a) The random variable Y is defined by:

Find the mean and variance of Y.
(b) The random variable X is defined as  where each

,  is independent and has the distribution defined in (a).
Find i.

ii.

16. A game is played by selecting coloured discs from a box. The box initially contains two
red and eight blue discs. Tom pays $10.00 to participate in the game. Each time Tom
participates he selects two discs. The winnings are governed by the probability distribution
shown below, where the random variable N is the number of red discs selected.

(a) Complete the table.
(b) For what value of W will the game be fair?

17. A random variable X has the following probability distribution:

(a) What values may a and b take?
(b) Express, in terms of a and b i. ii.

18. (a) Find the mean and variance of the probability distribution defined by

(b) i. Show  defines a probability
distribution.

ii. Show that 

iii. Show that .

–1 1
p 1 – p

n 0 1 2
Winnings $0 $W $5W

x 0 1 2

a

E N( )
Sd N( )

y
P Y y=( )

X Y 1 Y 2 Y 3 … Y n+ + + +=
Y i i 1 2 3 … n, , , ,=

E X( )
Var X( )

P N n=( )

P X x=( ) 1
3--- 1 b–( ) 1

3---b

E X( ) Var X( )

P Z z=( ) k 0.8( )z z, 0 1 2 …, , ,= =
P X x=( ) p 1 p–( )x× x, 0 1 2 …, , ,= =

E X( ) 1 p–
p------------=

Var X( ) 1 p–
p2------------=
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16.3.1 THE BINOMIAL EXPERIMENT

The binomial distribution is a special type of discrete distribution which finds applications in 
many settings of everyday life. In this section we summarise the important features of this 
probability distribution.
16.3.2 BERNOULLI TRIALS

Certain experiments consist of repeated trials where each trial has only two mutually exclusive, 
possible outcomes. Such trials are referred to as Bernoulli trials. The outcomes of a Bernoulli 
trial are often referred to as “a success” or “a failure”. The terms “success” and “failure” in this 
context do not necessarily refer to the everyday usage of the word success and failure. For 
example, a “success” could very well be referring to the outcome of selecting a defective 
transistor from a large batch of transistors. 
We often denote P(Success) by p and P(Failure) by q, where p + q = 1 (or q = 1 – p).
16.3.3 PROPERTIES OF THE BINOMIAL EXPERIMENT

16.3.4 THE BINOMIAL DISTRIBUTION

If a (discrete) random variable X has all of the above mentioned properties, we say that X has a 
binomial distribution. The probability distribution function is given by

Where X denotes the number of successes in n trials such that the probability of a success on 
any one trial is p, 0 ≤ p ≤ 1 and p + q = 1 (or q = 1 – p)).
We can also express the binomial distribution in a compact form, written as , read as 
“X is distributed binomially with parameters n and p”, 
where n is the number of trials and p = P(success) [it is also common to use X ~ Bin(n, p)].
For example, the probability function for  (i.e., 6 trials and p = 0.4) would be

.

THE BINOMIAL DISTRIBUTION16.3

1. There are a fixed number of trials. We usually say that there are n trials.
2. On each one of the n trials there is only one of two possible outcomes, labelled
 “success” and “failure”.
3. Each trial is identical and independent.
4. On each of the trials, the probability of a success, p, is always the same, and the

probability of a failure, q = 1 – p, is also always the same.

   p X x=( ) n
x   pxqn x– n

x   px 1 p–( )n x– x, 0 1 2 …n   , , ,= = =

X B n p,( )∼

X B 6 0.4,( )∼
P X x=( ) 6

x   0.4( )x 0.6( )6 x– x, 0 1 2 …n, , ,= =
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 means that P(X = 4) is the probability of 4 successes in five trials, where
each trial has a 0.6 chance of being a success, that is, n = 5, p = 0.6 and x = 4.

Again we see how useful the TI–83 is when dealing with probability. In particular, when dealing 
with known distributions.

Pressing 2nd VARS brings up the DIST menu. From this menu we can then scroll down to the 
appropriate distribution and then, after we enter the appropriate parameters, we obtain the 
required probability.
When dealing with the binomial distribution there are two options:

1. the binompdf function – which evaluates individual probabilities and
2. the binomcdf function – which evaluates cumulative probabilities.

(a) Let X denote the number of defectives in the sample of six. Therefore, we have that
 n = 6, p(success) = p = 0.30 ( ), so that .

Note that in this case, a ‘success’ refers to a defective.
i. .

ii.
  

Evaluating the probabilities manually is rather time consuming as there are lots of calculations. 
However the TI–83 can provide a list of the individual probability values. We can then scroll 
across the screen to see the other values:

If , find P(X = 4).X B 5 0.6,( )∼E 16.14XAMPLE

S
o
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u
t
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n

X B 5 0.6,( )∼

P X 4=( )∴ C5 4 0.6( )4 0.4( )5 4–=
5!
1!4!---------- 0.6( )4 0.4( )1=
0.2592=

A manufacturer finds that 30% of the items produced from one of the 
assembly lines are defective. During a floor inspection, the manufacturer selects 6 items from this 
assembly line. Find the probability that the manufacturer finds
(a) two defectives. (b) at least two defectives.

E 16.15XAMPLE
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q⇒ 1 p– 0.70= = X B 6 0.3,( )∼

P X 2=( ) C6 2 0.3( )2 0.7( )4 0.3241= =

P X 2≥( ) P X 2=( ) P X 3=( ) … P X 6=( )+ + +=
C6 2 0.3( )2 0.7( )4 C6 3 0.3( )3 0.7( )3 … C6 6 0.3( )6 0.7( )0+ + +=
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A second method makes use of the complementary event: 

     

Note: Using the cumulative binomial distribution on the TI–83, we have that
  = 1 - binomcdf(6,0.3,1) = 1 – 0.420175 = 0.5798

Let X denote the number of seeds germinating. Therefore we have that ,
i.e., X is binomially distributed with parameters n = 10 and p = 0.8 (and q = 1 – p = 0.20)

(a) .
(b) If only three seeds will not germinate, then only seven seeds

must germinate! 
We want, .

(c) Now, 
    = 0.2684 + 0.1074 
    = 0.3758

(d) At least one flower means, X ≥ 1, therefore we need to find a value of n such that 
.

Now,   .

Solving for n we have: 
This inequality can be solved by trial and error, algebraically, or as we will solve it, graphically:

From the graph we see that for , Sophie would need at least 6 pots, i.e., n ≥ 6.

P X 2≥( ) 1 P X 2<( )– 1 P X 1≤( )–= =
1 P X 1=( ) P X 0=( )+[ ]–=
1 0.1176 0.3025+[ ]–=
0.5798=

P X 2≥( ) 1 P X 1≤( )–=

Sophie has 10 pots labelled one to ten. Each pot, and its contents, is 
identical in every way. Sophie plants a seed in each pot such that each seed has a germinating 
probability of 0.8.
(a) What is the probability that all the seeds will germinate?
(b) What is the probability that only three seeds will not germinate?
(c) What is the probability that more than eight seeds do germinate?
(d) How many pots must Sophie use to be 99.99% sure that at least one seed germinates?

E 16.16XAMPLE
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X B 10 0.8,( )∼

P X 10=( ) 10
10   0.8( )10 0.2( )0 0.1074= =

P X 7=( ) 10
7   0.8( )7 0.2( )3 0.2013= =

P X 8>( ) P X 9=( ) P X 10=( )+=

P X 1≥( ) 0.9999≥
P X 1≥( ) 1 P X 0=( )– 1 8

0   0.8( )0 0.2( )n– 1 0.2( )n–= = =

1 0.2( )n 0.9999 0.2( )n 0.0001≤⇔≥–

Enter relevant equations Set domain and range Sketch graph

1   2   3   4    5   6   7

0.2( )n 0.0001≤
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16.3.5 EXPECTATION, MODE AND VARIANCE FOR THE 
          BINOMIAL DISTRIBUTION

Note 1. Although we can use our earlier definitions of the expected value and the variance
of a random variable, the formulas above are a nice compact form and can only be
used when dealing with the binomial distribution

2.  The standard deviation, Sd(X), is still given by .

In this case we have that , therefore .

(a) .

(b) To find the mode, we need to know the probability of each outcome. We do this by
constructing a table of values:

So that the mode of X is 1 (as it has the highest probability value).
Notice that in this case, the mode of X = expected value of X. 
Will this always be the case?

(c) .

0 1 2 3 4 5 6

If the random variable X, is such that , we have;

1. the expected value of X is 

2. the mode of X is that value of x which has the largest probability

3. the variance of X is .

X B n p,( )∼

µ E X( ) np= =

σ2 Var X( ) npq np 1 p–( )= = =

σ Var X( ) npq= =

A fair die is rolled six times. If X denotes the number of fours obtained, find
(a) E(X). (b) the mode of X. (c) Sd(X).

E 16.17XAMPLE
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X B 6 1
6---,  ∼ q 5

6---=

µ E X( ) 6 1
6---× 1= = =

x

P X x=( ) 15625
46656--------------- 18750

46656--------------- 9375
46656--------------- 2500

46656--------------- 375
46656--------------- 30

46656--------------- 1
46656---------------

σ Var X( ) npq 6 1
6---

5
6---××= 0.9129≈= =

An urn contains 7 marbles of which 2 are blue. A marble is selected, its 
colour noted and then replaced in the urn. This process is carried out 50 times. Find;
(a) The mean number of blue marbles selected.
(b) The standard deviation of the number of blue marbles selected.

E 16.18XAMPLE
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Because we replace the marble before the next selection, each trial is identical and
independent. Therefore, if we let X denote the number of blue marbles selected, we have
that .

(a)  

(b) .

This time we are given that np = 8 and npq = np(1 – p) = 4.8.
Therefore, after substituting np = 8 into np(1 – p) = 4.8, we have that 

          8(1 – p) = 4.8
      

Substituting p = 0.4 back into np = 8, we have that n = 20.
Therefore, .

1. At an election 40% of the voters favoured the Environment Party. Eight voters were
interviewed at random. Find the probability that
(a) exactly 4 voters favoured the Environment Party.
(b) a majority of those interviewed favoured the Environment Party.
(c) at most 3 of the people interviewed favoured the Environment Party.

2. In the long run, Thomas wins 2 out of every 3 games. If Thomas plays 5 games, find the
probability that he will win
(a) exactly 4 games.
(b) at most 4 games.
(c) no more than 2 games.
(d) all 5 games.

3. A bag consists of 6 white cubes and 10 black cubes. Cubes are withdrawn one at a time
with replacement. Find the probability that after 4 draws
(a) all the cubes are black.
(b) there are at least 2 white cubes.
(c) there are at least 2 white cubes given that there was at least one white cube.

S
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i
o
n

p 2
7--- n, 50 and q 5

7---= = =

E X( ) np 50 2
7---× 14.29= = =

Var X( ) npq 50 2
7---

5
7---×× 500

49--------- σ∴ 500
49--------- 3.19≈= = = =

The random variable X is such that E(X) = 8 and Var(X) = 4.8. 
Find p(X = 3).

E 16.19XAMPLE
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1 p–( )∴ 0.6 p⇒ 0.4= =

P X 3=( ) 20
3   0.4( )3 0.6( )17 0.0123= =

EXERCISES 16.3
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4. An X-ray has a probability of 0.95 of showing a fracture in the leg. If 5 different X-rays
are taken of a particular leg, find the probability that
(a) all five X-rays identify the fracture.
(b) the fracture does not show up.
(c) at least 3 X-rays show the fracture
(d) only one X-ray shows the fracture.

5. A biased die, in which the probability of a ‘2’ turning up is 0.4, is rolled 8 times.
 Find the probability that:

(a) a ‘2’ turns up 3 times.
(b) a ‘2’ turns up on at least 4 occasions.

6. During an election campaign, 66% of a population of voters are in favour of a food quality
control proposal. A sample of 7 voters was chosen at random from this population. 
Find the probability that:
(a) there will be 4 voters that were in favour.
(b) there will be at least 2 voters who were in favour.

7. During an election 35% of the people in a town favoured the fishing restrictions at Lake
Watanaki. Eight people were randomly selected from the town. Find the probability that:
(a) 3 people favoured fishing restrictions.
(b) at most 3 of the eight favoured fishing restrictions.
(c) there was a majority in favour of fishing restrictions.

8. A bag containing 3 white balls and 5 black balls has 4 balls withdrawn one at a time, in
such a way that the first ball is replaced before the next one is drawn. Find the probability
(a) of selecting 3 white balls.
(b) of selecting at most 2 white balls.
(c) of selecting a white ball, two black balls and a white ball in that order.
(d) of selecting two white balls and two black balls.

9. A tennis player finds that he wins 3 out of 7 games he plays. If he plays 7 games
 straight, find the probability that he will win

(a) exactly 3 games.
(b) at most 3 games.
(c) all 7 games.
(d) no more than 5 games.
(e) After playing 30 games, how many of these would he expect to win?

10. A true–false test consists of 8 questions. A student will sit for the test, but will only be able
to guess at each of the answers. Find the probability that the student answers 
(a) all 8 questions correctly.
(b) 4 questions correctly.
(c) at most 4 of the questions correctly.
The following week, the same student will sit another true–false test, this time there

 will be 12 questions on the test, of which he knows the answer to 4.
(d) What are the chances of passing this test (assuming that 50% is a pass.)

11. The births of males and females are assumed to be equally likely, find the probability
 that in a family of 6 children:

(a) there are exactly 3 girls.
(b) there are no girls.
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(c) the girls are in the majority.
(d) How many girls would you expect to see in a family of 6 children?

12. During any one production cycle it is found that 12% of items produced by a manufacturer
are defective. A sample of 10 items are selected at random and inspected. Find the
probability that:
(a) no defectives will be found.
(b) at least two defectives will be found.
A batch of 1000 such items are now inspected. 
(c) How many of these items would you expect to be defective?

13. 10% of washers produced by a machine are considered to be either oversized or
undersized. A sample of 8 washers is randomly selected for inspection. 
(a) What is the probability that there are 3 defective washers?
(b) What is the probability that there is at least one defective washer?

14. Over a long period of time, an archer finds that she is successful on 90% of her attempts.
In the final round of a competition she has 8 attempts at a target. 
(a) Find the probability that she is successful on all 8 attempts.
(b) Find the probability that she is successful on at least 6 attempts.
The prize that is awarded is directly proportional to the number of times she is successful,
earning 100 fold, in dollars, the number of times she is successful.
(c) What can she expect her winnings to be after one round?
She draws with another competitor, however, as there can be only one winner, a second
challenge is put into place:
They must participate in another 3 rounds, with 5 attempts in each round. 
(d) Find the probability that she manages 3 perfect rounds.

15. For each of the random variables, (a)
(b)

Find i. the mean, 
ii. the mode and 
iii. the standard deviation 
iv.
v.

16. In a suburb, it is known that 40% of the population are blue collar workers. A delegation of
one hundred volunteers are each asked to sample 10 people in order to determine if they
are blue collar workers. The town has been broken up into 100 regions so that there is no
possibility of doubling up (i.e., each worker is allocated one region). How many of these
volunteers would you expect to report that there were fewer than 4 blue collar workers.

17. Show that if , then
, 

18. Show that if , then
(a) . (b) .

X B 7 0.2,( )∼
X B 8 0.38,( )∼

P X 6 X 4>≥( )
P X 4 X 6≤>( )

X B n p,( )∼
P X x 1+=( ) n x–

x 1+------------   p
1 p–------------  P X x=( )= x 0 1 2 … n 1–, , , ,=

X B n p,( )∼
E X( ) np= Var X( ) np 1 p–( )=
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19. Mifumi has ten pots labelled one to ten. Each pot and its content can be considered to be
identical in every way. Mifumi plants a seed in each pot, such that each seed has a
germinating probability of 0.8. 
(a) Find the probability that

i. all the seeds will germinate.
ii. exactly three seeds will germinate.
iii. more than eight seeds germinate.

(b) How many pots must Mifumi use to be 99.99% sure to obtain at least one flower?
20. A fair die is rolled eight times. If the random variable X denotes the number of fives

observed, find
(a) (b) (c) (d)

21. A bag contains 5 balls of which 2 are red. A ball is selected at random. Its colour noted and
then replaced in the bag. This process is carried out 50 times. Find
(a) the mean number of red balls selected.
(b) the standard deviation of the number of red balls selected.

22. The random variable X is  distributed such that  and . Find
(a)
(b)

23. (a) If , find i. ii.
(b) If , find i. ii.

24. The random variable X has a binomial distribution such that  and
. Find .

25. Metallic parts produced by an automated machine have some variation in their size. If the
size exceeds a set threshold, the part is labelled as defective. The probability that a part is
defective is 0.08. A random sample of 20 parts is taken from the day’s production. If X
denotes the number of defective parts in the sample, find its mean and variance.

26. Quality control for the manufacturing of bolts is carried out by taking a random sample of
15 bolts from a batch of 10,000. Empirical data shows that 10% of bolts are found to be
defective. If three or more defectives are found in the sample, that particular batch is
rejected.
(a) Find the probability that a batch is rejected.
(b) The cost to process the batch of 10,000 bolts is $20.00. Each batch is then sold for

$38.00, or it is sold as scrap for $5.00 if the batch is rejected.
Find the expected profit per batch.

27. In a shooting competition, a competitor knows (that on average) she will hit the bullseye
on three out of every five attempts. If the competitor hits the bullseye she receives $10.00.
However if the competitor misses the bullseye but still hits the target region she only
receives $5.00.
(a) What can the competitor expect in winnings on any one attempt at the target?
(b) How much can the competitor expect to win after 20 attempts?

E X( ) Var X( ) E 1
8---X   Var 1

8---X  

B n p,( ) µ 9= σ2 3.6=
E X2 2X+( )
P X 2=( )

X Bin 10 0.6,( )∼ E X( ) Var X( )
X Bin 15 0.4,( )∼ E X( ) Var X( )

E X( ) 12=
Var X( ) 4.8= P X 12=( )
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28. A company manufactures bolts which are packed in batches of 10,000. The manufacturer
operates a simple sampling scheme whereby a random sample of 10 is taken from each
batch. If the manufacturer finds that there are fewer than 3 faulty bolts the batch is allowed
to be shipped out. Otherwise, the whole batch is rejected and re–processed.
(a) If 10% of all bolts produced are known to be defective, find the proportion of 

batches that will be re–processed.
(b) Show that if 100p% of bolts are known to be defective, then

P(Batch is accepted) = 
(c) Using a graphics calculator, sketch the graph of P(‘Batch is accepted’) versus p.

Describe the behaviour of this curve.
29. Large batches of screws are produced by TWIST’N’TURN Manufacturers Ltd. Each

batch consists of N screws and has a proportion p of defectives. It is decided to carry out
an inspection of the product; by selecting 4 screws at random and accepting the batch if
there is no more than one defective, otherwise the batch is rejected.
(a) Show that P(Accepting any batch) = .
(b) Sketch a graph showing the relationship between the probability of accepting a
 batch and p (the proportion of defectives).

30. A quality control process for a particular electrical item is set up as follows:
A random sample of 20 items is selected. If there is no more than one faulty item the
whole batch is accepted. If there are more than two faulty items the batch is rejected. If
there are exactly two faulty items, a second sample of 20 items is selected from the same
batch and is accepted only if this second sample contains no defective items.
Let p be the proportion of defectives in a batch.

(a) Show that the probability, , that a batch is accepted is given by
.

(b) Find the probability of accepting this batch if it is known that 5% of all items are
defective.

(c) If 200 such batches are produced each day, find an estimate of the number of
batches that can be expected to be rejected on any one day.

31. [Challenging problem!]
Given that the random variable X denotes the number of successes in n Bernoulli trials,
with probability of success on any given trial represented by p.
(a) Find . (b) Show that .

1 p–( )8 1 8p 36p2+ +( ) 0 p 1≤ ≤,

1 p–( )3 1 3p+( )

Φ p( )
Φ p( ) 1 p–( )19 1 19p 190p2 1 p–( )19+ +[ ] 0 p 1≤ ≤,=

E X X 2≥( ) σ 1
2--- n≤
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16.4.1 HYPERGEOMETRIC DISTRIBUTION FUNCTION

The hypergeometric distribution is a special case of a probability distribution that involves the use 
of combinations as part of its counting process.
For example, a fish tank contains 5 gold coloured tropical fish and 8 black coloured tropical fish. 
We wish to determine the probability of obtaining 2 gold coloured fish when selecting a total of 5 
fish from the tank.
The first thing that needs to be done is determine the number of ways in which we can select 2 
gold fish.
Using our counting principles, this can be carried out in  ways.

Next, the total number of selections of 5 fish from the possible 13 is given by 

Therefore, the probability of obtaining 2 gold fish in the sample of 5 is equal to .

More formally, if we let the random variable X denote 
the number of gold coloured fish in the sample of size 5,
from a tank containing 5 gold coloured fish and 8 black 
coloured fish, then, for ‘X = 2’, we can write:

In fact, we could do the same thing  with 
‘X = 0’, ‘X = 1’, ‘X = 3’, ‘X = 4’ and ‘X = 5’.
i.e., we can write a general formula that will 
provide the required probabilities:

We have just produced a probability distribution. In particular, we have produced what is known 
as a Hypergeometric Distribution.
This distribution is formulated around the notion that there are two mutually exclusively groups 
from which we can select a‘desired’ outcome. We summarise this process as follows:
For a population of size N, which is known to contain D 
‘defective’ items, if we select a random sample of size n 
from this population and do so without replacement, then, 
if we define the random variable X, to be the number of 
defectives observed in the sample of size n, we say that
X has a Hypergeometric Distribution. We denote such a 
distribution with parameters n, D and N by

HYPERGEOMETRIC DISTRIBUTION16.4

5
2   8

3  ×
13
5  

5
2   8

3  ×
13
5  

-----------------------

 P X 2=( )
5
2   8

3  ×
13
5  

-----------------------=

 P X x=( )
5
x   8

5 x–  ×
13
5  

-------------------------------- x, 0 1 2 3 4 5, , , , ,= =

Sample of size n

D N – D

x n – x

D
x   N D–

n x–  

X Hg n D N, ,( )∼
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Using the rules of Chapter 14, a sample containing x defectives and n – x  non–defectives can be 
chosen in  ways.

While a sample of n can be selected from a population of size N in  ways.

Therefore, if , then .

Let the random variable X denote the number of women
on the committee. We can display this situation using the
diagram shown. Therefore, using our formula, and the 
TI–83, we have:

Let the random variable X denote the number of hearts
dealt. As before, we can display this situation using the
diagram shown. 
In other words, we have a Hypergeometric distribution
with parameters, n = 5, D = 13, N = 52.
Therefore, using our formula, and the TI–83, we have:

D
x   N D–

n x–  ×
N
n  

X Hg n D N, ,( )∼   P X x=( )
D
x   N D–

n x–  ×
N
n  

------------------------------------ x, 0 1 2 … n   , , , ,= =

A sports committee at the local hospital consists of 5 members. A new 
committee is to be elected, from  5 women and 4 men.What is the probability that the committee 
will consist of 3 women?

E 16.20XAMPLE
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Sample of size 5

D=5 N – D=4

3 2

5
3   4

2  
P X 3=( )

5
3   4

2  ×
9
5  

----------------------- 10
21------= =

Consider the random experiment of dealing a hand of six cards from a well 
shuffled pack of 52 cards. Let X be the number of hearts in the hand. What is the probability of 
being dealt 3 hearts?

E 16.21XAMPLE
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Sample of size 6

D=13 N – D=39

3 3

13
3   39

3  

P X 3=( )
13
3   39

3  ×
52
6  

----------------------------- 0.1284≈=
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Let the random variable X denote the number of cans containing chicken soup. Then, we
have that , i.e., Hypergeometric distribution with parameters n = 5, 
D = 6 and N = 10.

So,  = 

 

16.4.2 MEAN AND VARIANCE OF THE HYPERGEOMETRIC
          DISTRIBUTION

Although we can find the expected value and variance of a hypergeometric distribution by setting 
up a table of values, with a little algebra it can be shown that if the random variable X has a 
hypergeometric distribution with parameters, n, D and N, i.e., , then

1.

2.

Let the random variable X denote the number of defective light globes in the sample, then
we have that . i.e., n = 3, D = 5 and N = 12.
Therefore, 

and  = 

So that .

Ten identical cans of soup have no labels. It is known that six of the cans are 
chicken soup and the rest are pea and ham soup. Five cans are randomly selected from the ten.
Find the probability that at least three of them contain chicken soup

E 16.22XAMPLE
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X Hg 5 6 10, ,( )∼

P X 3≥( ) P X 3=( ) P X 4=( ) P X 5=( )+ +=
6
3   4

2  
10
5  -----------------

6
4   4

1  
10
5  -----------------

6
5   4

0  
10
5  -----------------+ +

120
252--------- 60

252--------- 6
252---------+ +=

31
42------=

X Hg n D N, ,( )∼

µ E X( ) nD
N-------= =

σ2 Var X( ) nD N D–( ) N n–( )
N 2 N 1–( )----------------------------------------------= =

A box contains 12 light globes of which 5 are defective. If three light globes 
are randomly selected without replacement, find the expected number of defectives in the sample 
as well as the standard deviation of the number of defectives in the sample.
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X Hg 3 5 12, ,( )∼
E X( ) nD

N-------
3 5×
12------------ 1.25= = =

σ2 Var X( ) nD N D–( ) N n–( )
N 2 N 1–( )---------------------------------------------- 3 5 12 5–( ) 12 3–( )××

122 12 1–( )×----------------------------------------------------------= = = 3 5 7 9×××
144 11×------------------------------

σ 3 5 7 9×××
144 11×------------------------------ 0.7724≈=
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1. If X is a random variable such that , i.e., n = 5, D = 7 and N = 15, find
(a) (b)

2. If X is a random variable such that , i.e., n = 10, D = 7 and N = 20, find
(a) (b) (c)

3. If X is a random variable such that , find
(a) (b)

4. If X is a random variable such that , find
(a) (b) (c)

5. A box contains 15 lighters, of which 4 have no gas. A random sample of 4 lighters is
selected from the box. Find the probability that this sample contains 
(a) 4 lighters with no gas.
(b) 2 lighters with no gas.

6. Circuits are shipped in boxes of 20. Prior to accepting a box, the retailer chooses five
circuits for inspection. If there are more than two defective circuits in the sample, the box
is rejected and returned to the manufacturer. A box is known to contain 3 defective
circuits. Find the probability that the box is accepted.

7. Julie decides to buy three fruits from a market stall. She asks the merchant to randomly
select three pieces of fruit from nine bananas and six oranges, all kept in the same
box. Find the probability that Julie buys
(a) one banana.
(b) at least one banana.

8. A box contains six white discs and four blue discs. A sample of five discs is randomly
selected from the box. Let the random variable X denote the number of white discs in the
sample.
(a) Identify the distribution of X.
(b) Find the expected number of white discs in the sample.

9. A carton of eggs contains ten good eggs and two broken eggs. Let the random variable X
denote the number of broken eggs found in a sample of three (where sampling occurs
without replacement). Find the probability of getting:
(a) one broken egg.
(b) two broken eggs.

10. A box of chocolates contains 12 dark chocolates and 24 white chocolates. Four people
each select a chocolate. What is the probability of getting
(a) all white chocolates?
(b) two white chocolates?
(c) three dark chocolates?

EXERCISES 16.4

X Hg 5 7 15, ,( )∼
P X 3=( ) P X 4=( )

X Hg 10 7 20, ,( )∼
P X 7=( ) P X 8=( ) P X 2≥( )

X Hg 3 4 10, ,( )∼
E X( ) Var X( )

X Hg 4 5 12, ,( )∼
E X2( ) E 2X( ) Var X 1+( )
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11. A box contains 12 light globes, of which 5 are known to be defective. If three light globes
are randomly selected, find the probability that:
(a) two of them will be defective.
(b) at least one of them will be defective.

12. A bag containing 3 rotten apples and 7 good apples has been placed aside and is to be
inspected. A sample of three apples is randomly selected from the bag. If the sample has
more than one rotten apple, the bag is rejected. Find the probability that the bag is
accepted.

13. A batch of 15 electrical components is known to contain 4 defective components. A
 random sample of four is selected from the batch. Let the random variable X denote the

number of defectives in this sample.
(a) Describe the distribution of X.
(b) Write down the distribution of X in table form.
Quality control means that batches are subjected to the following sampling plan:
If the sample has more than one defective, the batch is rejected, otherwise it is 
accepted.
(c) What is the probability that the batch is accepted?

14. A fisherman has caught 16 fish of which 3 are undersized. A random sample of 3 is drawn
without replacement by the local ranger. If there is more than one undersized fish in the
sample the fisherman is fined. What are the chances of the fisherman being fined?

15. Two boxes each contains 9 sticks of chalk. In box A there are four blue and five white
sticks of chalk, whilst in box B there are three blue and six white sticks of chalk. A box is
chosen at random and two sticks of chalk are selected without replacement. If  X is the
event of two blue sticks being drawn and Y is the event of at least one blue stick being
drawn, find: (a) (b)

16. Eggs are sold to a customer in boxes of 10. The customer selects two eggs at random from
one box without replacement. If both eggs are rotten the customer rejects the box of eggs.
Otherwise the customer accepts the box. Consider boxes which contain two rotten eggs.
(a) What is the probability that a box will be accepted?
(b) If four such boxes are selected at random, what is the probability that at least two of

them will be accepted?
17. Eggs are sold to a customer in boxes of 10. The customer selects two eggs at random from

the box without replacement. If both eggs are rotten the customer rejects the box of eggs.
If none are rotten the customer accepts the box. If one of the eggs is rotten the customer
selects two more eggs at random from those remaining in the box and then rejects the box
if one or more of these is rotten, otherwise the box is accepted. What is the probability that
a box which contains four rotten eggs will be accepted?

18. A market stall is offering chickens for sale, however, the customer is worried about the
latest outbreak of chicken flu. Consumption of chickens with this flu can be fatal. The
consumer decides on the following purchase plan:
From a batch of 10 he selects 2 chickens and after killing them they are inspected. If
neither of the chickens is infected he purchases all 10.
If one in ten chickens have the flu, what are the chances that the 10 chickens are bought?

P X( ) P Y( )
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19. Electric light globes are packed in cartons of 12. A quality inspector is to use the
 following control test to determine the suitability of this carton:

A random sample of 3 is selected without replacement. If there is at most one faulty
 globe, the carton is accepted and shipped out, otherwise, the carton is emptied and then
 filled with another 12 globes.

(a) What is the probability that a carton that is known to contain 3 defective light
 globes is accepted?

(b) If there are 8 such cartons, each having 3 defectives, find the probability that
i. they are all accepted
ii. only half are accepted.

To reduce the rejection rate, if the first testing reveals that there are 2 defectives, a second
sample of 2 is taken from the same carton, if neither is found to be defective, the carton is
accepted. Otherwise, the carton is rejected.
(c) Given that a carton contains 3 defectives, find the probability that this carton is

 accepted.
20. A sports store has in stock 10 boxes of squash balls labelled “Fast”. However, two of the

boxes are incorrectly labelled as “Fast”, when in fact they should have been labelled
“Slow”.
A squash center orders two boxes of “Fast” balls from this store. Find the

 probability that it receives
i. no incorrectly labelled boxes.
ii. one incorrectly labelled box.
iii. two incorrectly labelled boxes.
A squash tournament is being played and the sports center needs two boxes to cover this
tournament. The boxes are opened as soon as they are received. If either box is found to be
incorrectly labelled it is immediately returned to the store, to be replaced with another
box. If necessary, this procedure is repeated. Past experience shows that it takes seven
days, after ordering, to receive an order, and seven days to receive a replacement for a
returned box. If the tournament is to be held on 21st of July, when should the sports center
place their order for the two boxes of “Fast” balls? 

21. If  show that
(a) .

(b) .

22. A customer purchases globes in boxes of 10. The customer decides whether to accept a
box by randomly selecting 2 globes from the box without replacement. If neither globe
is defective he accepts the box, otherwise, the box is rejected. 
(a) If 5% of all globes manufactured are defective, find the probabilities of finding

0, 1, 2, . . . 10 defective globes in a box.
(b) Find the probability that boxes that contain 0, 1, 2, . . . 10 defectives are accepted.

Hence, find the overall expected proportion of batches accepted.

X Hg n D N, ,( )∼
E X( ) nD

N-------=

Var X( ) nD N D–( ) N n–( )
N 2 N 1–( )----------------------------------------------=
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16.5.1 POISSON DISTRIBUTION FUNCTION

The Poisson distribution was first brought to light by the eminent French mathematician Simeon 
Denis Poisson (1781 – 1840) in his 1837 work Recherches sur la probabilite de Judgement, 
where he included a limit theorem for the binomial distribution. At the time, this was viewed as 
little more than a welcome approximation for the difficult computations required when using the 
binomial distribution. However, this was the embryo from which grew what is now one of the 
most important of all probability models.
However, a more general (and useful) use of the Poisson distribution [as opposed to only seeing it 
as an approximation to the binomial under certain conditions] is to define the distribution as

the distribution of the number of ‘events’ in a ‘random process’.

The key in identifying a Poisson distribution, then, is to be able to identify the ‘random process’ 
and the ‘event’. As we shall see, the event  can be distributed over time, or distance, or length, or 
area, or volume, or . . . 
Examples of ‘random processes’ and their corresponding ‘events’ are:

The above examples serve to highlight the properties associated with the Poisson distribution. 
these can be best summarised as:

Note how similar these conditons are to those of the binomial distribution. However, one main 
difference between the two distributions is that there is, at least theoretically, no upper limit to the 
number of times an event may occur!
With this in mind, we now provide a statement for the Poisson distribution, incorporating the 

Random process Event
Telephone calls in a fixed time interval. Number of wrong calls in an hour. (Time dependent)
Accidents in a factory. Number of accidents in a day. (Time dependent)
Flaws in a glass panel. Number of flaws per sq. cm (Area dependent)
Flaws in a string. Number of flaws per 5 metres. (Length dependent)
Bacteria in milk. Number of bacteria per 2 litres. (Volume dependent)

POISSON DISTRIBUTION16.5

1. an event is as likely to occur in one given interval as it is in another (equally likely).
2. the occurence of an event at a ‘point’ – be it a time interval, an area,  etc., – is 

independent of when (or where) other events have occured.
3. events occur uniformly, i.e., the expected number of events in a given time interval,

or area, or, . . .  is proportional to the size of the time interval, or area, or, . . . 
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distribution function.

Note that the rate  can be specified as the number of events per unit time, or per unit area, or per 
unit of volume, or unit of length, etc.,
The best way to see how this works is through the following examples.

The description of the situation fits the conditions under which a Poisson distribution can
be assumed. From the information given we have that .

Next we define the random variable X as the number of cars that pass the given point in a
two hour period.

This means that our parameter  so that the probability function
for X is given by

        

And so, .

The description of the situation fits the conditions under which a Poisson distribution can
be assumed. From the information given we have that  [i.e., one in three metres].

Next we define the random variable X as the number of faults in a string 5 metres long.
That is, number of faults per bobbin.

If  is the number of events in a time interval of length t, corresponding to a random 
process, with rate  per unit time, then, we say that  – read as the random 
variable X has a Poisson distribution with parameter . 
Setting , we define the Poisson probability distribution as

X t( )
λ X t( ) Pn λt( )∼

λt
µ λt=

P X x=( ) e µ– µx
x!------------- x, 0 1 2 …, , ,= =

λ

Cars have been observed to pass a given point on a backroad at a rate of
0.5 cars per hour. Find the probability that no cars pass this point in a two hour period.
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λ 0.5=

µ λ 2× 0.5 2× 1= = =
P X x=( ) e 1– 1x

x!------------ x, 0 1 2 …, , ,= =

P∴ X x=( ) e 1–
x!------- x, 0 1 2 …, , ,= =

P X 0=( ) e 1–
0!------- 0.3679= =

Faults occur on a piece of string at an average rate of one every three 
metres. Bobbins, each containing 5 metres of this string are to be used. What is the probability 
that a randomly selected bobbin will contain (a) two faults.

(b) at least two faults.
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This means that our parameter  so that the probability function

for X is given by

or

(a)
(b)

Now,  and 

The calculations, although not difficult, can be time consuming. Making use of the TI–83 will 
again ease the workload involved. We can access the Poisson distribution function by pressing 
2nd VARS and accessing the DISTR menu. Option B:poissonpdf( and C:poissoncdf( can then 
be utilised. We use Example 16.24 to illustrate this.
For part (a) we want to find the probability of the event ‘X = 2’. Therefore we make use of the 
poissonpdf(:

For part (b) we wanted to find the probability of the event ‘X ≥ 2’. Therefore we make use of the 
poissoncdf(:

Notice that we have used 1 – P(X ≤ 1).

Become familiar with using these distributions on the TI–83, as it will reduce your workload.

µ λ 5× 1
3--- 5× 5

3---= = =

P X x=( )
e 5 3/– 5

3---   x

x!---------------------- x, 0 1 2 …, , ,= =

P X x=( ) e 5 3/–
x!----------- 5

3---   x x, 0 1 2 …, , ,= =

P X 2=( ) e 5 3/–
2!----------- 5

3---   2 0.2623= =
P X 2≥( ) 1 P X 2<( )– 1 P X 0=( ) P X 1=( )+[ ]–= =

P X 0=( ) e 5 3/–
0!----------- 5

3---   0 e 5 3/–= = P X 1=( ) e 5 3/–
1!----------- 5

3---   1 5
3---e 5 3/–= =

P X 2≥( )∴ 1 e 5 3/– 5
3---e 5 3/–+–=

1 1 5
3---+ e 5 3/––=

1 8
3---e 5 3/––=

0.4963=
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Based on these two examples we can set out a general approach to handling questions that require 
the use of the Poisson distributions:
Step 1: Identify that scenario which fits the requirements of a Poisson distribution.
Step 2: Determine the ‘base’ rate, .
Step 3: Define the random variable.
Step 4: Determine the parameter, , that correspods to the random variable in Step 3.

The description of the situation fits the conditions under which a Poisson distribution can
be assumed. From the information given we have that  [i.e., 1 in 12 seconds].
Next we define the random variable X as the number of particles emitted in 1 minute.
(or 60 seconds).
This means that our parameter  so that the probability

function for X is given by
Therefore, 

        

16.5.2 POISSON RECURRENCE FORMULA

If your calculator does not possess a Poisson distribution function, then, a handy expression in 
calculating probabilities based on the Poisson distribution, where  is given by

This is known as the Poisson recurrence formula.

For example, if , we can determine successive probability values by using the 
recurrence formula .
Now, , and from the recurrence formula we have:

λ

µ

A radioactive source emits particles at an average rate of one every 12 
seconds. Find the probability that at most 5 particles are emitted in one minute.

E 16.26XAMPLE

S
o
l
u
t
i
o
n

λ 1
12------=

µ λ 60× 1
12------ 60× 5= = =

P X x=( ) e 5– 5x
x!------------ x, 0 1 2 …, , ,= =

P X 5≤( ) P X 0=( ) P X 1=( ) … P X 5=( )+ + +=
Using the TI–83:e 5– 50

0!------------- e 5– 51
1!------------- … e 5– 55

5!-------------+ + +=

1 5 52
2-----

53
6-----

54
24------

55
120---------+ + + + + e 5–=

1097
12------------e 5–=
0.6159   (= 0.6160)=

X Pn µ( )∼

P X x 1+=( ) µ
x 1+------------P X x=( ) x, 0 1 2 …, , ,= =

X Pn 2( )∼
P X x 1+=( ) 2

x 1+------------P X x=( ) x, 0 1 2 …, , ,= =
P X 0=( ) e 2– 0.13534= =
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        :                        :                          :                      :
and so on. . . 

16.5.3 MEAN AND VARIANCE OF THE POISSON
          DISTRIBUTION

With a little algebra, it can be shown that for a random variable X having a Poisson distribution 
with parameter , i.e., if , then

In this case we are given that the average is . Then, if we let the random variable N

denote the number of errors per page we have that . i.e., .

So, .

As  then we have that  and .

P X 1=( ) 2
0 1+------------P X 0=( ) 2 0.13533× 0.27067= = =

P X 2=( ) 2
1 1+------------P X 1=( ) 1 0.27067× 0.27067= = =

P X 3=( ) 2
2 1+------------P X 2=( ) 2

3--- 0.27067× 0.18045= = =

P X 4=( ) 2
3 1+------------P X 3=( ) 2

4--- 0.18044× 0.09022= = =

P X 5=( ) 2
4 1+------------P X 4=( ) 2

5--- 0.09022× 0.03609= = =

µ X Pn µ( )∼
1.

2.

E X( ) µ=
Var X( ) µ=

A typist finds that, on average, they make two mistakes every three pages. 
Assuming that the number of errors per page follows a Poisson distribution, what are the chances 
that there will be 2 mistakes in the next page they type?
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If the random variable X is defined as , find .X Pn 1.5( )∼ P X µ σ+>( )E 16.28XAMPLE
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X Pn 1.5( )∼ µ 1.5= σ2 1.5 σ⇒ 1.5 1.2247= = =
P∴ X µ σ+>( ) P X 1.5 1.2247+>( )=

P X 2.7247>( )=
P X 3≥( )=
1 P X 2≤( )–=
0.1912=
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Let the random variable X denote the number of cars that pass over the bridge per day.
We first determine the average number of cars that pass over the bridge over the 100 days.

That is, on average there are 0.59 cars that pass over the bridge per day.
If this reflects a Poisson distribution, then we can use this mean as an estimate for the
parameter  in the distribution .
With  we have .
We can now produce a corresponding frequency distribution:

Multiplying these proportions by 100 we deduce the frequency distribution

The frequencies calculated using the Poisson probability function follow a pattern similar to the 
actual frequencies. We can, therefore, be reasonably sure that the Poisson distribution is an 
appropriate model for the number of cars that pass over this bridge.

(a) Let the random variable X denote the number of flaws per 100 cm by 150 cm metal sheets.
Then, we have that  where  is to be determined.
Knowing that  we have, 

 
          

i.e., average number of flaws per sheet is 0.2232.
(b) .

x 0 1 2 3 4
0.5543 0.3271 0.0965 0.0190 0.0028

x 0 1 2 3 4
55.43 32.71 9.65 1.90 0.28

The frequency distribution shows the number of cars that drive over a 
bridge in a country area over a period of 100 days. Verify that this follows approximately a 
Poisson distribution.

Number of cars passing over bridge 0 1 2 3 4
Number of days observed 58 29 10 2 1

E 16.29XAMPLE

S
o
l
u
t
i
o
n

x 1
100--------- 0 58× 1 29× 2 10× 3 2× 4 1×+ + + +( ) 59

100--------- 0.59= = =

µ X Pn µ( )∼
µ 0.59= P X x=( ) e 0.59– 0.59( )x

x!------------------------------ x, 0 1 2 3 …, , , ,= =

P X x=( ) e 0.59– 0.59( )x
x!------------------------------=

100P X x=( )

The number of flaws in metal sheets 100 cm by 150 cm is known to follow 
a Poisson distribution. On inspecting a large number of these metal sheets it is found that 20% of 
these sheets contain at least one flaw. 
(a) Find the average number of flaws per sheet.
(b) Find the probability of observing one flaw in a metal sheet selected at random.

E 16.30XAMPLE

S
o
l
u
t
i
o
n

X Pn µ( )∼ µ
P X 1≥( ) 0.2= 1 P X 0=( )– 0.2=

P X 0=( )∴ 0.8 e µ–⇔ 0.8= =
µ⇔ 0.2231=

P X 1=( ) 0.8( ) 0.2231( )1 0.1785= =
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16.5.4 POISSON AS A LIMIT OF BINOMIAL

We started this section by mentioning that the Poisson distribution was first encountered as a 
useful approximation for evaluating probabilities governed by the binomial distribution. We now 
see why this is the case and provide some conditions for when this approximation is valid.

From the binomial distribution, if the random variable , we have that 
, x = 0, 1, 2, . . . , n. – (1) 

We know that  therefore, we can write  – (2) 
Substituting (2) into (1) we obtain:

, x = 0, 1, 2, . . . , n. 

Or, 

  

So far, so good. Now, let us consider the terms  and  as :

We have  

      

Then as  we have that , 

Therefore, 

X Bin n p,( )∼
P X x=( ) n

x   px 1 p–( )n x–=

E X( ) µ np= = p µ
n---=

P X x=( ) n
x   µ

n---   x 1 µ
n---–   n x–=

P X x=( ) n
x   µ

n---   x 1 µ
n---–   x– 1 µ

n---–   n=

n!
n x–( )!x!----------------------- µ

n---   x 1 µ
n---–   x– 1 µ

n---–   n=

n!
n x–( )!x!----------------------- µx

nx-----× n µ–
n------------   x–

1 µ
n---–   n=

µx
x!-----

n!
n x–( )!------------------ 1

nx-----×× n µ–( ) x–
n x–---------------------× 1 µ

n---–   n=

µx
x!-----

n!
n x–( )!------------------ 1

n µ–( )x-------------------×× 1 µ
n---–   n=

µx
x!-----

n!
n x–( )! n µ–( )x--------------------------------------× 1 µ

n---–   n×=

n!
n x–( )! n µ–( )x-------------------------------------- 1 µ

n---–   n n ∞→
n!

n x–( )! n µ–( )x-------------------------------------- n n 1–( ) n 2–( )… n x 1–( )–( ) n x–( )!
n x–( )! n µ–( )x---------------------------------------------------------------------------------------------=

n n 1–( ) n 2–( )… n x 1–( )–( )
n µ–( )x--------------------------------------------------------------------------=

n n 1–( ) n 2–( )… n x– 1+( )
n µ–( ) n µ–( ) n µ–( )… n µ–( )----------------------------------------------------------------------------=
n

n µ–( )----------------- n 1–( )
n µ–( )----------------- n 2–( )

n µ–( )----------------- … n x– 1+( )
n µ–( )--------------------------××××=

1 µ
n µ–------------+   1 µ 1–

n µ–------------+   … 1 µ x 1+–
n µ–---------------------+  ×××=

n ∞→ 1 µ
n µ–------------+   1→ 1 µ 1–

n µ–------------+   1 … 1 µ x 1+–
n µ–---------------------+   1→, ,→

n!
n x–( )! n µ–( )x--------------------------------------

n ∞→
lim 1 1 … 1××× 1= =
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For the second part, we quote and use the result that .

So that 

Therefore, 

          

Let the random variable denote the number of defectives in a batch of 50 components.
Then, , i.e.,  and .
The use of the Poisson approximation in this case would be appropriate as n ≥ 20 and
p ≤ 0.05.
Now,  and so we have that .
Therefore, 

 

Of course, we could also have made use the TI–83!

1 x
n---+   n

n ∞→
lim ex=

1 µ
n---–   n

n ∞→
lim 1 µ–( )

n-----------+   n
n ∞→
lim e µ–= =

n
x   µ

n---   x 1 µ
n---–   n x–

n ∞→
lim µx

x!-----
n!

n x–( )! n µ–( )x--------------------------------------× 1 µ
n---–   n×

n ∞→
lim=

µx
x!-----

n!
n x–( )! n µ–( )x--------------------------------------

n ∞→
lim 1 µ

n---–   n
n ∞→
lim=

µx
x!----- 1 e µ–××=
e µ– µx
x-------------=

That is, as , where .
Obviously the larger the value of n, the better the approximation. However, a rough 
guide when considering the use of this approximation is n ≥ 20 and p ≤ 0.05 
[remember, this is only a guide].

n ∞ Bin n p,( ) Pn µ( )∼,→ µ np=

A manufacturer of electrical components finds that in the long run, 2.5% of 
the components are defective in some way. The inspection procedure requires that batches of 50 
components are tested. What is the probability that in a batch of 50 there will be at least 3 
defectives?

E 16.31XAMPLE

S
o
l
u
t
i
o
n

X Bin 50 0.025,( )∼ p 0.025= n 50=

µ np 50 0.025× 1.25= = = X Pn 1.25( )∼
P X 3≥( ) 1 P X 2≤( )– 1 P X 0=( ) P X 1=( ) P X 2=( )+ +[ ]–= =

1 e 1.25– 1.25
1----------e 1.25– 1.25( )2

2-----------------e 1.25–+ +–=
1 1 1.25 0.78125+ +[ ]e 1.25––=
1 3.03125e 1.25––=
0.1315=
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1. If 
(a) Write down the probability distribution function for the random variable X.
(b) Find i. ii.

iii. iv.

2. The number of flaws in a string occur at a rate of 2 every 5 metres. Find the probability
that a string contains 3 flaws in
(a) 2 metres of string.
(b) 10 metres of string.

3. The number of cars that stop at a particular petrol station during weekdays arrive at a rate
of 10 cars every hour. Assuming a Poisson distribution, find the probability that 
(a) there will be one car at the petrol station during any 15 minute interval.
(b) there will be some cars at the petrol station during any 15 minute interval.

4. A switchboard receives an average of 100 calls per hour. Find the probability that
(a) the switchboard receives 2 calls during a one minute time interval.
(b) the switchboard receives at least 2 calls during a two minute time interval.

5. On average a typist has to correct one word in every 800 words. Each page contains 200
words. 
(a) Find the probability that the typist makes more than one correction per page.
(b) If more than one correction per page is required, the page needs to be retyped.

What is the probability that more than two attempts are needed before a page is
deemed satisfactory.

6. Cars have been observed to pass a given point on a country road at a rate of 5 cars per
hour.
(a) Find the probability that no cars pass this point in a 20 minute period.
(b) Find the probability that at least 2 cars pass this point in a 30 minute period.

7. Bolts are produced in large quantities and it is expected that there is a 4% rejection rate
due to some form of defect. A batch of 40 bolts are randomly selected for inspection.
Using the Poisson distribution, find the probability that
(a) the batch contains at least one defective.
(b) the batch contains no defectives.
Ten such batches are randomly selected. If it is found that at least 2 batches have at least
4 defective, the total output is considered for the scrap heap to be recycled.
(c) Find the probability that the total output is sent to the scrap heap.

8. Road accidents in a certain area occur at an average of 1 every 4 days. Find the probability
that during a one week period there will be 
(a) two accidents.
(b) at least two accidents.

9. Telephone calls arrive at a switchboard at a rate of 4 every minute. Find the probability
that in a two minute interval there will be less than 6 incoming calls.

EXERCISES 16.5

X Pn 2( )∼

P X 0=( ) P X 2=( )
P X 1>( ) P X 2 X 1>=( )
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10. The number of faults in glass sheets ocur at a rate of 2.1 per sq. metre. If a 1×1 sq. m glass
sheet contains at least 3 faults it is returned to the manufacturer.
(a) Find the probability that a 1×1 sq. m sheet is returned to the manufacturer.
(b) Six such glass sheets are inspected. What is the probability that at least half of

them are returned to the manufacturer?
11. The number of faults in a glass sheet is known to have a Poisson distribution. It is found

that 5% of sheets are rejected because they contain at least one flaw.
(a) Find the probability that a sheet contains at least two flaws.
(b) If the random variable X denotes the number of flaws per sheet, find

.

12. A shopkeeper finds that the number of orders for an electrical good averages 2 per week.
At the start of the trading week, i.e., on a Monday, the shopkeeper has 5 such items in
stock. Assuming that the orders follow a Poisson distribution, find the probability that
during a given 5 day week
(a) there are three orders.
(b) there are more orders than he can satisfy from his existing stock.
If and when his stock level is down to two items during the week, he orders another four
items.
(c) What are the chances that he will order another four items?

13. Faults occur randomly along the length of a yarn of wool where the number of faults per
bobbin holding a fixed length of yarn may be assumed to follow a Poisson distribution. A
bobbin is rejected if it contains at least one fault. It is known that in the long run 33% of
bobbins are rejected.
(a) Find the probability that a rejected bobbin contains only one fault?
The production manager believes that by doubling the length of yarn on each bobbin there
will be a smaller rejection rate. Assuming that the manufacturing process has not altered,
is the production manager correct? Provide a quantitative argument.

14. On average, it is found that 8 out of every 10 electric components produced from a large
batch has at least one defective component. Find the probability that there will be at least
2 defective components from a randomly selected batch.

15. Flaws, called seeds, in a particular type of glass sheet occur at a rate of 0.05 per square
metre. Find the probability that a rectangular glass sheet measuring 4 m by 5 m contains
(a) no seeds. (b) at least two seeds.
Sheets containing at least two seeds are rejected.
(c) Find the probability that in a batch of ten such glass sheets, at most one is rejected.

16. Simar has decided to set up a small business venture. The venture requires Simar to go
fishing every Sunday so that he can sell his catch on the Monday. He realises that on a
proportion p of these days he does not catch anything.
(a) Find the probability that on any given Sunday, Simar catches

i. no fish ii. one fish iii. at least two fish
The cost to Simar on any given Sunday if he catches no fish is $5. If he catches one fish
Simar makes a profit of $2 and if he catches more than one fish he makes a profit of
$10. Let the random variable X denote the profit Simar makes on any given Sunday.
(b) Show that , .
(c) Find the maximum value of p, if Simar is to make a positive gain on his venture.

P X µ 2σ+>( )

E X( ) 10 15p– 8p pln+= 0 p 1< <
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s

17.1.1 WHY THE NORMAL DISTRIBUTION?

The examples considered in Chapter 16 dealt with data that was discrete. Discrete data is 
generally counted and can be found exactly. Discrete data is often made up of whole numbers. 
For example, we may have counted the number of occupants in each of the cars passing a 
particular point over a period of two hours. In this case the data is made up of whole numbers. If 
we collect information on the European standard shoe sizes of a group of people, we will also be 
collecting discrete data even though some of the data will be fractional: shoe size nine and a half.
Alternatively, sometimes we collect data using measurement. For example, we might collect the 
birth weights of all the babies delivered at a maternity hospital over a year. Because weight is a 
continuous quantity (all weights are possible, not just whole numbers or certain fractions), the 
data collected is continuous. This remains the case even though we usually round continuous 
data to certain values. In the case of weight, we might round the data to the nearest tenth of a 
kilogram. In this case, if a baby’s weight is given as 3.7kg it means that the weight has been 
rounded to this figure and lies in the interval [3.65,3.75). If we are looking at data such as these 
weights it may seem as if the data is discrete even in cases when it is in fact continuous.
When dealing with continuous data, we use different methods. The most important distinction is 
that we can never give the number of babies that weigh exactly 3.7kg as there are none of these. 
All that we can give is the number of babies born that have weights in the range [3.65,3.75). 
One of the ways in which we can handle continuous data is to use the normal distribution. This 
distribution is only a model for real data. This means that its predictions are only approximate. 
The normal distribution generally works best in a situation in which the data clusters about a 
particular mean and varies from this as a result of random factors. The birth weights of babies 
cluster about a mean with variations from this mean resulting from a range of chance factors such 
as genetics, nutrition etc. The variation from the mean is measured by the standard deviation of 
the data. In examples such as this, the normal distribution is often a fairly good model. The basis 
of all normal distribution studies is the standard normal curve.

17.1.2 THE STANDARD NORMAL CURVE

The standard normal curve models data that has a mean of zero and a standard deviation of one. 
The equation of the standard normal curve is:

The equation of this distribution is complex and does not directly give us any information about 
the distribution. The shape of the curve, does, however, indicate the general shape of the 
distribution.
The shape of this curve is often referred to as the ‘bell shaped curve’. On the next page we see 
how this function behaves.

THE NORMAL DISTRIBUTION17.1

C
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 1
7

f z( ) 1
2π----------e

z2
2----–  

= ∞ z ∞< <–,
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As a result of the fact that the variable z is continuous, it is not the height of the curve but the 
areas underneath the curve that represent the proportions of the variable that lie between various 
values. The total area under the curve is 1 (even though the curve extends to infinity in both 
directions without actually reaching the axis). 
For example, the proportion of the standard 
normal data that lies between 1 and 2 is 
represented by the area shown.
Areas under curves are usually found using a 
method covered in Chapter 22. In the case of 
the normal curve, the complexity of the 
equation of the graph makes this impossible 
at least at this level. Instead, we rely on a 
table of values. The full table can be found at the end of this chapter. 

17.1.3 USING THE STANDARD NORMAL TABLE

The table tells us the proportion of values of 
the standard normal variable that are less 
than any given value. It is best to view this 
graphically. 
The diagram shows the area that represents 
the proportion of values for which z < 2. 
This proportion can also be interpreted as 
the probability that a randomly chosen value of z will have a value of less than 2 or p(Z < 2).
This value can be found from the row beginning with 2.0 in the table:

The value in the 2.0 row and 0 column represents p(Z < 2.0) and is 0.9772. This value can be 
interpreted as:
The proportion of values of z less than 2 is 0.9772
The percentage of values of z less than 2 is 97.72%
The probability that a randomly chosen value of the standard normal variable is less than 2 is 
0.9772.

0.2

0.4

1 2 3–1–2–3 z

f(z)

0.2

0.4

1 2 3–1–2–3
z

f(z)

1 2 3–1–2–3
z

f(z)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
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The following set of examples will illustrate how the table can be used to solve other standard 
normal distribution problems. 

(a) All these examples can be solved by direct use of the tables
p(Z < 1) = 0.8413

(b) p(Z < 0.96) (= 0.8315) can be found by using the row for 0.9 and the column for 0.06. The
required value can be found at the row and column intersection.

(iii) p(Z < 0.03) (= 0.5120) is found similarly

Other problems are best solved using a combination of graphs and the table. Problems arise when 
we have ‘greater than’ problems or negative values of z.

(a) p(Z > 1.7). Graphically this is the area
shaded in the diagram. Since we can
only look up ‘less than’ probabilities
using the table, we must use the fact
that the total area under the curve is 1.
It follows that:

For the standard normal variable Z, find:
(a) p(Z < 1) (b) p(Z < 0.96) (c) p(Z < 0.03)

E 17.1XAMPLE

S
o
l
u
t
i
o
n

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

For the standard normal variable Z, find:
(a) p(Z > 1.7) (b) p(Z < –0.88) (c) p(Z > –1.53)

E 17.2XAMPLE

S
o
l
u
t
i
o
n 1 2 3–1–2–3

z

f(z)

p Z 1.7>( ) 1 p Z 1.7<( )–=
1 0.9554–=
0.0446=
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(ii) p(Z < –0.88). The table does not give
any negative z values. This question
can be solved by looking at the
diagram on the right. By the symmetry
of the curve, the required area (shaded)
is the same as the area shown with
vertical stripes. It follows that:

(c) p(Z > –1.53). Again, we cannot look up
a negative z value, but we can use the
symmetry of the graph.

The shaded area in this diagram is the same as 
the required area in the diagram directly above, 
so:

The final set of examples looks at some ‘between values’ type of problems.

(a) p(1.7 < Z < 2.5). This is found by using
 the tables to find p(Z < 2.5) and

 p(Z < 1.7). 
The required answer is then the
difference between these two values.

     

(b) p(–1.12 < Z < 0.67). The area is shown
shaded. The same principal is used to
solve this problem as the previous
example.

The additional difficulty is the negative z value.
i.e., p(–1.12 < Z) is calculated as  p(Z > 1.12) = 1 – p(Z < 1.12).

1 2 3–1–2–3
z

f(z)

1 2 3–1–2–3 z

f(z)

1 2 3–1–2–3 z

f(z)

p Z 0.88–<( ) p Z 0.88>( )=
1 p Z 0.88<( )–=
1 0.8106–=
0.1894=

p Z 1.53–>( ) p Z 1.53<( )=
0.9370=

For the standard normal variable Z, find:
(a) p(1.7 < Z < 2.5)  (b) p(–1.12 < Z < 0.67) (c) p(–2.45 < Z < –0.08)

E 17.3XAMPLE

S
o
l
u
t
i
o
n 1 2 3–1–2–3

z

f(z)

1 2 3–1–2–3 z

f(z)

p 1.7 Z 2.5< <( ) p Z 2.5<( ) p Z 1.7<( )–=
0.9938 0.9554–=
0.0384=
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(c) p(–2.45 < Z < –0.08) (shaded) is
calculated using the symmetry of the
curve as p(0.08 < Z < 2.45) (vertical
stripes). so, 

    

1. For the standard normal variable Z, find:
(i) p(Z < 0.5) (ii) p(Z < 1.84) (iii) p(Z < 1.62) (iv) p(–2.7 < Z)
(v) p(–1.97 < Z) (vi) p(Z < –2.55) (vii) p(1.9 < Z) (viii) p(Z < –1.56)
(ix) p(2.44 < Z) (x) p(–0.95 < Z) (xi) p(Z < 0.37) (xii) p(1.39 < Z)

2. For the standard normal variable z, find:
(i) p(1.75 < Z < 2.65) (ii) p(0.3 < Z < 2.5) (iii) p(1.35 < Z < 1.94)
(iv) p(–1.92 < Z < –1.38) (v) p(2.23 < Z < 2.92) (vi) p(–1.51 < Z < –0.37)
(vii) p(–2.17 < Z < 0.76) (viii) p(1.67 < Z < 2.22) (ix) p(–0.89 < Z < 0.8)
(x) p(–2.64 < Z < –1.04) (xi) p(–1.43 < Z < 2.74) (xii) p(–1.59 < Z < –0.46)
(xiii) p(–2.12 < Z < 0.58) (xiv) p(–2.61 < Z < 1.39) (xv) p(–1.86 < Z < 0.13)
(xvi) p(–2.56 < Z < 0.92) (xvii) p(–1.75 < Z < 2.03) (xviii) p(–0.9 < Z < 1.34)

So far we have given a discussion of the notion of the standard normal distribution. We now 
provide a more mathematical approach in defining this important distribution.

17.2.1 THE NORMAL DISTRIBUTION

If the random variable X is normally distributed, then it has a probability density function given 

by 

Where , the mean of X, and , the standard deviation of X, are known as 
the parameters of the distribution.

p∴ 1.12 Z 0.67< <–( ) p Z 0.67<( ) p Z 1.12–<( )–=
p Z 0.67<( ) p Z 1.12>( )–=
p Z 0.67<( ) 1 p Z 1.12<( )–( )–=
0.7486 1 0.8686–( )–=
0.6172=

1 2 3–1–2–3
z

f(z)

p 2.45 Z 0.08–< <–( ) p 0.08 Z 2.45< <( )=
0.9928 0.5319–=
0.4609=

EXERCISES 17.1

FORMALISING THE DEFINITION OF 
THE NORMAL DISTRIBUTION

17.2

   f x( ) 1
σ 2π--------------e

1
2---

x µ–
σ------------   2–

∞ x ∞   < <–,=

µ E X( )= σ Sd X( )=
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If the random variable X is normally distributed 
with mean  and variance , we write

The shape of this probability density function, 
known as the normal curve, has a characteristic 
‘bell shape’ that is symmetrical about its mean, .

17.2.2 PROPERTIES OF THIS CURVE

1. The curve is symmetrical about the line x = . In fact, the mode occurs at x = .
2. The normal curve approaches the horizontal axis asymptotically as .
3. The area under this curve is equal to one. 

That is, .
4. Approximately 95% of the observations lie in the region .

17.2.3 FINDING PROBABILITIES USING THE NORMAL 
         DISTRIBUTION

To find the probability, , where  we would need to evaluate the 

integral: .

Evaluating such an integral is beyond the scope of this course. However, to help us calculate such 
probabilities we make use of a transformation that will convert any normal distribution with 
mean  and variance  to a normal distribution with a mean of 0 and a variance of 1. This 
new curve is known as a standard normal distribution.

17.2.4 THE STANDARD NORMAL DISTRIBUTION

Making use of the transformation , we obtain the standard normal distribution.
That is, we transform the distribution of  to that of .
This can be shown as follows:
1.  

2.  
That is,
 

y f x( )=

µ

1
σ 2π--------------

x

y
µ σ2

X N µ σ2,( )∼

µ

µ µ
x ∞±→

f x( ) xd∞–
 ∞∫ 1

σ 2π--------------e
1
2---

x µ–
σ------------   2–

xd∞–
 ∞∫ 1= =

µ 2σ x µ 2σ+≤ ≤–

p a X b≤ ≤( ) X N µ σ2,( )∼

p a X b≤ ≤( ) f x( ) xd
a
 b∫ 1

σ 2π--------------e
1
2---

x µ–
σ------------   2–

xd
a
 b∫= =

µ σ2

Z X µ–
σ-------------=

X N µ σ2,( )∼ Z N 1 0,( )∼

E Z( ) E X µ–
σ-------------   1

σ---E X µ–( ) 1
σ--- E X( ) µ–( ) 1

σ--- µ µ–( ) 0= = = = =

Var Z( ) Var X µ–
σ-------------   1

σ2------Var X µ–( ) 1
σ2------Var X( ) 1

σ2------ σ2× 1= = = = =

   X N µ σ2,( ) Z X µ–
σ------------- N 1 0,( )   ∼=⇒∼
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This means that the probability density function of the standard normal distribution, Z, 

(with mean  and variance ) is given by 

So that the probability is now given by 

Although we still have the difficulty of evaluating this definite integral, the reason for doing this is 
that we have at our disposal tables that already have the probability (area) under the standard 
normal curve, as we have already seen in §17.1. It is from such tables that we can then calculate 
the required probabilities. These calculations can also be carried out using specialised calculators. 

17.2.5 FINDING PROBABILITIES

Tables usually indicate the region (i.e., the area) that is being evaluated by displaying a graph of 
the standard normal curve together with the shaded region. 
What follows are results based on tables that provide probabilities for which the shaded region is 
to the left of z. That is, the probability that z is less than (or equal to) a is given by 

p(Z < a) = shaded region to the left of z = a, a > 0.

We usually denote this area by .

That is, 

The notation  is very useful as it allows us to deal with probabilities in the same way as we 
would deal with functions. In §17.1 the table of the standard normal probabilities was introduced 
so that we could familiarise ourselves with how probabilities could be evaluated immediately or 
by making use of the symmetry properties of the normal curve. We summarise the symmetry 
properties that were seen to be useful in evaluating probabilities:
If a ≥ 0, b ≥ 0 and Z has a standard normal distribution, we have the standard results:

1.

In this case we look up the tables
e.g 

2.

e.g 

                       

µ 0= σ2 1= f z( ) 1
2π----------e

1
2---z

2–
=

p a Z b≤ ≤( ) 1
2π----------e

1
2---z

2–
zd

a
 b∫=

y f z( )=

za

Φ a( ) p Z a<( )=

Φ a( )

Φ a( ) p Z a≤( ) 1
2π----------e

1
2---z

2–
zd∞–

 a∫= =

Φ a( )

p Z a<( ) Φ a( )=

p Z 2.10<( ) Φ 2.01( ) 0.9778= =
za

Φ a( )

p Z a>( ) 1 p Z a<( )– 1 Φ a( )–= =

p Z 1.54>( ) 1 p Z 1.54<( )–=
1 Φ 1.54( )–=
1 0.9382–=
0.0618=

za

1 Φ– a( )
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All of this is very good, if we are dealing with the standard normal distribution. However, most of 
the time (if not practically, all of the time) the data collected will be such that we do not have a 
mean of zero and a variance of 1. That is, the information gathered from a population (concerning 
some attribute) will be presented in such a way that the mean and the variance will not comply 
with those of the standard normal distribution. And so, it will be necessary to first carry out the 
transformation which we have already discussed, and then work out the required probabilities. 
That is, we will need to first standardise the statistics obtained from our data, using the Z–
transformation, and then use the standard normal distribution table.

17.2.6 STANDARDISING ANY NORMAL DISTRIBUTION

Very few practical applications will have data whose mean is 0 and whose standard deviation is 1. 
The standard normal curve is, therefore, not directly usable in most cases. We get over this 
difficulty by relating every problem to the standard normal curve.
As we have already seen, a general variable, X, is related to the standard normal variable, Z, using 
the relation:  where µ = the mean of the data and σ is the standard deviation. 
We use an example to illustrate this.

3.

e.g 

                        

4.

e.g 

5.

e.g 
                              

p Z a–<( ) p Z a>( ) 1 Φ a( )–= =

p Z 1.26–<( ) p Z 1.26>( )=
1 Φ 1.26( )–=
1 0.8962–=
0.1038=

z–a

1 Φ a( )– Φ a–( )=Φ a–( )

a

p Z a–>( ) p Z a<( ) Φ a( )= =

p Z 0.1–>( ) p Z 0.1<( ) 0.5398= =
z–a

1 Φ– a–( ) Φ a( )=

p a Z b< <( ) p Z b<( ) p Z a<( )–=
Φ b( ) Φ a( )–=

p 0.40 Z 1.2< <( ) p Z 1.2<( ) p Z 0.4<( )–=
0.8849 0.6554–=
0.2295=

za

Φ b( ) Φ a( )–

b

Z X µ–
σ-------------=

A production line produces bags of sugar with a mean weight of 1.01kg and 
a standard deviation of 0.02kg.
(a) Find the proportion of the bags that weigh less than 1.03kg
(b) Find the proportion of the bags that weigh more than 1.02kg
(c) Find the percentage of the bags that weigh between 1.00kg and 1.05kg.

E 17.4XAMPLE
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(a) The first step is to relate the x value of 1.03 to the z value using the values of the mean and
standard deviation. So, we have that 
Graphically, this means that we have related the normal distribution that models the
weights of the bags of sugar to the standard normal distribution.
Distribution of weights of sugar bags                      Standard normal distribution

The problem that we are trying to solve: p(X < 1.03) has the same solution as the standard 
problem p(Z < 1). This can be solved directly from the table to get 0.8413.
(b) Again, transforming this into a standard problem with x = 1.02 gives:

Graphically, this is:
Distribution of weights of sugar bags                        Standard normal distribution

       
(c) Again, transforming both the x values to z values, we get:

 and 
The graphical interpretation of this is:

The solution is now found in a similar way to the above examples:

S
o
l
u
t
i
o
n

z x µ–
σ------------

1.03 1.01–
0.02--------------------------- 1= = =

1 2 3–1–2–3
z

f(z)

1.01
x

1.03 z x 1.01–
0.02-------------------=

f x( )

z x µ–
σ------------

1.02 1.01–
0.02--------------------------- 0.5= = =

1 2 3–1–2–3
z

f(z)

1.01
x

1.02f x( )

p X 1.02>( ) p Z 0.5>( ) 1 p Z 0.5<( )–= =
1 0.6915–=
0.3085=

z1
x1 µ–
σ--------------

1 1.01–
0.02------------------- 0.5–= = = z2

x2 µ–
σ--------------

1.05 1.01–
0.02--------------------------- 2= = =

1 2 3–1–2–3
z

f(z)

1.01
x

f x( )
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SUMMARY 

When evaluating probabilities for a random variable X which is normally distributed (as 
opposed to X having a standard normal distribution), the following steps should be carried out:

So far we have been making use of the probability tables for the standard normal distribution. 
However, a graphics calculator is extremely useful in cutting down the workload when 
determining these probabilities. It is highly recommended that you become familiar with these 
functions on your calculator. We illustrate this in this next example.

(a) p(X ≤ 78) = 

       

(b) p(76 ≤ X ≤ 84) = 
 = p(–1 ≤ Z ≤ 1) 
 = 0.6826

p 1 X 1.05< <( ) p 0.5 Z 2< <–( )=
p Z 2<( ) p Z 0.5–<( )–=
p Z 2<( ) p Z 0.5>( )–=
p Z 2<( ) 1 p Z 0.5<( )–( )–=
0.9772 1 0.6915–( )–=
0.6687=

Step 1: Find the value of z which corresponds to the value of x
That is, transform the given random variable X, which is  to
that of , using the transformation .

Step 2: Sketch a diagram of the standard normal curve with the required region shaded.
Step 3: Use the standard normal distribution tables to evaluate the required region.

NB: This last step often requires the use of the symmetrical properties of the
curve to be able to evaluate the required region.

X N µ σ2,( )∼
Z N 1 0,( )∼ Z X µ–

σ-------------=

X is a normal random variable with mean  and variance , 
find (a) p(X ≤ 78) (b) p(76 ≤ X ≤ 84) (c) p(X ≥ 86)

µ 80= σ2 16=E 17.5XAMPLE

z–0.5

Φ 0.5–( )

S
o
l
u
t
i
o
n

p Z 78 µ–
σ---------------≤   p Z 78 80–

4------------------≤  =
p Z 0.5–≤( )=
1 p– Z 0.5≤( )=
1 0.6915–=
0.3085=

z–1 1

p 76 80–
4------------------ Z 84 80–

4------------------≤ ≤  

Notice that: p 1 Z 1≤ ≤–( ) Φ 1( ) Φ 1–( )–=
Φ 1( ) 1 Φ 1( )–( )–=
2Φ 1( ) 1–=
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(c) p(X ≥ 86) =  

         

We now make use of the TI–83 to find these probabilities using the DISTR function:
(a) p(Z ≤ –0.5):

Notice: we have used a lower bound of –100, so that in fact, we are finding  p(–100 ≤ Z ≤ 0.5). 
Having such a ‘large’ lower bound (of –100 say), provides an accurate (at least to 4 d.p) value for 
p(Z ≤ 0.5). That is, p(Z ≤ 0.5) = p(–100 ≤ Z ≤–0.5) = 0.3085.
It should be noted that although we are using values obtained after carrying out the 
standardization process, the TI–83 also enables us to find the required probability directly. We 
show this next:

(b)

z1.5

p Z 86 80–
4------------------≥   p Z 1.5≥( )=

1 p Z 1.5≤( )–=
1 0.9332–=
0.0668=

First, set up the window
using an appropriate scale:

Next, follow through each of the 
displays shown:

After using the ShadeNorm(
function, use the ENTER
function:1

2
3

Using a domain of [–3,3]
will be sufficient in most
cases.

This time the window has
been set to reflect the information
based on the data:

Again, we use a ‘large’ lower
bound, the upper limit and
then the parameters:

The graph shows the actual curve
defined by its parameters:

80 x

f x( ) 1
4 2π--------------e

1
2---

x 80–
4--------------   2–

=

Similarly, we have:
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(c)

Note that it is not necessary to use the ShadeNorm( option on the TI–83. If you are not interested 
in seeing a sketch of the graph and its shaded region, but instead only want the probability, then 
make use of the normalcdf( option in the DIST menu. 

We illustrate this for the previous example using normalcdf(lower value, upper value, , ):
(a) (b) (c)

17.2.7 INVERSE PROBLEMS 

There are occasions when we are told the proportion of the data that we are to consider and asked 
questions about the data conditions that are appropriate to these proportions.

(a) p(Z < a) = 0.5478. In this case, we are given the proportion and asked for the value of z
which makes the condition true. Because we know the proportion, we must look for the
figure 0.5478 in the body of the table.

Once the figure has been found in the table, it is necessary to infer the value of z that fits the 
condition. In this case the value is in the row for 0.1 and the column for 0.02 and we can infer that 
a = 0.12. You should check that p(Z < 0.12) = 0.5478.

This time we use a large 
upper bound:

µ σ

Find the values of a in each of these statements that refer to the standard 
normal variable, z.
(a) p(Z < a) = 0.5478 (b) p(Z > a) = 0.6 (c) p(Z < a) = 0.05

E 17.6XAMPLE

S
o
l
u
t
i
o
n

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
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(b) p(Z > a) = 0.6. This is a ‘greater than’
problem and must be converted into the
‘less than’ problem p(Z < a) = 0.4

From the diagram, it is evident that a is 
negative. This gives us a problem as negative 
values are not present on the table. 

 
In this case, consider the associated problem 
p(Z < b) = 0.6. 
By symmetry, if we can find the appropriate 
value of b, a will follow because a = –b.

There is a second problem as 0.6 is not present (exactly) in the table. In this case, we find the 
entries that are as close to 0.6 as possible.

From the table, p(Z < 0.25) = 0.5987 and p(Z < 0.26) = 0.6026 it is clear that the correct value of 
b is between 0.25 and 0.26 and closer to 0.25 than to 0.26 as 0.5987 is closer to 0.6 than is 0.6026. 
A reasonable value for b would seem to be about 0.253. There are several ways in which we could 
do better than this. Some texts provide ‘difference values’ in the main table and a separate inverse 
table. At the time of writing, neither of these were provided in IB exams. Also, there is a 
technique known as linear interpolation that can make the above argument more precise, but this 
is not strictly necessary in most applications. In the present case, b ≈ 0.253 so the answer to our 
problem is that a ≈ –0.253.
(iii) p(Z < a) = 0.05. Again, thinking

graphically, there is a better associated
problem:
p(Z < a) = 0.05 is the same as 
p(Z > b) = 0.05 or p(Z < b) = 0.95

By symmetry a = –b.
Looking for the closest value to 0.95 in the 
table gives b ≈ 1.645 and a ≈ –1.645

As we saw in Example 17.5 (b) and (c), finding the inverse values can sometimes require an 
approximation. However, recall that we had defined the function  as a means to represent 
the probability, p(Z ≤ a).  We will now make use of this function to help us deal with a more 

1 2 3–1–2–3
z

f(z)

0.4 0.6
a

1 2 3–1–2–3
z

f(z)

0.40.6
b

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

1 2 3–1–2–3
z

f(z)

b
0.050.05

a b

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

Φ a( )
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general approach to solving inverse problems.

17.2.8 FINDING QUANTILES

To find a quantile (or percentile) means to find the value of a, where p(X ≤ a) = p, where p is the 
pth percentile.
As we saw in the previous section, the process only requires that we read the normal distribution 
tables in reverse (or use the Inverse Cumulative Normal Distribution Table (if one is 
provided).
Dealing with this problem using mathematical notation we have,

For which we then solve for a.
To find the value of , we can look up the Normal tables in reverse, however, making use 
of a calculator reduces the workload significantly and increases the accuracy of the results.
On the TI–83, the inverse values are obtained by accessing  the 
invNorm( option in the DIST menu. To use the invNorm( option we 
must have the z–values, i.e., the standardised values.
We illustrate this with the following examples.

(a)

Therefore,   
    

(b)

Therefore,  
 k = 100 + 5(–0.8416) 
    = 95.792

     

p X a≤( ) p p Z a µ–
σ------------≤  ⇔ p where  0 p 1≤ ≤= =
a µ–
σ------------∴ Φ p( )1–=

Φ p( )1–

If  find the value of k, such that (a) p(X ≤ k) = 0.90 
(b) p(X ≤ k) = 0.20.

X N 100 25,( )∼E 17.7XAMPLE

S
o
l
u
t
i
o
n

p X k≤( ) 0.90 p Z k 100–
5-----------------≤  ⇔ 0.90= =

k 100–
5----------------- 1.2816=

k⇒ 106.408=
p X k≤( ) 0.20 p Z k 100–

5-----------------≤  ⇔ 0.20= =
k 100–

5----------------- 0.8416–=
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Let the random variable X denote the exam score. We then have that .
We now need to find the score x, such that p(X ≥ x) = 0.85 (or p(X ≤ x) = 0.15).
Now, 

   

Therefore a student needs to score at least 51 marks to pass the exam.

Let X denote the life-time of the television tubes, so that .
Given that .

That is, we have that           

   

And so the standard deviation is approximately one year and 10 months.

Let the random variable X denote the weight of the men, so that .
We then have that p(X ≥ 72.1) = 0.13 or p(X ≤ 72.1) = 0.87.

         

The Board of Examiners have decided that 85% of all candidates sitting 
Mathematical Methods will obtain a pass grade in the examination. The actual examination 
marks are found to be normally distributed with a mean of 55 and a variance of 16. What is the 
lowest score a student can get on the exam to be awarded a pass grade?

E 17.8XAMPLE

S
o
l
u
t
i
o
n

X N 55 16,( )∼

p X x≤( ) 0.15 p Z x 55–
4--------------≤  ⇔ 0.15= =

x 55–
4--------------⇔ 1.0364–=

x⇔ 55 4 1.0363–( )+=
x∴ 50.8544=

The lifetime of a particular make of television tube is normally distributed 
with a mean of 8 years, and a standard deviation of  years. The chances that the tube will not 
last 5 years is 0.05. What is the value of the standard deviation?

σ
E 17.9XAMPLE

S
o
l
u
t
i
o
n

X N 8 σ2,( )∼
p X 5<( ) 0.05 p Z 5 8–

σ------------<  ⇒ 0.05= =

p Z 3
σ---–<   0.05=
3
σ---–⇔ 1.6449–=
σ⇔ 1.8238=

The weight of a population of men is found to be normally distributed with 
mean 69.5 kg. 13% of the men weigh at least 72.1 kg, find the standard deviation of their weight.

E 17.10XAMPLE

S
o
l
u
t
i
o
n

X N 69.5 σ2,( )∼

p∴ Z 72.1 69.5–
σ---------------------------≤   0.87 72.1 69.5–

σ---------------------------⇔ 1.1264= =
σ∴ 2.3083=
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1. If Z is a standard normal random variable, find
(a) p(Z > 2) (b) p(Z < 1.5) (c) p(Z ≥ 0.5)
(d) p(Z ≤ 1.2) (e) p(Z ≥ 1.5) (f) p(Z ≤ 2)

2. If Z is a standard normal random variable, find
(a) p(Z > –2) (b) p(Z < –1.5) (c) p(Z ≥ –0.5)
(d) p(Z ≤ –1.2) (e) p(Z ≥ –1.5) (f) p(Z ≤ –2)

3. If Z is a standard normal random variable, find
(a) p(0 ≤ Z ≤ 1) (b) p(1 ≤ Z ≤ 2) (c) p(1.5 ≤ Z < 2.1)

4. If Z is a standard normal random variable, find
(a) p(–1 ≤ Z ≤ 1) (b) p(–2 ≤ Z ≤ –1) (c) p(–1.5 ≤ Z < –0.1)

5. If X is a normal random variable with mean  = 8 and variance  = 4. Find:
(a) p(X ≥ 6) (b) p(5 < X ≤ 8) (c) p(X < 9.5)

6. If X is a normal random variable with mean  = 100 and variance  = 25. Find:
(a) p(X ≥ 106) (b) p(105 < X ≤ 108) (c) p(X < 95)

7. If X is a normal random variable with mean  = 60 and standard deviation  = 5.
 Find:

(a) p(X ≥ 65) (b) p(55 < X ≤ 65) (c) p(50 ≤ X < 55)
8. Scores on a test are normally distributed with a mean of 68 and a standard deviation
 of 8. Find the probability that a student scored:

(a) at least 75 on the test
(b) at least 75 on the test given that the student scored at least 70.
(c) In a group of 50 students, how many students would you expect to score between

65 and 72 on the test.
9. If X is a normally distributed variable with a mean of 24 and standard deviation of 2, find:

(a) (b)

10. The heights of men are normally distributed with a mean of 174 cm and a standard
deviation of 6 cm. Find the probability that a man selected at random:
(a) is at least 170 cm tall (b) is no taller than 180 cm
(c) is at least 178 cm given that he is at least 174 cm.

11. If X is a normal random variable with a mean of 8 and a standard deviation of 1, find the
value of c, such that
(a) p(X > c) = 0.90 (b) p(X ≤ c) = 0.60

12. If X is a normal random variable with a mean of 50 and a standard deviation of 5, find the
value of c, such that
(a) p(X ≤ c) = 0.95 (b) p(X ≥ c) = 0.95 (c) p(–c ≤ X ≤ c) = 0.95

EXERCISES 17.2

µ σ2

µ σ2

µ σ

p X 28 X 26≥>( ) p 26 X 28 X 27≥< <( )
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13. The Board of Examiners have decided that 80% of all candidates sitting the Mathematical
Methods Exam will obtain a pass grade. The actual examination marks are found to be
normally distributed with a mean of 45 and a standard deviation of 7. What is the lowest
score a student can get on the exam to be awarded a pass grade?

14. The weight of a population of women is found to be normally distributed with mean
62.5 kg. If 15% of the women weigh at least 72 kg, find the standard deviation of their
weight.

15. The weights of a sample of a species of small fish are normally distributed with a mean of
37grams and a standard deviation of 3.8grams. Find the percentage of fish that weigh
between 34.73 and 38.93grams. Give your answer to the nearest whole number.

16. The weights of the bars of chocolate produced by a machine are normally distributed with
a mean of 232grams and a standard deviation of 3.6grams. Find the proportion of the bars
that could be expected to weigh less than 233.91grams.

17. For a normal variable, X, µ = 196 and σ = 4.2. Find:
(i) p(X < 193.68) (ii) p(X > 196.44) (iii) p(193.68 < X < 196.44)

18. The circumferences of a sample of drive belts produced by a machine are normally
distributed with a mean of 292cm and a standard deviation of 3.3cm. Find the percentage
of the belts that have diameters between 291.69cm and 293.67cm.

19. A normally distributed variable, X, has a mean of 52. p(X < 51.15) = 0.0446. Find the
standard deviation of X.

20. The lengths of the drive rods produced by a small engineering company are normally
distributed with a mean of 118cm and a standard deviation of 0.3cm. Rods that have a
length of more than 118.37cm are rejected. Find the percentage of the rods that are
rejected. Give your answer to the nearest whole number.

21. After their manufacture, the engines produced for a make of lawn mower are filled with oil
by a machine that delivers an average of 270ml of oil with a standard deviation of 0.7ml.
Assuming that the amounts of oil delivered are normally distributed, find the percentage of
the engines that receive more than 271.12ml of oil. Give your answer to the nearest whole
number.

22. A sample of detergent boxes have a mean contents of 234grams with a standard deviation
of 4.6grams. Find the percentage of the boxes that could be expected to contain between
232.22 and 233.87grams. Give your answer to the nearest whole number.

23. A normally distributed variable, X, has a mean of 259. p(X < 261.51) = 0.9184. Find the
standard deviation of X.

24. A normally distributed variable, X, has a standard deviation of 3.9. Also, 71.37% of the
data are larger than 249.8. Find the mean of X.

25. The times taken by Maisie on her way to work are normally distributed with a mean of 26
minutes and a standard deviation of 2.3 minutes. Find the proportion of the days on which
Maisie’s trip takes longer than 28 minutes and 22 seconds.
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26. In an experiment to determine the value of a physical constant, 100 measurements of the
constant were made. The mean of these results was 138 and the standard deviation was
0.1. What is the probability that a final measurement of the constant will lie in the range
138.03 to 139.05?

27. In an experiment to determine the times that production workers take to assemble an
electronic testing unit, the times had a mean of 322 minutes and a standard deviation of
2.6 minutes. Find the proportion of units that will take longer than 324 minutes to
assemble. Answer to 2 significant figures.

28. A normally distributed variable, X, has a standard deviation of 2.6. 
p(X < 322.68) = 0.6032. Find the mean of X.

29. The errors in an experiment to determine the temperature at which a chemical catalyst is at
its most effective, were normally distributed with a mean of 274˚C and a standard
deviation of 1.2˚C. If the experiment is repeated what is the probability that the result
will be between 275˚C and 276˚C?

30. The weights of ball bearings produced by an engineering process have a mean of 215g
with a standard deviation of 0.1g. Any bearing with a weight of 215.32g or more is
rejected. The bearings are shipped in crates of 10000. Find the number of bearings that
might be expected to be rejected per crate.

31. If  and p(85.30 < X ) = 0.6816. Find  to the nearest integer.

32. At a Junior track and field meet it is found that the times taken for children aged 14 to
sprint the 100 metres race are normally distributed with a mean of 15.6 seconds and
standard deviation of 0.24 seconds. Find the probability that the time taken for a 14 year
old at the meet to sprint the 100 metres is
(a) i. less than 15 seconds

ii. at least 16 seconds
iii. between 15 and 16 seconds.

(b) On one of the qualifying events, 8 children are racing. What is the probability that
6 of them will take between 15 and 16 seconds to sprint the 100 metres?

33. Rods are manufactured to measure 8 cm. Experience shows that these rods are normally
distributed with a mean length of 8.02 cm and a standard deviation of 0.04 cm. 
Each rod costs $5.00 to make and is sold immediately if its length lies between 8.00 cm
and 8.04 cm. If its length exceeds 8.04 cm it costs an extra $1.50 to reduce its length to
8.02 cm. If its length is less than 8.00 cm it is sold as scrap metal for $1.00.
(a) What is the average cost per rod? (b) What is the average cost per usable rod?

34. The resistance of heating elements produced are normally distributed with mean 50 ohms
and standard deviation 4 ohms.
(a) Find the probability that a randomly selected element has resistance less than 40

ohms.
(b) i. If specifications require that acceptable elements have a resistance between

45 and 55 ohms, find the probability that a randomly selected element
satisfies these specifications.

X N µ 12.96,( )∼ µ
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ii. A batch containing 10 such elements is tested. What is the probability that
exactly 5 of the elements satisfy the specifications?

(c) The profit on an acceptable element, i.e., one that satisfies the specifications, is
$2.00, while unacceptable elements result in a loss of $0.50 per element. If $ P is
the profit on a randomly selected element, find the profit made after producing
1000 elements.

35. (a) Find the mean and standard deviation of the normal random variable X, given that
 and .

(b) Electrical components are mass-produced and have a measure of ‘durability’ that is
normally distributed with mean  and standard deviation 0.5. 
The value of  can be adjusted at the control room. If the measure of durability of
an item scores less than 5, it is classified as defective. Revenue from sales of non-
defective items is $ S per item, while revenue from defective items is set at $ .

Production cost for these components is set at $ . What is the expected profit
per item when  is set at 6?

36. From one hundred first year students sitting the end-of-year Botanical Studies 101 exam,
46 of them passed while 9 were awarded a high distinction.
(a) Assuming that the students’ scores were normally distributed, determine the mean

and variance on this exam if the pass mark was 40 and the minimum score for a
high distinction was 75.

Some of the students who failed this exam were allowed to sit a ‘make-up’ exam in early
January of the following year. Of those who failed, the top 50% were allowed to sit the
‘make-up’ exam.
(b) What is the lowest possible score that a student can be awarded in order to qualify

for the ‘make-up’ exam
37. The heights of men in a particular country are found to be normally distributed with mean

178 cm and a standard deviation of 5 cm. A man is selected at random from this
population.
(a) Find the probability that this person is

i. at least 180 cm tall.
ii. between 177 cm and 180 cm tall.

(b) Given that the person is at least 180 cm, find the probability that he is
i. at least 184 cm.
ii. no taller than 182 cm.

(c) If ten such men are randomly selected, what are the chances that at least two of
them are at least 176 cm?

P X 50<( ) 0.05= P X 80>( ) 0.1=

µ
µ
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Cumulative Standard Normal Distribution Table

z

f(z)

a

F x( ) 1
2π---------- e

1
2--- t2–  

∞–
z∫ dt=

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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1. A and B are events with ,  and . Using the
expansion for , find x in each of the following cases:
(a) A and B are mutually exclusive.
(b) .
(c) A and B are independent.

2. The annual rainfall at a certain locality is known to follow a normal distribution with mean
value equal to 25 cm and standard deviation 5 cm. What is the probability that on any
particular year, there will be an annual rainfall of at least 35 cm?

3. Twin sisters, Sue and Debbie, are both good maths students. Their Mathematics teacher
calculated that Sue has a probability of 0.7 of getting an A at the end of the year and that
Debbie has a probability of 0.6. Find the probability that:
(a) neither gets an A.
(b) if only one gets an A, it is Sue.

4. The number of telephone calls a switchboard can handle follows a Poisson distribution. 
On average, it handles 120 calls per hour.  The maximum number of calls per minute that
can be put through it is 4.  What is the probability that the switchboard will be over-taxed
during any given minute?

5. (a) A School Club consists of 10 year twelve students and 5 year eleven students.  A
committee of five is to be selected.  Give the probability distribution for the number
of year eleven students on the committee.

(b) Using the probability distribution table, calculate the mean and variance of the
distribution.

(c) Verify your answers by using the formulae for the mean and variance for the
relevant distribution.

6. If ,  and . Find
(a) (b) (c)

7. In a certain town, 60% of the people are females and 40% are males.  In an opinion poll
taken, 30% of the females approved of the work done by the Town Mayor while 70% of
the males approved of his work.
(a) What is the probability that a person chosen at random in the town will approve of

the work done by the Town Mayor?
(b) Also, if the person chosen did approve of his work, what is the probability that

person is a female?
8. (a) Write down the number of different arrangements of the letters of the word

EQUILIBRIUM.
(b) One of these arrangements is chosen at random. Find the probability that:

i. the first two letters of the arrangements are consonants.
ii. all the vowels are together.

REVISION SET C - PAPER 1 & PAPER 2 STYLE QUESTIONS

P A( ) x= P B( ) 2x= P A B∪( ) 3
4---=

P A B∪( )

A B⊂

P A( ) 0.4= P B( ) 0.7= P A B( ) 0.3=
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9. The weights of a large number of children at a Kindergarden are normally distributed with
mean 20 kg and standard deviation of 2 kg.  Find the percentage of children with
weights
(a) less than 24 kg. (b) between 18 kg and 20 kg.

10. The number of errors that a typist makes on each page that she types is known to have a
Poisson distribution.
(a) If the probability that she has typed at least one error is equal to 0.8647, what is

the expected number of errors per page?
(b) Also, what is the probability that she makes more than two errors?

11. The probability that a certain darts player hits the bullseye with one dart is 0.4.
(a) Find the probability that the player scores at most two bullseyes with 3 darts.
(b) If the probability of scoring at least one bullseye with n darts is greater than 0.9,

find the least possible value of n.
12. A bag contains 4 black marbles and 4 white marbles.  A sample of 4 balls is drawn at

random, without replacement, from the bag
(a) Find the probability distribution of the number of white marbles in the sample.
(b) From the probability distribution table, find the mean and variance of the number

of white marbles drawn in the sample.
(c) If a gambler wins $30 if 3 white marbles are dawn out, $10 if 2 white marbles

are drawn out, nothing if one white marble is drawn out, and loses $40 if no white
marbles are drawn out, what is his expected profit?

13. In a Football competition, 12 teams play a series of matches to determine the best 5
(which then play a further series of ‘finals’).  Before the start of this season, ‘The Moon’
newspaper ran a contest in which readers were invited to select the 5 teams which they
expected to be the successful ones.  The order was not important, and there was no
restrictions on the number of entries per person.
(a) Wendy wanted to submit a sufficient number of entries to ensure that one of them

must be correct.  How many must she submit?
(b) In fact, nobody selected the correct 5 teams, so the price was divided among those

who selected 4 correct.  How many different selections of 5 teams could have
qualified for this prize?

14. In the popular weekly ‘Super 66’ competition, contestants select any 6 digits in order,
from the set ; any digit may be selected more than once.
(a) In how many ways may 6 different digits be arranged in order?
(b) Hence find the probability that the winning arrangement consists of 6 different

digits.
15. It is known that exactly 10% of the students at Dexter High School are left-handed.  If the

Maths class contains 20 students, find the probability that exactly 2 of these are 
left-handed.

16. The number of ‘E’s per line in a certain novel was found to follow a Poisson distribution
with mean 5.
(a) Find the probability that a given line contains no ‘E’s.
(b) If the novel contains an average of 7.5 words per line, state the form of the

probability distribution of the number of ‘E’s per word.
(c) Hence state the probability that any given word contains no ‘E’s.

0 1 2, . . . 9, , ,{ }
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17. Three cards are drawn (together) at random from a full pack of 52.  Find the probability
that at least two of these are ‘spades’.

18. As a result of a certain random experiment, the events A and/or B may occur.  These events
are independent, and ; .
(a) Find the probability that both A and B occur.
(b) Find the probability that neither A nor B occurs.
(c) Let X denote the random variable which counts how many of the two events occur

at a given time.  Thus, for example,  if neither A nor B occur.  
Find  for .

(d) Find the mean and variance of X.
19. A machine is set to manufacture circular metal discs of diameter 10 cm; in fact, the

diameter (in cm) of the discs it produces is a random variable Y with normal distribution,
having  and .
The demands of quality control place ‘acceptable limits’ between 9.90 cm and 10.20 cm;
all discs with diameters outside this range are rejected.
(a) Find the proportion of discs which are rejected.
(b) Given that a particular disc is accepted, find the probabilty that its diameter is more

than 10 cm.
(c) Given that a particular disc has a diameter more than 10cm, find the probability that

it is accepted.
(d) It is decided that too many discs are rejected by the standard.  If the new rejection

rate is to be 10%, find new ‘acceptable limits’, equally spaced on either side of the
mean.

(e) Use the fact that  to estimate the mean area of the
discs.

20. A certain cricket squad consists of 8 batsmen, 6 bowlers and a wicket keeper.  A team of
11 is to be selected, consisting of 6 batsmen, 4 bowlers and the wicket keeper.
(a) How many different teams can be selected in this way, given that the captain (who

is a batsman) must be selected in this team?
(b) In any given team, the ‘batting order’ is such that the six batsmen all bat before the

wicket keeper, who bats at no.7, followed by the four bowlers. How many different
‘batting order’ are possible?

21. A fair coin is tossed 10 times. Find the probability that the number of ‘heads’ resulting is
greater than the number of ‘tails’.

22.  A box contains three coins, one of which is known to be a ‘double-headed’. 
(a) If a coin is selected at random and tossed, find the probability that it falls ‘heads’.
(b) If a coin selected at random falls ‘heads’ when tossed, what is the probability that it

is the double-headed coin?
23. In the game of ‘Monopoly’, a player cannot start until she throws a ‘double’ with a set of

two six-sided dice i.e. both dice must show the same number (from 1 to 6) uppermost
when tossed.
(a) State the form of the probability distribution of X, the number of unsuccessful turns

a player has before  she manages to throw a ‘double’.
(b) Find i. ii. iii.

P A( ) 0.5= P B( ) 0.2=

X 0=
P X x=( ) x 0 1 2, ,=

µ 10.05= σ 0.10=

Var Y( ) E Y 2( ) E Y( )[ ]2–=

P X 5=( ) P X 5≥( ) P X 5 X 5≥=( )
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24. A ‘Snooker’ set consists of 22 balls of identical size; 15 are red, each of the others being a
different colour. If all 22 are put into a bag, and 3 are selected at random, find the
probability that:
(a) all are red; (b) exactly one is red.

25. A certain dart board consists of five concentric circles, with the respective radii r, 2r, 3r, 4r,
5r.  Any dart thrown registers a score corresponding to the region in which it lands, if it
misses the board altogether it does not count, and is returned to the contestant for another
throw.
(a) Show that the circles divide the board into regions whose areas are in the ratio 

1 : 3 : 5 : 7 : 9 .
(b) If Harry’s aim is quite random (i.e., he is equally likely to hit any point on the

target), and X represents his score on any one shot, specify the probability
distribution of X. i.e. Find , , . . . , .

(c) Find the mean and the variance of X.
(d) If he throws three darts altogether in any one turn, find the probability that he

scores a total of at least 50.
26. A certain brand of soft-drink is sold in so-called ‘litre’ bottles.  In fact, the amount of

liquid in each bottle (in litres) is a normally distributed random variable with mean 1.005
and standard deviation 0.01.
(a) Find the proportion of soft-drink bottles containing less than 1 litre.
(b) If I buy four bottles, find the probability that all four contain less than 1 litre.
(c) Find also the probability that the mean contents of the four bottles is less than 

1 litre.
27. For the Diploma of Transcendental Studies, a student must take six subjects, one of which

must be Maths.  The other available subjects are classified into two groups, A and B, which
contain 4 and 5 subjects respectively.  If he must select at least two of his subjects from
each group, how many different subject combinations are possible?

28. The letters of the word GENERAL  are arranged at random in a row.  Find the probability
that: (a) G precedes L;

(b) G immediately precedes L;
(c) both Es occur together.

29. On average, I receive two letters a day.
(a) Assuming that the number of letters I receive per day follows a Poisson

distribution, find the probability that I will receive at least two letters tomorrow.
(b) Throughout this year, there will have been exactly 250 days on which postal

deliveries are made.  On how many of these could I reasonably expect to receive no
letters at all?

30. A bag contains 3 red and 2 black marbles.  Let X be the number of marbles withdrawn (at
random), one at a time without replacement, until the first black marble is drawn.
(a) Explain why X cannot take any value greater than 4.
(b) Specify the probability distribution of X.  .
(c) Find i. ii. iii.

P X 1=( ) P X 2=( ) P X 20=( )

E X( ) E X2( ) E 2X 1–( )
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31. Golfer Jock Nicholls has taken the trouble to count the number of ‘birdies’ he has scored
on each of his last 100 rounds of golf:

(a) Find the mean and standard deviation of his number of birdies per round.
(b) Hence estimate his probability of scoring a birdie at any given one of the 18 holes.
(c) What is the form of the theoretical probability distribution of his number of birdies

per round?
(d) Using the mean calculated in (a), find the standard deviation of this theoretical

distribution.
(e) Estimate the probability that he scores less than two birdies on any given round:

i. using the data from the sample above;
ii. using the theoretical probability distribution.

32. (a) A pack of cards contains 4 red and 6 black cards. 4 cards are drawn, what is the
probability of 2 red cards and 2 black cards if
i. the cards are drawn without replacement?
ii. the cards are drawn with replacement?

(b) The number of faults in an electrical system are distributed according to the
Poisson distribution. If 5% of electrical systems of this type have at least one fault,
what is the percentage having exactly 1 fault?

(c) The lengths of steel rods are normally distributed with a mean of 50 cm and a
standard deviation of 0.5 cm. What is the probability of a rod having a length
i. between 49.5 cm and 51 cm if all measurements are considered to be

accurate?
ii. of 50 cm if all measurements are correct to the nearest 0.1 cm?

33. (a) The independent probabilities of three students scoring more than 10 runs in a
cricket match are 0.5, 0.5 and 0.25. If the random variable, X, denotes the number
of students who score more than 10 runs, find  where x = 0, 1, 2, 3.

(b) In a sequence of independent trials, the probability of success is p for each trial. Let
the random variable, X, denotes the number of failures before the first success
occurs.
i. Show that .
ii. Evaluate  if p = 0.8.
iii. Evaluate  if p = 0.1.

(c) A student is forced to guess on a multiple choice test 20% of the time. If he
guesses, his probability of being correct is 0.2, while if he does not guess, his
probability of being correct is 0.9.
i. In a 50 item multiple choice test, what would be his expected number of

correct items?
ii. What is the probability that he guessed on a question, given that the answer

he gave was correct?

No. of birdies 0 1 2 3 4 5 6
Frequency 13 25 30 19 8 4 1

P X x=( )

P X x=( ) 1 p–( )xp x, 0 1 2 …, , ,= =
P X 3=( )
p X 10 X 20≤≤( )
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34. The mean diameter of bolts from a machine can be adjusted so that the proportion of bolts
greater than 1.00 cm is 0.05, and the proportion less than 0.90 cm is 0.01. Assuming the
distribution of the bolt diameters to be Normal, find the mean and the standard deviation
of the diameter.

35. (a) A pack of cards contains 4 red and 5 black cards. A hand of 5 cards is drawn
without replacement. What is the probability of there being 2 red and 3 black cards
in the hand?

(b) The distribution of errors in using an instrument to measure length in normally
distributed with a mean of 1 cm and a standard deviation of 2 cm. What is the
probability of a measurement
i. underestimating the true length?
ii. being correct to the nearest cm?

(c) Flaws in sheets of glass are distributed according to the Poisson distribution with a
mean of 1 flaw per sheet. What is the probability of finding
i. a sheet with more than 1 flaw?
ii. a sheet having less than 2 flaws given that it contains less than 3 flaws.

36. (a) A man who works in Melbourne drives home, either along Road A or Road B. He
varies his route, choosing Road A  of the time. If he drives along Road A, he
arrives home before 6:00 pm 90% of the time, while by the more attractive route,
along Road B, he gets home before 6:00 pm 60% of the time. What is the
probability
i. that he gets home before 6:00 pm?
ii. that he travelled along Road B, if he gets home before 6:00 pm?

(b) A discrete random variable X may take the values 0, 1 or 2. The probability
distribution of X is defined by . Find
i. k. ii. the mean and variance of X.

37. (a) Two boxes each contain 9 balls. In box X there are four black and five white balls.
In box Y there are three black and six white balls. A box is chosen at random and
two balls are drawn from it without replacement. If B is the event of two black balls
being drawn and C is the event of at least one black ball,
Find i. ii. iii.

iv. v.

(b) Suppose that 25% of the Australian population who voted in the national anthem
referendum voted for ‘Waltzing Maltida’.
What is the probability that more than 85% of a random sample of 300 of this
population voted for ‘Waltzing Matilda”?

38. (a) The number of aces that Raver serves while playing any match is a random variable
having a Poisson distribution. If 4% of Raver’s serves are aces find the probability
that in any match which Raver serves 50 times he serves
i. no aces. ii. exactly two aces. iii. at least one ace.

2
3---
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(b) A mathematics competition consists of fifteen multiple choice questions each
having four choices with only one choice correct. Williams works through this test
and he knows the correct answer to the first seven questions, but he does not know
anything at all about the remaining questions, so he guesses.
Find the probability that he gets exactly 12 correct.

39. Yoghurt is sold to a customer in boxes containing 10 cartons. The customer selects two
cartons at random from each box without replacement. If both cartons are defective he
rejects the box of cartons. If none is defective he accepts the box. If one of the cartons is
defective he selects two more at random from those remaining and rejects the batch if one
or both of these is defective; otherwise he accepts the batch.
What is the probability that a batch containing 3 defectives will be accepted?

40. In a certain country 65% of the population support Ben’s Party and 35% support Sam’s
Party. 90% of Ben’s Party and 40% of those who support Sam’s Party believe that Ben is a
good leader. A member of the population is chosen at random. Given that the person
believes Ben is a good leader use Bayes’ Theorem to find the probability that the person
supports Ben’s Party.

41. From 3 coins, one of which is double headed, a coin is selected at random and tossed
twice.
i. Let X denote the number of heads that appear. Find  for x = 0, 1, 2 and

hence calculate the mean and variance of X.
ii. If two heads appear, calculate the probability of the double headed coin being

chosen.
Using the same 3 coins, a coin is selected at random then tossed 5 times.
iii. What is the probability of tossing exactly 2 heads?

42. (a) In a population, only 1 person in 5 can perform a complex operation correctly. Find
the probability of exactly 20 people performing the operation correctly from a
group of 100 people.

(b) The number of faults found in the manufacture of a particular steel pipe follows a
Poisson distribution with 0.1 faults per metre of pipe. The pipe is sold in 5 m
lengths. Pipes with no faults are sold for $20, those with one flaw are sold as
‘seconds’ at $10, while those with more than one fault are rejected. It costs $1 per
metre to produce the pipe. What is the expected profit per metre (to the nearest
cent)?
Without performing the calculation, would your answer for the profit per metre
change if the pipe was sold in 10 m lengths for $40, if there are no faults, $20 for
‘second’, the remainder being rejected. Give a reason for your answer.

43. (a) In a test match, the probability of New Zealand defeating the Australian cricket
team is 0.2, of a draw is 0.3 and of an Australian win is 0.5. For a three math test
series, what is the probability of
i. New Zealand winning the first two matches?
ii. New Zealand winning two matches?
iii. Australia winning two matches, the other being drawn?
iv. Australia winning the series (that is, winning more matches than New

Zealand)?

P X x=( )
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(b) From a population of 50 people of which 10 are classified as aliens, a sample of 25
people is chosen at random. Let X represent the number of aliens in the sample.
Calculate the mean and standard deviation for X.

44. Of 5 cards, 3 are labelled with a 1, the others with a 2. Three cards are drawn at random
from the five cards, observed, then returned to the pack. This process is repeated a second
tine. If X denotes the number of times two 1’s and a 2 are drawn,
(a) Find the probability of two 1’s and a 2 on the first draw.
(b) Find , for x = 0, 1, 2 for the two draws.
(c) Calculate the mean and variance of X.
(d) Calculate .

45. (a) Urn X contains 4 red and 2 green balls and urn Y contains 5 red and 1 green ball.
An urn is chosen at random and 2 balls are drawn from it without replacement. If A
is the event of two red balls being drawn and B is the event of at least one red ball
being drawn from urn X, find
i. ii. iii.
iv. v.

(b) In x% of a day, the probability of a machine producing a defective article is p while
for the rest of the day the probability of a defective article is q. If one item is chosen
at random at the end of the day, what is the probability that it is defective?

46. The cross-sectional area of a rod produced by a machine is normally distributed with a
standard deviation of   and a mean of 4.0 . If the proportion of rods with cross-
sectional area of less than 3.0  is 0.4, evaluate . If all rods with cross-sectional area
of less than 3.0  are rejected, what is the probability of an accepted rod having a
cross-sectional area greater than 5 ?

47. The I.Q. of a member of a population is determined from a scale which is normally
distributed. The Stanford-Binet I.Q. scale has a mean of 100 and standard deviation of 16.
Using this scale, find the
(a) probability that a person chosen at random has an I.Q. between 116 and 132.
(b) I.Q. of a person who is in the top 1% on the I.Q. scale.
(c) I.Q. of a person on the Stanford-Binet scale if their I.Q. on a scale which has a

mean of 100 and standard deviation of 15 is given as 135.
(d) I.Q. of a person who is in the top 1% of those people who have an I.Q. greater than

100 on the Stanford-Binet scale.

48. Let A and B be events such that ,  and .
i. Find ii. iii. Are A and B independent? Why? 

49. A random sample of six balls is selected without replacement from a box containing five
white and four black balls. Let W denote the number of white balls in the sample.
i. List the possible values of W.
ii. What is the mean of W?
iii. Find the probability that W is greater than its mean.

P X x=( )

P X 1 X 0>>( )

P A( ) P B( ) P A B∩( )
P A B∪( ) P A' B( )

σ cm2 cm2

cm2 σ
cm2

cm2

P A( ) 1
3---= P B( ) 1

4---= P A B∪( ) 5
12------=

P A B( ) P A B′( )
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50. The random variable X with sample space {1, 2, 3} is such that 
, , 

i. Express  in terms of a and b.
ii. What values may a and b takes?

51. Suppose that X has a Poisson distribution with non-zero mean and

i. Find the mean of X ii. Find , correct to four decimal places.

52. A particular device is made by two manufacturers, ACME and EMCO. Any device
produced by ACME is such that at any attempt the device operates with probability 0.9
independent of previous attempts.
i. Find the probability that a device made by ACME operates exactly twice before

failing.
EMCO produces a cheaper version; any device produced by EMCO is such that at any
attempt the device operates with a probability of 0.6 independent of previous attempts. A
batch of five of these devices contains four made by ACME and one made by EMCO. One
device is selected at random from the batch of five.
ii. If the selected device operates exatly twice before failing, find the probability that it

is the device produced by EMCO.
53. A machine produces 800 items each day, which are packed 20 to a box. It is known that,

on average, one per cent of items produced is defective.
(a) A box is selected at random. Find, correct to three decimal places, the probability

that it contains more than one defective item.
From the day’s production of 40 boxes, four boxes are selected at random. All items in
these four boxes are inspected. If none of the four boxes is found to contain more than one
defective item, the days production is passed as satisfactory. Otherwise, the entire day’s
production is inspected.
(b) i. Find, correct to three decimal places, the probability that the day’s

production is passed as satisfactory after the four boxes are inspected.
ii. Find, correct to the nearest integer, the mean number of items inspected.
iii. If all defective items found are replaced with good items, find, correct to

three decimal places, the expected proportion of items which are defective
after this inspection-and-replacement process.

54. A fruitgrower produces peaches whose weights are normally distributed with a mean of
180 g and a standard deviation of 20 g.
Peaches whose weights exceed 200 g are sold to canneries yielding a profit of $0.40 per
peach. Peaches whose weights are between 150 g and 200 g are sold to wholesale markets
at a profit of $0.20 per peach. Peaches whose weights are less than 150 g are sold for jam
at a profit of $0.10 per peach. Find the
i. percentage of peaches produced that are sold to canneries;
ii. percentage of peaches produced that are sold to wholesale markets;
iii. the mean profit per peach.

55. A manufacturer produces metal sheets of dimensions 2m × 1m which may have defects of
two types. Each of the two types of defect occurs independently according to a Poisson
distribution. 
Defective of type A occur at the rate of 0.1 per square metre, while defects of type B occur 
at the rate of 0.04 per square metre.

P X 1=( ) b= P X 2=( ) 3a 3b–= P X 3=( ) 2b=
E X( )

P X 2=( ) 2P X 1=( )=
P X 2≥( )
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(a) Find the probability, correct to three decimal places, that a sheet contains
i. at least one defect of type B.
ii. no defects of either type.
iii. no defects of type B and at least one of type A.

(b) Sheets with any defects of type B must be scrapped and so result in a loss of $20.
Sheets with no defects of either type yield a profit of $11. Sheets with no defects of
type B but at least one of type A yield a profit of $5. Find the mean profit per sheet
(correct to the nearest cent).

56. Consider the following set of data:
12, 4, 9, 10, 12, 13, 15, 11, 12, 15, 14, 8, 9, 10, 12, 9, 10, 16, 14, 13, 12, 15, 9, 10, 12
(a) Construct i. a frequency polygon.

ii. cummulative frequency polygon.
(b) Calculate i. the mean ii. the standard deviation.
(c) i. Construct a box-plot.

ii. Determine the median and the mode.
iii. Calculate the interquartile range

57. In order to fill unreserved seats in its planes, an airline sells tickets at half the normal
economy class fare to people who purchase tickets at the airport within 30 minutes of the
departure of a flight. However, experience shows that there is only a probability of 0.4 of
getting such a ticket for any particular flight.
The airline has hourly flights to Northport and a man who wishes to do business in
Northport has the choice of flying on the 10 am, 11 am or 12 noon flights. His travelling
procedure is to try to purchase a half-price ticket on the 10 am flight and, if unsuccessful,
to wait and try to purchase a half-price ticket on the 11 am flight. If he is again
unsuccessful he travels on the 12 noon flight with a full fare first class ticket which he
knows will always be available. The economy class fare is $200 and the first class fare is
$300.
(a) Find the probability that the man catches

i. the 11 am flight;
ii. the 12 noon flight.

(b) If the man can earn $Q for every hour that he is in Northport, express as a function
of Q the mean cost to him of his travelling procedure.

(c) For what values of Q would the man expect to earn more money, after allowing for
his travelling costs, if he made no attempt to purchase a half-price ticket and
travelled with a full fare economy class ticket on the 10 am flight?

58. The random variable X has a Poisson distribution with mean .
(a) Show that 

and obtain a similar expression for . Note that 0 is even.
(b) Use the results of (a) to show that 

and hence express  in terms of .
(c) Suppose that the actual value of X cannot be observed, but only whether it is even

or odd. If 553 out of 1000 X-values are found to be even, find an approximate value
of .

λ
P X  is even( ) e λ– 1 λ2

2!-----
λ4
4!----- …+ + +  =

P X  is odd( )

P X  is even( ) P X  is odd( )– e 2λ–=
P X  is even( ) e 2λ–

λ
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18.1.1 FUNCTIONAL DEPENDENCE

The notion of functional dependence of a function  on the variable x has been dealt with in 
Chapter 5. However, apart from this algebraic representation, sometimes it is desirable to describe 
a graphical representation using a qualitative rather than quantitative description. In doing so, 
there are a number of key words that are often used.
Words to be kept in mind are:

Such terms enable us to describe many situations that are presented in graphical form. There is 
one crucial point to be careful of when describing the graphical representation of a given 
situation. Graphs that look identical could very well be describing completely different scenarios. 
Not only must you consider the behaviour (shape) of the graph itself, but also take into account 
the variables involved.
Consider the two graphs below. Although identical in form, they tell two completely different 
stories. We describe what happens in the first five minutes of motion:

Although the shape of the graphs are identical, two completely different situations have been 
described!

QUANTITATIVE MEASURE18.1

C
H

A
P

T
E
R

 1
8

f x( )

Rate of change (slow, fast, zero) Increasing, decreasing
Positive, negative Maximum, minimum
Average Instantaneous
Stationary Initial, final
Continuous, discontinuous Range, domain

1 3            5

10

20

1 3            5

10

20
Displacement (m)

Time (mins)

Velocity (m/mins)

Time (mins)

An object is moving in such a way that its 
displacement is increasing at a constant rate, 
that is, the object maintains a constant 
velocity (or zero acceleration) for the first 
minute. During the next two minutes the 
object remains stationary, that is, it maintains 
its displacement of 20 metres (meaning that 
it doesn’t move any further from its starting 
position). Finally the particle returns to the 
origin.

An object is moving at 10 m/min and keeps 
increasing its velocity at a constant rate 
until it reaches a velocity of 20 m/min, that 
is, it maintains a constant acceleration for 
the first minute. During the next two 
minutes the object is moving at a constant 
velocity of 20 m/mins (meaning that it is 
moving further away from its starting 
position). Finally, the particle slows to rest, 
far from the origin.
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18.1.2 QUANTITATIVE ASPECTS OF CHANGE

When dealing with the issue of rates of change, we need to consider two types of rates:
 1. that of the average rate of change and 
 2. that of the instantaneous rate of change.

We start by considering the first of these terms, the average, and then see how the second, the 
instantaneous rate, is related to the first.

18.1.3 AVERAGE RATE OF CHANGE.

The average rate of change can be best described as an ‘overview’ of the effect that one variable 
(the independent variable) has on a second variable (the dependent variable). Consider the graph 
below, we can describe the change in the y-values (relative to the change in the x-values) as 
follows:

For :
There is a constant increase from y = 5 to y = 9 as x
increases from 1 to 3. So that an increase of 2 units in
x has produced an increase of 4 units in y.
We say that the average rate of change of y with
respect to x is 

For :
This time, the overall change in y is 0.
That is, although y increases from 5 to 9, it then
decreases back to 5. So from its initial value of 5,
because it is still at 5 as x increases from 1 to 4, the

 overall change in y is 0. This time the average rate
of change is .

For :
       As x now increases from 1 to 5 we observe that there is an overall decrease in the value of y,
       i.e., there is an overall decrease of 3 units (y: ). In this instance we say that
       the average rate of change is .

Notice that we have included a negative sign to indicate that there was an overall decrease in the y 
values (as x has increased by 4).
Similarly for the rest of the graph. Note that we need not start at x = 1. We could just as easily 
have found the change in y for . Here, the average rate of change is .

The question then remains, is there a simple way to find these average rates of change and will it 
work for the case where we have non–linear sections? As we shall see in the next sections, the 
answer is ‘yes’.

1 3 4 5 7 9

y

x

5

9

2

x 1 3,[ ]∈

4
2--- 2=

x 1 4,[ ]∈

0
3--- 0=

x 1 5,[ ]∈

5 9 5 2→ → →
3
4---– 0.75–=

x 3 5,[ ]∈ 7
2---– 3.5–=
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18.1.4 DETERMINING THE AVERAGE RATE OF CHANGE

To find the average rate of change in y it is necessary to have an initial point and an end point, as 
x increases from  to . 

 

(a) For this case we have the ‘starting point’ at the origin (with coordinates (0,0)) and the
‘end’ point with coordinates (2,1.41).
This means that the average rate of change of y with respect to x, over the domain L is
given by .

(b) This time we will need to first determine the coordinates of the extreme points:
For x = –1,  and for x = 2, .
Therefore, the average rate of change is equal to .

It is not always necessary to have a graph in order to find the average rate of change. Often we are 
given information in the form of a table.

x1 x2

A

By

x
O x1 x2

y1

y2At A  and at B .

To obtain a numerical value, we find the gradient of the 
straight line joining these two points.
Average rate of change from A to B = gradient from A to B

 = 

x x1 y, y1= = x x2 y, y2= =

y2 y1–
x2 x1–----------------

For each of the graphs below, find the average rate of change of y with 
respect to x over the interval specified (i.e., over the domain L).
(a)     (b)

1 2 3

1
y

x

(2, 1.41)

L

5

10

–1 1 2 x

y

L

y 1.2x2– 9+=

E 18.1XAMPLE
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u
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y2 y1–
x2 x1–---------------- 1.41 0–

2 0–------------------- 0.705= =

y 1.2 1–( )2 9+×– 7.8= = y 1.2 2( )2 9+×– 4.2= =
y2 y1–
x2 x1–---------------- 4.2 7.8–

2 1–( )–--------------------- 1.2–= =

The table below shows the number of bacteria, N, present in an enclosed
environment. Find the average growth rate of the population size over the first 4 hours

Time (hrs) 0 1 2 3 4 5 6 7 9
N 30 36 43 52 62 75 90 107 129

E 18.2XAMPLE
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This time we need to consider the time interval t = 0 to t = 4. From the table we observe
that the coordinates corresponding to these values are; (0,30) and (4,62).
Therefore, the average rate of growth of the number of bacteria over the first 4 hours is
equal to .
This means that during the first 4 hours, the number of bacteria was increasing (on
average) at a rate of 8 every hour.

Notice that in the 1st hour, the average rate was  (< 8), whereas in the 4th hour 

the average rate of increase was  (> 8).

18.1.5 VELOCITY AS A MEASURE OF THE RATE OF CHANGE
         OF DISPLACEMENT

Consider a marble that is allowed to free fall from a height of 2 metres (see 
diagram). As the marble is falling, photographs are taken of its fall at regular 
intervals of 0.2 second.
From its motion, we can tell that the rate at which the marble is falling is 
increasing (i.e., its velocity is increasing). 
What is its average velocity over the first 0.6 second? 
Reading from the diagram, we see that the marble has fallen a total distance of 
1.75 (approximately), therefore, the average velocity of the marble, given by 
the rate at which its displacement increases (or decreases), is given by

 m/sec

(a) After 4 seconds of free fall, the object’s displacement will be  m.
We obtained this result by substituting the value of t = 4 into the equation for the
displacement .

(b) The average velocity is given by the average rate of change of displacement, x m, with
respect to the time t seconds. 

S
o
l
u
t
i
o
n

62 30–
4 0–------------------ 32

4------ 8= =

36 30–
1 0–------------------ 6

1--- 6= =
62 52–
4 3–------------------ 10

1------ 10= =

0.5

1.0

1.5

0.25

0.75

1.25

1.75

vave

vave 1.75 0–
0.6 0–------------------- 2.92≈=

The displacement, x m, of an object, t seconds after it is dropped from the 
roof of a building is given by  m.
(a) What is the object’s displacement after 4 seconds?
(b) What is the average velocity of the object over the 

first 4 seconds of its motion?

x 4.9t2=

x m

E 18.3XAMPLE
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u
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4.9 4( )2 78.4=

x 4.9t2=
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Once we have the starting position and the end position we can determine the average
velocity using: .
That is, the object’s average velocity over the first 4 seconds is 19.6 m/s.

To help us visualise the behaviour of this function we will make use of the TI–83.
Begin by introducing the variable C, to denote the concentration of the drug in the
patient’s bloodstream t hours after it is administered. So that .
(a) Initially the concentration is 0 milligrams per millilitre,

the concentration after 1hr is given by
.

Therefore, the average rate of change in concentration ( ) during 
the first hour is given by . 
Note: the units are mg/ml/hr.
(b) The concentration 2 hours after the drug has been administered is  = 0.25.

That is, 0.25 mg/ml.
Therefore, the average rate of change in concentration with respect to time is

.

Notice that although the concentration has increased (compared to the 
concentration after 1 hour), the rate of change in the concentration has 
actually decreased!
This should be evident from the graph of C(t) versus t. 
The slope of the straight line from the origin to A(1, 0.22), , is 
greater than the slope from the origin O to the point B(2, 0.25), . 
That is  > .
(c) The average rate of change in concentration from t = 2 to t = 4 is given by .

vave
x2 x1–
t2 t1–---------------- 78.4 0–

4 0–------------------- 19.6= = =

The concentration of a drug, in milligrams per millilitre, in a patient’s 
bloodstream, t hours after an injection is approximately modelled by the function

.
Find the average rate of change in the concentration of the drug present in a patient’s 
bloodstream; (a) during the first hour.

(b) during the first two hours.
(c) during the period t = 2 to t = 4.

t     2t
8 t3+------------- t 0≥,

E 18.4XAMPLE
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C t( ) 2t
8 t3+------------- t 0≥,=

C 1( ) 2 1×
8 13+--------------

2
9--- 0.22≈= =

Cave

Cave
0.22 0–
1 0–------------------- 0.22= =

C 2( ) 2 2×
8 23+--------------=

Cave
0.25 0–
2 0–------------------- 0.125= =

A B

OmOA
mOB

mOA mOB
C 4( ) C 2( )–

4 2–------------------------------
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Now, 
Therefore, the average rate of change of concentration is –0.070 mg/ml/hr. 
Meaning that the overall amount of drug in the patient’s bloodstream is decreasing during the 
time interval 2 ≤ t ≤ 4.

1. For each of the following graphs determine the average rate of change over the
specified domain.

2. For each of the following functions, find the average rate of change over the given domain.
(a) (b)
(c) (d)

(e) (f)
(g) (h)

3. The displacement of an object, t seconds into its motion is given by the equation,
 .

Find the average rate of change of displacement during
(a) the first second.
(b) the first 4 seconds.
(c) the interval when t = 1 to t = 1 + h.

4. The distance s metres that a particle has moved in t seconds is given by the function
. Find the particle’s average speed over the first 4 seconds.

C 4( ) C 2( )–
4 2–------------------------------

2 4×
8 43+-------------- 0.250–

4 2–---------------------------------- 0.111 0.250–
2---------------------------------≈ 0.0694–= =

EXERCISES 18.1

y

x4 8

2

5

2a

5a

–b 3b

y

x

y

x–2 2
1

5

–3 2
2

7 y

x
O

y

x–2

5

–10

6

y

x–2 2

11

–1 1

(a) (b)  (c)x 4 8,[ ]∈ x b 3b,–[ ]∈ x 2 2,–[ ]∈

(d) (e) (f)x 3 2,–[ ]∈ x 2 6,–[ ]∈ x 1 1,–[ ]∈

x    x2 2x 1 x 0 2,[ ]∈,–+ x   x 1+ x 3 8,[ ]∈,
x   10 1

x------- x 2 20,[ ]∈,– x   x
x 1+------------ x 0.1 1.1,[ ]∈,

x   1
1 x2+-------------- 1 x 0 100,[ ]∈,– x   x 400 x– x 300 400,[ ]∈,

x   2x x 0 5,[ ]∈, x   x 1–( ) x 3+( ) x 3 2,–[ ]∈,

s t( ) t3 3t2 2t t 0≥,+ +=

s 4t 2t2 t 0≥,+=
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5. The distance s metres that a particle has moved in t seconds is given by the function
. Find the particle’s average speed during the time interval from when

t = 1 to t = 1 + h.
6. The temperature T ˚C of food placed inside cold storage is modelled by the equation

 where t is measured in hours.
Find the average rate of change of the temperature, T˚C, with respect to the time, t hours,
during the first 2 hours that the food is placed in the cold storage.

7. The volume of water in a hemispherical bowl of radius r is given by ,
where h is the height of the water surface inside the bowl. For the case where r is 20 cm,
(a) find the average rate of increase in the amount of water inside the bowl with

respect to its height, h cm, as the water level rises from 2 cm to 5 cm.
(b) Find the average rate of increase in the amount of water inside the bowl with

respect to its height, h cm, as the water level rises by 
i. 1 cm ii. 0.1 cm iii. 0.01 cm

8. An amount of money is placed in a bank and is accumulating interest on a daily basis. The
table below shows the amount of money in the savings account over a period of 600 days.

(a) Plot the graph of $D versus t (days).
(b) Find the average rate of change in the amount in the account during the period of

100 days to 300 days.
9. The temperature of coffee since it was poured into a cup was

recorded and tabulated below.

(a) Plot these points on a set of axes that show the
relationship between the temperature of the coffee and
the time it has been left in the cup.

(b) Find the average rate of change of temperature of the
coffee over the first 4 minutes.

(c) Over what period of time is the coffee cooling the most rapidly?
10. The displacement, d metres, of an object, t seconds after it was set in motion is described

by the equation
, where t ≥ 0.

(a) Find the distance that the object travels in the first 2 seconds of its motion.
(b) Find the average rate of change of distance with respect to time undergone by the

object over the first 2 seconds of its motion.
(c) What quantity is being measured when determining the average rate of change of

distance with respect to time?
(d) How far does the object travel during the 5th second of motion?
(e) Find the object’s average speed during the 5th second.

t (days) 100 200 300 400 500 600 700
$D/day 1600 1709 1823 1942 2065 2194 2328

s 4t 2t2 t 0≥,+=

T 720
t2 2t 25+ +----------------------------=

V 1
3---πh2 3r h–( )=

t min 0 2 4 6 9
T ˚C 60 50 30 10 5

d 4t 5t2+=



MATHEMATICS – Higher Level (Core)

592

11. A person invested $1000 and estimates that on average, the investment will increase
each year by 16% of its value at the beginning of the year. 
(a) Calculate the value of the investment at the end of each of the first 5 years.
(b) Find the average rate at which the investment has grown over the first 5 years.

18.2.1 QUALITATIVE ASPECTS OF CHANGE

Apart from quantitative measures (i.e., providing numerical values), it is also important to be able 
to provide qualitative descriptions of the behaviour of graphs. In doing so, many of the key words 
mentioned at the start of this chapter should be referred to. 

18.2.2 DESCRIBING THE BEHAVIOUR OF A GRAPH

Consider the graph shown:
In both Section A and Section B, the gradients of 
the lines are positive. However, the gradient of the 
straight line in section B is steeper than that of the 
line in Section A. We can then say that over Section 
B the graph is increasing at a faster rate than it is 
over Section A. 
In fact, if we were able to walk along this curve, 
from left to right, we could describe our ‘journey’ 
as follows:
As we walk from the left hand side and towards that part of the graph that lies above Section A, 
the function is increasing, i.e., as the values of x increase, so too do the values of y. As the values 
of x approach 0 (from the left side of the y–axis) the rate at which the function is increasing is 
slowing down. That is, I do not need to make as much effort to move as I get closer to the y–axis. 
Even though the function is still increasing (as we are getting closer to the y–axis), we then have 
that the rate of change of the function is in fact decreasing! Actually, by the stage when we have 
reached the y–axis we could almost say that the function remains stationary, i.e., it has stopped 
increasing. In this instance, we would say that the rate of change of the function is zero. As we 
pass the y–axis and keep moving along the curve we find it more difficult to walk along the curve. 
That is, the effort that we need to make to keep walking is increasing. In this instance the function 
is increasing but so too is the rate at which it is increasing.

18.2.3 PRODUCING A GRAPH FROM A PHYSICAL 
          SITUATION

In this section we will concentrate on producing a graph to describe the behaviour of the flow of 
liquid into a container. The importance of such problems is that they enable us to describe how 
changing one variable will affect a second (related) variable. That is, the effect the independent 
variable has on the dependent variable. One way to do this is by increasing the independent 
variable (usually x) and observing the change in the dependent variable (usually y).

QUALITATIVE MEASURE18.2

Section A Section B

y

x
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(a) The independent variable in this case is time, t seconds. Consider the volume of water, 
V , that flows into the vase in equal time intervals (of 2 seconds say). In these equal

 time intervals we have equal amounts of water flowing into the vase.
For example, if 10  of water flows into the vase every 2 seconds, we could produce the
following table of values:

(b) To see how the volume changes with respect to the level of water, we use a different
approach— this time we consider a ‘frame–by–frame’ sequence of the vase as it is filled.

From our ‘snap–shots’, we see that for equal heights, equal 
amounts of water flow into the vase. So that every time the 
water level increases by 1cm, the volume increases by 8 

. 

This would imply that the relationship between the volume, 
V  of water in the vase and the level of water, h cm, is 
linear.

A cylindrical vase is placed under a tap and water is allowed to flow into it 
at a constant rate. Provide a graphical representation of the relationship between the volume of 
water in the vase and
(a) the time for which water flows into the vase.
(b) the level of water.

E 18.5XAMPLE

S
o
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t
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o
n

cm3

cm3

1     2     3     4     5     6     7

10
20
30

t (sec)

V cm3( )t seconds 0 2 4 6 ...
V 0 10 20 30 ...cm3

Based on the results of this table we can produce a 
graph of V  versus t seconds:cm3

h (cm)

V 

1            2             3

8
16
24

cm3( )

cm3

cm3

Sketch a graph showing the relationship between the level of water in a 
flask and the time for which water has been flowing into the flask.

E 18.5XAMPLE
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Let the level of water in the flask be denoted by h cm and the time for which water has
been flowing be denoted by t seconds. Again, we use our ‘frame–by frame’ approach:

As we consider equal time intervals 
we see that the same amount of water 
will flow into the flask during each of 
these time intervals. However, 
because the flask becomes narrower 
as the level rises, then (because we 
still have the same volume of water 
flowing into the flask), the height of 
the space occupied by these equal 
volumes of water must increase at a 
faster rate than it had for the ‘cone’ 
section. A cross sectional view of the flask (shown above) shows this more clearly.

1. (a) The cross section of a basin, shown in Figure A, is being filled by water flowing
  at a constant rate.
Sketch a graph of the relationship
between the level of water, h cm, and the
time, t sec, that water has been flowing.

(b) The cross section of a second basin is shown in Figure B. Water is flowing
into this basin at the same rate as in (a). 
Sketch a graph of the relationship
between the level of water, h cm, and the
time, t sec, that water has been flowing
for this basin.

2. For each of the following bottles, sketch the graph that would show the relationship
between the level of water, h cm, and the volume of water, V  in the bottle. That is,
sketch a graph of h versus V.
You may assume that water is flowing into each bottle at a constant rate.

S
o
l
u
t
i
o
n

h cm

t sec

Note that this
section of the graph
is a straight line, as
this part of the flask
can be considered
to be like a cylinder.

EXERCISES 18.2

Figure A
2 m1 m

Figure B
2 m1 m

cm3
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18.3.1 INFORMAL IDEA OF LIMITS

As already discussed, the average rate of change between two points on a curve is determined by 
finding the gradient of the straight line joining these two points. However we often need to find 
the rate of change at a particular instant, and so the method used for finding the average rate of 
change is no longer appropriate. However, it does provide the foundation that leads to obtaining 
the instantaneous rate of change. We refine our definition of the average rate of change to 
incorporate the notion of the instantaneous rate of change. The basic argument revolves around 
the notion of magnifying near the point where we wish to find the instantaneous rate of change, 
that is, by repeatedly ‘closing in’ on a section of a curve. This will give the impression that over a 
very small section, the curve can be approximated by a straight line. Finding the gradient of that 
straight line will provide us with a very good approximation of the rate of change of the curve 
(over the small region under investigation). To obtain the exact rate of change at a particular point 
on the curve we will then need to use a limiting approach. 
The process used to determine the rate of change at A is carried out as follows:
1. Start by drawing a secant from A to B, where B is chosen to be close to A. This will

provide a reasonable first approximation for the rate of change at A. Then, to obtain a
better approximation we move point B closer to point A.

2. Next, zoom–in towards point A, again. We move point B closer to point A, whereby a
better measure for the rate of change at point A is now obtained. We then repeat step 2,
i.e., move B closer to A and zoom in, move point B closer to A and zoom in, and so on.

3. Finally, the zooming–in process has reached the stage whereby the secant is now virtually
lying on the curve at A. In fact the secant is now the tangent to the curve at the point A.

Using the process of repeatedly zooming–in to converge on a particular region lies at the heart of 
the limiting process. Once we have understood the concepts behind the limiting process, we can 
move on to the more formal aspect of limits. However, apart from an informal treatment of limits, 
work on limits is beyond the scope of the core work in HL mathematics.

(a)                                     (b)                                           (c)

(d)                                     (e)                                           (f)

INSTANTANEOUS RATE OF CHANGE18.3



MATHEMATICS – Higher Level (Core)

596

We now provide a ‘visual’ representation of steps 1. to 3. described above.

We now investigate this limiting process further through a number of examples. We will still 
maintain an informal approach to determining limits, but at the same time we will steer our work 
on limits towards the fundamentals behind the ideas in Chapter 19 – Differential calculus.

(a) The average velocity over the required second (from t = 1 to t = 2) is found by looking at
the slope of the secant joining those two points on the graph of x(t).
At t = 2, we have , and at t = 1, .

Therefore, we have that 

                    

Therefore, the average velocity over the second is 0.75m/s.
(b) For t = 1 to t = 1.5 we have,  = 0.375

(c) Similarly, for t = 1 to t = 1.1, we have 
(d) We are now in a position to determine the average rate over the interval t = 1 to 

t = 1 + h. The average velocity is given by 

A
B

A

B

A
BMagnify Magnify

As we magnify, and move point B closer to point A the secant from A to B becomes the tangent at A:

By this stage the secant and the tangent

Therefore the gradient of the tangent, the 
secant and that of the curve at A are the same.

are the same at point A.

An object moves along a straight line. Its position, x metres (from a fixed 
point O), at time t seconds is given by , t ≥ 0. Determine
(a) its average velocity over the interval from t = 1 to t = 2
(b) its average velocity over the interval t = 1 to t = 1.5
(c) its average velocity over the interval t = 1 to t = 1.1
(d) its average velocity over the interval t = 1 to t = 1 + h, where h is small.
How can the last result help us determine the object’s velocity at t = 1?

x t( ) t 1
4---t2–=

E 18.6XAMPLE

S
o
l
u
t
i
o
n

x 2( ) 2 1
4--- 2( )2– 1= = x 1( ) 1 1

4--- 1( )2– 3
4---= =

2 1,( )
1 0.75,( )

vave x 2( ) x 1( )–
2 1–----------------------------=

1 0.75–
1-------------------=

0.25=

vave x 1.5( ) x 1( )–
1.5 1–-------------------------------- 1.5 0.25 1.52×–( ) 0.75–

0.5-------------------------------------------------------------= =

vave x 1.1( ) x 1( )–
1.1 1–-------------------------------- 0.475==

vave x 1 h+( ) x 1( )–
1 h 1–+-------------------------------------=
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Now,  
= 

Therefore,   

=  
= 

Notice that for ii., (i.e., t = 1 to t = 1.5) h = 0.5, so that substituting h = 0.5 into this equation we 
have, , providing the same result as before.

We can set up a table of values and from it determine what happens as we 
decrease the time difference.
We notice that as h becomes very small, the average rate of change from 
t = 1 to t = 1 + h becomes the instantaneous rate of change at t = 1! This is 
because we are zooming in onto the point where t = 1.
This means that the rate of change at t = 1 (h ‘= 0’) would therefore be 0.5 m/s. So that the 
particle would have a velocity of 0.5 m/s after 1 second of motion.

(a) We first find the coordinates of the end points
 for the interval [–1,2]:

 x = –1, y = f (–1) = (–1 + 2)(–1 – 1)(–1 – 4) = 10.
x = 2, y = f (2) = (2 + 2)(2 – 1)(2 – 4) = –8.
Therefore, the average rate of change in y with
respect to x over the interval [–1,2] is given by

 

(b) To determine the rate of change at x = 4, we
choose a second point close to x = 4. In this
case, we use the point x = 4 + h, where h can
be considered to be a very small number.

We will look at what happens to the gradient of the 
secant joining the points (4, 0) and (4 + h, f (4 + h)) as h 
approaches zero.
The gradient of the secant is given by

 = 
We now need to determine the value of   and 

. However, we already know that .

x 1 h+( ) 1 h+( ) 0.25 1 h+( )2– 1 h 0.25 1 2h h2+ +( )–+= =
0.75 0.5h 0.25h2–+

vave 0.75 0.5h 0.25h2– 0.75–+
1 h 1–+------------------------------------------------------------------ 0.5h 0.25h2–

h---------------------------------= =
h 0.5 0.25h–( )

h-----------------------------------
0.5 0.25h h 0≠,–

vave 0.5 0.25 0.5( )– 0.375= =

 
0.1 0.475
0.01 0.4975
0.001 0.4999

h vave

For the graph with equation ,
(a) Find the average rate of change of f over the interval [–1,2].
(b) Find the rate of change of f, where x = 4.

f :x    x 2+( ) x 1–( ) x 4–( )E 18.7XAMPLE

S
o
l
u
t
i
o
n

(–1,10)

(2,–8)
f 2( ) f 1–( )–
2 1–( )–-------------------------------- 8– 10–

3------------------- 6–= =

1 4

y

x

10

–10

h
(4,0)

(4+h,f (4+h))

f 4 h+( ) f 4( )–
4 h+( ) 4–-------------------------------------- f 4 h+( ) f 4( )–

h--------------------------------------
f 4 h+( )

f 4( ) f 4( ) 0=
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We can now find values for  as h approaches zero. 
For h = 0.1, .
Therefore,  = , for h = 0.1.
We can continue in this same manner by making the value of h smaller still. 
We do this by setting up a table of values:

From the table, it appears that as h approaches zero, the gradient of the secant (which becomes 
the gradient of the tangent at (4,0)) approaches a value of 18.
Therefore, we have that the rate of change of f at (4,0) is 18.

More formally we write this result as , which is read as

“The limit as h tends to zero of  is equal to 18.”

Which is saying that if we make h as small as we can, then  equals 18.

Finding the rate of growth of the population at the start of 2005 as opposed to finding the
rate over a period of time means that we are finding the instantaneous rate of change. To
do this, we proceed as in the previous example, i.e., we use a limiting approach. 

Consider the two points,  (start of 2005) and  on the curve 
representing the population size:
The gradient of the secant passing through P and A 
is given by 

Now, 
and    

Therefore, the gradient of the secant is given by

0.01 18.09010000
0.001 18.00900100
0.0001 18.00090001

f 4 h+( )
f 4 0.1+( ) f 4.1( ) 4.1 2+( ) 4.1 1–( ) 4.1 4–( ) 6.1 3.1 0.1×× 1.891= = = =
f 4 h+( ) f 4( )–

h-------------------------------------- 1.891 0–
0.1---------------------- 18.91=

h f 4 h+( ) f 4( )–
h--------------------------------------

f 4 h+( ) f 4( )–
h--------------------------------------

h 0→lim 18=
f 4 h+( ) f 4( )–

h--------------------------------------
f 4 h+( ) f 4( )–

h--------------------------------------

The population of a city at the start of 2000 was 2.3 million, and its 
projected population, N million, is modelled by the equation , where t ≥ 0 and 
is measured in years since the beginning of 2000. Find the rate of growth of the population in this 
city at the start of 2005.

N t( ) 2.3e0.0142t=
E 18.8XAMPLE

S
o
l
u
t
i
o
n

P 5 N 5( ),( ) A 5 h+ N 5 h+( ),( )

5 5 + h
t

N

P 5 N 5( ),( )

A 5 h N 5 h+( ),+( )

h2.3

N 5 h+( ) N 5( )–
5 h+( ) 5–---------------------------------------- N 5 h+( ) N 5( )–

h----------------------------------------=

N 5( ) 2.3e0.0142 5× 2.3e0.071= =
N 5 h+( ) 2.3e0.0142 5 h+( )=
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Again we set up a table of values:

Using limit notation we have, . 
That is, the growth rate at the start of 2005 is 35,063 people per year.

1. For each of the graphs shown, find the gradient of the secant joining the points P and Q. 

0.1

0.01

0.001

0.0001

2.3e0.0142 5 h+( ) 2.3e0.071–
h------------------------------------------------------------ 2.3e0.071 0.0142h+ 2.3e0.071–

h----------------------------------------------------------------=

2.3e0.071 e0.0142h 1–( )
h---------------------------------------------------=

h 2.3e0.071 e0.0142h 1–( )
h---------------------------------------------------

2.3e0.071 e0.0142 0.1× 1–( )
0.1---------------------------------------------------------- 0.035088=

2.3e0.071 e0.0142 0.01× 1–( )
0.01------------------------------------------------------------ 0.035066=

2.3e0.071 e0.0142 0.001× 1–( )
0.001-------------------------------------------------------------- 0.035063=

2.3e0.071 e0.0142 0.0001× 1–( )
0.0001---------------------------------------------------------------- 0.035063=

N 5 h+( ) N 5( )–
h----------------------------------------

h 0→lim 0.035063=

EXERCISES 18.3

P 1 1,( )

Q 1 h 1 h+( )2,+( )
y f x( )=

x

y

P 2 5,( )

Q 2 h 2 h+( )2 1+,+( )

y f x( )=

x

y

P 1 f 1( ),( )

Q 1 h f 1 h+( ),+( )
x

y
f  : x    1x--- x 0>,

P 1– f 1–( ),( )

Q 1– h f 1– h+( ),+( )
x

y
f  : x    x3

(a) (b)

(c) (d)
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2. For each of the graphs in Q.1., use a limiting argument to deduce the instantaneous rate of
change of the given function at the point P.

3. For each of the functions, f,  given below, find the gradient of the secant joining the
points  & .
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

4. For each of the functions, f,  given below, find the gradient of the secant joining the points
 &  and hence deduce the gradient of the tangent drawn at

the point P.
(a) (b) (c) (d) .
Hence deduce the gradient of the tangent drawn at the point  for the function

.

5. An object moves along a straight line. Its position, x metres (from a fixed point O), at time
t seconds is given by , t ≥ 0. 

(a) Sketch the graph of its displacement function.
(b) Determine

i. its average velocity over the interval from t = 1 to t = 2
ii. its average velocity over the interval t = 1 to t = 1.5
iii. its average velocity over the interval t = 1 to t = 1.1

(c) Show that its average velocity over the interval t = 1 to t = 1 + h, where h is small
is given by .

(d) How can the last result help us determine the objects’ velocity at t = 1?
(e) Show that its average velocity over any time interval of length h is given by

. Hence deduce the object’s velocity at any time t during its motion.

6. The healing process of a certain type of wound is measured by the decrease in surface area
that the wound occupies on the skin. A certain skin wound has its surface area modelled by
the equation  where S sq. cm is the unhealed area t days after the skin
received the wound.
(a) Sketch the graph of , t ≥ 0.
(b) i. What area did the wound originally cover?

ii. What area will the wound occupy after 2 days?
iii. How much of the wound healed over the two day period?
iv. Find the average rate at which the wound heals over the first two days.

(c) How much of the wound would heal over a period of h days?
(d) Find the rate at which the wound heals

i. immediately after it occurs
ii. one day after it occured.

P a f a( ),( ) Q a h f a h+( ),+( )
f x( ) 3 x2+= f x( ) 1 x2–= f x( ) x 1+( )2 2–=
f x( ) x3 x+= f x( ) 2 x3–= f x( ) x3 x2–=
f x( ) 2

x---= f x( ) 1
x 1–-----------= f x( ) x=

P a f a( ),( ) Q a h f a h+( ),+( )

f x( ) x= f x( ) x2= f x( ) x3= f x( ) x4=
P a f a( ),( )

f x( ) xn n N∈,=

x t( ) 2t2 3t– 1+=

1 2h+

4t 2h 3–+

S t( ) 20 2 0.1t–×=

S t( ) 20 2 0.1t–×=
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18.4.1 THE DERIVATIVE AND THE GRADIENT FUNCTION

In the previous sections we concentrated our efforts on determining the average rate of change for 
a function over some fixed inteval. Then proceeded to find the instantaneous rate of change at a 
particular point (on the curve). We now consider the same process, with the exception that we will 
discuss the instantaneous rate at any point . The result will be an expression that will 
enable us to determine the instantaneous rate of change of the function at any point on the curve. 
Because the instantaneous rate of change at a point on a curve is simply a measure of the gradient 
of the curve at that point, our newly found result will be known as the gradient function 
(otherwise known as the derivative of the function). 

For a continuous function, , we deduced 
that the instantaneous rate of change at the point 

 is given by , where h 
is taken to be very small (in fact we say that h 
approaches or tends to zero). 
So, to determine the rate at which a graph changes 
at a single point, we need to find the slope of the 
tangent line at that point. 
This becomes obvious if we look back at our 
‘zooming in process—where the tangent line to the 
function at the point  is the line that 
best approximates the graph at that point.

Rather than considering a fixed point , 
we now consider any point  on the 
curve with equation :

The rate of change of the function f at  
is therefore given by the gradient of the tangent to 
the curve at P.
If point Q comes as close as possible to the point P, 
so that  h approaches zero, then, the gradient of the 
tangent at P is given by the gradient of the secant 
joining the points  and 

 as .

In mathematical notation we have:

DIFFERENTIATION PROCESS18.4

P x f x( ),( )

P a f a( ),( )

P a f a( ),( )

At the point P, the tangent
and the line are one and 
the same.
So that, finding the gradient
of the tangent at P is the same
as finding the rate of change
of the function at P.

Magnifying:

y f x( )=

P a f a( ),( ) f a h+( ) f a( )–
h--------------------------------------

P a f a( ),( )

P x f x( ),( )

Q x h f x h+( ),+( )

f x h+( ) f x( )–
h

Gradient at P = Gradient of        as h tends to 0.  PQ

x

y SecantTangent

x                    x + h

P a f a( ),( )
P x f x( ),( )

y f x( )=

P x f x( ),( )

P x f x( ),( )
Q x h+ f x h+( ),( ) h 0→

Rate of change at P f x h+( ) f x( )–
h--------------------------------------

h 0→lim=
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18.4.2 NOTATION AND LANGUAGE

We now introduce the term derivative of a function:

Finding the derivative of a function using this approach is referred to as finding the derivative of f 
from first principles.

It is important to realise that in finding  we have a new function—called the gradient 
function, because the expression  will give the gradient anywhere on the curve of . 
So that if we want the gradient of the function  at x = 5, we first determine  and then 
substitute the value of x = 5 into the equation of .

Using the first principles method means that we must make use of the expression
 – (1) 

We start by first evaluating the expression :
That is:

Substituting this result into (1):

     

That is, we now have the gradient function .

To determine the gradient of the function at x = 3, we need to substitute the value x = 3 into the 
gradient function. That is, .

The rate of change of  at  = Gradient function of  at 
    = The derivative of 

= 
The derivative of a function  is denoted by  and is read as “f dash of x”.
That is,

f x( ) P x f x( ),( ) f x( ) P x f x( ),( )
f x( )

f x h+( ) f x( )–
h--------------------------------------

h 0→lim
f x( ) f  ' x( )

f  ' x( ) f x h+( ) f x( )–
h--------------------------------------

h 0→lim=

f  ' x( )
f  ' x( ) f x( )

f x( ) f  ' x( )
f  ' x( )

Using the first principles method, find the derivative (or the gradient 
function) of the function . Hence, find the gradient of the function at x = 3.f x( ) 3x2 4+=

E 18.9XAMPLE
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f  ' x( ) f x h+( ) f x( )–
h--------------------------------------

h 0→lim=
f x h+( ) f x( )–

f x h+( ) f x( )– 3= x h+( )2 4 3x2 4+[ ]–+ 3 x2 2xh h2+ +( ) 4 3x2– 4–+=
3x2 6xh 3h2 3x2–+ +=
6xh 3h2+=

f x h+( ) f x( )–
h--------------------------------------

h 0→lim
6xh 3h2+

h------------------------
h 0→lim=

h 6x 3h+( )
h---------------------------

h 0→lim=
6x 3h+( )

h 0→lim h 0≠,=
6x=

f  ' x( ) 6x=

f  ' 3( ) 6 3× 18= =
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Using the TI–83 we can determine the 
derivative at x = 3 by using the ‘nDeriv(’ 
command from the MATH menu: 

(a) This part is readily done by making use of the TI–83:
So, we have that the particle’s velocity is 0.6 m/s

(b) Let us again make use of the TI–83:
We enter the function  as  and
then enter  as nDeriv( , X, X). Once this is done we sketch both  and .
The graph of  represents the gradient function of , i.e., the derivative of .

The graph of  appears to be a straight line passing through the points (0,1) and (2.5, 0) and 
so we can obtain the equation of this straight line: 
gradient = . Then, using  we have, .
Changing to the appropriate variables we have, . 
Therefore at t = a, .

Obviously, this method relied on our ability to spot the type of function nDeriv( , X, X) 
produced. The fact that it could then be readily determined made it all fairly straight forward. 
However, more often than not, this will not be the case. So we make use of the definition of 
differentiation to obtain the velocity as the derivative of the position function.

We start by determining 
     

A particle moving along a straight line has its position at time t seconds 
governed by the equation , where  is its position in metres from a 
fixed point O. (a) Find the particle’s velocity after it has been in motion for 1 second.

(b) Find the particle’s velocity at time t = a , a > 0.

p t( ) t 0.2t2 t 0≥,–= p t( )
E 18.10XAMPLE
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Y2 Y1 Y1 Y2
Y2 Y1 Y1

p t( )
p ' t( )

p ' t( )

m 0 1–
2.5 0–---------------- 0.4–= = y 1– 0.4–( ) x 0–( )= y 0.4– x 1+=

v t( ) 0.4– t 1+=
v a( ) 0.4– a 1+=

Y1

v t( ) p ' t( ) p t h+( ) p t( )–
h------------------------------------

h 0→lim= =
p t h+( ) p t( )– t h+( ) 0.2 t h+( )2– t 0.2t2–[ ]–=

t h 0.2 t2 2th h2+ +( )– t– 0.2t2+ +=
0.4th– h 0.2h2–+=



MATHEMATICS – Higher Level (Core)

604

Therefore, 
And so, .

1. Use a limiting process to find the gradients of these curves at the points indicated:
(a) (b)
(c) (d)  at x = 1

(e)  at t = 0.5 (f)  at t = 4

2. An object is dropped from a high building. The distance, d metres, that the object has
fallen, t seconds after it is released, is given by the formula .
(a) Find the distance fallen during the first second.
(b) Find the distance fallen between t = 1 and t = h + 1 seconds.
(c) Hence, find the speed of the object 1 second after it is released.

3. Find, from first principles, the gradient function, , of the following
(a) (b) (c)
(d) (e) (f)
Can you see a pattern in your results?

4. Find, from first principles, the derivative of the following functions
(a) (b) (c)
(d) (e) (f)

5. A particle moving along a straight line has its position at time t seconds governed by the
equation , where  is its position in metres from the origin O.

(a) Find the particle’s velocity after it has been in motion for 1 second.
(b) Find the particle’s velocity at time t = a , a > 0.

6. A particle moving along a straight line has its position at time t seconds governed by the
equation , where  is its position in metres from the origin O.

(a) Sketch the displacement-time graph of the motion over the first five seconds
(b) Find the particle’s velocity at time i. t = 1

ii. t = 2
(c) Find the particle’s velocity at any time t, t ≥ 0.
(d) When will the particle first come to rest?

v t( ) 0.4th– h 0.2h2–+
h----------------------------------------------

h 0→lim 0.4t– 1 0.2h–+( )
h 0→lim 0.4t– 1+= = =

v a( ) 0.4a– 1+=

EXERCISES 18.4

x    x3 at x 1= v 2t2 1 at t– 2= =
f x( ) 1

x---=  at x 3= x    2x

f t2 2t– 3+= t     t2 1–
t-------------

d 4.9t2 0 t 3≤ ≤,=

f '
f :x    4x2 f :x    5x2 f :x    4x3
f :x    5x3 f :x    4x4 f :x    5x4

f x( ) 2x2 5–= g x( ) 2 x–= g x( ) 2 x– x3+=
f x( ) 1

x---= f x( ) 2
x 1+------------= f x( ) x=

x t( ) 2t 0.5t2 t 0≥,–= x t( )

x t( ) 4t2 t3 t 0≥,–= x t( )
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19.1.1 REVIEW

1. Rate of change, gradient and the derivative

The rate of change of a curve at a point gives a measure of the gradient of the curve at that 
point. When finding the derivative of the equation of a curve we obtain the gradient function. 
As the name suggests, the gradient function enables us to find the gradient at any point on the 
curve. 

2. Differentiation

Differentiation is the process of finding the derivative of a function. The derivative of a function 
is often called its derived function.

3. Language and notation

The derivative of   with respect to x is usually written as  (read as “f dash of x”) or 
 (read as “dee–dee–x of ”). 

The derivative of y with respect to x is usually written as  (read as “dee–y–dee–x”) or  
(read as “y–dash of x”).

4. Average rate  instantaneous rate

The average rate of change of the function  
over the interval  is graphically 
represented by the gradient of the secant passing 
through the two points 
on the curve . 

Notice that when we talk about the average rate, we 
require two points on a curve. 
i.e., “. .  over the interval  . . ” or “. . from . .  to  . . ”

Whereas the instantaneous rate of change of  
at the point  is graphically represented by the
gradient of the tangent at the point  
on the curve .

Notice that when we talk about the instantaneous rate, 
we refer to only one point, 
i.e., “. .  at the point . . ”

DIFFERENTIATION

C
H

A
P

T
E
R

 1
9

f x( ) f ' x( )
d
dx------ f x( )( ) f x( )

dy
dx------ y'

→

P x1 f x1( ),( )

Q x2 f x2( ),( )

x

y

x1 x2

Gradient of secant

=

Secant

f x2( ) f x1( )–
x2 x1–-----------------------------------

Average rate of change 
=

P x1 f x1( ),( )

x

y

x1

= Gradient of curve at P x1 f x1( ),( )
= gradient of tangent at P

Tangent

Instantaneous rate of change

f x( )
x x1  to x x2= =

x1 f x1( ),( )  and  x2 f x2( ),( )
y f x( )=

f x( )
x x1=

x1 f x1( ),( )
y f x( )=

19.1



MATHEMATICS – Higher Level (Core)

606

5. Different notation

The basic difference between the two can be seen in the diagram below:

Using the delta notation, we read  as “dee–y–dee–x is equal to the limit as 
delta x ( ) tends to zero of delta y ( ) on delta x ( )”. This is in part where the expression 
“The derivative of y with respect to x” stems from. The notation  is due to one of the 
greatest eighteenth century mathematicians, Joseph Louis Lagrange (1736–1813), whereas the 
notation  is attributed to that other great mathematician, Gottfried Wilhelm Leibniz (1646–
1716).

As we now have the definition of the derivative, given by the expression  

or , then to differentiate a function  one of these 
expressions is used. Notice that the expression  is itself a function and for this reason we 
also refer to the derivative as the gradient function of .

Functional Notation Delta Notation

Gradient of secant = Gradient of secant = 

To find the gradient at some point P, that is, to find the derivative of the function at any point P on 
the curve defined by the equation , we use the method of first principles:

P x f x( ),( )

Q x h+ f x h+( ),( )

x

y

x x h+

Secant

f x h+( ) f x( )–

h x

y
Secant

f x δx+( ) f x( )– δy=

Q x δx+ f x δx+( ),( )

P x f x( ),( )

x x δx+δx

f x h+( ) f x( )–
h-------------------------------------- f x δx+( ) f x( )–

δx----------------------------------------- δy
δx------=

y f x( )=

   f ' x( ) f x h+( ) f x( )–
h-------------------------------------- h 0   ≠,

h 0→lim=    dydx------
δy
δx------ δx 0   ≠,δx 0→lim=

dy
dx------

δy
δx------ δx 0≠,δx 0→lim=

δx δy δx
f ' x( )

dy
dx------

dy
dx------

δy
δx------ δx 0≠,δx 0→lim=

f ' x( ) f x h+( ) f x( )–
h-------------------------------------- h 0≠,

h 0→lim= y f x( )=
f ' x( )

y f x( )=
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By definition, we have that , and so, we start by simplifying 
the expression :

Therefore we have 

       

That is, .

As in the previous example, we first simplify the expression :
.

However, in this case it appears that we can go no further. However; 

The difficulty is in realising that we need to multiply by  (very tricky!). We do this 
so that we can rationalise the numerator. This will, hopefully, lead to an expression which will be 
more manageable. Carrying out the multiplication we have:

        

Notice that the function  has a domain defined by x ≥ 0. Whereas its gradient 

Find the derivative (the gradient function) of .f x( ) x3 1+=E 19.1XAMPLE

S
o
l
u
t
i
o
n

f ' x( ) f x h+( ) f x( )–
h-------------------------------------- h 0≠,

h 0→lim=
f x h+( ) f x( )–

f x h+( ) f x( )– x h+( )3 1 x3 1+( )–+=
x3 3x2h 3xh2 h3 1 x3– 1–+ + + +=
3x2h 3xh2 h3+ +=
h 3x2 3xh h2+ +( )=

f ' x( ) f x h+( ) f x( )–
h-------------------------------------- h 0≠,

h 0→lim
h 3x2 3xh h2+ +( )

h-------------------------------------------- h 0≠,
h 0→lim= =

3x2 3xh h2+ +( ) h 0≠,
h 0→lim=

3x2=
f x( ) x3 1 f ' x( )⇒+ 3x2= =

Differentiate the function .f x( ) x=E 19.2XAMPLE

S
o
l
u
t
i
o
n

f x h+( ) f x( )–
f x h+( ) f x( )– x h+ x–=

f ' x( ) x h+ x–
h-----------------------------

h 0→lim
x h+ x–

h----------------------------- x h+ x+
x h+ x+-----------------------------×

h 0→lim= =

x h+ x+
x h+ x+-----------------------------

f ' x( ) x h+ x–( ) x h+ x+( )
h x h+ x+( )--------------------------------------------------------------------- h 0≠,

h 0→lim
x h+( ) x–( )

h x h+ x+( )-------------------------------------- h 0≠,
h 0→lim= =

h
h x h+ x+( )-------------------------------------- h 0≠,

h 0→lim=

1
x h+ x+----------------------------- h 0≠,

h 0→lim=

1
x x+--------------------=

1
2 x----------=

f x( ) x x 0≥,=
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function,  has a domain defined by x > 0. 
So, in this instance, the domain of the function and that of its derivative (or gradient function) are 
not the same. We will investigate these matters in more depth later on.

19.1.2 POWER RULE FOR DIFFERENTIATION

Finding the derivative from first principles can be tedious. The previous two examples clearly 
show this. However, using the first principles approach, produces the results shown in the table 
below:

Based on these results and following the general pattern, it is reasonable to assume the general 
result that if

.
In fact this rule is true for any exponent , i.e., for any real number n.
For example, if we look at  the square root function, then we have that . So in this 

case we have that n . Then, using our rule we have 

 .

Which is the result we obtained in Example 19.2 when we used the first principle method. This 
result is known as the power rule for differentiation.

Notice that for the case n = 0,  then  and so we have that . 
Note: The function  represents the horizontal straight line y = 1, and so its gradient will 
always be 0. In fact, for the case where y = k (a real constant) . 
As the function y = k represents a horizontal straight line its gradient will always be 0. We 
therefore have the power rule:

We prove the above for the case where n is a positive integer and leave further proofs till §19.8.

Function      

Derivative 

f ' x( ) 1
2 x---------- x 0>,=

y f x( )= x4 x3 x2 x1 x 1– x 2–

dy
dx------ f ' x( )= 4x3 3x2 2x1 1x0 1x 2–– 2x 3––

   y xn n Z  then dydx------,∈, nxn 1–    = =
n ∈

y x x1 2/= =
1
2---= y x x

1
2--- dy

dx------⇒ 1
2---x

1
2--- 1– 1

2---x
1
2---–== = =

1
2 x----------=

y x0= dy
dx------ 0x0 1– 0= =

y x0=
y kx0 dy

dx------⇒ k 0x0 1–× 0= = =

 The function , has a gradient function (or derivative) given by .
 This can also be written as:

If   or  If 

f :x    xn f ':x    nxn 1–

   y xn then dydx------ nxn 1–    = =    f x( ) xn then f ' x( ) nxn 1–    = =
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Let  where n is a positive integer. Using the definition of the derivative we have

Simplifying the numerator, we have:
 

= 

= 

We now have that 

= 

= 

Before we differentiate these functions, each function must be rewritten in the form  before we 
can use the power rule.
(a) Let 
(b) Let . Remember, we first need to rewrite it in the form :

(c) Let . As in the previous example, we rewrite this function in the form  so that
we can use the power rule:

(d) Let .

f x( ) xn=
f ' x( ) f x h+( ) f x( )–

h--------------------------------------
h 0→lim

x h+( )n xn–
h------------------------------

h 0→lim= =

x h+( )n xn– xn n
1   xn 1– h n

2   xn 2– h2 … n
n 1–   xhn 1– hn+ + + + + xn–=

n
1   xn 1– h n

2   xn 2– h2 … n
n 1–   xhn 1– hn+ + + +

nxn 1– h n n 1–( )
2--------------------xn 2– h2 … nxhn 1– hn+ + + +

f ' x( )
nxn 1– h n n 1–( )

2--------------------xn 2– h2 … nxhn 1– hn+ + + +
h---------------------------------------------------------------------------------------------------------------

h 0→lim=

nxn 1– n n 1–( )
2--------------------xn 2– h … nxhn 2– hn 1–+ + + +  

h 0→lim

nxn 1–

Use the power rule to differentiate the following functions
(a)  (b) (c) (d)x6 1

x------- x3 1
x2-----

E 19.3XAMPLE

S
o
l
u
t
i
o
n

xn

f x( ) x6 f ' x( )⇒ 6x6 1– 6x5= = =
y 1

x-------= xn

Function Step 1
Rewrite:

Step 2
Use power rule:

Step 3
Simplify:

y 1
x-------= y x 1 2/–= dy

dx------
1
2---x

1
2---– 1––= dy

dx------
1
2---x

3
2---– 1

2 x3
------------–=–=

y x3= xn

y x3= y x
1
3---= dy

dx------
1
3---x

1
3--- 1–

= dy
dx------

1
3---x

2
3---– 1

3 x23
-------------= =

Function Step 1
Rewrite:

Step 2
Use power rule:

Step 3
Simplify:

f x( ) 1
x2----- so that f x( ) x 2– f ' x( ) 2x 2– 1–– 2x 3– . That is, f ' x( )– 2

x3-----–= = =∴= =
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An extension of the power rule is the derivative of , where a is a real constant.
In this case we have the general result:

(a) Let .

(b) Let .

(c) Let .

19.1.3  DERIVATIVE OF A SUM OR DIFFERENCE

This rule states that the derivative of a sum (or a difference) is equal to the sum (or the difference) 
of the derivatives. That is,

(a) Let 
         

Notice we have used a slightly different notation, namely that . We can 

think of  as the differentiation operator, so that  or  is an operation of 
differentiation done on  or y respectively.
(b) Let 

    

f :x    axn

If f :x    axn  then  f ':x    anxn 1–

Differentiate the following functions:
(a) (b) (c)12x3 4

x---–
x2
7-----

E 19.4XAMPLE

S
o
l
u
t
i
o
n

y 12x3 dy
dx------⇒ 12 3x3 1–× 36x2= = =

f x( ) 4
x---, that is, f x( )– 4x 1– f ' x( )⇒– 4 1x 1– 1––×– 4x 2– 4

x2-----= = = = =

f x( ) x2
7-----, that is, f x( ) 1

7---x
2 f ' x( )⇒ 1

7--- 2× x2 1– 2
7---x= = = =

 If  then y f x( ) g x( )±= dy
dx------ f ' x( ) g' x( )±=

Differentiate the following functions
(a) (b) (c)2x3 5x 9–+ x 5

x3-----– x+ x1 3/ x5 4/ 2x–+
E 19.5XAMPLE

S
o
l
u
t
i
o
n

y 2x3 5x 9 dy
dx------⇒–+ d

dx------ 2x3 5x 9–+( ) d
dx------ 2x3( ) d

dx------ 5x( ) d
dx------ 9( )–+= = =

6x2 5+=

  f ' x( ) d
dx------ f x( )( )  =

d
dx------

d
dx------ f x( )( ) d

dx------ y( )
f x( )

f x( ) x 5
x3-----– x f ' x( )⇒+ d

dx------ x 5
x3-----– x+   d

dx------ x
1 2/ 5x 3–– x+( )= = =

1
2---x

1 2/– 5 3x 3– 1–– 1+×–=
1

2 x---------- 15
x4------ 1+ +=
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(c)

Note, to find  we first express it as .

(a) .

(b) The first step is to expand the bracket so that each term is in the form of .

(c) Again we expand first, and then differentiate:

    

(d)

(e)

          

(f)

 = 

 = 

d
dx------ x

1 3/ x5 4/ 2x–+( ) d
dx------ x

1 3/( ) d
dx------ x

5 4/( ) d
dx------ 2x( )–+=

1
3---x

2 3/– 5
4---x

1 4/ 2 1
2---x

1 2/–×–+=
d
dx------ 2x( ) d

dx------ 2 x×( ) 2 d
dx------ x( )× 2 d

dx------ x
1 2/( )×= =

          Miscellaneous Examples
Differentiate the following
(a) (b) (c)

(d) (e) (f)

5 x 9 x 0≥,– x3 2+( )2 x 2
x-------–   2

5x2 4x 3–+
x------------------------------ x 7x2 3x– 2+( ) 2x4 4x– 3+

x------------------------------

E 19.6XAMPLE

S
o
l
u
t
i
o
n

d
dx------ 5 x 9–( ) d

dx------ 5x1 2/ 9–( ) 5 1
2---x

1
2--- 1– 0–× 5

2---x
1 2/– 5

2 x----------= = = =

axn
d
dx------ x3 2+( )2( ) d

dx------ x
6 4x3 4+ +( ) 6x5 12x2+= =

d
dx------ x 2

x-------–   2   d
dx------ x( )2 2 x 2

x-------
2
x-------   2+×–   d

dx------ x 4– 4
x---+  = =

d
dx------ x 4– 4x 1–+( )=

1 4
x2-----–=

d
dx------

5x2 4x 3–+
x------------------------------   d

dx------
5x2
x--------

4x
x------

3
x---–+   d

dx------ 5x 4 3x 1––+( ) 5 3
x2-----+= = =

d
dx------ x 7x2 3x– 2+( )( ) d

dx------ x
1 2/ 7x2 3x– 2+( )( ) d

dx------ 7x5 2/ 3x3 2/– 2x1 2/+( )= =
35
2------x3 2/ 9

2---x1 2/– x 1 2/–+=
35
2------ x3 9

2--- x– 1
x-------+=

d
dx------

2x4 4x– 3+
x------------------------------   d

dx------
2x4
x-------- 4x

x-------– 3
x-------+   d

dx------ 2x4
1
2---– 4x1

1
2---–– 3x0

1
2---–+  = =

d
dx------ 2x7 2/ 4x1 2/– 3x 1 2/–+( )

7x5 2/ 2x 1 2/–– 3
2---x

3 2/––
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 = 

1. Find the derivative of each of the following

(a) (b) (c)
(d) (e) (f)
(g) (h) (i)
(j) (k) (l)

2. Find the derivative of each of the following
(a) (b) (c)

(d) (e) (f)
(g) (h) (i)

(j) (k) (l)

3. Find the derivative of each of the following
(a) (b) (c)     

(d) (e) (f)

(g)   (h) (i)

(j) (k) (l)

4. (a) Show that if .

(b) Show that if .
(c) Show that if  where a is real and .

(d) Show that if .

7x2 x 2
x-------– 3

2x x-------------–

EXERCISES 19.1

x5 x9 x25
9x3 4x7– 1

4---x8
x2 8+ 5x4 2x 1–+ 3x5– 6x3 x–+
20 1

3---x4– 10x+ 3x3 6x2– 8+ 3x 1– x2
5----- x4+ +

1
x3----- x3 x5

x3 4 x 6 x3

2 x 3
x---– 12+ x x 1

x------- 2+ + 5 x23 9x–

5x x
x-------– 4

5x2--------+ 8 x 3x 5– x
2---+ + x

x3
--------- 2

x--- x3– 1
3---x

3+

x x 2+( ) x 1+( ) x3 1–( ) x x2 1 1
x---–+   x 0≠,

2x 1–
x--------------- x 0≠, x 2–

x---------------- x 0>, x2 x– x+
2x--------------------------- x 0≠,

3x2 7x3–
x2----------------------- x 0≠, x 2

x---–   2 x 0≠, x 1
x2-----+   2 x 0≠,

3x 1
3 x---------- x 0>,– x x5–( )2 x 0≥, 1

x------- x–   3 x 0>,

f x( ) x2 x  then f ' x( ),– 1 2 f x( )
x--------------+= =

f x( ) 2x 2 x,x 0≥  then , 2x f ' x( )– 1 2– x 0>,= =
y axn= n N  then dydx------,∈ ny

x------ x 0≠,=

y 1
x------- x 0  then dydx------

y
2x------+,>, 0= =
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19.2.1 THE VALUE OF THE DERIVATIVE AT A
 PARTICULAR POINT ON A CURVE

So far in this chapter we have looked at the gradient function of , namely . The 
function  represents the gradient at any point on the curve of the original function . In 
order to determine the gradient at a particular point x = a (say), we revisit the definition of the 
derivative, . Rather than finding the derivative at ‘any’ point ‘x’, we 
determine the derivative at a particular point ‘x = a’. Note we are assuming that the derivative 
exists at the point ‘x = a’. 

Since  gives the gradient of the tangent at x = a, it also gives the gradient of the graph of 
 and so the derivative may be used to determine gradients or to find where on a curve a 

particular gradient exists.
Another form of the derivative at x = a is given by . This result follows 
directly from our previous definition by replacing h with x – a. This can be seen by using the 
following ‘replacements’: 

1. If  then 
and so we replace with .

2. If  then .

We first look at an example that uses a ‘first principle’ approach to determining the gradient of a 
curve at a particular point.

We begin by sketching the relevant curve and 
placing all the information on our diagram.
At P, x = 2 and so .
At Q, x = 2 + h and so,  = 
Next, we find the gradient of PQ, .

So, 

GRAPHICAL INTERPRETATION 
OF THE DERIVATIVE

19.2

f x( ) f ' x( )
f ' x( ) f x( )

f ' x( ) f x h+( ) f x( )–
h--------------------------------------

h 0→lim=

If the function  can be differentiated (i.e., is differentiable) at x = a, thenf x( )
f ' a( ) f a h+( ) f a( )–

h--------------------------------------
h 0→lim=

f ' a( )
y f x( )=

f ' a( ) f x( ) f a( )–
x a–-----------------------------

x a→lim=

h x a–= h 0 x a 0 x a→⇒→–⇒→
h 0→lim x a→lim

h x a–= h a+ x=

Let P and Q be points on the curve  for which x = 2 and 
x = 2 + h respectively. Express the gradient of PQ in terms of h and hence find the gradient of the 
curve  at x = 2.

y x2 2x–=

y x2 2x–=

E 19.7XAMPLE

P 2 0,( )

Q 2 h h2 2h+,+( )
y f x( )=

h2 2h+( ) 0–

y

x
2 h+( ) 2–

S
o
l
u
t
i
o
n

y 22 2 2( )– 0= =
y 2 h+( )2 2 2 h+( )–= h2 2h+

mPQ
rise
run--------- y2 y1–

x2 x1–----------------= =

mPQ
h2 2h+( ) 0–
2 h+( ) 2–-------------------------------- h2 2h+

h------------------ h h 2+( )
h--------------------= = =
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After cancelling the ‘h’ we have:  
Note the additional condition, . Why is this?

We are now in a position to determine the gradient of the curve at x = 2.
Gradient at P = .

As in the previous example, we choose two points P and Q where x = 2 and x = 2 + h respectively.
When x = 2,  and when x = 2 + h, .
Meaning that P has coordinates  and
Q has coordinates .

Then, as .

That is, gradient at (2, 1) is given by .

As can be seen from the last two examples, finding the gradient of a curve at a particular point 
using a ‘first principles approach’ is rather lengthy. In fact, the process for finding the value of the 
derivative or the gradient at a particular point on a curve is rather straight forward. This process 
requires the use of two steps:
Step 1: Find the gradient function (i.e., the derivative). e.g., if  find 
Step 2: Substitute the x–value of the point in question into the equation of the derivative. 

i.e., if we want the gradient at x = a, determine .

Using the power rule for differentiation we have

    

Notice how much more efficient this is compared to using 

mPQ h 2 h 0≠,+=
h 0≠

mPQh 0→lim h 2+( )
h 0→lim 2= =

Find the gradient of the curve  at the point (2, 1).y 1
x 1–-----------=

E 19.8XAMPLE

S
o
l
u
t
i
o
n

y 1
2 1–------------ 1= = y 1

2 h 1–+---------------------
1

h 1+------------= =

1     2      2+h x

y

P
Q

y 1
x 1–-----------=

2 1,( )
2 h 1

1 h+------------,+  

mPQ

1
1 h+------------ 1–
2 h+( ) 2–--------------------------

1 1 h+( )–
1 h+--------------------------
h--------------------------

h
1 h+------------–
h--------------- 1

1 h+------------–= = = =

h 0 mPQ
1
1---–→,→

1
1 h+------------–

h 0→lim 1–=

y f x( )= dy
dx------ f ' x( )=

f ' a( )

Find  given that .f ' 3( ) f x( ) x3 2x2– 10+=E 19.9XAMPLE

S
o
l
u
t
i
o
n

f x( ) x3 2x2– 10 f ' x( )⇒+ 3x2 4x–= =
f ' 3( )∴ 3 32 4 3×–×=

15=
f ' 3( ) f 3 h+( ) f 3( )–

h--------------------------------------
h 0→lim=
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First, find the equation that gives the gradient at any point on the curve, that is, find . 

Using the power rule we have, . Substituting x = 2 into the

derivative equation, . i.e., the gradient at the point (2, 10) is –3.

Let , we need to find values of x for which :
We have that , so that 

               

For x = 2,  and for x = –2, .
Therefore, the required coordinates are (2, 8) and (–2,–4).

Notice that it is possible for a curve to have the same gradient at different points.

If the tangent at a point on the curve is horizontal then the gradient of the curve at that
point must be zero. So, to find those values of x where .
Now,  

  or 

For  and for x = 1, y = 1 – 1 – 1 + 1 = 0.

So, the relevant points are  and (1, 0).

We now make use of a graphics calculator to find the gradient at a particular point on a curve.

Find the gradient of the curve with equation  at the point 
(2, 10).

y 9x x3–=E 19.10XAMPLE

S
o
l
u
t
i
o
n

dy
dx------

y 9x x3 dy
dx------⇒– 9 3x2–= =

dy
dx------ 9 3 2( )2– 3–= =

Determine the coordinate(s) on the curve  where the
gradient is 11.

x     x3 x– 2+E 19.11XAMPLE

S
o
l
u
t
i
o
n

f x( ) x3 x– 2+= f ' x( ) 11=
f ' x( ) 3x2 1–= 3x2 1– 11 3x2 12–⇔ 0= =

3 x2 4–( )⇔ 0=
3 x 2–( ) x 2+( )⇔ 0=

x 2 or x 2–= =
f 2( ) 8= f 2–( ) 4–=

Given that , find the coordinates of all points for 
which the curve with equation  has a horizontal tangent.

f x( ) x3 x2– x– 1+=
y f x( )=

E 19.12XAMPLE

S
o
l
u
t
i
o
n

f ' x( ) 0=
f ' x( ) 3x2 2x– 1 f ' x( ) 0 3x2 2x– 1–⇔=∴– 0= =

3x 1+( ) x 1–( )⇔ 0=
x⇔ 1

3---–= x 1=

x 1
3--- y,– f 1

3---–   1
27------– 1

9---– 1
3--- 1+ + 32

27------= = = =

1
3---

32
27------,–  
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Using the TI–83 we first enter the equation,  into the equation screen. Then we 
QUIT and have a blank screen. At this stage we select MATH and use the down arrow to select 
option 8:nDeriv(, we now call up the VARS screen. Using the arrows, select Y–VARS. Next 
select option 1:Function followed by option 1:Y1 and then press ENTER. At this stage we have 
a screen displaying nDeriv(Y1. Next we enter our parameters, ,X, 2) – dont forget the commas. 
The ‘X’ informs the calculator that the variable in question is ‘X’ and the ‘2’ informs the 
calculator that we wish to evaluate the derivative at ‘x = 2’. The screen sequence is now 
displayed:

Notice that the answer we have obtained is –3.000001 (which, for all intended purposes is –3). 
The reason lies in our original ‘accuracy’ settings on the calculator – see your graphics calculator 
handbook for more details on this. 

Note in this case it would have been easier to have entered the information on the one screen as 
follows:

That is, type in the equation into the 
nDeriv( function as opposed to using the 
VARS approach. However, you should 
spend some time in considering when one 
approach is more beneficial than the other.

1. Let P and Q be points on the curve  for which x = 4 and x = 4 + h respectively.
Express the gradient of PQ in terms of h and hence find the gradient of the curve

 at x = 4.

2. For a curve with equation  determine the coordinates of the points P and Q
where x = 1 and x = 1 + h respectively. Express the gradient of the line PQ in terms of h
and hence find the gradient of the curve at x = 1.

3. Using a first principles method find the gradient of the curve with equation  at
the point where x = 2.

Use a graphics calculator to solve Example 19.10.
E 19.13XAMPLE

S
o
l
u
t
i
o
n

y 9x x3–=

EXERCISES 19.2.1

y x2 4x–=

y x2 4x–=

y 2
x 1+------------=

y 6 x3–=
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4. Find the gradient of the function at the indicated point.
(a) at (1,–1) (b) at (2, 0.5)
(c) at (2, 9) (d) at (0,1)
(e) at (1, 2) (f) at (1, 1)

(g) at (8, –1) (h)  at (4,  )

5. Find the value(s) of x, so that .

6. For the curve with equation , find:
(a) (b) the gradient where x = – 3
(c) the coordinates of the point where the gradient is 4.

7. For the curve with equation , find:
(a) (b) the gradient where x = 1
(c) the coordinates of the point where the gradient is –3.

8. For the curve with equation , find:
(a) the coordinates where its gradient is zero.
(b) the set of values of x for which its gradient is positive.

9. Determine those values of x for which the curve with equation  will have
the same gradient as the curve with equation .

10. Find the gradient of the function  at the points where 
(a) it crosses the x–axis,
(b) it cuts the y–axis.

11. The curve with equation  passes through the point (2, 0), where its
gradient is found to be 3. Determine the values of a and b. 

12. Given that , show that .

13. Given that , find (a) (b) .

14. The function  has a gradient of 2 at the point (1, 6). Find its gradient
when x = 2.

15. Given that , show that .

f x( ) x3 2–= f x( ) 1
x---=

f x( ) 2x 1–( )2= y 2x 1+( )2=
y x2 1

x2-----– 2+= y x23 x– x+=

f x( ) 1 x3–= y x x x
x-------

x
x-------–+= 19

2------

f ' x( ) 0 given that f x( ) x3 8x–= =

y x2 12x–=
dy
dx------

y x3– 3x+=
dy
dx------

f x( ) 1
4---x

2 x2 1–( )=

y 8 x2–=
y x3 x–=

x:    x3 x2 2x–+

y ax b
x2-----+=

g x( ) x2= f ' a b+( ) f ' a( ) f ' b( )+=

h x( ) 4x 2 x x 0≥,–= f a2( ) f ' a2( )

f x( ) ax3 bx2–=

f x( ) 1
xn-----= x f ' x( ) nf x( )+ 0=
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19.2.2 GRADIENT FUNCTION FROM A GRAPH

We now have a brief look at some geometrical properties of the gradient value  at a point 
 of the graph .

These properties are extremely useful in helping us ‘find’ and/or ‘sketch’ the gradient function of 
a graph when the equation of the function is not provided.

A general approach to these types of problems is to first locate where a horizontal tangent line 
would occur on the curve. Once the point(s) have been located we can then ‘break up’ the 
remainder of the curve into appropriate regions. e.g., regions of positive gradients, regions of 
negative gradients and so on.
(a) In this case, our ‘key’ points occur when ,  and x = 0. At each of these 
points the gradient is zero. We observe that for  and  the gradient is 
positive. Also, for  the gradient is negative. We start by identifying these regions on the 
set of axes defining  versus x – this will show us where we can sketch the gradient function.

f ' a( )
a f a( ),( ) y f x( )=

A

B

C

D

E
x1 x2 x

y

y f x( )=

1. At A, tangent has a negative slope.
2. For  gradient is < 0, i.e., .
3. At B, tangent is a horizontal line. Meaning
    that it has a gradient of zero.
4. At  gradient is zero, i.e., .
5. At C, tangent has a positive slope.
6. For  gradient is positive.
7. At D, tangent is a horizontal line. Meaning
    that it has a gradient of zero.
8. At  gradient is zero, i.e., .
9. For  gradient is negative.
10. At E, tangent has a negative slope.

x x1< g' x( ) 0<

x x1= g' x1( ) 0=

x1 x x2< <

x x2= g' x2( ) 0=
x x2>

Sketch the graph of the gradient function of the curves shown below.
(a) (b)

x1 x2 x

y

x1 x3
x2 x

y
y g x( )=y f x( )=

E 19.14XAMPLE

S
o
l
u
t
i
o
n

x x1= x x2=
x x1 0 x x2< <,< x x2>

x1 x 0< <
f ' x( )

x1 x2 x

dy
dx------
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All that remains is to ‘identify’ the gradient values along the curve. By ‘identify’ we mean 
determine the relative gradient values. That is, the region where the gradient has been identified 
as being either positive or negative. As we move along the curve (from left to right) are the 
gradient values increasing or decreasing? As you move along the curve, keep asking yourself 
questions like, “Is the gradient value becoming more and more positive?”, “Is the gradient value 
becoming more and more negative?”, “Is the gradient becoming smaller and smaller?” and so on.

These questions can be more easily answered if you use a ruler or pencil and run it along the 
curve from left to right.

Section I ( ): 
Positive gradient that is decreasing in value as we get closer to .

Section II ( ): 
Negative gradient becomes more and more negative, then, while still remaining negative,
the gradient value becomes less and less negative until it reaches a value of zero
at x = 0.

Section III ( ):
Positive gradient becomes more and more positive, then, while still remaining positive,
the gradient value becomes less and less positive until it reaches a value of zero at

 . As we continue along the curve, the gradient value remains positive and becomes
more and more positive.

Combining all of our findings we can produce the 
following sketch of the gradient function:

Realise that we are not so much interested in the 
numerical values of the gradient function but rather the 
general shape of the gradient function.

(b) Using the same approach we first determine the ‘regions’ where the gradient function lies
(i.e., where it is positive and where it is negative).

I. For  .
II. At , .
III. For , .
IV. At  the gradient value cannot be found.
V. For , .
VI. At , .
VI. For , .

x1 x2 x

y
y f x( )=

x1 x2 x

y
y f x( )=

x1 x2 x

yI                                     II                                                III

x x1<
x1

x1 x 0< <

x 0>

x x2=

x1 x2 x

dy
dx------

x1 x3x2 x

dy
dx------

x x1 g' x( ) 0<,<
x x1= g' x( ) 0=
x1 x x2< < g' x( ) 0>
x x2=
x2 x x3< < g' x( ) 0<
x x3= g' x( ) 0=
x x3> g' x( ) 0>
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Notice that at  the curve finishes in a peak. Trying to place a tangent at a point such as this 
is not possible – i.e., approaching  from the left and from the right provides two different 
tangents that will not coincide as we get closer and closer to . In order for a gradient-
value to exist at x = a (say) one of the conditions is that the tangents (as we approach x = a) from 
the left and from the right must coincide. This reinforces the need to understand that 

 exists if and only if , 
i.e., the right-hand side limit equals the left-hand side limit.

1. For each of the following functions, sketch the corresponding gradient function.
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

2. Sketch the graph of the function  given that  for all real x.

3. Sketch the graph of  given that ,
 for x > 2 and x < 1 and  for 1 < x < 2.

x x2=
x x2=

x x2=

f a h+( ) f a( )–
h--------------------------------------

h 0→lim
f a h+( ) f a( )–

h--------------------------------------
h 0+→
lim f a h+( ) f a( )–

h--------------------------------------
h 0–→
lim=

EXERCISES 19.2.2

(0,2)

(4,5)
y

x

y

x

y

x

(0,4)

(4,0)

(8,4)
(0,5)

(5,0)

y

x

y

x

y

x

(–1,2)

(4,6)
(0,4)

(5,0)

y

x

y

x

y

x–2               1    2   3

5

2

a        b

a     b         dc

f x( ) f 1( ) 0 f ' x( ), 1–= =

f :          f 2( ) 2 f ' 2( ), 0 f 1( ), 4 f ' 1( ), 0= = = =
f ' x( ) 0> f ' x( ) 0<
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19.2.3 DIFFERENTIATING WITH VARIABLES OTHER THAN

    AND 

Although it was convenient to establish the underlying theory of differentiation based on the use 
of the variables x and y, it must be pointed out that not all expressions are written in terms of x and 
y. In fact, many of the formulae that we use are written in terms of variables other than y and x, 
e.g., volume, V, of a sphere is given by , where r is its radius. The displacement of a 

particle moving with constant acceleration is given by . However, it is reassuring 
to know that the rules are the same regardless of the variables involved. Thus, if we have that y is 
a function of x, we can differentiate y with respect to (w.r.t) x to find . On the other hand, if we 

have that y is a function of t, we would differentiate y w.r.t. t and write . Similarly, if W was a 

function of , we would differentiate W w.r.t.  and write .

(a) As V is a function of r, we need to differentiate V with respect to r:
.

(b) This time p is a function of w, and so we would differentiate p with respect to w:
.

(c) In this expression we have that s is a function of t and so we differentiate s w.r.t t:
.

1. Differentiate the following functions with respect to the appropriate variable.
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

x y

V 4
3---πr3=

s ut 1
2---at

2+=

dy
dx------
dy
dt------

θ θ dW
dθ--------

Differentiate the following with respect to the appropriate variable
(a) (b) (c)V 4

3---πr3= p 3w3 2w– 20+= s 10t 4t2+=
E 19.15XAMPLE

S
o
l
u
t
i
o
n

V 4
3---πr3

dV
dr-------⇒ 4

3---π 3r2( ) 4πr2= = =

p 3w3 2w– 20 dp
dw-------⇒+ 9w2 2–= =

s 10t 4t2 ds
dt-----⇒+ 10 8t+= =

EXERCISES 19.2.3

s 12t4 t–= Q n 1
n2-----+   2= P r r r3 2–+( )=

T θ θ–( )3
θ-----------------------= A 40L L3–= F 50

v2------ v–=

V 2l3 5l+= A 2πh 4h2+= N n4 n3– πn+=
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2. Differentiate the following with respect to the independent variable.
(a) (b) (c)

(d) (e) (f)

A transcendental function is a function that cannot be constructed in a finite number of steps 
from elementary functions and their inverses. Some examples of these functions are sinx, cosx, 
tanx, the exponential function,  and the logarithmic function  (or lnx).

Also in this section we look at derivatives of expressions that involve the product of two 
functions, the quotient of two functions and the composite of two functions. Each of these types 
of expressions will lead to some standard rules of differentiation.

19.3.1 DERIVATIVE OF CIRCULAR TRIGONOMETRIC
    FUNCTIONS

We begin by considering the trigonometric functions, i.e., the sine, cosine and tangent functions.
There are a number of approaches that can be taken to achieve our goal. In this instance we will 
use two different approaches to find the derivative of the function .

Method 1 (A limits approach):

Letting  and using the definition from first principles we have

It is not immediately obvious what this limit is, however, we can simplify this expression using 
the trigonometric identities that we have looked at in Chapter 10 and then make use of some 
algebra. We provide a full account of how to derive the result in §19.8. At this stage we simply 
quote the result.

Method 2 (Using the graph of the original function):

We will deduce the derivative of  by using its graph and the methods employed in Section 
19.2.2.

v 2
3--- 5 2

t2----–  = S πr2 20
r------+= q s5 3

s---–=

h 2 t– t2+
t3---------------------= L 4 b–

b----------------= W m 2–( )2 m 2+( )=

DERIVATIVE OF 
TRANSCENDENTAL FUNCTIONS

19.3

ex xelog

x   x( )sin

f x( ) x( )sin=

f ' x( ) f x h+( ) f x( )–
h--------------------------------------

h 0→lim=
x h+( )sin x( )sin–

h----------------------------------------------
h 0→lim=

  f x( ) x( ) then f ' x( )sin x( )  cos= =

x( )sin
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We begin by sketching a graph of  
and by measuring its gradient (m) along different 
points on the curve. To do this we draw a tangent 
at each of these points and then measure the 
gradient of the tangent. Next we plot the values of 
the gradient that we obtain at each of these points. 
This in turn will provide us with the values of the 
gradient function. Plotting these values (as shown 
in the diagram alongside) will then produce a 
rough sketch of the gradient function (and hence 
the derivative). From the plot of the gradient 
values we can reasonably assume that the gradient 
function obtained corresponds to the cosine 
function.

This is consistent with our earlier result (based on a limits approach). 
So, again we have that if .

Similarly, using either approaches, we have that if

and if

The derivative of other trigonometric functions can also be obtained in the same way, however, 
we will use other results that will make this process easier. Next, we consider the exponential 
function.

19.3.2 DERIVATIVE OF THE EXPONENTIAL FUNCTION

Consider the exponential function . Although we could apply the same graphical method 
which was used to determine the derivative of the sine function, this time we shall make use of 
the definition of the derivative, i.e.,

Notice that this is the only function which has a derivative that is the same as itself. That is,

m = 1

m = 0
m = –0.6m = 0.6

m = –1

m = 0
m = –0.6 m = 0.6

m = 1

m = 0.6
m = 0

dy
dx------1

–1

0.6

–0.6

π 2π

π 2π0

y

x

x

f x( ) x( )sin=

f x( ) x( ) then f ' x( )sin x( )cos= =

  f x( ) x( )cos  then f ' x( ) x( )  sin–= =

  f x( ) x( ) then f ' x( )tan sec2 x( )  = =

x   ex

To determine the value of the limit we make use of a 
table of  values. e.g., for h = 0.01, we have that  

As we use smaller values of h, this ratio will become 
closer to one.

e0.01 1–
0.01------------------- 0.01005

0.01------------------- 1.005= =

f ' x( ) f x h+( ) f x( )–
h--------------------------------------

h 0→lim=

ex h+ ex–
h----------------------

h 0→lim=

exeh ex–
h---------------------

h 0→lim   using exeh ex h+= =

ex eh 1–( )
h------------------------

h 0→lim=

ex eh 1–( )
h------------------

h 0→lim=

ex 1×=
ex=



MATHEMATICS – Higher Level (Core)

624

if 

19.3.3 DERIVATIVE OF THE NATURAL LOG FUNCTION

Consider the function . As in the previous case, we use the definition of the derivative 
to establish the gradient function of .

 (Using the log laws)
The next step is a little tricky, so we write it down first and then see how we arrive at the result.

To get to this step we proceeded as follows:

Then, as the argument in the limit is h (i.e., it is independent of x) we have

Then, as the log function is a continuous function, we have that the limit of the log is the same as 
the log of the limit so that 

However, we also have that  and so we end up with the result that 

And so, we have that if

19.3.4 DERIVATIVE OF A PRODUCT OF FUNCTIONS

Many functions can be written as the product of two (or more) functions. For example, the 
function  is made up of the product of two simpler functions of x. In 
fact, expressions such as these take on the general form  where 
(in this case) we have  and .

  f x( ) ex then f ' x( ) ex  = =

x   xelog
x   xelog

f ' x( ) f x h+( ) f x( )–
h--------------------------------------

h 0→lim
x h+( )elog x( )elog–

h---------------------------------------------------
h 0→lim= =

x h+
x------------  

elog
h----------------------------

h 0→lim=

1
x--- 1 h

x---+  
x
h---

elog
h 0→lim=

1 h
x---+  

elog
h---------------------------- 1

x--- x
1 h

x---+  
elog
h----------------------------⋅ 1

x---
x
h---   1 h

x---+  
elog⋅ 1

x--- 1 h
x---+  

x
h---

elog⋅= = =

1
x--- 1 h

x---+  
x
h---

elog⋅
h 0→lim

1
x--- 1 h

x---+  
x
h---

elog
h 0→lim=

1 h
x---+  

x
h---

elog
h 0→lim 1 h

x---+  
x
h---

h 0→limelog=

1 h
x---+  

x
h---

h 0→lim e=

   1x--- 1 h
x---+  

x
h---

elog
h 0→lim

1
x--- eelog 1

x--- 1× 1
x---= = =

  f x( ) xe   then  f ' x( )log 1
x---
  = =

y x3 2x–( ) x2 x 3–+( )=
y u v  or   y× f x( ) g x( )×= =

u f x( ) x3 2x–( )= = v g x( ) x2 x 3–+( )= =
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To differentiate such expressions we use the product rule, which can be written as:

(a) Let . So that .

Using the product rule we have     

(b) Let 
Then, .

Using the product rule:    

(c) Let . This time set up a table:

Function Derivative
If  then

If  then

  y u v  ×=   dydx------
du
dx------ v× u dv

dx------
 ×+=

  y f x( ) g x( )  ×=   dydx------ f ' x( ) g x( )× f x( ) g' x( )  ×+=

Differentiate the following
(a) (b) (c)x2 x( )sin x3 2x– 1+( )ex 1

x--- x( )elog
E 19.16XAMPLE

S
o
l
u
t
i
o
n

y x2 x( ) so that usin x2 and v x( )sin= = = du
dx------ 2x and dvdx------ x( )cos= =

dy
dx------

du
dx------ v× u dv

dx------×+=
2x x( )sin× x2 x( )cos×+=
2x x( ) x2 x( )cos+sin=

A useful method to find the derivative of a product makes use of the following table:
Function Derivative
u x2= du

dx------ 2x=

v x( )sin= dv
dx------ x( )cos=

2x x( )sin

x2 x( )cos
Adding: 2x x( ) x2 x( )cos+sin

y x3 2x– 1+( )ex so that  u x3 2x– 1+( ) and v ex.= = =
du
dx------ 3x2 2 and dvdx------– ex= =

dy
dx------

du
dx------ v× u dv

dx------×+=
3x2 2–( ) ex× x3 2x– 1+( ) ex×+=
3x2 2– x3 2x– 1+ +( )ex=
x3 3x2 2x– 1–+( )ex=

y 1
x--- xe  with ulog 1

x--- and v xelog= = =

Function Derivative
u 1

x---= du
dx------

1
x2-----–=

v xelog= dv
dx------

1
x---=

1
x2-----– xelog×

1
x---

1
x---×

Adding: dydx------
1
x2-----– xelog× 1

x---
1
x---×+=

1
x2-----– xelog× 1

x2-----+=
1
x2----- 1 xelog–( )=
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19.3.5 DERIVATIVE OF A QUOTIENT OF FUNCTIONS

In the same way as we have a rule for the product of functions, we also have a rule for the 
quotient of functions. For example, the function 

is made up of two simpler functions of x. Expressions like this take on the general form
.

For the example shown above, we have that .
As for the product rule, we state the result.

To differentiate such expressions we use the quotient rule, which can be written as:

(a) We express  in the form , so that .

Giving the following derivatives, .
Using the quotient rule we have,

(b) First express  in the form , so that  and

. Using the quotient rule, we have

Function Derivative

If  then

If  then

y x2
x3 x 1–+-----------------------=

y u
v---   or   y

f x( )
g x( )-----------= =

u x2  and  v x3 x 1–+= =

  y u
v--- 
 =   dydx------

du
dx------ v× u dv

dx------×–
v2-------------------------------------  =

  y f x( )
g x( )-----------  =   dydx------

f ' x( ) g x( )× f– x( ) g' x( )×
g x( )[ ]2---------------------------------------------------------------  =

Differentiate the following
(a) (b) (c)x2 1+

x( )sin---------------
ex x+
x 1+-------------- x( )sin

1 x( )cos–-------------------------
E 19.17XAMPLE

S
o
l
u
t
i
o
n

x2 1+
x( )sin--------------- y u

v---= u x2 1 and v+ x( )sin= =
du
dx------ 2x  and  dvdx------ x( )cos= =

dy
dx------

du
dx------ v× u dv

dx------×–
v2-------------------------------------=

2x x( ) x2 1+( ) x( )cos×–sin×
x( )sin[ ]2----------------------------------------------------------------------------=

2x x( ) x2 1+( ) x( )cos–sin
sin2 x( )----------------------------------------------------------------=

ex x+
x 1+-------------- y u

v---= u ex x and v+ x 1+= =
du
dx------ ex 1  and  dvdx------+ 1= =

dy
dx------

du
dx------ v× u dv

dx------×–
v2------------------------------------- ex 1+( ) x 1+( )× ex x+( ) 1×–

x 1+( )2--------------------------------------------------------------------------= =
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(c) Express the quotient  in the form  , so that 

and . Then . 
Using the quotient rule, we have

   

  

19.3.6 THE CHAIN RULE

To find the derivative of  we let  so that .
Next consider the derivative of the function .
We first expand the brackets,  , and obtain .

This expression can be simplified (i.e.,  factorised), giving .
In fact, it isn’t too great a task to differentiate the function .
As before, we expand;  so that .

Factorising this expression we now have .

But what happens if we need to differentiate the expression  ? Of course, we could 
expand and obtain a polynomial with 9 terms (!), which we then proceed to differentiate and 
obtain a polynomial with 8 terms. . . and of course, we can then easily factorise that polynomial 
(not!). The question then arises, “Is there an easier way to do this?”

We can obtain some idea of how to do this by summarising the results found so far:

xex ex x 1 ex– x–+ + +
x 1+( )2---------------------------------------------------------=

xex 1+
x 1+( )2-------------------=

x( )sin
1 x( )cos–------------------------- y u

v---= u x( )sin=

v 1 x( )cos–= du
dx------ x( )  and  cos dv

dx------ x( )sin= =

dy
dx------

du
dx------ v× u dv

dx------×–
v2------------------------------------- x( )cos 1 x( )cos–( )× x( )sin x( )sin×–

1 x( )cos–( )2----------------------------------------------------------------------------------------------= =
x( ) cos2 x( )– sin2 x( )–cos

1 x( )cos–( )2----------------------------------------------------------------=
x( ) cos2 x( ) sin2 x( )+( )–cos

1 x( )cos–( )2---------------------------------------------------------------------=
x( ) 1–cos

1 x( )cos–( )2--------------------------------=
1 x( )cos–( )
1 x( )cos–( )2--------------------------------–=

1
1 x( )cos–( )------------------------------–=

x3 1+ y x3 1+= dy
dx------ 3x2=

y x3 1+( )2=
y x6 2x3 1+ += dy

dx------ 6x5 6x2+=
dy
dx------ 6x2 x3 1+( )=
y x3 1+( )3=

y x9 3x6 3x3 1+ + += dy
dx------ 9x8 18x5 9x2+ +=

dy
dx------ 9x2 x6 2x3 1+ +( ) 9x2 x3 1+( )2= =

y x3 1+( )8=
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The pattern that is emerging is that if .

In fact, if we consider the term inside the brackets as one function, so that the expression is 
actually a composition of two functions, namely that of   and the power function
we can write . 
So that   and , giving the result .

Is this a ‘one–off’ result, or can we determine a general result that will always work?
To explore this we use a graphical approach to see why it might be possible to obtain a general 
result.

We start by using the above example and then move onto a more general case. For the function 
, we let  and so . We need to find what 

effect a small change in x will have on the function y (via u). i.e., what effect will ? 

We have a sort of chain reaction, that is, a 
small change in x, , will produce a 
change in u, , which in turn will produce 
a change in y, ! It is the path from  to 

 that we are interested in.

This can be seen when we produce a graphical representation of the discussion so far.

Function Derivative (Factored form)
y x3 1+= dy

dx------ 3x2= 3x2

y x3 1+( )2= dy
dx------ 6x5 6x2+= 2 3× x2 x3 1+( )

y x3 1+( )3= dy
dx------ 9x8 18x5 9x2+ += 3 3× x2 x3 1+( )2

y x3 1+( )4= dy
dx------ 12x11 36x8 36x5 12x2+ + += 4 3× x2 x3 1+( )3

y x3 1+( )n then dydx------ n 3x2× x3 1+( )n 1–= =

x3 1+
u x3 1 and  y+ un= =

dy
du------ nun 1– n x3 1+( )n 1–= = du

dx------ 3x2= dy
dx------

dy
du------

du
dx------×=

y x3 1+( )2= u x3 1+= g x( )=( ) y u2= f g x( )( )=( )
δx have on y

δx δu δy
x u y

u f x( )= y g f x( )( )=
δx

δu
δy δx

δy

We start by looking at the effect 
that a change in x has on u:

u=2 u=2.331

δy

u

4

5.433561

x=1 x=1.1

δx
δu

x

u

2

2.331

y

δu

u f x( ) x3 1+= = y g u( ) u2= =

Then we observe the effect 
that the change in u has on 
y :

Similarly,  
& 

δu 2.331 2– 0.331= =
δy 5.433561 4– 1.433561= =

Based on these results, the following 
relationship can be seen to hold:δy

δx------
δy
δu------

δu
δx------×=

We then have  
and .

δx 1.1 1– 0.1= =
δu 2.331 2– 0.331= =
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The basic outline in proving this result is shown in the following argument:

Let be a small increment in the variable x and let  be the corresponding increment in the 
variable u. This change in u will in turn produce a corresponding change  in y.
As  tends to zero, so does . We will assume that  when . Hence we have that 

           

We then have the result:

Chain rule (composite function notation)

An alternative notation when using the chain rule occurs when the function is expressed in the 
form of a composite function, i.e., in the form . 

So, if   . 

That is, the derivative of the composite function  is , or

.

In short, the chain rule provides a process whereby we can differentiate expressions that involve 
composite functions. For example, the function  is a composition of the sine 
function  and the squared function, . So that we would let u (or  ) equal , giving 

.

The key to differentiating such expressions is to recognise that the chain rule must be used, and to 
choose the appropriate function u (or ).

Using the chain rule

We will work our way through an example, showing the critical steps involved when using the 
chain rule. 

This is highlighted by finding the derivative of the function .

δx δu
δy

δx δu δu 0≠ δx 0≠
δy
δx------

δy
δu------

δu
δx------

δy
δx------δx 0→lim⇒⋅ δy

δu------
δu
δx------⋅δx 0→lim= =

Given that:
δx 0 δu 0→⇒→

δy
δu------δx 0→lim   δu

δx------δx 0→lim  ⋅=

δy
δu------δu 0→lim   δu

δx------δx 0→lim  ⋅=

dy
dx------∴ dy

du------
du
dx------⋅=

    dydx------
dy
du------

du
dx------

  ⋅=

f og

F f og, then F x( ) f g x( )( ) and F' x( ) f ' g x( )( ) g' x( )⋅= = =

f og f og( )' f 'og( )g'=

   ddx------ f og( ) df
du------= du
dx------, where u g x( )  =

y x2( )sin=
( )sin x2 g x( ) x2

y u( ), where usin x2= =

g x( )

y x2( )sin=
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(a) Begin by letting .

Express y in terms of u, that is,  .

Using the chain rule we have 

 
(b) This time we let , so that .

Now let  so that  and .
Therefore, using the chain rule we have

      

Step 1 Recognition
This is the most important step when deciding if using the chain rule is 
appropriate. In this case we recognise that the function  is a 
composite of the sine and the squared functions.

Step 2 Define u (or g(x))
Let the ‘inside’ function be u. In this case, we have that 

Step 3 Differentiate u (with respect to x)

Step 4 Express y in terms of u

Step 5 Differentiate y (with respect to u)

Step 6 Use the chain rule

y x2( )sin=

u x2=

du
dx------ 2x=

y u( )sin=

dy
du------ u( )cos=

dy
dx------

dy
du------

du
dx------⋅ u( ) 2x×cos 2x x2( )cos= = =

Differentiate the following functions (a)
(b)

y x xcos+( )elog=
f x( ) 1 3x2–( )4=

E 19.18XAMPLE

S
o
l
u
t
i
o
n

u x x( )cos+= du
dx------⇒ 1 x( )sin–=

y uelog= dy
du------⇒ 1

u---
1

x x( )cos+-------------------------=  =

dy
dx------

dy
du------

du
dx------⋅ 1

x x( )cos+------------------------- 1 x( )sin–( )⋅= =
1 x( )sin–
x x( )cos+-------------------------=

g x( ) 1 3x2–= g' x( ) 6x–=
f x( ) hog( ) x( )= h g x( )( ) g x( )( )4= h' g x( )( ) 4 g x( )( )3=

f ' x( ) hog( )' x( ) h' g x( )( ) g' x( )⋅= =
4 g x( )( )3 6x–( )×=
24x 1 3x2–( )3–=
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Some standard derivatives

Often we wish to differentiate expressions of the form  or other such 
functions, where the x term only differs by a constant factor from that of the basic function. That 
is, the only difference between  is the factor ‘2’. We can use the 
chain rule to differentiate such expressions:
       Let u = 2x, giving y = sin (u) and so 
Similarly,
       Let u = 5x, giving  and so .
Because of the nature of such derivatives, functions such as these form part of a set of functions 
that can be considered as having derivatives that are often referred to as standard derivatives. 
Although we could make use of the chain rule to differentiate these functions, they should be 
viewed as standard derivatives.

These standard derivatives are shown in the table below (where k is some real constant):
 

Notice, the only derivative that does not involve the constant k is that of the logarithmic function. 
This is because letting u = kx, we have  so .

When should the chain rule be used?

A good rule of thumb:

A good first rule to follow is: If the expression is made up of a pair of brackets and a 
power, then, the chances are that you will need to use
the chain rule.

As a start, the expressions in the table that follows would require the use of the chain rule. Notice 
then that in each case the expression can be (or already is) written in ‘power form’. That is, of the 
form .

y

y 2x( ) or ysin e5x= =

y 2x( ) and ysin x( )sin= =

dy
dx------

dy
du------

du
dx------⋅ u( ) 2×cos 2 2x( )cos= = =

y eu= dy
dx------

dy
du------

du
dx------⋅ eu 5× 5e5x= = =

dy
dx------

kx( )sin k kx( )cos
kx( )cos k kx( )sin–
kx( )tan k kx( )2sec

ekx kekx

kx( )elog 1
x---

y u( )log= dy
dx------

dy
du------

du
dx------⋅ 1

u--- k× 1
kx----- k× 1

x---= = = =

y f x( )[ ]n=
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However, this isn’t always the case!

Although the above approach is very useful, often you have to recognise when the function of a 
function rule is more appropriate. By placing brackets in the appropriate places, we can recognise 
this feature more readily. The examples below illustrate this:

Completing the process for each of the above functions we have:
(a) .

(b) .

(c) .

(d) .

We now look at some of the more demanding derivatives, i.e., derivatives which combine at least 
two rules of differentiation, for example, the need to use both the quotient rule and the chain rule, 
or the product rule and the chain rule.

Expression Express in power form Decide on what u and y are
(a) Already in power form.  Let 

(b)  Let 

(c)  Let 

(d)  Let 

(e)  Let 

Expression Express it with brackets Decide on what u and y are
(a) . Let 

(b) Let 
(c) Already in bracket form. Let 
(d) Already in bracket form. Let 

y 2x 6+( )5= u 2x 6 and y+ u5= =

y 2x3 1+( )= y 2x3 1+( )
1
2---= u 2x3 1 and y+ u

1
2---= =

y 3
x 1–( )2------------------- x 1≠,= y 3 x 1–( ) 2– x 1≠,= u x 1 and y– 3u 2–= =

f x( ) sin2x= f x( ) xsin( )2= u x and f u( )sin u2= =

y 1
e x– ex+3

-----------------------= y e x– ex+( )
1
3---–= u e x– ex and y+ u

1
3---–= =

y ex2 1+= y e x2 1+( )= u x2 1 and y+ eu= =

y e 2xsin= y e 2xsin( )= u 2x and sin y eu= =

y x2 4–( )sin= u x2 4 and y– u( )sin= =
f x( ) xsin( )elog= u x and f u( )sin u( )elog= =

dy
dx------

dy
du------
du
dx------ eu 2x× 2xex2 1+= = =

dy
dx------

dy
du------
du
dx------ eu 2 2x( )cos× 2 2x( )e 2x( )sincos= = =

dy
dx------

dy
du------
du
dx------ u( ) 2x×cos 2x x2 4–( )cos= = =

dy
dx------

dy
du------
du
dx------

1
u--- xcos× xcos

xsin----------- xcot= = = =

Differentiate the following
(a) (b) (c)y 1 sin2x+= y ex3 1 2x–( )sin= x    x

x2 1+
------------------

E 19.19XAMPLE
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(a) Let . Using the chain rule we have
     = 

     = 

(b) Let . Using the product rule first, we have

    

(c) Let   (Quotient rule).

(a) .
Notice that using the log laws to first simplify this expression made the differentiation
process much easier. 
The other approach, i.e., letting ,  and then using the chain rule
would have meant more work – as not only would we need to use the chain rule but also
the quotient rule to determine .

(b) Let  so that . 
Using the chain rule we have 

S
o
l
u
t
i
o
n

y 1 sin2x+( ) 1 sin2x+( )1 2⁄= =
dy
dx------

1
2---

d
dx------ 1 sin2x+( )× 1 sin2x+( ) 1 2/–×= 1

2--- 2 x xcossin( )× 1
1 sin2x+( )-------------------------------×

x xcossin
1 sin2x+( )-------------------------------

y ex3 1 2x–( )sin=
dy
dx------

d
dx------ e

x3( ) 1 2x–( ) ex3 d
dx------×+sin× 1 2x–( )sin( )=

3x2ex3 1 2x–( ) ex3 2 1 2x–( )cos–×+sin=
ex3 3x2 1 2x–( ) 2 1 2x–( )cos–sin( )=

f x( ) x
x2 1+

------------------ f ' x( )⇒
d
dx------ x( ) x2 1+× x d

dx------ x2 1+( )×–
x2 1+( )2-------------------------------------------------------------------------------------= =

1 x2 1+ x 1
2--- 2x x2 1+( )

1 
2----–×××–×

x2 1+-------------------------------------------------------------------------------------------=

x2 1+ x2
x2 1+

------------------–
x2 1+( )-------------------------------------------=

x2 1+( )2 x2–
x2 1+

-------------------------------------
x2 1+( )-------------------------------------=

1
x2 1+( ) x2 1+
--------------------------------------=

Differentiate the following
(a) , x > 0 (b) (c)y x

x 1+------------  ln= y tln( )sin= y x x2( )ln=

E 19.20XAMPLE

S
o
l
u
t
i
o
n

y x
x 1+------------  ln x( ) x 1+( ) dy

dx------∴ln–ln 1
x---

1
x 1+------------– x 1+( ) x–

x x 1+( )------------------------- 1
x x 1+( )--------------------= = = = =

u x
x 1+------------= y u( )ln=

du
dx------

u tln= y usin=
dy
dt------

dy
du------

du
dt------⋅ u( ) 1

t---×cos tln( )cos
t---------------------= = =
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(c) Here we have a product , so that the product rule needs to be used and then we
need the chain rule to differentiate . 

Notice that in this case we cannot simply rewrite  as . Why? 
Because the functions  and  might have different domains. That is, the
domain of  is all real values excluding zero (assuming an implied domain) whereas
the domain of  is only the positive real numbers. However, if it had been specified
that x > 0, then we could have ‘converted’  to .

So,  = 

A short cut (?)

Once you have practiced the use of these rules and are confident in applying them, you can make 
use of the following table to speed up the use of the chain rule. Assuming that the function  
is differentiable then we have: 

19.3.7 DERIVATIVE OF RECIPROCAL CIRCULAR FUNCTIONS

Dealing with the functions  and  is a straight foward matter – simply 
rewrite them as their reciprocal counterparts. That is,  and

. Once this is done, make use of the chain rule. 

For example, .

We could leave the answer as is or simplify it as follows; .
So, rather than providing a table of ‘standard results’ for the derivative of the reciprocal circular 

y

x x2( )ln×
x2( )ln

x2( )ln 2 x( )ln
x2( )ln 2 x( )ln

x2( )ln
2 x( )ln

x2( )ln 2 x( )ln

dy
dx------

d
dx------ x( ) x2( )ln× x d

dx------ x2( )ln( )×+ 1 x2( )ln× x 2x
x2------×+= = x2( ) 2+ln

f x( )

dy
dx------

f x( )[ ]sin f ' x( ) f x( )[ ]cos
f x( )[ ]cos f ' x( ) f x( )[ ]sin–
f x( )[ ]tan f ' x( ) f x( )[ ]2sec

e f x( ) f ' x( )e f x( )

f x( )[ ]elog f ' x( )
f x( )------------

f x( )[ ]n nf ' x( ) f x( )[ ]n 1–

x( ) x( )cot,sec cosec x( )
x( )sec 1

x( )cos---------------- x( )cot, 1
x( )tan----------------= =

cosec x( ) 1
x( )sin---------------=

d
dx------ cosecx( ) d

dx------
1
xsin----------   d

dx------ xsin( ) 1–[ ] 1 x xsin( ) 2–×cos×– xcos
xsin( )2------------------–= = = =

xcos
x xsinsin---------------------– xcosecxcot–=
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trigonometric functions, we consider them as special cases of the circular trigonometric 
functions.

(a)  

        = – 

Now, .
And so, .

(b) .

Now, .

(c)

       = – 

       = – 

An interesting result

A special case of the chain rule involves the case . By viewing this as an application of the 
chain rule  we have (after setting ):

 i.e., 
This important result is often written in the form

We find that this result is very useful with problems that deal with related rates.

Differentiate the following
(a) , x > 0 (b) (c)f x( ) 2xcot= y sec2x= y cosecx( )ln

x---------------------------=
E 19.21XAMPLE

S
o
l
u
t
i
o
n

f x( ) 2xcot 1
2xtan-------------- 2xtan( ) 1– f ' x( )∴ 1 2sec22x 2xtan( ) 2–××–= = = =

2sec22x
tan22x-------------------

2sec22x
tan22x------------------- 2 1

cos22x---------------- 1
tan22x----------------×× 2 1

cos22x---------------- cos22x
sin22x----------------×× 2cosec22x= = =

f ' x( ) 2– cosec22x=

y sec2x 1
xcos( )2------------------- xcos( ) 2– dy

dx------∴ 2 x xcos( ) 3–×sin–×– 2 xsin
xcos( )3-------------------= = = = =

2 xsin
xcos( )3------------------- 2 xsin

xcos----------- 1
xcos( )2-------------------×× 2 xsec2xtan= = dy

dx------∴ 2 xsec2xtan=

y cosecx( )ln
x--------------------------- xsin( ) 1–[ ]ln

x------------------------------ xsin( )ln
x--------------------- dy

dx------∴–
xcos
xsin-----------   x 1 xsin( )ln×–×

x2---------------------------------------------------------------–= = = =
x x x xsin( )lnsin–cos

xsin-----------------------------------------------------
x2-----------------------------------------------------

x x x xsin( )lnsin–cos
x2 xsin-----------------------------------------------------

y x=
dy
dx------

dy
du------

du
dx------⋅= y x=
d x( )
dx----------- dx

du------
du
dx------ 1⇒⋅ dx

du------
du
dx------⋅= = dx

du------ 1 du
dx------⁄=

 dy
dx------

1
dx
dy------  
-----------  =
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1. Use the product rule to differentiate the following and then verify your answer by 
first expanding the brackets
(a) (b)
(c) (d)

2. Use the quotient rule to differentiate the following
(a) (b) (c)

(d) (e) (f)

3. Differentiate the following
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

4. Differentiate the following
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

5. Differentiate the following

(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

(j) (k) (l)

6. Differentiate the following
(a) (b) (c)

(d) (e) (f)

EXERCISES 19.3

x2 1+( ) 2x x3– 1+( ) x3 x2+( ) x3 x2 1–+( )
1
x2----- 1–   1

x2----- 1+   x3 x 1–+( ) x3 x 1+ +( )

x 1+
x 1–------------ x

x 1+------------
x 1+
x2 1+--------------

x2 1+
x3 1–-------------- x2

2x 1+--------------- x
1 2x–---------------

ex xsin x xelog ex 2x3 4x+( )
x4 xcos x xcossin 1 x2+( ) xtan
4
x2----- xsin× xex xsin xex xelog

x
xsin----------

xcos
x 1+------------

ex
ex 1+--------------

xsin
x---------- x

xelog------------ xelog
x 1+------------

ex 1–
x 1+------------- x xcos+sin

x xcos–sin----------------------------- x2
x xelog+----------------------

e 5x– x+ 4x 1
2--- 6xcos–sin e

1
3---x– 2x( )e 9x2+log–

5 5x( ) 3e2x+sin 4x( ) e2x+tan 4x–( ) e 3x––cos
4x 1+( )e x–log e x–( )e x+log x

2---   2x( )cos+sin

7x 2–( )sin x 9x( )elog– 5x( )e 6x( )cos–log

x2 sin2x+sin 2θ( ) 1
θsin-----------+tan xsin

1
x---  cos cos3θ ex( )sin
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(g) (h) (i)
(j) (k) (l)

7. Differentiate the following

(a) (b) (c) (d)
(e) (f) (g) (h)

(i) (j) (k) (l)
(m) (n) (o) (p)

8. Differentiate the following

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

9. Differentiate the following

(a) (b) (c)
(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

(v) (w) (x)

10. Find the value of x where the function  has a horizontal tangent.

11. Find the gradient of the function , where .

xelog( )tan 2x( )cos θsin( )cos
4 θsec cosec 5x( ) 3 2x( )cot

e2x 1+ 2e4 3x– 2e4 3x2– ex

e x 1
2---e

2x 4+ 1
2---e

2x2 4+ 2
e3x 1+-------------

e3x2 6x– 1+ e θ( )sin e 2θ( )cos– e2 x( )elog

2
e x– 1+---------------- ex e x––( )3 e2x 4+ e x2– 9x 2–+

x2 1+( )elog θ θ+sin( )elog ex e x––( )elog
1

x 1+------------  
elog xelog( )3 xelog

x 1–( )elog 1 x3–( )elog 1
x 2+----------------  

elog

cos2x 1+( )elog x xsin( )elog x
xcos-----------  

elog

x x3 2+( )elog xsin2x cos2 θ
x3e 2x2– 3+ x xelog( )cos xelog( )elog
x2 4x–

x2( )sin------------------
10x 1+
10x 1+( )elog--------------------------------- 2x( )cos

e1 x–--------------------

x2 4xsin( )elog e x– xsin 2x xsin( )cos
e5x 2+
1 4x–---------------

θsin( )elog
θcos-------------------------- x

x 1+----------------

x x2 2+ x3 x+( ) x 1+3 x3 1–( ) x3 1+
1
x--- x2 1+( )elog x2

x2 2x+-----------------  elog x 1–
x----------------

e x– x2 9+ 8 x3–( ) 2 x– xn xn 1–( )ln

x   xe x–

x   1
x---  sin x 2

π---=



MATHEMATICS – Higher Level (Core)

638

12. Find the gradient of the function  at the point where the function
crosses the y–axis.

13. For what value(s) of x will the function  have a gradient of 1.

14. Find the rate of change of the function  at the point .

15. Find (a)  (b)     (c)     

16. (a) If y is the product of three functions, i.e.,  , show that
.

(b) Hence, differentiate the following i.
ii.

17. (a) Given that , find i.
ii.

(b) Given that , find i.
ii.

18. Given that , determine .

19. If , find x such that .

20. If , find .

21. Differentiate the following
(a) (b) (c)
(d) (e) (f)

22. Differentiate the following
(a) (b) (c)
(d) (e) (f)

(g) (h) (i)

23. Differentiate the following
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

x    x2 4+( )elog

x   x2 1+( )ln

x   e x2– 2+ 1 e,( )

d
dx------ x xcossin( ) d

dx------ x°sin( ) d
dx------ xcos °( )

y f x( )g x( )h x( )=
dy
dx------ f ' x( )g x( )h x( ) f x( )g' x( )h x( ) f x( )g x( )h' x( )+ +=

x2 x xcossin
e x3– 2x( ) xcos( )elogsin

f x( ) 1 x3 and g x( )– xelog= = f og( )' x( )
go f( )' x( )

f x( ) x2( ) and g x( )sin e x–= = f og( )' x( )
go f( )' x( )

T θ( ) kθcos
2 3 kθsin+-------------------------- k 0≠,= T ' π

2k------  

f x( ) x a–( )m x b–( )n= f ' x( ) 0=

f θ( ) θm θncossin= θ such that f ' θ( ) 0=

f x( ) 4xcot= g x( ) 2xsec= f x( ) cosec3x=
y 3x π

2---+  sin= y π
4--- x–  cot= y 2x π–( )sec=

secx2 x xsecsin xsec( )ln
cot3x x

cosecx---------------- cosecx
xsin----------------

x4cosec 4x( ) 2xcotxtan x xcos+sec

e xsec sec ex( ) ex xsec
xln( )cot 5xcot( )ln x xlncot

cosec xsin( ) cosecx( )sin xcosecxsin
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In this section, over an appropriate domain, either expression  or  can be used. 
Similarly for  and  as well as  and . That is,

,
,
.

It is important to keep track of how the domain of some functions is not the same as that of their 
derived function. For example, although the function  is defined for –1 ≤ x ≤ 1 its 
derived function,  is defined for –1 < x < 1. i.e., the end points, x = ±1  are not included.

19.4.1 DERIVATIVE OF 

By definition,  is defined for . We start by letting .
Then we have that 

So, 
Note the change in domains!

Now we express  back in terms of x: Using the identity  we have 
. So, at this stage, the derivative of 

 is given by . However, over the interval  we 

have that  is positive and so we only use the positive square root.
We then have the result that .

That is, .

Note that we could have arrived at the same conclusion
about the sign of the derivative by looking at the graph 
of  for .

Using the graph of of  for , we can see that 
over the given interval the gradient anywhere on the curve  is 
always positive and so we have to choose the positive square root.

DERIVATIVE OF INVERSE 
TRIGONOMETRIC FUNCTIONS

19.4

Sin 1– x( ) arcsin x( )
Cos 1– x( ) arccos x( ) Tan 1– x( ) arctan x( )

Sin 1– x( ) arcsin x( ) 1 x 1≤ ≤–,=
Cos 1– x( ) arccos x( ) 1 x 1≤ ≤–,=
Tan 1– x( ) arctan x( ) ∞ x ∞< <–,=

y arcsin x( )=
dy
dx------

Sin 1– x( )

Sin 1– x( ) x 1 1,–[ ]∈ y Sin 1– x( ) 1 x 1≤ ≤–,=
y Sin 1– x( ) x⇔ y π

2--- y π
2---≤ ≤–,sin= =

dx
dy------ y π

2--- y π
2---≤ ≤–, dy

dx------⇒cos 1
ycos----------- π

2--- y π
2---< <–,= =

ycos cos2y sin2y+ 1=
cos2y 1 sin2y ycos∴– 1 sin2y–± 1 x2–±= = =
Sin 1– x( ) dy

dx------
1

1 x2–
------------------± 1 x 1< <–,= π

2--- y< π
2---<–

ycos
dy
dx------

1
1 x2–

------------------ 1 x 1< <–,=

  ddx------ Sin 1– x( ) 1
1 x2–

------------------ 1 x 1  < <–,=

–1                         1

π
2---

π
2---–

x

y

y Sin 1– x=Sin 1– x( ) x 1 1,–( )∈

Sin 1– x( ) x 1 1,–( )∈
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Derivative of  where 

Using the chain rule for  we set , –1 ≤ u ≤ 1, 

which then gives , –1 <  < 1. 

Note: .

That is, 

19.4.2 DERIVATIVE OF 

Starting with the principle cosine function  we define the inverse cosine 
function,  as . Letting  we have 

 so that . Differentiating both sides with respect to 
y we have

Note the change in domains!

Using the trigonometric identity  we have .
Therefore, . 
We now need to determine which sign to choose. 
Using the graph of 
we see that over this domain, the gradient is always
negative and so we choose .

That is

Derivative of  where 

Making use of the chain rule and setting  so that  we have

, –1 <  < 1. 

That is

Sin 1– x
a---   a– x< a<, a 0>

y Sin 1– x
a---   a– x a≤ ≤,= u x

a--- y⇒ Sin 1– u= =

dy
dx------

dy
du------

du
dx------⋅ 1

1 u2–
------------------ 1

a---× a
a2 x2–

-------------------- 1
a---× 1

a2 x2–
--------------------= = = = x

a---

1 u2– 1 x
a---   2– a2 x2–

a2---------------- a2 x2–
a-------------------- 1

1 u2–
------------------∴ a

a2 x2–
--------------------= = = =

  ddx------ Sin 1– x
a---   1

a2 x2–
-------------------- a x a  < <–,=

Cos 1– x( )

f x( ) cosx 0 x π≤ ≤,=
f 1– x( ) f 1– x( ) Cos 1– x( ) 1 x 1≤ ≤–,= y f 1– x( )=

y Cos 1– x( ) 1 x 1≤ ≤–,= x y 0 y π≤ ≤,cos=

dx
dy------ y 0 y π dy

dx------⇒≤ ≤,sin– 1
ysin---------- 0 y π< <,–= =

sin2y 1 cos2y–= siny 1 cos2y–± 1 x2–±= =

–1                         1

π
2---

x

y
π

y Cos 1– x=
dy
dx------

1
1 x2–±--------------------- 1– y 1< <,–=

y Cos 1– x( ) 1 x 1< <–,=

1 x2–

  ddx------ Cos 1– x( ) 1
1 x2–

------------------– 1 x 1  < <–,=

Cos 1– x
a---   a x a< <–, a 0>

u x
a---= y Cos 1– u 1 u 1≤ ≤–,=

dy
dx------

dy
du------

du
dx------⋅ 1

1 u2–
------------------– 1

a---× a
a2 x2–

--------------------– 1
a---× 1

a2 x2–
--------------------–= = = = x

a---

  ddx------ Cos 1– x
a---   1

a2 x2–
--------------------– a x a  < <–,=
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19.4.3 DERIVATIVE OF 

Again, we start with a principle tangent function . We define the inverse 
tangent function,  as . Letting  we have 

 so that . Differentiating both sides with respect 
to y we have

.

However, , therefore .

That is, 

Derivative of  where 

Substituting  into  we have  so that

     , –∞ < x < ∞. 

That is, 

19.4.4 GENERALISATIONS FOR THE DERIVATIVE OF THE
     INVERSE CIRCULAR FUNCTIONS

As for the case when we obtained generalised results for the standard derivatives, we can also 
obtain generalised results for the derivatives of the inverse circular functions. This is done by 
making use of the chain rule. We derive one result and then quote the others.

Consider the function , then, letting , so that 
 we have  so that

Similarly, we have the following results

Tan 1– x( )

f x( ) x π
2--- x π

2---< <–,tan=
f 1– x( ) f 1– x( ) Tan 1– x( ) ∞ x ∞< <–,= y f 1– x( )=

y Tan 1– x( ) ∞ x ∞< <–,= x ytan π
2--- y π

2---< <–,=

dx
dy------ sec2y π

2--- y π
2---< <– dy

dx------≤, 1
sec2y------------- π

2---– y π
2---< <,= =

tan2y 1+ sec2y= dy
dx------

1
1 tan+ 2y---------------------- π

2---– y π
2---< <, 1

1 x2+-------------- ∞ x ∞< <–,= =

  ddx------ Tan 1– x( ) 1
1 x2+-------------- ∞ x ∞  < <–,=

Tan 1– x
a---   ∞ x ∞  < <–, a 0>

u x
a---= y Tan 1– x

a---   ∞ x ∞< <–,= y Tan 1– u ∞ u ∞< <–,=

dy
dx------

dy
du------

du
dx------⋅ 1

1 u2+--------------
1
a---× a

a2 x2+-----------------= = =

  ddx------ Tan 1– x
a---   a

a2 x2+----------------- ∞ x ∞  < <–,=

y arcsin f x( )[ ] 1 f x( ) 1<<–,= u f x( )=
y arcsin u( )= dy

dx------
dy
du------

du
dx------⋅ 1

1 u2–
------------------ f ' x( )×= =

  ddx------ arcsin f x( )[ ]( ) f ' x( )
1 f x( )[ ]2–

------------------------------- 1 f x( ) 1  <<–,=

  ddx------ arccos f x( )[ ]( ) f ' x( )
1 f x( )[ ]2–

-------------------------------– 1 f x( ) 1  <<–,=

  ddx------ arctan f x( )[ ]( ) f ' x( )
1 f x( )[ ]2+---------------------------- ∞ f x( ) ∞  <<–,=
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(a) Let  so that  and as . Using the chain

rule we have,  = 

That is, .

Note: We could have simply used the standard result,  
with a = 2!
(b) Using the generalised result,  with 

 we have .

That is, .

(c) Using the generalised result,  with

 we have .
We now determine the domain: 

.
      .
That is,

          

(a) Using the product rule we have: 

      = , –1 < 2x < 1

Differentiate the following and specify the domain of the derivative
(a) (b) (c)f x( ) arcsin x

2---  = y arctan x 2+( )= y arccos x2 9–( )=

E 19.22XAMPLE

S
o
l
u
t
i
o
n

u x
2---= f x( ) arcsin u( )= 1 u 1 2 x 2≤ ≤–⇒≤ ≤–

f ' x( ) d
du------ arsin u( )( ) du

dx------⋅ 1
1 u2–

------------------ 1
2---× 1

1 x
2---   2–

------------------------ 1
2---×= = = 1

2 4 x2–
4--------------

----------------------

f ' x( ) 1
4 x2–

------------------ 2 x 2< <–,=

d
dx------ arcsin x

a---     1
a2 x2–

-------------------- a x a< <–,=

d
dx------ arctan f x( )[ ]( ) f ' x( )

1 f x( )[ ]2+---------------------------- ∞ f x( ) ∞<<–,=

f x( ) x 2+= d
dx------ arctan x 2+[ ]( ) 1

1 x 2+[ ]2+---------------------------- ∞ x 2 ∞<+<–,=
dy
dx------

1
1 x 2+( )2+---------------------------- ∞ x ∞< <–,=

  ddx------ arccos f x( )[ ]( ) f ' x( )
1 f x( )[ ]2–

-------------------------------– 1 f x( ) 1  <<–,=

f x( ) x2 9–=   ddx------ arccos x2 9–[ ]( ) 2x
1 x2 9–[ ]2–

----------------------------------– 1 x2 9–( ) 1< <–,=

10
8

88–10– 10
x

yy x2=1 x2 9–( ) 1 8 x2 10< <⇔< <–
x∴ 10– 2 2–,( ) 2 2 10,( )∪∈

dy
dx------

2x
1 x2 9–[ ]2–

---------------------------------- x 10– 2 2–,( ) 2 2 10,( )∪∈,–=

Differentiate the following and specify the domain of the derivative
(a) (b)f x( ) xarcsin 2x( )= y arctan x( )=

E 19.23XAMPLE

S
o
l
u
t
i
o
n

f ' x( ) d
dx------ x( ) arcsin 2x( )× x d

dx------ arcsin 2x( )[ ]×+=

1 arcsin 2x( )× x 2
1 2x( )2–

--------------------------×+
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(b) Letting  so that  and  we have

.

Notice that although the domain of  is –∞ < x < ∞, the domain of  is x ≥ 0. 
However, because the derivative involves the term , then x > 0 (as  and 
we cannot divide by zero!)

1. Differentiate with respect to x, each of the following
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

2. Differentiate with respect to x, each of the following
(a) (b) (c)

(d) (e) (f)
(g) (h) (i)
(j) (k) (l)

(m) (n) (o)

3. Differentiate with respect to x, each of the following
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

f ' x( )∴ arcsin 2x( ) 2x
1 4x2–

--------------------- 1
2--- x 1

2---< <–,+=

u arctan x( )= y u= du
dx------

1
1 x2+--------------=

dy
dx------

dy
du------
du
dx------

1
2 u---------- 1

1 x2+--------------× 1
2 1 x2+( ) arctan x( )-------------------------------------------------- x 0>,= = =

arctan x( ) arctan x( )
1

arctan x( )-------------------------- arctan 0( ) 0=

EXERCISES 19.4

arctan 2x( ) arcsin x
3---   Cos 1– 2x( )

Sin 1– 4x( ) arctan x
2---   arcsin x 1–( )

arccos x
4---   arcsin x 1+

2------------   Tan 1– x 4–( )

arcsin 2 x–
2-----------   arctan 2x

3------   arccos 2x 1–
3---------------  

arctan x2( ) Sin 1– x( ) arccos 1
x-------  

arcsin cosx( ) arctan x 1–( ) arcsinx( )ln
Tan 1– ex( ) arccos e x–( ) earcsinx

2
arctan 2x( )-------------------------- 2

arcsin x( )-------------------------- 1
arccosx[ ]2-------------------------

Sin 1– 2x( )( )cos arccos 2x( )( )sin arccosx( )tan

xTan 1– x arcsinx
x----------------- x

arccosx------------------
arctanx
x2----------------- arcsin x2( ) xln 1

x-------Cos
1– x

exarctanex 4 x2+( )arctan x
2---   4 x2– Sin 1– x

2---  
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4. Find  if . Hence, find the real value of k, if y = k.

5. Show that if , then .

6. (a) Show that , where k is a real number.
(b) Find the value of k.

7. Differentiate the following and find the implied domain for each of  and .
(a) (b)

(c) (d)

(e) (f)
(g) (h)

8. Differentiate the following
(a) (b)
(c) (d)

(e) (f)

9. Given that  and .
(a) Find the largest set A such that  exists.
(b) Find  and state its domain.

19.5.1 DIFFERENTIATING 

We have already considered the derivative of the natural exponential function . We 
extend this to a more general form of the exponential function, namely, .
The process is straight forward, requiring an algebraic re–arrangement of .

Method 1

Taking log (base e) of both sides of the equation, we have  
 

So that,                        

dy
dx------ y arctan x

x 1+------------   arctan x 1+
x------------  +=

y 1 x2– Sin 1– x= 1 x2–( )y' 1 xy+=

Sin 1– x Cos 1– x+ k=

f x( ) f ' x( )
f x( ) arcsin π

x---  = f x( ) Cos 1– 1
x--- 1–  =

f x( ) Sin 1– x( ) Cos 1– x
2---  = f x( ) Sin 1– 1 x2–

1 x2+--------------  =

f x( ) arcsin ax( ) a ∈,= f x( ) arcsin 2x 1 x2–( )=
f x( ) Cos 1– 1 x2–

1 x2+--------------  = f x( ) Sin 1– 2x
1 x2+--------------  =

arctan xn( ) arctan x( )[ ]n+ arcsinx arcsin 1 x2–+
x 1 x2– arcsinx+ Tan 1– x b–

a x–----------- b x a< <,
arctan x 1 x2+–[ ] Cot 1– x

f  : 1 1,–[ ]     where f x( ),→ arcsin x( )= g x( ) 1 x–
1 x+------------ x A∈,=

fog( ) x( )
fog( )' x( )

DERIVATIVE OF aX AND logaX19.5

y ax=
y ex=

y ax a 0 1,≠,=
y ax=

y ax yelog⇔ axelog= =
yelog x aelog=
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Next, we differentiate both sides of the equation:               
Now (this is the tricky bit):
Using the fact that  or  and seeing as y is a function of x, we 

can then write . That is, we have replaced  with y.

This means that we can now replace , with .

Now,  = 

i.e.,
Method 2

This method uses another result that we have already encountered (Chapter 7), namely that 
, meaning that we can now write .

Letting  so that  and , using the chain rule we have:

  

That is,      .

This result can be further generalised to:

(a) Based on our result, we have that .

(b) Using the result that , we have that

        

(c) Letting  gives  as . 
Using the chain rule we have:

d
dx------ yelog( ) d

dx------ x aelog( )=

d
dx------ fe x( )log( ) f ' x( )

f x( )------------= 1
f x( )----------- f ' x( )×

d
dx------ yelog( ) 1

y---
dy
dx------⋅= f x( )

d
dx------ yelog( ) d

dx------ x aelog( )= 1
y---

dy
dx------⋅ d

dx------ x aelog( )=
d
dx------ x aelog( ) ae 1

y---
dy
dx------⋅∴log ae dy

dx------⇔log aelog( )y= = = aelog( ) ax×

  if y ax  then  dydx------ aelog( ) ax  ×= =

ax e aelog( )x= y ax e aelog( )x= =
u aelog( )x= y eu= du

dx------ aelog=
dy
dx------

dy
du------
du
dx------

dy
dx------⇒ eu aelog×= =
dy
dx------ e aelog( )x aelog× ax aelog( )×= =

   If    y akx  then  dydx------ k aelog( ) akx×      = =

Differentiate the following 
(a) (b) (c)y 5 2x×= y 34x= y 52x 1+=

E 19.24XAMPLE

S
o
l
u
t
i
o
n

dy
dx------ 5 2elog( )× 2x× 32elog( ) 2x×= =

if    y akx  then  dydx------ k aelog( ) akx×= =
dy
dx------ 4 3elog( ) 34x× 81elog( ) 34x×= =

u 2x 1+= y 52x 1+= y 5u=
dy
dx------

dy
du------
du
dx------ 5elog( )5u 2×= =
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Note that from  a number of different acceptable answers could have been 
given. For example, .

Of course we must not forget that we could have determined the derivative of  by 
using a first principles approach. That is, .

As x is independent of the limit statement, we have .

All that remains then is to determine . We leave this as an exercise for you – however, 
a starting point is to use a numerical approach, i.e., try different values of a (say a = 2, a = 10) and 
tabulate your result for a range of (small) values of h (i.e., make h smaller and smaller). Then 
compare your numerical values to that of  for a = 2 and  for a = 10 and so on.

19.5.2 DIFFERENTIATING 

As in the last section, we use a simple algebraic manipulation to convert an expression for which 
we do not have a standard result (yet!) into one we have met before. In this case we make use of 
the change of base result from chapter 7.

i.e., given  the equation  can then be written as  .

Now,  is a real constant, and so, we are in fact differentiating an expression of the form 

, where . However if  then , meaning that 
we then have:

(a) Given that if  then for   i.e., a = 2 we have

that .

(b) This time we start by letting  so that .

dy
dx------∴ 2 5elog( ) 52x 1+×=

25elog( ) 52x 1+×=
2 5elog( ) 52x 1+×

2 5elog( ) 52x 1+× 2 5elog( ) 52x× 5× 10 5elog( ) 52x×= =

f x( ) ax=
f ' x( ) f x h+( ) f x( )–

h--------------------------------------
h 0→lim

ax h+ ax–
h-----------------------

h 0→lim= =

f ' x( ) ax ah 1–( )
h------------------------

h 0→lim ax ah 1–
h--------------

h 0→lim×= =
ah 1–
h--------------

h 0→lim

2elog 102log

y xalog=

xalog xelog
aelog-------------= y xalog= y 1

aelog------------- xelog×=

1
aelog-------------

y k xelog×= k 1
aelog-------------= y k xelog×= dy

dx------ k 1
x---×=

  If    y xalog    then   dydx------
1
aelog------------- 1

x---     ×= =

Find the derivative of 
(a) (b) (c)x2log 2x 1–( )10log y 8xtan4log=

E 19.25XAMPLE

S
o
l
u
t
i
o
n

y xalog    then   dydx------
1
aelog------------- 1

x---×= = y x2log=

dy
dx------

1
2elog------------- 1

x---× 1
2elog( )x---------------------= =

u 2x 1–= y 2x 1–( )10log u10log= =
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Then, combining the chain rule with the results above (i.e., a = 10) we have:
 

= 

(c) Again we combine the chain rule with the results of this section, where in this case, a = 4.
Let , then .

Therefore,  = 

= 

= 

(a) This time we need to use the product rule, with  and .
Therefore, we have that 

       

(b) Here we apply the quotient rule with  and .
Now,  and  so that 

.

19.5.3 GENERALISATION OF EXPONENTIAL AND
   LOGARITHMIC DERIVATIVES

We can obtain generalised versions of the rules for differentiating an exponential function and a 
logarithmic function. The process requires the use of the chain rule.

Exponential function

Given the function  we set  so that . Then, using the chain rule we 

dy
dx------

dy
du------
du
dx------

1
10elog---------------- 1

u---×   2×= =

2
10elog( ) 2x 1–( )-----------------------------------------

u 8x du
dx------⇒tan 8sec28x= = y u4 dy

du------⇒log 1
4ln--------

1
u---×= =

dy
dx------

dy
du------
du
dx------

1
4ln--------

1
u---×   8sec28x×= = 8sec28x

4ln( ) 8xtan----------------------------

8
4ln( ) 8x 8xsincos-------------------------------------------

using 8x 8xsincos 1
2--- 16xsin= 8

2ln( ) 16xsin-------------------------------

Find the derivative of (a) (b)10x 2xtan 2x
x2-----

E 19.26XAMPLE

S
o
l
u
t
i
o
n

u 10x= v 2xtan=
dy
dx------

d
dx------ 10x( ) 2x 10x d

dx------×+tan× 2xtan( )=
10ln( )10x 2x 10x 2( )sec22x+tan=
10ln( ) 2x 2sec22x+tan( )10x=

u 2x v, x2= = y u
v---=

u' 2ln 2x×= v' 2x=
y' u' v u v'×–×

v2-------------------------------- 2ln 2x×( ) x2 2x 2x( )×–×
x2( )2----------------------------------------------------------------- 2x

x3----- x 2 2–ln( )= = =

y a f x( )= u f x( )= y au=
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have: .

i.e., if 

Logarithmic function

Given the function  we set  so that . Then, using the chain 
rule we have: .

i.e., if 

(a) Let  so that  and . Then, with
 we have 

  = 

(b) Let  so that  and
. Then, with  we have

.
We could simplify this expression further but at this stage we can leave it as is.

Note:  We could have also started the problem by first rewriting  as
, because the implied domains of both expressions are the same.

1. Differentiate the following
(a) (b) (c)
(d) (e) (f)

dy
dx------

dy
du------
du
dx------ aln( )au f ' x( )× f ' x( ) aln( )a f x( )= = =

  y a f x( )  then  dydx------ f ' x( ) aln( )a f x( )  = =

y fa x( )log= u f x( )= y ualog=
dy
dx------

dy
du------
du
dx------

1
aln( )------------- 1

u--- f ' x( )×⋅ f ' x( )
aln( ) f x( )-------------------------= = =

  y fa x( )  then  dydx------log f ' x( )
aln( ) f x( )-------------------------  = =

Find the derivative of 
(a) (b) , where k is a positive integer.5x2 2cos x– kxtan( )klog

E 19.27XAMPLE

S
o
l
u
t
i
o
n

y 5x2 2cos x–= f x( ) x2 2cos x–= f ' x( ) 2x 2 2xsin+=
y 5 f x( )= dy

dx------ f ' x( ) 5ln( )5 f x( ) 2x 2 2xsin+( ) 5ln( )5x2 2cos x–= =
2 x 2sin x+( ) 5ln( )5x2 2cos x–

y kxtan( )klog= f x( ) kxtan=
f ' x( ) 1

2--- ksec2 kx( ) 1
kxtan------------------⋅⋅ ksec2 kx( )

2 kxtan------------------------= = y fk x( )log=

dy
dx------

f ' x( )
kln( ) f x( )-------------------------

ksec2 kx( )
2 kxtan------------------------

kln( ) kxtan------------------------------- ksec2 kx( )
2 kln( ) kxtan------------------------------= = =

y kxtan( )klog=
y 1

2--- kxtan( )klog=

EXERCISES 19.5

y 4x= y 3x= y 8x=
y 3 5× x= y 7 6× x= y 2 10× x=
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(g) (h) (i)

2. Differentiate the following
(a) (b) (c)
(d) (e) (f)

3. Differentiate the following
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)
(j) (k) (l)

4. Find the value(s) of x where the gradient of  is zero.

5. For what value(s) of x will a slope of  be zero?

6. Given that , find the exact value of .

7. Find  where .

8. Find where  given that .

9. Find the gradient of the following curves at the point indicated
(a)  at (b)  at 
(c)  at (d)  at .

10. Differentiate the following
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

11. Differentiate the following
(a) (b) (c)
(d) (e) (f)

(g) (h) (i)

y 6x 2–= y 23x 1+= y 5 73 x–×=

y x 3x×= y 2x 1+ 2xsin= y 5xe x–=
y x2

8x-----= y x 2+
1 4x+--------------= y xcos

5 x–-----------=

y x5log= y 5x( )10log= y 2x( )4log=
y x 1+( )9log= y x2 1+( )2log= y x 5–5log=
y x x2log= y 3x x3log= y ax xalog=
y ax

xalog-------------= y x 1+( )
x 1+( )10log-----------------------------= y x

x2log-----------------=

f x( ) 4x
x2-----=

f x( ) x2 2x×=

g x( ) x 1
3---   x= g' 1( )

h' π6---   h x( ) π xsin sinπx+=

dy
dx------ 0= y 10x x 10x–10log=

y x210x= x 1= y 4x( )sin= x 0=
y xe xe2log= y 0= y 10x

x10log---------------= x 10=

54x 1+ 3x x3– 102x 3–

9 x x– 4
1
2--- 2xcos 4 2xcos

2x( )sin 2 xsin 7
1
x--- 2x–

2x( )sin( )2log x2 1–( )5log x 10–( )10log
4 2 2xtan–( )2log Sin 1– x( )2log Tan 1– 1 x–( )( )3log

x3 3–( )3log 2 x–( )2log x
2--- 2–  cos  

10log
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12. Find the derivative of

(a) (b) (c) (d)
Hint: Let  and then take log base e of both sides.

Since the derivative of a function  is another function, , then it may well be that this derived 
function can itself be differentiated. If this is done, we obtain the second derivative of  which is 
denoted by  and read as “f double dash”.

The following notation for  is used:
First derivative  [= ]

Second derivative  [= ]

So, for example, if  then  and
        .

The expression  is read as “dee two y by dee x squared” and the expression  is read as 
“y double dash”.

(a) Let  then  and .

(b) Let  then  and 

 = 

(c) Let  then . Then,

 = 

= 

xx x xsin x
1
x---  

x xln

y f x( )=

SECOND DERIVATIVE19.6

f f '
f

f ''

y f x( )=
dy
dx------ f ' x( )= y'

d
dx------

dy
dx------   d2y

dx2-------- f '' x( )= = y''

f x( ) x3 5x2– 10+= f ' x( ) 3x2 10x–=
f '' x( ) 6x 10–=

d2y
dx2-------- y''

Find the second derivative of 
(a) (b) (c)x4 2xsin– x2 1+( )ln xSin 1– x

E 19.28XAMPLE

S
o
l
u
t
i
o
n

y x4 2xsin–= y' 4x3 2 2xcos–= y'' 12x2 4 2xsin+=

f x( ) x2 1+( )ln= f ' x( ) 2x
x2 1+--------------= f '' x( ) 2 x2 1+( ) 2x 2x( )–

x2 1+( )2----------------------------------------------=
2 2x2–
x2 1+( )2---------------------

y xSin 1– x= dy
dx------ x 1

1 x2–
------------------ 1( ) Sin 1– x×+× x

1 x2–
------------------ Sin 1– x+= =

d2y
dx2--------

1( ) 1 x2–× x 1
2--- 2– x( ) 1

1 x2–
------------------⋅×–

1 x2–( )2---------------------------------------------------------------------------------------- 1
1 x2–

------------------+=
1 x2– x2

1 x2–
------------------+

1 x2–------------------------------------------- 1
1 x2–

------------------+

1 x2–
1 x2–

------------------ x2
1 x2–

------------------+
1 x2–------------------------------------------- 1

1 x2–
------------------+



Differential Calculus – CHAPTER 19

651

And so, 

 = 

As we can see from Example 19.25 (c) some second derivatives require the use of algebra to 
obtain a simplified answer.

Note then that just as we can find the second derivative, so too can we determine the third 
derivative and the fourth derivative and so on (of course, assuming that these derivatives exist). 
We keep differentiating the results. The notation then is extended as follows:
Third derivative is   – “f triple dash” and so on where the nth derivative is  or .

1. Find the second derivative of the following functions
(i) (ii)
(iii) (iv)

(v) (vi)

(vii) (viii)
(ix) (x)
(xi) (xii)
(xiii) (xiv)
(xv) (xvi)

(xvii) (xviii) 

(xix) (xx)

2. Find the second derivative of the following
(a) (b) (c)
(d) (e) (f)

(g) (h) (i)

d2y
dx2--------

1
1 x2–

------------------
1 x2–------------------ 1

1 x2–
------------------+ 1

1 x2–( ) 1 x2–
------------------------------------- 1

1 x2–
------------------+ 1

1 x2–( ) 1 x2–
------------------------------------- 1 x2–

1 x2–( ) 1 x2–
-------------------------------------+= = =

2 x2–
1 x2–( ) 1 x2–
-------------------------------------

f ''' x( ) f n( ) x( ) dny
dxn--------

EXERCISES 19.6

f x( ) x5= y 1 2x+( )4=
f :x     1x--- where x    ∈ f x( ) 1

1 x+------------=

y x 7–( ) x 1+( )= f :x x 1+
x 2–------------ where x    \{2}∈

f x( ) 1
x6-----= y 1 2x–( )3=

y xln= f x( ) 1 x2–( )ln=
y 4θsin= f x( ) x xsin=
f x( ) x3 xsin= y x xln=
f x( ) x2 1–

2x 3+---------------= y x3e2x=

f x( ) 4x( )cos
ex--------------------= y x2( )sin=

f x( ) x
1 4x3–-----------------= y x2 4–

x 3–--------------=

arctanx arcsinx arccosx
xarctanx arcsin x arccos 1

x-------  

arctan x( )
x---------------------- xSin 1– x

2---   xarccos ex( )
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3. Find the second derivative of the function . Find a formula for the second

derivative of the function .

4. Consider the function . Find the first five derivatives by
differentiating the function five times. Hypothesise a formula for the nth derivative of this
function. Use the method of mathematical induction or other appropriate method to prove
that your formula works for all whole numbered values of n.

5. Find a formula for the second derivative of the family of functions 
 where n is a real number.

6. Given   , prove that  for  n ≥ 1.

7. Find the nth derivative of 
(a) (b) (c)

8. (a) Find  if . (b) Find  if .

9. Find the rate of change of the gradient of the function  where x = 1.

10. Find the the values of x where the rate of change of the gradient of the curve 
for 0 ≤ x ≤ 2π is positive.

19.7.1 IMPLICIT RELATIONS

Most of the equations that we have dealt with so far have been expressed in the form . 
For example, , , , that is, y has been expressed 
explicitly in terms of x so that for any one given value of x we obtain a unique value of y by 
substituting the x-value into the given equation.

Expressions such as , , ,  are called implicit 
equations because these equations define y implicitly as a function of x. Note then that although 

 defines y as an explicit function of x, the equation  defines y 
implicitly as functions of x – in fact, we have that two functions are defined implicitly by the 
equation  – they are  and . We shall see how it is 
sometimes possible to extract functions from an implicit equation.

f x( ) xelog
x2------------=

f x( ) xelog
xn------------=

f x( ) 1
x 1+------------ x 1–≠,=

f x( ) x 1+
x 1–------------   n=

y 1
1 x–-----------= dny

dxn-------- n!
1 x–( )n 1+-------------------------=

eax y 1
2x 1+---------------= ax b+( )sin

f '' 2( ) f x( ) x2 x–= f '' 1( ) f x( ) x2Tan 1– x( )=

g x( ) x2 1–
x2 1+--------------=

y x xsin=

IMPLICIT DIFFERENTIATION19.7

y f x( )=
y 2x( ) 1+sin= y x3 2x–= y x ex–( )ln=

x2y y 2–+ 0= xy( )sin 1= ex y+ x y+=

y x2= y2 x x2+( )y x3+ + 0=

y2 x x2+( )y x3+ + 0= y x–= y x2–=
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It may be possible for an implicit function to be rearranged to form an explicit function. For 
example, using the equation  we have that  and so, we obtain the 
equation  which defines y explicitly in terms of x.

Using the implicit function  we have (after expanding and grouping) that 
 or . So, we see that in this 

case two functions are defined implicitly by the equation .

In fact with more complicated equations it might not be possible to even produce an expression 
for y – i.e., to solve explicitly for y. Sometimes even simple equations may not define y uniquely  
as a function of x – for example, if we consider the equation  we realise that it is not 
possible to obtain an expression for y explicitly in terms of x.

The question then arises, “How can we differentiate equations such as these?”.

We start by considering the equation . As y is implicitly defined as a function of x, then, 
one way of finding the derivative of y with respect to x is to first express y explicitly in terms of x:
So, from  we have . This method works well, as long as y can be 
expressed explicitly in terms of x.

Now consider the equation . This time it is not possible to express y explicitly 
in terms of x and so we use a procedure known as implicit differentiation. 

The key to understanding how to find  implicitly is to realise that we are differentiating with 
respect to x – so that terms in the equation that involve xs only can be differentiated as usual but 
terms that involve ys must have the chain rule applied to them (and possibly the product rule or 
quotient rule) because we are assuming that y is a function of x.

Before we deal with the equation  we discuss some further examples.

To differentiate  with respect to x, with the assumption that y is a function of x we use the chain 
rule as follows: .

To differentiate  with respect to x, with the assumption that y is a function of x we use the 
chain rule as follows: .

Notice then that to differentiate  with respect to x, with the assumption that y is a function of x 
we have:

x2y y 2–+ 0= x2 1+( )y 2=
y 2

x2 1+--------------=

y2 x x2+( )y x3+ + 0=
y2 x x2+( )y x3+ + 0 y x2+( ) y x+( )⇔ 0 y⇔ x–= = = y x2–=

y2 x x2+( )y x3+ + 0=

ex y+ x y+=

x2y 2=

x2y 2= y 2
x2-----

dy
dx------⇒ 4

x3-----–= =

2x2 y3 y–+ 2=

dy
dx------

2x2 y3 y–+ 2=

y3
d
dx------ y

3( ) d
dy------ y

3( ) dy
dx------⋅ 3y2 dy

dx------⋅= =

ysin
d
dx------ ysin( ) d

dy------ ysin( ) dy
dx------⋅ y dy

dx------⋅cos= =

yn

  ddx------ y
n( ) d

dy------ y
n( ) dy

dx------⋅ nyn 1– dy
dx------

 ⋅= =
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To differentiate  with respect to x, with the assumption that y is a function of x we use the 
product rule and chain rule as follows:   [product rule]

           =  [chain rule for ]

= .

And so we have that .

Now let us return to the equation  and find the gradient of the curve at the point
(1, 1). We start by differentiating both sides of the equation with respect to x:
i.e.,                

Then, we differentiate each term in the expression with respect to x:

Use the chain rule         

          

Then we group the  terms and factorise:

    

Then, we solve for :      .

The first thing we notice is that the derivative involves both x and y terms! Now sometimes it is 
possible to simplify so that there are only x terms in the expression and sometimes it can only be 
left as is. In this case it will be left in terms of x and y.

Then, to find the gradient of the curve at the point (1, 1) we substitute the values x = 1 and y = 1 
into the equation of the derivative: 

(a) Differentiating with respect to x (which can be abbreviated to diff. b.s.w.r.t x):
 

So,   [Using product rule]

xy2
d
dx------ xy

2( ) d
dx------ x( ) y2 x d

dx------ y
2( )×+×=

1 y2 x d
dy------ y

2( ) dy
dx------⋅×+× y2

y2 x 2y dy
dx------⋅+

d
dx------ xy

2( ) y2 2xy dy
dx------⋅+=

2x2 y3 y–+ 2=

d
dx------ 2x2 y3 y–+( ) d

dx------ 2( )=

d
dx------ 2x2( ) d

dx------ y
3( ) d

dx------ y( )–+ 0=

4x d
dy------ y

3( ) dy
dx------

dy
dx------–⋅+ 0=

4x 3y2( ) dy
dx------

dy
dx------–⋅+ 0=

dy
dx------

4x 3y2 1–( )dydx------+ 0=
dy
dx------

dy
dx------

4x
3y2 1–-----------------–=

dy
dx------

4
3 1–------------– 2–= =

Find the derivatives of the relations:
(a) (b) (c)2x2 xy+ 5= y

x-- 3y2+ 2x3= xSin 1– y e2y=
E 19.29XAMPLE

S
o
l
u
t
i
o
n

d
dx------ 2x2 xy+( ) d

dx------ 5( )= d
dx------ 2x2( ) d

dx------ xy( )+∴ 0=

4x d
dx------ x( ) y x d

dx------ y( )×+×+ 0=
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(b) Here, the first term must be differentiated using the quotient rule. We consider this term
on its own first. Its derivative with respect to x is: 

Then, diff b.s.w.r.t.x we have:

   

  [multiplying through by ]

        [grouping the  terms]

          

(c) diff b.s.w.r.t.x :
[Using product rule for L.H.S and chain rule for R.H.S]
  

           [chain rule for  term]

       [grouping  terms]

    

4x 1 y xdydx------+×+∴ 0=

xdydx------⇔ 4x– y–=
dy
dx------⇔ 4x y+( )

x--------------------–=

d
dx------

y
x--   x d

dx------ y( ) y d
dx------ x( )×–×

x2----------------------------------------------------
x dy

dx------× y–
x2------------------------= =

d
dx------

y
x-- 3y2+   d

dx------ 2x3( ) d
dx------

y
x--   d

dx------ 3y2( )+⇒ 6x2= =

x dy
dx------× y–
x2------------------------ 6y dy

dx------×+∴ 6x2=

x dy
dx------× y– 6x2y dy

dx------×+ 6x4=∴ x2

dy
dx------ x 6x2y+( ) 6x4 y+= dy

dx------
dy
dx------

6x4 y+
x 6x2y+---------------------=∴

d
dx------ xSin

1– y( ) d
dx------ e

2y( )=

d
dx------ x( ) Sin 1– y x d

dx------ Sin 1– y( )×+× d
dy------ e

2y( )dydx------=

1 Sin 1– y x ddy------ Sin 1– y( )dydx------+× 2e2ydydx------= Sin 1– y

Sin 1– y x
1 y2–

------------------dydx------+ 2e2ydydx------=

Sin 1– y∴ 2e2y x
1 y2–

------------------–   dy
dx------= dy

dx------

dy
dx------

1 y2– Sin 1– y( )
2e2y 1 y2– x–
---------------------------------------=

Find  for the relation:  and hence find the slope of the curve 

at the point where .

dy
dx------ x2 y2+ 1=

x 1
2---=

E 19.30XAMPLE
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Differentiating each term in the relation with respect to x (this can be done term by term using the 
linearity property of differentiation) gives:

1. The derivative of   with respect to x is 2x.
2. The derivative of   with respect to x is . 

The middle step results from use of the chain rule.
3. On the right hand side, the derivative of 1 is zero.

Putting all this together, we have: 

The resulting derivative is not in terms of the independent variable, x. This does not prevent its 
use in finding gradients and rates of change. The second part of the question asks for the gradient 
of the curve at . The first step is to use the relation to find the corresponding y coordinate: 

 so 

There are two points referred to in this solution. To determine which of the two answers should be 
given for each point, we need to consider the fact that the relation represents a circle. The gradient 
at  is  and the gradient at  is .

Using a graphics calculator

Graphics calculators do not cope very well with implicit relations. 
In the above case, it would be necessary to rearrange the relation to 

. If the positive half of this is entered into a TI/82/3, 
it becomes possible to check the result using 2nd CALC, option 6 
to obtain a decimal approximation which can be compared with the 
exact result. In most cases the exact result is preferred and you 
should not give a calculator approximation with no working!

1. Find the first derivative, , of the following relations in which y depends on x

(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

(j) (k) (l)

S
o
l
u
t
i
o
n

x2

y2 d
dx------ y

2( ) d
dy------ y

2( ) dy
dx------× 2ydydx------= =

2x 2ydydx------+ 0 2ydydx------ 2– x dy
dx------

x
y--–=⇔=⇔=

x 1
2---=

x2 y2+ 1 1
2---   2 y2+⇒ 1 y⇒ 3

4---± 3
2-------±= = = = dy

dx------
x
y--–

1
2---   3

2-------±⁄ 1
3-------+− 3

3-------+−= = = =

1
2---

3
2-------,   3

3-------– 1
2---

3
2-------–,   3

3-------

y 1 x2–±=

EXERCISES 19.7.1

dy
dx------

2 x2 y+ + 6= 3– x2 y2+ + 5= 1
x2----- y2+ 14=

y xy+ 9= 4 y y ex×+= x xy+cos 12=
x y( )ln+ 8= 1

x--- x3y+ 11–= 2x y xsin+ 5=

x y+( )2 12= x4 y y3+= 2 x y+ x=
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2. f(x) is a relation on a real variable x such that . Find the coordinates
of the point for which x = 1 and the gradient of the graph of the function at this point.

3. A curve has equation . Differentiate the equation implicitly and hence

prove that: .

4. Use implicit differentiation to find the coordinates of the points on the circle:
 for which the gradient is 2.

5. Consider the conic section with equation: .
(a) Make y the subject of the equation.
(b) Prove that the domain of the relation is .
(c) Find an expression for .

(d) Use (a) to eliminate y from your expression for .

(e) Hence prove that as 

(f) What type of curve is represented by ?

6. A curve has equation .
(a) Find the domain and range of the relation.
(b) Express the gradient, , in terms of x and y.
(c) Eliminate y from your expression in part (b).
(d) What is the gradient in the region of the y axis?

Consider the family of relations  where k is a constant and n is a positive
integer
(e) Find the domain and range of the relation.
(f) Express the gradient, , in terms of x and y and hence describe the form of the

graph of the relation as n becomes large.

7. (a) If  where c and  are real constants, find .

(b) Find  if .

8. Find the slope of the curve
(a)  at (1, 2) (b)  at 

9. Find  if (a) , x > 0 (b) .

e f x( ) f x( )– e5 5–=

ex2y
x-------- 2x+ 3=

ex2y
x-------- 2x ex2y 2xy x2dydx------+  +=

x2 3x– y2 4y–+ 7=

x2 xy y2–+ 20=

] ∞ 4 ] 4 ∞[,[∪,–
dy
dx------

dy
dx------

x ∞ dy
dx------

5 5±
2 5----------------→,±→
x2 xy y2–+ 20=

x4 y4+ 16=

dy
dx------

x2n y2n+ k2n=

dy
dx------

pvϒ c= ϒ dv
dp------

dy
dx------

xm
yn------

m
n----xy=

x3 y3 x2y–+ 7= x3 y3 3kxy–+ 0= 3
2---k

3
2---k,  

dy
dx------ xy( )elog y= xTan 1– y( ) x y+=
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10. The graph of the curve  is shown
alongside. 
(a) Find the gradient of the curve at the point where

x = 1. Explain your result.

(b) Find the gradients of the curve where , giving
your answers to 2 decimal places.

19.7.2 SECOND DERIVATIVES

It is also possible to find the second derivative of an implicit function. The process can be carried 
out using the following steps:

Step 1 Find the first derivative (using the methods of section 19.7.1) – i.e., .
Step 2 Differentiate both sides of the expression obtained in Step 1 

i.e.,  giving 

Step 3 Wherever there is a term  in Step 2, replace it with the expression obtained in

Step 1. So that 
Step 4 Simplify result.

First, differentiate implicitly:

                [Step 1]
Next, differentiate a second time using the quotient rule. Remember that both the numerator and 

denominator are variables:           [Step 2]

      [Step 3]

 

     [Step 4]
However, it appears that we can further simplify this expression. We recognise as part of this 

y

x

x2 y2+( )2 4xy2=

y 1
2---=

dy
dx------ f x y,( )=

d
dx------

dy
dx------   d

dx------ f x y,( )( )= d2y
dx2-------- d

dx------ f x y,( )( ) g x y dy
dx------, ,  = =

dy
dx------

d2y
dx2-------- g x y f x y,( ), ,( )=

Find the first and second derivatives of the relation x4 y4– 16=E 19.31XAMPLE

S
o
l
u
t
i
o
n

d
dx------ x

4 y4–( ) d
dx------ 16( ) 4x3 4y3dydx------– 0=⇔=

dy
dx------

x3
y3-----=⇔

d
dx------

dy
dx------   d

dx------
x3
y3-----   d2y

dx2--------⇒
y3 3x2× x3 3y2dydx------×–

y6----------------------------------------------------= =

d2y
dx2--------∴

y3 3x2× x3 3y2 x3
y3-----  ×–

y6---------------------------------------------------------=
3x2y4 3x6–

y7----------------------------=
3x2 y4 x4–( )

y7------------------------------=
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expression the term . That is, the points satisfy the equation of the curve 
 so  and after substituting into the equation of the second derivative 

we obtain .

This curve can be graphed on a graphics
calculator by reducing it to two explicit 
formulas:

1. Find the first and second derivatives of the following relations.
(i) (ii)
(iii) (iv)
(v) (vi)
(vii) (viii) , a ≠ 0

2. Consider the relation .
(i) Prove that the point (1,0) lies on the graph of the relation.
(ii) Find the gradient of the graph at (1,0).
(iii) Find the value of the second derivative at (1,0).
(iv) Sketch the graph of the function in the region of the point (0,1).

3. A curve is defined by the implicit relation .
(i) Prove that the point (1,1) lies on the graph.
(ii) Find the gradient of the curve at the point (1,1).
(iii) Find the value of the second derivative at (1,1).
(iv) Sketch the graph of the function in the region of the point (1,1).

4. Consider the relation .
(i) State the domain and range of the relation.
(ii) Use implicit differentiation to find the first and second derivatives of the relation.
(iii) Given that the curvature of a curve is defined in the Cartesian coordinate system as:

Curvature = , prove that, over the domain found in (i),

the curve has constant curvature.

5. Find the rate of change of the gradient of the curve with equation  at
the point (a, a).

y4 x4– x4 y4–( )–=
x4 y4– 16= y4 x4– 16–=

d2y
dx2-------- 3x2 16–( )

y7----------------------- 48x2
y7-----------–= =

EXERCISES 19.7.2

xy x– 5= x3
y----- x– 6=

x2 y2+ 4= x e3y+ 7=
2x ysin 3+–sin 0= x y+ 3=

x2 6xy y2+ + 6–= x2y2 a2=

x2 x y+( )ln+ 1=

x2 3xy– y2+ 1–=

x 3–( )2 y 1+( )2+ 9=

1
1 dy

dx------   2+   3 2/------------------------------------- d2y
dx2---------  ⋅

x3 y3 axy–+ a3=
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For the sake of completeness and to allow a certain ‘flow’ to the chapter, we use this last section 
to include an assortment of proofs for results which we simply quoted in the body of this chapter.

19.8.1 DERIVATIVE OF y = xn WHERE n IS A NEGATIVE
   INTEGER

Consider the function with equation  where n is a negative integer. Setting n = –k, where k 
is a positive integers we have

Using the quotient rule we have

But remember, n = –k, so, .
That is, the rule is still true for negative integers.

19.8.2 DERIVATIVE OF y = xn WHERE n IS A FRACTION

Consider the function with equation  where n is a fraction. Setting , where  and 

 are positive integer we have

.

Next, using implicit differentiation, we differentiate both sides with respect to x:
 

                

As  then . 

         

So, we have that . i.e., .

PROOFS19.8

y xn=

y xn x k– 1
xk-----= = =

dy
dx------

0 xk× 1 kxk 1–×–
xk( )2--------------------------------------------=

kxk 1–
x2k--------------–=

k x k– 1–⋅–=
dy
dx------ nxn 1–=

y xn= n k1
k2
-----= k1

k2

y xn x
k1
k2
----- yk2⇔ xk1= = =

d
dx------ y

k2( ) d
dx------ x

k1( ) k2yk2 1– dy
dx------⋅∴ k1xk1 1–= =

dy
dx------

k1
k2
----- xk1 1–

yk2 1–-------------⋅=

y x
k1
k2
-----= yk2 1– x

k1
k2
-----

    k2 1–

x
k1 k2 1–( )

k2
------------------------= = xk1 1–

yk2 1–-------------∴ xk1 1–

x
k1 k2 1–( )

k2
------------------------

-------------------- xk1 1– k1 k2 1–( )
k2

------------------------–= =

x
k1
k2
----- 1–=

dy
dx------

k1
k2
-----x

k1
k2
----- 1–= dy

dx------ nyn 1–=
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19.8.3 PRODUCT RULE AND QUOTIENT RULE

Let  and  be two functions having derivatives  and , then the derivative of 
the product function  is given by .

We will use the definition of the derivative, .
The problem arises in trying to ‘simplify’ the numerator. The not so obvious solution to this 
problem is to add the expression  to the numerator. 
This gives us

 

= 

= 

= 
= 

We can prove the quotient rule by rewriting it as a product rule and then using the chain rule:
Let 

      

19.8.4 DERIVATIVE OF SOME TRIGONOMETRIC
    FUNCTIONS

The sine function

It must be pointed out at the very outset that the variable x is a real number and is given in radian 
measure – the proof, although carried out in the same way, would need to be altered slightly if we 
where considering x as being measured in degrees. 

Letting  and using the definition from first principle we have

Using the identity  we then have
    = 

f x( ) g x( ) f ' x( ) g' x( )
f x( )g x( ) f ' x( )g x( ) f x( )g' x( )+

f x( )g x( )( )' f x h+( )g x h+( ) f x( )g x( )–
h----------------------------------------------------------------------

h 0→lim=

f x( )g x h+( )– f x( )g x h+( )+

f x( )g x( )( )' f x h+( )g x h+( ) f x( )g x h+( )– f x( )g x h+( )+[ ] f x( )g x( )–+
h-------------------------------------------------------------------------------------------------------------------------------------------------------------

h 0→lim=
f x h+( )g x h+( ) f x( )g x h+( )–

h--------------------------------------------------------------------------------
h 0→lim

f x( )g x h+( ) f x( )g x( )–
h-------------------------------------------------------------

h 0→lim+
f x h+( ) f x( )–

h-------------------------------------- g x h+( )⋅
h 0→lim f x( ) g x h+( ) g x( )–

h-------------------------------------⋅
h 0→lim+

f x h+( ) f x( )–
h-------------------------------------- g

h 0→lim x h+( ) f x( ) g x h+( ) g x( )–
h-------------------------------------

h 0→lim⋅
h 0→lim+⋅

h 0→lim
f ' x( )g x( ) f x( )g' x( )+

y f x( )
g x( )----------- f x( ) 1

g x( )-----------⋅ f x( ) g x( )[ ] 1–⋅= = =
dy
dx------∴ f ' x( ) g x( )[ ] 1– f x( ) 1 g' x( ) g x( )[ ] 2–××–[ ]×+=

f ' x( )
g x( )------------ f x( )g' x( )

g x( )[ ]2-----------------------–=
f ' x( )g x( ) f x( )g' x( )–

g x( )[ ]2-----------------------------------------------------=

f x( ) x( )sin=
f ' x( ) f x h+( ) f x( )–

h--------------------------------------
h 0→lim

x h+( )sin x( )sin–
h----------------------------------------------

h 0→lim= =
A B+( )sin A B B Acossin+cossin=

x( ) h( ) h( ) x( ) x( )sin–cossin+cossin
h---------------------------------------------------------------------------------------------

h 0→lim
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= 

=  – (1)

We now need to determine the value of the limits  and .

We start with :

We have that  =  which, by definition, defines the 
gradient of the cosine function at x = 0. But, the cosine graph has a horizontal tangent at x = 0 and 
so the gradient of the cosine function at x = 0 must therefore be 0. Hence, the limit has a value of 
zero.
We are now left with determining :

Using the graph of  it is clear 
that the value of this limit is one. 

i.e., .

That is, although  is undefined (hence the open circle at (0, 1)), the limit as h 
tends to zero exists!

We now continue from equation (1):
 = 

      = 
Therefore, if  then .

Note that we have used a picture to provide very strong evidence that . However, 
for those who wish to have a more rigorous proof, we now provide one:

Consider the first quadrant of a circle of unit radius. 
Area measure of 

Area measure of sector OAC =  (θ = h) 

Area measure of 

Now, 

    

x( ) h( ) x( )sin–cossin
h------------------------------------------------------ h( ) x( )cossin

h--------------------------------+
h 0→lim

x( )sin h( ) 1–cos
h-------------------------

h 0→lim x( )cos h( )sin
h---------------

h 0→lim+

h( ) 1–cos
h-------------------------

h 0→lim
h( )sin

h---------------
h 0→lim

h( ) 1–cos
h-------------------------

h 0→lim

h( ) 1–cos
h-------------------------

h 0→lim
h( ) 0( )cos–cos
h 0–---------------------------------------

h 0→lim

0 π            2π–2π           –π

1
y

h

y h( )sin
h---------------=

h( )sin
h---------------

h 0→lim

f h( ) h( )sin
h---------------=

 h( )sin
h---------------

h 0→lim 1  =

f 0( ) 0( )sin
0---------------=

x( )sin h( ) 1–cos
h-------------------------

h 0→lim x( )cos h( )sin
h---------------

h 0→lim+ x( ) 0 x( )cos+× 1×sin

x( )cos
f x( ) x( )sin= f ' x( ) x( )cos=

h( )sin
h---------------

h 0→lim 1=

O                         A

B

C
sin(h)

h

tan(h)

x

y

OAC∆ 1
2--- 1 1 h( )sin⋅ ⋅ ⋅ 1

2--- h( )sin A1= = =
1
2--- 1 1 θ⋅ ⋅ ⋅ 1

2---h A2= =

OAB∆ 1
2--- 1 h( )tan⋅ ⋅ 1

2--- h( )tan A3= = =

A1 A2 A3
1
2--- h( ) 1

2---h
1
2--- h( )tan< <sin⇒< <

h( ) h h 1
h( )sin---------------

1
h---

1
h( )tan----------------> >⇔tan< <sin⇔  as 0 h π

2---< <
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Multiplying through by  we have: .

Now, as  and seeing as  lies between 1 and , then, taking the 

limit we have: .

Note: As the function  is an even function, , it is only necessary to 
prove our result for the case where h was positive. The proof is complete because, as 

, then the result would hold true for h being negative.

What if x was in degrees?

We would need to convert from degrees to radians: i.e., . 

So, .

Notice that 

The tangent function

For this proof we use the ratio definition of the tangent, i.e.,  and then 
make use of the quotient rule.

So, letting  we have 

 = 

 = 

 = 
 = 

Again, a more formal proof can be obtained by using a first principle  approach: i.e., using the 
definition .

Now, 

        = 

        =  

h( )sin 1
1---

h( )sin
h--------------- h( )cos> >

h 0 h( ) 1→cos,→ h( )sin
h--------------- h( )cos

1 h( )sin
h---------------

h 0→lim>
h 0→lim h( ) 1 h( )sin

h--------------- 1 h( )sin
h---------------

h 0→lim 1=⇒>
h 0→lim>⇔cos

h 0→lim>

f h( ) sinh
h----------= f h( ) f h–( )=

f h( ) f h–( )=

xc π
180---------x°=

d
dx------ x°sin( ) d

dx------
π
180---------xsin   π

180--------- π
180---------x  cos π

180--------- x°( )cos= = =

d
dx------ x°sin( ) x°( )cos≠

θtan θsin
θcos------------ θ 0≠cos,=

f θ( ) θtan θsin
θcos------------= = f ' θ( )

d
dθ------ θsin( ) θcos× θ d

dθ------ θcos( )×sin–
θcos( )2----------------------------------------------------------------------------------------=

θ θ θ θsin–( )×sin–cos×cos
cos2θ-------------------------------------------------------------------------

cos2θ sin2θ+
cos2θ---------------------------------

1
cos2θ-------------
sec2θ

f ' θ( ) θ h+( ) θtan–tan
h-------------------------------------------

h 0→lim=

θ h+( ) θtan–tan θ h+( )sin
θ h+( )cos-------------------------- θsin

θcos------------– θ h+( ) θ θ θ h+( )cossin–cossin
θ θ h+( )coscos---------------------------------------------------------------------------------= =

θ h+( ) θ–[ ]sin
θ θ h+( )coscos---------------------------------------
sinh

θ θ h+( )coscos--------------------------------------
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= 
That is, if  then .

19.8.5 EXPONENTIAL AND y = xn WHERE n IS REAL

The exponential function

This approach makes use of a result that will be looked at by students who study the Series and 
Differential Equations Option for this course. We only include it as a point of interest and so, 
suffice to state that a polynomial expression for the exponential function can be obtained. Such an 
expression is given by

Notice that this series continues indefinitely.

Then, using our definition of differentiation we have:

Now, 

   = 

Then, 

And so, 

The debate as to whether this is an actual proof or not can be argued both ways, however, it does 
provide us with another avenue of showing how a result can be confirmed via different and 
appropriate means.

The power function, y = xn where n is real

Let  then . Therefore, 

         = 
A rather short and neat proof!

f∴ ' θ( ) 1
h---

sinh
θ θ h+( )coscos--------------------------------------×

h 0→lim
1
θcos------------ sinh

h----------
1
θ h+( )cos--------------------------⋅

h 0→lim
1
θcos------------ 1 1

θcos------------⋅ ⋅= = =

1
cos2θ-------------

f θ( ) θtan= f ' θ( ) sec2θ=

ex 1 x x2
2!-----

x3
3!-----

x4
4!----- … x ∈,+ + + + +=

f ' x( ) f x h+( ) f x( )–
h--------------------------------------

h 0→lim
ex h+ ex–

h----------------------
h 0→lim

ex eh⋅ ex–
h-------------------------

h 0→lim ex eh 1–
h--------------

h 0→lim= = = =

eh 1–
h-------------- 1

h--- e
h 1–( ) 1

h--- 1 h h2
2!-----

h3
3!-----

h4
4!----- …+ + + + + 1–   1

h--- h
h2
2!-----

h3
3!-----

h4
4!----- …+ + + +  = = =

1 h
2!-----

h2
3!-----

h3
4!----- …+ + + +

eh 1–
h--------------

h 0→lim 1 h
2!-----

h2
3!-----

h3
4!----- …+ + + +  

h 0→lim 1= =

f ' x( ) ex eh 1–
h--------------

h 0→lim ex 1× ex= = =

y xn= y e xnln en xln x 0>,= = dy
dx------ n 1

x---⋅   en xln⋅ n
x--- xn⋅= =

nxn 1–
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20.1.1 EQUATION OF TANGENT

The gradient of a curve  at any point  is equal to the gradient of the tangent to 
the curve at that point. To find the gradient at , you need to 

1. Given that . 

2. Then, for x = 1, we have .
Therefore, using , with m = –2 and

, we have the equation of the tangent given by

That is,  

Given that . Then, for x = 2, . i.e., .
In order to use the equation  we need both x- and y-values. As we are only 
given the x-value, we now determine the corresponding y-value, i.e., .
With  the equation of the tangent is: .

TANGENTS AND NORMALS20.1

C
H

A
P

T
E
R

 2
0

y f x( )= x1 y1,( )
x1 y1,( )

x1 y1,( )

Tangent

x1

y1

y f x( )=y

x

1. Find the gradient function of ,
that is, find the derivative  = .

2. Find the gradient at , that is, find
.

y f x( )=
dy
dx------ f ' x( )

x1 y1,( )
f ' x1( )

This gives the gradient of  the tangent, m, at
the point .x1 y1,( )
Finally, to find the equation of the tangent, you 
need to use the straight line equation
       , where y y1– m x x1–( )= m f ' x1( )=

Find the equation of the tangent to the curve   at the point (1,4).y 5 x2–=E 20.1XAMPLE

S
o
l
u
t
i
o
n

(1,4)

6
y

x

Tangent line

y 5 x2 dy
dx------⇒– 2x–= =
dy
dx------ 2 1( )– 2–= =

y y1– m x x1–( )=
x1 y1,( ) 1 4,( )≡

y 4– 2–( ) x 1–( ) y 4– 2x– 2+=⇔=
y 2x– 6+=

Find the equation of the tangent to the curve   where x = 2.y x3 8–=E 20.2XAMPLE

S
o
l
u
t
i
o
n

y x3 8 y'⇒– 3x2= = y' 3 22× 12= = m 12=
y y1– m x x1–( )=

x 2 y⇒ 23 8– 0= = =
x1 y1,( ) 2 0,( )≡ y 0–( ) 12 x 2–( ) y⇔ 12x 24–= =
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Let   [Using the product rule] 

    
That is, .
Therefore, at x = 1, we have

.
Using the general equation for a straight line, 

, 
where  and  
we have:

giving the equation of the tangent at  as .

We first determine the gradient function.
Differentiating both sides of the equation with respect to x we have:

         

At the point where the curve crosses the x-axis we have that y = 0, so, substituting y = 0 into the 
equation of the curve we have: .
As we are only interested in the positive x-axis, we choose x = 2.
So, the gradient of the curve at the point (2, 0) is given by .

Using the equation of the straight line,  with  and  

we have the equation of the tangent given by .

NB: We could have first expressed y explicitly in terms of x. i.e., 

For the curve , find the equation of the tangent at the point 
.

x    3x2e 0.2x–

1 3e 0.2–,( )
E 20.3XAMPLE

S
o
l
u
t
i
o
n

f x( ) 3x2e 0.2x– f ' x( )∴ 3 d
dx------ x

2( ) e 0.2x– x2 d
dx------ e

0.2x–( )×+×  = =

3 2xe 0.2x– 0.2x2e 0.2x––( )=

1 3e 0.2–,( )

tangent

x

y

y f x( )=

[NB: Sketch is not to scale.]

f ' x( ) 3xe 0.2x– 2 0.2x–( )=

f ' 1( ) 3 1( )e 0.2– 2 0.2–( ) 5.4e 0.2–= =

y y1– m x x1–( )=
m 5.4e 0.2–= x1 y1,( ) 1 3e 0.2–,( )≡

y 3e 0.2–– 5.4e 0.2– x 1–( )=
y 3e 0.2––⇔ 5.4e 0.2– x 5.4e 0.2––=

1 3e 0.2–,( ) y 5.4e 0.2– x 2.4e 0.2––=

Find the equation of the tangent to the curve defined by  at 
the point where it crosses the positive x-axis.

x2y y– x2 4–=E 20.4XAMPLE

S
o
l
u
t
i
o
n

d
dx------ x

2y y–( ) d
dx------ x

2 4–( ) 2xy x2 dy
dx------

dy
dx------–⋅+⇒ 2x= =

x2 1–( ) dy
dx------⋅∴ 2x 2xy–=
dy
dx------⇔ 2x 1 y–( )

x2 1–( )-----------------------=

x2 0( ) 0( )– x2 4 0⇔– x2 4 x⇔– 2±= = =

dy
dx------

2 2 1 0–( )×
22 1–----------------------------- 4

3---= =

y y1– m x x1–( )= m 4
3---= x1 y1,( ) 2 0,( )≡

y 0– 4
3--- x 2–( ) 3y 4x– 8+⇔ 0= =

x2y y– x2 4– y⇔ x2 4–
x2 1–--------------= =
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20.1.2 EQUATION OF NORMAL

To find the equation of the normal at the point  we first need to determine the gradient of 
the tangent, , and then use the relationship between the gradients of two perpendicular lines 
(given that the normal is perpendicular to the tangent).

To find the equation of the normal we need to

First determine the gradient of the tangent: .

At x = 1, we have . That is, .

We can now determine the gradient of the normal: using  we have .

Using the equation of a straight line,  where 

we have that 
Hence the equation of the normal is given by .

x1 y1,( )
mt

1. Find the gradient function of ,
that is, find the derivative  = .

2. Find the gradient at , that is, find
.

y f x( )=
dy
dx------ f ' x( )

x1 y1,( )
f ' x1( )

This gives the gradient of  the tangent, 
, at the point .mt f ' x1( )= x1 y1,( )

Finally, to find the equation of the normal, we need to use the general equation for a straight 
line , where this time .y y1– m x x1–( )= m mN

1
mt
-----– 1

f ' x1( )--------------–= = =

3. To find the gradient of the normal, , we
use the fact that the product of the
gradients of two perpendicular lines is –1. 

i.e.,    

mN

mt mN× 1–= or  mN
1
mt
-----–=  

x1 y1,( )

Tangent

x1

y1

y f x( )=y

x

Normal

Find the equation of the normal to the curve  at the point 
.

y 2x3 x2– 1+=
1 2,( )

E 20.5XAMPLE

S
o
l
u
t
i
o
n

dy
dx------ 6x2 2x–=

dy
dx------ 6 1( )2 2 1( )– 4= = mt 4=

mN
1
mt
-----–= mN

1
4---–=

y y1– m x x1–( )= x1 y1,( ) 1 2,( ) and m≡ 1
4---–=

y 2– 1
4---– x 1–( ) 4y 8– x– 1+=⇔=

4y x+ 9=
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We first need to determine the y–intercept:  .
That is, the curve passes through the point (0, 2). 
Next, we need to determine the gradient of the tangent where x = 0.
From  [Using the product rule]

       
Therefore, at x = 0,        .

That is, . Then, using the general equation of a straight line we have
the equation of the normal as y – 2 = –1(x – 0) , or  y = –x + 2.

This time, we need to first determine the x–value when y = 3:

Therefore, we want the equation of the normal at the point (7, 3).
Now,  

Next,  . Therefore  (= gradient of normal).

The equation of the normal is given by  or  y + 6x = 45.

We first need to find the gradient where y = 0, i.e., we need to find .

Diff b.s.w.r.t. x:

      

      
Next, substituting y = 0 into the equation , we get  so that  

Determine the equation of the normal to the curve  at the 
point where the curve crosses the y–axis.

y xe 2x– 2+=E 20.6XAMPLE

S
o
l
u
t
i
o
n

x 0 y⇒ 0 e0 2+× 2= = =

y xe 2x– 2 dy
dx------⇒+ 1 e 2x–× x 2e 2x––( )+= =

e 2x– 2xe 2x––=
dy
dx------ e 2 0( )– 2 0( )e 2 0( )–– 1 0– 1= = =

mt 1 mN⇒ 1
1---– 1–= = =

Find the equation of the normal to the curve  at the point 
where y = 3.

f x( ) x 2+=E 20.7XAMPLE

S
o
l
u
t
i
o
n

3 x 2+ 9⇒ x 2 x⇔+ 7= = =

f x( ) x 2+ x 2+( )1 2/ f ' x( )⇒ 1
2--- x 2+( ) 1 2/–= = =

f ' 7( ) 1
2 7 2+------------------- 1

6---= = mt=( ) mN 6–=

y 3– 6 x 7–( )–=

Find the equation of the normal to the curve whose equation is given by 
 at the point where y = 0 and x > 0.x2 2y 2–+ ey=

E 20.8XAMPLE

S
o
l
u
t
i
o
n

dy
dx------

d
dx------ x

2 2y 2–+( ) d
dx------ e

y( ) 2x 2dydx------+⇔ d
dy------ e

y( ) dy
dx------⋅= =

2x⇔ ey 2–( )dydx------=
dy
dx------⇔ 2x

ey 2–( )------------------=
x2 2y 2–+ ey= x2 2 0( ) 2–+ e0=
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. Then, as .
We can now determine the gradient of the tangent:  (= ). 

So the gradient of the normal is given by  = .

Using the equation for a straight line, , with   

we have the equation of the normal as .

1. Find the equations of the tangents to the following curves at the points indicated
(a)  at (2,4) (b)  at (1, 0)
(c)  at (3, 2) (d)  at 

(e)  at  (f)  at (2, 1)

(g)  at (2, 8) (h)  at (2, 4)

2. Find the equation of the normal for each of the curves in Question 1.

3. Find the equations of the tangents to the following curves at the points indicated
(a)  at (1, e) (b)  at (1, e)
(c)  at (d)  at (π, –π)
(e)  at (f) at (e – 1, e – 1)

(g)  at (0, 0) (h)  at (0,1)

4. Find the equation of the normal for each of the curves in Question 3.

5. Find the equation of the tangent to the curve  at the point A(2, 12).
The tangent at a second point, B(–2,12), intersects the tangent at A at the point C.
Determine the type of triangle enclosed by the points A, B and C.
Show that the tangents drawn at the points X and Y, where x = a and x = –a
respectively will always meet at a third point Z which will lie on the y–axis.

x2 2– 1 x2⇔ 3– 0 x⇔ 3±= == x 0 x⇒> 3=
dy
dx------

2 3
e0 2–( )------------------ 2 3–= = mt

mN
1
mt
-----–= 1

2 3–-------------  – 1
2 3----------=

y y1– m x x1–( )= x1 y1,( ) 3 0,( ) m,≡ 1
2 3----------=

y 0– 1
2 3---------- x 3–( ) 2 3y x– 3+⇔ 0= =

EXERCISES 20.1

y x3 x2– x– 2+= y x4 4x2– 3+=
y x 1+= y 1

x 1–---------------- 1
2---+= 5 1,( )

f x( ) x
x 1+------------ x 1–≠,= 1 1

2---,   f x( ) 2x
x 2+------------ x 2–≠,=

x    x x3 4–( ) x    x2
x 1–----------- x 1≠,

y xex= x    exx---- x 0≠,
f x( ) x x( )sin+= π π,( ) y x x( )cos=

y x
x( )sin---------------= π

2---
π
2---,   x    x x 1+( )elog

x    xex2 1+ f x( ) 2x( ) x( )cos+sin=

y x2 x2 1–( )=
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6. Find the equation of the tangent and the normal to the curve  at the point
 (1, 2). Find the coordinates of the points where the tangent and the normal cross the x- and
 y-axes, and hence determine the area enclosed by the x–axis, the y–axis, the tangent and

the normal.

7. Find the equation of the normal to the curve  at the point (4, 3).

8. Show that every normal to the curve  will always pass through the point
(0,0).

9. Find the equation of the tangent to the curve  that is parallel to the line with
equation y = 4x + 2.

10. Find the equation of the tangent to the curve  at the point where the curve
crosses the y–axis.

11. Find the equation of the tangent and the normal to the curve  where .

12. The straight line  cuts the parabola with equation  at the 
points A and B.
(a) Find the coordinates of A and B.
(b) Find the equation of the tangents at A and B, and hence determine where the two

tangents meet.

13. For the curve defined by  find the equation of the normal at the origin, and the
equations of the tangents that are parallel to the x–axis. Find also the points where the
tangents and the normal intersect.

14. The figure shows the curve whose equation is given by
.

The tangent drawn at the point P(5,8) meets the curve again at
the point Q.

(a) Find the equation of the tangent at the point P.
(b) Find the coordinates of Q.

15. The line L and the curve C are defined as follows,
 and 

The line L is a tangent to the curve C at x = 1.
(a) Using the fact that L and C meet at x = 1, show that .
(b) Given that L is a tangent to C at x = 1, show that .
(c) Hence, solve for m and n.

x    x 1
x--- x 0≠,+

y 25 x2–=

y a2 x2–=

y x2 2x–=

x    x2 4+( )elog

x    x x( )tan x π
4---=

y x– 4+= y 16 x2–=

x    x
x2 1+--------------

1 5

P(5,8)

x

y

Q

y2 x 1–( )3=

L:y 4x 2–= C:y mx3 nx2 1–+=

m n+ 3=
3m 2n+ 4=
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16. For each of the following curves, find the equation of the normal at the points indicated.
(a)  at the point (1,2)
(b)  at the point (3,4)
(c)  at the point (–1, 4)
(d)  at the point 

(e)   at the point (1, 1).

17. For the curve , find
(a) the equation of the normal at (2, 1).
(b) the equations of the tangents to the curve that are parallel to the x–axis.

18. Find the equation of the lines  and  in each of the following situations.
(a) (b) (c)

19. Find the point of intersection of the tangents to the curve  at the points
where x = –1.

20.2.1 INCREASING AND DECREASING FUNCTIONS

A function f  is said to be increasing if its graph rises as it is 
sketched from left to right.
That is, if 
(i.e., the y–values increase as the x–values increase).

Similarly,

A function f is said to be decreasing if its graph falls  as it is 
sketched from left to right.
That is, if 
(i.e., the y–values decrease as the x–values increase).

x2 2y2+ 9=
2xy x2 y2+– 19=
4 x y+( ) 3xy+ 0=
x x

y--  tan= 1 4
π---,  

x2 3xy2 4–+ 0=

x2 y2 xy–+ 3=

l1 l2
x2 y3– 0= x y2– 1= 4y2 x2– 32=

(–1,1)

l1 l2

y

x

tangent

l1 l2

(2, 1)
tangent

y

x

(2, 3)

tangent
l2 l1

y

x

y2 3xy– x3+ 3=

CURVE SKETCHING20.2

x1 x2

f x1( )
f x2( )

x

y

x1 x2

f x1( )
f x2( )

x

y

x2 x1 f x2( ) f x1( )>⇒>

x2 x1 f x2( ) f x1( )<⇒>
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. . . A calculus point of view

The derivative can be used to determine whether a function is increasing or decreasing and so it 
can be used to help find those values of x for which the function is increasing or decreasing.

          

This means that to determine where a function is increasing or decreasing, the values of x for 
which  and  respectively need to be found.

By definition, a function is increasing for those values of x for which .
Therefore: 1. find 

2. find the values of x such that 
Now, 
Then, 

        

We could also have determined this by sketching the graph of
. The turning point can be determined by

completing the square. i.e.,  giving the axis of 
symmetry as x = 2.

y

x = a                        x = b                                         x = c                   x = d x

Any tangent line drawn in the 
interval a < x < b will always 
have a positive gradient. This 
means that  
in this region.

dy
dx------ f ' x( ) 0>=

Any tangent line drawn in the 
interval b < x < c will always 
have a negative gradient. This 
means that  in 
this region.

dy
dx------ f ' x( ) 0<=

Any tangent line drawn in the 
interval c < x < d will always 
have a positive gradient. This 
means that  
in this region.

dy
dx------ f ' x( ) 0>=

f ' x( ) 0> f ' x( ) 0<

Find the values of x for which the function  is 
increasing.

f x( ) 1 4x x2–+=E 20.9XAMPLE

S
o
l
u
t
i
o
n

f ' x( ) 0>
f ' x( )

f ' x( ) 0>
f x( ) 1 4x x2 f ' x( )⇒–+ 4 2x–= =
f ' x( ) 0 4 2x 0>–⇔>

4 2x>⇔
 x 2<⇔

x = 2

(2,5)

f x( ) 1 4x x2–+=
f x( ) x 2–( )2– 5+=
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Unless you already know what this function looks like, it is difficult to determine the interval for 
which the function is increasing without using calculus.
First we differentiate (using the product rule): 

Now,  is increasing for values of x  for which .
Therefore we need to solve .
Now, 

     
(The inequality can be determined by making use of a
sketch of .)

That is,  increases for values of x such 
that .

Note that we could have used the graph of the derivative function, 
, and from it, determined those values of x for which the 

graph is above the x–axis.

20.2.2 STATIONARY POINTS

So far we have discussed the conditions for a function to be increasing  and for a 
function to be decreasing . What happens at the point where a function changes from 
an increasing state ( ) to ( ) and then to a decreasing state ( ) or 
vice–versa? 

Points where this happens are known as stationary points.  At the point where the function is in 
a state where it is neither increasing nor decreasing, we have that . There are times 
when we can call these stationary points stationary points, but on such occassions, we prefer the 
terms local maximum and local minimum points.
 
At the point(s) where 
we have a stationary point.

There are three types of stationary points, 
namely; local maximum point,

local minimum point and
stationary point of inflection.

Find the values of x for which the function  is 
increasing.

f x( ) x x x 0>,elog=E 20.10XAMPLE

S
o
l
u
t
i
o
n

f ' x( ) 1 xelog× x 1
x---×+ xe 1+log= =

:f x( ) x x x 0>,elog=

:f ' x( ) xe 1+log=

e 1–

e 1–

dy
dx------

f x( ) f ' x( ) 0>
xe 1 0>+log

xe 1 0 xe 1–>log⇔>+log
x e 1–>⇔

f x( ) x x x 0>,elog=

f x( ) x x x 0>,elog=
x e 1–>

y f ' x( )=

f ' x( ) 0>( )
f ' x( ) 0<( )

f ' x( ) 0>( ) f ' x( ) 0= f ' x( ) 0<( )

f ' x( ) 0=

Increasing
Increasingdecreasing

Stationary

Stationary

y

x

horizontal tangent

horizontal tangent

dy
dx------ f ' x( ) 0= =



MATHEMATICS – Higher Level (Core)

674

1. Local Maximum 

When sketching a curve, if the following properties hold:

i. At , . 

ii. For

where the two chosen values of x are such that one is just slightly less 
than  and the other is just slightly greater than . Then,

 has a local maximum point (also known as a
relative maximum) at the point .

iv. Graph of the gradient function:
Notice that the values of  are changing from 
positive to negative. Sometimes 
this is referred to as the sign of the first derivative.

At this stage, it isn’t so much the magnitude of the derivative that is important, but that there is a 
change in the sign of the derivative near . 
In this instance the sign of the derivative changes from positive to negative.

This change in sign is sometimes represented via the diagram
alongside, which is referred to as a sign diagram of the first 
derivative. Such diagrams are used to confirm the nature of stationary 
points (in this case, that a local maximum occurs at ).

First we differentiate:
Next, equate  to 0 and solve for x :  

    
To ensure that we have obtained a local maximum we choose values of x slightly less than 2 and 
slightly greater than 2, for example, choose x = 1.9 and x =2.1 .

For x = 1.9,  we have that .
For x = 2.1 we have that .

Using the graph of the gradient function, , confirms that there is  a local maximum at x = 2.0. 

x

y

x

P x1 y1,( )

x1

dy
dx------

y f x( )=

P x1 y1,( ) dy
dx------ f ' x( ) 0 that is f ' x1( ) 0= = =

x x1 then dydx------ 0><

x x1 then dydx------ 0<>

x1 x1

y f x( )=
P x1 y1,( )

dy
dx------

x x1=

x1

xy' 0>
y' 0<

y' 0=

x x1=

Find the local maximum value of the function whose equation is 
.f x( ) 3– 4x x2–+=

E 20.11XAMPLE

S
o
l
u
t
i
o
n

f x( ) 3– 4x x2 f ' x( )⇒–+ 4 2x–= =
f ' x( ) 0 4 2x–=

x⇔ 2=

dy
dx------

x1.9   2.0   2.1

f ' 1.9( ) 4 2 1.9( )– 0.2= =
f ' 2.1( ) 4 2 2.1( )– 0.2–= =

dy
dx------
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The local maximum value of , is found by substituting x = 2 into the given equation:   
. That is, the local maximum occurs at the point (2,1).

This process can also be carried out using the TI–83:

The other option is to use the fMax  command from the MATH screen. However, this will require 
some idea of the left and right bounds (which can be estimated from the graph of the function). 
We illustrate this in the next example. 

This time we start by sketching a graph of the function, setting the WINDOW parameters with the 
appropriate values (i.e., –1 ≤ x ≤ 4 ):

We can now use the fMax command 
from the MATH screen to determine 
the x–ordinate of the stationary point 
and then use the CALC function to find 
the y–ordinate:

f x( )
f 2( ) 3– 4 2( ) 2( )2–+ 1= =

1. Enter equation

2. Use the CALC
function, and then
select 4:maximum

3. Press ENTER.
This will prompt you to
choose a lower (left)

 bound then an upper
(right) bound and finally
to make a guess

3.1

3.2

4. Press ENTER once
more. This will provide
both x– and y– values

 of the stationary point.
Move the cursor to a point between 
the two arrows and press ENTER.

Determine the coordinates of the local maximum for the function 
f x( ) x2 x( ) 1 x 4≤ ≤–,sin=

E 20.12XAMPLE

S
o
l
u
t
i
o
n
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Therefore, the coordinates to 2 d.p are given by (2.29, 3.95).
Had we used an algebraic approach to this question, we would have had to solve for

         or  = 0
For which, other than x = 0, no exact solution exist.

2. Local Minimum

When sketching a curve, if the following properties hold:

i. At , . 

ii. For

where the two chosen values of x are such that one is just slightly 
greater than  and the other is just slightly less than . Then,

 has a local minimum point (also known as a
relative minimum) at the point .

iv. Graph of the gradient function:
Notice that the values of   are changing from
negative to positive. Sometimes this is referred to as the 
sign of the first derivative.

Again we can represent the change in the sign of the first derivative via 
the diagram alongside, which is referred to as a sign diagram of the first 
derivative. Such diagrams are used to confirm the nature of stationary 
points (in this case, that a local minimum occurs at ).

First differentiate (using the quotient rule):

We solve for , i.e., 

f ' x( ) 0 i.e., 2x x( ) x2 x( )cos+sin 0 x 2 x( ) x x( )cos+sin[ ]⇔ 0= = =
x⇔ 0= 2 x( ) x x( )cos+sin

x

y

x

P x1 y1,( )

x1

dy
dx------

y f x( )=

P x1 y1,( ) dy
dx------ f ' x( ) 0 that is f ' x1( ) 0= = =

x x1 then dydx------ 0>>

x x1 then dydx------ 0<<

x1 x1

y f x( )=
P x1 y1,( )

dy
dx------

x1
x

y' 0>

y' 0<
y' 0=

x x1=

Find the minimum value of .x    exx---- x 0>,
E 20.13XAMPLE

S
o
l
u
t
i
o
n

d
dx------

ex
x----  

d
dx------ e

x( ) x ex d
dx------ x( )×–×

x2--------------------------------------------------------- exx ex–
x2------------------- ex x 1–( )

x2----------------------= = =

d
dx------

ex
x----   0= ex x 1–( )

x2---------------------- 0 ex x 1–( )⇔ 0= =
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However,  for all real values of x, therefore, the only possible solution occurs if x = 1.
To verify that we have a local minimum we select a value of
x slightly less than x = 1 and one slightly greater than x = 1:
For (x < 1): choose x = 0.9, we have that .

For (x > 1): choose x = 1.1, we have that .

Therefore, for x = 1 we have a local minimum point.
The minimum value is therefore given by , and 
occurs at the point (1,e).

We start by differentiating and finding the stationary points (i.e., solving for ):

Now, .
Therefore, solving we have 

       

Therefore,  or . i.e.,  or  for .
We can check the nature of the stationary points by making use of the sign of the first derivative:

The graph of gradient function (near ) indicates that a local minimum occurs at .  

And so, the local minimum value is given by .
NB: In the process we have come accross a new sign diagram (at x = π). This is dealt with in the 
next section.

ex 0≠

dy
dx------

x0.9   1.0   1.1

Sign diagram of first derivative:

Graph of function:

(1, e)

d
dx------

ex
x----   0.30–=

d
dx------

ex
x----   0.25=

y e1
1----- e= =

Find the local minimum of the function
.y x( ) 1

2--- 2x( ) 0 x 2π≤ ≤,sin+sin=
E 20.14XAMPLE

S
o
l
u
t
i
o
n

dy
dx------ 0=

y x( ) 1
2--- 2x( ) dy

dx------⇒sin+sin x( ) 2x( )cos+cos= =
x( ) 2x( )cos+cos 0=

x( ) 2cos2 x( ) 1–( )+cos 0=
2 x( ) 1–cos( ) x( ) 1+cos( ) 0=

x( )cos 1
2---= x( )cos 1–= x π

3---
5π
3------,= x π= x 0 2π,[ ]∈

x

dy
dx------

xxπ
3---

π
5π
3------

dy
dx------

dy
dx------

x 5π
3------= x 5π

3------=

y 5π
3------   1

2---
10π
3---------  sin+sin 3 3

4----------–= =



MATHEMATICS – Higher Level (Core)

678

3. Points of Inflection

There are two types:
A. Stationary points of inflection
B. Non–stationary points of inflection.

A. Stationary point of inflection

The following properties hold at a stationary point of inflection.

i. At , . That is .
ii. For .

Similarly, 
At , . That is 
and for .

That is, the gradient of the curve on either side of
 has the same sign.

iii. Graph of the gradient function, :
Notice that the values of  have the same sign
on either side of .

Notice that at , the gradient of  is also equal
to zero. That is, the derivative of the derivative is equal to 
zero.  

Therefore if there is a stationary point of inflection at  then  = 0.

First we differentiate (using the product rule):
Given 

      

Solving for , we have, .

We can now check the sign of the derivative on either side of x = 1 and x = –1.25

P x1 y1,( )
P x2 y2,( )

x1 x2

dy
dx------

x

x

y

f '' 0=

P x1 y1,( ) f ' x( ) 0= f ' x1( ) 0=
x x1 f ' x( ) 0 and for x x1 f ' x( ) 0>,>>,<

P x2 y2,( ) f ' x( ) 0= f ' x2( ) 0=
x x2 f ' x( ) 0 and for x x2 f ' x( ) 0<,><,<

x1 (or x2)

y f ' x( )=
f ' x( )

x x1=

x x1= f ' x( )

x x1= f '' x1( )

Find the stationary point of inflection for the graph with equation 
.y x 1–( )3 x 2+( )=

E 20.15XAMPLE

S
o
l
u
t
i
o
n

y x 1–( )3 x 2+( ) dy
dx------⇒ 3 x 1–( )2 x 2+( ) x 1–( )3 1( )+= =

x 1–( )2 3 x 2+( ) x 1–( )+[ ]=
x 1–( )2 4x 5+( )=

dy
dx------ 0= x 1–( )2 4x 5+( ) 0 x⇔ 1 or x 5

4--- 1.25–=( )–= = =
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At x = 1:
For x = 0.9, 

For x = 1.1, .
As the sign of the first derivative is the same on either side of x = 1, 
we have a stationary point of inflection at x = 1. i.e., at (1,0). 
A sketch of the graph of  quickly confirms our result.
For x = –1.25, the graph shows a local minimum occurring at this point.

We begin by determining where stationary points occur:

Setting , we have 
    or 

We can use the sign of the first derivative to help us determine the nature of the stationary point. 

At x = 3: Sign diagram:
For x = 2.9, 
For x = 3.1, 

Therefore there exists a local maximum at x = 3.1.

At x = 0:
For x = 0.1, 
For x = –0.1, 

As there is no change in the sign of the first derivative there is a stationary point of inflection at 
x = 0.

Alternatively, we could sketch a graph of the function and use it to 
help us determine where the stationary point of inflection occurs:

From the graph we can see that there is a local maximum at 
x = 3 and a stationary point of inflection at x = 0.

Therefore, the stationary point of inflection occurs at (0, 0).

Notice that the sign diagrams of the first derivative in Examples 20.13, 20.14 and 20.16 all look 
slightly different. We have done this to emphasise that as long as the diagram provides a clear 
indication of the sign of the first derivative then its appearance can vary.

dy
dx------ 0.1–( )2 8.6( ) 0.086 0>= =
dy
dx------ 0.1( )2 9.4( ) 0.094 0>= =

y x 1–( )3 x 2+( )=

Locate the stationary points of inflection for the curve .f x( ) x3e x–=E 20.16XAMPLE

S
o
l
u
t
i
o
n

f x( ) x3e x– f ' x( )⇒ 3x2e x– x3e x––= =
f ' x( ) 0= 3x2e x– x3e x–– 0 x2e x– 3 x–( )⇔ 0= =

x⇔ 0= x 3=

x = 3.0
x

f ' 0>
f ' 0<

f ' 0=

x = 0

x
f ' 0>

f ' 0=
f ' 0>

f ' 2.9( ) 2.9( )2e 2.9– 3 2.9–( ) 0.046 0>= =
f ' 3.1( ) 3.1( )2e 3.1– 3 3.1–( ) 0.043 0<–= =

f ' 0.1( ) 0.1( )2e 0.1– 3 0.1–( ) 0.026 0>= =
f ' 0.1–( ) 0.1–( )2e0.1 3 0.1+( ) 0.034 0>= =

y f x( )=
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B. Non–stationary point of inflection

The following properties hold at a non-stationary point of inflection:

i. At ,  and .
ii. For 

Similarly, 

At ,  and .
For .

That is, the gradient of the curve on either side
of  has the same sign.

iii. Graph of the gradient function, :
Notice that the values of  have the same
sign on either side of .

For the curve to have a non–stationary point of inflection at x = 2 we need to show that:
1.    at x = 2  and 

2.  the sign of the gradient, , is the same on
both sides of x = 2  and 

3.  that  when x = 2.

Now, .

For x = 2, .

For x = 2.1, .

Therefore there is a non–stationary point of inflection at x = 2.

It is important to realise that it is not sufficient to say that  “If  at x =a then there must 
be a point of inflection at x = a.”

P x1 y1,( ) P x2 y2,( )

x1 x2

dy
dx------

x

x

y

f '' 0=

P x1 y1,( ) f ' x1( ) 0≠ f '' x1( ) 0=
x x1 f ' x( ) 0 and for x x1 f ' x( ) 0>,>>,<

P x2 y2,( ) f ' x2( ) 0≠ f '' x2( ) 0=
x x2 f ' x( ) 0 and for x x2 f ' x( ) 0<,><,<

x1 (or x2)

y f ' x( )=
f ' x( )

x x1=

Show that the curve with equation  has a non-stationary point 
of inflection at x = 2.

y x4 4x3–=E 20.17XAMPLE

S
o
l
u
t
i
o
n

A quick sketch of the function 
indicates that a point of inflection 
occurs at x = 2:

x = 2

2
x

y' 0< y' 0<y' 0≠
y'' 0=

Sign diagram:

d2y
dx2-------- 0=

dy
dx------

dy
dx------ 0≠

dy
dx------ 4x3 12x2 d2y

dx2--------⇒– 12x2 24x–= =
d2y
dx2-------- 12 2( )2 24 2( )– 0 and dydx------ 16 0≠–= = =
dy
dx------ 15.876 and for x– 1.9, dydx------ 15.88–= = =

f '' x( ) 0=
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Does  imply there is a point of inflection at ?

The answer is NO!

Although it is necessary for the second derivative to be zero at a point of inflection, the fact that 
the second derivative is zero at x = a does not mean there must be a point of inflection at x = a. 

That is:

We use the following example to illustrate this.

Consider the case where  . 
Now, , therefore solving for , 
we have    .

That is, . So, do we have a point of inflection at x = 0?

A sketch of  shows that although  at x = 0, there is in 
fact a local minimum and not a point of inflection at x = 0.

In other words, finding where  is not enough to indicate that there is an inflection 
point. To determine if there is a point of inflection you need to check the the sign of the first 
derivative on either side of the x-value in question. Or, check the concavity at the x-value in 
question. We will discuss the term concavity in §20.3.

Now, 
Solving for stationary points we have, 

         
So that  and .
Using the sign of the first derivative, we have:
At x = 3:
For x < 3 (x = 2.9)  and 
for x > 3 (x = 3.1) .
Therefore, there is a local minimum at (3,–26).

At x = –1:
For x < –1 (x = –1.1)  and 
for x > –1 (x = –0.9) .
Therefore, there is a local maximum at (–1,6).

f '' a( ) 0= x a=

 is a necessary but not a sufficient 
reason for there to be an inflection point at x = a.
f '' a( ) 0=

f x( ) x4=
f '' x( ) 12x2= f '' x( ) 0=

12x2 0 x⇔ 0= =

f '' 0( ) 0=

f f '' x( ) 0=

f '' x( ) 0=

Find and classify all stationary points (and inflection points) of 
.f x( ) x3 3– x2 9x– 1+=

E 20.18XAMPLE

S
o
l
u
t
i
o
n

f x( ) x3 3– x2 9x– 1 f ' x( )⇒+ 3x2 6x– 9–= =
3x2 6x– 9– 0 3 x 3–( ) x 1+( )⇔ 0= =

x⇔ 3 or x 1–= =
f 3( ) 26–= f 1–( ) 6=

x = 3
x

f ' 0>
f ' 0<

f ' 0=

x = –1
x

f ' 0>
f ' 0<

f ' 0=

f ' 2.9( ) 0<
f ' 3.1( ) 0>

f ' 1.1–( ) 0>
f ' 0.9–( ) 0<
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Checking for inflection points: 
We have: .
For x < 1 (x = 0.9)  and 
for x > 1 (x = 1.1) .

As the sign of the first derivative remains the same on either side of x = 1, there is a point of 
inflection at (1, –10). Then, as the first derivative at x = 1 is not zero, we have a non-stationary 
point of inflection at x = 1.

We first find the stationary points (if any).
This means that we must solve for :
Now, 

 or x = 0
We now check for the nature of each point

At x = 0: x = –0.1, 
x =  0.1,  

Therefore, we have a local maximum point at (0,0).

At x = 1: 
x = 0.9, 
x = 1.1, 

Therefore, we have a local minimum point at (1,–1).

At x = –1: 
x = –0.9, 
x = –1.1, 

Hence, we have a local minimum point at (–1, –1).

We now look for possible points of inflection.

We need to solve for :
Now, 

         
         

At  similarly .

Next, we check to see if these are indeed points of inflection.

x = 1 x
f ' 0< f ' 0≠ f ' 0<f '' 0=

f '' x( ) 0 6x 6–⇔ 0 x 1=⇔= =
f ' 0.9( ) 0<
f ' 1.1( ) 0<

Sketch the graph of the function , clearly marking any 
stationary points and points of inflection.

f x( ) x4 2x2–=E 20.19XAMPLE

S
o
l
u
t
i
o
n

f ' x( ) 0=
f ' x( ) 4x3 4x– 4x x2 1–( )= = 4x x2 1–( )∴ 0 4x x 1+( ) x 1–( )⇔ 0= =

x⇔ 1 or x– 1= =

(–1,–1) (1,–1)

1
3-------– 1

3-------

5
9---–

1
2-------– 1

2-------

y

x

f ' 0.1–( ) 0.396 0>=
f ' 0.1( ) 0.396– 0<=

f ' 0.9( ) 0.684– 0<=
f ' 1.1( ) 0.924 0>=

f ' 0.9–( ) 0.684 0>=
f ' 1.1–( ) 0.924– 0<=

f '' x( ) 0=
f '' x( ) 0 12x2 4–⇒ 0= =

4 3x2 1–( )⇔ 0=
x⇔ 1

3------- 0.58≈( ) or x 1
3------- 0.58–≈( )–= =

x 1
3------- f 1

3-------  , 1
3-------   4 2 1

3-------   2– 5
9---–= = = f 1

3-------–   5
9---–=
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At  we have: At  we have:

x = 0.5, x = –0.5, 
x = 0.6, x = –0.6, 

From the signs of the first derivative, on either side of   and  we have 

non–stationary points of inflection at  and .

a. x–intercepts:  
We need to solve for .  
As  is always positive, we need only concern ourselves with .
Given that , we have .

That is, x–intercepts occur at 

b. Stationary  points:
This time we need to solve for : 

  [product rule]

         

So, 
Now, as  is always positive we have .
Solving for  gives .  

Therefore, .

Nature of stationary points:

For 

x 1
3-------= x 1

3-------–=

f ' 0.5( ) 1.5 0<–≈ f ' 0.5( ) 1.5 0>≈
f ' 0.6( ) 1.54 0<–≈ f ' 0.6( ) 1.54 0>≈

x 1
3-------= x 1

3-------–=

1
3-------

5
9---–,   1

3-------– 5
9---–,  

For the function , find
a. the x–intercepts,
b. the co-ordinates of the first two stationary points.

Use the above information to sketch the graph of f.

f : 0 5π
2------,         , where f x( ) e x– xcos=

E 20.20XAMPLE

S
o
l
u
t
i
o
n

e x– xcos 0 e x–⇔ 0 or xcos 0= = =
e x– xcos 0=

x 0 5π
2------,∈ xcos 0 x⇔ π

2---
3π
2------

5π
2------, ,= =

x π
2---

3π
2------

5π
2------, ,=

f ' x( ) 0=
f ' x( ) d

dx------ e
x–( ) xcos× e x– d

dx------ xcos( )×+=
e x– x e x– xsin–cos–=
e x– x xsin+cos( )–=

f ' x( ) 0 e x– x xsin+cos( )– 0 e x–⇔ 0 or x xsin+cos 0= = =⇔=
e x– f ' x( ) 0 x xsin+cos⇔ 0= =

x xsin+cos 0= xsin x xsin
xcos-----------⇔cos– 1 xtan⇔– 1–= = =

x 3π
4------ or x

7π
4------= =

x 3π
4------ 2.36≈( ) 

x 2.3 then dydx------ 0.008–= =

x 2.4 then dydx------ 0.056= = 



 local minimum at x∴ 3π
4------= =
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For 

Now, at , and at 

Note: The graph shown has been scaled so that the general shape can be seen more readily. In fact, the
local maximum should be very close to the x-axis.

20.2.3 GLOBAL MAXIMA AND MINIMA

Until now we have only considered locating the local maxima or the local minima. The process 
has been straightforward enough in the sense that there exists a procedure for locating these 
points, i.e., find the derivative, equating it to zero, solve and then use a sign diagram of the first 
derivative to identify the nature of the stationary point.

Consider the function . Assuming that we have been able to find 
the stationary points we can sketch the graph of :

Going through our standard process we find that the 
curve has a 

local maximum at (–2, 38)
and a 

local minimum at .

In sketching this curve we have (correctly) assumed that  and as such the graph extends 
indefinitely and as such, no overall minimum or maximum can be given. However, what if we 
wished to find the maximum value of this function but this time have a restriction on the domain, 
e.g., , –3 ≤ x ≤ 2.
In this instance, proceeding with our standard approach, i.e., finding the derivative and so forth 
gives the same results as above. However, we should now sketch the graph over the given domain. 
A sketch of this graph over the given domain is now produced:

x 7π
4------ 5.50≈( ) 

x 5.4 then dydx------ 0.0006= =

x 5.6 then dydx------ 0.0005–= = 



 local maximum at x∴ 7π
4------= =

x 3π
4------,y e

3π
4------– 3π

4------  cos 2
2-------e

3π
4------––= = = x 7π

4------,y e
7π
4------– 7π

4------  cos 2
2-------e

7π
4------–= = =

(0,1)

5π
2------

π
2---

3π
2------

3π
4------

7π
4------

x

y Notice that over the specified
domain, the TI–83 produces 
the following graph:f x( ) e x– xcos=

Also note that the behaviour of  takes on the 
combined behaviour of the decaying function, , and 
the oscillating function, .

f x( )
e x–

x( )cos

f x( ) 4x3 9x2 12x– 10+ +=
f x( )

1
2---

27
4------,  

2 38,–( )

x

y y f x( )=

local max

local min
1
2---

27
4------,  

x   ∈

f x( ) 4x3 9x2 12x– 10+ +=
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From the sketch we can see that although the point 
(–2, 38) is still a stationary point, it only identifies the 
local maximum. 

Over the new domain, the maximum value of  is in 
fact 54. We say that  has an endpoint maximum. 
This endpoint maximum occurs at (2, 54). Then, as there 
is no other value greater than 54, we also say that the 
global maximum or the absolute maximum is 54.

Notice too that the point  is both a local minimum and a global minimum, because for 

this domain the minimum value of  is , which happens to coincide with the local 
miminum. Had the domain been –4 ≤ x ≤ 2, then the absolute minimum would have occured at 
x = –4 with a value of  = –54.

So, when using the term ‘local’ we are in fact referring to points that are in the immediate 
vicinity (or neighbourhood) of the critical point (see definition below).

Notice also that the derivative, , does not exist at (2, 54) [or (–3, 19) for that matter] – 
however, we still have a maximum at that point. 
Why is it that the derivatives does not exist at these end point?

It should also be observed that there can be a local maximum or a local minimum for which the 
derivative is undefined at that point. We extend our definition of local extrema as follows:

To determine the critical value(s) we must first find :
.

Next we must find value(s) of c such that  or  does not exist.
So, .

1
2---

27
4------,  

2 38,–( )

x

y

y f x( )=
local max

local min

(2,54)

(–3,19)

[Also global min]

[Global max]

f x( )
f x( )

1
2---

27
4------,  

f x( ) 27
4------

f 4–( )

f ' x( )

c                           cx                              x

f ' c( ) 0= f ' c( ) does not exist

c                           cx                              x
f ' c( ) 0= f ' c( ) does not exist

 Local maximum  Local minimum

If f  has a local maximum or a local miminum when x = c, where 
a < c < b, then c is a critical value of f.  That is, either 

 or  does not exist.f ' c( ) 0= f ' c( )

a          b a          b a          b a          b

Find the critical value(s) of the function .f x( ) 2x 3x2 3/–=E 20.21XAMPLE

S
o
l
u
t
i
o
n

f ' x( )
f ' x( ) 2 2x 1 3/–– 2 1 1

x1 3/---------–   2 x1 3/ 1–
x1 3/------------------  = = =

f ' c( ) 0= f ' c( )
f ' x( ) 0 2 x1 3/ 1–

x1 3/------------------  ⇔ 0 x1 3/ 1–⇔ 0 x⇔ 1= = = =
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However,  will be undefined if x = 0 (as division by 0 is not possible). So, we might also
have a critical value at x = 0 (one for which the derivative is undefined).
In fact, a sketch of the function shows the critical points as well as the local extrema.
When x = 1,  and when x = 0,  and so we have local extrema at
(1, –1) and (0, 0). 

We start by sketching the graph of f:

To determine the stationary point we solve 
.

That is, x = 3 is a critical value.

However there is another critical value, where  does 
not exist. Namely, x = 1. 
Note that x = –5 provides an end point extremum.

We then have: An absolute minimum at x = –5.
An absolute maximum at the critical value x = 1.
A local minimum at the critical value x = 3.

Note: Even though , we cannot refer to this point as an end point extremum, as a 
value of  is not defined at this point.

f ' x( )

f 1( ) 2 3– 1–= = f 0( ) 0=

(1, –1)

(0,0)

Local minimum,

Local maximum

y

x

f ' 1( ) 0=

f ' 0( ) is undefined

Given that 

(a) Find all critical values of f.
(b) Find the absolute maximum of f.

f x( ) x2 6x– 8+  where   1 x 4<≤
x 2+  where 5 x 1<≤–

=
E 20.22XAMPLE

S
o
l
u
t
i
o
n

1       3   4–5           –2    0

3

–3

y

x

d
dx------ x

2 6x– 8+( ) 0 2x 6–⇔ 0 x⇔ 3= = =

f ' x( )

f x( )
x 4–→
lim 0=

f x( )

For the function .
(a) Find its critical value(s).
(b) Find the coordinates of the i. local minimum ii. absolute minimum.
(c) Find the coordinates of the i. local maximum ii. absolute maximum.
(d) Find its point(s) of inflection.
(e) Sketch the graph of h.

h x( ) x 1–( )x2 3/ 1 x 2≤ ≤–,=E 20.23XAMPLE



Differential Calculus and Curve Sketching – CHAPTER 20

687

We start by using the graphics calculator to get an idea of the general shape of the curve.

(a) Our first step in finding critical values is to solve for .
Now, 

Therefore,  = 0.4
And so, there is only one critical value that is a stationary point.
However, we also note that  is undefined at x = 0, and from the graph above we see that this 
is also a critical value. In fact, we see that there is a cusp1 at x = 0.

(b) i. Using the above graph as an aid we have the local minimum occuring at x = 0.4,

with coordinates . i.e., .
ii. The absolute minimum occurs at the end point where x = –1

(c) i. The local maximum, even though  is undefined there, occurs where x = 0.
The coordinates of the local maximum are (0, 0).

ii. The absolute maximum occurs at the endpoint where x = 2.
Now, , therefore the coordinates of the absolute
maximum are at .

(d) For possible points of inflection we first solve .
Now, 

 

Then, .
Again, making use of the graph from our graphics calculator. We see that as  for 
x < –0.2,  for x > –0.2 and  at x = –0.2, then there is a (non-stationary) point 
of inflection at x = –0.2.

1. We will say more about cusps in the next section.

S
o
l
u
t
i
o
n h' x( ) 0=

h x( ) x 1–( )x2 3/ h' x( )⇒ 1 x2 3/ x 1–( )+× 2
3---x

1 3/–× x2 3/ 2 x 1–( )
3x1 3/--------------------+= = =

3x 2 x 1–( )+
3x1 3/--------------------------------=

5x 2–
3x1 3/---------------=

h' x( ) 0 5x 2–
3x1 3/---------------⇔ 0 x⇔ 2

5---= = =

h' x( )

0.4 3
5---

2
5---  

2
3–,   h 2

5---  
2
5--- 1–   2

5---  
2 3/ 3

5---
2
5---  

2
3–= =

h' x( )

h 2( ) 2 1–( ) 22 3/× 22 3/= =
2 22 3/,( )

h'' x( ) 0=
h' x( ) 1

3--- 5x 2–( )x 1 3/– h'' x( )∴ 1
3--- 5 x 1 3/– 5x 2–( ) 1

3---x
4 3/––×+×= =

1
3---

15x 5x 2–( )–
3x4 3/-----------------------------------=

1
9---

10x 2+
x4 3/------------------⋅=

h'' x( ) 0 10x 2+
9x4 3/------------------⇔ 0 x⇔ 2

10------– 0.2–= = = =
h' x( ) 0>

h' x( ) 0> h'' x( ) 0=
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(e) We are now in a position to sketch the graph of . Of course, we are also using the
display from the graphics calculator as an aid – and it should be noted that in this case the
graphics calculator has not clearly displayed the inflection behaviour at x = –0.2.

Using the available information we have gathered, we can now sketch the graph of h:

Note: The following section lies outside the scope of the course – we include it as an extension.

20.2.4 VERTICAL TANGENTS AND CUSPS

In the previous section we looked at critical points and how to find them. In this section we take a 
closer look at the properties of graphs that have critical points for which the derivative does not 
exist yet still provide a local (or relative) extrema. We also look at graphs for which neither a 
local maximum nor a local minimum exists at points where the first derivative does not exist.

We first display the graphs of such functions and then provide a definition. Note that in all cases 
we have that  does not exist. In all four cases a vertical tangent exists at x = c.

The graph of the function has a vertical tangent line at  x = c if f is continuous at 
x = c and  as .

 

Figures (a) and (b):
The graph of the function has a cusp at x = c if f is continuous at c and

 as  from one side of x = c and  as  from the other
side of x = c.

h x( )

1             2

y

x

2 22 3/,( )

0.4 3
5---

2
5---  

23–,   

–0.2

(–1, –2)

Absolute maximum

Absolute minimum

Local maximum (0, 0)

Inflection point
Local minimum

f ' c( )

f ' x( ) +∞→ x c→

c x c x c x c
x

as: 
,
,

x c–→ f ' x( ) –∞→
x c+→ f ' x( ) +∞→

as:
, 
, 

x c–→ f ' x( ) +∞→
x c+→ f ' x( ) –∞→

as:
, 
, 

x c–→ f ' x( ) –∞→
x c+→ f ' x( ) –∞→

as:
, 
, 

x c–→ f ' x( ) +∞→
x c+→ f ' x( ) +∞→

(a)                              (b)                              (c)                              (d)

f ' x( ) +∞→ x c→ f ' x( ) –∞→ x c→
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We approach this question in two ways.

The first is to realise that  is in fact the inverse of the  function. That is, if we 
consider the function  we can determine its inverse as follows:

 i.e., .
Then, as  has a stationary point of inflection at x = 0, the tangent at x = 0 must be 
parallel to the x–axis, i.e., it has a horizontal tangent at x = 0. This then means that its inverse, 
i.e.,  would have a vertical tangent at x = 0.

Sketching the function  would then require us to reflect the graph of  
about the line y = x.

The second method makes use of the definitions we have just looked at. We start by finding the 
derivative:  then, at x = 0, the derivative is undefined. 
However this is not enough1 to imply that we have a vertical tangent. We need to look at some 
more features of the graph before we can conclude that we have a vertical tangent at 
x = 0. We produce a list of features that will allow us to conclude that we have a vertical tangent at 
x = 0:

1.  is undefined at x = 0.
2.  is continuous at x = 0.
3. i. as , .

ii. as , .

As all three conditions hold true, we must have a vertical tangent at x = 0.

We can now sketch the graph of the function :

1. Note that the derivative of the function  is undefined at x = 0, but it does not have a
    vertical tangent at that point.

Sketch the graph of .f x( ) x1 3/=E 20.24XAMPLE

S
o
l
u
t
i
o
n

f x( ) x1 3/= x3
g x( ) x3=
g g 1– x( )( ) x g 1– x( )[ ]3⇔ x g 1– x( )⇔ x3= = = g 1– x( ) x1 3/=

g x( ) x3=

g 1– x( ) x1 3/=

f x( ) x1 3/= g x( ) x3=

f x( ) x1 3/ f ' x( )⇒ 1
3---x

2 3/– 1
3x2 3/------------= = =

f x( ) 1
x---=

f ' x( )
f x( )

x 0–→ f ' x( ) 1
3x2 3/------------=   +∞→

x 0+→ f ' x( ) 1
3x2 3/------------=   +∞→

y

x

(1, 1)

(–1,1)

0

f x( ) x1 3/=
f x( ) x1 3/=
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A quick sketch of  using the TI–83 
shows us enough to suspect that there is a vertical tangent 
at x = 2, in fact, we suspect that it is a cusp. 

We now confirm this formally:
As 
Then, as

1.  is undefined at x = 2.
2.  is continuous at x = 2.

and 3. i. as , 

ii. as , 

We have a vertical tangent at x = 2 and the curve forms a cusp at this 
point. This is shown in the sketch of :

20.2.5 SUMMARY

A lot of ground has been covered with the many definitions encountered. So, below is a visual 
summary of the definitions we have covered to date.

Sketch the graph of .f x( ) x 2–( )2 3/ 1+=E 20.25XAMPLE

S
o
l
u
t
i
o
n

f x( ) x 2–( )2 3/ 1+=

f x( ) x 2–( )2 3/ 1 f ' x( )⇒+ 2
3--- x 2–( ) 1 3/– 2

3 x 2–( )1 3/--------------------------= = =

f ' x( )
f x( )

x 2–→ f ' x( ) 2
3 x 2–( )1 3/--------------------------=   –∞→

x 2+→ f ' x( ) 2
3 x 2–( )1 3/--------------------------=   +∞→

(2, 1)
1    2    3

1
2
3

y

x

f x( ) x 2–( )2 3/ 1+=

Local maximum & 

Local maximum

Local minimum

Endpoint maximum

Non stationary point
of inflection

f ' ≠≠≠≠ 0

f ' = 0

f ' = 0

f ' = 0

and global maximum

Local maximum & 
Endpoint maximum

(or absolute maximum)

Local minimum and
global minimum 
(or absolute minimum)

f ' doesn’t exist f ' doesn’t exist

f ' doesn’t exist

f ' < 0
f is decreasing

f ' > 0
f is increasing

f ' > 0
f is increasing

f ' < 0
f is decreasing

f ' > 0
f is increasing

f ' > 0
f is increasing

Stationary point
of inflection

f '' = 0
f '' = 0

x
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1. Draw a sketch of the graph of the function , where,
(a)  for 1 < x < 3 and 

 for x > 3 and x < 1.
(b) ,  for 0 < x < 2 and x > 2,  for x < 0 and

.
(c) , ,  for x > 3 and  for 

x < 0 and 0 < x < 3.
(d) ,  for x > 4,  for x < 4, as  and 

as .

2. Find the coordinates and nature of the stationary points for the following:
(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) (j)
(k) (l)

3. Sketch the following functions:
(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) (j)

4. Find and describe the nature of all stationary points and points of inflection for the
function .

5. Sketch the graph of .

6. A function f is defined by , where 0 ≤ x ≤ 2π.
(a) Find i. ii.
(b) Find the values of x for which

i. ii.
(c) Using parts (a), and (b), find the points of inflection and stationary points for f.
(d) Hence, sketch the graph of f. 

EXERCISES 20.2

f x( ) x    ∈,
f 1( ) 2 f ' 1( ), 0 f 3( ), 2 f ' 3( ),– 0 f ' x( ) 0<,= = = =
f ' x( ) 0>
f ' 2( ) 0 f 2( ), 0= = f ' x( ) 0> f ' x( ) 0<
f 0( ) 4–=
f 4( ) f 0( ) 0= = f ' 0( ) f ' 3( ) 0= = f ' x( ) 0> f ' x( ) 0<

f 4( ) 4= f ' x( ) 0> f ' x( ) 0< x 4+ f ' x( ) +∞→,→
x 4– f ' x( ) –∞→,→

y 3 2x x2–+= y x2 9x+=
y x3 27x– 9+= f x( ) x3 6x2– 8+=
f x( ) 3 9x 3x2– x3–+= y x 1–( ) x2 4–( )=
f x( ) x 2 x x 0≥,–= g x( ) x4 8x2– 16+=
y x 1–( )2 x 1+( )= y x x x x 0≥,–=
g x( ) x 4

x--- x 0≠,+= f x( ) x2 1
x2----- x 0≠,+=

y 5 3x– x2–= f x( ) x2 1
2---x

3
4---+ +=

f x( ) x3 6x2 9x 4+ + += f x( ) x3 4x–=
f x( ) 1

3---x
3 x2– 4+= y 4x3 x4–=

y x3 8–= y x4 16–=
y x 4x x x 0≥,–= f x( ) x 2 x x 0≥,–=

f x( ) x3 3x2 9x– 2+ +=

x    x4 4x2–

f :x    e x– xsin
f ' x( ) f '' x( )

f ' x( ) 0= f '' x( ) 0=
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7. A function f is defined by , where 0 ≤ x ≤ 2π.
(a) Find i. ii.
(b) Find the values of x for which

i. ii.
(c) Using parts (a) and (b), find the points of inflection and stationary points for f.
(d) Hence, sketch the graph of f. 

8. A function f is defined by , where 0 ≤ x ≤ 2π.
(a) Find i. ii.
(b) Find the values of x for which

i. ii.
(c) Using parts (a) and (b), find the points of inflection and stationary points for f.
(d) Hence, sketch the graph of f. 

9. A function f is defined by , where x > 0.
(a) Find i. ii.
(b). Find the values of x for which

i. ii.
(c) Using parts (a) and (b), find the points of inflection and stationary points for f.
(d) Hence, sketch the graph of f. 

10. (a) Find the maximum value of the function .
(b) Find the minimum value of the function .
(c) Find the maximum value of the function .
(d) Find the maximum value of the function .

11. For the function  find;
i. its minimum value, ii. its maximum value.

12. For each of the labelled points on the following graphs state
i. whether the derivative exists at the point.
ii. the nature of the curve at the point.

f :x    ex xsin
f ' x( ) f '' x( )

f ' x( ) 0= f '' x( ) 0=

f :x    ex xcos
f ' x( ) f '' x( )

f ' x( ) 0= f '' x( ) 0=

f :x    xe x–

f ' x( ) f '' x( )

f ' x( ) 0= f '' x( ) 0=

y 6x x2 4 x 7≤ ≤,–=
y 6x x2 2 x 6≤ ≤,–=
y 2x x3 2– x 6≤ ≤,–=
y 36x x4 2 x 3≤ ≤,–=

f x( ) 1
3---x

3 x2– 3x– 8 6 x 6≤ ≤–,+=

A

B
C

y

x

y y

x x

A

B

C

A

B
C

(a) (b) (c)

(d) (e) (f)

B

CA

A

B
C A

B

C
y y y

x x x
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13. Identify which graph corresponds to
i. ii. iii.
(a) (b)

14. For each of the functions, , sketch (a) (b).

15. The curve with equation  has a local maximum where x = –3 and
a local minimum where x = –1. If the curve passes through the points (0,4) and (1, 20)

 sketch the curve for .

16. The function  has turning points at  and (3, –15).

Sketch the graph of the curve .

17. The function  has stationary points at (–2, 64)
(2, –64) and (0, 0). Find the values of a, b and c and hence sketch the graph of f.

18. Sketch the graph of the curve defined by the equation 
indentifying, where they exist, all stationary points and points of inflection.

19. Find m and n so that  exists for the function .

20. Consider the function .
(a) Sketch the graph of f for the case where

i. a = 4 and b = 2.
ii. a = 2 and b = 2.

(b) Find
i.  if a = 4 and b = 2.
ii.  if a = 2 and b = 2.

For each of i. and ii., in (b) find all stationary points and where  is undefined.

f x( ) f ' x( ) f '' x( )

A

B

C

A B
C

y y

x x

f x( ) f ' x( ) f '' x( )

–a                      a

a
i. ii. iii.y y y

x xx

y ax3 bx2 cx d+ + +=

x ∈

f x( ) ax3 bx2 cx d+ + += 1 13
3------–,–  

y f x( )=

f : x      , where  f x( ) ax5 bx3 cx+ +=

y x 10x xln–( ) x 0>,=

f ' 1( ) f x( ) mx2 n+ if x 1≤
1
x--- if x 1>




=

f x( ) x a–( ) x 4–( )1 b/=

f ' x( )
f ' x( )

f ' x( )
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21. The curve with equation  has a stationary point at (0, 5), an 
x–intercept at x = –1 and an inflection point where x = 0.5. Find the values of a, b and c.

22. Sketch the curve of the function with equation  indentifying, if they exist,
all stationary points and points of inflection.

23. The function  passes through the point (–2, 0) and the point (1, 0).
Sketch the graph of f  identifying, if they exist, all stationary points and points of 
inflection.

24.* Sketch the graphs of the functions
(a) i. ii.
(b) i. ii.

25.* Sketch the graphs of the functions
(a) (b)
(c) (d)

26.* Determine the values of x for which the function  is increasing. Sketch
the graph of f identifying, if they exist, all stationary points and points of inflection.

27.* (a) Find the local maximum, local minimum and inflection point for the function
.

(b) Sketch the graph of , 
(c) Find the maximum value of  over the interval –2 ≤ x ≤ 6.

28. The curve with equation  intersects the x-axis at x = 1 and cuts the
y-axis at (0, –34). Given that the curve has turning points at x = 3 and x = 5, determine the
values of a, b, c and d. Sketch this curve.

29. (a) Given that , show that . Hence
show that there can be at most three points of inflection.

(b) If  has a stationary point where , find the value of b.
(c) For what value of a will the graph of the function pass through the point

?
(d) Using the values of a and b found in parts (b) and (c), sketch the graph of the

function.

30. (a) Find the smallest three positive critical values of .

(c) Sketch the graph of the function .

* Functions such as these lie outside the scope of the syllabus. They have been included so that they can be used as part
    of classroom discussions.

y ax3 bx2 cx 5+ + +=

y 1 x+( )2e x–=

f x( ) x2 bx c+ +( )ex=

g x( ) x 2+( )2 3/= f x( ) x 2+( )1 3/=
h x( ) x 4–( )3 2/ 2+= h x( ) x 4–( )2 3/ 2+=

f x( ) 5x4 5/ 4x–= h x( ) 1
2---x

2 3x5 3/–=
g x( ) x2 3/ x 3–( )= g x( ) x3 2/ x 3–( )=

f x( ) x2 4–( )2 3/=

f x( ) 5x2 3/ x5 3/–=
f x( ) 5x2 3/ x5 3/–=

f x( )

y ax3 bx2 cx d+ + +=

f x( ) axe b– x2= f '' x( ) 2abx 2bx2 3–( )e bx2–=

f x( ) x 1
2-------=

2 e 2–,( )

f θ( ) θcos
θ------------ θ 0≠,=

f θ( ) θcos
θ------------ 0 θ 4π≤<,=
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20.3.1 DEFINITION

We have already encountered the second derivative, however, we have only done so as a process 
rather than as an in depth study. We now revisit the second derivative and look at its other uses. 

Remember that if a function is differentiated twice, we obtain the second derivative of the 
function. The second derivative measures the rate at which the first derivative is changing. 

If this second derivative is small, it means the first derivative is changing slowly and that the 
curve will look a bit like:  or  with a small curvature. If the second 
derivative is a large positive number, the gradient is increasing rapidly and the curve will look a 
bit like this: , that is, a large curvature. For similar reasons, a large negative value for 
the second derivative means that the gradient of the curve is decreasing rapidly and the graph 
should look a bit like this: . Again, producing a large curvature. 
We now define the term concavity and look at its relationship to the second derivative.

       A. B.       C. D.

Graph A

Graph B

Graph C

THE SECOND DERIVATIVE AND 
ITS APPLICATIONS

20.3

Concave up

Concave down

f '' 0>

f '' 0<
f ' 0<

f ' 0<

f ' 0<

f ' 0<
f ' 0>

f ' 0> f ' 0>
f ' 0>

f ' 0=

f ' 0=

f ' 0≠ f ' 0≠

f '' 0<f '' 0<

f '' 0>
f '' 0>

y                                    y                                    y                                   y

x                                     x                                   x                                        xa   b    c                          a   b    c                            a   b    c                         a    b    c

Local Min. Local Max. Inflection points

As the x-values increase from a to b to c, i.e., from left to right,
then the values of  increase from –ve  to 0 to +vef ' f '' 0  a local minimum at x⇒>⇒ b=

As the x-values increase from a to b to c, i.e., from left to right,
then the values of  decrease from +ve  to 0 to –vef ' f '' 0  a local maximum at x⇒<⇒ b=

As the x-values increase from a to b to c, i.e., from left to right,
then the values of  decrease from +ve  to smaller +ve numbers and then increase to larger +ve 
numbers. However, this time  changes sign at x = b, from –ve values to +ve values

 (i.e., a non-stationary point of inflection).

f '
f ''

 a point of inflection at x⇒ b=
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Graph D

Note that a special case of Graphs C and D is where a stationary point occurs at x = b:

We can use the following sequence of derivatives to summarise our observations so far.

As the x-values increase from a to b to c, i.e., from left to right,
then the values of  decrease from –ve  to more –ve numbers and then increase to less –ve 
numbers. However, this time  changes sign at x = b, from +ve values to –ve values

 (i.e., a non-stationary point of inflection).

f '
f ''

 a point of inflection at x⇒ b=

f ' 0>
f ' 0> f ' 0=

f '' 0<

f '' 0>

f ' 0<

f ' 0<

f '' 0<

f '' 0>

f ' 0=

y                                    y  

a   b    c                           a   b    c x                                         x 

In such cases we say that a stationary point of 
inflection occurs at x = b.

That is at x = b ,  and the sign 
of the second derivative changes (either from 
–ve to +ve or from +ve to –ve).

This situation has been addressed in detail 
earlier in this chapter

f '' 0= f ' 0=

x1 x3x2

x1 x3x2

x1 x3x2

dy
dx------

d2y
dx2--------

y A1

A2

A3

B1

B2

B3

C1

C2

C3

x

x

x

Local Maximum:
So that at a local maximum we have that
1. 2.

A1 B1 C1→ →

dy
dx------ 0= d2y

dx2-------- 0<

Local Minimum:
So that at a local minimum we have that
1. 2.

A3 B3 C3→ →

dy
dx------ 0= d2y

dx2-------- 0>

Inflection point:
So that at a point of inflection we have 

Case A – 
A non stationary point of inflection
1. 2.
and there is a change in the sign of the second 
derivative near .
Case B – 
A stationary point of inflection
1. 2.
and there is a change in the sign of the second 
derivative near .

A2 B2 C2→ →

dy
dx------ 0≠ d2y

dx2-------- 0=

x2

dy
dx------ 0= d2y

dx2-------- 0=

x2

Local max.

Local min.

Inflection pt.

+ve

+ve

–ve

–ve
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By definition,  will be concave up for those values of x where .
Now, .
Then, .
i.e.,  is concave up for .
The use of a graphics calculator can confirm this
result.

       
We can locate the stationary points by equating the first derivative to zero:

 
Next, we must use a test of some sort to discriminate between the types of stationary point. Using 
the second derivative test, we have the following.
x = –1:
From this we can infer that in the region of the stationary point, the gradient of the curve is 
decreasing. This means that the general shape must be:  and that we have a local 
maximum. The y-coordinate of this point is .

At the origin, both  and . However we can draw no conclusion as yet from 
this information as it could represent either a stationary point of inflection or a turning point. A 
second test is required which might be to look at the sign of the first derivative just to the left and 
just to the right of the stationary point:

Since the gradient is negative both to the left and right of x = 0, it follows that we have a 
descending stationary inflection point. The y-coordinate of this point is .

Finally,  so that in the region of the stationary point at 
x = 3 the gradient is increasing so the graph must have the general shape:  and the 
stationary point is a local minimum. The y-coordinate of this point is .
In summary, there is a local maximum at (–1,3), a descending inflection at the origin and a local 
minimum at (3,–189).

Determine the values of x for which the function  is 
concave up.

f x( ) x3 3x2–=E 20.26XAMPLE

S
o
l
u
t
i
o
n

f x( ) f '' x( ) 0<
x = 1f ' x( ) 3x2 6x f '' x( )∴– 6x 6–= =

f '' x( ) 0 6x 6 0 x 1<⇔<–⇔<
f x( ) x ] ∞ 1[,–∈

Find the first and second derivatives of the function: 

Hence find the coordinates and nature of all the stationary points of the function.
f x( ) 2x5 5x4–= 10x3– x 5 5,–[ ]∈,

E 20.27XAMPLE

S
o
l
u
t
i
o
n

f x( ) 2x5 5x4–= 10x3 f ' x( ) 10x4 20x3– 30x2–=⇒–
f∴ '' x( ) 40x3 60x2– 60x–=

10x4 20x3– 30x2– 0 10x2 x2 2x– 3–( ) 0=⇔=
10⇔ x2 x 3–( ) x 1+( ) 0=

x⇔ 1 0 3, ,–=

f '' x( ) 40x3 60x2– 60x f '' 1–( ) 40 1–( )3 60 1–( )2– 60 1–( )–=∴– 40–= =

f 1–( ) 2 1–( )5 5 1–( )4–= 10 1–( )3– 3=

f ' 0( ) 0= f '' 0( ) 0=

f ' 0.01–( ) 10 0.01–( )4 20 0.01–( )3– 30 0.01–( )2– 0.0029799–= =
f ' 0.01( ) 10 0.01( )4 20 0.01( )3– 30 0.01( )2– 0.0030199–= =

f 0( ) 0=

f '' 3( ) 40 3( )3 60 3( )2– 60 3( )– 360= =

f 3( ) 189–=
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This graph is an example of one which is difficult to see using a 
graphics calculator. If you look at the graph using a window which 
will show the stationary points, you will probably miss the detail in 
the area of the origin.

By contrast, if you only look at the region around the origin, you 
might well miss the minimum at (3,–189).

You should be careful when using a graphics calculator to show 
graphs and are advised to think carefully about the best way(s) of 
viewing them. In this example, the shape of the graph cannot be seen 
from a single window. 

 is concave down where 
Consider the solution to , i.e., 

Then, using the graph of  as an aid, we have
that  if  or .

i.e., .

.
Then, 

   
We now need to find those values of x for which .
We start by finding where  and then make use of a graph to identify the inequality.

Determine the values of x for which the function  is concave 
down over the interval [0, 2π].

f x( ) sin2x=E 20.28XAMPLE

S
o
l
u
t
i
o
n

f x( ) sin2x f ' x( )⇒ 2 xcos( ) xsin( ) 2x f '' x( )∴sin 2 2xcos= = = =
f x( ) sin2x= f '' x( ) 0 2 2x 0<cos⇔<

2 2xcos 0= 2xcos 0 2x∴ π
2---

3π
2------

5π
2------

7π
2------, , ,= =

x∴ π
4---

3π
4------

5π
4------

7π
4------, , ,=

f '' x( ) 2 2xcos=
f '' x( ) 0< π

4--- x 3π
4------< < 5π

4------ x 7π
4------< <

x π
4---

3π
4------

5π
4------

7π
4------,∪,∈

The graph of the function  is concave up over the 
interval a < x < b. Find the values of a  and b to two decimal places.

f x( ) xsin
x---------- 2π x 0< <–,=

E 20.29XAMPLE

S
o
l
u
t
i
o
n

f x( ) xsin
x---------- f ' x( )∴ xcos( )x xsin( ) 1×–

x2-------------------------------------------------- x x xsin–cos
x2-------------------------------= = =

f '' x( ) x x x xcos–sin–cos( ) x2 2x x x xsin–cos( )×–×
x4------------------------------------------------------------------------------------------------------------------------- 2x x 2x2 xcos– x3 xsin–sin

x4------------------------------------------------------------------= =
2 x 2x xcos– x2 xsin–sin

x3------------------------------------------------------------=
f '' x( ) 0<

f '' x( ) 0=
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The solution to  is provided by setting . That is, by 
solving  – which unfortunately cannot be readily solved. Seeing as 
we require answers to two decimal places, we make use of the graphics calculator:
 
Using the solve function we obtain the 
solutions x = –2.08 and x = –5.94

To determine the set of values for which
the inequality  holds, we use the
graph of  as an aid. From the graph of

 we have:

Therefore, a = –5.94 and b = –2.08

We now consider the previous problem and solve it by using the nDerive function on the TI–83:
We start by entering the equation of the function  as  and then set  to be the 
first derivative of  and then set  to be the first derivative of  [which then becomes the 
second derivative of ]. Once that is done, we use the solve function as shown.

First we differentiate the function : .
Stationary points occur where .
Next we find the second derivative:

      

We can now check for the nature of the stationary points:
At x = 0, . Implying a local minimum at x = 0.
At x = 2, . Implying a local maximum at x = 2.
Therefore, we have a local minimum at (0,0) and a local maximum at .

f '' x( ) 0= 2 x 2x xcos– x2 xsin–sin
x3------------------------------------------------------------ 0=

2 x 2x xcos– x2 xsin–sin 0=

f '' x( ) 0< y f x( )=f '' x( ) 0<
f x( )

f x( )
f '' x( ) 0 5.95 x 2.08–< <–⇔<

f x( ) xsin
x----------= Y1 Y2

Y1 Y3 Y2
Y1

Y1

Y2
Y3

Determine the coordinates of all stationary points and their nature for the 
function with equation f x( ) x2e x–=

E 20.30XAMPLE

S
o
l
u
t
i
o
n

f x( ) x2e x–= f ' x( ) 2xe x– x2e x–– xe x– 2 x–( )= =
f ' x( ) 0 xe x– 2 x–( )⇒ 0 x⇔ 0 or x 2= = = =

f '' x( ) e x– xe x––( ) 2 x–( )× xe x– 1–×+=
e x– 1 x–( ) 2 x–( ) x–( )=
e x– x2 4x– 2+( )=

f '' 0( ) e 0– 02 4 0 2+×–( ) 2 0>= =
f '' 2( ) e 2– 22 4 2 2+×–( ) 2e 2–– 0<= =

2 4e 2–,( )



MATHEMATICS – Higher Level (Core)

700

1. Use the second derivative to determine the nature of the stationary points of:

(a) (b)
(c) (d)
(e) (f)
(g) (h)

2. Find the maximum and minimum values of the following:

(a)
(b)
(c)

(d)

3. Sketch the graph of  identifying all important
features, including maximum, minimum and inflection points.

4. Sketch the graph of  identifying all important
features, including maximum, minimum and inflection points.

5. Sketch the graph of  identifying all important
features, including maximum, minimum and inflection points.

6. Identify and justify the occurence of all maximum points, minimum points and points of
inflection for the curves with equation
(a) (b) (c)

7. Sketch the graph of  identifying all important features,
including maximum and minimum points.

8. Sketch the graph of 
(a)
(b)

(c)
identifying all important features, including maximum, minimum and inflection points.

EXERCISES 20.3

f x( ) x3 16x–= f x( ) x4 2x2–=
f x( ) x x–= y xe x–=
y x 1+( ) xelog= y x2 x 1–( )2=
y x

x2 1+--------------= y x
x2 1–--------------=

f x( ) x3 16x 0 x 6≤ ≤,–=
f x( ) x4 2x2 2 x 4≤ ≤–,–=
y x

x2 1+-------------- 0 x 4≤ ≤,=

y x 1–( )23 0 x 2≤ ≤,=

f x( ) x 1
2--- 2x x 0 2π,[ ]∈,cos+cos=

f x( ) xsin 1
2--- 2x x 0 2π,[ ]∈,sin+=

f x( ) x x x 2π– 2π,[ ]∈,sin=

y x 1
x-------+= y x2 3+

x 1+--------------= y x
x 1–-----------=

f x( ) sin2x x x 0 2π,[ ]∈,cos–=

f x( ) x2e x–=
f x( ) e4 x2–=

g x( ) 1
x---e

1
2---x–=
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9. Sketch the graph of (a) (b)

(c) (d)
identifying all important features, including maximum, minimum and inflection points.

10. Sketch the graph of the curve with equation  identifying all

important features. Hence show that for .

11. Consider the function  where a and b are integers.
(a) Find .
(b) Sketch the graph of , identifying all stationary points, for the case where

i. a = 1, b = –1
ii. a = 2, b = 1
iii. a = 2, b = 2

12. (a) Show that a critical value, c, of the function  satisfies the equation
.

(b) Using the second derivative, identify the nature of the critical point where x = c.
(c) Sketch the graph of the function , x ≠ 0.

13. (a) For what values of c will , x > 0.
(b) Sketch the graph of the curve whose equation is , x > 0, where c

is the smallest value determined in part (a).

14. Making use of the second derivative, find the nature of 
(a) all stationary points
(b) all points of inflection
of the curve with equation .
(c) Sketch the graph of this curve.

15. For the function  determine, where they exist, the coordinates of
(a) stationary points 
(b) inflection points 
(c) Sketch the graph of .

f x( ) 1
x--- x( )ln= f x( ) x2 xln–=

g x( ) 2
x--- xln+= h x( ) x x 1–( )[ ]ln=

y 2 θ θ 0 θ π
2---<≤,tan–sec=

θ 0 π2---,∈ 2 θ θ 3≥tan–sec

f x( ) x 2–( )a x 2+( )b=
f ' x( )

f x( )

f x( ) 5x 1
x---+=

c2 5ln 5 c–=

f x( ) 5x 1
x---+=

x x x– c 1≥+ln
y x x x– 2c+ln=

y x2 1
x3----- 
  x 0>,ln=

f x( ) 1
x2----- x( ) x 0>,ln=

f x( )



MATHEMATICS – Higher Level (Core)

702

20.4.1 SKETCHING THE GRAPH OF 

Properties 

Graphs of this nature possess two types of asymptotes, one vertical and the other horizontal. 

1. The vertical asymptote

A vertical asymptote occurs when the denominator is zero, that is, where . Where this 
occurs, we place a vertical line (usually dashed), indicating that the curve cannot cross this line 
under any circumstances. This must be the case, because the function is undefined for that value 
of x.
For example, the function  is undefined for that value of x where . That is, 
the function is undefined for . This means that we would need to draw a vertical 
asymptote at x = –2. In this case, we say that the asymptote is defined by the equation .
Using limiting arguments provides a more formal approach to ‘deriving’ the equation of the 
vertical asymptote. The argument is based along the following lines:
 

Therefore we write 

 of .

2. The horizontal asymptote

To determine the equation of the horizontal asymptote, again we use a limiting argument, 
however, this time we observe the behaviour of the function as .
It will be easier to determine the behaviour of the function ( as ) if we first ‘simplify’ the 
rational function (using long division): .

RATIONAL FUNCTIONS20.4

x     ax b+
cx d+--------------- cx d 0≠+,

cx d+ 0=

x    3x 1+
2x 4+--------------- 2x 4+ 0=
x 2–=

x 2–=

That is, as x tends to –2 from the left or ‘below’, (hence 
the minus sign next to the two) the function tends to 
positive infinity.

x = – 2

y +∞→

x

y

 as x 2––→ 3x 1+
2x 4+---------------, +∞→

That is, as x tends to –2 from the right or ‘above’, 
(hence the plus sign next to the two) the function tends 
to negative infinity.

x = – 2

y ∞–→

x

y

 as x 2––→ 3x 1+
2x 4+---------------, +∞→

As  x 2+   f x( ) –∞→–→
As  x 2_   f x( ) +∞→–→ 

 x∴ 2 is a vertical asymptote–= f x( ) 3x 1+
2x 4+--------------- x 2–≠,=

x ∞±→
x ∞±→

f x( ) 3x 1+
2x 4+--------------- 3

2---
5

2x 4+---------------–= =



Differential Calculus and Curve Sketching – CHAPTER 20

703

Next we determine the behaviour for extreme values of x:

We can now add a few more 
features of the function:

3. Axial intercepts

x–intercept

To determine the x–intercept(s) we need to solve for .
In this case we have .

That is, the curve passes through the point .

y–intercept

To determine the y–intercept we find the value of  (if it exists, for it could be that the line 
x = 0 is a vertical asymptote).
In this case we have .

Therefore the curve passes through the point .
Having determined the behaviour of the curve near its asymptotes (i.e., if the curve approached 
the asymptotes from above or below) and the axial–intercept, all that remains is to find the 
stationary points (if any).

4. Stationary points

To determine the coordinates of stationary points we need to first solve for  and then 
(if we do have a solution) substitute into the equation of  so that we can obtain the 
y coordinate.
In this case we have (using the quotient rule): .

Therefore, , for which there are no real solutions.

As x +∞  f x( ) 3
2---  

_→→

As x ∞–   f x( ) 3
2---  

+→→




 Therefore, y 3

2--- is the horizontal asymptote=

x 2–=
x 3

2---=y 1.5+→
y 1.5–→

x

y

f x( ) 0=
f x( ) 3x 1+

2x 4+--------------- 0 3x 1+⇔ 0 x⇔ 1
3---–= = = =

1
3--- 0,–  

f 0( )

f 0( ) 3 0× 1+
2 0× 4+--------------------- 1

4---= =

0 1
4---,  

f ' x( ) 0=
f x( )

f ' x( ) 3 2x 4+( ) 2 3x 1+( )–
2x 4+( )2----------------------------------------------------- 10

2x 4+( )2----------------------= =

f ' x( ) 0 10
2x 4+( )2----------------------⇔ 0= =
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This means that there are no stationary points for this curve. In fact, it can be shown that any 
function of the form  will never have a stationary point. We leave this as an 
exercise for you! We are now in a position to complete the sketch of our function. The 
information we have is

1. Asymptotes
.

.
2. Intercepts

x– .

y– .
3. Stationary points

None.

20.4.2 OTHER RATIONAL FUNCTIONS

The most obvious thing to do is— use your graphics calculator:
However, this only gives a 
general idea of the shape of 
the function, we still want 
to study some of its 
properties in more detail. 
We begin by investigating 
its asymptotic properties:

First we rewrite the function  as . This will enable 
us to concentrate on x–values that will help us determine the asymptotes

Vertical Asymptotes:
These will correspond to values of x for which the denominator is zero.
That is, those values of x for which , i.e., where x = 1 and x = –1.

Case 1 x = 1: As 
and as  .

Case 2 x = –1 As 
and as  .

f x( ) ax b+
cx d+---------------=

1
3--- 0,–  

0 1
4---,  1.5

2–

y f x( )=

y

x

x 2–=
y 3

2---=

1
3--- 0,–  

0 1
4---,  

Sketch the graph of , x ≠ ±1.f x( ) 2 x
x2 1–--------------+=

E 20.31XAMPLE

S
o
l
u
t
i
o
n

f x( ) 2 x
x2 1–--------------+= f x( ) 2 x

x 1–( ) x 1+( )----------------------------------+=

x 1–( ) x 1+( ) 0=

x = – 1

y +∞→

x

y

x = 1

y +∞→

y –∞→y –∞→

x 1+  then  f x( ) +∞→→
x 1–  then  f x( ) ∞–→→

x –1+  then  f x( ) +∞→→
x –1–  then  f x( ) ∞–→→
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Horizontal asymptote:
That is, we look at the behaviour of 

As .

As .

We now determine the intercepts with the axes.
x–intercept(s):

Setting , we have, 

      

That is, the curve crosses the x–axis at  and .
y–intercept:
We evaluate . That is the curve passes through the point (0, 2).
Notice that we have in fact cut the horizontal asymptote at (0, 2)!
We can also look for possible stationary points and points of inflexion.

Stationary points:
We need to solve for . 

Now .

Therefore, setting . For which there are no real solutions.
Therefore, there are no stationary points on this graph.

Points of inflection:
We first find the second derivative:

Now, 

          (After some simplification).

Therefore, setting .

But, , therefore the only solution is x = 0. To check if in fact there is a point of inflection 
we need to check the sign of   or  on either side of x = 0.

x = – 1 x

y

x = 1

y 2+→
y 2–→ 2

f x( )  as  x ∞→

x +∞  then  x
x2 1–-------------- 0+→→ f x( ) 2+→∴

x ∞–   then  x
x2 1–-------------- 0–→→ f x( ) 2–→∴

f x( ) 0= 2 x
x2 1–--------------+ 0 x

x2 1–--------------⇔ 2 x⇔– 2x2– 2+= = =
0⇔ 2x2 x 2–+=
x⇔ 1– 17±

4------------------------=

1– 17+
4------------------------ 0,   1– 17–

4----------------------- 0,  

f 0( ) 2 0
0 1–------------+ 2= =

f′ x( ) 0=

f x( ) 2 x
x2 1–-------------- f′ x( )⇒+ 1 x2 1–( ) x 2x×–×

x2 1–( )2------------------------------------------------- x2 1+( )–
x2 1–( )2----------------------= = =

x2 1+( )–
x2 1–( )2---------------------- 0 x2 1+( )–⇒ 0= =

f′ x( ) x2 1+( )
x2 1–( )2--------------------- f′′ x( )⇒– 2x x2 1–( )2 x2 1+( ) 2 2x x2 1–( )⋅⋅( )–

x2 1–( )2------------------------------------------------------------------------------------------------–= =
2x x 1–( ) x2 3+( )

x2 1–( )4-------------------------------------------=

f′′ x( ) 0 2x x 1–( ) x2 3+( )
x2 1–( )4

-------------------------------------------⇒ 0 x⇔ 0 1±,= = =

x 1±≠
f′ x( ) f′′ x( )
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We now show how this can be done using the TI–83. That is we sketch the graph of y = .

From the graph of y =  we see that  
 < 0 for all values of x.

In particular,   < 0 for x > 0   and
        < 0 for x < 0

Therefore, at x = 0, i.e., at (0, 2) we have a non–stationary point of inflection.

Note that we could have sketched the graph of the second derivative using the TI-83 to verify this:

From this graph, we see that the sign of the 
second derivative changes from positive to 
negative as x increases near x = 0.
That is  just before x = 0  
and       just after x = 0.

After all this, we can now sketch the graph of .

It should be noted that functions other than rational functions also have asymptotes. For example, 
graphs having the equation  have a horizontal axis at y = a, and graphs whose 
equation is given by  have a vertical asymptote at x = k. These functions 
have been dealt with in Chapter 7.

20.4.3 OBLIQUE AND CURVED ASYMPTOTES

So far we have only looked at vertical and horizontal asymptotes. However, there are other types 
of asymptotes. These are

1. oblique asymptotes (also known as sloping asymptotes) and
2. curved asymptotes. 

An oblique asymptote is a straight line that is neither vertical nor horizontal. Unlike the vertical 
asymptote, which can never be cut by the curve, an oblique asymptote can be cut by the curve. 

f′ x( )

f′ x( )
f′ x( )

f′ x( )
f′ x( )

f ′ ′ x( )Sign of 
changes near x = 0

f′′ x( ) 0>
f′′ x( ) 0<

f x( ) 2 x
x2 1–--------------+=

x = 1x = – 1

y = 2
(0,2)

x

y

1– 17+
4------------------------ 0,  

1– 17–
4----------------------- 0,  

f x( ) a bekx+=
f x( ) a x k–( )e c+log=
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Curved asymptotes, as its name suggests, are just that – curved. We look at how these asymptotes 
come about when sketching curves that posses them.

Consider the function .

As  becomes a very large positive number, the term  will diminish to an insignificant positive 

number. That is, as , . Meaning that  will only be left with the  term.
We can write this as follows: As , or, as .
This means that as , the function  will approach the line y = x from above.
Similarly:

As  then  so that as , or, as .
This means that as , the function  will approach the line y = x from below.

We also know that there is a vertical asymptote at x = 0, and that as 
and   as 

We can now start to sketch the graph:

The same could be done with the function :
As  and as   (note that  for both ).
Also, as  and as .

Next, we determine the stationary points: . 
Then, when . That is there is a stationary point at (1, 2) [which can be 
verified to be a local minimum].
Intercepts occur when , i.e., curve passes throught (–1, 0). 
Also, x = 0 corresponds to a vertical asymptote. We are now in a position to first pencil in our 
findings and then complete the sketch:

f x( ) x 1
x--- x 0≠,+=

x 1
x---

x +∞→ 1
x--- 0+→ f x( ) x

x +∞ f x( ) x 0++→,→ x +∞ f x( ) x+→,→
x +∞→ f x( )

x –∞→ 1
x--- 0–→ x –∞ f x( ) x 0–+→,→ x –∞ f x( ) x–→,→

x –∞→ f x( )

x 0+ f x( ) +∞→,→
x 0– f x( ) –∞→,→

Step 1: Draw the oblique asymptote and pencil in the
behaviour of  as  and f x( ) x ∞±→ x 0±→

Step 2: Determine all other information, i.e., intercepts,
stationary points etc. Then complete the sketch:

, 

i.e., turning points at (1, 2) and (–1, –2).

f ' x( ) 1 1
x2
------–= f ' x( ) 0 x⇔ 1±= =

f 1( ) 1 f 1–( ), 2–= =

x +∞ f x( ) x+→,→

x –∞ f x( ) x–→,→

x 0+ f x( ) +∞→,→

x 0– f x( ) –∞→,→

(1, 2)

(–1, –2)

x

yy

x

f x( ) x 1
x2-----+=

x +∞ f x( ) x+→,→ x –∞ f x( ) x+→,→ f x( ) x+→ x ∞±→
x 0+ f x( ) +∞→,→ x 0– f x( ) +∞→,→

f ' x( ) 1 1
x3-----– 0 x⇔ 1= = =

x 1 f 1( ), 1 1+ 2= = =

f x( ) 0 x⇔ 1–= =
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What if the function had been ?
Proceeding in the same way we have:
As  [i.e.,  approaches the curve  from above]

As  [i.e.,  approaches the curve  from below]
The vertical asymptote is given by x = 0.
To find the x-intercept(s), set , giving x = –1.
For stationary points, . Giving a local min at .
Again, we use our two steps process, first pencil in the information and then complete the sketch.

The basic form of  can be easily extended, e.g., the function  would 
possess a vertical asymptote at x = –1 and an oblique asymptote, .

(1,2)

(–1,0)
(1,2)

(–1,0)

y

xx

y

f x( ) x 1
x2-----+=

pencil in inforation: complete sketch:

f x( ) 4x2 1
x---+=

x +∞ 1
x--- 0+ f x( ) 4x2( )+→∴→,→ f x( ) y 4x2=

x –∞ 1
x--- 0– f x( ) 4x2( )–→∴→,→ f x( ) y 4x2=

f x( ) 0=
f ' x( ) 8x 1

x2-----– 0 x⇔ 1
2---= = = 1

2--- 3,  

(–1,0) x

y

(–1,0) x

y

y 4x2=
f x( ) 4x2 1

x---+=
1
2--- 3,  1

2--- 3,  

pencil in inforation: complete sketch:

Summary:

Functions having the basic form , where m and n are positive
integers have a vertical asymptote at x = 0 and an asymptote , which is
1. oblique if m = 1, a ≠ 0 [i.e., straight line asymptote, ].
2. curved if m > 1, a ≠ 0 [e.g.,  has a parabolic asymptote].
3. horizontal if a = 0 [i.e., y = c].

f x( ) axm b
xn----- c+ +=

y axm c+=
y ax c+=

y ax2 c+=

f x( ) f x( ) x 2– 3
x 1+------------+=

y x 2–=



Differential Calculus and Curve Sketching – CHAPTER 20

709

1. Use a limiting argument to determine the equations of the vertical and horizontal
 asymptotes for the following:

(a) (b)

(c) (d)

(e) (f)

2. Make use of a graphics calculator to verify your results from Question 1 by sketching
the graph of the given function.

3. Sketch the following curves, clearly labelling all intercepts, stating the equations
of all asymptotes, and, in each case, showing that there are no stationary points:
(a) (b)

(c) (d)

(e) (f)

4. The figure shows part of the
graph of the function whose 
equation is .
Find the values of a and c.

5. Given that  and that  sketch the graphs of
(a) (b)

6. (a) Consider the function 
i. Find the coordinates of the intercepts with the axes.
ii. Determine the equations of the asymptotes of .
iii. Hence, sketch the graph of .
iv. Determine the domain and range of .

(b) Find , the inverse function of .
(c) Deduce the graph of .

EXERCISES 20.4

f x( ) 2x 1+
x 1+---------------= f x( ) 3x 2+

3x 1+---------------=

f x( ) 2x 1–
4x 1+---------------= f x( ) 4 x–

x 3+------------=

f x( ) 3 1
x---–= f x( ) 5 1

2 x–-----------–=

x    3
2x 1+--------------- x    x 1+

x 2+------------

x    5 x–
2x 1–--------------- x    3 1

x---+

x     1
x 3–----------- 2– x    1 2

2x 3–---------------–

2

4

y

x
x     ax 2+

x c–---------------

f :x   x 2+ g:x   1
x 1–-----------

f og go f

f x( ) 2 x–
2 x+------------=

f
f

f
f 1– f

f x( )( )2
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7. (a) Express  in the form , where A and B are integers.
Hence, state the equations of the vertical and horizontal asymptotes of the function

 .

(b) Sketch the graph of  and use it to determine its range.

8. On different sets of axes, sketch the graphs of  and , stating
 their domains and ranges.

9. Sketch the graph of the following functions, clearly labelling all asymptotes.
(a) (b)

(c) (d)

10. Sketch the graph of the following functions, clearly labelling all asymptotes.
(a) (b)

(c) (d)

11. Sketch the graph of the following functions, clearly labelling all asymptotes.
(a) (b)

(c) (d)

12. (a) For the function 
i. determine all axial intercepts and the coordinates of its stationary points.
ii. write down the equation of all the asymptotes.

(b) Sketch the graph of  clearly labelling all the information from part (a).

13. Sketch the graphs of i. .

ii. .

14. Sketch the graphs of the following functions:
(a) (b)  (c)     

15. Sketch the graph of , clearly identifying all asymptotes and turning points.

8x 5–
x 3–--------------- A B

x 3–-----------+

f x( ) 8x 5–
x 3–---------------=

f x( ) 8x 5–
x 3–---------------=

f x( ) 2 1
x---+= g x( ) 1

f x( )-----------=

f x( ) 2x 1
x--- x 0≠,+= g x( ) 1

2---x
1
x2----- x 0≠,+=

g x( ) x– 1
x--- x 0≠,+= f x( ) x 1

x--- x 0≠,–=

h x( ) x2 2
x--- x 0≠,+= f x( ) x2 1

x2----- x 0≠,+=

g x( ) x 1
x2----- x 0≠,–= f x( ) x3 3

x--- x 0≠,+=

f x( ) x 3 2
x--- x 0≠,+ += f x( ) x– 1

x--- 2 x 0≠,+ +=

g x( ) 2x 1
x2----- 2 x 0≠,–+= f x( ) x2 2x 2–+

x-------------------------- x 0≠,=

f x( ) 3 1
1 x–----------- x–+=

y f x( )=

f x( ) x2 x– 1–
x 2–----------------------- x 2≠,=

g x( ) x 2+( )2 x 1–( )
x2------------------------------------ x 0≠,=

f x( ) 2x 3–
x2 3x– 2+--------------------------= y x2 2x+

x2 4+-----------------= y x4 1+
x2 1+--------------=

f x( ) x 1+
x 1–----------------=
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21.1.1 DEFINITIONS

We saw in Chapter 18 that  measures the rate of change of a quantity y with respect to 
another quantity x. In the same way, we have that 

 measures the rate of change of A with respect to r,

measures the rate of change of V with respect to t and 

measures the rate of change of P with respect to V. 

For example, if A  measures the area of a circle of radius r m, then  (or ) measures 

the rate of change of the area A with respect to its radius r. Then, as . 

We note that a rate of change statement needs to have two quantities specified: 
1. what quantity is changing, and 
2. what it is changing with respect to.  

However, often we use the expression ‘the rate of change of ...’  with no reference to a second 
quantity. In such cases it can be assumed that we are referring to the rate of change with respect 
to time. So that “The rate of change of N”, where N measures the population size of a herd of 
elephants, would be given by , where t represents a unit of time.

If we consider a sphere as having a volume V  for a corresponding radius r units,
then we are looking for the expression .
In order to determine this rate we need to have V as an expression in terms of r.
The volume of a sphere of radius r is given by .

And so, we have that .

Notice that a sphere of radius r has a surface area given by S =  and so, we have that
. That is, the rate of change of the volume of a sphere with respect to its radius is

equal to its surface area! Are there other shapes for which this result is true?

RATES OF CHANGE21.1

C
H

A
P

T
E
R

 2
1

dy
dx------

dA
dr-------
dV
dt-------
dP
dV-------

m2 dA
dr------- A' r( )

A πr2 dA
dr------- 2πr=⇒=

dN
dt-------

Find the rate of change of the volume of a sphere with respect to its radius.E 21.1XAMPLE

S
o
l
u
t
i
o
n

units3

dV
dr-------

V 4
3---πr3=

dV
dr------- 4

3---π 3r2× 4πr2= =

4πr2

dV
dr------- S=
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21.1.2 RATES OF CHANGE AND THEIR SIGN

The following information relates to a quantity y as it varies with respect to the quantity x.

1. Identify on the following graphs the values of x for which the function is
i. increasing ii. decreasing iii. constant
(a) (b) (c)

(d) (e) (f)

If we have a positive rate over some interval (a, b)
then y increases over the interval (a, b).
i.e., if  on the interval (a, b), then the 
values of y increase as the values of x increase
on the interval (a, b).

If we have a negative rate over some interval (a, b)
then y decreases over the interval (a, b).
i.e., if   on the interval (a, b), then the 
values of y decrease as the values of x increase 
on the interval (a, b).

If we have a zero rate over some interval (a, b), 
then y is constant over the interval (a, b).
i.e., if  on the interval (a, b), then the 
values of y remain constant for all values of x on
the interval (a, b).

dy
dx------ 0>

y

x
As x increases

y increases

a b

dy
dx------ 0<

y

x

As x increases

y decreases

a b

dy
dx------ 0=

y

x
As x increases

y remains constant

a b

EXERCISES 21.1

y

x0               5

y

x–1          2           5

y

x–2  –1    0   14

y

x

y

x

y

x–2 4 –4      –1       2        5        8–1      1  2  3  4

5
4
3
2
1
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Applications of rates of change can be found in many situations. In this section we make use of a 
number of examples to highlight the diversity for which rates of change are useful. 

(a) Let . The rate of growth is given by ,
and so, . Then, when t = 4, .
That is, the colony is growing at a rate of 30 bacteria per hour (when t = 4).

(b) To show that  is an increasing function, we need to show that its derivative is
positive over its given domain. That is, we need to show that .
Now, , 
so that for t ≥ 0, .
Therefore we have that

,
 is an increasing function.

The rate of change of P with respect to t is given by 

Therefore, when t = 5,  .
That is, after five days, the number of mosquitoes is increasing at a rate of  35.29 mosquitoes per 
day (or 35 to the nearest whole number).

APPLIED RATES OF CHANGE21.2

The number, , of bacteria in a colony is given by the function
 , t ≥ 0, where t is measured in hours.

(a) Find the rate of growth of the colony when t = 4.
(b) Show that  is an increasing function.

N t( )
t      1.25t2 20t 980+ +

N t( )

E 21.2XAMPLE

S
o
l
u
t
i
o
n

N t( ) 1.25t2 20t 980 t 0≥,+ += dN
dt------- or N ' t( )

N ' t( ) 2.5t 20+= N ' 4( ) 2.5 4× 20+ 30= =

N t( )
N ' t( ) 0 (for t 0)≥>

20
t

dN
dt-------

Graphical approach:
The graph of  shows that 

, and so, 
 is an increasing function 

(for t ≥ 0).

N ' t( )
N ' t( ) 0 for t 0≥>
N t( )

N ' t( ) 2.5t 20+=
N ' t( ) 20≥

N ' t( ) 0 for t 0≥>
 N∴ t( )

The population size of mosquitoes in a controlled laboratory experiment is 
modelled by the equation , where t is measured in days. Find the growth 
rate of the mosquito population after 5 days.

P t( ) 250e0.09t t 0≥,=
E 21.3XAMPLE

S
o
l
u
t
i
o
n

dP
dt------- 250 0.09e0.09t× 22.5e0.09t= =

dP
dt------- 22.5e0.09 5× 35.2870= =

A hot metal bar is placed in an environment where the temperature remains 
constant at 34˚C. The temperature of the metal bar, T ˚C, is modelled by the equation

, 
where t is measured in minutes. 
Find the rate of change of the temperature of the bar 10 minutes after it is placed in this 
environment.

T 34 90e 0.2t– t 0≥,+=

E 21.4XAMPLE
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Given that 

  .
Therefore, when t = 10, we have    .
That is, the rate of change of temperature is approximately –2.44˚C per minute.
This means that the temperature is decreasing at a rate of 2.44˚C per minute.

We need to determine . Now, 

 [product rule]
= 
= 

Then,  = 0 when .

Up until that time, the concentration of the drug in the blood is increasing and after that time the 
concentration of the drug in the blood is decreasing. A graph of this scenario best displays this.

Application to economics

There are three important functions used in the area of manufacturing a commodity:
1.   The Cost function, C(x)   
2.   The Revenue function, R(x)
3.   The Profit function. P(x),

where x is the number of items produced.

S
o
l
u
t
i
o
n

T 34 90e 0.2t–  then dT
dt-------+ 90 0.2e 0.2t––×= =

18.0– e 0.2t–=
dT
dt------- 18e 2– 2.436–≈–=

The concentration, C mol/litre, of a drug in the blood t minutes after being 
administered is given by the equation

.
How long will it be before the concentration level in the blood starts to decrease?

C bt2 kt– 0 t 30≤ ≤,=

E 21.5XAMPLE

S
o
l
u
t
i
o
n

dC
dt------- C bt2 kt– 0 t 30≤ ≤,=
dC
dt-------∴ d

dt----- bt2 kt–( ) b d
dt----- t( ) 2 kt– t d

dt----- 2 kt–( )×+×= =
b 2 kt– t k 2ln( )2 kt––×+[ ]
b 1 k 2ln( )t–[ ]2 kt–

dC
dt------- b 1 k 2ln( )t–[ ]2 kt– 0 1 k 2ln( )t–[ ]⇔ 0 t⇔ 1

k 2ln( )----------------= = =

C mol/litre

t minutesk 2ln[ ] 1–

dC
dt------- 0=

30O
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The rates of change with respect to x for each of these functions, ,  and  are referred to 
as the Marginal Cost, the Marginal Revenue and the Marginal Profit respectively.

First we need the profit equation:  Profit = Revenue – Cost, 
    P(x) = R(x) – C(x)

where the revenue,  (as each item sells for $300). 
Therefore we have   

        
So the marginal profit,       .

Then, for x = 100, we have that 
       =  –26,000.

Application to kinematics

One important case of problems involving rates of change is kinematics. That is, the area 
concerned with the properties of motion, usually that of particles (or point masses). At this stage 
we will only provide two intial definitions and will leave a more detailed study of this topic until 
the next section.

Using our definitions we have,  

The acceleration is given by 
i.e., the object has a velocity of 5 m/s and an acceleration of 2.5 m/s2 after 1 second.

dC
dx------- dR

dx------- dP
dx-------

The cost in dollars of manufacturing x units of a product is given by
, x ≥ 0.

If each item sells for $300, find the marginal profit when 100 units are being manufactured.
C x( ) x3 20x2– 300x 1000+ +=

E 21.6XAMPLE

S
o
l
u
t
i
o
n

R x( ) 300x=
P x( ) 300x x3 20x2– 300x 1000+ +( )–=

x3– 20x2 1000–+=
dP
dx------- 3x2– 40x+=

dP
dx------- 3 100( )2– 40 100( )+=

 Consider a particle having a displacement,  from a fixed point O at time t, then 
 its instantaneous velocity,  and 

 its instantaneous acceleration, 

x t( )
v t( ) dx

dt------ x' t( )= =

a t( ) dv
dt------ x'' t( )= = O

x(t)
X

A body moves along the x-axis with displacement x cm where
, t ≥ 0 and t is the time in seconds. Find the object’s velocity and 

acceleration after being in motion for 1 second.
x t( ) 10 t t 1+( )ln–( )=

E 21.7XAMPLE

S
o
l
u
t
i
o
n

v t( ) dx
dt------ 10 1 1

t 1+-----------–  = = v 1( )∴ 10 1 1
2---–   5= =

a v' t( ) 10
t 1+( )2------------------ a 1( )∴ 10

4------ 2.5= = = =
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1. The number of deer, N, involved in a breeding program set up in a reserve has been
modelled by the function , where t is measured in years since
the program started. Find the rate at which the deer population is increasing 2 years
after the program started.

2. The volume, , of an object is given by the relation
 ,

where t is measured in days.
(a) Find the initial volume of the object.
(b) Find the rate of change of the volume when t = 5.

3. The number of organisms, N, present in a culture of  bacteria, t hours from when 
observations were first made, is given by , t ≥ 0.
(a) Find the rate of change of the number of organisms after 10 hours.
(b) Show that the number of organisms will always increase. Is this a realistic model?

4. The installation of a new electrical component into an existing product on an
assembly line has an associated cost (per component), C dollars, that is closely
 approximated by the function

,
where t is measured in years.
(a) What will the initial cost per component be?
(b) Find the average rate at which the cost per component is changing over the first

seven years.
(c) Find the rate of change in cost per component after 4 years of operation.

5. The number of sales, N thousand, made by a company is related to its advertising
 cost, x thousand dollars, by the equation 

.
Find the rate of change of the number of sales (with respect to the advertising cost)
for (i) x = 50 (ii) x = 100 (iii) x = 150

6. The profit P made by an entertainment centre when selling x bags of  lollies was
 modelled by the equation

 .
(a) For what values of x is the centre making a positive profit?
(b) For what values of x is the profit i. increasing?

ii. decreasing?

7. The revenue equation for a product is given by . Find the
value of x for which its marginal revenue is zero. Hence, determine the maximum
revenue.

EXERCISES 21.2

N 1
10------t2 4t 50+ +=

V cm3

V t( ) 0.5t3 18t2– 216t 200 t 0≥,+ +=

N t( ) 3t2 15t 800+ +=

C 8 1.5t 11.5+( )43 0 t 7≤ ≤,=

N x2
9000------------ 300 x–( ) 0 x 200≤ ≤,=

P 2.5x 1
20000---------------x2– 3000 0 x 50000≤ ≤,–=

R 59xe 0.000015x– x 0≥,=
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8. The production strategy of a company manufacturing electrical components is based
on the following models;
Demand equation:
where x is the number of components retailers are likely to buy per month at $p per
component.
Cost equation :      
(a) Show that the revenue equation , , is given by .
(b) Find the marginal revenue for a production level of 4000 units.
(c) Show that the profit, , is given by .
(d) Determine the marginal profit when 5000 units are produced.
(e) For what values of x is the profit increasing?

9. Based on classical economic theory, the demand, , for a commodity in a free
market decreases as the price x increases. The number of items,  of a particular

 product that people are willing to buy per week in a given town at a price $x is given
by the function .
(a) Find the rate of change of demand with respect to price change.
(b) Find the rate of change of demand with respect to price change for x = 10.

10. During the early days of learning theory, a model to describe success based on the
 amount of practice undertaken by a person was given by

where  measured the percentage of successful attempts after x practice attempts.
(a) Determine the rate at which learning occurs with respect to the percentage of 

practices undertaken.
(b) For what values of x is i. increasing?

ii. decreasing?

11. The function  approximates the blood pressure 
P millimetres of mercury at time t seconds for a person at rest.
(a) Find the rate of change in blood pressure when (i) t = 0 (ii) t = 
(b) Find the longest time period for which the blood pressure is increasing.

12. A particle moves in such a way that its displacement, x cm, t seconds after starting to move
from a fixed point O is given by

.
(a) Determine the rate of change of its displacement at time t = 5.
(b) Will this particle ever maintain a constant velocity for a period of time?
(c) Will this particle ever maintain a constant acceleration for a period of time?

13. Find the acceleration of a particle at t = 1, if its displacement at time t is .

x 12000 30p–=

C x( ) 50000 20x+=
R x( ) x    x 400 x

30------–  

P x( ) x    380x 1
30------x2– 50000–

D x( )
D x( )

D x( ) 40000
x2 12x 20+ +--------------------------------- 5 x 18≤ ≤,=

S x( ) 100 x 2+
x 32+---------------  =

S x( )

S x( )

P t( ) 100 20 5π
3------t  cos–=

1
5---

x t( ) 10t 20e 0.2t– t 0≥,+=

x t2e t– t 0≥,=
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We have seen how rates can be used to define certain quantities, and briefly mentioned velocity 
and aceleration at the end of §21.2. We also saw in Chapter 18 how the average rate of change of 
displacement (with respect to time) provided a measure of the average velocity. In this section we 
provide a more in-depth study of kinematics. In particular, we concentrate on the relationship 
between displacement, velocity and acceleration.

21.3.1 MOTION ALONG A STRAIGHT LINE

We will be concentrating on motion along a straight line, where a body is free to move either 
forwards and backwards or up and down. When an object moves along a straight line OX, its 
position from a fixed point O, referred to as the origin, is determined by its displacement OP.

Usually the motion is along the x-axis and so its displacement is denoted by x, however, other 
representations, like s or h (usually for height) can be used. If the position of the body along the 
straight line can be specified at any instant, its displacement x can be written as a function of time, 
t units, so that  (or simply ).

Representing a body’s displacement–time relationship is often done by using a displacement–
time graph. From such a graph, we can extend our initial definition of average velocity to that of 
instantaneous velocity:

That is, the instantaneous velocity, v, at any time t is given by the first derivative of the 
displacement equation. Similarly, the average change in velocity gives the average acceleration, 
i.e., . Then, as , i.e., , we have  which 
gives the instantaneous acceleration at any time t. That is, the acceleration is given by the first 
derivative of the velocity or the second derivative of the displacement.

KINEMATICS21.3
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Average velocity, , is 
given by the gradient of 
the secant:

Instantaneous velocity, v, 
occurs when . i.e., 

 and is given by the 
gradient of the tangent:
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We must remember that we are considering motion of a particle along a straight line, even though 
the displacement-time graph is a two dimensional curve representing the motion. In short, the 
particle is not on what appears to be a ‘roller-coaster ride’ - it is always moving along a straight 
line. By projecting this curve onto the x-axis (as shown below or a parallel line) we can see where 
the particle is on this line at different times, which direction it is moving in, when and where its 
velocity is zero, and so on.

Projection of particle’s position onto the vertical straight line

The relationships between displacement, velocity and acceleration are summarised as follows:

Notice then that two other relationships can be derived:
1. From , we have . 

2. From , we have . 

x

t

x

O

A

B

C

D

E

F
A

B

Start at A and moves away 
from O towards B.

Once it reaches B, it stops, 
and then heads towards O

Passes through O
and continues
towards D

Reaches D, stops,
and then heads
towards O again.

C E Passes through O again
moving away from D and
towards F

D

F Reaches F and stops.

1

2

3

4

5

6

1

2

3

4

5

6

We follow the particle as it moves from A to B to C to D to E and finally to F by projecting 
the corresponding points on the displacement-time curve onto the vertical axis.

dir
ect

ion
 of

 m
oti

on

Velocity: Velocity measures the rate of change of displacement.
So that if an object has a velocity v m/s and a displacement of 
x metres, then the relationship between v and x is given by

Acceleration: Acceleration measures the rate of change of velocity.
So that if an object has an acceleration a  and a velocity 
of v m/s, then the relationship between a and v is given by

  dx
dt------ v  =

m/s2

  dv
dt------ a  =

a dv
dt------=   a dv

dt------ d
dt----- v( ) d

dt----- dx
dt------   d2x

dt2--------  = = = =

a dv
dt------=   a dv

dt------ dv
dx------dx

dt------ vdv
dx------  = = =
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When the particle reaches its maximum height, it will momentarily stop, so that its velocity will 
be zero. That is . So,           

    
So, 

Checking the nature of the stationary point (to verify 
the particle has in fact reached its maximum height): 
For t = 3.9,  and for t = 4.0, .
Therefore there is a local maximum when t = 3.94. 
This means that the particle reaches its maximum 
height after approximately 3.94 seconds.
A sketch of the graph of the function x confirms this 
result.

When discussing velocity, acceleration and displacement as functions of t, it is also important to 
understand the significance of their signs. This can be summarised by the diagram below:

Note also that if both v > 0 and a > 0 (or v < 0 and a < 0) i.e., they have the same sign, then the 

A particle is projected vertically upwards in such a way that it experiences
resistance so that its height, x metres above the ground after time t seconds, is given by 

.
When will the particle reach its maximum height?
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dx
dt------ 0.17= dx
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O
x

x f t( )=

 
   If x > 0, then P is to the right of O.
   If x < 0, then P is to the left of O.
   If x = 0, then P is at O.

 
   If v > 0, then P is moving to the right.
   If v < 0, then P is moving to the left.
   If v = 0, then P is stationary.

P

 
   If a > 0, then velocity of P is increasing.
   If a < 0, then velocity of P is decreasing.
   If a = 0, then velocity of P has a stationary.
   value

Displacement:

Velocity:

Acceleration:
a dvdt------=

v dxdt------=



Applications of Differential Calculus – CHAPTER 21

721

speed of the particle is increasing. Whereas, if they have opposite signs, then the speed of the 
particle is decreasing.

(a) Given that , then the velocity .

Similarly, its acceleration .
(b) We make use of the TI–83 to help us describe the motion of the particle.

We first make use of the displacement–time graph:
From the graph we see that the particle 
started 2 metres to the right of O and then 
started to move to the left, i.e., v < 0.
 After passing O, the particle kept moving 
left until it was stationary, at which point it 
started to move to the right. It passed the 
point O again and kept going.
Although this is a basic descriptive account 
of the particle’s motion, more details can be 
included:
1. Solving for s = 0, will tell us when the particle reached the origin.
2. Solving for v = 0 will also tell us when the particle was stationary. Which we can then

use to determine how far away from the origin it was before returning towards O.

1. Solving for .
Making use of the CALC command on

 the TI–83, we have that s = 0 when 
t = 0.54 and t = 1.68.
That is, press 2nd CALC then use the 
arrow keys to provide two suitable
intervals over which a good guess can
be made.

Also note that for 0 < t < 1, the gradient of the 
displacement-time curve is negative, i.e., v < 0. 
Then, for t > 1, the gradient of the displacement-
time curve is positive, i.e., v > 0.

A particle moving in a straight line relative to some origin O, has its 
displacement, s metres, after being in motion for t seconds, governed by the equation

.
(a) Find the particle’s velocity and acceleration at any time t seconds.
(b) Describe the particle’s motion for t ≥ 0.
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s t3 4t– 2+= v ds
dt----- 3t2 4–= =

a dv
dt------ 6t= =

t

s

1             2               3                

Initial position
Passes point O
and moving to 
the left, v < 0.

Passes point O
and moving to 
the right, v > 0.

Stationary

s 0 t3 4t– 2+⇒ 0= =



MATHEMATICS – Higher Level (Core)

722

Alternatively we could use the Solve option under the MATH menu:
Either way, we can quote the result accurately to 2 decimal places.
2. Solving for v = 0, is slightly easier in this example as we end

up solving a quadratic. That is, , so that
. 

However, t ≥ 0, therefore we have that the particle becomes stationary after 1.15 seconds (and 
then moves to the right).
Note: For 0 ≤ t < 1.15, v < 0 but a > 0, meaning that the particle is slowing down.

However, for t > 1.15, v > 0 and a > 0, meaning that the particle is speeding up.

(a) We first find the particle’s velocity: 
We then differentiate the velocity equation to obtain the acceleration equation:

Now, . Then, as the acceleration is 
given in terms of x by the relation , with a constant of proportionality of –16.
(b) The maximum speed will occur when the acceleration is zero.

That is, when .
Now,  .

  

We can use a graph of the velocity function to help us determine which critical value(s) lead to 
a maximum and which ones lead to a minimum. However, it is important to understand the 
difference between speed and velocity. Velocity is a vector quantity and so has a direction 
associated with it, whereas speed is simply the magnitude of the velocity.

The maximum speed will then occur at all critical values (as we are only interested in the 
magnitude of the velocity). 

v 0 3t2 4–⇒ 0= =
t 4

3--- 1.15±≈±=

A particle’s displacement, x metres, from an origin O is defined by the 
equation  at time t seconds. 
(a) Show that the particle’s acceleration is proportional to its displacement.
(b) What is the particle’s maximum speed?
(c) Describe the particle’s motion.
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a dv
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a 16x a x∝⇒–=

a 0 16x–⇔ 0 x⇔ 0 4t 4tcos–sin⇔ 0= = = =
4t 4tcos–sin 0 4tsin⇔ 4t 4tsin

4tcos--------------⇔cos 1 4ttan⇔ 1= = = =
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So, at  and so the 

maximum speed is  m/s.
Had we selected , then  and so, although the 

velocity is  m/s, the speed is still  m/s. Notice that in this case, the minimum speed is 
in fact 0 m/s!
(c) Using a displacement-time graph we see that the particle is moving back and forth about

the origin O in a periodic manner. Particles describing this type of motion are said to
undergo simple harmonic motion (S.H.M).

Its maximum distance from the origin is  m, 
which can be verified from the displacement-
time equation as follows:

        

   i.e., 

         

At .

At .

The particle’s extreme displacements are  m and it is undergoing S.H.M with a period of .

(a) We start by sketching the displacement-time graph:

t π
16------ v, 4 4π

16------   4 4π
16------  sin+cos 4 1

2------- 4 1
2-------×+× 8

2------- 4 2= = = = =

4 2
t 5π

16------= v 4 20π
16---------   4 20π

16---------  sin+cos 4 2–= =

4 2– 4 2

x
t1

2

0
–1
–2

2

2–

2

x t( ) 4t 4t dx
dt------⇒cos–sin 4 4t 4 4t dx

dt------∴sin+cos 0 4 4t 4 4tsin+cos⇔ 0= = = =
4tsin⇔ 4tcos–=
4ttan⇔ 1–=
4t 3π

4------
7π
4------ …, ,=

t∴ 3π
16------ 7π

16------ …, ,=

t 3π
16------ x, 4 3π

16------   4 3π
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16------   4 7π
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2± π
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A particle is moving in a straight line.  At time t seconds its position, s m 
from an origin O, is defined by the equation .
(Give your answers to 2 decimal places.)
(a) What is the closest that the particle will get to the origin?
(b) Find its velocity after 2 seconds.
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To determine the closest it gets to the origin we need to determine the minimum value of s. 
So, given that . 

Then, .
For which there is no exact solution. However, using the graphics calculator and the Solve 
function gives t = 1.4860..., and then substituting this value of t back into the displacement 
equation to obtain the minimum value of s. However, we could use the fMin function in the 
MATH menu and then find the value of the function for that particular value of t:
Notice that we used the graph to provide an indication of the domain 
where the minimum value would most likely be – i.e., the lower bound 
(t = 1) and upper bound (t = 2).
Therefore, the closest the particle will get to the origin is 1.66 m.
(b) The velocity, v, is given by .

So, when t = 2,  = 1.33 (2 d.p)

Again, the TI-83 is very useful in problems such as these. Simply set Y2 to be the derivative of 
Y1, i.e., use the nDerive( option in the MATH menu and then evaluate Y2 for t = 2:

That is, the particle’s velocity after 2 s is 
1.33 m/s

1. Find i. the velocity equation ii. the acceleration equation
for the following displacement equations
(a) (b) , t ≥ 0

(c) , 0 ≤ t ≤ 2 (d) , t ≥ 0

(e) , t ≥ 0 (f) , t ≥ 0

2. A particle moving in a straight line is such that its displacement in metres from some
origin O at time t seconds is given by , t ≥ 0.
(a) What is the particle’s velocity after travelling for 2 seconds?
(b) When is the particle at rest?
(c) i. Where is the particle (relative to O) when its motion begins?

ii. What is the particle’s initial velocity?

s t( ) 2t 2 t2 ds
dt-----⇒log– 2ln( )2t 2

2ln( )t---------------–= =
ds
dt----- 0 2ln( )2t 2

2ln( )t---------------– 0 2ln( )22tt 2–⇔ 0 2tt⇔ 2
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ds
dt----- 2ln( )2t 2

2ln( )t---------------–=
ds
dt----- 2ln( )22 2
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2ln-------- 1.3298…≈–ln= =
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(d) What is the furthest this particle gets from O during the first 5 seconds of
 motion?

(e) Sketch the displacement-time graph for this particle.
3. A particle moves in a straight line so that its displacement, s metres, from a fixed
 origin after t seconds, is given by the formula , t ≥ 0.

(a) What is the particle’s initial velocity?
(b) How many times will the particle pass through the origin?
(c) When will the particle be stationary?
(d) What is the particle’s acceleration after 4 seconds?

4. A particle moving in a straight line has its displacement governed by the equation
, t ≥ 0,

where s is measured in metres and t in seconds.
(a) Find the particle’s velocity and acceleration at time t.
(b) When will the particle come to rest?
(c) How often does the particle change its direction of motion?
(d) Sketch a displacement-time graph for this particle.

5. A particle has its displacement defined by , t ≥ 0.
(a) What is the particle’s initial position?
(b) i. What is the particle’s maximum displacement from the origin?

ii. What is the particle’s maximum displacement from its initial position?
(c) What is the particle’s maximum speed?
(d) Show that its accelaration, a, is given by .
(e) Describe the motion of this particle.

6. The displacement of an object from an origin O is given by .

(a) Show that its velocity is given by .
(b) Show that its acceleration is given by .

7. A particle moving along a straight line has its displacement, x metres, from a fixed origin
O, at time t seconds, governed by the equation

(a) Find the particle’s initial position.
(b) How many times will the particle pass through the origin?
(c) Find the particle’s initial i. velocity. ii. acceleration.
(d) Find the particle’s maximum displacement from the origin for 0 ≤ t ≤ 10.

8. A particle travelling in a straight line has its displacement from an origin O, given by the
equation .
(a) Find the maximum and minimum displacement.
(b) How long is it between successive times when the particle is at rest?
(c) Find the particle’s acceleration i. in terms of t.

ii. in terms of its displacement.

s t3 2t2– t+=
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9. A body is projected vertically upward so that its height, h metres, from ground level at any
time t seconds is given by

, t ≥ 0.
(a) Find its position from ground level 1 second after being projected.
(b) Find the body’s i. velocity, ii. acceleration, 

at any time t seconds.
(c) What is the maximum height reached by the body?
(d) Find an expression for the acceleration in terms of its velocity.

10. A particle is moving along a straight line in such a way that its displacement, s metres,
from a fixed point O at time t seconds is given by , t ≥ 0. 
Find the times for which
(a) the particle’s speed is increasing.
(b) the particle’s velocity is increasing.
(c) the particle is at least 1 metre from O over the first 5 seconds.

11. Two particles, A and B, are moving along adjacent parallel straight tracks, so that their
displacements are given by the equations  and .
(a) Describe the motion of each particle.
(b) How many times will the particles pass each other?
(c) At what times will the particles pass each other? Give your answer to two decimal

places.
(d) Find an expression for the velocity of particle i. A ii. B
(e) Will the particles ever have the same speed at the same time?

12. A particle moving in a straight line has its displacement, x m, from a fixed point O given
by , where t is measured in seconds.
(a) Find the particle’s initial position.
(b) When will the particle first

i. reach the origin.
ii. come to rest.

(c) Find the particle’s acceleration after 5 seconds.
13. A particle’s position along a straight line is governed by the equation

, 0 ≤ t ≤ 3π
where x is measured in metres from a fixed origin O and time t is measured in seconds.
(a) Sketch the displacement-time graph for this particle.
(b) For what proportion of time will the particle be at least 12 metres from the origin?

14. A particle moving in a straight line has its displacement, x m, from a fixed point O given
by , where t is measured in seconds.
(a) Sketch the displacement-time graph for this particle.
(b) Find the particle’s i. velocity ii. acceleration

after 5 seconds.
(c) When will the particle come to rest?
(d) What is the furthest that the particle travels to the right of O?
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So far we have only dealt with rates of change that involve one independent variable. For 
example, the volume, V , of a sphere of radius r units is given by . To find the 
rate of change of the volume with respect to its radius we differentiate with respect to r:
i.e., .

Now consider this sphere being placed in an acid solution so that it dissolves in such a way that
1. it maintains its spherical shape, and
2. its radius is decreasing at a rate of 1 cm/hr.

How can we find the rate at which its volume is changing when the sphere’s radius is 2 cm?

Note that we are looking for the rate of change of volume that is, we want to find  (not  as 
we found previously – when we specifically requested the rate of change with respect to r).
The difference here is that we want the rate of change of one quantity (in this case the volume) 
which is related to a second variable (in this case the radius r) which is itself changing. 
Problems of this type are known as related rates problems and are usually solved by making use 
of the chain rule.
We now consider the problem at hand. We have:

Want: rate of change of volume that is, we want to find .
When: when r = 2.
Given: radius is decreasing at a rate of 1 cm/hr – that is, 
Need: This is the tricky bit. Knowing that we will need to use the chain rule, we

start by writing down the chain rule with the information we have. Then we
try to fill in the missing pieces.  
This will often lead to what we need.

Step 1:

Step 2: Ask yourself the following question:
“What do I need in the missing space to complete the chain rule?”

The missing piece of information in this case is .

That is, we have , which works!
Step 3: Once you have decided on what you need, then find an equation

that will enable you to differentiate.
Some warning! Step 3 is the tough bit in the question. Sometimes we are lucky and we know of 
an equation but sometimes we need to somehow ‘create’ the equation.

RELATED RATES21.4
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In this case we do have an equation; . And so, using the chain rule we 

have:
Note: It is very important not to substitute any values until the very end.
The last step is to find  at the specified radius with the given rate, . That is, 

. So, the volume is decreasing at .

From the data, . This is the mathematical formulation of the statement ‘the radius of a 
circular oil patch is increasing at a rate of 1.2 cm per minute’ where r is the radius and t is the 
time (in the units given in the question). The radius is increasing and so the rate is positive. The 
next step is to identify the rate of change that we have been asked to calculate. In this case, the 
question asks: ‘find the rate at which the surface area of the patch is increasing’. 
If we define the area as A , the required rate is . 

So we have Want:
When: r = 25
Given:

Need: We make use of the chain rule: .

The missing piece must therefore be !

Therefore, we have, . All we need to do is find an expression for A in terms of r.
This can be done by looking at the geometry of the situation. The oil patch is circular and so the 
area is given by .

Substituting into the chain rule gives: .

Then, with r = 25 and  we have:  .
That is, the area is increasing at approximately .

Note: A useful check that the chain rule has been used appropriately is to make use of the units of 
the quantities involved. For example 21.12 we have that 

V 4
3---πr3 dV

dr-------∴ 4πr2= =
dV
dt------- 4πr2 dr

dt-----×=

dV
dt------- dr

dt----- 1–=
dV
dt------- 4π 2( )2 1–× 16π–= = 16π cm3/hr

The radius of a circular oil patch is increasing at a rate of 1.2 cm per minute. 
Find the rate at which the surface area of the patch is increasing when the radius is 25 cm. 
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 which is the correct unit for .

We start by determining what variables are involved and see if a diagram might be helpful – 
usually one is (even if it’s only used to visualise the situation). In this case we are talking about a 
volume and a length, so we let V  denote the volume of the cube of side length x cm.
Giving us the expresion .
Next we list all of the information according to our want, when, given 
and need:

Want:
When: V = 1000
Given:

Need: Using the chain rule we have:  and so, we need .

So that . However, we have V as a function of x and so it will be easier to first find 

 and then use the fact that . Then, as ,

We know  but, still need a value for x. From  we have .

So, . That is, the side lengths are increasing at 0.08 .

It is important to realise that when we reach the ‘Need:’ stage there are more ways than one to 
use the chain rule. 

For example, with Example 21.13, rather than using  and then realising that we 

need to find  and then invert it, we could have used the chain rule as follows: 

 so that . 
Using the chain rule in this manner has a certain ‘logical flow’ to it, in that everything sems to ‘fit 
nicely’. But remember, as long as the chain rule expression contains the ‘need’, ‘want’ and 
‘given’ it should not make much difference at the end. All that we can say is that as you solve 
more and more of these problems you will be able to make the ‘best’ decision available at the 
time.

dA
dt------- dA

dr------- dr
dt-----× cm2cm 1– cm1min 1–× cm2min 1–= = = dA

dt-------

The volume of a cube is increasing at 24 . At what rate are the side 
lengths increasing when the volume is 1000 ?

cm3s 1–

cm3
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x

x

x

V x3=

dx
dt------

dV
dt------- 24=

dx
dt------    

  ----
dV
dt-------×= dx

dV-------

dx
dt------ dx

dV------- dV
dt-------×=

dV
dx------- dx

dV------- 1
dV
dx-------
-------= V x3 dV

dx-------⇒ 3x2 dx
dt------⇒ 1

3x2-------- dV
dt-------×= = =

dV
dt------- 24= V x3= 1000 x3 x∴ 10= =

dx
dt------ 1

3 10( )2---------------- 24× 8
100--------- 0.08= = = cms 1–

dx
dt------ dx

dV------- dV
dt-------×=

dV
dx-------

dV
dt------- dV

dx------- dx
dt------×= 24 3x2 dx

dt------× dx
dt------⇔ 24

3x2--------= =
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For this problem we will need to 1. introduce some variables
2. draw a diagram

Let the angle in question be  radians and the side length
opposite this angle be x cm.
Next, we go through our list:

Want:

When:  [Note that we needed to convert to radians]

Given:  [Notice the negative sign. This is because  is decreasing]

Need: Using the chain rule we have:  and so, we need .

The next step then is to find an expression for x in terms of . Using our diagram, it appears that 
the cosine rule would be useful. For this triangle we have:

 i.e., .
However, as x > 0, we have that  and so,

    

[Note: ]
We can now continue with the chain rule:

 

Again, we do not substitute the ‘when’ part of the problem until we have an expression for .

Now, when .

So, the side opposite the angle is decreasing at 3.03 cm/s (answer given to 2 d.p).

Can you come up with a shorter solution? Hint: show that .

The angle contained by two sides of fixed lengths 10 cm of a triangle is 
decreasing at 0.1π rad/sec. Find the rate at which the side length opposite this angle is changing 
at the instant when the angle is 30˚.
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θ
10

10

θ

dx
dt------

θ 30 π
180---------× π

6---= =
dθ
dt------ 0.1– π= θ

dx
dt------    

  ----
dθ
dt------×= dx

dθ------
θ

x2 102 102 2 10 10 θcos×××–+= x2 200 200 θ x∴cos– 200 200 θcos–±= =
x 200 200 θcos–=

dx
dθ------ 1

2--- 200 θsin( ) 200 200 θcos–( ) 1 2/–⋅ ⋅=
100 θsin

200 200 θcos–----------------------------------------=

200 200 θcos– 100 2 2 θcos–( ) 10 2 2 θcos–= =

dx
dt------ dx

dθ------ dθ
dt------× 100 θsin

200 200 θcos–---------------------------------------- 0.1– π× 10π θsin
10 2 2 θcos–-----------------------------------–= = =

π θsin
2 2 θcos–----------------------------–=

dx
dt------

θ π
6---

dx
dt------,

π π
6---sin×

2 2 π
6---cos–

-----------------------------–
π 1

2---×

2 2 3
2-------×–

-----------------------------– π
2 2 3–
----------------------- 3.0345–≈–= = = =

x 20 1
2---θ  sin=
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We now consider problems that require us to draw at least one diagram to help us find a solution. 
For problems such as these we draw one diagram to help us get a feel for the situation, then draw 
a second that only includes information that we will use to obtain relationships between the 
variables. In fact, in order to determine relationships between variables that deal with geometrical 
shapes we often draw a cross section of the shape in question. Once that is done, and we have 
labelled the diagram with the variables, it becomes easier to decide what geometrical 
relationships should be used, e.g., Pythagoras’s rule, similar triangles, distance formula and so on.

Let the water level at time t min have a height 
h cm with a corresponding radius r cm and 
volume V . 
We now list our requirements:

Want:
When: h = 10
Given:

Need: Using the chain rule we have:  and so, we need .

Before we can find  we will need to find an expression for V in terms of h. We do this by 
making use of Figure B – a cross section of the inverted cone. The information in Figure B 
prompts us to make use of similar triangles.
We then have, . The volume of water in the cone when it reaches a height 

h cm is given by . Then, substituting the expresion  into the volume equation 

we have that .

We can now complete the chain rule:  

  

   

Then, when h = 10, we have . i.e., approximately 0.4 cms–1.
That is, the water level is rising at 0.4 cms–1.

A container in the shape of an inverted right circular cone of base radius 
10 cm and height 50 cm has water poured into it at a rate of 5 . Find the rate at which 
the level of the water is rising when it reaches a height of 10 cm.

cm3min 1–
E 21.15XAMPLE

water
10 cm

50 cm

10 cm

50 cm
r cm

h cm

Figure A                        Figure B
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dh
dt------

dV
dt------- 5=

dV
dt-------    

  ----
dh
dt------×= dV

dh-------

dV
dh-------

50
10------ h

r--- r⇔ 1
5---h= =

V 1
3---πr2h= r 1

5---h=

V 1
3---π

1
5---h   2

h π
75------h3 dV

dh-------⇒ π
25------h2= = =

dV
dt------- dV

dh------- dh
dt------× dV

dt-------∴ π
25------h2 dh

dt------×= =

5 π
25------h2 dh

dt------×=
dh
dt------⇔ 125

πh2---------=
dh
dt------ 125

100π------------ 0.3978≈=
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We start with an appropriate diagram and then we introduce the 
variables.
Let the top of the ladder be y m from the ground at any time 
t seconds and let the bottom of the ladder be x m from the wall 
at time t seconds. We now list our requirements:

Want:
When: x = 3
Given:  [It is a negative rate because y is decreasing]

Need: Using the chain rule we have:  and so, we need .

To find  we need to obtain an expression for x in terms of y. From the diagram, an ‘obvious’ 
approach is to use Pythagoras’s Theorem. So that . i.e., .
Then, if .
But, x ≥ 0, therefore, . 
This then gives 

We then have that .

Then, when x = 3, , but, y ≥ 0 therefore, .
Substituting this into the expression for  we have: .
That is, the bottom of the ladder is moving away from the wall at approximately 0.99 m/s.

We now solve Example 21.16 using a different approach. This time we will make use of implicit 
differentiation. Using the relationship between x and y, that is, , we proceed by 
differentiating both sides with respect to t:

We know that  and that when x = 3, y = .

From  we have: 

That is,  (giving us the same answer as before).

A ladder 8 metres long is leaning against a vertical wall. If the top of the 
ladder is slipping down from the wall at 0.4 m/s, how fast is the bottom of the ladder sliding 
along the ground when the bottom of the ladder is 3 m from the wall?

E 21.16XAMPLE
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y m8 m

dy
dt------ 0.4=

dx
dt------dx

dt------

dy
dt------ 0.4–=

dx
dt------    

  ----
dy
dt------×= dx

dy------

dx
dy------

82 x2 y2+= x2 y2+ 64=
x2 y2+ 64 x 64 y2–±=⇒=

x 64 y2–=
dx
dy------ 1

2--- 2y–( ) 64 y2–( ) 1 2/–⋅ ⋅ y
64 y2–

---------------------–= =

dx
dt------ y

64 y2–
---------------------– dy

dt------× y
64 y2–

--------------------- 0.4–×– 0.4y
64 y2–

---------------------= = =

32 y2+ 64 y2⇔ 55 y∴ 55±= = = y 55=
dx
dt------ dx

dt------ 0.4 55
9------------------ 0.4 55

9------ 0.9888≈= =

x2 y2+ 82=

x2 y2+ 64 d
dt----- x2 y2+( )∴ d

dt----- 64( ) 2x dx
dt------ 2y dy

dt------⋅+⋅⇒ 0= = =
dy
dt------ 0.4–= 55

2x dx
dt------ 2y dy

dt------⋅+⋅ 0= 2 3 dx
dt------×× 2 55 0.4–( )⋅+ 0 dx

dt------⇒ 2 55× 0.4×
2 3×---------------------------------= =

dx
dt------ 0.4 55

3------------------ 0.9888≈=
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The use of implicit differentiation in related rates problems can often reduce the work and 
provide a somewhat more elegant solution.

Let y m denote the distance from the 
ground that the weight has been raised
after t seconds and let x m be the 
horizontal distance the bike has moved 
along the ground. Let the weight be 
located at A, the pulley at B and the bike 
at C.
We now list our requirements:

Want:
When: y = 4
Given:

Need: Using the chain rule we have:  and so, we need .

Our task is to find an expression for y in terms of x. Using the above diagram we have that

Then, as the rope has a fixed length of 20 m it must be the case that AB + BC = 20.
That is,         

         
So, we now have that      
However, rather than expressing y in terms of x, we use implicit differentiation, i.e., differentiate 
both sides with respect to t:

When y = 4, we have  (as x > 0) and with  we have 

. The weight is moving up at approximately 3.6 m/s.

A weight is attached to a rope 20 m long which passes over a pulley that is 
8 m above the ground level. The other end of the rope is attached to a point on a bike 1 m above 
ground level. If the bike moves away from the pulley and along the ground at a constant rate of 
4m/s, how fast is the weight rising when it is 4 m above the ground level?

E 21.17XAMPLE

dx
dt------ 4=

x m
y m

1 m

(8 – y) m
8 m A

B

C

S
o
l
u
t
i
o
n

dy
dt------

dx
dt------ 4=

dy
dt------    

  ----
dx
dt------×= dy

dx------

x2 72+ BC( )2=

8 y–( ) BC+ 20 BC⇔ 20 8 y–( )–= =
BC∴ 12 y+=

x2 49+ 12 y+( )2=

d
dt----- x2 49+( ) d

dt----- 12 y+( )2[ ]=

2∴ x dx
dt------⋅ 2 12 y+( ) dy

dt------⋅ ⋅=
dy
dt------⇒ x

12 y+--------------- dx
dt------⋅=

x2 49+ 12 4+( )2 x⇒ 207= = dx
dt------ 4=

dy
dt------ 207

12 4+--------------- 4× 1
4--- 207 3.5969≈= =
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In this problem we need to create a ‘model’ of the 
situation – that is, we will need to make some
assumptions and simplifications about the
situation. We do this by drawing a diagram to represent 
the location of the lighthouse, the shoreline and the 
direction of rotation of the beam. From our diagram 
we see that the angle  is increasing when the beam 
reaches point C. Had we drawn it so that it was rotating 
clockwise,  would be decreasing. We now list our 
requirements:

Want:
When:  to be determined
Given:  revs/minute =  radians/sec [We must first convert to rad/s]

 =  rad/s

Need: Using the chain rule we have:  and so, we need .

We need to find an expression for x in terms of .
From our diagram we have: 

From the chain rule we have .

(a) When the beam is at a right angle to the shoreline . 

That is, . So the beam is moving at approximately 20.9 m/s.

(b) When the beam is 50 metres along the shoreline (as in the diagram), .

Using the identity  we have  = . 

Then, substituting into  we have, . That is, the 
beam is moving along the shore line at approximately 22.25 m/s.

A lighthouse located 200 metres from a straight shoreline emits a beam 
which makes 1 revolution every minute. How fast, in m/s, is the beam moving along the shoreline 
when it
(a) is at a right angle to the shoreline?
(b) is 50 metres along the shoreline from the point directly opposite the lighthouse?

E 21.18XAMPLE
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C
direction of rotation
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x m
θ
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θ

dx
dt------
θ
dθ
dt------ 1= 1 2π

60------×
π
30------

dx
dt------    

  ----
dθ
dt------×= dx

dθ------
θ

θtan BC
AB-------- x

200--------- x⇔ 200 θ dx
dθ------ 200 sec2θ×=⇒tan= = =

dx
dt------ 200 sec2θ×( ) π

30------  × 20π
3---------sec2θ= =

θ 0= dx
dt------∴ 20π

3---------sec2 0( ) 20π
3---------= =

dx
dt------ 20.9439≈

θtan 50
200--------- 1

4---= =

tan2θ 1+ sec2θ= sec2θ 1 0.25( )2+ 1.0625= = 17
16------

dx
dt------ 20π

3---------sec2θ= dx
dt------ 20π

3--------- 17
16------× 85

12------π 22.25≈= =
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Let the sphere have a volume V  and radius r cm at any time t seconds.
We list our requirements:

Want:
When: Answer to be given as a % of the volume, V.
Given: % of r, i.e., .

Need: Using the chain rule we have:  and so, we need .

Now,  and so,   .

Then, 

But, .
The volume is decreasing at 6% per second.

Let the sphere have a volume V , surface area A  and radius r cm at any time t minutes.
We list our requirements:

Want:
When: r = 10
Given:

Need: Using the chain rule we have:  and so, we need .

To find  we use the chain rule again, i.e., . This means that we need to have 
an expression for A in terms of r and V in terms of r. 
For a sphere these are known: 

 and .

And so, we have .

A solid sphere is dissolving uniformly in such a way that its radius is 
decreasing at a rate of 2% per second. At what % rate is its volume decreasing?
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dV
dt-------

dr
dt----- 2–= dr

dt----- 2
100---------r–=

dV
dt-------    

  ----
dr
dt-----×= dV

dr-------

V 4
3---πr3 dV

dr-------⇒ 4πr2= = dV
dt------- 4πr2 dr

dt-----×=
dV
dt------- 4πr2 2

100---------r–× 8
100---------πr3–= =

πr3 3
4---

4
3---πr3× 3

4---V
dV
dt-------∴ 8

100--------- 3
4---V×– 6

100---------V–= = = =

Air is leaking at a rate of 5 cm3min–1 from a spherical balloon. Find the rate 
at which the surface area of the balloon is changing when the radius is 10 cm.
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dV
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  ----
dV
dt-------×= dA

dV-------

dA
dV------- dA

dV------- dA
dr------- dr

dV-------×=

A 4πr2 dA
dr-------⇒ 8πr= = V 4

3---πr3 dV
dr-------⇒ 4πr2= =

dA
dV------- dA

dr------- dr
dV-------× dA

dr------- 1
dV
dr-------  

-------------× 8πr 1
4πr2-----------× 2

r---= = = =
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Then, going back to our first chain rule expression we have:
.

So, when r = 10, . i.e., the surface area is decreasing at 1 .

Note: the units of this problem are:  

which confirms the units of the answer which was .

, the correct unit for the final answer.

Let the volume of water in the tank when it reaches a depth 
h cm at time t seconds be given by V . Also, let r cm 
be the radius of the circular surface area of water when it 
reaches a depth of h cm.
We list our requirements:

Want:
When: h = 9
Given:
Need: Using the chain rule we have:

 and so, we need .

As we do not have a ready made formula for the volume of water in the tank in terms of its depth 
h, we will need to obtain an expression from ‘scratch’. 
Note: We cannot use the formula for the volume of a sphere or a hemisphere because the shape 
that contains the water is not a sphere or a hemisphere, but rather a ‘cap’.

Consider an element of volume,  , for some small 
‘increment’ in height,  cm, then we have a cylindrical 
element with volume .

Then, as  we have, 

dA
dt------- 2

r---
dV
dt-------× 2

r--- 5–× 10
r------–= = =

dA
dt------- 1–= cm2s 1–

dA
dV------- dA

dr------- dr
dV-------× dA

dr------- dV
dr-------  ÷ cm2

cm---------- cm3
cm----------  ÷ cm 1–= = = =

2
r---

dA
dt------- dV

dt------- dA
dV-------× cm3min 1– cm 1–× cm2min 1–= = =

A spherical tank of radius 15 cm is initially half full of water. The liquid 
leaks out through a hole at the bottom of the tank at a rate proportional to the square root of the 
depth of the water at that instant. Find the rate at which the water level is dropping when it 
reaches a depth of 9 cm. Assume a constant of proportionality of 0.3.
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dV
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  ----
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dt------×= dV
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δV

δhr

δV cm3

δh
δV πr2δh δV

δh------- πr2≈⇔≈

δh 0→ δV
δh-------δh 0→lim dV

dh------- πr2= =
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We now have an expression for . All that remains is to find an expression for r in terms of h.
From our first diagram, we have  [Pythagoras’s Theorem]
So that,                   
And so, .

Substituting into  we have:         

   

Therefore, when h = 9 we have  ≈ 0.0015157.
That is, the depth of water is decreasing at approximately 0.0015 cm/s

1. The radius of a circle is increasing at 2 cm/s. Find the rate at which
(a) its area is increasing.
(b) its circumference is increasing.

2. The side lengths of a square are increasing at a rate of 3 cm/s. Find the rate at which the
area of the square is increasing when its side length is 1 cm.

3. The sides of an equilateral triangle are decreasing at a rate of  cm/s. Find the rate of
change of 
(a) the area of the triangle.
(b) the altitude of the triangle.

4. A solid 400 gm metal cube of side length 10 cm expands uniformly when heated. If the
length of its sides expand at 0.5 cm/hr, find the rate at which, after 5 hours,
(a) its volume is increasing.
(b) its surface area is increasing.
(c) its density is changing.

5. A drinking glass is shaped in such a way that the volume of water in the glass when it
reaches a height h cm is given by  . Water is poured into the glass at 
2 . At what rate is the water level rising when the depth of water is 3 cm?

6. An ice cube, while retaining its shape, is melting and its sidelengths are decreasing at 
0.02 cm/min. Find the rate at which the volume is changing when the sides are 2 cm.

dV
dh-------
152 15 h–( )2 r2+=
152 152 30h– h2 r2 r2⇔+ + 30h h2–= =

dV
dh------- πr2 π 30h h2–( )= =

dV
dt-------    

  ----
dh
dt------×= dV

dt------- π 30h h2–( ) dh
dt------×=

0.3 h–∴ π 30h h2–( ) dh
dt------×=

dh
dt------⇔ 0.3 h

π 30h h2–( )-----------------------------–=

dh
dt------ 0.3 9

π 30 9× 92–( )-----------------------------------– 1
210π------------–= =

EXERCISES 21.4

6

V 1
5---h3= cm3

cm3s 1–
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7. A liquid is pumped into an upright cylindrical tank of radius 1.5 m at a rate of 0.25 .
At what rate is the depth of the liquid increasing when it reaches
(a) a depth of 1.25 m? (b) a volume of 10π ?

8. A conical pile of sand with a constant vertical angle of 90˚ is having sand
poured onto the top. If the height is increasing at the rate of 0.5 cm min–1,
find the rate at which sand is being poured when the height is 4 cm, giving
an exact answer.

9. An aeroplane flies over an airport at an altitude of 10000 metres and at a speed of
900 kmhr–1. Find the rate at which the actual distance from the airport is increasing 
2 minutes after the aeroplane was directly over the airport, correct to the nearest whole
number. 

10. The temperature inside a chemical reaction vessel, initially 35˚C is rising at 7˚C per hour.
The rate at which the reaction happens is modelled by the function: 
rate =  where t is the temperature of the reaction vessel in ˚C. Find the rate at which
the reaction is occurring after 5 hours.

11. A racing car, travelling at 180 km per hour, is passing a television camera on a straight
road. The camera is 25 metres from the road. If the camera operator follows the car, find
the rate (in radians per second) at which the camera must pan (rotate) at the moment when
the car is at its closest to the camera.

12. The diagram shows a water trough. Water is being
poured into this trough at 2.4 cubic metres per minute.
(i) Find an expression for the volume of water in the

trough in terms of its depth.
(ii) Find the rate at which the water level is rising

when the depth is 0.5 metres.
(iii) Find the rate at which the exposed surface area of

the water is increasing after 1 minute.
13. A square based pyramid with a fixed height of 20 metres is increasing in volume at 

2 m3 min–1. Find the rate at which the side length of the base is increasing when the base
has an area of 10 m2. Give an exact answer with a rational denominator.

14. The length of the edge of a regular tetrahedron is increasing at 2.5 cm s–1. Find the rate at
which the volume is increasing when the edge is 4 cm.

15. A man 1.8 m tall is walking directly away from a street lamp 3.2 m above the ground at a
speed of 0.7 m/s. How fast is the length of his shadow increasing?

16. A ladder 10 m long rests against a vertical wall. The bottom of the ladder, while
maintaining contact with the ground, is being pulled away from the wall at 0.8 m/s. How
fast is the top of the ladder sliding down the wall, when it is 2 m from the ground?

17. A solid ball of radius 30 cm is dissolving uniformly in such a way that its radius is x cm, 
and is decreasing at a constant rate of 0.15 cm/s, t seconds after the process started. 

m3s 1–

m3

t
12------ 3+

2m

3m

4m2m
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(a) Find an expression for the radius of the ball at any time t seconds.
(b) Find the domain of x.
(c) Find the rate of change of 

i. the volume of the ball 10 seconds after it started to dissolve.
ii. the surface area when the ball has a volume of 100π .

(d) Sketch a graph of the volume of the ball at time t seconds.
18. A fisherman is standing on a jetty and is pulling in a boat by means of a rope passing over

a pulley. The pulley is 3 m above the horizontal line where the rope is tied to the boat. At
what rate is the boat approaching the jetty if the rope is being hauled at 1.2 m/s, when the
rope measures 12 m?

19. A trough, 4 m long, has a cross section in the shape 
of an isosceles triangle. Water runs into the trough at
0.2 . Find the rate at which the water level is
rising after 10 seconds, if the tank is initially empty.

20. A line, 12 m long, meets the x–axis at A and the y–axis at B.
If point A, initially 5 m from O,  is aproaching the origin, O,
at 2 m/s, find
(a) an expression for y in terms of the time, t seconds, 

since point A started to move.
(b) the rate at which B is moving when A has travelled

2 m.

21. The volume V  of water in a container at time t seconds, when the depth of water in
the container is x cm is given by the relationship

, 0 ≤ x ≤ 5.
(a) Find the rate at which the water level is increasing after 5 seconds if water flows

into the container at 1.2 .
(b) Find the rate of change of the area of the surface of the water after 5 seconds if

water is still flowing into the container at 1.2 .

22. Two cars, A and B, leave their hometown, T, at the same time but on different freeways.
The freeways are straight and at 120˚ to each other and the cars are traveling at 70 km/h
and 80 km/hr respectively. Given that x km and y km are the distances travelled by the cars
A and B respectively t hours after they leave T
(a) find an expression in terms of t for the distance 

travelled by car
i. A ii. B

(b) find an expression in terms of t for the distance apart 
cars A and B are after t hours.

(c) How fast are cars A and B moving apart after 5 hours?
(d) After travelling for 5 hours, the driver of car B decides to

head back to T. How fast are the cars moving apart 3 hours
after car B turns back?

cm3

1 m

2 m
2 mm3s 1–

O A(x, 0)

B(0, y)

cm3

V 1
3--- x 3+( )3 9–=

cm3s 1–

cm3s 1–

T
A

B

120˚
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23. A girl approaches a tower 75 m high at 5 km/hr. At what rate is her distance from the top
of the tower changing when she is 50 m from the foot of the tower?

24. Jenny is reeling in her kite, which is maintaining a steady height of 35 m above the reel.
If the kite has a horizontal speed of 0.8 m/s towards Jenny, at what rate is the string being
reeled in when the kite is 20 m horizontally from Jenny?

25. A kite 60 metres high, is being carried horizontally away by a wind gust at a rate of 4 m/s.
How fast is the string being let out when the string is 100 m long?

26. Grain is being released from a chute at the rate of 0.1 cubic metres per minute and is
forming a heap on a level horizontal floor in the form of a circular cone that maintains a
constant semi-vertical angle of 30˚. Find the rate at which the level of the grain is
increasing 5 minutes after the chute is opened. 

27. A radar tracking station is located at ground level vertically below the path of an
approaching aircraft flying at 850 km/h and maintaining a constant height of 9000 m. At
what rate in degrees is the radar rotating while tracking the plane when the horizontal
distance of the plane is 4 km from the station.

28. A weather balloon is released at ground level and 2500 m from an observer on the ground.
The balloon rises straight upwards at 5 m/s. If the observer is tracking the balloon from his
fixed position, find the rate at which the observer’s tracking device must rotate so that it
can remain in-line with the balloon when the balloon is 400m above ground level.

29. The radius of a uniform spherical balloon is increasing at 3% per second.
(a) Find the % rate at which its volume is increasing.
(b) Find the % rate at which its surface area is increasing.

30. A manufacturer has agreed to produce x thousand 10-packs of high quality recordable
compact discs and have them available for consumers every week with a wholesale price 
of $k per 10-pack. The relationship between x and k has been modelled by the equation

At what rate is the supply of the recordable compact discs changing when the price per 
10-pack is set at $9.50, 4420 of the 10-pack discs are being supplied and the wholesale
price per 10-pack is increasing at 12 cents per 10-pack per week?

31. It has been estimated that the number of housing starts, N millions, per year over the next 
5 years will be given by , where r% is the mortgage rate. The 
government believes that over the next t months, the mortgage rate will be given by 

. Find the rate at which the number of housing starts will be changing
2 years from when the model was proposed.

32. The volume of a right circular cone is kept constant while the radius of the base of the
cone is decreasing at 2% per second. Find the % rate at which the height of the cone is
changing.

33. The radius of a sector of fixed area is increasing at 0.5 m/s. Find the rate at which the angle
in radians of the sector is changing when the ratio of the radius to the angle is 4.

x2 2.5kx– k2+ 4.8=

N r( ) 8
1 0.03r2+-------------------------=

r t( ) 8.6t 65+
t 10+----------------------=
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21.5.1 MAXIMA–MINIMA PROBLEMS

The techniques and theories that have been developed in previous sections and chapters can be 
applied to practical problems in which the maximum or minimum value of a quantity is required.
Problems that require the use of this theory can be found in many real life situations: 
manufacturers wanting to minimize their costs, designers wanting to maximize the available 
space to be used (under specific constraints), farmers wanting to maximize the area of a paddock 
at a minimum cost, etc. These types of problems often require the construction of an appropriate 
function that models a particular situation, from which some optimum quantity can be derived or 
a critical value found for which this optimum quantity exists. We now consider a number of 
examples to highlight how differential calculus can be used to solve such problems. 

The object here is to determine the maximum possible area under the constraint that the total 
available rope measures 60 m. In order to solve problems such as these we need to introduce 
variables.
Let the dimensions of this plot of land be x m by y m
and let the area enclosed by the rope be given by A .
Then, we have that  – Eq. (1)
The constraint, that the rope is 60 m long, provides 
another equation:      – Eq. (2)

From (2) we have that . Then, substituting into (1), we have .

It is important to realise that we need to express the quantity we wish to optimise in terms of one 
variable and so, more often than not, we will need two equations: one that defines the quantity 
that we want to optimise and the second which provides a relationship between the variables that 
have been introduced.
We also need to determine the implied domain for our function. The physical restrictions are

1. x ≥ 0  and 2. 
Combining these restrictions we have:

We are now in a position to determine the stationary points of this function:

That is, we have a stationary point at x = 15. 

APPLIED MAXIMA AND MINIMA 
PROBLEMS

21.5

Mirko had won at a raffle ticket draw. His prize was to be land. However he 
had to work hard for this plot of land. The rules specified that the winner was to be given 60 m of 
rope with which he could enclose a rectangular plot of land that ran along a straight river. Mirko 
thought for a while and then, with the rope in hand he mapped out his enclosure using the river 
bank as one side of his plot. What is the maximum land area that Mirko can enclose?

E 21.22XAMPLE
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x m
y m

River

Enclosed
plot of land

m2

A xy=

2x y+ 60=

y 60 2x–= A x 60 2x–( )=

y 0 60 2x 0 x 30≤⇔≥–⇒≥

A x( ) x 60 2x–( ) 0 x 30≤ ≤,=

A x( ) 60x 2x2 A' x( )⇒– 60 4x A' x( )∴– 0 60 4x–⇔ 0 x⇔ 15= = = = =
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As this value lies inside our domain we now check the nature of this stationary point, i.e., will this 
critical value provide a maximum or a minimum value of A?
Using the sign test (of the first derivative) we have:

 (say x = 15.1), .
 (say x = 14.9), .

Using the sign of the first derivative we confirm that there exists a local maximum at x = 15.

So, when x = 15, . 
That is, the maximum area that Mirko can enclose is .

A graph of the area function can verify this result.

(a) ST =  UP + QR = x + y.
(b) There is 20 m of fencing available, therefore,  PU + UT + TS + SR = 20

That is,       
and so    – Eq.1.
Note: As . We must also have that x ≥ 0.
That is, there is a restriction on x, namely 0 ≤ x ≤ 5.

(c) The required area, A , is found by breaking the area into three
sections. So that 

     

Therefore, we have that 

x
x = 15

A' 0>

A' 0<

x 15 A' 15( ), 0= =
x 15> A' 15.1( ) 0.4 0<–=
x 15< A' 14.9( ) 0.4 0>=

0                                    30

450A 15 60 2 15×–( )× 450= =
450 m2

The points PQR form the corner 
of a house, where angle PQR is a right angle. Running 
parallel to these walls is a garden patch. There is only 
20 metres of fencing available to create the enclosure 
PUTSRQ, where PU = RS  = x and PQ = QR =  y.
a. Express ST in terms of x and y.
b. Find an expression for y in terms of x.
c. What area does this garden patch cover 

(give your answer in terms of x)?
d. Find the maximum area enclosed by this

fence and the walls. Justify your answer.

Wall

Wall

PU

T S

RQ

x m

y m

x m

y m
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2x 2 x y+( )+ 20=
y 10 2x–=

y 0 10 2x 0 x 5≤⇔≥–⇒≥
x

y

yx
x

x

m2

A xy xy x2+ +=
2xy x2+=
2x 10 2x–( ) x2 given that y,+ 10 2x–= =
20x 3x2–=

A 20x 3x2 0 x 5≤ ≤,–=
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(d) To find stationary points we first determine 

Then, solve .
Using the sign test we see that a local maximum does
occur at .
(Note: For x = 0, A = 0 and for x = 5, A = 25.)

Substituting  into the area equation, we have that the maximum area in

square metres is .
Note that in this problem we did not make use of the function A to determine the domain.
If we had only considered  and then solved for A ≥ 0, (i.e., make the
assumption that an area is always positive) we would have obtained the inequalities

. However, it would not be possible for

, for even at the extreme where y = 0, the largest value x can have is 5. [Which
 depicts the situation where the garden patch is a square with a vertex making contact with

the corner of the walls PQ and QR].

We start by drawing a diagram in the hope that it will help us introduce appropriate variables.
From the diagram it seems reasonable that we 
should have variables to represent the dimensions
of the box. This seems even more appropriate, given
that we want to maximise the volume of the box, and
in order to determine the volume we will need the
width, length and height of the box.
If we let the side length of the squares that are being cut out 
be x cm, then the length of the remaining sides will be of 
length  (7 – 2x) cm and (10 – 2x) cm. We then complete our 
diagram by folding the sheet into an open box. Note that the 
length x cm on the original rectangular sheet becomes the 
height of the box.
The next step is to decide what values of x we can use – i.e. we need to find the largest possible 
domain. This is usually done by considering the physical restrictions that are placed on the 
variables. In this case, all we know is that the lengths must be greater than (or equal to) zero.

dA
dx------- 20 6x–=

x 10
3------=

dA
dx------- 0=dA

dx------- 0> dA
dx------- 0<

x

dA
dx------- 0 20 6x–⇔ 0 x⇔ 10

3------= = =

x 10
3------=

x 10
3------=

A 20 10
3------   3 10

3------   2
– 100

3---------= =

A 20x 3x2–=

20x 3x2 0 x 20 3x–( ) 0 0 x 20
3------≤ ≤⇔≥⇔≥–

x 20
3------=

A rectangular sheet of cardboard measures 10 cm by 7 cm. Small squares of 
equal area are cut from each of the four corners of the sheet. The remaining sides are then folded 
to form an open box. Find the maximum volume that the box can have.

E 21.24XAMPLE
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Looking at each dimension we have: 1. x ≥ 0
2.
3.

Therefore, the largest set of values for x that satisfy all three inequalities is 0 ≤ x ≤ 3.5.

Now that we have the domain we need to find an expression for the volume, call it V .
As the volume of a box is given by length × width × height we have:

And so, our volume function is defined by

Next we search for turning points, i.e., we need to find those values of x for which .
So, 
Then,

      

Then, as  we have to choose 
Next, we determine the nature of this turning point. We do this by using the second derivative:

We also need to check the end points, i.e., we need to find  and . So, the 
local maximum is also the absolute maximum.
Therefore, the maximum volume is given by

 (to 2 d.p)

Obviously, Example 21.24 required a fair amount of work, so we now look at how it could have 
been solved using a graphics calculator. Note however, the difficult part of the problem is finding 
the expression for the volume and the restrictions on x. The rest of the solution is fairly standard.

Using the TI-83, we first enter the equation , use the domain [0, 3.5] 
and then based on a sketch of the graph, we use the fMax( function from the MATH menu:

Five rather easy steps! However, often we are asked to find exact values, and a graphics calculator 
might not be able to provide such results, e.g., if the exact answer happens to be , it 

10 2x 0 10 2x x 5≤⇔≥⇔≥–
7 2x 0 7 2x x 3.5≤⇔≥⇔≥–

cm3

V x( ) 10 2x–( ) 7 2x–( )× x×=
4x3 34x2– 70x+=

V x( ) 4x3 34x2– 70x 0 x 3.5≤ ≤,+=
V ' x( ) 0=

V ' x( ) 12x2 68x– 70+=
V ' x( ) 0 12x2 68x– 70+⇔ 0 x⇔ 68 68–( )2 4 12 70××–±

2 12×------------------------------------------------------------------== =
68 1264±

24----------------------------=

0 x 3.5≤ ≤ x 68 4 79–
24------------------------- 1.3519≈=

V '' x( ) 24x 68 V '' 1.3519( )∴– 35.553 0  local maximum at x⇒<– 1.3519= = =
V 0( ) 0= V 3.5( ) 0=

V 1.3519( ) 4 1.3519( )3 34 1.3519( )2– 70 1.3519( )+ 42.3765 42.38≈= =

Y1 4X^3 – 34X2 + 70X=

1

2

3 4

5

20 4–
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might only be able to quote the answer as 0.47213. . .  And so, to provide exact answers, we must 
develop our skills in solving such problems by classical means.

We start by drawing a diagram:
Consider some point P(x, y) on the curve . 
By closest, we mean the shortest distance from the point 
P to the point (10,0). 
In this case we use the formula for the distance between two 
points: ,
where L is the distance from .
Using the points P(x, y) and (10,0) we have:

However, we know that  (as P lies on the curve). Therefore the distance from P to (10,0) 
(in terms of x) is given by 

          
Differentiating, we have:

    

For stationary points we have .

We make use of a graphics calculator.
In this instance we sketch the graph
of   and then we can
concentrate on where it crosses the x-axis:
Using the TRACE function on the TI–83,we see 
that the intercept occurs where .
Or, we could have simply used the Solve function 
on the TI–83
Now, use the sign of the first derivative to check the nature of the stationary point:

Therefore, the point on the curve  that is closest to the point (10,0) is (1.6, 2.56).
Note that the x–value is provided to only one decimal place. Using x = 1.6126, y = 2.600.

Find the point on the curve  that is closest to the point (10,0).y x2=E 21.25XAMPLE
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(10,0) x

y

y x2=

P x y,( )

y x2=

L x2 x1–( )2 y2 y1–( )2+=
x1 y1,( ) to x2 y2,( )

L x 10–( )2 y 0–( )2+=
x 10–( )2 y2+=

y x2=

L x 10–( )2 x2( )2+ x 10–( )2 x4+= =
L∴ x2 20x– 100 x4+ +( )1 2/=

dL
dx------ 1

2--- 2x 20– 4x3+( ) x2 20x– 100 x4+ +( ) 1 2/–=
x 10– 2x3+( )

x2 20x– 100 x4+ +
---------------------------------------------------=

dL
dx------ 0 x 10– 2x3+( )

x2 20x– 100 x4+ +
--------------------------------------------------- 0 x 10– 2x3+⇔ 0= =⇒=

Notice:
Using the CALC  
function and Zero 
subcommand we 
obtain the value 
x = 1.612.

y x 10– 2x3+=

x 1.6≈

x 1.8= dL
dx------ 0>

x 1.4= dL
dx------ 0< 




 we have a local maximum at x∴ 1.6=

y x2=
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There is a very important observation to be made with Example 21.25. When we are looking to 
find the minimum value of , rather than finding the critical value(s) of 
L, we could in fact find the critical values of . The critical values of L and  will be the same!
Note: The values of L and  are not the same, only their critical values are.
We verify this now. .
Then,    

So that, , which will produce the same 

solutions as when we solved for . Using this aproach is much quicker (and neater).

We can show why this will always work for functions of the form .
Using :
        

Using :
   .
That is, in both instances we solve the same equation, namely, .

The profit is found by determining the Cost – Revenue, so , letting $  denote the profit made 
for producing x units, we have

      

To find the maximum value of , we first need to find the critical value(s) of :
Now, .
So, when x = 3250, .

Using the second derivative to check the nature of this turning point, we have:
 and so, as  for all  we have a local maximum at

(3250, 7921.875) and so, the maximum profit the distributor will make is $7921.875 ≈ $7922

L x2 20x– 100 x4+ +=
L2 L2

L2

L x2 20x– 100 x4+ + L2∴ x2 20x– 100 x4+ += =
d
dx------ L2( ) 2x 20– 4x3+=

d
dx------ L2( ) 0 2x 20– 4x3+⇔ 0 x 10x– 2x3+⇔ 0= = =

dL
dx------ 0=

y f x( )=
y f x( )=

dy
dx------ 1

2--- f ' x( ) 1
f x( )---------------×× f ' x( )

2 f x( )------------------- dy
dx------∴ 0 f ' x( )

2 f x( )------------------- f ' x( )⇔ ⇔ 0= = = =

y2 f x( )=
d
dx------ y2( ) f ' x( )  2ydy

dx------∴ f ' x( ) dy
dx------⇔ f ' x( )

2y------------  dy
dx------∴ 0 f ' x( )

2y------------⇔ 0 f ' x( )⇔ 0= = = = = =
f ' x( ) 0=

In the lead up to the Christmas shopping period, a toy distributor has 
produced the following cost and revenue models for one of his toys. 

Cost: ,
Revenue: ,

where x is the number of units produced.
What is the maximum profit that the distributor can hope for using these models?

C x( ) 2.515x 0.00015x2 0 x 6500≤ ≤,–=
R x( ) 7.390x 0.0009x2 0 x 6500≤ ≤,–=

E 21.26XAMPLE
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P x( )
P x( ) R x( ) C x( )–=

7.390x 0.0009x2–( ) 2.515x 0.00015x2–( )–=
4.875x 0.00075x2–=

P x( ) P x( )
P' x( ) 4.875 0.0015x P' x( )∴– 0 4.875 0.0015x–⇔ 0 x⇔ 4.875

0.0015---------------- 3250= = = = =
P 3250( ) 4.875 3250( ) 0.00075 3250( )2– 7921.875= =

P'' x( ) 0.0015–= P'' x( ) 0< x 0 6500,[ ]∈
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Once again, we solve the previous example using a graphics calculator.
We enter the cost function as , the revenue function as  and the profit function as 

. The rest follows:

We need to determine where the stationary points occur, that is, we solve for .
Now,  

Next, 

                              

Taking the cube root of both sides we have:       

           
That is, there is only one stationary point, at x = 8. Next we need to check the nature of this 
stationary point:

Y1 Y2
Y3 = Y2 – Y1

1

2

3

4

Revenue

Cost

Profit
3250

Two heavy industrial plants are located 12 kilometres apart. It is found that 
the concentration of particulate matter in parts per million in the polution created at a plant
varies as the reciprocal of the square of the distance from the source. If plant 1 emits eight times 
the particulate matter of plant 2, the combined concentration, C, of particulate matter at any point 
between the two plants is found to be modelled by .

What is the minimum concentration of particulate matter that there can be between the two 
plants?  How far from Plant 1 will this occur?

C x( ) 8
x2----- 1

12 x–( )2---------------------- 0.5 x 11.5≤ ≤,+=

x 12 – x

E 21.27XAMPLE
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C' x( ) 0=
C x( ) 8

x2----- 1
12 x–( )2----------------------+ 8x 2– 12 x–( ) 2– C' x( )⇒+ 16x 3–– 2 12 x–( ) 3–+= = =

C' x( ) 0 16x 3–– 2 12 x–( ) 3–+⇒ 0 16
x3------– 2

12 x–( )3----------------------+⇔ 0== =
2

12 x–( )3----------------------⇔ 16
x3------=

x3
12 x–( )3----------------------⇔ 8=

x
12 x–( )------------------- 2 24 2x–⇔ x= =

3x⇔ 24=
x⇔ 8=
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Sign of the first derivative:

Therefore we have a local minimum at x = 8.
To find the minimum concentration we substitute x = 8 in the concentration equation.
Minimum concentration is . 

So the minimum concentration is   parts per million and occurs 8 km from Plant 1.

We start by finding the critical values: 
Now,  

      

Checking the nature of this stationary point (using the second derivative) we have:

Therefore there is a local minimum point at x = .
To find how close to the ground the chain gets we substitute this value into the equation:

Therefore the chain comes within 1.89 metres of the ground.

x = 8 x
C' x( )Sign of

–ve +ve
:x 7= C' 7( ) 16

343---------– 2
125---------+ 0.03–= =

x 9= C' 9( ) 16
729---------– 2

27------+     0.05= = 



C 8( ) 8
8( )2---------- 1

12 8–( )2----------------------+ 8
64------ 1

16------+ 3
16------= = =

3
16------

A non–uniform metal chain hangs 
between two walls. The height above ground level of this 
chain is given by the equation

,
where x is the distance along the ground from the left wall.
How close to the ground will the chain get ?

h x( ) e 2x– ex 0 x 2≤ ≤,+=

2 metres

y

x

E 21.28XAMPLE
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h x( ) e 2x– ex h' x( )⇒+ 2e 2x–– ex+= =
h' x( ) 0 2e 2x–– ex+⇒ 0= =

2e 2x–⇔ ex=
2

e2x-------⇔ ex=
2⇔ e3x=

3x⇔ 2elog=
x⇔ 1

3--- 2e  ≈ 0.23( )log=

h'' x( ) 4e 2x– ex h'' 1
3--- 2elog  ∴+ 4e 2– 1

3--- 2elog× e
1
3--- 2elog+ 4 2 2 3/–× 21 3/ 3.8 0>≈+= = =

1
3--- 2elog

h 1
3--- 2elog   e 2– 1

3--- 2elog× e
1
3--- 2elog+ 2 2 3/– 21 3/ 1.89≈+= =
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Let the square base have side lengths x cm and the let the height be 
h cm.
Therefore the volume of the box is . 
As the volume is 800 , we have  – Eq. 1.
Next we denote the surface area of the box by .  
Therefore         – Eq. 2.

We wish to minimize S, therefore we need to find the critical point(s) of S. However, we
must first obtain an expression for S in terms of x (exclusively). 
From Eq. 1., we have that  – Eq. 3.

Substituting Eq. 3. into Eq. 2. we have

Differentiating, we have, 

For stationary points we need to solve , i.e., 

  
Next, we check the nature of the stationary point.
For x = 12,  and for x = 11,  . 
Therefore there is a local minimum at x = 11.70 and the amount of material required is least when 
x = 11.70 and h = 5.85.

In this problem we assume that the person is moving 
in a straight line. so, we start by drawing a diagram to 
represent this situation:
Next we introduce appropriate variables:
Let the fisherman land at Y, y km down the river after 
having travelled x km in the river from A to Y.
As we are looking for “. . as fast as possible.” we will need to derive an expression for the time 

A box is to be constructed in such a way that it must have a fixed volume of 
800  and a square base. If the box is to be open ended at one end, find the dimensions of the 
box that will require the least amount of material.

cm3
E 21.29XAMPLE

x cm x cm
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x2h cm3

cm3 x2h 800=
S cm2

S x2 4xh+=

h 800
x2---------=

S x( ) x2 4x 800
x2---------×+ x2 3200

x------------+= =

S' x( ) 2x 3200
x2------------–=

S' x( ) 0= 2x 3200
x2------------– 0 2x⇔ 3200

x2------------= =
x3⇔ 1600=

x⇔ 16003 ≈11.70( )=

S' 12( ) 0> S' 11( ) 0<

A fisherman needs to go by the quickest route from pier A on one side of a 
strait to pier B on the other side of the strait. The fisherman can get across the strait at 8 km/hr 
and then run on land at 10 km/hr. Assuming that the banks of the strait are parallel straight lines, 
12 km apart and pier B is 26 km along the bank from pier A, where should the fisherman aim to 
land on the other side of the strait to get to pier B as fast as possible?

E 21.30XAMPLE
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taken to get from A to B. The journey is from A to Y and then from Y to B. Therefore, the total 
time taken is the time taken to get from A to Y plus the time taken to get from Y to B. Letting the 
total time taken be T hr, we have that .

Now, AY = x and YB = 26 – y, therefore, .
To proceed any further we will need to express y in terms of x. So, using Pythagoras’s Theorem 
on  we have:  (as y ≥ 0)

We now have a function for the time, T hr, in terms of one variable, x. Before we continue, we 
need to find the largest domain possible so that T is well defined. The smallest value of x occurs if 
the fisherman crosses straight to X, so that, x ≥ 12. The largest value of x occurs if the fisherman 
heads straight to B and so, .
We then have .
To locate the critical values we solve :

   

Then, 
Solving for x we have:

As x ≥ 12 this means that the only valid solution is x = 20.
Using a sign diagram for  we have:

From the graph of  we can also see that the 
minimum time occurs when x = 20.

Therefore, .

The fisherman should land 10 km from the pier.

T AY
8--------

YB
10-------+=

T x
8---

26 y–
10--------------+=

AXY∆ x2 AX( )2 XY( )2 x2∴+ 122 y2 y∴+ x2 144–= = =

x 122 262+≤ 2 205=
T x( ) x

8---
26 x2 144––

10------------------------------------ 12 x 2 205≤ ≤,+=
T ' x( ) 0=
T ' x( ) 1

8---
1
10------ 1

2--- 2x 1
x2 144–

------------------------×××–+=

1
8---

x
10 x2 144–
------------------------------–=

T ' x( ) 0 1
8---

x
10 x2 144–
------------------------------–⇔ 0 x

x2 144–
------------------------⇔ 10

8------ 4x⇔ 5 x2 144–= = = =

16x2 25 x2 144–( ) 9x2⇔ 25 144 x⇔× 25 144×
9---------------------± 5 12×

3---------------± 20±= = = = =

2012 2 205
T ' 0>

T ' 0<

x
dT
dx-------

12               20 2 205

y

x

y T x( )=

T ' x( )

T x( )

y 202 144– 16= =

A tourist decides to take a photo of a statue, 12 metres tall on a pillar that is 
also 12 metres tall. How far from the base of the pillar should the tourist stand so as to have the 
statue subtend the largest possible angle at their camera lens. You may assume that the camera is 
held at 1.70 metres above the horizontal and level ground.

E 21.31XAMPLE
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We start by drawing a diagram and letting the statue 
subtend an angle  at the lens of the camera. Let the 
camera be x m from the foot of the pillar.
From the diagram we have that

 – Eq. (1)

 – Eq. (2)

Then, to find an expression for  we use the identity .
Substituting the results of Eq. (1) and Eq. (2) we have:

This provides us with an implicit function for  in terms of x. So, differentiating both sides with 
respect to x, we have:

Solving for  we have .
What happened to the “ ” term?  
Now, as x ≥ 0, .

That is, the tourist must stand 15.16 metres from the foot of the pillar in order to obtain the largest 
possible angle, which subtends the statue at their camera lens.
This time we will not use the sign test of the first or second derivative to check the nature of this 
stationary point but rather look at the relevant graph.

In this case, sketching the graph of  vs x as opposed to  vs x will not make any difference 
in determining the critical value of . In this instance we deal with the graph of  vs x as this 
is the easier option. Otherwise we would need to sketch the graph of .
So, let’s treat  as the variable T (say) and then sketch the graph of T vs x where

.
Why does this work? Would the same thing apply if we had been using the expression 

 or ? What about ?

camera

x m

12 m
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βθ
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x----------= =
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x----------= =
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x----------–
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------------------------------------------
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x------

x2 229.69+
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dx------×∴ 12 x2 229.69+( ) 12x 2x( )–
x2 229.69+( )2------------------------------------------------------------------= =

2756.28 12x2–
x2 229.69+( )2-------------------------------------=

dθ
dx------ 0= 2756.28 12x2–
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21.5.2 END POINT MAXIMA/MINIMA PROBLEMS

So far we have dealt with problems that involved locating the stationary point via setting the first 
derivative to zero, solving and then verifying the nature of the stationary point (or turning point). 
We now consider, as we did in §20.4.3, problems where locating stationary points using our 
standard approach might only provide a local optimum whereas in fact, the optimum might exist 
at an endpoint. We now illustrate how to solve such questions.

We start by drawing a diagram to help us visualise the situation.
 From the diagram, we have the combined volume 

Now, as a length cannot be negative, we must have that
x ≥ 0 and 12 – 2x ≥ 0 so that .
Therefore, 
as required.
Next, to determine the maximum volume, the normal 
course of action would be to find the stationary points, 
i.e., solve for .

Now, 
  

Setting  we have .

Sketch of tanθ vs x.

From the graph it 
is clear that the 
maximum occurs 
at x ≈ 15.16

Notice that when x = 15.61, tanθ = 0.3958, so that θ = arctan(0.3958) = 21.59. That 
is, the angle which the statue subtends at the camera lens when x = 15.61 is 21.59˚. 
Had we sketched the graph of θ vs x, then the shape of the graph would be the same 
but the y-values would differ, in fact, at x = 15.16, we would have a θ-value of 
0.3769 radians (which is equal to 21.59˚).

A square sheet of cardboard of side length 12 cm has squares of side length 
x cm cut from each corner so that the remainder can be folded to form an open box. The four 
squares are then put together to form a hollow box (that is, open at both ends).
Show that the combined volume of the boxes, , is given by

.
Hence find the maximum possible volume.

V x( ) cm3

V x( ) 4x 6 x–( )2 x3 0 x 6≤ ≤,+=
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V x( ) x 12 2x–( ) 12 2x–( ) x3+=
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Using the sign of the first derivative we find that;
at x = 4 we have a local minimum,
at x = 2.4 we have a local maximum.

Now, , leading us to believe that the maximum volume 
would be 138.24 .
However, the graph of the function , tells a different story:

From the graph, it is clear that the maximum volume is in 
fact 216  and not 138.24  (as was thought).
This is an example of an end–point maximum.
This highlights the importance of the restrictions placed 
on the domain. For example, if the problem had been to 
find the maximum value of V(x), where

, 
then, the maximum value would have been 138.24 .

Let P be the location of the bus stop and x km the
distance from R1 to P along R2. This means that
x ≥ 0 (x = 0 if on R1) but x ≤ 1 (x = 1 if at C)
Let the sum of the distances be S km, then,

S = AP + PC + BP

Using Pythagoras’s Theorem we have:
, as AP ≥ 0.

Similarly, , as BP ≥ 0.
Therefore, .
Now, 

 

And so, 

That is, .

V 4( ) 128 and V 2.4( ) 138.24= =
cm3

V x( ) 4x 6 x–( )2 x3 0 x 6≤ ≤,+=

6

(6, 216)

(4,128)
(2.4, 138.24)

x

y

0

cm3 cm3

V x( ) 4x 6 x–( )2 x3 0 x 4≤ ≤,+=
cm3

Two shops, A and B linked by a straight road, R1, are 4 kilometres apart. A 
second straight road, R2, bisects R1 at right angles. One kilometre along R2 from where it bisects 
R1 a third shop, C, can be found. A bus stop is to be placed on R2, somewhere between shop C 
and R1. Where should the bus stop be placed so that the sum of the direct distances from the 
shops to the bus stop is a minimum?

E 21.33XAMPLE
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However, neither one of these critical values lies in the 
domain S ( = [0, 1]). This means that we will need to look at 
an endpoint minimum.
When x = 0, S = , giving us a maximum.
When x = 1, .
Hence, the minimum value of S occurs at x = 1 and has a 
value of  km (approx. 4.47 km). Therefore, bus stop should be placed at stop C.

21.5.3 OPTIMISATION FOR INTEGER VALUED VARIABLES

When determining critical values, we do not always place importance on what they end up being. 
We simply quote an answer without further consideration to what the value is representing. For 
example, if we want to know how many globes need to be produced in order to maximise the 
profit, we might quote an answer of 2457.47... where in fact we know that the actual answer can 
only be an integer. We now consider such a problem – where the variables involved are integers.

After placing x orders, the company’s costs are made up of the ordering cost, $ 22x and the 
storage cost $  = $ . We denote this cost by $ , so that their expenses for 

ordering and storage are given by , x > 0.

Next we determine the stationary point(s) for the cost function:
, x > 0.

Setting, .

As x > 0, we choose the positive square root, so that the critical value occurs at .

To check the nature of this stationary point, we use the second derivative: .

Then, at ,  and so we have a local minimum at .

However,  does not provide us with an integer value, and the company can 
only make integer valued orders, for example, it cannot make 3.87 orders per year, it must make 

1

(0, 5)
1 2 5,( )

y

x

y S x( )=
2 4 1( )+ 5=

S 2 4 12+ 1 1–( )+ 2 5= =

2 5

Light and Co. purchase plastic components for their printing needs. They 
estimate that they will be using 800 such components every year. Each time they place an order 
for these plastic parts it costs them $22. If they place an order x times per year, then, on average, 
they store  units. Each stored unit costs $8 to store. How often should they place an order so 
as to minimise their ordering and storage costs?

400
x---------
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either 3 orders or 4 orders. So, we now need to find the minimum value of  for a positive 
integer – obviously, the positive integer we are looking for will lie in the vicinity of x = 12.06.

We now sketch the graph of  for integer values of x:

Therefore, they should place 12 orders per year in order to minimise their costs.

1. A ball is thrown upwards and after t seconds reaches a height of  m above the ground.
The height of the ball at time t is given by the equation . What is the
maximum height that the ball will reach from the ground?

2. The running cost, $C per kilometre for a new car is modelled by the equation
, where v km/h is the average speed of the car during a trip. 

(a) At what speed should the car be driven to minimise the running cost per km?
(b) What is the minimum running cost per km for this car?
(c) Comment on your answers.

3. The total revenue, $R, that a company can expect after selling x units of its product –
GIZMO – can be determined by the equation .
(a) How many units should the company produce to maximise their revenue?
(b) What is the maximum revenue to be made from the sales of GIZMOs?

4. A retailer has determined that the monthly costs, $C, involved for ordering and storing 
x units of a product can be modelled by the function .
What is the minimum monthly cost that the retailer can expect? Note that x is an integer
value.

5. The marketing department at DIBI Ltd. have determined that the demand, at $d per unit,
for a product can be modelled by the equation, , where x is the number of units
produced and sold. The total cost, $C, of producing x items given by .
What price will yield a maximum profit?

C x( )

C x( )
y

x

y C x( )=

1600
11------------

Using a table of values 
we have:

, 
and so, the minimum cost 
occurs when x = 12.

C 11( ) 532.91=
C 12( ) 530.67=
C 13( ) 532.15=

EXERCISES 21.5
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x-------=
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6. The cross-section of a small hill is modelled by the curve with equation
,

where x metres is the horizontal distance from the
point O and y metres is the corresponding height.
What is the maximum height of the hill?

7. A 10 metres long sheet of tin of width 60 centimetres
is to be bent to form an open gutter having a
rectangular cross-section.
Find the maximum volume of water that this 10 metres
stretch of guttering can carry.

8. A 20 metre long piece of wire is bent into a rectangular shape. Find the dimensions of
the rectangle that encloses the maximum area.

9. If  find the minimum value of .

10. A swimming pool is constructed as a rectangle and a semicircle of radius r m.

The perimeter of the pool is to be 50 metres. Find the value
of r and the dimensions of the rectangular section of the pool

 if the surface area of the pool is to be a maximum.
11. A roof gutter is to be made from a long flat sheet of tin 21 cm wide by turning up sides of 

7 cm so that it has a trapezoidal cross-section 
as shown in the diagram.
Find the value of  that will maximise
the carrying capacity of the gutter.

12. At the Happy Place amusement park, there is a roller coaster ride named ‘The Not-So-
Happy Ride’. A section of this ride has been created using a scaled version of the model
given by the equation .
(a) Sketch the graph of this curve.
(b) What is the maximum drop that this ride provides?
(c) At what point(s) along the ride will a person come to the steepest part(s) of the

ride?
13. A rectangle is cut from a circular disc of radius 18 metres. Find the maximum area of the

rectangle.
14. Two real numbers x and y are such that x + y = 21. Find the value of x for which 

(a) the product, xy, is a maximum.
(b) the product  is a maximum.

15. If x + y = 12, find the minimum value that  can have.

O

y 1
8---x2 1

2---x   0 x 2π≤ ≤,sin=

x y+ 8= N x3 y3+=

r

θθ
7 cm

7 cm7 cmθ

y x 1
2--- 2x 0 x 2π≤ ≤,sin+sin=

xy3

x2 y2+
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16. A farmer wishes to fence off a rectangular paddock 
using an existing stretch of a river as one side. The 
total length of wiring available is 100 m.
Let x m and y m denote the length and width of this 
rectangular paddock respectively, and let A  denote 
its area.
(a) Obtain an expression for y in terms of x.
(b) Find an expression for A in terms of x, stating any

restrictions on x.
(c) Determine the dimensions which will maximize the

area of the paddock.
17. A closed rectangular box with square ends is to be 

constructed in such a way that its total surface area 
is 400 . Let x cm be the side length of the 
ends and y cm its height.
(a) Obtain an expression for y in terms of x, stating any

restrictions on x.
(b) Find the largest possible volume of all such boxes.

18. A barrel is being filled with water in such a way that the volume of water, V ml, in
the barrel after time t seconds is given by

.
(a) Find the rate of flow into the barrel after 20 seconds.
(b) When will the rate of flow be greatest?
(c) Sketch the graph of .

19. The total cost, $C, for the production of x items of a particular product is given by
 the linear relation , whilst its total revenue, $R, is given

by .
(a) Sketch the graphs of the cost function and revenue function on the same set of axes.
(b) Determine the break–even points on your graph.
(c) For what values of x will the company be making a positive profit?
(d) Find an expression that gives the profit made in producing x items of the product

 and hence determine the maximum profit.

20. Find the points on the graph of  that are closest to the point (0, 3).

21. A rectangle is bounded by the semi–circle with
equation  and the x–axis.
Find the dimensions of the rectangle having the
largest area.

x m

y m River
m2

cm2

V t( ) 2
3--- 20t2 1

6---t3–   0 t 120≤ ≤,=

V t( ) 0 t 120≤ ≤,

C 600 20x 0 x 100≤ ≤,+=
R x 100 x–( ) 0 x 100≤ ≤,=

y 9 x2–=

–5 5 x

y y 25 x2–=y 25 x2– 5 x 5≤ ≤–,=
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22. A rectangle is bounded by the positive x-axis the
positive y-axis and the line with equation

Find the dimensions of the rectangle having the largest area.

23. A certificate is to be printed on a page having an area of 340 . The margins at 
the top and bottom of the page are to be 2 cm and, on the sides, 1 cm. 
(a) If the width of the page is x cm, show that the area, A  where printed material

 is to appear is given by .
(b) Hence, determine the maximum area of print.

24. Find the minimum value of the sum of a positive integer and its reciprocal.

25. A closed circular cylinder is to have a surface area of 20π . Determine the dimensions
of the cylinder which will have the largest volume.

26. A right circular cylinder of radius r cm and height h cm
is to have a fixed volume of 30 .
(a) Show that the surface area, A  of such a cylinder

is given by .
(b) Determine the value of r that will yield the minimum

surface area.
27. A rectangular container is made by cutting out

squares from the corners of a 25 cm by 40 cm 
rectangular sheet of metal and folding the 
remaining sheet to form the container. 
(a) If the squares that are cut out are x cm in length,

show that the volume, V  of the container is
given by

(b) What size squares must be cut out in order to
maximize the volume of the container?

28. A right–circular cone of radius r cm contains a sphere of radius 12 cm.
(a) If the height of the cone is h cm, express h in terms of r.
(b) If  V  denotes the volume of the cone, find an expression for V in terms of r.
(c) Find the dimensions of the cone with the smallest volume.

29. For a closed cylinder of radius r cm and height h cm, find the ratio r : h which will 
produce the smallest surface area for a fixed volume.

30. Find the coordinates of the point on the curve with equation  that is closest to
the point (2, 0).

8 x

y
0 16

3------,  

y 2
3--- 8 x–( )=

cm2

cm2

A 348 680
x---------– 4x–=

cm2

r cm

h cm

cm3

cm2

A 2πr r 30
πr2--------+  =

x cm
x cm

cm3

V x 25 2x–( ) 40 2x–( ) 0 x< 25
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cm3
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31. A piece of wire is bent in the form of a sector of a circle of radius r  metres containing an
angle . The total length of the wire is 10 metres.
(a) Show that .
(b) Find the value of r for which the area of this sector is a maximum.

32. Find the altitude of the cylinder with the largest volume that can be inscribed in a right
circular cone.

33. A window is designed so that it has an equilateral triangle mounted on a rectangular base.
If the perimeter totals 7 metres, what is the maximum area, that will allow the maximum
amount of light to pass through the window?

34. A cone is formed by joining the two straight edges of a sector from a circle of radius r. If
the angle contained by the two straight edges is  find the value of  which makes the
volume of the cone a maximum.

35. Two houses in a new housing estate need to have cable connected to a distribution box, P,
located somewhere along a straight path XY. House A is located a m from the path while
house B is located b m from the path. The cost of installing the cable is $ . 
Where should the box be placed so as to minimise the cost involved?

36. Felicity and Jane start walking at the same time towards an intersection of two roads that
meet at right angles. 

Felicity starts at 9 km from the intersection while Jane starts at 13 km from the
intersection. Their speeds are 4 km/h and 3 km/h respectively. What is the closest that
Felicity and Jane will get?

37. For an open cylinder of radius r cm and height h cm, find the ratio r : h which will 
produce the smallest surface area for a fixed volume.

38. Find the height of a right–circular cone which
can be inscribed in a sphere of radius 1 m, if this
cone is to have the largest possible volume.

θc

θ 2
r--- 5 r–( )=

αc αc

6 AP BP+( )

a m
b m

P

A
B

10 m

X                                                 Y
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39. A piece of wire 30 cm long is cut into 2 pieces. One of the pieces is bent into a square
while the other is bent into a circle. Find the ratio of the side length of the square to the
radius of the circle which provides the smallest area sum.

40. A cylindrical tin with no lid is to be be made from a sheet of metal measuring 100  .
Given that the radius of the base of the tin is r cm
show that its volume, V , is given by

Determine the value of r that will give the greatest volume.

41. The last leg of a triathlon requires that you get from a point O, 2km from the nearest point
P on a straight beach to a point Q, 3km down the coast.

You may swim to any point on the beach and then run the rest of the way to point Q. If you
can swim at a rate of 2 km/hr and run at 5 km/hr, where should you land on the beach so
that you reach point Q in the least possible time? 

42. A right circular cylinder is inscribed in a sphere of radius 6 cm. If  is the angle
subtended at the centre of the sphere by the radius of the circular base of the cylinder,
(a) show that the curved surface area, S , of the cylinder is given by  ;
(b) find the radius and height of the cylinder having the largest curved surface area.

43. A person in a boat 4 km from the nearest point P on a straight beach, wishes to get to a
point Q 8 km along the beach from P.
The person rows in a straight line to some point on
the beach at a constant rate of 5 km/h.
Once on the beach the person walks towards Q at a
steady rate of 6 km/hr.
(a) Show that the total time in hours taken for the trip is

(b) Where should the person land so that the trip takes the least amount of time?
44. A mast l metres tall erected on a building k metres tall, 

subtends an angle  at a point on the ground x metres from
the base.
(a) Find an expression for  in terms of x.
(b) Find the value of x that maximizes the value of . 
[Hint: As ,  is a maximum when  is a maximum.]

cm2
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cm3

V 1
2--- 100r πr3–( )=

Q
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P
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45. A person in a boat l km from the nearest point P
on a straight beach, wishes to get to a point Q
kl km along the beach from P.
The person rows in a straight line to some point on
the shore at a constant rate of v km/h. Once on the
beach the person walks towards Q at a steady rate of
u km/hr where (v < u).
(a) Show that the total time in hours taken for the trip is

.

(b) Show that if the person is to reach point Q in the least possible time, then
 where k ≥ c, c being a particular constant.

(c) What would happen if k < c?
46. A closed tin is to be constructed as shown in the diagram. It is made up of a cylinder of

height h cm and radius base r cm which is surmounted by a hemispherical cap.
(a) Find an expression in terms of r and h for

i. its volume, V .
ii. its surface area, A .

(b) Given that , show that its surface area is
given by .

(c) Find the ratio r : h for A to be a minimum.
47. A ladder is to be carried horizontally around a corner

from a corridor a m wide into a corridor b m wide.
What is the maximum length that the ladder can be?

48. A man in a boat is 3 km from the nearest point of a straight beach. The man is to get
to a point 6 km along the beach. The man can row at 4 km/hr and walk at 5 km/hr.
(a) Show that the time, T hours, taken to get to his destination is given by

(b) Where should the man row to along the beach if he is to reach his destination in
 the least possible time?

(c) After some further training, the man finds that he can now row at 4.5 km/hr. Where
should he now row to along the beach to minimise the time taken?

Q
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u------------------------ θ 0 π
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cm3
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θ
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49. The relationship between the number of spawners, S, and the number of recruits, R, in a
cod farm is modelled by the equation , S ≥ 0 and the constants .
(a) Sketch the graphs of R = S and  on the same set of axes.
(b) For what value of S will the number of spawners first outnumber the number of

recruits?
(c) Show that the value of S that maximises (R – S) satisfies the equation

.

50. While cruising the waters, you spot a tower 150 m tall standing on the edge of a vertical
cliff 150 m high (from sea level). How far from the base of the cliff should you stand
to have the tower subtend the largest possible angle at your camera lens, if the camera is in
a position 5 metres above sea level?

51. The point P is joined to the ends of the diameter AB
of a circle having a radius r, so that ABP forms a triangle.
If P is to always remain on the circumference, what type
of triangle will ABP be if
(a) the area of triangle ABP is a maximum?
(b) the perimeter of triangle ABP is a maximum?

52. An isosceles triangle ABC, where AB = AC and  is inscribed in a circle of
radius r. Show that the area of the triangle ABC is a maximum if . What would the

maximum area of the triangle ABC be if ?

53. A square PQRS of side length 1 m has three points, A, B, C on the sides QR, RS and SP
such that QA = l m, RB = kl m and SC = kl m where 0 < l < 1 and 0 < kl < 1. If k is a
constant, find the minimum value of the area of the quadrilateral PABC.

54. A variable isosceles triangle is circumscribed
about a given circle of fixed radius r as shown
in the diagram.
(a) State the value of c.
(b) Show that .
(c) Show that the area of the triangle is a minimum

when the triangle is equilateral.
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a2 r2–
--------------------=



Revision Set D – Paper I & Paper II Style Questions

763

1. Differentiate (a) (b)

2. A cup of tea, initially at a temperature of 80˚C is left to cool. Its temperature, , after
t minutes is given by .
(a) How many degrees will its temperature fall in the first 10 minutes?
(b) At what rate, in degrees per minute, is its temperature falling at the end of 10 

minutes?
(c) How many minutes will it take for its temperature to drop from 80˚C to 50˚C?

(Give all these answers correct to 1 decimal place.)

3. Let the function f  be defined by 
(a) Find the values of x for which .
(b) Find the values of x for which .

4. A tree trunk of length 12 metres is a truncated cone,
the radii of the ends being 0.30 metres and 
0.18 metres. If r metres is the radius of the 
cross-section at a distance h metres from the wider 
end, prove that

A beam of uniform square cross-section is cut from
the tree trunk, the centre line of the beam being along
the axis of the cone. 

If V  is the volume of the widest beam of length 
h metres which can be cut from the trunk, prove that

.

Find the length of the beam of greatest volume which
can be cut from the trunk.

5. Find  if (a) (b)

6. Let  and . 
(a) Find i. ii.
(b) State all values of x for which  is defined.
(c) State all values of x for which  is defined.
(d) If   find .
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7. Let P and Q be the points on the curve  at which  and  
respectively.
(a) Express the gradient of the line [PQ] in terms of h.
(b) Hence find the gradient of the tangent to the curve at .

8. A small object is oscillating up and down at the end of a vertical spring. The object is h
metres above its starting point at time t seconds, where .
Find the rate at which the object is rising (or falling) 2.5 seconds after the motion starts.

9. (a) Sketch the graph of  , locating the stationary points and giving their
coordinates.

(b) Sketch on the same set of axes the graph of  
Label both graphs clearly.

10. Find  if i. . ii. .

11. (a) Sketch the graph of . Identify all intercepts with the axes and all
stationary points, and state their coordinates.

(b) Find (correct to the nearest degree) the angle at which the graph cuts the positive
x-axis.

12. A sheet of carboard measures 10 cm by 16 cm 
Squares x cm by x cm are cut from two corners, 
and strips x cm by (x + y) cm are cut from two
sides, as shown in the diagram. (The shaded
regions are removed). 

The carboard is then folded along the dotted
lines to form a rectangular box with a lid.

(a) Express y in terms of x, and hence show
 that the volume, V , of the box is

given by

.

(b) i. Find the value of x such that the volume of the box is a maximum. Justify
that you have obtained a maximum by considering the sign of .

ii. Find the maximum volume of the box.

13. Find  if i. ii.
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14. The graph of the function  is shown alongside.
Sketch the graph of .

15. A closed cylindrical tin can is being designed. Its volume is to be 1000 .
Its curved surface is to be shaped from a rectangular piece 
of tin sheet. Each of its circular ends (of radius r cm) is to 
cut from a square of tin sheet, as shown, with the shaded 
sections being wasted.

(a) If h cm is the height of the can, express h in terms of r. 
Hence show that the area, A , of tin sheet needed for a can is given by

(b) Find the radius and height of the can for which the area of tin sheet needed is a
minimum.
Justify that you have obtained a minimum by considering the sign of the first 
derivative.

16. Given that (a) Find .
(b) Simplify .

(c) Find  and hence state .

17. In a certain country which has a controlling birth rate and an ageing population, the
predicted population P million, t years after 1980, is given by

.
(a) Find .
(b) What is the predicted population for the year 2080?
(c) i. In the year 2080, will the population be increasing or decreasing? 

ii. At what rate, in millions per year, will it be changing?
(d) In what year is it predicted that the population will reach a maximum, and what

will this maximum population be?

18. A piece of airline baggage is in the shape of a cuboid of width x centimetres, length 3x
centimetres and depth h centimetres.

If the sum of its width and its length and its
depth is 140 centimetres (the maximum allowed
by the airline), find its greatest possible volume.
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19. Find  if i. ii.

20. Let P and Q be the points on the curve   at which x = 2 and x = 2 + h, respectively. 
(a) Express the gradient of the line [PQ] in terms of h.
(b) Hence find the gradient of the tangent to the curve  at x = 2.

21. In a competition, a surf lifesaver has to race from a starting point S on the beach, at the
edge of the water, to a buoy B which is 200 metres along the water’s edge from S. He can
run along the beach at an average speed of 4 metres per second and he can swim through
the water at an average speed of 1 metre per second. Assume that he starts swimming as
soon as he enters the water.
(a) How long will the lifesaver take

i. to swim in a straight line from S to B?
ii. to run along the beach to A and then swim straight out to B?

(b) Show that, if the lifesaver runs x metres along the beach to C and then swims in a
straight line to B, the time taken will be T seconds, where

(c) Hence find, to the nearest second, the shortest possible time for the lifesaver to go
from S to B. 

22. The graph of  passes through the point (–1, 16) and has a stationary
point at (1, –4 ). Find the values of a, b and c.

23. (a) Find  if .

(b) Find the derivative of i. . ii.  .

24. For the curve with equation , find the equation of the normal through
the point (1, –1).

25. Find the maximum and minimum values of , for 0 ≤ x ≤ 5.

26. Differentiate i. ii. iii.
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27. A capsule is to be constructed by closing the ends of a circular
cylinder, of height h and radius r, with hemispherical caps of 
radius r.
(a) Express the volume, V, of the capsule in terms of r and h.
(b) If the cylindrical part of the capsule can be made at a cost of

k dollars per unit area of surface and the spherical parts at a
cost of  dollars per unit area of surface, and the total cost
of making the capsule is P dollars, express P in terms of k, 
r and h.

[The surface area of a sphere of radius r is ]
(c) If V is constant, express P as a function of r.
(d) What is the domain of this function?
(e) Find the value of r for which P is a minimum, and hence show that the least

expensive capsule is one whose total length is twice its diameter.

28. ABCD  is a square sheet of cardboard, with side a units. Creases [WZ] and [XY] are made
parallel to [AD] as shown in diagram (i), to form flaps of width x units. These flaps are
folded up to form a triangular prism with open ends. ( see diagram (ii) ).

(a) Show that the volume, V cubic units, of the prism is given by
.

(b) State the domain of this function.
(c) Find the maximum volume of the prism. Justify your answer.

29. A saucepan (without a lid) is in the shape of a cylinder with handle attached. The
cylindrical part has an internal base radius r cm an internal height h cm and is to be lined
with a non-stick coating whose cost is proportional to the internal surface area. 

If the saucepan must be able to hold a fixed volume, V , show that the cost of lining it
is a minimum when its height is equal to its base radius.

30. Differentiate with respect to x: i.
ii.

31. Find the equation of the tangent to the curve  at the point (0, 2).

32. The volume of a cube is increasing at a rate of 54 . Find the rate of increase of the
length of an edge of the cube when the volume of the cube is 216 .
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33. When a bus travels along a straight road from one stop to the next, its velocity-time
function for the trip is described by .
(a) State the domain of this function.
(b) Sketch the graph of the function.
(c) Find the maximum value of v.
(d) Find a rule for the acceleration of the bus between the stops.
(e) Sketch the acceleration-time graph for this bus.

34. A closed capsule is to be constructed as shown in the diagram. 
It consists of a cylinder of height h which has a flat base of 
radius r and is surmounted by a hemispherical cap.
(a) Show that the volume, V, and the total surface area, A, 

are given by
i. .
ii. .

(b) If , where a is a positive constant, show that
 .

(c) Hence find in terms of a the minimum and maximum 
surface area of the capsule, if its overall height 
(including the cap) must not be more than twice its
diameter.

35. Find the derivatives with respect to x of each of the following:
(a) (b)

36. A filter paper is in the form of an inverted cone, with base radius
6 centimetres and height 9 centimetres. Water is flowing out at
the bottom at a constant rate of 40  per minute.

i. If V  is the volume of liquid in the cone when the
depth of the liquid is h centimetres, find an expression for
V in terms of h.

ii. Find, correct to the nearest second, the time which it takes for the level of the liquid
in the cone to fall from 6 centimetres above the vertex of the cone to 5 centimetres
above the vertex.

iii. Find the rate at which the level of the liquid in the cone is falling when the depth of
the liquid is 5 centimetres, giving your answer correct to two decimal places.

37. For what values of x will the function (a) be increasing?
(b) be decreasing?

38. A curve has equation . Find the gradient of the normal to the curve at
the point (–1, 1).
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39. (a) Use the definition  and the quotient rule to show .
(b) A rectangular prison is surrounded by a high stone wall 400 m long and 250 m

wide.  At night, this wall is kept under constant surveillance by a search light
placed on a tower at 0, the exact centre of the prison. This light has a narrow beam,
which rotates at the constant rate of 0.1 radian per second.

i. If B is the position of a variable point along one of the shorter (250m) walls
find an expression (in terms of ) for the distance AB (where A is the centre
of the same wall).

ii. Find also an expression (in m/s) for the rate at which the beam is moving
along the wall when it passes B.

iii. At which point is the beam moving along the wall at the slowest speed?
iv. In an attempt to escape, one of the prisoners has managed to position 

himself at A.  He knows that it will take him a full minute to scale the wall.
Will he be able to successfully complete his escape in the time available
between successive rotations of the beam?

40. Differentiate (a) (b)

41. For the graph of 
(a) find the coordinates of the points where it meets the coordinate axes.
(b) find the equation of all asymptotes.
(c) find the coordinates of any turning points.
(d) sketch the graph.

42. (a) If , find . (b) Find  if .

43. (a) The equations of the tangents to the hyperbola  pass through the point
(0, 1). Find the equations of these tangents.

(b) Find the coordinates of the points of contact of these tangents with the hyperbola.

44. (a) i. Sketch the graph of .
ii. State why  does not exist.

(b) Given that  is its own inverse function, find c.
(c) Let . 

i. Given that  exists, find , giving its domain, range and rule.
ii. State the domain of .
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45. Noriko, whose eyes are 1.5 m above the ground walks towards a lamp-post which is 6.5 m
high at a speed of 4 . Find the rate at which the angle of elevation of the top of the
lamp-post to the horizontal level of her eyes changes with time when she is a horizontal
distance of 10 m from the lamp-post.

46. Find the equation of the tangent to the curve  at the point where x = 1.

47. For the graph with equation 
(a) find the equations of all asymptotes,
(b) show that the gradient is always positive,
(c) sketch the graph, showing clearly how it approaches its asymptotes.

48. Find  for (a) (b)

49. Find the equation of the tangent at the specified point for each of the following
(a) , (1, 3) (b) , (–1, 0)

50. Find the domain and range of  where .

51. Two straight roads [OA] and [OB] intersect at 60˚ at O. A man walks towards O along
[AO] at the rate of 10 . Given that OB = 8 km, find the rate at which the man is
approaching a house at B at the instant when he is 6 km from O.

52. A right circular cone is such that its height is equal to the radius of its base. The axis of the
cone is vertical and its vertex is downwards. A liquid is poured steadily into the cone at a
rate of  0.01 . Find the rate at which the level of liquid in the cone is rising when the
liquid level reaches a height of 0.5 m.

53. A box is attached to a taut rope rope 15 metres long passing over a fixed pulley 5 metres
above the ground level. The other end of the rope is attached to a point on a scooter 
1 metre above the ground level. The scooter heads off at a rate of 3  away from the
pulley. How fast is the box rising when it is 2 metres above ground level.

54. Cars A and B are stationary on a straight road, standing side by side. Car A moves off with
an acceleration of 1 , which is maintained for twenty seconds, after which it
continues to move with constant speed. Twenty seconds after A starts, B sets off in pursuit
of A with constant acceleration 2 , until it draws level with A. Find
(a) the time taken by B in pursuit, correct to the nearest second.
(b) the distance travelled by B in pursuit, correct to the nearest metre.

55. A book is being prepared for publication. Each page has height y cm, width x cm and a
fixed total area of 294 . Each page has 3 cm margin at both top and bottom and a 2 cm
margin on each side. Let A be the area of that part of the page which is available for
printing.
(a) Express A in terms of x. What restrictions are there on the values of x.
(b) Find the dimensions of a page which will provide maximum space for printing.
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56. The graph of  is shown alongside.
(a) Find the values of a, b and c.

(b) Show that  k = 1 and m = 3.

(c) Using the first derivative of y, show that the
graph is always increasing.

57. A piece of wire of length L units can be used in any of the following ways:
1. the total length can be bent to form an equilateral triangle;
2. the total length can be bent to form a circle;
3. the wire can be cut so that part of the wire is bent to form an equilateral

triangle and the remainder is bent to form a circle.

Let 3x represent the length of wire used to form an equilateral triangle irrespective of
which of the three ways is chosen.

(a) i. State the possible values which x can take.
ii. Show that the total area, A sq. units, of the total region or regions enclosed 

by the wire is given by

(b) i. For what value of x does the graph of  have a stationary point?
ii. Determine the nature of this stationary point.
iii. Sketch the graph of .

(c) Find the value of x for which the total area enclosed by the wire is
i. a minimum. ii. a maximum.

58. (a) Find i. if ii. if 
(b) Find the equation of the normal to the curve  at the point (1, 20).
(c) Find gradient of the curve  where it crosses the x-axis.
(d) The position of an object from O is x m at time t seconds where .

Find the object’s velocity after 1 second.

59. For the local fisherman the height of the water in the Port Campbell estuary has been
known to follow the rule , where H m, is the height of the water
and t hours the time after midnight. On the 9th August 2004 the height of the water at 
midnight was 11 metres and the height at 5:30 am was 5 metres.

(a) Using the above information find the values of a and b.
(b) Sketch the graph of H for an 11 hour period starting midnight on the 9th Aug 2004.
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(c, 0)(b, 0)
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For this particular estuary the speed of the current in and out of the estuary is directly
proportional to the rate of change of height of the water.

(c) Find an expression for the rate of change of height and explain why some of the
values can be negative.

(d) At 2:45 am it is known that the speed of the current out of the estuary reaches its
maximum speed of 8 m/s. Find an expression for the speed of the current at time t.

60. In response to the number of boating accidents during the last summer  the local
goverment is testing a new ‘Stay-bright’ flare.

Light from a flare at A shines on a small plate at B which is horizontal. It is observed that
the intensity, I, of the light is directly proportional to , where d is the distance from
A to B, and  is the angle of incidence as shown in the diagram below.

At time t seconds the flare is h metres above point C on the horizontal and C is 300 metres
from B.

(a) Show that  for some constant k.

(b) If I = 72 when h = 400, evaluate k.

(c) Find an expression for .

(d) Find, to the nearest metre, the height h at which I is greatest.

(e) What is the maximum value of I?

The flare is falling vertically at a constant rate of 5 metres per second.
(f) i. Show that 

ii. Find  when 

61. A search light is located at ground level vertically below the path of an approaching
aircraft, which is flying at a constant speed of 400 , at a height of 10,000 m. If the
light is continuously directed at the aircraft, find the rate, in degrees per second, at which
the searchlight is turning at the instant when the aircraft is at a horizontal distance of 
5000 m from the searchlight. Give your answer to three significant figures.
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22.1.1 ANTIDIFFERENTIATION & THE INDEFINITE INTEGRAL

As the name suggests— Anti differentiation is the reverse process of differentiation. We are then 
searching for the answer to the following:

Given an expression  (i.e., the derivative of the function ), what must the
original function  have been? 

For example, if  then  is a possible expression for the original function. 
Why do we say ‘ ... is a possible expression for the original function.’?

Consider the following results: i.
ii.

From i., and ii., we see that given an expression , there are a number of possible different 
original functions, . This is due to the fact that the derivative of a constant is zero and so 
when we are given an expression for , there is no real way of knowing if there was a 
constant in the original function or what that constant might have been (unless we are given some 
extra information).
The best that we can do at this stage is to write the following:

Given that , then , 

where c is some real number that is yet to be determined (it could very well be that c = 0).
The antidifferentiation process described above can be summarised as follows:

22.1.2 LANGUAGE AND NOTATION

INTEGRATION22.1
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Given that , then (after antidifferentiating) .
We say that  is the antiderivative of .

dy
dx------ f ' x( )= y f x( ) c  where c ∈,+=

y f x( ) c  where c ∈,+= f ' x( )

The set of all antiderivatives of a function  is called the indefinite integral of 
, and is denoted by .

The symbol is called the integral sign, 
the function  is the integrand of the integral
and x is the variable of integration.
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Once we have found an antiderivative (or indefinite integral) of ,  (say) we can then 
write

.

The constant c is called the constant of integration. The above result is read as:

22.1.3 DETERMINING THE INDEFINITE INTEGRAL

So — how do we find the indefinite integral of ?

We approach this problem by searching for a pattern (pretty much as we did when dealing with 
the derivative of a function). Recall the following results (when were searching for a rule to find 
the derivative of a function):    

The differentiation process was then described using the following ‘progress’ diagram:

Finding the indefinite integral requires that we ‘reverse the process’ (i.e., carry out the inverse 
operation). Again this can be illustrated using a ‘progress’ diagram:

However, as we discussed previously, we must add a real constant to complete the process of 
antidifferentiation. We then have the general result:

 . . .
1  . . . 

h x( ) H x( )

h x( ) xd∫ H x( ) c, where c ∈+=

‘The antiderivative of  with respect to x is , where ’.
or

‘The indefinite integral of  with respect to x is , where ’.
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A slightly more general result is one where we have  rather than simply . In this case we 
have that

In each case we use the ‘progress’ diagram on the previous page. That is, we first increase
the power by one and then divide by the new power.

(a)  = 

(b)  = 

 = 

(c)

       

       
Notice that before we can start the antidifferentiation process we must express the integrand in 
the form , i.e., in power form.

(d)

    

    

Although we have been working through examples that are made up of only one integrand, we 
can determine the indefinite integral of expressions that are made up of several terms.

axn xn

 as long as .axn xd∫ axn 1+
n 1+--------------- c   or   a

n 1+------------xn 1+ c+ += n 1–≠

Find the indefinite integral of the following
(a) (b) (c) (d)4x2 x 3– 5 x x35

E 22.1XAMPLE

S
o
l
u
t
i
o
n

4x2 xd∫ 4
2 1+------------x2 1+ c c ∈,+= 4

3---x3 c c ∈,+

x 3– xd∫ 1
3– 1+----------------x 3– 1+ c c ∈,+= 1

2---– x 2– c c ∈,+
1

2x2--------– c c ∈,+

5 x xd∫ 5x
1
2--- xd∫ 5

1
2--- 1+
------------x

1
2--- 1+ c c ∈,+= =

5
3 2⁄( )--------------x3 2/ c c ∈,+=

10
3------ x3 c c ∈,+=

axn

x35 xd∫ x
3
5--- xd∫ 1

3
5--- 1+
------------x

3
5--- 1+

c c ∈,+= =

1
8 5⁄( )--------------x

8
5--- c c ∈,+=

5
8--- x85 c c ∈,+=

Find the integral of
(a) (b) (c)2x2 x3 4–+( ) xd∫ x 1–( ) x4 3x+( ) xd∫ z4 2z2– 3+

z2---------------------------- zd∫
E 22.2XAMPLE
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(a)

When determining the indefinite integral of 4, we have actually thought of ‘4’ as ‘ ’. So that 
.

(b) , .

(c)

  

Notice that in part (b) it was necessary to first multiply out the brackets before we could integrate. 
Similarly, for part (c) we had to first carry out the division before integrating.

22.1.4 PROPERTIES OF THE INDEFINITE INTEGRAL

In many of the above examples we made use of the following properties

1. Find the indefinite integral of the following:
(a) (b) (c)  (d)
(e) (f) (g) (h)

Properties Examples

1.    

2.    

3.    
                                

4.    
                     

S
o
l
u
t
i
o
n

2x2 x3 4–+( ) xd∫ 2x2 x x3 x 4 xd∫–d∫+d∫ 2
2 1+------------x2 1+ 1

3 1+------------x3 1+ 4x– c+ += =
2
3---x3 1

4---x4 4x– c c ∈,+ +=
4x0

4 xd∫ 4x0 xd∫ 4
0 1+------------x0 1+ 4x= = =

x 1–( ) x4 3x+( ) xd∫ x5 x4– 3x2 3x–+( ) xd∫ 1
6---x6 1

5---x5– x3 3
2---x2– c+ += = c ∈

z4 2z2– 3+
z2---------------------------- zd∫ z4

z2----
2z2
z2--------– 3

z2----+   zd∫ z2 2– 3z 2–+( ) zd∫= =
1
3---z3 2z– 3

1–------z
1– c+ +=

1
3---z3 2z– 3

z---– c c ∈,+=

h' x( ) xd∫ h x( ) c+= d
dx----- x2( ) xd∫ 2x( ) xd∫ x2 c+= =

d
dx------ h x( ) xd∫( ) h x( )= d

dx------ x3( ) xd∫( ) d
dx------ 1

4---x4 c+   x3= =

kh x( ) xd∫ k h x( ) xd∫= 12x3 xd∫ 12 x3 xd∫ 12 1
4---x4 c+  ×= =

3x4 C+=

h x( ) f x( )±( ) xd∫ h x( ) x f x( ) xd∫±d∫= 2x 3x2–( ) xd∫ 2x x 3x2 xd∫–d∫=
x2 x3– c+=

EXERCISES 22.1

x3 x7 x5 x8

4x2 7x5 9x8 1
2---x3
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2. Find:
(a) (b) (c) (d)

(e) (f) (g) (h)

3. Find:
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

4. Find the antiderivative of the following:
(a) (b) (c)
(d) (e) (f)

5. Find:
(a) (b) (c)

(d) (e) (f)

6. Find the indefinite integral of the following:
(a)      (b)     (c)     

(d)    (e)     (f)      

7. Given that , n ≠ –1 and , m ≠ –1 show that
(a)
(b)
(c)
(d) , .

(e)

8. (a) Show that . Hence find .

(b) Show that . Hence find .

5 xd∫ 3 xd∫ 10 xd∫ 2
3--- xd∫

4– xd∫ 6– xd∫ 3
2---– xd∫ dx–∫

1 x–( ) xd∫ 2 x2+( ) xd∫ x3 9–( ) xd∫
2
5---

1
3---x2+   xd∫ 2

4--- x 1
x2-----–   xd∫ 5

2--- x3 8x+   xd∫
x x 2+( ) xd∫ x2 3 2

x---–   xd∫ x 1+( ) 1 x–( ) xd∫

x 2+( ) x 3–( ) x2 3x–( ) x 1+( ) x 3–( )3
x 2x3+( ) x 1+( ) 1 x–( ) 1 x+( ) x x 1+( )2 2–

x2 3x–
x----------------- xd∫ 4u3 5u2 1–+

u2-------------------------------- ud∫ x 2+( )2
x4------------------- xd∫

x2 5x 6+ +
x 2+--------------------------- xd∫ x2 6– x 8+

x 2–------------------------ xd∫ t2 1+
t-------------   2 td∫

x34 1
x------- 5–+ x x 2x–( ) x 1+( ) 1

z3----
2
z2----– 4z 1+ +

2t 3
t2----+   t2 1

t---–   3
t3----+ t 2–( ) t 1–( )

t------------------------------- 2
t-----– u3 6u2 12u 8+ + +

u 2+---------------------------------------------

f x( ) axn= g x( ) bxm=
f x( ) g x( )+[ ] xd∫ f x( ) x g x( ) xd∫+d∫=
f x( ) g x( )–[ ] xd∫ f x( ) x g x( ) xd∫–d∫=

kf x( ) xd∫ k f x( ) xd∫=
f x( )g x( ) x f x( ) xd∫( ) g x( ) xd∫( )≠d∫ n m 1–≠+
f x( )
g x( )----------- x f x( ) xd∫

g x( ) xd∫-------------------- n m 1–≠–,≠d∫
d
dx------ 2x 3+( )4( ) 8 2x 3+( )3= 2x 3+( )3 xd∫
d
dx------ x2 4+( ) x

x2 4+
------------------= 3x

x2 4+
------------------ xd∫
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Although we have already discussed the reason for ‘adding’ a constant, c, when finding the 
indefinite integral, it is important that we can also determine the value of c.

As . 
Using the fact that at x = 2, y = 9, or that , we have .
Therefore, of all possible solutions of the form , the function satisfying the
given information is .

From the given information we have that  and .
As  we have  – (1).
But, . [i.e., substituting into (1)] 
Therefore, we have .
Next, from  we have  – (2).
But, . [i.e., substituting into (2)] 
Therefore, 

Sometimes, information is not given in the form of a set of coordinates. Information can also be 
‘hidden’ in the context of the problem.

SOLVING FOR “C”22.2

A

B

C

Given that , upon antidifferentiating, we have . 
This result is known as the general solution.

Some of the possible curves, , are shown, and we observe 
that at A, B and C, for a particular value of x, the gradients are equal.
To determine which of these curves is the one that we actually require, 
we must be provided with some extra information. In this case we 
would need to be given the coordinates of a point on the curve.

dy
dx------ 2x= y x2 c+=

y x2 c+=

y

x

Find  given that  and that the curve passes through the 
point (2,9).

f x( ) f ' x( ) 2x=E 22.3XAMPLE

S
o
l
u
t
i
o
n

f ' x( ) 2x f x( )⇒ x2 c+= =
f 2( ) 9= 9 22 c c⇔+ 5= =

y x2 c+=
f x( ) x2 5+=

Find  given that  and that the gradient at the point 
(1,5) is 2.

f x( ) f '' x( ) 6x 2–=E 22.4XAMPLE

S
o
l
u
t
i
o
n

f ' 1( ) 2= f 1( ) 5=
f '' x( ) 6x 2–= f ' x( ) 3x2 2x– c1+=
f ' 1( ) 2= 2∴ 3 1( )2 2 1( )– c1 c1⇔+ 1= =

f ' x( ) 3x2 2x– 1+=
f ' x( ) 3x2 2x– 1+= f x( ) x3 x2– x c2+ +=

f 1( ) 5= 5∴ 1( )3 1( )2– 1( ) c2 c2⇔+ + 4= =
f x( ) x3 x2– x 4+ +=
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Antidifferentiating both sides with respect to x, we have . 
     – (1) 

At x  = 0, p = 10. Substituting into (1) we have           
Therefore, the equation for the pressure at a depth of x cm is .
At x = 5, we have . That is, the pressure is 11.25 units. 

We start by determining N:
 [i.e., antidiff. b.s. w.r.t. t]

We are given that when t = 5, N = 32000.
     

Therefore, we have that .

Then, when t = 15, .
So, in 2010 the population would be 7,6981.

1. Find the equation of the function in each of the following:
(a) , given that the curve passes through (1,5).
(b) .

The rate of change in pressure, p units, at a depth x cm from the surface of a 
liquid is given by . If the pressure at the surface is 10 units, find the pressure at a 
depth of 5 cm.

p' x( ) 0.03x2=
E 22.5XAMPLE

S
o
l
u
t
i
o
n

p' x( ) xd∫ 0.03x2 xd∫=
p x( ) 0.01x3 c+=∴
10 0.01 0( )3 c c⇔+ 10= =

p x( ) 0.01x3 10+=
p 5( ) 0.01 5( )3 10+ 11.25= =

The growth rate of a city’s population has been modelled by the equation
 where t is the time in years after 1995 and N is the population size. In the 

year 2000 the population numbered 32,000. What will the population be in 2010?

dN
dt------- 400t1.05 t 0≥,=

E 22.6XAMPLE

S
o
l
u
t
i
o
n

dN
dt------- 400t1.05 dN

dt------- td∫⇒ 400t1.05 td∫= =

N∴ 400
2.05----------t2.05 c+=
8000
41------------t2.05 c+=

32000∴ 8000
41------------ 5( )2.05 c c⇔+ 26713.18= =

N 8000
41------------t2.05 26713.18+=

N 8000
41------------ 15( )2.05 26713.18+ 76981.36= =

EXERCISES 22.2

f ' x( ) 2x 1+=
f ' x( ) 2 x2 and f 2( )– 7

3---= =
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(c) , given that the curve passes through (4,0).

(d)

(e) , given that the curve passes through (0,8).

(f) , given that the curve passes through (1,2).
(g)
(h)

2. Find the equation of the function  given that it passes through the point (–1,2)
 and is such that .

3. The marginal cost for producing x units of a product is modelled by the equation
. The cost per unit is $40. How much will it cost to produce 150

units?

4. If , find A when r = 2.

5. The rate, in , at which the volume of a sphere is increasing is given by the
relation . If initially the volume is π , find the

 volume of the sphere when t = 2.
6. The rate of change of the number of deer, N, in a controlled experiment, is modelled by

the equation . There are initially 200 deer in the experiment.
How many deer will there be at the end of the experiment.

7. If , find an expression for y, given that y = 4 when x = 1 and y = 9 when x = 4.

8. A function with gradient defined by  at any point P on its curve passes
through the point (2,–6) with a gradient of 4. Find the coordinates of its turning point.

9. The marginal revenue is given by , where R is the total revenue 
and x is the number of units demanded. Find the equation for the price per unit, P(x).

10. The rate of growth of a culture of bacteria is modelled by the equation , t 
hours after the culture begins to grow. Find the number of bacteria present in the culture
at time t hours if initially there were 500 bacteria.

dy
dx------ 4 x x–=

f ' x( ) x 1
x2-----– 2  and f 1( ),+ 2= =

dy
dx------ 3 x 2+( )2=
dy
dx------ x3 x3 1+ +=
f ' x( ) x 1+( ) x 1–( ) 1  and f 0( ),+ 1= =
f ' x( ) 4x3 3x2– 2  and f 1–( ),+ 3= =

f x( )
f ' x( ) ax b

x2-----  where f 1( ),+ 4 and f ' 1( ) 0= = =

C' x( ) 30 0.06x–=

dA
dr------- 6 1

r2---- and A,– 4 when r 1= = =

cm3 sec⁄
dV
dt------- 4π 2t 1+( )2 0 t 10≤ ≤,= cm3

dN
dt------- 3 t3 2t 0 t 5≤ ≤,+=

dy
dx------ x∝

dy
dx------ 4x m–=

dR
dx------- 25 10x– x2 x 0≥,+=

200t1.01 t 0≥,
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11. Sketch the graph of  for each of the following:

12. Find  given that  and that the gradient at the point (1,6) is 12.

13. Find  given that , where the gradient at the point (1,2) is 4 and that
the curve passes through the point (3,4).

14. The rate at which a balloon is expanding is given by , where t is the time
in minutes since the balloon started to be inflated and V  is its volume. Initially the
balloon (which may be assumed to be spherical) has a radius of 5 cm. 
If the balloon has a volume of 800  after 2 minutes, find its volume after 5 minutes.

15. The area, A , of a healing wound caused by a fall on a particular surface decreases at
a rate given by the equation  where t is the time in days. Find the initial area

of such a wound if after one day the area measures 40 .

In the same way that there are rules for differentiating functions other than those of the form , 
we also have standard rules for integrating functions other than the ones that we have been 
dealing with so far. That is, there are standard rules for finding the indefinite integral of circular 
trigonometric functions, exponential functions and logarithmic functions. 

We can deduce many such antiderivatives using the result  – (1).

For example, if we consider the derivative , 

We can write . But from (1) we have .
Therefore,        .
Or, we could write 

y f x( )=

(0,4)

(5,0)

dy
dx------

x

Where the curve passes 
through the point (5,10).

(a) (b)

(0,2)

–4           –1

dy
dx------

x

Where the curve passes 
through the point (0,0).

f x( ) f '' x( ) 12x 4+=

f x( ) f ' x( ) ax2 b+=

dV
dt------- kt4.5 t 0≥,=

cm3

cm3

cm2

A' t( ) 35
t------–=

cm2

STANDARD INTEGRALS22.3

axn

d
dx----- h x( )( ) xd∫ h x( ) c+=

d
dx------ e2x( ) 2e2x=

d
dx------ e2x( )dx∫ 2e2x xd∫= d

dx------ e2x( )dx∫ e2x=
e2x c+ 2e2x xd∫=
e2x c+ 2 e2x x e2x xd∫⇔d∫ 1

2--- e2x c+( ) 1
2---e2x C+= = =
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Similarly,  and so, antidifferentiating both sides we have .

Then, as , we can write, .

We summarise these rules in the table below:

NB: In the above table (and from here on), the constant c is assumed to be a real number.

General power rule

The indefinite integral of :

If .

This means that all of the integrals in the table above can be generalised further. 
In particular we consider the generalised power rule:

1.  

2.  

Examples

or 

                                          

d
dx------ xln( ) 1

x---= d
dx------ xln( ) xd∫ 1

x--- xd∫=
d
dx------ xln( ) xd∫ xln= x c+ln 1

x--- xd∫=

f x( ) f x( ) xd∫
axn n 1–≠, a

n 1+------------xn 1+ c n 1–≠,+ 2x2 xd∫ 2
3---x3 c+=

1
x--- x 0≠, x c x 0≠,+elog

x c x 0>,+elog
6
x--- xd∫ 6 1

x--- xd∫ 6 xe c x 0>,+log= =

kx( )sin 1
k---– kx( ) c+cos 5x( )sin xd∫ 1

5---– 5x( ) c+cos=

kx( )cos 1
k--- kx( ) c+sin

x
4---  cos xd∫ 1

4---x  cos xd∫ 1
1
4---  

-------- x
4---   c+sin= =

4 x
4---   c+sin=

sec2 kx( ) 1
k--- kx( ) c+tan sec2 2x( ) xd∫ 1

2--- 2x( ) c+tan=

ekx 1
k---ekx c+ e 3x– xd∫ 1

3---e 3x–– c+=

f ax b+( )

f x( ) xd∫ F x( ) c  then f ax b+( )dx∫,+ 1
a---F ax b+( ) c+= =

ax b+( )n xd∫ 1
a n 1+( )-------------------- ax b+( )n 1+ c n 1–≠,+=

1
ax b+--------------- xd∫ 1

a--- ax b+( )e c ax b 0>+,+log=
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This question requires the use of the result: 

(a)    

 = 

(b)

     

(c)   [Note: we must first convert into power form!] 

      

(d)

        

(a) .   

(b) .  

Find the antiderivative of
(a) (b) (c) (d)3x 7+( )4 3 4 2x–( )5 5x 1+ 4

2x 3–( )2----------------------
E 22.7XAMPLE

S
o
l
u
t
i
o
n

ax b+( )n xd∫ 1
a n 1+( )-------------------- ax b+( )n 1+ c n 1–≠,+=

3x 7+( )4 xd∫ 1
3 4 1+( )×-------------------------- 3x 7+( )4 1+ c+=
1
15------ 3x 7+( )5 c+

3 4 2x–( )5 xd∫ 3 4 2x–( )5 xd∫ 3 1
2–( ) 5 1+( )×---------------------------------- 4 2x–( )5 1+ c+×= =

3
2 6×–--------------- 4 2x–( )6 c+=
1
4--- 4 2x–( )6– c+=

5x 1+ xd∫ 5x 1+( )1 2/ xd∫=
1

5 1
2--- 1+  ×

--------------------------- 5x 1+( )
1
2--- 1+ c+=

2
15------ 5x 1+( )

3
2---  c+=

4
2x 3–( )2---------------------- xd∫ 4 2x 3–( ) 2– xd∫=

4 1
2 2– 1+( )×------------------------------- 2x 3–( ) 2– 1+× c+=

2 2x 3–( ) 1–×– c+=
2

2x 3–( )--------------------– c+=

Find the antiderivative of
(a) (b) (c)4xsin 1

2---x  cos sec2 3x( )
E 22.8XAMPLE

S
o
l
u
t
i
o
n

4xsin xd∫ 1
4--- 4x c+cos–= Using kx( )sin xd∫ 1

k---– kx( ) c+cos=

1
2---x  cos xd∫ 1

1
2---  

-------- 1
2---x   c+sin 2 1

2---x   c+sin= = Using kx( )cos xd∫ 1
k--- kx( ) c+sin=
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(c) .   

We can extend the results for the antiderivatives of circular trigonometric functions as follows:

(a) .   

(b)    

(c)             "

(d)

(e)          

As we have just done for the circular trigonometric functions, we can extend the antiderivative of 
the exponential function to

Examples

                      

sec2 3x( ) xd∫ 1
3--- 3x( ) c+tan= Using sec2 kx( ) xd∫ 1

k--- kx( ) c+tan=

f x( ) f x( ) xd∫
ax b+( )sin 1

a---– ax b+( ) c+cos 5x 2+( )sin xd∫ 1
5---– 5x 2+( ) c+cos=

ax b+( )cos 1
a--- ax b+( ) c+sin

x
4--- 1–  cos xd∫ 1

4---x 1–  cos xd∫=

4 x
4--- 1–   c+sin=

sec2 ax b+( ) 1
a--- ax b+( ) c+tan sec2 2x 3+( ) xd∫ 1

2--- 2x 3+( ) c+tan=

Find the antiderivative of
(a) (b) (c) (e) (f)e2x 5e 3x– 4x 2e

1
3---x– 5

x---
2

3x 1+---------------

E 22.9XAMPLE

S
o
l
u
t
i
o
n

e2x xd∫ 1
2---e2x c+= Using ekx xd∫ 1

k---ekx c+=

5e 3x– xd∫ 5 e 3x– xd∫ 5 1
3–------e 3x– c+× 5

3---e 3x–– c+= = = Using ekx xd∫ 1
k---ekx c+=

4x 2e
1
3---x–   xd∫ 4x x 2 e

1
3---x xd∫–d∫ 4 1

2---x2 2 1
1
3---  

--------e
1
3---x c+×–×= =

2x2 6e
1
3---x– c+=

5
x--- xd∫ 5 1

x--- xd∫ 5 x( ) c x 0>,+ln= =
2

3x 1+--------------- xd∫ 2 1
3x 1+--------------- xd∫ 2

3--- 3x 1+( )ln c x 1
3---–>,+= = 1

ax b+--------------- xd∫ 1
a--- ax b+( )e c+log=

eax b+ xd∫ 1
a---eax b+ c+=
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(a) We have n = 6, a = 4 and b = –1, 

          
(b) This time we use the case for n = –1, with a = –3 and b = 4, giving
 

(c)  We first rewrite the indefinite integral in power form: 

 So that a = 2, b = 1 and n = . Therefore we have that

   

(d)  = 

(e)

     

(f)

   

Find
(a) (b) (c)  

(d) (d) (e)

2 4x 1–( )6 xd∫ 7
4 3x–--------------- xd∫ 3

2x 1+------------------- xd∫
e 2x– 3+ xd∫ e 4x– 3x 2+5+( ) xd∫ π

2---x   2
6x 5+---------------–cos   xd∫

E 22.10XAMPLE

S
o
l
u
t
i
o
n

2 4x 1–( )6 xd∫∴ 2
4 6 1+( )-------------------- 4x 1–( )6 1+ c+=
1
14------ 4x 1–( )7 c+=

7
4 3x–--------------- xd∫ 7 1

4 3x–--------------- xd∫ 7
3--- 4 3x–( ) c x 4

3---<,+elog–= =

3
2x 1+------------------- xd∫ 3 2x 1+( )

1
2---–

xd∫=
1
2---–

3
2x 1+------------------- xd∫ 3 2x 1+( )

1
2---–

xd∫ 3
2 1

2---– 1+  ------------------------- 2x 1+( )
1
2---– 1+

c+= =

3
2 1

2---×
------------ 2x 1+( )

1
2--- c+=

3 2x 1+ c+=
e 2x– 3+ xd∫ 1

2---e 2x– 3+– c+

e 4x– 3x 2+5+( ) xd∫ e 4x– 3x 2+( )
1
5---+    xd∫ 1

4---e
4x–– 1

3 6
5---  

------------ 3x 2+( )
6
5--- c+ += =

1
4---e

4x–– 5
18------ 3x 2+( )65 c+ +=

π
2---x   2

6x 5+---------------–cos   xd∫ 1
π
2---
--- π

2---x   2
6--- 6x 5+( ) c+ln–sin=

2
π---

π
2---x   1

3--- 6x 5+( ) c+ln–sin=
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Integrating both sides of  with respect to x, we have .

But, [Using the general power rule.] 

Therefore, we have  .
Now, .

Therefore, .

Given that , then .

Now, we are given that 

Therefore, .

We are given that 
   

When t = 0, Q = 200, therefore .
So that .

A half-life of 1200 years, this means that when t = 1200, Q = 100 (half its initial quantity). 
That is, 

The gradient at any point on the curve  is given by the equation 
. The curve passes through the point (2,3). Find the equation of this curve.

y f x( )=
dy
dx------ 1

x 2+----------------=

E 22.11XAMPLE

S
o
l
u
t
i
o
n

dy
dx------ 1

x 2+----------------= dy
dx------ xd∫ 1

x 2+---------------- xd∫=
1

x 2+---------------- xd∫ x 2+( ) 1– 2⁄ xd∫ 2 x 1+( )1 2⁄ c+= =

y f x( ) 2 x 2+ c+= =
f 2( ) 3 3⇒ 2 4 c c⇔+ 1–= = =

f x( ) 2 x 2+ 1–=

The gradient at any point on the curve  is given by 5sin(2x+3). 
The curve passes through the point . Find the equation of this curve.

y f x( )=
0 3

2--- 3cos,  
E 22.12XAMPLE

S
o
l
u
t
i
o
n

f ' x( ) 5 2x 3+( )sin= f x( ) 5
2---– 2x 3+( ) c+cos=

f 0( ) 3
2--- 3  32--- 3cos∴cos 5

2---– 2 0× 3+( ) c+cos= =

c⇔ 8
2--- 3cos=

f x( ) 5
2---– 2x 3+( ) 4 3cos+cos=

The rate of decay of a radioactive substance, Q, is given by . 
Initially there were 200 milligrams of this substance. If the half-life of the substance is 1200 
years, find the amount of the substance left after 2000 years. Sketch a graph of Q(t).

200– ke kt–E 22.13XAMPLE

S
o
l
u
t
i
o
n

dQ
dt------- 200– ke kt–  Q∴ 200– k

k–---------------e kt– c+= =
Q 200e kt– c+=

200 200 c c⇔+ 0= =
Q t( ) 200e kt– t 0≥,=

100 200e 1200k– e 1200k–⇔ 0.5= =
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Therefore, . That is, 

Then, when t = 2000, 
= 
= 62.996

That is, there will be approximately 63 milligrams.

1. Find the indefinite integral of

(a) (b) (c) (d)
(e) (f) (g) (h)
(i) (j) (k) (l)

2. Find the indefinite integral of
(a) (b) (c) (d)

(e) (f) (g) (h)

3. Find the indefinite integral of
(a) (b) (c) (d)

4. Find the indefinite integral of
(a) (b) (c)
(d) (e) (f)

(g) (h)  (i)      

(j) (k) (l)
(m) (n) (o)

5. Using the general power rule, find the indefinite integral of

(a) (b) (c)

1200k– 1
2---   k⇔ln 1

1200------------ 2ln= = Q t( ) 200e
1

1200------------ 2ln  – t t 0≥,=

Q t( ) 200e
1

1200------------ 2ln   2000×–=
200e

5
3--- 2ln–

EXERCISES 22.3

e5x e3x e2x e0.1x

e 4– x 4e 4– x 0.1e 0.5x– 2e1 x–

5ex 1+ 2e2 2x–– e
1
3---x ex

4
x---

3
x---– 2

5x------
1
x 1+------------

1
2x------ 1 1

x---–   2 x 1
x

-------–   2 3
x 2+------------

3x( )sin 2x( )cos sec2 5x( ) x–( )sin

2x( ) x+sin 6x2 4x( )cos– e5x

4e 3x– 1
2---x  sin+ x

3---   3x( )sin–cos e2x 4
x--- 1–+

ex 1+( )2 5 4x( ) x 1–
x-----------+sin– sec2 3x( ) 2

x---– e
1
2---x+

ex e x––( )2 e2x 3+ 2x π+( )sin
π x–( )cos 1

4---x
π
2---+  sin ex 2–

ex
-------------

4x 1–( )3 3x 5+( )6 2 x–( )4
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(d) (e) (f)
(g) (h) (i)
(j) (k) (l)

(m) (n) (o)

6. Find the antiderivative of
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

7. Find  given that 
(a)  where .

(b)  where .

(c)  where .
(d)  where .

8. A bacteria population, N thousand, has a growth rate modelled by the equation

where t is measured in days. Initially there are 250 bacteria in the population. 
Find the population size after 10 days.

9. The acceleration, in  of a body in a medium is given by .
The particle has an initial speed of 6 m/s, find the speed (to 2 d.p) after 10 seconds.

10. The rate of change of the water level in an empty container, t seconds after it started to be
 filled from a tap is given by the relation , where h cm is the water

level. Find the level of water after 6 seconds.

11. The gradient function of the curve  is given by . Find the
equation of the function, given that it passes through the origin.

12. (a) Given that , express p and q in terms of a
and b.

2x 3+( )5 7 3x–( )8 1
2---x 2–   9

5x 2+( ) 6– 9 4x–( ) 2– x 3+( ) 3–

1
x 1+------------ 2

2x 1+--------------- 4
3 2x–---------------

3–
5 x–----------- 9

3 6x–--------------- 5
3x 2+---------------

2x 3–( ) 2x–sin 3 2 1
2---x+   5+cos 1

2--- 2 1
3---x–   2

2x 1+---------------–cos

sec2 0.1x 5–( ) 2– 4
2x 3+--------------- e

1
2---x– 2+– 4

2x 3+( )2---------------------- e2x 1
2---––

x 2+
x 1+------------ 4

x 2+------------– 2x 1+
x 2+--------------- 1

2x 1+---------------+ 2
2x 1+( )2---------------------- 2

2x 1+---------------+

f x( )
f ' x( ) 4x 5+= f 1–( ) 1

6---=

f ' x( ) 8
4x 3–---------------= f 1( ) 2=

f ' x( ) 2x 3+( )cos= f π 3
2---–   1=

f ' x( ) 2 e 2x– 1+–= f 0( ) e=

dN
dt------- 4000

1 0.5t+------------------- t 0≥,=

m/s2 dv
dt------ 3

t 1+----------- t 0≥,=

dh
dt------ 0.2 t 8+3 t 0≥,=

y f x( )= e0.5x 2x( )cos–

d
dx------ eax p bx q bxcos+sin( )( ) eax bxsin=
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(b) Hence find .

13. The rate of change of the charge, Q, in coulombs, retained by a capacitor t minutes after
charging is given by . Using the graph shown, determine the charge
remaining after

14. (a) Show that , where k is a real number.
(b) For a particular type of commercial fish, it is thought that a length-weight

relationship exists such that their rate of change of weight, w kg, with respect to
their length, x m, is modelled by the equation .
Given that a fish in this group averages a weight of 650 gm when it is 20 cm long,
find the weight of a fish measuring 30 cm.

15. The rate of flow of water,  , pumped into a hot water system over a 24-hour

period from 6:00 am, is modelled by the relation , t ≥ 0.

(a) Sketch the graph of  against t.
(b) For what percentage of the time will the rate of flow exceed 11 .
(c) How much water has been pumped into the hot water system by 8:00 am?

16. The rates of change of the population size of two types of insect pests over a 4-day cycle,
where t is measured in days, has been modelled by the equations

 

and , t ≥ 0
where A and B represent the number of each type of pest in thousands.
Initially there were 5000 insects of type A and 3000 insects of type B.
(a) On the same set of axes sketch the graphs,  and  for 0 ≤ t ≤ 4.
(b) What is the maximum number of insects of type A that will occur?
(c) When will there first be equal numbers of insects of both types.
(d)  For how long will the number of type B insects exceed the number of type A

insects during the four days?

e2x 3xsin xd∫

dQ
dt------- ake kt––=

(0, a)

1
2---a

30

Q (coulombs)

t (minutes)

(a) one hour.
(b) 80 minutes.

d
dx------ x x k+( )ln( ) x

x k+------------ x k+( )ln+=

dw
dx------- 0.2 x 2+( )ln=

dV
dt------- litres/hour

dV
dt------- 12 3

2---
π
3---tcos+=

dV
dt-------

litres/hour

dA
dt------- 2π πt t 0≥,cos=
dB
dt------- 3

4---e0.25t=

A t( ) B t( )
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22.4.1 WHY THE DEFINITE INTEGRAL?

Unlike the previous section where the indefinite integral of an expression resulted in a new 
expression, when finding the definite integral we produce a numerical value.
Definite integrals are important because they can be used to find different types of measures, for 
example, areas, volumes, lengths and so on. It is, in essence, an extension of the work we have 
done in the previous sections.

22.4.2 LANGUAGE AND NOTATION

If the function  is continuous at every point on the interval [a,b] and  is any 

antiderivative of  on [a,b], then  is called the definite integral and is equal to 

. That is, .

Which is read as: 
“the integral of  with respect to x from a to b is equal to .”

Usually we have an intermediate step to aid in the evaluation of the definite integral, this provides 
a somewhat ‘compact recipe’ for the evaluation process. This intermediate step is written as 

  .

We therefore write

The process is carried out in 4 steps:

Notice that the constant of integration c is omitted. This is because it would cancel itself out upon 
carrying out the subtraction: . 

In the expression , x is called the variable of integration, and a and b are called the 

lower limit and upper limit respectively. It should also be noted that there is no reason why the 
number b need be greater than the number a when finding the definite integral.  That is, it is just 

THE DEFINITE INTEGRAL22.4

f x( ) F x( )

f x( ) f x( ) xd
a

b

∫
F b( ) F a( )– f x( ) xd

a

b

∫ F b( ) F a( )–=

f x( ) F b( ) F a( )–

F x( )[ ]ab

   f x( ) xd
a

b

∫ F x( )[ ]ab F b( ) F a( )   –= =

Step 1 Find an indefinite integral of ,   (say).
Step 2 Write your result as .
Step 3 Substitute a and b into 
Step 4 Subtract:  to obtain the numerical value

f x( ) F x( )
F x( )[ ]ab

F x( )
F b( ) F a( )–

F b( ) c+( ) F a( ) c+( )– F b( ) F a( )–=

f x( ) xd
a

b

∫
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as reasonable to write  as it is to write , both expressions are valid.

(a)   

(b)    

            =  

 =  

 =  

(c)

              = 
  

(d)  = 0

(e)

(f)

f x( ) xd
2

3–

∫ f x( ) xd
3–

2
∫

Evaluate the following

(a) (b)  (c)  

(d) (e)  (f)  

1
x--- xd

3

5

∫ x 1
x---+   2 xd

2

4

∫ e2x 3
x 1+------------+   xd

0

1

∫

3xsin xd
π
6---

π
2---

∫ 3x 4–( )4 xd
5

2

∫ x e x––( ) xd
2–

0

∫

E 22.14XAMPLE

S
o
l
u
t
i
o
n

1
x--- xd

3

5

∫ xelog[ ]35 5e 3elog–log 5
3---  e 0.511≈log= = =

x 1
x---+   2 xd

2

4

∫ x2 2 1
x2-----+ +   xd

2

4

∫ 1
3---x3 2x 1

x---–+
2

4= =

1
3--- 4( )3 2 4( ) 1

4---–+   1
3--- 2( )3 2 2( ) 1

2---–+  –

64
3------ 8 1

4---–+   8
3--- 4 1

2---–+  –
275
12--------- 22.92≈( )

e2x 3
x 1+------------+   xd

0

1

∫ 1
2---e2x 3 x 1+( )elog+

0

1 1
2---e2 3 2elog+   1

2---e0 3 1elog+  –= =

1
2---e2 3 2e 1

2---–log+
5.27≈

3x xdsin
π
6---

π
2---

∫ 1
3---– 3xcos π

6---

π
2--- 1

3---– 3xcos[ ]π
6---

π
2--- 1

3---
3π
2------  cos 3π

6------  cos–  –= = =

3x 4–( )4 xd
5

2

∫ 1
3 5( )----------- 3x 4–( )5

5

2 1
15------ 2( )5 11( )5–( ) 161019

15------------------ 10734.6–=–= = =

x e x––( ) xd
2–

0

∫ 1
2---x2 e x–+

2–

0
0 e0+( ) 1

2--- 2–( )2 e2+  – 1– e2 8.39–≈–= = =
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Differentiating we have, .

Therefore,   

= 
Notice that in this case we made use of the fact that if .

The above definite integrals can also be found using the fnInt function on the TI–83, although it 
would not provide an exact answer.

The second hour starts at t = 1 and ends at t = 2. Therefore, the number of radios assembled by the 

average worker in the second hour of production is given by 

That is,    

           

Note that to evaluate the definite integral 
we made use of the graphics calculator:

Differentiate . Hence find the exact value of .y ex2 3+= 5xex2 3+ xd
0

1

∫
E 22.15XAMPLE

S
o
l
u
t
i
o
n

xd
d ex2 3+( ) 2xex2 3+=

5xex2 3+ xd
0

1

∫ 5
2--- 2xex2 3+ xd

0

1

∫ 5
2--- xd

d ex2 3+( ) xd
0

1

∫= =

5
2--- ex2 3+[ ]01 5

2--- e4 e3–( )=
f ' x( ) g x( ) then g x( ) xd∫ f x( ) c+= =

First, use the MATH menu and then 
select the fnInt command. Enter the 
equation of the integrand, the variable, 
and then the lower and upper limits. 

The production rate for radios by the average worker at Bat-Rad Pty Ltd
t hours after starting work at 7:00 am, is given by .
How many units can the average worker assemble in the second hour of production.

N ' t( ) 2t2– 8t 10 0 t 4≤ ≤,+ +=
E 22.16XAMPLE

S
o
l
u
t
i
o
n

N N ' t( ) td
t  = 1

t  = 2

∫=

N 2t2– 8t 10+ +( ) td
1

2

∫ 2
3---t3– 4t2 10t+ +

1

2
= =

2
3--- 2( )3– 4 2( )2 10 2( )+ +   2

3--- 1( )3– 4 1( )2 10 1( )+ +  –=
52
3------=
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22.4.3 PROPERTIES OF THE DEFINITE INTEGRAL

There are a number of simple but very important properties of the definite integral (many of 
which we have already used). Some of these properties are summarised below (this list is not an 
exhaustive list) and it is assumed that the integrand,  is continuous on [a,b] and that the 

definite integral,  is finite. 

The use of these properties relies on your ability to recognise their appropriateness in any given 
situation.

Property Examples

1. 

                                         = 0

2. 

                                                     = 

3. 

    where a ≤ c ≤ b.

                   
                   

4. 

5. 

     = 
Similarly,

f x( )

f x( ) xd
a

b

∫

f x( ) xd
a

a

∫ 0= x 1+( ) xd
2

2

∫ x2
2----- x+

2

2 2( )2
2---------- 2( )+   2( )2

2---------- 2( )+  –= =

f x( ) xd
a

b

∫ f x( ) xd
b

a

∫–= e3x xd
1

2

∫ 1
3---e3x

1

2 1
3--- e6 e3–( )= =

e3x xd
2

1

∫ 1
3---e3x

2

1 1
3--- e3 e6–( ) 1

3--- e6 e3–( )–= = =

e3x xd
1

2

∫–

f x( ) xd
a

b

∫ f x( ) x f x( ) xd
c

b

∫+d
a

c

∫= 1
x--- xd

2

5

∫ xln[ ]25 5 2ln–ln 2.5ln= = =

1
x--- x 1

x--- xd
3

5

∫+d
2

3

∫ xln[ ]23 xln[ ]35+=

3 2ln–ln( ) 5 3ln–ln( )+=
5 2ln–ln 2.5ln= =

kf x( ) xd
a

b

∫ k f x( ) x k ∈,d
a

b

∫= 3 2x( )cos xd
0

π
4---

∫ 3 2x( )cos xd
0

π
4---

∫ 3 1
2--- 2x( )sin

0

π
4--- 3

2---= = =

f x( ) g± x( )( ) xd
a

b

∫
f x( ) x g x( ) xd

a

b

∫±d
a

b

∫

x e 2x–+( ) xd
1

3

∫ 1
2---x2 1

2---e 2x––
1

3 1
2--- 8 e 6–– e 2–+( )= =

x x e 2x– xd
1

3

∫+d
1

3

∫ 1
2---x2

1

3 1
2---e 2x––+ 1

2--- 8 e 6–– e 2–+( )= =
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(a)  = 

(b)  = 

(c)  = 

(a)

    
                     .

(b)

       
 

Notice that both solutions must be given.

Suppose that  and  are continuous functions on the interval [1,5] 

and that , ,  and .

Evaluate the following

(a) (b) (c)

f x( ) g x( )

f x( ) xd
1

3

∫ 2–= f x( ) xd
1

5

∫ 7= g x( ) xd
1

3

∫ 3= g x( ) xd
1

5

∫ 5=

3 f x( ) g x( )–( ) xd
1

3

∫ f x( ) g x( )–( ) xd
5

1

∫ 5 4 f x( )–( ) xd
1

3

∫

E 22.17XAMPLE

S
o
l
u
t
i
o
n

3 f x( ) g x( )–( ) xd
1

3

∫ 3 f x( ) x g x( ) xd
1

3

∫–d
1

3

∫ 3 f x( ) x 3–d
1

3

∫= = 3 2–( ) 3–× 9–=

f x( ) g x( )–( ) xd
5

1

∫ f x( ) x g x( ) xd
5

1

∫–d
5

1

∫ f x( ) x g x( ) xd
1

5

∫–   –d
1

5

∫–= = 7( )– 5+ 2–=

5 4 f x( )–( ) xd
1

3

∫ 5 x 4 f x( ) xd
1

3

∫–d
1

3

∫ 5x[ ]13 4 2–( )–= = 15 5–( ) 8+ 18=

Find the value(s) of m, where

(a)    (b)2x 4–( ) xd
0

m

∫ 4–= 2x 4–( ) xd
0

m

∫ 5=

E 22.18XAMPLE

S
o
l
u
t
i
o
n

2x 4–( ) xd
0

m

∫ 4 x2 4x–[ ]0m⇒– 4–= = m2 4m–⇔ 4–=

m2 4m– 4+⇔ 0=
m 2–( )2⇔ 0 m⇔ 2= =

2x 4–( ) xd
0

m

∫ 5 m2 4m–⇔ 5= = m2 4m– 5–⇔ 0=

m 5–( ) m 1+( )⇔ 0=
m⇔ 5 or m 1–= =

Evaluate

(a)    (b) , 2x 3+ xd1
3∫ 2

3 2x–( )2---------------------- xd
0

k

∫ k 3
2---<

E 22.19XAMPLE
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(a)  =   [Using power rule].

     

(b)  = 

     

1. Evaluate the following

(a) (b) (c) (d)

2. Evaluate the following definite integrals (giving exact answers)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

3. Use a graphics calculator to check your answers to Question 2.

S
o
l
u
t
i
o
n

2x 3+ xd1
3∫ 2x 3+( )1 2/ xd1

3∫ 1
2 1

2--- 1+  ×
--------------------------- 2x 3+( )

1
2--- 1+

1

3

=

1
3--- 2x 3+( )

3
2---  

1

3
=

1
3--- 93 2/( ) 53 2/–[ ]=
1
3--- 27 5 5–( )=

2
3 2x–( )2---------------------- xd

0

k

∫ 2 3 2x–( ) 2– xd
0

k

∫ 2 1
2 1–×–------------------ 3 2x–( ) 1–

0

k
= 1

3 2x–---------------
0

k
=

1
3 2k–--------------- 1

3---–=
2k

3 3 2k–( )-----------------------=

EXERCISES 22.4

x xd
1

4

∫ x xd
4

9

∫ 2
x3----- xd

2

3

∫ 4
x------- xd

16

9

∫

x2 3
x4-----–   xd

1

2

∫ x x x–( ) xd
0

2

∫ 1 2x 3x2–+( ) xd
0

2

∫
x 1+( ) xd

2–

0

∫ x3 x 1+( ) xd
0

1–

∫ x 1+( ) x2 1–( ) xd
1–

1

∫
x 1–( )2 xd

1

4

∫ x 1
x---–   2 xd

1

2

∫ x3 x2– x+
x-------------------------   xd

1

3

∫
x x3–( ) xd

1–

1

∫ x 1+
x------------ xd

1

4

∫ 2
x---

x
2---–   xd

1

4

∫
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4. Evaluate the following definite integrals (giving exact values)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

5. Use a graphics calculator to check your answers to Question 4.
6. Evaluate the following definite integrals (giving exact values)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

7. Use a graphics calculator to check your answers to Question 6.
8. Evaluate the following definite integrals (giving exact values)

(a) (b) (c)     

(d) (e) (f)     

(g) (h) (i)     

9. Evaluate the following definite integrals (giving exact values)
(a) (b) (c)

(d) (e) (f)

10. Show that . Hence evaluate 

11. Find . Hence find the exact value of .

ex 1+( ) xd0
1∫ 4

e2x------- xd
1

2

∫ ex e x––( ) xd
1–

1

∫
ex e x–+( ) xd

1–

1

∫ ex e x–+( )2 xd
1–

1

∫ e2x 1+ xd
2

0

∫
ex 1–( ) xd

0

1

∫ e
1
4---x e4x–   xd

0

1

∫ e1 2x– xd
1

1–

∫

3
x--- xd

1

2

∫ 2
x 1+------------ xd

0

4

∫ x 4+
x------------ xd

2

6

∫
x2 1

x---+   2 xd
4

5

∫ 3
1 2x–--------------- xd

1–

0

∫ 2
x 1+------------ xd

0

1

∫
2

x 1+( )3------------------- xd
0

1

∫ x 2
x-------–   2 xd

2

4

∫ 2x 1+
2x2 3x– 2–----------------------------- xd

3

4

∫

2x( )sin xd0
 π2---∫ 1

3---x  cos xdπ–
0∫ sec24x xdπ

6---

 π3---∫
x x

2---  sin–cos   xd
0

π
∫ x sec2x–( ) xd0

 π4---∫ 2 4x π
2---+   xdcos0

 π2---∫
x
2---   2 x( )cos+sin   xdπ–

π∫ sec2 π4--- 2x–   xd0
 π12------∫ 2x π+( )cos xd

0

π
∫

x 1+( )4 xd0
1∫ 2x 1+ xd1

3∫ 1 2x–( )3 xd1–
2∫

1
x 2+( )3------------------- xd0

1∫ 1
x 4–3

---------------- xd
5

8

∫ x
1 x+( )----------------- xd

0

1

∫

2x 6+
x2 6x 5+ +--------------------------- 1

x 1+------------ 1
x 5+------------+≡ 2x 6+

x2 6x 5+ +--------------------------- xd
0

2

∫
d
dx------ x 2xsin( ) x 2xcos xd

0

π
∫
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12. Given that  and , find

(a) (b) (c)

(d) (e)

13. (a) Find . Hence, find .

(b) Following an advertising initiative by the Traffic Authorities, preliminary results
predict that the number of alcohol-related traffic accidents has been decreasing at a
rate of  accidents per month, where t is the time in months since the
advertising campaign started.
i. How many accidents were there over the first six months of the campaign.
ii. In the year prior to the advertising campaign there were 878 alcohol-

related traffic accidents. Find an expression for the total number of
accidents since the start of the previous year, t months after the campaign
started.

14. The rate of Cable television subscribers in a city t years from 1995 has been modelled by
the equation . 

(a) How many subscribers were there between 1998 and 2002?
(b) If there were initially 40,000 subscribers, find the number of subscribers by 2010.

15. (a) Find . 

(b) The rate at which the number of fruit flies appear when placed in an environment
with limited food supply in an experiment was found to be approximated by the
exponential model , where t is the number of days since the 
experiment started. What was the increase in the number of flies after 200 days?

f x( ) xd
a

b

∫ m= g x( ) xd
a

b

∫ n=

2 f x( ) x g x( ) xd
a

b

∫–d
a

b

∫ f x( ) 1–( ) xd
a

b

∫ 3g x( ) xd
b

a

∫
af x( ) m–( ) xd

a

b

∫ b2g x( ) 2nx–( ) xd
a

b

∫
d
dx------ xe0.1x( ) xe0.1x xd∫

12– te0.1t–

2000
1 0.4t+( )3------------------------------

d
dt----- 800

1 24e 0.02t–+-----------------------------  

384e 0.02t–
1 24e 0.02t–+( )2------------------------------------- t 0≥,
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In Chapters 20 and 21 we saw that differentiation had a geometric meaning, that is, it provided a 
measure of the gradient of the curve at a particular point. We have also seen applications of the 
definite integral throughout the previous sections in this chapter. In this section we will 
investigate the geometric significance of the integral.

22.5.1 INTRODUCTION TO THE AREA BENEATH A CURVE

Consider the problem of finding the exact value of the 
shaded area, A sq. units, in the diagram shown.

As a first step we make use of rectangular strips as 
shown below to obtain an approximation of the shaded 
area. We can set up a table of values, use it to find the 
area of each strip and then sum these areas.
In Figure 1, the rectangles lie below the curve, and so we call these the lower rectangles. In 
Figure 2, the rectangles lie above the curve, and so we call these the upper rectangles. Figure 3 
shows that the true area (or exact area) lies somewhere between the sum of the areas of the lower 
rectangles, , and the sum of the areas of the upper rectangles, .

That is, we have that 

In the case above we have that  and .
Therefore, we can write . However, this does seem to be a poor approximation as there 
is a difference of 9 sq. units between the lower approximation and the upper approximation. The 
problem lies in the fact that we have only used two rectangles for the lower sum and three 
rectangles for the upper sum. We can improve on our approximation by increasing the number of 
rectangles that are used. For example, we could used 5 lower rectangles and 6 upper rectangles, or 
10 lower rectangles and 12 upper rectangles and so on.

APPLICATIONS OF INTEGRATION22.5

–1 1 2 3

2

4

6

8

x

y10
y x2=

SL SU

1 2 3

2

4

6

8

x

y10

1 2 3

2

4

6

8

x

y10

1 2 3

2

4

6

8

x

y10
Lower rectangles, Upper rectangles, Exact area, ASL SU

y x2= y x2= y x2=
  Figure 1                                     Figure 2                                    Figure 3

Lower Sum  =   <   Exact Area, A   <    =  Upper SumSL SU

SL 1 1 1 4×+× 5= = SU 1 1 1 4×+× 1 9×+ 14= =
5 A 14< <
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22.5.2 IN SEARCH OF A BETTER APPROXIMATION

As shown in the diagrams below, as we increase the number of rectangular strips (or decrease the 
width of each strip) we obtain better approximations to the exact value of the area.

For intervals of width 0.5 we have:

For intervals of width 0.25 we have:

By continuing in this manner, the value of A will become sandwiched between a lower value and 
an upper value. Of course the more intervals we have the ‘tighter’ the sandwich will be! What we 
can say is that if we partition the interval [0, 3] into n equal subintervals, then, as the number of 
rectangles increases,  increases towards the exact value A while  decreases towards the 
exact value A. That is, 

As we have seen, even for a simple case such as , this process is rather tedious. And as 
yet, we still have not found the exact area of the shaded region under the curve  over the 
interval [0, 3].

1 2 3

2

4

6

8

x

y10

1 2 3

2

4

6

8

x

y10

      5 lower & 6 upper      10 lower & 12 upper 
rectangles rectangles

y x2= y x2=

We can make use of a table of values to find the sum of the areas of the lower and upper rectangles:
Using intervals 
of width  units.1

2---
Using intervals 
of width  units.1

4---

i.e.,  6.88 < A < 11.38}SL
1
2--- 0.25 1 2.25 4 6.25+ + + +[ ]× 6.875= =

SU
1
2--- 0.25 1 2.25 4 6.25 9+ + + + +[ ]× 11.375= =

i.e.,  7.89 < A < 10.16}SL
1
4--- 0.25 0.5625 1 1.5625 2.25 … 7.5625+ + + + + +[ ]× 7.89≈=

SU
1
4--- 0.0625 0.25 0.5625 … 7.5625 9+ + + + +[ ]× 10.16≈=

SL SU

    SLn ∞→lim A SUn ∞→lim= =

y x2=
y x2=
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22.5.3 TOWARDS AN EXACT AREA

We can produce an algebraic expression to determine the exact area enclosed by a curve. We shall 
also find that the definite integral plays a large part in determining the area enclosed by a curve.
As a starting point we consider a single rectangular 
strip. 
Consider the function  as shown:

Divide the interval from x = a to x = b into n equal 
equal parts: . 
This means that each strip is of width . 

We denote this width by  so that .
The area of the lower rectangle is  and that of the upper rectangle is .

Then, the sum of the areas of the lower rectangles for a ≤ x ≤ b is 

and the sum of the areas of the upper rectangles for a ≤ x ≤ b is 

Then, if A sq units is the area under the curve  over the interval [a, b] we have that 

As the number of strips increase, that is, as  and therefore  the area, A sq units, 
approaches a common limit, i.e.,  from below, and  from above. We write this result as:

In fact this result leads to the use of the integral sign as a means whereby we can find the required 
area.

That is,

Notice that we’ve only developed an appropriate notation and a ‘recognition’ that the definite 
integral provides a numerical value whose geometrical interpretation is connected to the area 
enclosed by a curve, the x–axis and the lines x = a and x = b. We leave out a formal proof of this 
result in preference to having developed an intuitive idea behind the concept and relationship 
between area and the definite integral.
We can now combine our results of the definite integral with its geometrical significance in 
relation to curves on a Cartesian set of axes.

a                               b

y

x
x    x+δx
δx

f x( )
f x δx+( )

y f x( )=

a x0 x1 x2 … xn, , , , b= =
b a–

n------------

δx δx b a–
n------------=

f x( ) δx× f x δx+( ) δx×
SL f x( )δx

x a=

b δx–
∑=

SU f x δx+( )δx
x a=

b
∑=

y f x( )=

   f x( )δx A f x δx+( )δx   
x a=

b
∑< <

x a=

b δx–
∑

n ∞→ δx 0→
SL SU

   A f x( )δx   
x a=

b
∑δx 0→lim=

 f x( )δx
x a=

b
∑δx 0→lim f x( ) x d

a

b

∫=
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22.5.4 THE DEFINITE INTEGRAL AND AREAS

(a)  = 

Therefore, the shaded area measures  square units.

(b)

          

Therefore, the shaded area measures  square units.

Apart from having the ability to ‘find’ an 
indefinite integral, or rather, sketch an 
indefinite integral, the TI–83 can also 
display the shaded regions required. 
This is done by using the Shade 
command from the DRAW function.

If  is positive and continuous on 
the interval [a,b], the area, A sq units, bounded 
by , the x-axis and the lines x = a 
and x = b is given by 

Area = 

y f x( )=

y f x( )=

A f x( ) xd
a

b

∫ y xd
a

b

∫= =

y f x( )=

x = a x = b
x

y

Find the area of the shaded region shown below.
(a) (b)

–2 –1 1 2 3

2
4
6
8

10 y 10 x2–=

x

y y

x0

3π
2------

2 y x 1+sin=

E 22.20XAMPLE

S
o
l
u
t
i
o
n

Area 10 x2–( ) xd2–
3∫ 10x 1

3---x3–
2–

3
30 9–( ) 20– 8

3---+  –  = = = 115
3---------

115
3---------

Area x 1+sin( ) xd0

3π
2------∫ x x+cos–[ ]0

3π
2------ 3π

2------   3π
2------+cos–   0( ) 0+cos–( )–= = =

3π
2------ 1+=

3π
2------ 1+

Find the area enclosed by the curve with equation , the x–
axis and the lines x = 1 and x = 3.

f x( ) 2 x2+=E 22.21XAMPLE
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Using the DRAW function, and then selecting Shade, we enter the required information, i.e., 0 
(for y = 0. i.e., the x–axis), the equation of the function, the lower limit and then, the upper limit 
(do not forget to first enter the equation in the equation editor screen and to enter the appropriate 
window setting.) To find the measure of the area, we need to use the fnInt function:

Using the TI–83 to first visualise the situation we have:
Therefore, we have  

Therefore, k = 10.

22.5.5 FURTHER OBSERVATIONS ABOUT AREAS

1. To find the area bounded by , the y-axis
and the lines y = a and y = b we carry out the
following proces:
1. First you need to make x the subject. 

i.e., from  obtain the new
equation .

2. Then find the definite integral,
 sq units.

which will give the shaded area.

S
o
l
u
t
i
o
n

1. Set up graph 2. Display required region 3. Find numerical value

i.e., area is  sq units.122
3---

The area enclosed by the curve with equation , the x–axis, 
the y–axis and the line x = –2, measures  sq units. Find the value of k.

y 4 e 0.5x––=
k 2– e

E 22.22XAMPLE

S
o
l
u
t
i
o
n

4 e 0.5x––( ) xd2–
0∫ k 2– e=

4x 2e 0.5x–+[ ] 2–
0 k 2– e=

2 8– 2e1+( )– k 2– e=
10 2e– k 2– e=

y = a

y = b

y f x( ) or x g y( )= =
x

yy f x( )=

y f x( )=
x g y( )=

x yd
a
b∫ g y( ) yd

a
b∫=
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2. If  f  is negative over the interval [a,b] 
(i.e  for a ≤ x ≤ b), then the 

integral  is a negative number.

We therefore need to write the area, A, as

or,   use the absolute value of the integral:

.

We begin by showing the required region on the cartesian plane:
Next we need an expression for x in terms of y:
That is, 
Therefore, the area of the shaded region is

A =  =  = 

So that the required area is sq units.

22.5.6 THE SIGNED AREA

It is possible for  to alternate between negative and positive values over the interval 
x = a and x = b. That is there is at least one point x = c where the graph crosses the x–axis, and so 

 changes sign when it crosses the point x = c. 

y f x( )=

x

y
x = a x = bf x( ) 0<

f x( ) xd
a

b

∫

A f x( ) xd
a

b

∫–=

A f x( ) xd
a

b

∫=

Find the area enclosed by the curve , the y–axis and the lines y = 1 
and y = 3.

y x=E 22.23XAMPLE

S
o
l
u
t
i
o
n

1

3
y

x
y x=

y x y2⇒ x x 0>,= =

x yd1
3∫ y2 yd1

3∫ 1
3---y3

1

3
= = 1

3--- 33 13–( ) 26
3------

26
3------

y f x( )=

y f x( )=

x = a x = bx = c

A

A

1

2

f x( ) 0<

f x( ) 0>
x

y The integral  gives the algebraic sum of  and , 
that is, it gives the signed area.

f x( ) xd
a
b∫ A1 A2

For example, if  = 12 and  = 4, then the definite 
integral  = 12 – 4 = 8.

This is because  = 12,  = –4 and so

 =  +  = 12 + (–4) = 8

A1 A2

f x( ) xd
a
b∫

f x( ) xd
a
c∫ f x( ) xd

c
b∫

f x( ) xd
a
b∫ f x( ) xd

a
c∫ f x( ) xd

c
b∫
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As   is a negative value, finding the negative of , that is  , 
would provide a positive value and therefore be a measure of the area of the region that is shaded 
below the x-axis.
The shaded area would then be given by .
This would provide the sum of two positive numbers.

22.5.7 STEPS FOR FINDING AREAS

It follows, that in order to find the area bounded by the curve , the x-axis and the lines 
x = a and x = b, we first need to find where (and if) the curve crosses the x-axis at some point 
x = c in the interval a ≤ x ≤ b. If it does, we must evaluate the area of the regions above and below 
the x-axis separately. Otherwise, evaluating  will provide the signed area (which only 
gives the correct area if the function lies above the x–axis over the interval a ≤ x ≤ b).
Therefore, we need to:

First sketch the graph of the given curve: x-intercepts (when y = 0): .
y-intercepts (when x = 0):  y = 0 – 1 = –1.

From the graph we see that y is negative in the region [0,1] and positive in the region [1,2], 
therefore the area of the region enclosed is given by

 = 

    =  
    = 3.5

That is, the area measures 3.5 sq units.
Notice that  .

f x( ) xd
c
b∫ f x( ) xd

c
b∫ f x( ) xd

c
b∫–  

f x( ) x f x( ) xd
c
b∫–  +d

a
c∫

y f x( )=

f x( ) xd
a
b∫

1. Sketch the graph of the curve  over the interval a ≤ x ≤ b.
(In doing so you will also determine any x-intercepts).

2. Integrate  over each region separately (if necessary).
(That is, regions above the x-axis and regions below the x-axis)

3. Add the required (positive terms).

y f x( )=

y f x( )=

Find the area of the region enclosed by the curve , the x-axis and 
0 ≤ x ≤ 2.

y x3 1–=E 22.24XAMPLE

S
o
l
u
t
i
o
n

x3 1– 0 x⇔ 1= =

A x3 1–( ) xd0
1∫–  = x3 1–( ) xd1

2∫+ x4
4----- x–

0

1
–   x4

4----- x–
1

2
+

3
4---–  – 2( ) 3

4---–  –  +

x3 1–( ) xd0
2∫ x4

4----- x–
0

2
2= = 3.5≠( )
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Using the CALC option after sketching the curve  on the TI–83, we can visualise 
these results more readily.

First sketch the graph of the given curve:
x-intercepts (when y = 0): 
y-intercepts (when x = 0):  y = 0 – 0 + 0 = 0.

From the diagram we have, Area =  .

Now, 

and

Therefore, the required area is  sq units.

22.5.8 AREA BETWEEN TWO CURVES

The use of the definite integral in finding the area of a region enclosed by a single curve can be 
extended to finding the area enclosed between two curves. Although we do have a compact 
formula to find such areas, in reality it is a simple geometrical observation.

Consider two continuous functions,  and  on some interval [a,b], such that over this 
interval, . The area of the region enclosed by these two curves and the lines x = a and 
x = b is shown next.

y x3 1–=

Signed area:                         Actual area:

x3 1–( ) xd0
2∫ 2= A x3 1–( ) xd0

1∫–  = x3 1–( ) xd1
2∫+ 0.75–( )– 2.75+ 3.5= =

Find the area enclosed by the curve , the x-axis and the 
lines x = 0 and x = 3.

y x3 3x2– 2x+=E 22.25XAMPLE

S
o
l
u
t
i
o
n

x3 3x2– 2x+ 0 x x 2–( ) x 1–( )⇔ 0 x∴ 0 2 1, ,= = =

A1
A2

A3

NB: x3 3x2– 2x+( ) xd0
3∫ 9

4---=

A1 A2– A3+

A1 x3 3x2– 2x+( ) xd0
1∫ x4

4----- x3– x2+
0

1 1
4---= = =

A2 x3 3x2– 2x+( ) xd1
2∫ x4

4----- x3– x2+
1

2 1
4---–= = =

A1 x3 3x2– 2x+( ) xd2
3∫ x4

4----- x3– x2+
2

3 9
4---= = =

1
4---

1
4---–  – 9

4---+ 11
4------=

f x( ) g x( )
g x( ) f x( )≥
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That is,

The first step is to sketch both graphs so that it is clear which one lies above the other.
In this case, as  on [–1,1], we can write the required area, A sq units, as

 

Note: If the question had been stated simply as: 
“Find the area enclosed by the curves  and .” 

This would indicate that we want the total area enclosed by the two curves, as shown:
To find such an area we need first find the points of
intersection:

                                
required area =  sq units.

x = a x = b x = a x = b x = a x = b

y f x( )= y f x( )= y f x( )=

y g x( )= y g x( )= y g x( )=

Area between the curves       =         Area beneath y = g (x)            ––          Area beneath y = f (x)

y y y

x x x

If  on the interval [a,b], then the area, A square units,
enclosed by the two curves and the lines x = a and x = b is given by

g x( ) f x( )≥

A g x( ) x f x( ) xd
a

b

∫–d
a

b

∫ g x( ) f x( )–( ) xd
a

b

∫= =

Find the area of the region enclosed by the curves , 
 and the lines x = –1 and x = 1.

g x( ) x 2+=
f x( ) x2 x 2–+=

E 22.26XAMPLE

S
o
l
u
t
i
o
n

g x( ) f x( )≥
x 2+( ) x2 x 2–+( )–( ) xd1–

1∫ 4 x2–( ) xd1–
1∫=

4x x3
3-----–

1–

1
=

4 1
3---–   4– 1

3---+  –=
22
3------ sq units=

g x( ) x 2+= f x( ) x2 x 2–+=

x 2+ x2 x 2 x2 4–⇔–+ 0= =
x∴ 2±=

∴ 4 x2–( ) xd2–
2∫ 4x x3

3-----–
2–

2 32
3------= =
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Again we first sketch both graphs so that we can see which one lies above the other:
Next, we find the points of intersection:

         
Therefore, x = 3 or x = 2.
Required area = 

= 

=  sq units

We start by sketching the graphs of  and . Then determine the
points of intersection.

        

               i.e.,  or 
Therefore, area of shaded region, A sq units, is given by

   

We will need to evaluate  and  when . 
We will need to construct a right-angled triangle for the given value of x:

Find the area of the region enclosed by the curves  and 
.

y 4 x–=
y 2
x 1–-----------=

E 22.27XAMPLE

S
o
l
u
t
i
o
n

4 x– 2
x 1–----------- 4 x–( ) x 1–( )⇔ 2= =

x 3–( ) x 2–( )⇔ 0=

4 x–( ) 2
x 1–-----------–   xd2

3∫
4x x2

2-----– 2 x 1–( )elog–
2

3

3
2--- 2 2elog–

Find the exact value of the area of the region enclosed by the curves 
 and  over the region 0 ≤ x ≤ π.y 2xsin= y cos2x=

E 22.28XAMPLE
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u
t
i
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y 2xsin= y cos2x=

cos2x

sin2x

2xsin cos2x 2 x xcossin⇔ cos2x= =
x 2 x xcos–sin( )cos⇔ 0=
xcos⇔ 0  or  xtan 1

2---= =

x π
2---= x arctan 1

2---  =

A 2x cos2x–sin[ ] xd
arctan 1

2---  

π
2---

∫ 2x 1
2--- 2x 1+cos( )–sin xd

arctan 1
2---  

π
2---

∫= =

1
2--- 2x 1

4--- 2x x
2---–sin–cos–
π
2---
arctan 1

2---  
=

1
2

x
52xcos 2xsin x arctan 1

2---  =
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We first consider : Using the identity  =  and the right-angled triangle
we have that . .

Next we consider : Using the identity  = 
we have that . 

i.e., area of shaded region is  sq. units

1. Find the area of the region bounded by
(a) , the x–axis, and the line x = 2.
(b) , and the x–axis.
(c) , the x–axis, and the lines x = –2 and x = 0.
(d) , the x–axis, the line x = 2 and the line x = 4.
(e) , the x–axis, and the lines x = 0 and x = 1.

2. Find the area of the region bounded by
(a) , the x–axis, and the lines x = 0 and x = 1.
(b) , the x–axis, the line x = 1 and the line x = 2.
(c) , the x–axis, the line x = –1 and the line x = 1.
(d) , the x–axis, the line x = 0 and the line x = 2.

3. Find the area of the region bounded by
(a) , the x–axis, the line x = 4 and the line x = 5.

(b) , the x–axis, the line x = 0 and the line x = 4.

(c) , the x–axis, the line x = –1 and the line x = 1.

(d) , the x–axis, the line x = –1 and the line x = .

2xcos 2xcos 2cos2x 1–
xcos 2

5-------= 2xcos∴ 2 2
5-------   2 1– 8

5--- 1– 3
5---= = =

2xsin 2xsin 2 x xcossin
xsin 1

5-------= 2xsin∴ 2 1
5-------   2

5-------   4
5---= =

Checking with TI-83:A∴ 1
2--- π 1

4--- π π
4---–sin⋅–cos⋅– 1

2---
3
5---     14---

4
5---     12--- arctan 1

2---    ––––=

1
2---
π
4---– 3

10------– 1
5---– 1

2---arctan
1
2---  ––=

1 1
2---arctan

1
2---  

π
4---–+=

1 1
2---arctan

1
2---  

π
4---–+

EXERCISES 22.5

y x3=
y 4 x2–=
y x3 4x–=
y x3 4x–=
y x x–=

f x( ) ex 1+=
f x( ) e2x 1–=
f x( ) ex e x––=
y e

1
2---x 1+ x–=

y 1
x---=

y 2
x 1+------------=

f x( ) 3
2 x–-----------=

f x( ) 1
x 1–----------- 1+= 1

2---
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4. Find the area of the region bounded by
(a) , the x–axis, the line x = 0 and the line x = .

(b) , the x–axis, the line x = 0 and the line x = .

(c) , the x–axis, the line x =  and the line x = π.

(d) , the x–axis, the line x =  and the line x = π.

(e) , the x–axis, the line x = –  and the line x = .

5. Verify your answers to Questions 1– 4, using a graphics calculator.

6. Find the area of the region enclosed by the curve , the y–axis and the x–axis.

7. Find the area of the region enclosed by the curve , and the lines y = 2 and y = 4.

8. Find the area of the region enclosed by the curve , the x–axis and the lines 
x = –2 and x = –1.

9. Find the area of the region enclosed by the curve , the x–axis, the line x = 0
and x = 2.

10. Find the area of the region enclosed by the curve  and the x–axis.

11. Find the area of the region enclosed by the curve 
(a) the x–axis, the line x = 1 and x = 2
(b) the x–axis, the line x =  and x = 2

(c) and the lines y = –  and y = .

12. The area of the region enclosed by the curve  and the line x = a is  sq units.
Find the value of k.

13. Differentiate the function . Hence find the area of the region enclosed
by the curve , the x–axis and the lines x = 0 and x = .

14. (a) Find the area of the region enclosed by the curve  the x–axis, the line
x = –1 and the line x = 2.

(b) Find the area of the region enclosed by the curve  the x–axis, the line
x = –1 and the line x = 2.

f x( ) 2 xsin= π
2---

y 2x( ) 1+cos= π
2---

y x x
2---  cos–= π

2---

f x( ) 2x( ) x
2---  sin–cos= π

2---

y 3 x
2---  

2sec= π
3---

π
3---

y 8 x3–=

y x2 1+=

f x( ) x 1
x---+=

y x2 1–=

y x x 1+( ) x 2–( )=

f x( ) 1 1
x2-----–=

1
2---

1
2---

1
2---

y2 4ax= ka2

y 2cos x( )elog=
f x( ) 2x( )tan= π

8---

y 2x 1–=

y 2x 1–=
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15. Find the area of the region enclosed by the curve 
(a) the x–axis, the lines x = 2 and x = 3,
(b) the y–axis, the lines y = 2 and y = 8.

16. (a) Differentiate the function , hence find .
(b) Find the area of the region enclosed by the curve , the y–axis and the lines 

y = 1 and y = e.

17. Find the area of the region bounded by the graphs of  and , over the
 the interval 0 ≤ x ≤ 2.

18. (a) Find the area of the region bounded by the graphs of  and ,
 over the interval 0 ≤ x ≤ 1.

(b) Find the area of the region bounded by the graphs of  and .

19. (a) Find the area of the regions bounded by the following:
i. , x = 1, x = 2 and y = 0.
ii. , y = 1, y = 8 and x = 0.

(b) How could you deduce part ii. from part i.?

20. Find the area of the region bounded by the curves with equations , y = 6 – x and
the x–axis.

21. (a) Sketch the graph of the function .
(b) Find the area of the region enclosed by the curve , 

i. the x–axis and the lines x = –1 and x = 1.
ii. the y–axis and the line y = e – 1.
iii. and the line y = 1. Discuss your findings for this case.

22. (a) On the same set of axes, sketch the graphs of  and 
 over the interval 0 ≤ x ≤ π.

(b) Find the area of the region between by the curves  and 
over the interval 0 ≤ x ≤ π, giving your answer correct to 2 decimal places.

23. Consider the curve with equation  as
shown in the diagram.
A tangent meets the curve at the point A .

(a) Find the equation of the tangent at A.
(b) Find the area of the shaded region enclosed by

the curve, the line y = 0 and the tangent.

f x( ) 2
x 1–( )2-------------------=

y x xelog= xelog xd∫
y ex=

y x2 2+= y x=

y 2 x2–= y x=

y 2 x2–= y x=

y x3=
y x3=

y x=

f x( ) ex 1–=
y f x( )=

f x( ) 1
2---x  sin= g x( ) 2sin x=

y f x( )= y g x( )=

A a2 a3,( )

y2 x3=

x

yy2 x3=

a2 a3,( )



Integration and its Applications – CHAPTER 22

811

24. (a) On a set of axes, sketch the graph of the curve  and find the area of the
region enclosed by the curve, the x-axis and the lines x = 0 and x = 1.

(b) Hence evaluate .

(c) Find the area of the region enclosed by the curves  and 
over the .

25. The area of the shaded region enclosed by the y-axis, the tangent to the curve at x = a and
the curve , y ≥ 0, as shown in the diagram below, measures  sq. units.

Find the exact value of a.

y ex 1–=

x 1+ln( ) xd
e 1–

1

∫
y ex 1–= y x 1+ln=

e 1– x 1≤ ≤

y2 x= 16
3------

a

y

x

y2 x=
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Another application of integration when relating it to areas is that of kinematics. Just as the 
gradient of the displacement–time graph produces the velocity–time graph, so too then, we have 
that the area beneath the velocity–time graph produces the displacement–time graph. Notice 
that the area provides the displacement (not necessarily the distance!).
Similarly with the acceleration–time graph, i.e., the area under the acceleration–time graph 
represents the velocity.

(a) It is always a good idea to sketch the velocity–time graph:
The displacement is then given by

          

That is, the object’s displacement measures (approx.) 1.36 metres.
Once we have sketched the velocity-time graph using the TI–83 we can make use of the

 option under the CALC menu.
When prompted for the Lower and Upper Limits, enter the required x–values.
However, it must be understood that the  option provides the value of the signed
area. In this case it provides the displacement not the distance (although sometimes these
are the same). We now display this result:

APPLICATIONS TO KINEMATICS22.6

v

tt1
t2

s v td
t1

t2

∫=Signed Area =

The displacement over the interval  is given by

Displacement = 

However, the distance covered over the interval  is 
given by

Distance = 

t1 t2,[ ]

s v td
t1

t2

∫=

t1 t2,[ ]

x v t v td
a

t2

∫+d
t1

a

∫–=
(a,0)

The velocity of an object is v m/s after t seconds, where .
(a) Find the object’s displacement over the first  seconds.

(b) Find the distance travelled by the object over the first  seconds.

v 1 2 2tsin–=
3π
4------

3π
4------

E 22.29XAMPLE
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s 1 2 2tsin–( ) td
0

3π
4------

∫ t 2tcos+
0

3π
4------

= =

3π
4------

6π
4------  cos+   0 0( )cos+( )–=

3π
4------ 1–=

1.36≈

f x( ) xd∫
f x( ) xd∫
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(b) As part of the graph lies below the t–axis, when determining the distance travelled we use
 the same principle as that which differentiates between the signed area and the actual area

enclosed by a curve and the horizontal axis. In short:

The first step is to determine the t–intercepts:
Solving for  we have,  
Note that we only require the first two intercepts.
Therefore, the distance is given by 

Evaluating this expression is rather lengthy, and—unless we require an exact value— we
might as well make use of the graphics calculator. 
There are a number of ways this can be done. Either we can make repeated use of the
previous method i.e., using the  option in the CALC menu for each interval, or
we could use the 9: fnInt( option in the MATH menu.

Distance travelled 
 = 0.1278 – (–0.6849) + 1.9132 = 2.7259.
That is, object travelled (approx.) 2.73 m. 

Displacement = Signed area
Distance         = Area.

1 2 2tsin– 0= 2tsin 1
2--- 2t⇒ π

6---
5π
6------ …, ,= = t∴ π

12------ 5π
12------ …, ,=

x 1 2 2tsin–( ) t 1 2 2tsin–( ) t 1 2 2tsin–( ) td
5π
12------

3π
4------

∫+d
π
12------

5π
12------

∫–d
0

π
12------

∫=

f x( ) xd∫

A rocket starts from rest and accelerates such that its acceleration is given 
by the formula  where distances are measured in metres and time in 
seconds. Find the distance travelled in the first ten seconds of the rocket’s motion.

a t( ) 3t t2+= 0 t 10≤ ≤,
E 22.30XAMPLE
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The information is given as an acceleration. We must find the indefinite integral of this
function to get a rule to give us the velocity.

 = 
Now, when 

The constant is zero because we are told that the rocket starts from rest. The distance travelled is 
the area under this velocity time graph. Which must be found using definite integration. As the 
graph of  lies above the t–axis over the interval 0 ≤ t ≤ 10, we have the distance D, given by

 

                     

The technique described in this example is the basis of the inertial navigator. This senses 
acceleration and integrates it to infer velocity. The instrument then integrates a second time to 
calculate distance travelled. Of course, none of these quantities are generally expressed as exact 
mathematical formulae and the calculation has to be performed using numerical approximation.

1. Find the displacement equation, , for each of the following
(a)  where  and x = 10 when t = 0.

(b)  where  and x = 2 when t = 0.

(c)  where  and x = 0 when t = 0.

2. The acceleration,  , of a body travelling in a straight line and having a
displacement  m from an origin is governed by 

 where  and x = 0 when t = 0.
(a) Find the displacement of the body at any time t.
(b) Find the displacement of the body after 5 seconds.
(c) Find the distance the body has travelled after 5 seconds.

3. A body moves along a straight line in such a way that its velocity, v , is given by
. 

After 5 seconds of motion the body is at the origin O. 
(a) Sketch the displacement-time graph for this body.
(b) How far will the body have travelled after another 5 seconds.

S
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t
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n

a t( ) 3t t2+= 0 t 10 v t( ) 3t t2+( ) td∫=⇒≤ ≤, 3t2
2-------

t3
3---- c+ +

t 0 v, 0 0∴ 0 0 c c⇒+ + 0= = = =

v t( )
v

t

D 3t2
2-------

t3
3----+   td0

10∫ t3
2----

t4
12------+

0

10
= =

103
2--------

104
12--------+=

13331
3---m=

EXERCISES 22.6

x t( )
d2x
dt2-------- 6t= dx

dt------ 3=
d2x
dt2-------- 4 t 3 tcos+sin( )–= dx

dt------ 4=

d2x
dt2-------- 2 e

1
2--- t––= dx

dt------ 4=

a t( ) ms 2–

x t( )
a t( ) 6t 2–= dx

dt------ 0=

ms 1–

v t( ) t 4+– 2+=
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4. A particle starts from rest and moves with a velocity, v , where .
Find the distance travelled between the two occasions when the particle is at rest.

5. A stone is thrown vertically upwards from ground level with a velocity of 25 . If the
acceleration of the stone is 9.8  directed downwards, find the time taken before the
stone reaches its highest point and the total distance travelled when the stone falls back to
the ground.

6. The velocity of a particle is given by  , which is measured in m/s.
(a) Find when the particle first comes to rest.
(b) Find the distance travelled by the particle from when it started to when it first

 comes to rest.
7. An object, starting from rest, moves in a straight line with an acceleration that is

 given by . Find the distance travelled during the first 9 seconds.

8. An object has its velocity governed by the equation  m/s.
(a) Given that s(0) = 0, find its displacement equation.
(b) Find its displacement after 20 seconds.
(c) Find its displacement during the 20th second.
(d) How far has it travelled in twenty seconds?

9. A particle moving in a straight line has its acceleration, a , defined by the equation
 . 

At the end of the first second of motion, the particle has a velocity measuring 4m/s.
(a) Find an expression for the velocity of the particle.
(b) Given that its velocity approaches a limiting value of 6 m/s, find k.
(c) Find the distance travelled by the particle after a further 9 seconds.

10. (a) Show that .
(b) The velocity of a vibrating bridge component is modelled by the function

. V  is the velocity of the component and t is the time in
seconds after the observations begin. 
Find the distance the component travels in the first tenth of a second.

ms 1– v t t 5–( )=

ms 1–

ms 2–

v t( ) 3 3 3tsin–=

a t( ) 12
t 1+( )2------------------ ms 2–=

v t( ) 10 π
16------t  sin=

ms 2–

a 2k
t3------= ms 2–

d
dx------ eax

a2 b2+----------------- acosbx b bxsin+( ) eax bxcos=

V e 2t– 3t( )cos= ms 1–
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22.7.1 CONTINUOUS RANDOM VARIABLES

The idea of a continuous variable was introduced in Chapter 17 when we met the idea that 
probability can be measured by finding the area under a curve – the normal curve. In this section, 
we will look at examples in which these areas are found by integration.

Often we have that the probability density function is defined over some interval, a ≤ x ≤ b, so that 
 for a ≤ x ≤ b and  elsewhere. This means that  is rewritten as

           

So that rather than using  we use 

It is generally a good idea to look at these problems graphically. In 
the present case, the graph is shown. There is a restricted domain. 
Outside the domain 0 ≤ x ≤ 2, the graph runs along the x-axis.
If the function is to be a continuous probability density function, 
then the shaded area must be 1.
So, we have    

APPLICATIONS TO PROBABILITY22.7

A continuous probability density function (or continuous probability distribution), , 
is a function satisfying the following properties:

1. The variable is continuous and can assume all real-valued numbers.
2. The function is non-negative, i.e., .
3. The total area contained between the graph and the horizontal axis is 1.

i.e., 

f x( )

f x( ) 0≥

f x( ) xd∞–
∞∫ 1=

f x( ) 0≥ f x( ) 0= f x( ) xd∞–
∞∫ 1=

f x( ) xd∞–
∞∫ f x( ) xd∞–

a∫ f x( ) xd
a
b∫ f x( ) xd

b
∞∫+ + 0 xd∞–

a∫ f x( ) xd
a
b∫ 0 xd

b
∞∫+ += =

f x( ) xd
a
b∫=

f x( ) xd∞–
∞∫ 1= f x( ) xd

a
b∫ 1=

Find the value of k such that the function:

is a probability density function.

f x( ) k 2x x2–( ) 0 x 2≤ ≤
0 otherwise

=
E 22.31XAMPLE
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f(x)

2k 2x x2–( ) xd0
2∫ 1 k 2x2

2--------
x3
3-----–

0

2
1=⇔=

k∴ 4 8
3---–   1 k⇔ 3

4---= =
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Determining probabilities

When dealing with a discrete random variable X, we have seen, in Chapter 16, that the probability 
that X lies in the interval a ≤ X ≤ b is evaluated by using . We have a 
similar expression for finding probabilities that involve a continuous random variable X:

Let the continuous random variable X have a pdf (probability density function),  defined 
over the interval a ≤ x ≤ b. Then, to find the probability that X lies in the interval , 
where  we find the area of the region enclosed by the curve , the 
x-axis and the lines  and . That is,

(a) As  is a pdf, then 

(b) i.

   =  

   = 

p a X b≤ ≤( ) p x( )
x  = a

x  = b
∑=

f x( )
x1 X x2≤ ≤

a x1 X x2 b≤ ≤ ≤ ≤ y f x( )=
x x1= x x2=

p x1 X x2≤ ≤( ) f x( ) xd
x1

x2

∫=

x1 x2
x

y

y f x( )=

The continuous random variable X has a probability density function 

defined by .

(a) Find k.
(b) Find the probability that i. 0.5 < X ≤ 1 ii. X > 1/ X > 0.5

f x( ) k 2 x–( )2 0 x 2≤ ≤
0 elsewhere

=

E 22.32XAMPLE
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f x( ) f x( ) xd0
2∫ 1 k 2 x–( )2 xd0

2∫⇒ 1= =

k 1
3--- 2 x–( )3–

0

2⇔ 1=

k 0 8
3---+⇔ 1=

k⇔ 3
8---=

p 0.5 X 1≤<( ) 3
8--- 2 x–( )2 xd0.5

1∫=
1
8--- 2 x–( )3–

0.5

1

19
64------
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ii.

Now, 

and   .

Theerfore, 

Note that the use of the graphics calculator to evaluate these integrals is very useful for this type 
of calculation.

(a) The graph is an inverted parabola. Note again that the domain
is defined as the interval [0,5] and that the function is zero
elsewhere.

(b) The required probability is a definite integral. As with other
continuous variables, the probability that Lennie will have to
wait exactly 3 minutes is zero. It only makes sense to calculate
the probability that he will have to wait between two times or
less than a given time or more than a given time.

If X is a continuous random variable then . This then means that including or 
excluding the end points of an interval makes no difference to evaluating the integral. 
That is, .

p X 1|X>0.5>( ) p X 1>{ } X 0.5>( )∩( )
p X 0.5>( )----------------------------------------------------------- P X 1>( )

p X 0.5>( )--------------------------= =

P X 1>( ) 3
8--- 2 x–( )2 xd1

2∫ 1
8--- 2 x–( )3–

1

2
0 1

8---+ 1
8---= = = =

p X 0.5>( ) 3
8--- 2 x–( )2 xd0.5

2∫ 1
8--- 2 x–( )3–

0.5

2
0 27

64------+ 27
64------= = = =

p X 1|X>0.5>( ) 1 8⁄( )
27 64⁄( )-------------------- 8

27------= =

The time (t minutes) that Lennie finds that he has to wait in the supermarket 

queue before being served is modelled by the function: 

(a) Sketch the graph of the probability density function.
(b) Find the probability that Lennie will have to wait between 1 and 3 minutes for service.

f t( ) 0.03 5 4t t2–+( ) 0 t 5≤ ≤
0 otherwise

=

E 22.33XAMPLE
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f(x)

5

p 1 T 3≤ ≤( ) 0.03 5 4t t2–+( ) td1
3∫=

0.03 5t 2t2 t3
3----–+

1

3
=

0.03 5 3 2 32×+× 33
3-----–   5 1 2 12×+× 13

3-----–  –  =

0.03 15 18 9– 5– 2– 1
3---+ +  =

0.52=

p X a=( ) 0=

p a X b≤ ≤( ) p a X b≤<( ) p a X b< <( ) p a X b<≤( )= = =
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1. Find the value of k such that  is a probability density function.

Find also p(0 ≤ X ≤ 1).

2. Prove that  is a probability density function. Find p(0 ≤ x ≤ 0.1).

3. Find the value of k such that  is a probability density function.

Find also p(2 ≤ x ≤ 3).

4. Prove that  is a probability density function. 

Find also p(0.5 ≤ x ≤ 0.7) correct to 3 significant figures.

5. The time (t minutes) between the arrivals of successive buses at a city bus stop is modelled

by the function 

i. Prove that f represents a probability density function.
ii. Find the probability that, if I have just missed a bus, I will have to wait more than

ten minutes for the next one.

6. The function  represents the distribution of the amount by

which a machine tends to overfill 100 kilogram bags of cement, where x measures the
number of kilograms that a bag has been overfilled.
i. Find the value of k such that f represents a probability density function.
ii. Find the probability that a randomly chosen bag contains more than 101kg.

7.  The time (t minutes) spent by travellers waiting for an urban transit train at a particular

station is modelled by the function .

EXERCISES 22.7.1

f x( ) kx2 0 x 3≤ ≤
0 otherwise

=

f x( ) 1 0 x 1≤ ≤
0 otherwise

=

f x( )
x
k-- 0 x 4≤ ≤
0 otherwise




=

f x( )
xsin

2---------- 0 x π≤ ≤
0 otherwise




=

f t( ) e t 2/–
2---------- t 0>
0 otherwise




=

f x( )
k

x 1+------------ 0 x 2≤ ≤
0 otherwise




=

f x( ) 2e 2t– t 0>
0 otherwise

=
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i. Prove that f represents a probability density function.
i. Find the probability that a randomly chosen passenger will have to wait more than

1 minute.
iii. Find the percentage of passengers that will have to wait more than 2 minutes.
iv. It is estimated that passengers who have to wait more than 4 minutes at the station

will complain to the staff. If the station handles 10000 passengers per day, how
many complaints could the staff expect to receive per day?

8. The errors in timing races at the athletics meeting are represented by the function

 where t is the error in making the measurement with

positive t sec representing measured times that were longer than those actually taken and
negative values representing measured times that were less than the time actually taken.
i. Find the value of k such that f represents a probability density function.
ii. Find the probability that the error in time measurement of a given race was between

0.1 and 0.5 seconds.
iii. Find the proportion of the races in which the absolute error in the measurement of

the time was less than one tenth of a second.
iv. The 100 metres sprint was timed at 13.7 seconds. What is the probability that the

time actually taken for the race was more than 13.6 seconds?

9. Prove that the function  represents a continuous distribution

for all values of k where k > 0.

10. Find the exact value of a such that the function  represents a

continuous distribution.

22.7.2 MODE, MEAN, MEDIAN AND VARIANCE

The main measures of central tendency and spread can be calculated for continuous random 
variables in the same way as for discrete random variables - Chapter 16. We provide a summary 
of these definitions, noting the analogies between the expressions used for  continuous random 
variables and discrete counterparts.

Mode

The mode, , of a distribution is the value of the variable 
where the probability density is largest. Graphically, the 
mode is that value of x which provides the maximum value of 
the probability density function.
The mode may be found using calculus if the maximum point 
is not obvious from the graph. That is, solving the equation

.

f t( ) k 1 t2–( ) 1 t 1< <–
0 otherwise

=

f x( ) ke kx– x 0>
0 otherwise

=

f x( ) x3 0 x a< <
0 otherwise

=

x

y

md

y f x( )=

md

f ' md( ) 0=
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Mean (Expected value)

The mean, , is defined in a way similar to that used in statistics where we calculate 
, the sum of the product of the data values and their frequencies. For a probability 

function (equivalent to frequency), this becomes . In practice, the 
terminals of the integral will be the end-points of the domain of the function.

Median

The median, m, is the value of the variable such that half the 
probability is below that value and half above. 
As probability is interpreted as area, this means that we are 
looking for a value of the variable that has half the area to the 
left of the value. 

That is, we want the value(s) m such that 

Variance

The variance, , is calculated using a formula similar to the statistical formula 
. For a probability function, the variance is given by:

. 
The standard deviation, , of the distribution is the square root of the variance:

The mode is that value of the random variable that produces the maximum point on the
probability function. In this case, we will need to use calculus to find this:

. Then, 

A graph will establish which of these values provides that maximum value of :

µ E X( )=
x f×∑

E X( ) x f x( )× xd∞–
∞∫=

x

y

m

Area = 0.5 y f x( )=

f x( ) xd∞–
m∫ 1

2---=

Var X( ) σ2=
σ2 E X2( ) E X( )[ ]2–=

σ2 x2 f x( )× x µ2–d∞–
∞∫=

σ
σ σ2 x2 f x( )× x µ2–d∞–

∞∫= =

Find the mode, mean, median, variance and standard deviation of the 

probability function f x( ) 6x2 3x3–
4----------------------- 0 x 2≤ ≤
0 otherwise
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f x( ) 6x2 3x3–
4----------------------- f ' x( ) 3x 9

4---x2–=⇒= f ' x( ) 0 3x 9
4---x2– 0=⇔=

3∴ x 1 3
4---x–   0=

x⇔ 0 4
3---,=
f x( )
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From the graph, it can be seen that the maximum value of the function 
occurs when . We can conclude that the mode is .

The mean is calculated using the formula: 

    

        = 1.2
This result is a bit less than the mode. Non-symmetric distributions such as this do not necessarily 
have the same values for mode, mean and median.

Let m be the median of , then, the median satisfies the equation . All that is 
now required, is to solve for m:

 or  [multiplying b.s. by 4]

Now, .

Therefore, we need to solve .

So, 

However, this cannot be solved directly and so we make use of the 
graphics calculator. Using the solve( option, we have:
Therefore, the median is m = 1.2285 (to 4 d.p).
Finally, to calculate the variance (and the standard deviation) of 
the function, we must evaluate:

  

Therefore, the variance, Var(X) = 0.16.
The standard deviation is 

20

x 4
3---= md

4
3---=

x f x( )× xd∞–
∞∫

E∴ X( ) x 6x2 3x3–
4-----------------------×   xd0

2∫ 3
2---x3 3

4---x4–  
0
2∫= =

3
8---x4 3

20------x5–
0

2
=

3
8--- 24× 3

20------ 25×– 0–=

f x( ) f x( ) xd∞–
m∫ 1

2---=

f x( ) xd∞–
m∫ 1

2---
6x2 3x3–

4----------------------- xd0
m∫⇔ 1

2---= = 6x2 3x3– xd0
m∫ 2=

6x2 3x3– xd0
m∫ 2x3 3

4---x4–
0

m
2m3 3

4---m4–= =

2m3 3
4---m4– 2=

2m3 3
4---m4– 2 3m4 8m3– 8+⇔ 0= =

σ2 x2 f x( )× x µ2–d∞–
∞∫=

σ2 x2 6x2 3x3–
4-----------------------× x µ2–d0

2∫ 6x4 3x5–
4----------------------- x 1.22–d0

2∫= =
3x5
10-------- x6

8-----–
0

2
1.22–=

1.6 1.22–=

σ 0.16 0.4= =
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As  is a pdf, then 

        

Now, 

      

      

Next, the median, , is found by solving .

So, we have 

= 

Then, as .

That is, the median, m = 

1. For the probability function: , find:

i. The mean and median.
ii. The variance and standard deviation.

A continuous random variable X has a probabilty density function defined 

by , where a and k are positive real constants. Find, in terms of k, 

the expected value and the median of X.

f x( ) axk  for x 0 2,[ ]∈
0 elsewhere

=

E 22.35XAMPLE

S
o
l
u
t
i
o
n

f x( ) axk xd0
2∫ 1 a 1

k 1+------------xk 1+
0

2⇔ 1= =

a 2k 1+
k 1+------------ 0–∴ 1=

a k 1+
2k 1+------------=

E X( ) xf x( ) xd0
2∫ axk 1+ xd0

2∫ a 1
k 2+------------xk 2+

0

2
= = =

a 2k 2+
k 2+------------ 0–=

k 1+
2k 1+------------ 2k 2+

k 2+------------×=

2 k 1+
k 2+------------  =

m f x( ) xd0
m∫ 1

2---=

axk xd0
m∫ a 1

k 1+------------xk 1+
0

m
a 1

k 1+------------mk 1+ 0– k 1+
2k 1+------------ 1

k 1+------------mk 1+×= = =

m
2----  

k 1+

m
2----  

k 1+ 1
2---

m
2----⇒ 1

2---k 1+  m∴ 2 1
2---k 1+× 2 2

1
k 1+------------–× 2

k
k 1+------------= = = = =

2
k

k 1+------------

EXERCISES 22.7.2

f x( ) 1 0 x 1≤ ≤
0 otherwise

=
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2. For the probability function: , find:

i. The mode, mean and median.
ii. The variance and standard deviation.

3. The weights, w grams, of a species of mollusc are distributed according to the function:

.

i. Calculate the mode, mean and median weights.
ii. Find the standard deviation of the weights.
iii. Assuming that approximately 95% of the weights will lie within 2 standard

deviations of the mean, find this 95% confidence interval for the weights of this
species of mollusc.

4. The time, t sec, taken to test an electronic circuit is a variable distributed according to the

function .

i. Calculate the mode, mean and median times.
ii. Find the standard deviation of the times.
iii. If one of the measures of central tendency was to be used to estimate the amount

of time that it would take to test ten thousand of these circuits, which measure
would give the best estimate.

5. The time intervals, t seconds, between the arrivals of customers at a large supermarket is a

continuous random variable modelled by the function 

i. Find the modal time between arrivals.
ii. Find the median time between customer arrivals.
iii. Find the mean time between arrivals. Use an approximate method of integration.
iv. Find the standard deviation of the times between arrivals, using an approximate

method of integration.
v. Using an approximate 95% confidence interval, what is the longest time between

arrivals of customers that is likely to occur?
6. Find the mode, mean and median of the probability distribution

f x( ) 3x2 0 x 1≤ ≤
0 otherwise

=

f x( ) 3 24– 10x x2–+( )
4--------------------------------------------- 4 x 6≤ ≤
0 otherwise




=

f t( )
t
2--- 0 t 2≤ ≤
0 otherwise




=

f t( ) 0.2e 0.2t– t 0≥
0 otherwise

=

f x( )
1 xcos–( )

2π------------------------- 0 x 2π≤ ≤
0 otherwise




=
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7. Find the mean and variance of the lengths (cm) of the tails of a species of bird if these
lengths are distributed according to the probability function:

8. The life span of a species of reptiles has been found to have a probability distribution

given by . 

(a) Find the 25th percentile of the life distribution for this species of reptile.
(b) Find an expression for , for t ≥ 0.  is known as the

cummulative distribution of the random variable T.
(c) Sketch the graph of .

9. The random variable X has a probability density function given by

where a and b are positive constants.
(a) Show that i. b ≥ 2.

ii. .

(b) If , find a and b.
(c) Find the mode of X.

10. The time, t days, until recovery after a certain medical procedure is a continuous random

variable having a probability density function .

(a) Find k.
(b) Find the probability that it will take a patient at least 5 days to recover.
(c) What is the median recovery time for patients undergoing this procedure?
(d) Find the expected recovery time, giving your answer to two decimal places.

11. (a) Differentiate the function .
(b) The random variable X has a probability density function

where a is a positive real constant.
i. Find the value of a.
ii. Find the median and mode of X.
iii. Find the exact value of the mean of X.

f x( ) 6 66– 17x x2–+( )
125--------------------------------------------- 6 x 11≤ ≤
0 otherwise




=

f t( )
1
80------e t 80/– for t 0≥

0 elsewhere



=

F t( ) p T t≤( )= F t( )

F t( )

f x( ) ax b x–( )  for x 0 2,[ ]∈
0 elsewhere

=

a 3
6b 8–---------------=

E X( ) 8
7---=

f t( )
k
t 2–--------------  for 3 t 7≤ ≤
0  elsewhere




=

h x( ) x 1 x–( )3 2/=

f x( ) a 1 x–  for x 0 1,[ ]∈
0  elsewhere

=
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A solid of revolution is formed by revolving a plane region about a line – called the axis of 
revolution. In this section we will only be using the x-axis or the y-axis.
For example, in the diagram alongside, if 
we revolve the triangular plane region about 
the vertical axis as shown, we obtain a cone.

It is important to realise that depending on the axis of revolution, we can obtain very different 
shapes. For example, if a region bounded by the curve  is rotated about the x- and y– 
axes, two distinct solid shapes are formed:

When the plane region (enclosed by the curve and the x-axis) is rotated about the x–axis, the solid 
object produced is rather like the bell of a trumpet (with a very narrow mouth piece!) or a Malay 
hat on its side. However, when the plane region (enclosed by the curve and the y-axis) is rotated 
about the y-axis, then the solid produced is like a bowl.
Using the same approach as that used when finding the 
area of a region enclosed by a curve, the x-axis and the 
lines x = a and x = b we have:

Then, the volume, V , of such a solid can be cut up 
into a large number of slices (i.e., discs) each having a 
width  and radius . The volume produced is 
then the sum of the volumes of these discs, i.e., 

So, as  and so,

 

VOLUMES (SOLID OF REVOLUTION)22.8

Plane region

Axis of revolution

y x2= x 0≥,

x

y

x

yy y

x x
Rotation about 
the x-axis

Rotation about 
the y-axis

a            b x

y y f x( )=

δV πr2 δx×≈
But, r = f(x)
δV π f x( )[ ]2δx≈∴

Width = δx

radius = r = f(x) Typical disc:

units3

δx f xi( )

V π f xi( )[ ]2δx  where δx,
i 0=

i  = n 1–
∑≈ b a–

n------------=

n ∞ δx 0→,→

V π f xi( )[ ]2δx
i 0=

i  = n 1–
∑δx 0→lim π f x( )[ ]2 xd

a

b

∫= =
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Therefore, we have:

The curve has a restricted domain and is rotated about 
the x–axis, so, the solid formed has a volume given by 

          

Therefore, the volume generated is 8π .

If the curve is rotated about the y-axis, the solid formed looks like this:
The volume can now be 
found using the second 
formula. 
It is important to realise that 
the integral limits are in 
terms of the y variable and 
so are 0 and 2. 
Also, x must be made the subject of the rule for the curve:

When x = 1, y = 0 and when x = 5, y = 2, entering these values into the formula gives:

The volume, V , of a solid of revolution is given by

  

 

units3

V π f x( )[ ]2 xd
x a=

x b=

∫=  or V π y2 xd
a

b

∫=

V π f 1– y( )[ ]2 yd
y e=

y f=

∫=  or V π x2 yd
e

f

∫=

when a plane region enclosed by the curve,
 and the lines x = a and x = b is 

revolved about the x–axis.
y f x( )=

when a plane region enclosed by the curve,
 and the lines y = e and y = f is 

revolved about the y–axis.
y f x( )=

The curve  is rotated about the x-axis to form a solid 
of revolution. Sketch this solid and find its volume.
If the same curve is rotated about the y-axis, a different solid is formed. Sketch this second solid 
and find its volume.

y x 1– 1 x 5≤ ≤,=E 22.36XAMPLE

S
o
l
u
t
i
o
n x

y

1

2

5

V π x 1–( )2 xd1
5∫ π x 1–( ) xd1

5∫= =

π x2
2----- x–

1

5
=

π 52
2----- 5– 12

2----- 1–  –  =
8π=

units3

x

y

1 5

2

y x 1– y2⇒ x 1 x⇒– y2 1+= = =
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 = 

   

i.e., required volume is π 

A circular cone of height h can be generated by revolving the region enclosed by an oblique
straight line about the y–axis from y = 0 to y = h:
Our first task is to find the equation of the straight line.
From the diagram, the straight line has equation

y = mx 
To find m we note that  where  is the angle 
that the line makes with the positive x–axis, therefore we 
have that  and so, .
Therefore, the equation of the straight line is

Next, as we are revolving the plane about the y–axis, we

use the expression  

with a = 0, b = h and from  we have,  or .

That is, 

i.e., the volume is  .

V π y2 1+( )2 yd0
2∫ π y4 2y2 1+ +( ) yd0

2∫= = π y5
5-----

2y3
3-------- y+ +

0

2

π 25
5-----

2 23( )
3------------- 2+ +  =

1311
15------π=

1311
15------ units3

Find the volume of a circular cone whose semi-vertical angle is  and has a 
height h cm.

αE 22.37XAMPLE

S
o
l
u
t
i
o
n h cm

y

x0

α
θ

m θtan= θ

θ π
2--- α–= m π

2--- θ–  tan αcot= =

y αcot( )x=

V π x2 yd
a

b

∫=

y αcot( )x= x y
αcot------------= x αtan( )y=

V π αtan( )y[ ]2 yd
0

h

∫ πtan2α y2 yd
0

h

∫= =

πtan2α 1
3---y3

0

h
=

πtan2α 1
3---h3 0–=

1
3--- πtan2α( )h3=

1
3--- πtan2α( )h3 cm3
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We start by drawing a diagram of this situation:
It is a bead.

Next we determine the points of intersection.
Setting  we have 

The solid formed is hollow inside, i.e., from –3 ≤ y ≤ 3.
Next, we find the difference between the two volumes 
generated (a little bit like finding the area between two 
curves)

     

      [by symmetry] 

Therefore,      

     

i.e., required volume is  .

Finding volumes of revolution is an application of definite integration. Your only restriction will 
be the limitations on your ability to find integrals. 
In the following exercise, you will need to draw on all the techniques you have learned in the 
preceding sections.

Find the volume of the solid formed by revolving the region enclosed by the 
curve with equation  and the line g(x) = 3 about the x–axis.f x( ) 25 x2–=

E 22.38XAMPLE

S
o
l
u
t
i
o
n

x

y

(4,3)

(4,–3)

f x( ) 25 x2–=
(–4,3)f x( ) g x( )=

25 x2– 3=
25 x2–∴ 9=

x2⇔ 16=
x∴ 4±=

V V f x( ) V g x( )– π f x( )[ ]2 x π g x( )[ ]2 xd
4–

4

∫–d
4–

4

∫= =

π f x( )[ ]2 g x( )[ ]2–( ) xd
4–

4

∫=

2π f x( )[ ]2 g x( )[ ]2–( ) xd
0

4

∫=

V 2π 25 x2–[ ]2 3[ ]2–( ) xd
0

4

∫=

2π 16 x2–( ) xd
0

4

∫=

2π 16x 1
3---x3–

0

4
=

256
3---------π=

256
3---------π units3
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* Unless stated otherwise, all answers should be given as an exact value.
1. The part of the line  between x = 0 and x = 3 is rotated about the x-axis. Find the

volume of this solid of revolution. 

2. A curve is defined by . If this curve is rotated about the x-axis, find the
volume of the solid of revolution formed.

3. The curve  between the x values  and 1 is rotated about the y-axis. Find the
volume of the solid of revolution formed in this way.

4. Find the volume of the solid of revolution formed by rotating the part of the curve 
 between x = 1 and x = 5 about the x-axis. 

5. A solid is formed by rotating the curve  about the x-axis. Find the
volume of this solid.

6. The part of the curve  between the x values 2 and 3 is rotated about the x-axis.
Find the volume of this solid.

7. The part of the line  between x = 5 and x = 7 is rotated about the  y-axis. Find
the volume of the solid of revolution formed in this way.

8. The part of the curve  between the x values 0 and 2 is rotated about the x-axis.
Find the volume of the solid formed in this way.

9. Find the equation of the straight line that passes through the origin and through the point
(h,r). Hence use calculus to prove that the volume of a right circular cone with base radius
r and height h is given by .

10. Find the equation of a circle of radius r. Use calculus to prove that the volume of a sphere
is given by the formula .

11. The diagram shows a shape known as a frustum. Use
calculus to prove that its volume is given by the formula 

where  and  are the areas of the circular top and
base respectively

EXERCISES 22.8

y x 1+=

y 1
x-------= x 1 5,[ ]∈,

y 1
x---= 1

5---

y ex=

y xsin= x 0 2π,[ ]∈,

y 1
1 x–-----------=

y x 1–
2-----------=

y x
1 x+------------=

V 1
3---πr2h=

V 4
3---πr3=

h
B1

B2
V h

3--- B1 B2 B1B2+ +( )=
B1 B2
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12. The part of the curve between x = 0 and x = 5 is rotated about the x-axis.
Find the volume of this solid of revolution.

13. The part of the curve  between x = 1 and x = 2 is rotated about the 
x-axis. Find the volume of this solid of revolution.

14. (a) Find the volume generated by the region between by the y–axis and that part of the
parabola  from x = 1 to x = 3 when it is rotated about the y–axis.

(b) Find the volume generated by the region between by the x–axis and that part of the
parabola  from x = 1 to x = 3 when it is rotated about the x–axis.

15. Find the volume of the solid of revolution that is formed by rotating the region bounded by
the curves  and  about
(a) the y–axis (b) the x–axis.

16. Find the volume of the solid of revolution that is formed when the region bounded by the
curve with equation  and the line y = 1 is rotated about 
(a) the y–axis (b) the x–axis.

17. Find the volume of the solid generated by rotating the region bounded by the curves 
 and  about the x–axis.

18. The volume of the solid formed when the region bounded by the curve , the 
x–axis and the line  is rotated about the x–axis is  . Find k.

19. Find the volume of the solid of revolution formed by rotating the region bounded by the
axes and the curve , a > 0 about the x-axis.

20. If the curve of the function  is rotated about the –axis, a
string of sausages is made. Find k such that the volume of each sausage is π .

21. (a) On the same set of axes, sketch the curves  and  where .
(b) Find the volume of the solid of revolution formed when the region enclosed by the

curves in (a) is    i.   rotated about the y–axis ii.      rotated about the x–axis.

22. (a) On the same set of axes sketch the two sets of points 
and . The intersection of these two sets is
rotated about the x-axis to generate a solid. Find a if the volume of this solid is 
π . Give your answer to three decimal places.

(b) A donut is formed by rotating the curve  about
the y–axis. Find a if the volume of the donut is 100π .

f x( ) x
10------sin=

f x( ) x2 x– 2+=

y x2=

y x2=

y x= y x3=

y 4 x2–=

y2 x3= y2 2 x–=

y ex k–=
x 3ln= π 3ln units3

y 3a x a x 0 x 2π≤ ≤,cos+sin=

f θ( ) kθ k 0 θ 0>,>,sin= θ
units3

y ax2= y 1 x2
a-----–= a 0>

x y,( ) : x 2–( )2 y2 4≤+{ }
x y,( ) : x a–( )2 y2 4 a ]–2,6[∈,≤+{ }

units3

x y,( ) : x a–( )2 y2+ 1 a 1>,={ }
units3
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Extension Problems

23. Find the volume of the solid of revolution generated when the shaded region shown below
is revolved about the line y = 2.

24. Find the volume of the solid of revolution generated by revolving the region enclosed by
the curve  and y = 0 about 
(a) the line y = –3.
(b) the line x = 3.
(c) the line y = 7.
In each case, draw the shape of the solid of revolution.

25. Using an argument similar to that found in Section 22.5 show why the arc length, L units,
 of a curve from x = a to x = b is given by .

y

x

y = 2

y x2=

1

y 4 x2–=

L 1 f ' x( )[ ]2+ xd
a
b∫=

y

x
x = a             x = b

L
y f x( )=
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8

23.1.1 INDEFINITE INTEGRALS

In Chapter 22 we saw how to obtain the antiderivative, , of a function  based on the 
results that . That is, 

For example, if we know that , then, .

Similarly, if , then, .

Basically, we are using recognition to obtain antiderivatives. Such a skill is crucial to become 
successful at finding more complex antiderivatives.

One particularly important result is based on the chain rule, from which we obtained the 
generalised ‘power rule’ for differentiation; .

From this result we have  

so that

This leads to the result

The use of this result is dependent on an ability to recognise the expressions  and its 
derivative  within the integrand. We consider a number of examples.

(a) We observe that  can be written as  with .
Therefore, by recognition we have 

INTEGRATION BY SUBSTITUTION23.1

C
H

A
P

T
E
R

 2
3

F x( ) c+ f x( )
d
dx------ F x( )( ) f x( )=

 If   ddx------ F x( )( ) f x( )  then  f x( ) xd∫ F x( ) c+= =

d
dx------ 5xsin( ) 5 5xcos= 5 5xcos xd∫ 5x c+sin=

d
dx------ x2 1+( )ln( ) 2x

x2 1+--------------= 2x
x2 1+-------------- xd∫ x2 1+( ) c+ln=

d
dx------ f x( )[ ]n( ) n f ' x( ) f x( )[ ]n 1–=

d
dx------ f x( )[ ]n( ) xd∫ n f ' x( ) f x( )[ ]n 1– xd∫=

n f ' x( ) f x( )[ ]n 1– xd∫ f x( )[ ]n c+=

g' x( ) g x( )[ ]n xd∫ 1
n 1+------------ g x( )[ ]n 1+ c+=

g x( )
g' x( )

Find the indefinite integral of the following
(a) (b) (c)2x x2 9+( )5 3x2 1+( ) x3 x+( )2 2– x 1 x2–

E 23.1XAMPLE

S
o
l
u
t
i
o
n

2x x2 9+( )5 g' x( ) g x( )[ ]5 g x( ) x2 9+=
2x x2 9+( )5 xd∫ 1

5 1+------------ x
2 9+( )5 1+ c+=

1
6--- x

2 9+( )6 c+=
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(b) We observe that  can be written as  with
 .

Therefore, by recognition we have 

  

(c) We first express  in the power form, .
We observe that  can be written as  with .
Therefore, by recognition we have 

(a) First we rewrite  as .
We observe that  can be written as  with .
Therefore, by recognition we have 

   

(b) First we rewrite  as .

Then, we observe that  can be written as  with
.

By recognition we have 

(c) First we rewrite  as .

3x2 1+( ) x3 x+( )2 g' x( ) g x( )[ ]2
g x( ) x3 x+=

3x2 1+( ) x3 x+( )2 xd∫ 1
2 1+------------ x

3 x+( )2 1+ c+=
1
3--- x

3 x+( )3 c+=

2– x 1 x2– 2– x 1 x2–( )1 2/

2– x 1 x2–( )1 2/ g' x( ) g x( )[ ]1 2/ g x( ) 1 x2–=
2– x 1 x2– xd∫ 2– x 1 x2–( )1 2/ xd∫=

1
1
2--- 1+
------------ 1 x2–( )

1
2--- 1+=

2
3--- 1 x

2–( )3 2/ c+=
2
3--- 1 x2–( )3 c+=

Find the indefinite integral of the following
(a) (b) (c)3x2

x3 4+( )4--------------------- 2 4x3–
2x x4–

--------------------- 1
x 1+------------ x 1+( )ln

E 23.2XAMPLE

S
o
l
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t
i
o
n

3x2
x3 4+( )4--------------------- 3x2 x3 4+( ) 4–
3x2 x3 4+( ) 4– g' x( ) g x( )[ ] 4– g x( ) x3 4+=

3x2 x3 4+( ) 4– xd∫ 1
4– 1+---------------- x3 4+( ) 4– 1+ c+=
1
3--- x

3 4+( ) 3–– c+=
1

3 x3 4+( )3-------------------------– c+=
2 4x3–
2x x4–

--------------------- 2 4x3–( ) 2x x4–( ) 1 2/–

2 4x3–( ) 2x x4–( ) 1 2/– g' x( ) g x( )[ ] 1 2/–

g x( ) 2x x4–=

2 4x3–( ) 2x x4–( ) 1 2/– xd∫ 1
1
2---– 1+

----------------- 2x x4–( )
1
2---– 1+ c+=

2 2x x4– c+=
1
x 1+------------ x 1+( )ln 1

x 1+------------ x 1+( )ln[ ]1 2/
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We observe that  can be written as  with .

By recognition we have 

       

What if the expression is not exactly in the form , but only differs by some 
multiple. That is, what happens when we have  or  rather than 

?

As the expressions only differ by a multiple, we manipulate them so that they transform into 
. For example:

 = 
[i.e., multiply and divide by 2.] 

 = 
[i.e., ‘take’ 5 outside the integral sign, then multiply and divide by 2.] 

        
These manipulation skills are essential for successfully determining indefinite integrals by 
recognition.

We continue with some more examples.

(a) We observe that  =  can be written as  with
.

Then, by recognition we have, 

(b) Now,  =  which is nearly in the form . So
our first task is to ‘convert’ it into the required form.

With  we have , meaning that we only differ by a multiple.

1
x 1+------------ x 1+( )ln[ ]1 2/ g' x( ) g x( )[ ]1 2/ g x( ) x 1+( )ln=

1
x 1+------------ x 1+( )ln[ ]1 2/ xd∫ 1

1
2--- 1+
------------ x 1+( )ln[ ]

1
2--- 1+ c+=

2
3--- x 1+( )ln[ ]3 2/ c+=
2
3--- x 1+( )ln[ ]3 c+=

g' x( ) g x( )[ ]n xd∫
x x2 3+( )4 xd∫ 5x x2 3+( )4 xd∫

2x x2 3+( )4 xd∫

g' x( ) g x( )[ ]n xd∫
x x2 3+( )4 xd∫ 1

2--- 2x x2 3+( )4 xd∫ 1
2---

1
5--- x

2 3+( )5 c+× 1
10------ x

2 3+( )5 c+= =

5x x2 3+( )4 xd∫ 5 x x2 3+( )4 xd∫ 5
2--- 2x x2 3+( )4 xd∫ 5

2---
1
5--- x

2 3+( )5 c+×= =

1
2--- x

2 3+( )5 c+=

Find the indefinite integral of the following
(a) (b) (c)3 3xsin43xcos 3sec24xtan24x 1

2---x 1 1
2---xcos+sin

E 23.3XAMPLE

S
o
l
u
t
i
o
n

3 3xsin43xcos 3 3x sin3x( )4cos g' x( ) g x( )[ ]4
g x( ) sin3x=

3 3x sin3x( )4cos xd∫ 1
4 1+------------ sin3x( )4 1+ c+=
1
5--- sin3x( )5 c+=

3sec24xtan24x 3sec24x tan4x( )2 g' x( ) g x( )[ ]2

g x( ) 4xtan= g' x( ) 4sec24x=
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[i.e., ‘take’ 3 outside the integral sign, then multiply and divide by 4.]

    

(c) We observe that  =  which is nearly in the

form . So our first task is to ‘convert’ it into the required form.
With  we have that , meaning that we only differ by a 
multiple.

 [multiply & divide by –2] 

     

There is another group of expressions that belong to the ‘recognition’ group of integrands. These 
are based on the results of Chapter 19 when we obtained the generalised derivatives.

Derivatives Antiderivatives

3sec24x tan4x( )2 xd∫ 3 sec24x tan4x( )2 xd∫ 3
4--- 4sec24x tan4x( )2 xd∫= =

3
4---

1
3--- tan4x( )3 c+×=

1
4---tan

34x c+=

1
2---x 1 1

2---xcos+sin 1
2---x 1

1
2---xcos+   1 2/

sin

g' x( ) g x( )[ ]1 2/

g x( ) 1 1
2---xcos+= g' x( ) 1

2---
1
2---xsin–=

1
2---x 1

1
2---xcos+   1 2/

sin xd∫ 2 1
2---

1
2---x 1

1
2---xcos+   1 2/

sin–   xd∫–=

2 2
3--- 1 1

2---xcos+   3 2/
c+⋅–=

4
3--- 1 1

2---xcos+   3– c+=

d
dx------ e

f x( )[ ] f ' x( )e f x( )= f ' x( )e f x( ) xd∫ e f x( ) c+=

d
dx------ f x( )ln[ ] f ' x( )

f x( )------------= f ' x( )
f x( )------------ xd∫ f x( )ln c+=

d
dx------ f x( )sin[ ] f ' x( ) f x( )cos= f ' x( ) f x( )cos xd∫ f x( )sin c+=

d
dx------ fcos x( )[ ] f– ' x( ) f x( )( )sin= f ' x( ) f x( )( )sin xd∫ fcos x( )– c+=

d
dx------ ftan x( )[ ] f ' x( )sec2 f x( )( )= f ' x( )sec2 f x( )( ) xd∫ ftan x( ) c+=

Find the indefinite integral of the following
(a) (b) (c)3 2xe 2xsincos 2x2 x3( )sin 4x

5 3x2+------------------
E 23.4XAMPLE
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(a)

  

(b)

       

(c)

         

Finding the definite integral of expressions such as those we have just encountered is carried out 
in the same way as in Chapter 22.

(a)  [using ] 

  

(b)  [Of the form ] 

         

i.e., 

(c)  [Of the form ] 

S
o
l
u
t
i
o
n

3 2xe 2xsincos xd∫ 3 2xe 2xsincos xd∫ 3
2--- 2 2xe 2xsincos xd∫= =
3
2---e

2xsin c+=

2x2 x3( )sin xd∫ 2 x2 x3( )sin xd∫ 2
3---–   3– x2 x3( )sin xd∫= =

2
3---– x3( ) c+cos=

4x
5 3x2+------------------ xd∫ 4 x

5 3x2+------------------ xd∫ 4
6---

6x
5 3x2+------------------ xd∫= =

2
3--- 5 3x2+( ) c+ln=

Evaluate the following

(a) (b) (c)2x 1 x2+ xd
0
1∫ xcos

1 2 xsin+----------------------- xd0

π
2---∫ 1

x--- xln( )3 xd
e
4e∫

E 23.5XAMPLE

S
o
l
u
t
i
o
n

2x 1 x2+ xd
0
1∫ 2x 1 x2+( )1 2/ xd

0
1∫ 1

1
2--- 1+
------------ 1 x2+( )

1
2--- 1+

0

1
= = g' x( ) g x( )[ ]n xd∫

2
3--- 1 x

2+( )3 2/
0

1
=

2
3--- 1 x2+( )3  

0

1
=

2
3--- 23 13–[ ]=
2
3--- 2 2 1–( )=

xcos
1 2 xsin+----------------------- xd0

π
2---∫ 1

2---
2 xcos

1 2 xsin+----------------------- xd0

π
2---∫ 1

2--- 1 2 xsin+( )ln
0

π
2---= = f ' x( )

f x( )------------ xd∫
1
2--- 1 2 π

2---sin+   1 2 0sin+( )ln–ln=

xcos
1 2 xsin+----------------------- xd0

π
2---∫ 1

2--- 3 1ln–ln[ ] 1
2--- 3ln= =

1
x--- xln( )3 xd

e
4e∫ 1

4--- xln( )4
e

4e 1
4--- 4eln( )4 eln( )4–[ ]= = g' x( ) g x( )[ ]n xd∫
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We conclude this section by considering another set of indefinite integrals that rely on recognition 
– the inverse circular trigonometric functions. Based on the results of their derivatives we have:

(a) .

(b)

           = 

           = 

(c)

    

For this set of exercises, use the method of recognition to determine the integrals.

1. Find the following indefinite integrals.
(a) (b) (c)

Derivatives Antiderivatives

d
dx------ Sin 1– x

a---  
1
a2 x2–

--------------------= 1
a2 x2–

-------------------- xd∫ Sin 1– x
a---   c+=

d
dx------ Cos 1– x

a---  
1
a2 x2–

--------------------–= 1–
a2 x2–

-------------------- xd∫ Cos 1– x
a---   c+=

d
dx------ Tan 1– x

a---  
a
a2 x2+-----------------= a

a2 x2+----------------- xd∫ Tan 1– x
a---   c+=

Determine
(a) (b) (c)3

16 x2–
--------------------- xd∫ 2

3 x2+-------------- xd1
2∫ 5

9 4x2–
---------------------– xd∫

E 23.6XAMPLE

S
o
l
u
t
i
o
n

3
16 x2–

--------------------- xd∫ 3 1
16 x2–

--------------------- xd∫ 3 1
42 x2–

-------------------- xd∫ 3Sin 1– x
4---   c+= = =

2
3 x2+-------------- xd1

2∫ 2 1
3( )2 x2+-------------------------- xd

1
2∫ 2

3-------
3

3( )2 x2+-------------------------- xd
1
2∫ 2

3------- Tan 1– x
3------- 
 

1

2= = =

2
3------- Tan 1– 2

3------- 
  Tan 1– 1

3------- 
 –

2
3------- Tan 1– 2

3------- 
  π

6---–

5
9 4x2–

---------------------– xd∫ 5 1–
9 4x2–

--------------------- xd∫ 5 1–
4 9
4--- x

2–  
--------------------------- xd∫ 5

2---
1–

3
2---  

2
x2–

-------------------------------- xd∫= = =

5
2---Cos

1– x
3 2⁄( )--------------   c+=

5
2---Cos

1– 2x
3------   c+=

EXERCISES 23.1.1

10x 5x2 2+ xd∫ x2
x3 4+( )2--------------------- xd∫ 6x– 1 2x2–( )3 xd∫
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

(v) (w) (x)

2. Find the antiderivative of the following
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

3. Find the antiderivative of the following
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

4. Find the antiderivative of the following
(a) (b) (c)

(d) (e) (f)

3 x 9 2 x3+( )4 xd∫ 6 x x2 4+3 xd⋅∫ 2x 3+
x2 3x 1+ +( )3---------------------------------- xd∫

4x
x2 2+

------------------ xd∫ x3
1 x4–( )4--------------------- xd∫ 3e3x 1 e3x+ xd∫

x 1+
x2 2x 1–+( )2---------------------------------- xd∫ x2 1+

x3 3x 1+ +
------------------------------- xd∫ x 3 4x2+ xd∫

ex
ex 2+

------------------ xd∫ e 2x–
1 e 2x––( )3------------------------- xd∫ 10x2 x3 1+( )4 xd∫

x3 2+( ) x4 8x 3–+( )5 xd∫ 2x3 x4 5+( )3 xd∫ 2xcos
1 2xsin–--------------------------- xd∫

x 4 3 xsin+cos xd∫ sec24x
1 3 4xtan+( )2---------------------------------- xd∫ 1 xsin–

x xcos+3
------------------------- xd∫

1
2---xcos

31
2---xsin xd∫ x x xsin+cos

1 x xsin+-------------------------------- xd∫ x 1+( )1 2/

x--------------------------- xd∫

2xex2 1+ 3
x-------e
x sec23xe 3xtan

2ax b+( )e ax2 bx+( )– 3 1
2---xe

1
2---xcossin 4

x2-----e
4 x+ 1–

ex 2ex( )sin e2x
1 e2x–( )2----------------------- e x–

1 e x–+----------------
5
e x– 2+---------------- e ax– 4 e ax–+ e2x

1 e2x+---------------- 1 e2x+( )ln

2x x2 1+( )sin 5
x------- x( )sin 2

x2----- 2 1
x---+  cos

x xcossin 3xsin
3xcos--------------- 4sec23x

1 3xtan+-----------------------
4sec23x
1 3xtan+( )2------------------------------- 2

x--- xln( )cos x x 1 2xcos+cossin

ex ex( )cos 3x2e x3– 2+ 1
2---cot x 1

2---xsin  ln

xsec2xsin 1
e x– 2+---------------- 1 2ex+( )ln x2 3–( )sec2 1

3---x
3 3x–  

2
4 x2+--------------

3
x2 9+-------------- 5

5 x2+--------------
1

25 x2–
--------------------- 1

16 x2–
--------------------- 1

9 x2–
------------------–
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5. Find the following indefinte integrals
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

6. Evaluate

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

(v) (w) (x)

3
1 x2+-------------- xd∫ 5

1 x2–
------------------ xd∫ 1

4 x2–
------------------ xd∫

1
9 x2–

------------------ xd∫ 1
1 4x2–

--------------------- xd∫ 1
9 4x2–

--------------------- xd∫
1

4 25x2–
------------------------ xd∫ 2

1 4x2+------------------ xd∫ 1
9 4x2+------------------ xd∫

1
9 16x2+--------------------- xd∫ 1

9 5x2+------------------ xd∫ 1
3 5x2–

--------------------- xd∫

x1 2/ 1 x3 2/+( )5 xd
1

4

∫ ex
1 ex+

------------------ xd
0

1

∫ 3 xsin
1 xcos+--------------------- xd

0

3π
4------

∫

8
4 x2+-------------- xd0

π
∫ ex ex( )cos xd

1–

1

∫ x x3 2/sin xd
0

π
2---

∫

xtan sec2x xd
0

π
4---

∫ 3x2ex3 xd
1–

1

∫ 1
x xln----------- xd
e

e2

∫
x x2 9– xd

3

4

∫ x
9 x2–

------------------ xd
2–

2

∫ 4x
1 x2+( )2--------------------- xd

1

2

∫
1
x2 1+-------------- xd

0
1∫ 1

4 x2+-------------- xd1–
1∫ 1

1 9x2+------------------ xd0
3∫

1
1 4x2–

--------------------- xd
0
1/3∫ 1

1 4x2–
--------------------- xd1

3---

1
2---∫ 1

9x2 1+------------------ xd
0

1
2---∫

1
4 9x2+------------------ xd1

8---

1
2---∫ sin3x xcos xd

0

π
6---

∫ xtan3xsec xd
0

π
4---

∫

xln( )2
x--------------- xd

1

e

∫ 2 x2–
1 x2–

------------------ xd
0

1

∫ 3xcos
4 3xsin+( )2------------------------------ xd

π
6---

π
3---

∫



Further Integration – CHAPTER 23

841

23.1.2 SUBSTITUTION RULE

In the previous section we considered integrals that required the integrand to be of a particular 
form in order to carry out the antidifferentation process. 
For example, the integral  is of the form  and so we could 

proceed by using the result  = .

Next consider the integral . This is not in the form  and so we 
cannot rely on the recognition approach we have used so far. To determine such an integral we 
need to use a formal approach.

Indefinite integrals that require the use of the general power rule can also be determined by 
making use of a method known as the substitution rule (or change of variable rule). The name 
of the rule is pretty much indicative of the process itself, basically, we introduce a new variable, u 
(say), and substitute it for an appropriate part (or the whole) of the integrand. An important 
feature of this method is that it will enable us to find the integral of expressions that cannot be 
determined by the use of the general power rule. 

We illustrate this process using a number of examples (remembering that the success of this 
method is in making the appropriate substitution). The basic steps in integration by substitution 
can be summarised as follows:

NB: This is only a guide, you may very well skip steps or use a slightly different approach.

(a) Although this integral can be evaluated by making use of the general power rule, we use
the substitution method to illustrate the process:
In this case we let .
Having choosen u, we have also obtained an expression for dx, we are now in a position to
carry out the substitution for the integrand:

 = 

Substituting back we obtain an expression in terms of x:    = 

2x 1 x2+ xd∫ h' x( ) h x( )[ ]n xd∫
h' x( ) h x( )[ ]n xd∫ 1

n 1+------------ h x( )[ ]n 1+ c+

x x 1– xd∫ h' x( ) h x( )[ ]n xd∫

1. Define u (i.e., let u be a function of the variable which is part of the integrand).

2. Convert the integrand from an expression in the original variable to an expression
in u (this means that you also need to convert the ‘dx’ term to a ‘du’ term – if the
original variable is x).

3. Integrate and then rewrite the answer in terms of x (by substituting back for u).

Find
(a) (b) (c)2x 1+( )4 xd∫ 2x x2 1+( )3 xd∫ x2

x3 4–
------------------ xd∫

E 23.7XAMPLE

S
o
l
u
t
i
o
n

u 2x 1 du
dx------⇒+ 2 dx∴ 1

2---du= = =

2x 1+( )4 xd∫ u4 1
2---du  ×∫ 1

2--- u
4du∫ 1

2---
1
5---u

5 c+×= = = 1
10------u

5 c+

1
10------ 2x 1+( )5 c+
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(b) This time, we let .
Note the difference between this substitution and the one used in (a). We are making a
substitution for a non–linear term! 
Now, .
Although there is an x attached to the dx term, hopefully, when we carry out the
substitution, everything will fall into place.
Now, [We have moved the x next to the dx.]

[Substituting  for .]

NB: A second (alternate) method is to obtain an expression for dx in terms of one or both
variables. Make the substitution and then simplify. Although there is some dispute as
to the ‘validity’ of this method, in essence it is the same. We illustrate this now:

(c) Let , making the substitution for u and dx, we

 have:  [Notice the  terms cancel!] 

        

Letting . This then gives .

We seem to have come at an impass. After carrying out the substitution we are left with two 
variables, x and u, and we need to integrate with respect to u! This is a type of integrand where 
not only do we substitute for the x – 1 term, but we must also substitute for the x term that has 
remained as part of the integrand, from u = x – 1 we have x = u + 1.

Therefore, 

      

u x2 1+=

u x2 1 du
dx------⇒+ 2x  1

2---du∴ xdx= = =

2x x2 1+( )3 xd∫ 2 x2 1+( )3x xd∫=
2u3 1

2---× ud∫= xdx 1
2---du

1
4---u

4 c+=
1
4--- x

2 1+( )3 c+=

u x3 4 du
dx------⇒– 3x2 dx∴ 1

3x2--------du= = =

x2
x3 4–

------------------ xd∫ x2
u-------

1
3x2--------du×∫ 1

3--- u
1 2⁄– ud∫= = x2

2
3---u

1 2⁄ c+=
2
3--- x

3 4– c+=

Find .x x 1– xd∫E 23.8XAMPLE

S
o
l
u
t
i
o
n

u x 1 du
dx------⇒– 1 du∴ dx= = = x x 1– xd∫ x u ud∫=

x x 1– xd∫ x u ud∫ u 1+( )u1 2⁄ ud∫ u3 2⁄ u1 2⁄+( ) ud∫= = =
2
5---u

5 2⁄ 2
3---u

3 2⁄ c+ +=
2
5--- x 1–( )5 2

3--- x 1–( )3 c+ +=
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Integrating both sides of  with respect to x, we have .

Let . So, 

Therefore, we have  .
Now, .
Therefore, .

(a) Let .

Substituting we have 

      = 

      = 

(b) Let .

Substituting we have 
= 
= 

(c) Let .

Substituting we have 

    = 

(d) Let .

Substituting we have . Then, as there is still an x term in the 

The gradient at any point on the curve  is given by the equation 
. The curve passes through the point (2,3). Find the equation of this curve.

y f x( )=
dy
dx------

1
x 2+----------------=

E 23.9XAMPLE

S
o
l
u
t
i
o
n

dy
dx------

1
x 2+----------------= dy

dx------ xd∫ 1
x 2+---------------- xd∫=

u x 2 du
dx------⇒+ 1 du∴ dx= = = 1

x 2+---------------- xd∫ 1
u------- ud∫ u 1 2/– ud∫ 2 u c+= = =

y f x( ) 2 x 2+ c+= =
f 2( ) 3 3⇒ 2 4 c c⇔+ 1–= = =
f x( ) 2 x 2+ 1–=

Find the indefinite integral of the following
(a) (b) (c) (d)x2ex3 4+ ex ex( )cos 3x

x2 4+-------------- x2 x 1+
E 23.10XAMPLE

S
o
l
u
t
i
o
n

u x3 4 du
dx------⇒+ 3x2 1

3x2--------du∴ dx= = =

x2ex3 4+ xd∫ x2eu 1
3x2--------du×∫ 1

3--- e
u ud∫= =

1
3---e
u c+

1
3---e
x3 4+ c+

u ex du
dx------⇒ ex dx∴ 1

ex----du= = =

ex ex( )cos xd∫ ex u 1
ex----du×cos∫ ucos ud∫= =

u c+sin
ex( ) c+sin

u x2 4 du
dx------⇒+ 2x dx∴ 1

2x------du= = =
3x
x2 4+-------------- xd∫ 3x

u------
1
2x------du×∫ 3

2---
1
u--- ud∫ 3

2--- u c+ln= = =
3
2--- x2 4+( ) c+ln

u x 1 du
dx------⇒+ 1 dx∴ du= = =

x2 x 1+ xd∫ x2 u ud∫=
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integrand we will need to make an extra substitution. From  we have .
Therefore, 

    

(a) Let .

Substituting we have 

   

(b) Let .

Substituting we have 

          

(c) Let .

Substituting we have 

u x 1+= x u 1–=
x2 u ud∫ u 1–( )2 u ud∫ u2 2u– 1+( )u1 2/ ud∫= =

u5 2/ 2u3 2/– u1 2/+( ) ud∫=
2
7---u

7 2/ 4
5---u

5 2/– 2
3---u

3 2/ c+ +=
2
7--- x 1+( )7 2/ 4

5--- x 1+( )5 2/– 2
3--- x 1+( )3 2/ c+ +=

Find the indefinite integral of the following
(a) (b) (c)3xcos23xsin 2xsin

5 2xcos+------------------------
arctanx
x2 1+-----------------

E 23.11XAMPLE

S
o
l
u
t
i
o
n

u 3x du
dx------⇒cos 3 3x dx∴sin– 1

3 3xsin-----------------du–= = =

3xcos23xsin xd∫ 3xu2 1
3 3xsin-----------------du–sin∫=

1
3--- u

2 ud∫–=
1
3---

1
3---u

3 c+⋅–=
1
9---cos

33x– c+=

u 5 2x du
dx------⇒cos+ 2 2x dx∴sin– 1

2 2xsin-----------------du–= = =
2xsin

5 2xcos+------------------------ xd∫ 2xsin
u--------------

1
2 2xsin-----------------du–×∫=

1
2---
1
u--- ud∫–=

1
2--- u c+ln–=
1
2--- 5 2xcos+( ) c+ln–=

u arctanx du
dx------⇒ 1

1 x2+-------------- dx∴ 1 x2+( )du= = =
arctanx
x2 1+----------------- xd∫ u

x2 1+-------------- 1 x2+( )du×∫ u ud∫= =
1
2---u

2 c+=
1
2--- arctanx( )2 c+=
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When using the substitution method to evaluate a definite integral, it is generally more efficient to 
transform the terminals (limits) of the integral as well as the integrand. This process is illustrated 
by the following examples:

(a) . This is solved using the substitution . The integrand is

transformed to . 
Having established that the substitution will work, we can now use it to transform the
terminals. 

The lower terminal is  and the upper terminal is 
Thus: 

        

(b) . Use  & 

        

(c) . Let .
The terminals transform to:

.

  

      = π

Evaluate
(a) (b) (c)xex2 xd

1
2∫ 2x 3+ xd

1
3∫ 4 x2– xd

0
2∫

E 23.12XAMPLE

S
o
l
u
t
i
o
n

xex2 xd
1
2∫ u x2 dudx------, 2x= =

xex2 xd∫ 1
2---e
u ud∫ 1

2---e
x2 c+= =

x 1 u⇒ 12 1= = = x 2 u⇒ 22 4= = =
xex2 xd

1
2∫ 1

2---e
u ud

1
4∫ 1

2--- e
u[ ]14= =

1
2--- e

4 e–( )=

2x 3+ xd
1
3∫ u 2x 3 dudx------,+ 2= = x 1 u⇒ 5 x, 3 u⇒ 9= = = =

2x 3+ xd
1
3∫ 1

2---u
1 2/ ud

5
9∫ 1

2---
2
3---u

3 2/
5

9
= =

1
3--- 9

3 2/ 53 2/–( )=
1
3--- 27 5 5–( )=

4 x2– xd
0
2∫ x 2 θ dxdθ------,sin 2 θcos= =

x 0 0⇒ 2 θ θ⇒sin 0= = =
x 2 2⇒ 2 θ θ⇒sin π

2---= = =

4 x2– xd
0
2∫∴ 4 4 θ2sin– 2 θcos× θd

0

π
2---∫ 2 1 θ2sin– 2 θcos× θd

0

π
2---∫= =

2 2 θ2cos θd
0

π
2---∫=

2 1 2θcos+( ) θd
0

π
2---∫=

2 θ 1
2--- 2θsin+

0

π
2---=
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1. Find the following, using the given u substitution

(a) , (b) , 

(c) , (d) , 

(e) , (f) , 

(g) , (h) , 

(i) , (j) , 

(k) , (l) , 

2. Using the substitution method, find
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

3. Using an appropriate substitution, evaluate the following (giving exact values)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

4. Using an appropriate substitution, evaluate the following (giving exact values)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

EXERCISES 23.1.2

2x x2 1+ xd∫ u x2 1+= 3x2 x3 1+ xd∫ u x3 1+=

2x3 4 x4– xd∫ u 4 x4–= 3x2
x3 1+-------------- xd∫ u x3 1+=

x
3x2 9+( )4------------------------- xd∫ u 3x2 9+= 2xex2 4+ xd∫ u x2 4+=
2z 4+
z2 4z 5–+------------------------- zd∫ u z2 4z 5–+= t 2 t2–3 td⋅∫ u 2 t2–=

xe xsincos xd∫ u xsin= ex
ex 1+-------------- xd∫ u ex 1+=

xsin4xcos xd∫ u xsin= x x 1+ xd∫ u x 1+=

x 2x 1– xd∫ x2 1 x– xd∫ x 1+( ) x 1– xd∫
sec2xe xtan xd∫ 4x

1 2x2–( )---------------------- xd∫ 4x
1 2x2–( )2------------------------ xd∫

1
x--- xelog( ) xd∫ e x–

1 e x–+---------------- xd∫ 1
x xelog---------------- xd∫

2x
x2 1+-------------- xd

1–

1

∫ 2x2
x3 1+-------------- xd

0

1

∫ 2x 1+
x2 x 2–+----------------------- xd

10

12

∫
xcos

1 xsin+-------------------- xd0
 π2---∫ sec23x

1 3xtan+----------------------- xd0
 π12------∫ x

1 x2+( )2--------------------- xd
0

1

∫
4x 4 5x2+ xd

0
1∫ x x 1– xd

1
2∫ ex ex 1+ xd

1–
1∫

x x2 3+ xd
1
2∫ 3x 4x2 π+( )sin xd

0

π
2---∫ 3x 2+( )4 xd

1–
1∫

1
x 3+------------ xd2–

1∫ 1
1 xcos+--------------------- xd0

π
2---∫ 5xe 2x2 3–( ) xd

1
2∫

3 2x–( )7 xd
1–
1∫ 1

1 x–( ) 1 x2–
----------------------------------- xd1

3---

1
2---∫ 1

2xsin-------------- xdπ
4---

π
3---∫
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5. Using an appropriate substitution, find (giving exact values where required)

(a) (b) (c)

(d) (e) (f)

6. Using an appropriate substitution, find (giving exact values where required)
(a) (b) (c)

(d) (e) (f)

7. Find the following indefinite integrals
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

8. (a) Given that  find A and B.

(b) Hence show that 

9. (a) Find .

(b) Evaluate the definite integral in (a) for i. k = ii. k = 1

(c) Find . Hence, find .

10. Find . Hence evaluate .

11. If , use the expansion of  to show that .

Hence, using the substitution , evaluate , .

12. Using the substitution  evaluate .

sin3x xcos xd
0

π
2---∫ xsec2xsin xdπ

6---

π
3---∫ cos3x 2xsin xd

0

π
3---∫

2xsin
cos3x

----------------- xd
0

π
3---∫ 2xsin

1 cos2x+----------------------- xd0

π
2---∫ cos3x xd

0

π
2---∫

x x 2+ xd
2–
1–∫ x 2 x– xd

1–
2∫ x

x 2–---------------- xd
3
6∫

x
x 1+---------------- xd

1–
0∫ x 2–( ) x 2+ xd

2–
0∫ x 1+

x 1–------------ xd2
5∫

1
x2 6x 10+ +------------------------------ xd∫ 1

x2 x– 1+----------------------- xd∫ 1
1 4x x2–+

------------------------------- xd∫
3

8 2x– x2–
------------------------------ xd∫ 2

5 3x x2–+
------------------------------- xd∫ x

9 x4–
------------------ xd∫

arcsinx
1 x2–

------------------ xd∫ arccosx( )2
1 x2–

------------------------- xd∫ 1
arcsin3x 1 x2–
-------------------------------------- xd∫

2 x2–
x2 1+( ) x2 4+( )--------------------------------------- A

x2 1+-------------- B
x2 4+--------------+≡

2 x2–
x2 1+( ) x2 4+( )--------------------------------------- xd

0

1

∫ arctan 1
3---  =

1
x2 1+-------------- x k 0>,d

0
k∫

1
3-------

1
x2 1+-------------- xd

0
k∫k ∞→lim

1
x2 1+-------------- xd∞–

∞∫
1
x 1+---------------- xd∫ 1

x 1+---------------- xd
0
1∫

z cisθ= z 1
z---–   4 8sin4θ 4θ 4 2θ 3+cos–cos=

x ksin2θ= x x
k x–----------- xd0

k∫ 0 θ π< <

x a 1 θsin+( )= 2ax x2– xd
a
2a∫
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23.2.1 THE BASICS

Consider the indefinite integral . Applying any of the techniques we have been using so 
far will not help us determine the integral. Let us start the process by first finding the derivative of

:

 [Using product rule] 

We observe that the term  has now appeared on the R.H.S. we can then write
 = 

  

Such a process requires considerable foresight. However, this integrand falls into a category of 
integrands that can be antidifferentiated via a technique known as integration by parts. The 
method is identical to that which we have just used in determining . We develop a 
general expression for integrands that involve a product of two functions.

Step 1: Consider the product .
Step 2: Using the product rule for differentiation we have:

.
Step 3: Integrating both sides with respect to x gives:

Step 4: Rearranging, to obtain , we have 

In the case above, we would set,  and  and the result would then follow 
through.

The success of this technique is dependent on your ability to identify the ‘correct’  and 
. For example, had we used  and , we would have the expression 

 – which is not helpful.

INTEGRATION BY PARTS23.2

x x xdcos∫
x xsin

d
dx------ x xsin( ) d

dx------ x( ) x x
d
dx------ xsin( )+sin=

d
dx------∴ x xsin( ) x x xcos+sin=

x xcos
x xcos d

dx------ x xsin( ) xsin–

x xcos xd∫∴ d
dx------ x xsin( ) xsin– xd∫=
x x x c+cos+sin=

x x xdcos∫

u x( )v x( )

d
dx------ u x( )v x( )( ) u x( )dvdx------ v x( )

du
dx------+=

u x( )v x( ) u x( )dvdx------ x v x( )dudx------ xd∫+d∫=
u x( )dvdx------ xd∫
u x( )dvdx------ xd∫ u x( )v x( ) v x( )dudx------ xd∫–=

u x( ) x= dv
dx------ xcos=

u x( )
v x( ) u x( ) xcos= dv

dx------ x=

x xcos xd∫ 1
2---x

2 x 1
2---x

2 xsin–( ) xd∫–cos=
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We now consider a number of examples to highlight the process involved.

(a) . Applying the parts formula with  and , from which it
follows that  gives:

You should check that this is correct by differentiating the answer.

Many people remember the ‘parts formula’ by thinking of the question as consisting of two parts 
each of which are functions of the independent variable. One of these functions is to be integrated 
and the other differentiated. Obviously it pays to select a function that becomes simpler in 
derivative form to be the ‘part’ that is differentiated. Often, though not always, this will be the 
polynomial part. 
(b) . In this case we choose the function to be differentiated as  and the

function to be integrated as 

Evaluate: (a) (b)x xcos xd∫ x
3---e

2x xd∫E 23.13XAMPLE

S
o
l
u
t
i
o
n

x xcos xd∫ u x( ) x= dv
dx------ xcos=

v x( ) xsin=

  =     –  

    =     – 

        

u x( )dvdx------ xd∫ u x( )v x( ) v x( ) dudx------ xd∫

  x xcos xd∫ x xsin× x 1×sin xd∫
x x xcos–( )– c+sin=
x x x c+cos+sin=

1
u x( ) du

dx------

x

v x( ) dv
dx------

xsin xcos

Find

Find

x
3---e

2x xd∫ u x( ) x
3---=

dv
dx------ e

2x= v x( )⇒ 1
2---e

2x=

u x( ) du
dx------

x
3---

1
3---

v x( ) dv
dx------

1
2---e

2x e2x

  =     –  

    =     – 

           =   

u x( )dvdx------ xd∫ u x( )v x( ) v x( ) dudx------ xd∫

  x3--- e
2x xd∫ x

3---
1
2---e

2x× 1
2---e

2x 1
3---× xd∫

x
6---e

2x 1
12------e

2x– c+

Find

Find
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1. Integrate the following expressions with respect to x:
(a) (b) (c) (d)
(e) (f) (g) (h)
(i) (j) (k)

2. Use integration by parts to antidifferentiate
(a) (b) (c)

3. Find
(a) (b) (c)

4. Find
(a) (b) (c)

5. Find

(a) (b) (c)

(d) (e) (f)

6. Find .

7. Show that  = . Hence find .

8. Find (a) (b) (c)

23.2.2 REPEATED INTEGRATION BY PARTS

In the set of Exercises 23.2.1., Q.7., required the repeated use of integration by parts. There will 
be occasions on which you will need to use the ‘parts’ formula more than once to evaluate an 
integral. We use the following examples to illustrate this process.

EXERCISES 23.2.1

x xsin x x
2---cos 2x x

2---sin xe x–

5xe 4x– xln x xln x 5x–( )cos–
4x x

3---–  sin x
cos2x------------- x xln

x x 1+ x x 2– x 1+( ) x 2+

Cos 1– x xd∫ Tan 1– x xd∫ Sin 1– x xd∫

xCos 1– x xd∫ xTan 1– x xd∫ xSin 1– x xd∫

x 2xsin xd
0

π
4---∫ xe2x xd

0
1∫ x x 1+( )ln xd

1
e 1–( )∫

x 1–( ) xln xd
1
2∫ x 2xcos xdπ

8---

π
4---∫ xln

x-------- xd1
e∫

x2Tan 1– x xd
0
1∫
d
dx------ x xtan+sec( )ln[ ] xsec sec3x xd

0

π
4---∫

xln( )cos xd∫ xln( )sin xd∫ x3 1 x2–∫

Evaluate: (a) (b)x2 2xcos xd∫ e2x x3---sin xd∫E 23.14XAMPLE
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(a)

       

(b) [Leave constant out for now] 

      

The required integral appears on both sides of this equation, which rearranges to:

1. Find the following integrals (not all are best evaluated using the parts formula):
(a) (b) (c)
(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q)

2. Evaluate the following

(a) (b) (c)

(d) (e) (f)

x2 2xcos xd∫ x2 1
2--- 2xsin× 2x 1

2--- 2xsin× xd∫–=  using u x2 dvdx------, 2xcos= =

1
2---x

2 2xsin x 2xsin xd∫–=

1
2---x

2 2xsin x 1
2--- 2x 1

2--- 2xcos–   xd∫–cos–×  –=

1
2---x

2 2xsin 1
2---x 2x 1

4--- 2x c+sin–cos+=

Repeated use of
‘parts’ formula.

e2x x3---sin xd∫ e2x 3 x
3--- 2e2x 3– x

3---cos×∫–cos–× dx=

3e2x– x
3--- 18– e2x x3---sin 36– e2x x3---sin xd∫–  –cos=

3e2x– x
3--- 18e2x x3---sin 36– e2x x3---sin xd∫+cos=

37 e2x x3---sin xd∫ 3e2x– x
3--- 18e2x x3---sin+cos=

e2x x3---sin xd∫∴ 3
37------e

2x– x
3---

18
37------e

2x x
3--- c+sin+cos=

EXERCISES 23.2.2

x2ex xd∫ 3x2 2x( )cos xd∫ x3 2x( )ln xd∫
ex 2x( )sin xd∫ x2 3x( )cos xd∫ e 2x– 2x( )cos xd∫
4x3 x

2---sin xd∫ 1
x--- x xdln∫ 3x( )ln( )2 xd∫

x 2x( )sincos xd∫ eax x
a--- xdcos∫ x2 x 2+ xd∫

x3 ax( ) xdln∫ x2
4 x2–

------------------ xd∫ 3x2 xd
x2 9–

------------------∫
x
x2 4+-------------- xd∫ x2

x2 4+-------------- xd∫

xcos2x xd
0

π
2---∫ x x xcossin xd

0

π
2---∫ ex xcos xdπ

2---
2π∫

x2e x– xd
0
2ln∫ eax bxcos xdπ

b---

2π
b------∫ xln( )2 xd

1
e∫
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As we saw in Chapter 22, the applications of integration are many and varied. Although the 
applications do not vary, we are now in a position to evaluate a larger range of integrals using the 
techniques covered in this chapter. To this end, we provide a set of exercises that will require the 
techniques and theory that have been covered in this and the previous chapter.

1. Find the area of the region enclosed by the curve  and the lines x = 0 and x = 2.

2. The velocity,  , of an object travelling along a straight line, at time t seconds is
given by 

.
(a) How far has the particle travelled in the first second of motion?
(b) What is the particle’s displacement after 4 seconds of motion?
(c) How far has the particle travelled in its 8 seconds of motion?

3. Find the volume of the solid of revolution generated when the plane bounded by the curve
, and the lines x = 1 and x = e is rotated about the x–axis. 

4. (a) On the same set of axes sketch the graphs of the functions  and
.

(b) Show that  = .
(c) i. Find the area of the region enclosed by the curves and the x–axis.

ii. Find the area of the region enclosed by the curves and the y–axis.
(d) Find the volume of the solid of revolution generated when the plane defined in

part (c) ii., is rotated about the y–axis.

5. (a) Find the area of the region bounded by the curve  and
the x-axis.

(b) Find the volume of the solid of revolution generated when the plane defined in
part (a) is rotated about the x–axis.

6. The probability density function is defined by .

(a) Find k.
(b) Find .

APPLICATIONS23.3

EXERCISES 23.3

y x2
x3 1+--------------=

v t( ) ms 1–

v t( ) 10e
1
2--- t– π

2---t 0 t 8≤ ≤,sin=

y xln
x--------=

f x( ) Sin 1– x=
g x( ) Cos 1– x=

x : Cos 1– x Sin 1– x={ } x : x 1 x2–={ }

y e x– 1
2---x 0 x 4π≤ ≤,cos=

f x( )
k
x-- x

2 4– if 2 x 4≤ ≤
0 elsewhere




=

p X 3>( )
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24.1.1 WHAT ARE DIFFERENTIAL EQUATIONS?

An equation involving derivatives of one or more dependent variables with respect to one or more 
independent variables is called a differential equation (often, simply referred to as a d.e.). If this 
differential equation involves ordinary derivatives of one or more dependent variables with 
respect to a single independent variable, then, we have an ordinary differential equation.
Two examples of differential equations are , . That is, they  are 
equations that satisfy the above description. A solution to such equations is an equation relating x 
and y and containing no differential coefficients (or an equation relating the variables involved 
but no differential coefficients).

For example, if , we obtain the general solution  
(after antidifferentiating both sides with respect to the independent 
variable x). From a graphical point of view, a differential equation 
describes a property of a family of curves. In our case, it 
describes a family of curves whose gradient is always three. In turn, 
we obtain the general solution , which represents the 
family of straight line curves with gradient three.
A particular solution is the equation of one particular member of 
that family of curves. In our case, if we also know that for x = 1, 
y = 5, we would then have the particular solution  (i.e., solving for c we have: 

). Put simply, we have:

The order of a differential equation is determined by the highest differential coefficient. The 
following serve as examples of differential equations of different order:

1.  is of order 1

2.  is of order 2

3.  is of order 1

DIFFERENTIAL EQUATIONS24.1

C
H

A
P

T
E
R

 2
4

dy
dx------ 4x= d2y

dx2-------- 2dy
dx------ 1+ + 0=

dy
dx------ 3= y 3x c+=

c1c2
c3

c4
x

y y 3x c+=

y 3x c+=

y 3x 2+=
5 3 1× c c⇔+ 2= =
1. A differential equation defines some property common to a family of curves.
2. The general solution, involving one or more arbitrary constants, is the equation of

any member of the family.
3. A particular solution is the equation to only one member of the family.

dy
dx------ 4x=
d2y
dx2-------- 2dy

dx------ 1+ + 0=
dy
dx------  

2 dy
dx------  + 2=

Form differential equations for the following (a)
(b)

y Bx2=
T Keθ=

E 24.1XAMPLE
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(a) Starting with , when we differentiate both sides with respect to x, we have:
          

Giving an equation which involves an ordinary derivative of one dependent variable with respect 
to a single independent variable.
(b) Similarly,  (i.e., differentiating both sides with respect to .)

Notice that in this case,  is in fact equal to T, therefore, we could write the differential 
equation as .

Differentiate both sides with respect to x:

So, a differential equation corresponding to  is .

24.1.2 VERIFYING SOLUTIONS

A function is said to be a solution of  a differential equation if it satisfies the differential 
equation.

Given that , we differentiate the equation twice (seeing as the given differential 
equation contains the second derivative of y with respect to t).
That is, , 

         
However, we have that , and so, substituting this into the equation, we have that 

S
o
l
u
t
i
o
n

y Bx2=
y Bx2 d

dx------ y( )⇒ d
dx------ Bx2( )= = dy

dx------∴ 2Bx=

T Keθ dT
dθ-------⇒ Keθ= = θ

Keθ
dT
dθ------- T=

Form a differential equation for .x2 y a–( )2+ a2=E 24.2XAMPLE

S
o
l
u
t
i
o
n

d
dx------ x2 y a–( )2+( ) d

dx------ a2( )=

2x 2 y a–( ) dy
dx------⋅+⇒ 0=

2 y a–( ) dy
dx------⋅⇔ 2x–=
dy
dx------⇔ x

y a–-----------–=

x2 y a–( )2+ a2= dy
dx------ x

y a–-----------–=

Verify that  satisfies the differential equation .y αtcos= d2y
dt2-------- α– 2y=

E 24.3XAMPLE

S
o
l
u
t
i
o
n

y αtcos=

y αtcos dy
dt------⇒ α αtsin–= =

d2y
dt2--------∴ α2 αtcos–=
y αtcos=
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 as required. Therefore,  is a solution of  

Given that , we first differentiate the equation with respect to x: 
As it stands, this equation doesn’t quite look like the given d.e. Therefore, we need to work with 
our equation a little further:
We notice that  and so, .
We can now substitute this expression for  into our d.e. i.e., into .

This then gives, , as required. That is,  satisfies the d.e. . 

Given , then  and . Substituting these results into the equation 

, we have:

               
However,  for all real values of x, therefore, the only solution is k = –4 or k = 2.

1. Verify that
(a)   satisfies the differential equation .

(b)   satisfies the differential equation .

d2y
dt2-------- α2y–= y αtcos= d2y

dt2-------- α2y–=

Verify that the function  is a solution of the differential equation 
.

y e x––=
dy
dx------ y2ex=

E 24.4XAMPLE

S
o
l
u
t
i
o
n

y e x––= y e x– dy
dx------⇒– e x–= =

y e x– y2⇒– e 2x–= = y2 e x– e x–× e x–⇒ y2ex= =
e x– dy

dx------ e x–=
dy
dx------ y2ex= y e x––= dy

dx------ y2ex=

For what values of k is  a solution of ?y ekx= d2y
dx2-------- 2dy

dx------ 8y–+ 0=
E 24.5XAMPLE

S
o
l
u
t
i
o
n

y ekx= dy
dx------ kekx= d2y

dx2-------- k2ekx=

d2y
dx2-------- 2dy

dx------ 8y–+ 0= k2ekx 2kekx 8ekx–+ 0=
ekx k2 2k 8–+( )⇔ 0=

ekx k 4+( ) k 2–( )⇔ 0=
ekx 0>

EXERCISES 24.1

y x5 9+= dy
dx------ 5x4=

y 2xcos= d2y
dx2-------- 4y+ 0=
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(c)   satisfies the differential equation .

(d)   satisfies the differential equation .

(e)   satisfies the differential equation .

2. Verify that the differential equation
(a)  , has a solution given by .

(b)  , has a solution given by .

3. Verify that  satisfies the differential equation .

4. Verify that  satisfies the differential equation .

5. For what values of m and n, does  satisfy the differential equation 
?

6. Show that  and  satisfy the differential equation .

7. Find the values of k, so that  is a solution to
(a) (b)     .

8. Find the values of a and b given that  is a solution to the differential 
equation .

9. Find the values of a and b given that  is a solution to the differential 
equation .

10. Obtain a first order differential equation for .

11. (a) Show that .

(b) Show that  satisfies the d.e. .

y x2 1+= dy
dx------ x

y--=

y x x( )ln= x2d2y
dx2-------- y+ xdy

dx------=

y xex= dy
dx------ y– ex=

dN
dt------- N a bN–( )= N akeat

1 bkeat+----------------------=

dM
dt-------- 2 M–( ) 1 M–( )= t 2 M–

1 M–--------------  ln=

y e3x 2xcos= d2y
dx2-------- 6dy

dx------– 13y+ 0=

y nxcos( )ln= dy
dx------ ne y– 1 e2y––=

y e4x e x–+=
d2y
dx2-------- mdy

dx------ ny+ + 0=

x 4t 1+= y t2 2–= dy
dx------  

2 1
4--- y 2+( )=

y ekx=
d2y
dx2-------- 5dy

dx------– 6y+ 0= d2y
dx2-------- 6dy

dx------ 9y+ + 0=

y e x– xsin=
d2y
dx2-------- ady

dx------ by+ + 0=

y x xcos=
x2d2y

dx2-------- axdy
dx------ x2 b+( )y+ + 0=

x a–( )2 ay2+ a2 2ax–=

1
a---

1
a 1+------------– 1

a a 1+( )--------------------=

y kx
1 1 k–( )x+-----------------------------= x x 1+( )dy

dx------ y y 1+( )=
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So far we have been ‘solving’ differential equations by verification, that is, knowing the solution, 
we have verified that it satisfied the given d.e. However, most of the time we do not know the 
solution to a given differential equation, and so, it is the task of this section to develop techniques 
that will enable us to find solutions based on a given d.e.
The basic technique involves the process of antidifferentiation (i.e., integration) together with 
recognition skills. The recognition skills refer to the ability to recognise the ‘type’ of d.e. that we 
are trying to solve. 

Consider the family of curves whose gradient is given by . Expressing this statement as a 
differential equation we have that . To determine the family of curves from this d.e., all 
we need to do is antidifferentiate (i.e., integrate) both sides with respect to x:   

                    

So that     

And so, we have the general solution to the given d.e. Then, if we are given information such as, 
the curve passes though the point (0,1), we can solve for c:

Therefore, we have the particular solution, .

In solving this differential equation, we have already made use of a recognition skill:
We recognised that we could in fact integrate both sides with respect to x. Although this might 
seem rather straightforward, it is nice to know that there isn’t much more to it–although some 
approaches will require good recognition skills, good algebraic skills and definitely very good 
integration skills. We now consider a number of standard types of differential equations and 
methods for solving them.

Type 1

Solving these types of d.e.s requires that we integrate both sides with respect to x:
That is,    

                                (This is the general solution.)

For the particular solution, we need some information about the curve, e.g., the curve passes 
through the point (a,b), so that , and so, we have a particular 
solution:

                                

SOLVING DIFFERENTIAL EQUATIONS24.2

e2x

dy
dx------ e2x=

dy
dx------ e2x dy

dx------ xd∫⇒ e2x xd∫= =

y 1
2---e2x c+=

1 1
2---e

0 c c⇔+ 1
2---= =

y 1
2---e2x 1

2---+=

dy
dx------ f x( )=

dy
dx------ f x( ) dy

dx------ xd∫⇒ f x( ) xd∫= =
y∴ F x( ) c+=

b F a( ) c c⇒+ b F a( )–= =

y∴ F x( ) b F a( )–+=
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Because the differential equation is of the form , we can integrate both sides with 
respect to x (i.e., b.s.w.r.t.x):

i.e.,          

As the curve passes through the point (0, 4), we have; .
Therefore, we have;  

                                .

As it is presented, the d.e.  is not quite in the form .
However, we can rearrange the equation to give

(Which is now in the form )

         

i.e., we recognised the integral as  + c where .

That is, we have a general solution . To find the particular solution we use the 

fact that when x = e, y = 1. So, .

Therefore, we have that .

Solve the differential equation , given that the curve passes 
through the point (0,4).

dy
dx------ 2x

x2 4+--------------=
E 24.5XAMPLE

S
o
l
u
t
i
o
n

dy
dx------ f x( )=

dy
dx------ xd∫ 2x

x2 4+-------------- x y⇒d∫ x2 4+( ) c+log= =

4 4e c c⇒+log 4 4elog–= =
y x2 4+( ) 4 4elog–+log=

y∴ x2 4+
4--------------   4+log=

Solve the differential equation , given that the curve passes 
through the point (e,1).

xdy
dx------ xln=

E 24.6XAMPLE

S
o
l
u
t
i
o
n

xdy
dx------ xln= dy

dx------ f x( )=

dy
dx------ xln

x--------= dy
dx------ f x( )=

dy
dx------ xd∫⇒ xln

x-------- xd∫=
dy
dx------ xd∫ 1

x--- xln xd⋅∫=

y∴ 1
2--- xln( )2 c+=

h' x( ) h x( )[ ]n xd∫ 1
n 1+------------ h x( )[ ]n 1+= h x( ) xln=

y 1
2--- xln( )2 c+=

1 1
2--- eln( )2 c c⇒+ 1

2---= =

y 1
2--- xln( )2 1

2--- x 0>,+=
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Type 2

This time it is not possible to integrate both sides with respect to x directly as we would produce 
an expression of the form , for which the right hand side cannot be integrated. 
However, we can first invert both sides of the equation, giving the ‘new d.e.’:

where we can now integrate both sides with respect to y:

That is, we obtain an expression for x in terms of y (as long as integration is possible).

Step 1: Invert : i.e., .

Step 2: Antidiff. b.s.w.r.t.y: i.e., 

Step 3: Solve: i.e., 

               
We could leave the answer as is, however it is usual to simplify it further:

where . 
Note, we can do this because c is an arbitrary constant and therefore so is , then we replace it 
by the arbitrary constant A.

Because the differential equation is of the form , we first invert both sides and then 
we can integrate b.s.w.r.t.y:

dy
dx------ f y( )=

dy
dx------ xd∫ f y( ) xd∫=

dy
dx------ f y( ) dx

dy------ 1
f y( )-----------=⇔=

dx
dy------ yd∫ 1

f y( )----------- y x⇒d∫ F y( ) c+= =

Find the general solution to the differential equation .dy
dx------ 5y=

E 24.7XAMPLE

S
o
l
u
t
i
o
n

dy
dx------ 5y= dx

dy------ 1
5y------=

dx
dy------ yd∫ 1

5y------ yd∫=

x 1
5--- y c y 0>,+ln=

5 x c–( )∴ yln=
y⇔ e5 x c–( )=

y e5 x c–( ) e5x e 5c–× Ae5x= = =
A e 5c–=

e c–

Find the general solution to the differential equation .dy
dx------ y2 1–

2--------------=
E 24.8XAMPLE

S
o
l
u
t
i
o
n

dy
dx------ f y( )=

dy
dx------ y2 1–

2-------------- dx
dy------⇒ 2

y2 1–--------------= =
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We ‘recognise’ that the right hand side can be written as .

Therefore, we have that 

      
                   

                   
We can now also solve for y:

Note: Sometimes, rather than inverting both sides of the equation, it is preferrable to
divide both sides of the equation by the appropriate variable or function.

If we consider Example 24.7 where  we could, as the first step, write

(i.e., divide by y)

  

Where .
Do not worry about the As looking different. i.e., in Example 24.7, we had  whereas 
here we have  – they are in fact the same (because in reality, the ‘c’ is different in both 
cases). Both methods are appropriate.

2
y2 1–-------------- 1

y 1–----------- 1
y 1+------------–=

dx
dy------ 1

y 1–----------- 1
y 1+------------–=

dx
dy------ yd∫ 1

y 1–----------- 1
y 1+------------–   yd∫=⇒

x∴ y 1–( )e y 1+( )e c y 1>,+log–log=

x∴ y 1–
y 1+------------  

e c y 1>,+log=

x∴ y 1–
y 1+------------  

e c y 1 y 1–
y 1+------------  

elog⇔>,+log x c y 1>,–= =

ex c– y 1–
y 1+------------ y 1>,=

kex y 1+( )⇔ y 1 y 1 where k,>,– e c–= =
kex 1+⇔ y 1 kex–( ) y 1>,=

y∴ kex 1+
1 kex–----------------- y 1>,=

dy
dx------ 5y=

1
y---

dy
dx------ 5=

1
y---

dy
dx------ xd∫∴ 5 xd∫=

yln∴ 5x c+=
y⇔ e5x c+=
y∴ Ae5x=

A ec=
A e 5c–=

A ec=

Solve the differential equation  given that y(0) = 1. Hence 
sketch the solution function, y(x).

dy
dx------ 2 y 3+( )2=

E 24.9XAMPLE
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Inverting  we have 

Since the integrand on the R.H.S has a discontinuity at y = –3, we obtain two solutions, one for y 
> –3 and one for y < –3, giving the solution functions

 – (1) 

 – (2) 

However, under the given condition, x = 0, y = –1 and so we need to use (1) as the solution.
That is, we have

Therefore, .

Solving for y we have

.

Then, as .

Type 3

Equations of this type are known as separable differential equations or to have separable 
variables. The reason being that it is possible to ‘separate’ the variables. The solution to these 
types of d.e.s may then be obtained by integrating both sides with respect to the appropriate 
variable:

S
o
l
u
t
i
o
n

dy
dx------ 2 y 3+( )2= dx

dy------ 1
2 y 3+( )2---------------------- y 3–≠,=

dx
dy------ yd∫⇒ 1

2---
1

y 3+( )2------------------- yd∫=

x 1
2 y 3+( )--------------------– c1 y 3–>,+=

x 1
2 y 3+( )--------------------– c2 y 3–<,+=

0 1
2 2( )-----------– c1 c1⇔+ 1

4---= =

x 1
2 y 3+( )--------------------– 1

4--- y 3–>,+=

x 1
4---– 1

2 y 3+( )-------------------- 4x 1–
4---------------∴– 1

2 y 3+( )--------------------–= =

y∴ 3+ 2
4x 1–---------------–=

y∴ 1 12x–
4x 1–------------------=

y 3 x 1
4--- y∴<⇒–> 1 12x–

4x 1–------------------ x 1
4---<,=

y

x–1 1
4---

y = –3

dy
dx------ f x( )g y( )=
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That is, 

       [separating the variables]

 [antidiff w.r.t. appropriate variable]

        

That is,

Which we can (hopefully) solve, i.e., find an integral for the left hand side and the right hand side.

This d.e. is of the form , and so we can ‘separate’ the variables:

                             

Therefore, integrating b.s.w.r.t.x:    
                   

          

           
Next we antidifferentiate both sides with respect to x:

dy
dx------ f x( )g y( )=

1
g y( )-----------⇒ dy

dx------ f x( )=
1

g y( )-----------dy
dx------ xd∫⇒ f x( ) xd∫=

1
g y( )----------- yd∫∴ f x( ) xd∫=

dy
dx------ f x( )g y( ) 1

g y( )----------- yd∫⇒ f x( ) xd∫= =

Find the general solution to the differential equation .dy
dx------ y2 1+

x2 1+--------------–=
E 24.10XAMPLE

S
o
l
u
t
i
o
n

dy
dx------ f x( )g y( )=

dy
dx------ y2 1+

x2 1+-------------- 1
y2 1+--------------dy

dx------⇒– 1
x2 1+--------------–= =

1
y2 1+--------------dy

dx------ xd∫ 1
x2 1+-------------- xd∫–=

arc ytan arc x c+tan–=
arc y arctanx+tan∴ c=

arc x y+
1 xy–--------------  tan⇒ c=

x y+
1 xy–--------------⇒ ctan=

y⇒ k x–
1 kx+---------------  where k, ctan= =

Find the general solution to the differential equation .y2 4+( )dy
dx------ yxe x–=

E 24.11XAMPLE

S
o
l
u
t
i
o
n

y2 4+( )dy
dx------ yxe x– y2 4+

y--------------dy
dx------⇔ xe x–= =

y 4
y---+  ∴ dy

dx------ xe x–=
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We leave the solution in its implicit form.

1. Find the general solution of the differential equations
(a) (b) (c)

2. Solve the following differential equations

(a) (b)    

(c) (d)    

(e) (f)     

(g) (h)    

   (i) (j)     

3. Find the general solution of the differential equations

(a) (b) (c)

4. Solve the following differential equations

(a) (b)   

(c) (d) 

(e) (f) 

(g) (h) 

y 4
y---+   dy

dx------ xd∫∴ xe x– xd∫=
1
2---y2 4 yln+⇒ e x–– xe x–– c+=

EXERCISES 24.2

dy
dx------ 1 2xsin+= dy

dx------ sin2x= dy
dx------ 6x 3+

x2 x+---------------=

tdy
dt------ t2– 0 y, 1 t, 1= = = dx

dt------ 4 2t x 0( ),tan 1= =
dy
dx------ 2x

x 1–( ) x 1+( )---------------------------------- y 2( ), 4= = 1 x–( )2dy
dx------ 1+ 0 y 2( ), 4

3---= =
dv
dt------ k

t t0+( )3------------------- v 0( ), u= = dy
dx------ x x2( ) x,cos 0 y, 0= = =

1
tcos---------- dx

dt------   4sin3t x 0( ), 1= = dN
dt------- t 25 t2+ N, 5 t, 0= = =

dT
dθ------- 2θ 8 2θcos+ T 0( ),sin 0= = dP

dt------- te 3t– P 0( ), 1= =

dy
dx------ 9 y2–= dy

dx------ 1 y–
2-----------= dy

dx------ y y 2–( )=

dN
dt------- N 3 t, 0 N, 1

2---–= = = ds
dt----- s2 4 s,+ 0 t, 0= = =

dp
dx------ e 2 p– x, 1

2--- p, 0= = = dy
dx------ 9 y2 x,+ 0 y, 3π= = =

1 x2– dy
dx------ 4 y 0( ), 2= = dy

dx------ 2 7 y–( )2 y 0( ), 0= =
dy
dθ------ sec2y y, π θ, 0= = = dy

dx------ y2 4+
y2-------------- y, 2π x, 0= = =
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5. Find the general solution of the differential equations

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

6. Solve the following differential equations

(a) (b) 

(c) (d) 

7. Solve the following differential equations
(a)        (b)     

8. A family of curves is defined by the differential equation . Find the 
particular curve that passes through the point (1,2).

9. A family of curves is defined by the differential equation . Find the
 particular curve that passes through the origin.

10. A family of curves is defined by the differential equation . Find the
 particular curve that passes through the point (1,1).

11. Solve the differential equation .

12. By using the substitution , show that the differential equation  can

be reduced to the d.e. .

Hence, show that the general solution is given by .

13. Using the substitution , show that the differential equation  

can be reduced to the d.e. .

Hence, show that the general solution is given by .

dy
dx------ y

x 1+------------= dy
dx------ x y 1+( )= dy

dx------ x
y 1+------------=

dy
dx------ xsin

ey----------= dy
dx------ x xsin

ey--------------= dy
dx------ x xsin

yey--------------=

x 1 y2– dx
dy------ 1= x 1 y2– dy

dx------ 1= 1 y2–
x------------------dy

dx------ 1=

y 4 x2+( )dy
dx------ 1 x, 0 y, 1= = = dy

dx------ xey x2– x, 0 y, 0= = =
dy
dx------ xey x– x, 0 y, 0= = = dx

dt------ tx+ x x 1( ), 2= =

1 x2+( )dy x 4 y2+( )dx– 0 y 0( ), 0= = dx
dt------ tx2– t t 0( ), 2= =

dy
dx------ 3 y–

1 2x+---------------=

e x– dy
dx------ 1 y–( )2=

x2dy
dx------ y xy–=

1 y+( )dy
dx------ sin2x+ 1 x, 0 y, 0= = =

u x y+= dy
dx------ x y+=

du
dx------ u 1+=

x y 1+ + kex=

u x y 1+ += dy
dx------ 1

x y 1+ +---------------------=
du
dx------ 1– 1

u---=

x y 2+ + key=
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14. By using the substitution , show that the differential equation
  can be reduced to the d.e. .

Hence, show that the general solution is given by .

15. By using the substitution , show that the differential equation
  can be reduced to the d.e. .

Hence, show that if the curve passes through the point (1, 0), the particular solution
 is given by .

16. (a) Show that . Hence, find .

(b) Solve the d.e. .

(c) Solve the d.e. 

17. (a) Simplify .
(b) If  find the equation .

18. Solve the d.e. . Sketch the graph of this solution.

19. Given that  find the real values k, m, n such that y satisfies the differential
equation .

20. (a) Show that .

(b) Given the system of differential equations .

i. If x = a when t = 0, show that .

ii. Show that .

iii. If y = 0 when t = 0, show that .
(c) Verify that y has a local maximum. Find when this maximum occurs.

y ux=
xdy
dx------ y2 x2 y+ += du

dx------ u2 1+=
y x x c+( )tan=

y xu=
dy
dx------ y x2 y2++

x------------------------------ x 0>,= xdu
dx------ u2 1+=

y 1
2--- x2 1–( )=

1
4---

1
a 2–------------ 1

a 2+------------–   1
a2 4–--------------= 1

x2 4–-------------- xd∫
dy
dx------ y2 4 y 0( ),– 3= =
dy
dx------ y2 4 y 0( ),+ 2–= =

1
y---

1
a y–-----------+

y' k a y–( )y y 0( ), 1= = y x( )

1 x2+
1 y2+--------------dy

dx------ 1+ 0 x, 0 y, 1= = =

y ae x– be2x+=
kd2y
dx2-------- mdy

dx------ ny+ + 0=

d
dt----- eqty( ) eqt dy

dt------ qy+  =
dx
dt------ px dy

dt------,– px qy–= =
dy
dt------ pae pt– qy–=

d
dt----- eqty( ) ape p q–( )t–=

y ap
q p–------------ e pt– e qt––( )=
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We find that the formulation of problems in both the physical and the biological sciences often 
leads to first–order differential equations of the types we have learned to solve. Some such 
examples are described below:
Population growth:

If  denotes the population size at 
some time t, where , then one 
possible model is given by .

Decay (radiation):
In general we have that the rate of decay
is proportional to the amount  of substance
present at any time t, where .
A possible model is given by .

Logistic equation:
Mathematical formulation for predicting the
human population of various countries.
One such equation is .

These d.e.s are of the type .

Electric circuit:
For an electrical appliance containing a coil 
of wire of resistance R, and an inductance L, 
which is connected to a power supply of  
volts, producing a current i, we have the 
differential equation;
                          

Dynamics of red blood cells:
If  is the number of erythrocytes in the blood of a 
human at time t, then the d.e.  
describes the relationship between R and t.

APPLICATIONS 24.3

y N t( )=y

t
N0

N
t t0≥

dN
dt------- kN k 0>,=

y N t( )=

y

t

N0

y p t( )=

p

t

a
b---

One possible solution 

t t0≥
dN
dt------- kN k 0<,=

dp
dt------ p a bp–( )=

dy
dx------ f y( )=

R

LE(t)
E t( )

Ldi
dt----- Ri+ E t( )=

R t( )
dR
dt------- bR t( )+ a

R t( )----------=
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There are many more examples, some of which cannot be solved by the methods we have learnt 
so far. Nonetheless, we now consider a number of applied problems.

Given that , we have .

Antidifferentiating b.s.w.r.t.S:   
Therefore,       
Given that when t = 0, S = 100, we have    
Therefore,        

That is,        .

Now, when S = 140, we have .
That is, it will take approximately 10 minutes and 13 seconds.

The differential equation  is of the form , and so we use the 

appropriate approach:      

Antidifferentiating b.s.w.r.t. x:

Expressing  as :   

                       

A container is initially filled with 100 litres of a salt solution containing 
100 kg of salt. Fresh brine containing 2 kg of salt per litre runs into a tank at a rate of 5 litres/min, 
and runs out at the rate same rate. Assuming that the mixture is kept uniform by stirring, the 
relationship between the amount of salt S kg present in the container and the time t, since the 
process started, is given by the differential equation . How long will it take for 
there to be 140 kg of salt in the container?

dS
dt------ 10 1

20------S–=

E 24.14XAMPLE

S
o
l
u
t
i
o
n

dS
dt------ 10 1

20------S–= dS
dt------ 200 S–

20------------------ dt
dS------⇒ 20

200 S–------------------= =
dt
dS------ Sd∫ 20

200 S–------------------ Sd∫=
t 20 200 S–( ) c 0 S 200< <,+elog–=
0 20 100( ) c c⇒+elog– 20 100( )elog= =

t 20 200 S–( ) 20 100( )elog 0 S 200< <,+elog–=

t 20 100
200 S–------------------  

elog 0 S 200< <,=

t 20 100
200 140–------------------------  

elog 10.22≈=

It is thought that the rate at which a rumour spreads is jointly proportional 
to the number, x, of people who have heard the rumour and the number N – x, those who have yet 
to hear it. This relationship is approximated by the differential equation .
Assuming that when t = 0, x = 1, find an equation for x as a function of time t.

dx
dt------ kx N x–( )=

E 24.15XAMPLE

S
o
l
u
t
i
o
n

dx
dt------ kx N x–( )= dy

dx------ f y( )=
dx
dt------ kx N x–( ) k dt

dx------⇒ 1
x N x–( )---------------------= =

k dt
dx------ xd∫ 1

x N x–( )--------------------- xd∫=
1

x N x–( )--------------------- 1
N----

1
x---

1
N x–-------------+   k dt

dx------ xd∫ 1
N----

1
x---

1
N x–-------------+   xd∫=

kt∴ 1
N---- xelog N x–( )elog–( ) c+=
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When t = 0, x = 1, which gives,      

      

Therefore, we have, 

                 

We notice that finding the solution of applied problems is no different from finding particular 
solutions to a given differential equation. The difference being that the d.e. has been put into 
context. However, there lies our difficulty; what happens if we are not given the differential 
equation? In such cases, we need to formulate the differential equation first and then proceed as 
before.

Let  kg be the amount of salt in the container at any time t minutes. 
Then, we have that the rate of change in the amount of salt in the container must be given by             

 (per minute)

The ‘Rate in’ (per minute) is 12 kg/min, while
the ‘Rate out’ (per minute) is  kg/min.

The last term is derived as follows:
First, we need to determine the concentration, C, of salt in the 
container at any time t. This is found using

0∴ 1
N---- 1elog N 1–( )elog–( ) c+=

c⇒ 1
N---- N 1–( )elog=

kt∴ 1
N---- xelog N x–( )elog–( ) 1

N---- N 1–( )elog+=

k⇒ t 1
N----

x
N x–-------------  

elog 1
N---- N 1–( )elog+=

k⇒ t 1
N----

x N 1–( )
N x–---------------------  

elog=

eNkt⇒ x N 1–( )
N x–---------------------=

N x–( )∴ eNkt x N 1–( )=
x∴ NeNkt

N 1– eNkt+
----------------------------- N

1 N 1–( )e N– kt+
----------------------------------------= =

A container is initially filled with 100 litres of a salt solution containing 
50 kg of salt. Brine containing 2 kg of salt per litre runs into a tank at a rate of 6 litres/min, and 
runs out at a rate of 4 litres/min, assuming that the mixture is kept uniform by stirring.
Set up a differential equation describing the relationship for the amount of salt in the container at 
any time t minutes.

E 24.16XAMPLE

S
o
l
u
t
i
o
n

s t( )

Amount in = 2kg l⁄ 6l min⁄×
12kg min⁄=

s
100 2t+--------------------kg l⁄ 4l min⁄×

4s
100 2t+--------------------kg min⁄=

Amount out =

ds
dt----- Rate of salt In= Rate of salt Out–

4s
100 2t+--------------------

C Amount of salt in container at any time t
Volume of solution in container at any time t------------------------------------------------------------------------------------------------------------=
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And so we have, , this is because 
i. by definition, we have that s kg is the amount of salt in the tank at any time t,
ii. initially there are 100 litres of solution in the container and every minute this 

increases by (6 – 4) = 2 litres, so that after t minutes, there will be an extra 2t litres
in the container.

Therefore, we have the differential equation,  or .

Note that to solve this d.e. requires a method beyond the scope of this course.

Our first task is to derive a differential equation for the given situation.
Let the temperature of the body at any time t minutes, t ≥ 0, after been placed in the
surroundings, be T ˚C.
From the given description we have that .
The initial conditions are, t = 0, T = 85 and t = 10, T = 65
From the d.e. we have

Now, t = 0, T = 85 so that  and t = 10, T = 65 so that .

But, .

So, .

After a further 10 minutes, t = 20, 

C s
100 6 4–( )t+----------------------------------=

ds
dt----- 12 4s

100 2t+-------------------- t 0≥,–= ds
dt----- 2s

50 t+--------------+ 12=

Newton’s law of cooling states that the rate of cooling of a body varies as 
the difference in temperature between the body and its surroundings. A body is cooling in 
surroundings which are kept at a constant temperature of 20˚C. If the temperature is initially 
85˚C and 10 minutes later is 65˚C, find its temperature after a further 10 minutes.

E 24.17XAMPLE

S
o
l
u
t
i
o
n

dT
dt------- T 20–( ) dT

dt-------⇔∝ k T 20–( )=

dT
dt------- k T 20–( ) 1

T 20–---------------dT
dt-------⇔ k= =

1
T 20–---------------dT

dt------- td∫∴ k td∫=
T 20–( )ln⇒ kt c+=

65( )ln c= 45( )ln 10k c+=

c 65( ) 45( )ln∴ln 10k 65( ) k⇔ln+ 1
10------ 45

65------  ln 1
10------ 9

13------  ln= = = =

T 20–( )ln 1
10------ 9

13------  ln t 65( )ln+=

T 20–( )ln 1
10------ 9

13------   20×ln 65( )ln+=∴

T 20–( )ln 81
169--------- 65×  ln=

T 20–∴ 81
169--------- 65×=

T∴ 81
169--------- 65 20 51.2≈+×=
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Let the volume of water in the tank, at a depth of h m be V  (once the plug is removed
from the hole at the apex).

Then, we have that .
This time we have a d.e. involving three variables, t, V and h.
We need to obtain a differential involving V and h, so, using the
chain rule we have , giving 

Next, we need an expression for V in terms of h.
Volume of a cone is , but, from our diagram,  = m (say). So, r = mh.

Therefore, . i.e., we let  = constant.

This means that  and so, the d.e. is given by  or

, where  = constant
We are now in a position to solve this d.e.:

     

Now, t = 0, h = 7.84 so . Giving .

Next, t = 2, h = 3.61 and so, .

This means we have the equation .
Tank will be empty when h = 0, i.e., 

That is it takes 2.34 minutes for the tank to empty.

An inverted conical tank, full of water, has a plug in a small hole at its 
vertex. When the plug is removed, water flows out of the hole at a rate proportional to the square 
root of the level of the water in the tank. Initially the depth of water in the tank is 7.84 m and 
2 minutes later it is 3.61 m. How long will it take for the tank to empty?

E 24.18XAMPLE

S
o
l
u
t
i
o
n

m3

h

rdV
dt------- h dV

dt-------⇔∝ k– h k 0>,=

dV
dt------- dV

dh------- dh
dt------⋅= k h– dV

dh------- dh
dt------⋅=

V 1
3---πr2h= r

h--- constant=

V 1
3---π mh( )2h 1

3---πm2h3 ah3= = = a 1
3---πm2=

dV
dh------- 3ah2 k h–⇒ 3ah2 dh

dt------⋅= = dh
dt------ k h–

3ah2-------------=
dh
dt------ Ah 3 2/––= A k

3a------=

dh
dt------ Ah 3 2/– h3 2/ dh

dt------⇔– A–= =

h3 2/ dh
dt------ td∫⇒ A td∫–=

2
5---h5 2/∴ At– c+=

2
5--- 7.84( )5 2/ 0 c c∴+ 0.4 2.8( )5= = 2

5---h5 2/ At– 0.4 2.8( )5+=
2
5--- 1.9( )5 2A– 0.4 2.8( )5 A∴+ 0.2 2.8( )5 0.2 1.9( )5–= =

2
5---h5 2/ 0.2 2.8( )5 1.9( )5–[ ]t– 0.4 2.8( )5+=

0 0.2 2.8( )5 1.9( )5–[ ]t– 0.4 2.8( )5+=
t∴ 0.4 2.8( )5

0.2 2.8( )5 1.9( )5–[ ]------------------------------------------------ 2.34≈=
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1. Radium decomposes at a rate that is proportional to the amount present at any time t years.
Let there be  gm of radium initially. If 10% of the substance decays in 200 years, how
much, in terms of , will there be after 800 years?

2. The rate of decay of a radioactive substance is proportional to the amount of substance
present at any time t years. It takes 1200 years for 50% of the substance to decay. How
much of the substance will there be after 2000 years?

3. The population of a bacterial culture increases at a rate that is proportional to the number
of bacteria present at anytime t days. It takes 8 days for the population to double. If N is
the number of bacteria present at any time t days, set up a differential equation for the rate
of change of N. By solving this d.e., how long will it take for the population to treble?

4. Light penetrates a 10 cm thick slab of glass. The rate of loss of intensity with respect to the
depth reached by the light is proportional to the intensity at that depth, I. If light loses 10
percent of its intensity after penetrating 20 percent of the slab, what percentage is lost after
penetrating the slab?

5. The number of bacteria present in a culture increases at a rate proportional to the number
of bacteria present at any time t hours. If the number of bacteria increases by 10% in one
hour, what percentage increase will there be after a further four hours?

6. The rate of change of  the volume of  water , V litres, with respect to its level, h cm, in a
container, is described by the differential equation .
Given that 1 litre of water reaches a level of 9 cm and that 4 litres of water reaches a level

 of 13 cm, show that .

7. A curve has a gradient function defined by the differential equation . Given

that the curve passes through the point whose coordinates are , find the
equation of this curve.

8. The number of bacteria present in a culture, N,  increases at a rate proportional to the
 number present in the culture, i.e., .

Initially there are 2000 bacteria present, which increase to 2200 after one hour. How many
bacteria will there be in another 3 hours?

9. A raindrop has its acceleration modelled by the differential equation ,
where v m/sec is its speed t sec after formation.
Find the equation for the speed of the raindrop t seconds after formation and hence,
deduce its limiting speed.

EXERCISES 24.3

R0
R0

dV
dh------- k V=

V 1
16------ h 5–( )2=

dy
dx------ x

1 x2+--------------=

1 2elog,( )

dN
dt------- N dN

dt-------⇔∝ kN=

dv
dt------ 9.8 1

4---v–=
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10. Water  flowing out of a hole at the bottom of a cylindrical container is described by the
 differential equation , where V is the volume of water remaining in the
 container.

(a) Show that the relationship between the height, h cm, of volume of water
 remaining in the container and the time, t minutes, for which water has been
 flowing out is given by the differential equation .

Hint: Use the chain rule.
(b) Initially the container, of height 25 cm is full of water. Find how long it will take

 for the container to empty if, after 1 minute, the level is 9cm.

11. A chemical reaction is such that the speed of the reaction, , for an amount of substance,

 x kg, present at any time t is defined by the differential equation ,
where k is a real constant. Given that x(0) = 0 and x(1) = 2, find t when x = 5.

12. Newton’s law of cooling states that the rate of change of cooling of a body is proportional
 proportional to the difference in temperature between the body and its surroundings.

An object with a temperature of 60˚C cools to a temperature of 50˚C in 8 minutes, when
 placed in a room whose temperature is kept at a constant 20˚C. What will the
 object’s temperature be in another 8 minutes?
13. A large tank holds 100 litres of brine which is made up with  80 kg of salt. A second 

solution is run into the tank at a rate of 10 litres/min. The mixture is kept uniform by
 constantly stirring and is allowed to flow out at the same rate.

Set up and solve, the differential equation for the amount of salt present in the tank
at any time t, t ≥ 0, for each of the following cases:
(a) i.      If the second solution is fresh water.

ii.     If the second solution has a concentration of 1kg/litre.
Now consider the case where the solution is flowing out at a rate of 8 litres/min. 
Set up and solve, the differential equation for the amount of salt present in the tank at any
time t, t ≥ 0, for each of the following cases:
(b) i.      If the second solution is fresh water.

ii.     If the second solution has a concentration of 1kg/litre.
14. The rate at which a chemical reaction creates a new substance y, is proportional to the

product of the differences  and . By setting up a differential equation,
show that , where k and c are real constants.

15. An economic model for the National Debt of a country has been suggested to follow the
related differential equations  and , where I dollars is the national
income and D dollars the national debt.
When the model is put into place, the country has a national income of $  and a
national debt of $ . 

dV
dt------- k h=

dh
dt------ k

πr2-------- h=

dx
dt------

dx
dt------ k 10 x–( ) 30 x–( )=

M y–( ) N y–( )
y Mkec N M–( )t N–

kec N M–( )t 1–
----------------------------------------=

dD
dt------- k1I= dI

dt----- k2I=

I0
D0
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(a) Show that 
(b) What does this model predict will happen over a long time frame.

16. The differential equation describing the motion of a parachutist, of mass m kg travelling
downwards with an initial speed , and subjected to air resistance that is proportional to
her current speed, v, is given by , where g  is her acceleration due to
gravity.

(a) Show that 
(b) Investigate the following situations;

i.     ii. iii. ,
sketching a graph for each case.

17. The rate of decrease of the intensity I with respect to the depth, x m, of a beam of light
 passing through water that has been treated with a chemical, is found to be proportional
 to the intensity at that depth. If the intensity of light at the surface is  and the constant

 of proportionality (i.e., the absorption coefficient) is given by , find an expression
for the intensity of light at any depth x units.

18. The charge Q on a charging capacitor in an RC circuit with constant voltage V is
 given by the differential equation

,
where . Find Q(t).

19. The harvesting of fish from a lake, is being carried out at a constant rate r. If N(t), is the
  population size of fish in the lake, we have that an appropriate model for the harvesting

process is given by the differential equation
                                .

Solve this differential equation and investigate the four cases;

i. r = 0 ii. iii. iv. .
How does the initial population size affect each of these cases?

20. A solid sphere is completely immersed in acid and dissolves at a rate directly proportional
to its surface area, A . After m minutes the volume is reduced by half. How long will
it take to completely dissolve the sphere?

D k1
k2
-----I0 ek2t 1–( ) D0+=

u
mdv

dt------ kv+ mg= m/s2

v mg
k------- 1 e

k
m---- t–

–    ue
k
m---- t–

t 0≥,+=

u mg
k-------> u mg

k-------< u mg
k-------=

I0

αe βx–

RdQ
dt------- Q

C----+ V=
Q 0( ) 0=

dN
dt------- k1N k2N2– r N t0( ),– N0= =

r k1
2

4k2
--------< r k1

2

4k2
--------= r k1

2

4k2
-------->

cm2
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25.1.1 DEFINITIONS

1. Matrix

Matrices are in many senses similar to vectors except that whilst vectors are represented by 
columns of numbers, matrices are generally blocks of numbers made up of a number of rows and 
columns. In their simplest form, matrices are often used to store information. 
Consider the following family shopping list:

If the family always makes the list in this way, that is beginning with Monday as far as the 
columns are concerned, and always recording the produce items in the same rows, then the 
headings become unnecessary and the information can be stored as a matrix (plural - matrices):

This matrix has four rows and seven columns and is said to have an order of 4 by 7. 
To enter this matrix on the TI-82/3, press the MATRIX key, select 
EDIT and matrix [A].

Next, enter the order of the matrix , and then enter the values 
given in the table. You can move from position to position by using 
the arrow keys or ENTER key. The screen is not large enough to 
display all the entries of this matrix. The other entries will ‘scroll’ into 
view when you use the right arrow.
Once the information has been stored in the matrix memory it can only be accessed using the 
MATRIX, NAMES submenu.
It is also useful to remember that spreadsheets are ideally suited to handle information in matrix 
form. Spreadsheets can generally handle larger matrices and do more with them, but you need a 
computer and these are not allowed in the exams (yet!).

Mon Tues Wed Thurs Fri Sat Sun
Bread (loaf) 1 1 0 0 0 2 0
Milk (litre) 3 1 3 2 0 5 1

Eggs 6 6 0 0 6 6 0
Butter (100g) 2 0 1 0 0 3 1

INTRODUCTION TO MATRICES25.1

C
H

A
P

T
E
R

 2
51 1 0 0 0 2 0

3 1 3 2 0 5 1
6 6 0 0 6 6 0
2 0 1 0 0 3 1

4 7×
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2. Equal Matrices

Two matrices are said to be equal iff 1. they have the same dimensions.
2. corresponding elements are equal.

e.g.,  iff x = 7 and y = 2;

 as they have different orders.  has order 2×2,  has order 3×2

3. Addition of Matrices

Two matrices A and B can only be added if they have of the same order. Then, they can be added 
by adding corresponding elements.

e.g., ;

 cannot be added as they are of different order.

4. Scalar multiplication

If A is any matrix, then , where k is a real number, is a new matrix for which each element of A 
has been multiplied by k.

e.g., ;

5. Subtraction of Matrices

The difference, A – B of two matrices A and B (of the same order) may be defined as A + (–B).
So, the difference, A – B, is a new matrix whose elements are the differences between 
corresponding elements of A and B.

e.g.,

1 4
2 5
6 x

1 4
y 5
6 7

=

1 5
2 9

1 5
2 9
0 0

≠ 1 5
2 9

1 5
2 9
0 0

1 2 3
4 5 6

3 4– 3
2 8 1–+ 1 3+ 2 4– 3 3+

4 2+ 5 8+ 6 1–
4 2– 6
6 13 5= =

2 5
7 1

4– 3 8
2 9 4+

kA

3 2 4
1– 5

3 2× 3 4×
3 1–× 3 5×

6 12
3– 15= =

1
2---

4 8 10
6 4– 2–– 2– 4– 5–

3– 2 1=

4 6
2 8–
1 0

2 1
5 3
2– 4

–
4 2– 6 1–
2 5– 8– 3–

1 2–( )– 0 4–

2 5
3– 11–
3 4–

= =
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6. Square Matrix

A square matrix is a matrix with the same number of rows as columns, so that an  matrix is 
a square matrix of order n.

e.g.,  is a square matrix of order 2;  is a square matrix of order 3.

7. Zero Matrix

A matrix with every element equal to zero is called a zero matrix. A zero matrix can have any 
dimension and is usually written as O.

e.g., each of the following are zero matrices; ; ; .

8. Additive Identity Matrix

For any matrix A, the zero matrix O (having the same order as A) is the additive identity of A.
i.e., 

9. Additive Inverse

The additive inverse of a matrix A is the matrix –A. 
This can be seen from the result that  A + (–A) = O = (–A) + A.

(a)

(b)

(c)

n n×

2 3–
4 6

1 4 0
3– 2 1
0 2– 1–

0 0 0 0
0 0

0 0
0 0
0 0

  A O+ A O A  += =

Three matrices are defined as follows:

Evaluate: (a) 2B (b) –3C (c) A + C
(d) A + B (e) 2A + 3C (f) 3A – 4C

A 2 3 4–
1 0 2–= B

2 1
5 3
4 5

= C 1– 3 0
3– 1– 6=

E 25.1XAMPLE

S
o
l
u
t
i
o
n

2B 2
2 1
5 3
4 5

×
4 2
10 6
8 10

= =

3C– 3 1– 3 0
3– 1– 6×– 3 9– 0

9 3 18–= =

2 3 4–
1 0 2–

1– 3 0
3– 1– 6+ 2 1– 3 3+ 4– 0+

1 3– 0 1– 2– 6+
1 6 4–
2– 1– 4= =
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(d) A + B cannot be calculated as the matrices are of different order.

(e)

 

(f)

As a second example we look at the matrix of the family shopping list that was introduced at the 
start of this chapter.
If a second family makes a shopping list using the same row and column 
headings, they will also store their information in a matrix of order 4 by 7. 
Suppose that this second family want to buy the items indicated in this second 
matrix.
If the two families wanted to place a single order, they would add the two 
matrices together. In this application, it would only make sense to add corresponding entries (top 
left to top left etc.

2A 3C+ 2 2 3 4–
1 0 2– 3 1– 3 0

3– 1– 6×+×=

4 6 8–
2 0 4–

3– 9 0
9– 3– 18+=

1 15 8–
7– 3– 14=

3A 4C– 3 2 3 4–
1 0 2– 4 1– 3 0

3– 1– 6×–×=

6 9 12–
3 0 6–

4– 12 0
12– 4– 24–=

10 3– 12–
15 4 30–=

1 1 2 0 0 2 0
3 0 1 2 0 5 1
6 2 0 1 2 6 0
2 1 1 0 1 3 1

1 1 0 0 0 2 0
3 1 3 2 0 5 1
6 6 0 0 6 6 0
2 0 1 0 0 3 1

1 1 2 0 0 2 0
3 0 1 2 0 5 1
6 2 0 1 2 6 0
2 1 1 0 1 3 1

+
1 1+ 1 1+ 0 2+ 0 0+ 0 0+ 2 2+ 0 0+
3 3+ 1 0+ 3 1+ 2 2+ 0 0+ 5 5+ 1 1+
6 6+ 6 2+ 0 0+ 0 1+ 6 2+ 6 6+ 0 0+
2 2+ 0 1+ 1 1+ 0 0+ 0 1+ 3 3+ 1 1+

=

2 2 2 0 0 4 0
6 1 4 4 0 10 2
12 8 0 1 8 12 0
4 1 2 0 1 6 2

=

Find x, y and z if A = B, where , A 2x y 1+
5 9= B x2 1+ 3

3z 4– z2
=

E 25.2XAMPLE
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If A = B then 

Now,  – (1) 
 – (2) 

 – (3) 
 – (4) 

From (3) and (4) we conclude that z = 3. Therefore, we have that x = 1, y = 2 and z = 3.

1. Two matrices are defined as: , evaluate:

(i) 2P (ii) –Q (iii) 3Q
(iv) 2P + Q (v) 3P + 2Q (vi) Q – 4P

2. If , evaluate, where possible:

(i) –A (ii) –2A (iii) B + C
(iv) 2B (v) 2B – C (vi) 3(B + C)

3. If , evaluate:

(i) 3X (ii) 2Y (iii) X + Y
(iv) X – Y (v) 3X + 2Y (vi) 2Y – X

4. The diagram shows a spreadsheet used to store the sales of a small shop.

S
o
l
u
t
i
o
n

2x y 1+
5 9

x2 1+ 3
3z 4– z2

2x⇔ x2 1 y 1+,+ 3 5, 3z 4 z2,– 9= = = = =

2x x2 1 x2 2x– 1+⇔+ 0 x 1–( )2⇔ 0 x∴ 1= = = =
y 1+ 3 y⇔ 2= =
5 3z 4 9⇔– 3z z⇔ 3= = =
z2 9 z⇔ 3±= =

EXERCISES 25.1.1

P 1 4
1– 8 Q, 2 3–

1– 5= =

A 1 1 2
0 6– 9 B,

1 0
2 1
0 1–

C,
3– 5–
0 1
3 2

= = =

X
1 1 2
0 1 4
0 2 1

Y,
1– 2– 3
2 0 1
2 0 4–

= =

A B C D E F G H I J K L M
1 Week 1 Week 2
2 Mon Tues Wed Thurs Fri Mon Tues Wed Thurs Fri
3 Nuts 4 27 20 18 32 Nuts 45 4 44 4 53
4 Bolts 34 33 39 50 5 Bolts 11 10 10 48 8
5 Pegs 37 23 51 23 29 Pegs 23 10 39 51 9
6 Pins 0 48 45 10 23 Pins 36 22 44 5 38
7 Clips 49 21 55 17 25 Clips 53 17 56 28 11
8 Taps 53 10 49 9 49 Taps 8 16 33 47 26
9 Plugs 12 12 45 16 50 Plugs 46 33 0 25 9
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(i) What was the number of sales of pins on Friday of Week 1?
(ii) Which item sold least on Thursday of Week 2?
(iii) Which item sold most on Monday of Week 1?
(iv) On what day were there no sales of Plugs?

A place on the spreadsheet at which the total sales in the two weeks will be calculated by formula 
is needed. What formula should be used to calculate the Monday sales of nuts? If this is copied to 
the cell immediately below, what will the formula read?
5. A stock control system stores the stocks of seven different products as the rows of a

matrix. The company works a five day week and records the closing stocks as the columns
of a matrix. 
What is the order of the matrix?

6. If , express A + B as a matrix.

7. The zero matrix has entries that are all zero. Find the value(s) of a such that P + Q is the

zero matrix. .

8. A diagonal matrix has all zero elements except for those on the top left to bottom right
diagonal. Find the values of a such that the matrix A + B is diagonal where:

9. If  and  simplify

(a) (b) (c) (d)

10. If  and   simplify

(a) (b)

11. Find a and b if aA + B = A where  and .

12. Find x if .

A a 1
1– a– B, 2a 2

1 a
= =

P a 2
5 3– Q, 3– a 5–

5– a
= =

A
5 1 a
3 7 4–
2– a 2+ 2

= B
3 1– 2–
3– 2– 2a
2 4– 3

=

A sin2θ 0
0 cos2θ= B cos2θ 0

0 sin2θ=

A B+ A B– 2A 1 0
0 1– A B 1 0

0 1–+

A sin2θ θsin
θcos– cos2θ= B cos2θ θsin–

θcos sin2θ=

A B+ A B–

A 2 5
3– 4= B b– 10–

6 2– b
=

x2 1 1–
2 1 x 2 4

1 6–
3 1
4 5+ + 6 4

7 0=
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25.1.2 MATRIX MULTIPLICATION

Matrix multiplication has a special definition that was developed because it appears to be the 
most practical. This definition can be useful in business applications, solving simultaneous 
equations and in transformation geometry. This last application has helped in the development of 
one of the newest braches of mathematics, fractal geometry.
The definition involves taking the rows of the left hand 
matrix and pairing these with the columns of the second 
matrix. If the problem is to find the product:
The first step is to take the first row of the left hand matrix [2 5 0], 
write it as a column and pair it up with the first column of the 2nd 
matrix. The pairs are then multiplied and the products totalled to give 
a single number, in this case, ‘2’.
This number is the result of combining the first row and the first column. It becomes the element 
in the first row and first column of the answer. The calculation must be completed for all the 
combinations of rows and columns. The nine calculations are:

: :

: :

: :

In matrix form, this answer is: 

 

2 5 0
1 0 2–
1 3– 1

1 3 1–
0 2 0
1 3– 1

×

2 1× 2=
5 0× 0=
0 1× 0=

2

2 5 0
1 0 2–
1 3– 1

1 3 1–
0 2 0
1 3– 1

×
2 5 0
1 0 2–
1 3– 1

1 3 1–
0 2 0
1 3– 1

×
2 5 0
1 0 2–
1 3– 1

1 3 1–
0 2 0
1 3– 1

×

2 1× 2=
5 0× 0=
0 1× 0=

2

2 3× 6=
5 2× 10=

0 3–× 0=
16

2 1–× 2–=
5 0× 0=
0 1× 0=

2–
2 5 0
1 0 2–
1 3– 1

1 3 1–
0 2 0
1 3– 1

×
2 5 0
1 0 2–
1 3– 1

1 3 1–
0 2 0
1 3– 1

×
2 5 0
1 0 2–
1 3– 1

1 3 1–
0 2 0
1 3– 1

×

1 1× 1=
0 0× 0=
2– 1× 2–=

1–

1 3× 3=
0 2× 0=

2– 3–× 6=
9

1 1–× 1–=
0 0× 0=
2– 1× 2–=

3–
2 5 0
1 0 2–
1 3– 1

1 3 1–
0 2 0
1 3– 1

×
2 5 0
1 0 2–
1 3– 1

1 3 1–
0 2 0
1 3– 1

×
2 5 0
1 0 2–
1 3– 1

1 3 1–
0 2 0
1 3– 1

×

1 1× 1=
3– 0× 0=
1 1× 1=

2

1 3× 3=
3– 2× 6–=

1 3–× 3–=
6–

1 1–× 1–=
3– 0× 0=
1 1× 1=

0

2 16 2–
1– 9 3–
2 6– 0
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It is not only square matrices that can be multiplied. All that is necessary is for the columns of the 
first matrix to match the number of rows in the second matrix. That is,

e.g., the following products are possible:  = matrix of order (2×2)

 = matrix of order (1×2)

the following product is not possible:

Note: reversing the order in which the matrices in our example are multiplied does not yield the 

same result. That is,  ≠ 

This shows us that matrix multiplication is not commutative. This means that the order in which 
the matrices are multiplied does matter.

(a)  

Note, in this case, multiplying a 2 by 2 matrix into a 2 by 3 matrix produces a 2 by 3 matrix. 

If A is a matrix of order  and B is a matrix of order , then their product is the 
matrix C = AB of order . So that

l m× m n×
l n×

 A       ×        B      =     C
order:        (l × m)   ×   (m × n)  =  (l × n)

same

matrix:

2 4 7
1 5 2–

1 2–
4– 5
1 6

2 3×( ) 3 2×( )×

4 5– 10 6
3 1
5– 2
11– 3
9 4

1 4×( ) 4 2×( )×
1– 5 8
9 3 12

3 6
2 10

2 3×( ) 2 2×( )×

1 3 1–
0 2 0
1 3– 1

2 5 0
1 0 2–
1 3– 1

4 8 7–
2 0 4–
0 2 7

=
2 16 2–
1– 9 3–
2 6– 0

For the matrices: , calculate, 

where possible: (a) AB (b) BC (c) CA
(d) BA (e) (f) ABC

A 1 0
2 6 B, 2 1– 1–

2 0 3– C,
2 1–
3– 2
1 4

= = =

A2

E 25.3XAMPLE

S
o
l
u
t
i
o
n

AB 1 0
2 6

2 1– 1–
2 0 3–

2 1– 1–
16 2– 20–= =
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(b

(c)

(d)  cannot be calculated as the orders are not compatible.

(e)

(f)

There are two ways of calculating this triple product. The second is:

This second method involves multiplying the first two matrices at the start, getting an answer and 
then multiplying this into the third. The order of the matrices has not been altered, just the way in 
which they have been grouped. This is called the associative property of matrix multiplication

Laws of Matrix Multiplication

If the matrices A B, C are conformable under multiplication and belong to the set of
matrices, M (say), then

Note: Under multiplication, the identity matrix, I, is a square matrix with all of its elements zero
except for those on its leading diagonal, where the elements are all one. Also, if a matrix
has an inverse under multiplication, it must be a square matrix.

BC 2 1– 1–
2 0 3–

2 1–
3– 2
1 4

6 8–
1 14–= =

CA
2 1–
3– 2
1 4

1 0
2 6

0 6–
1 12
9 24

= =

BA 2 1– 1–
2 0 3–

1 0
2 6=

A2 1 0
2 6

1 0
2 6

1 0
14 36= =

ABC 1 0
2 6

2 1– 1–
2 0 3–

2 1–
3– 2
1 4

1 0
2 6

6 8–
1 14–

6 8–
18 100–= = =

ABC 1 0
2 6

2 1– 1–
2 0 3–

2 1–
3– 2
1 4

2 1– 1–
16 2– 20–

2 1–
3– 2
1 4

6 8–
18 100–= = =

1. as , i.e., closure holds in matrix multiplication.
2. AB ≠ BA, i.e., multiplication is not commutative
3. (AB)C = A(BC) i.e., multiplication is associative.
4. A(B + C) = AB + AC i.e., multiplication is distributive.
5. AI = A = IA i.e., there exists a multiplicative identity.
6. i.e., there exists a multiplicative inverse.

AB M∈

AA 1– I A 1– A= =
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Examples of the identity matrix under matrix multiplication are

 (also written as );  (also written as ).

Similarly, if the inverse of a matrix A exists, then A must first of all be a square matrix.

Using a Graphics Calculator

Matrices can be stored as described earlier in this chapter. The 
names can be recovered using the MATRIX NAME command. To 
calculate AB in the example discussed above, enter the correct 
matrices and then draw out the two names to produce the result.

We start by entering the data into the TI–83:

(a) (b) (c)

1. Evaluate the following matrix products:

(i) (ii) (iii)

(iv) (v) (vi)

I 1 0
0 1= I2 I

1 0 0
0 1 0
0 0 1

= I3

For the matrices: , calculate, where possible:

(a) AB (b) (c)

A 1 0
2 6 B, 2 1– 1–

2 0 3–= =

A3 B2

E 25.4XAMPLE

S
o
l
u
t
i
o
n

As B is not a square matrix, 
then  cannot be evaluated.B2

EXERCISES 25.1.2

2 3
1– 0

2– 1
3 2–

2 2–
1 5

0 1
3– 5

6– 5
0 3

2 2–
1 1

2– 3
5– 2

0 8
5– 2

1
3--- 7
1
2---

3
4---

1– 5
1
2--- 4

1.5 2
3 1.5–

1.6– 1
2.5 2
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(vii) (viii) (ix)

(x) (xi) (xii)

(xiii) (xiv)

(xv) (xvi)

2. A matrix is defined by 

(i) Find (ii) Find (iii) Find a rule for 

3. The following information gives the numbers of journeys made by the delivery department
of a small company:

The company has four different depots and the above table indicates that there was one
journey made from depot A to depot B and three journeys made from B to A etc.
This second table gives the loading costs per load for goods leaving each depot.

It costs $120 to load for one trip at depot A, $105  to load for one trip at depot B, etc.
(i) Write these two sets of information as matrices.
(ii) Find the product of the two matrices.
(iii) Explain the meaning of the entries in the product matrix.

From:→
To↓ A B C D

A 0 3 4 2
B 1 0 0 6
C 1 2 0 2
D 4 3 0 0

Depot Cost
A $120
B $105
C $110
D $100

4 2–
0 3–

2 1– 1
2– 0 1

5 1–
2– 0

2– 1 1
1– 2 3

1 2
4 7

1
2---

1
2---– 3

1
3--- 1 1

3---–

2 1
3– 0

1.3 1.4 1.9
1– 3.5– 0

1 2– 0
2– 3– 1
3 0 1

1 2–
5– 0
2– 1–

1 6 1–
2 3– 9–
1 2 0

6 2
0 1
1– 3

1 0 2
2 1 0
3 0 1

6 0 2
0 1 0
3 3 0

1– 3 2–
0 9– 2
3– 2– 1

1 2– 1–
0 0 2
2 2– 3

1 x x
2 x 2x
x– 1 2

x 1
x x–

2x 0

a 2x a–
a 2a– 0
0 a x–

1 2 3
x 2 x–
a 0 1

M 1– 0
0 1–=

M2 M3 M4 M5, , Mn
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4. Two matrices are defined as follows: 

Find the product AB and hence find a value of n such that .

5. Find, where possible, the order of matrix A so that the following equations can be solved

(a) (b) (c)

(d) (e) (f)

6. (a) If  and  does ?

(b) If  and  does ?

(c) What conditions must be placed on the matrices A and B so that
?

7. Find all possible matrices X which satisfy the equation 

8. Find the real numbers a and b if  and .

9. Three divisions, A, B and C,  of an animation studio are required to produce a certain
amount of conceptual paintings, P, footage of film, F, and storyboards, S. The amounts
produced by each division can be described using the following matrix:

The cost of producing a conceptual painting is $50. The profit made per footage of film is
$15 and the cost per storyboard is $20.
Using a matrix method, which division is the most profitable?

A
1
2---

3
2-------–

3
2-------

1
2---

B,
3

2-------
1
2---–

1
2---

3
2-------

= =

AB( )n 1 0
0 1=

a b
c d

A x
y

= A a b
c d

x
y

= a b c A x y=

a b c A
m n
x y
u v

= A a b c
m n
x y
u v

=
a
b
c

A
x y z
k l m
n o p

=

A a b
1 1= B a 1

b– 1= A B–( ) A B+( ) A2 B2–=

A 1 0
0 1= B a 1

1 b
= A B–( ) A B+( ) A2 B2–=

A B–( ) A B+( ) A2 B2–=

5 4
10 8 X 12

24=

aX2 bX+ 2I= X 2 1
1 3=

A
B
C

13 120 30
5 95 15
11 115 30

P    F    S
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10. Let S be the matrix  and T be the matrix .

(a) Find i. ii. .
(b) Deduce i. ii. , where n is a natural number ≥ 1.

(c) For what value(s) of  will  –  = O?

11. If , b ≠ 0 and , find the conditions that the elements of B must 

satisfy so that the matrices A and B are commutative under matrix multiplication.

12. If  where ,  and x ≠ 0 ≠ y,  find k.

13. Find the matrix A and express a, b and c in terms of p, if the system of equations

  is expressed in the matrix form 

14. If , where . Show that . 

15. Given that , ,  and , find x, y, a, b.

16. For the matrices X and Y, show that if  and  then .

17. The Fibonacci numbers 0, 1, 1, 2, 3, 5, . . . are generated by the the recurrence relationship
, where n ≥ 0 and  is the nth number such that .

Given the matrix 

(a) find i. ii. iii.
(b) deduce an expression for  where .

θsin– θcos
θcos θsin

2θsin– 2θcos
2θcos 2θsin

S2 S3

S2n S2n 1+

θ θsin– θcos
θcos θsin

2θsin– 2θcos
2θcos 2θsin

A a b
c d

= B w x
y z

=

AX kX k ∈,= A 4 2–
2– 4= X x

y
=

x z+ 2p=
x y– p2z+ p 1–=

px y 2p 1+( )z–+ p=
A

x
y
z

a
b
c

=

A 2i– 1
1 2i

= i2 1–= A2 4I+ 1 0
0 0=

A 3–
2= X x y= B a 6

6 b
= AX B=

XY X= YX Y= X2 X=

Fn 2+ Fn 1+ Fn+= Fn F0 0 F1, 1= =

A 1 1
1 0=

A2 A3 A4

An n ∈
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25.2.1 INVERSE AND DETERMINANT OF 2 BY 2 MATRICES

Matrices with two rows and two columns can be manipulated and many useful calculations can 
be completed with them. We begin by providing some definitions.
1. The identity matrix
Recall, the identity matrix, I, is defined as the matrix such that  for all square 

matrices A. For 2 by 2 matrices, . 

2. Determinant

The determinant of a 2 by 2 matrix is defined by  or .

The determinant is a scalar. If a matrix has a non-zero determinant, it is said to be non-singular, 
and if the determinant is zero, the matrix is said to be singular. We shall see that whether or not 
a matrix is singular is significant for some applications.
3. Inverse
The inverse of a square matrix A is written . 
The product of a matrix and its inverse is the identity matrix, I, . For 2 by 2 
matrices, the inverse can be found by interchanging the top left and bottom right entries and 
changing the signs of the top right and bottom left entries. Finally, the inverse is found by 
dividing by the determinant. This can be done by dividing the matrix as a whole or by dividing 
each element separately. That is,

Given that we need to divide by the determinant in order to find the inverse, if the determinant is 
zero we cannot divide and thus we cannot find the inverse. This implies that a singular matrix 
has no inverse.

PROOF

Let  and its inverse, , then, if  exists, we have .

Using the L.H.S, we have,

INVERSES AND DETERMINANTS25.2

AI A IA= =

I 1 0
0 1=

det a b
c d

ad bc–= a b
c d

ad bc–=

A 1–

AA 1– A 1– A I= =

If , then, A a b
c d

= A 1–
d

ad bc–------------------ b–
ad bc–------------------

c–
ad bc–------------------ a

ad bc–------------------
1

ad bc–------------------ d b–
c– a

= =

A a b
c d

= A 1– u v
x y

= A 1– AA 1– I A 1– A= =

a b
c d

u v
x y

1 0
0 1

au bx+ av by+
cu dx+ cv dy+⇔ 1 0

0 1= =



Matrices – CHAPTER 25

889

That is, we have the system of equations:  and .
By solving these sets of equations simultaneously, we obtain;

or      

That is, 

Of course, this only works if  exists, i.e., if .

(a) det  so the matrix is non-singular. 

To find the inverse matrix, we interchange the 2 and 3 and reverse the signs of the other
two elements. Since the determinant is 1, this gives us the inverse matrix directly:

. 

To check that this is correct, we calculate the products:

. 

In both cases, the product is the identity matrix confirming that the inverse is correct.

(b) Let . Then, det(B) =  so the matrix is

non-singular. 

The necessary interchanges give , and, after dividing each element by the

determinant the inverse .

au bx+ 1=
cu dx+ 0=

av by+ 0=
cv dy+ 1=

u d
ad bc–------------------ v, b

ad bc–------------------ x,– c
ad bc–------------------ y,– a

ad bc–------------------= = = =

u d
A------ v, b

A------ x,– c
A------ y,– a

A------= = = =

If A a b
c d

 then A 1–
d

ad bc–------------------ b
ad bc–------------------–

c
ad bc–------------------– a

ad bc–------------------
1

ad bc–------------------ d b–
c– a

1
A------

d b–
c– a

= = ==

A 1– A ad bc 0≠–=

Find the determinant and, where possible, the inverses of these matrices:

(a) (b) (c)2 1
5 3

3– 2
0 1–

2 6
1 3

E 25.5XAMPLE

S
o
l
u
t
i
o
n

2 1
5 3 2 3 1 5×–× 1= =

3 1–
5– 2

2 1
5 3

3 1–
5– 2

1 0
0 1

3 1–
5– 2

2 1
5 3, 1 0

0 1= =

B 3– 2
0 1–= 3– 2

0 1– 3 1– 2 0×–×– 3= =

1– 2–
0 3–

B 1– 1
3---

1– 2–
0 3–

1
3---– 2

3---–
0 1–

= =
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The check gives:  (which is correct).

(c) Now, det  so the matrix is singular. 

Because the calculation of an inverse involves division by the determinant and division by zero is 
a forbidden process, singular matrices do not have inverses.

The answers in Example 25.5 can be checked using the TI–83:
First delete any existing matrices from the memory of the calculator – i.e., Press 2nd ‘+’  ‘2’  ‘5’ 
and delete the matrices you no longer wish to use. Then define the above matrices as

[A] = , [B] =  and [C] =  and use the MATH menu after calling up the 

MATRIX option:

If the matrix A is singular, then  = det(A) = 0.

Now, 

 
Then, we must have 

 or .
That is, matrix A will be singular iff k = –3 or 2.

3– 2
0 1–

1
3---– 2

3---–
0 1–

1 0
0 1

1
3---– 2

3---–
0 1–

3– 2
0 1–, 1 0

0 1= =

2 6
1 3 2 3 6 1×–× 0= =

2 1
5 3

3– 2
0 1–

2 6
1 3

For what value(s) of k will the matrix  be singular?A k 2
3 k 1+=

E 25.6XAMPLE

S
o
l
u
t
i
o
n

A

A k 2
3 k 1+ k k 1+( ) 2 3×–= =

k2 k 6–+=
k2 k 6–+ 0 k 3+( ) k 2–( )⇔ 0= =

k⇔ 3–= k 2=

Express the determinant,  in terms of the matrix A = .k2 2
3k 5

5k 2
3 1

E 25.7XAMPLE
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 = 

= 

= 

25.2.2 INVERSE AND DETERMINANT OF 3 BY 3 MATRICES

In the same way that we determined the determinant of a 2 by 2 matrix, we now determine the 
determinant of a 3 by 3 matrix.
The determinant of a 3 by 3 matrix can be defined in terms of the determinant of 2 by 2 
submatrices. 

The three terms are made from the elements of the first row paired with the 2 by 2 matrix in the 
other columns:

The terms are signed according to the sum of the row and column in which the single element 
lies. In the first term, a lies in the first row and first column. This is even and so the term is 
positive. The second part of the expression uses b. This is in the second row and first column. This 
is an odd total and so the term is negative. This calculation can also be done working along any 
row or column that contains ones and/or zeros (if they exist). In short, the sign attached to each 
term is given by the alternating sign rule:

S
o
l
u
t
i
o
n

k2 2
3k 5 5k2 6k– k 5k 6–( )=

k 5k 2
3 1

k A

a b c
d e f
g h i

a e f
h i

b d f
g i

×–× c d e
g h

×+=

a b c
d e f
g h i

a e f
h i

b d f
g i

×–× c d e
g h

×+=

a b c
d e f
g h i

a e f
h i

b d f
g i

×–× c d e
g h

×+=

a b c
d e f
g h i

a e f
h i

b d f
g i

×–× c d e
g h

×+=

 +  –   + 
 –  +  – 
 +  –  + 
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Expanding along the first row gives:

Similarly, expanding down the first column gives:

That is, it does not matter which column or row is used to ‘expand’ the determinant.
As the determinant is not zero, the matrix is, therefore, non-singular.
A quicker calculation would be that obtained from expanding the determinant along the second 
row, as this contains a 1 and a 0. (This is left for you to verify).

An important result of determinant, is the following:

For the matrix to be singular, then = 0

Expanding along the first row we have:

Find the determinant of 
2 1– 4
1 2 0
2 1 2

E 25.8XAMPLE

S
o
l
u
t
i
o
n

2 1– 4
1 2 0
2 1 2

2 2 0
1 2 1–( ) 1 0

2 2– 4 1 2
2 1+=

2 2 2 0 1×–×( ) 1 1 2 2 0×–×( ) 4 1 1 2 2×–×( )+ +=
2 4 1 2 4 3–×+×+×=
8 2 12–+=
2–=

2 1– 4
1 2 0
2 1 2

2 2 0
1 2 1 1– 4

1 2– 2 1– 4
2 0+=

2 2 2 0 1×–×( ) 1 1 2 4 1×–×–( )– 2 1 0 4 2×–×–( )+=
2 4 1 6– 2 8–×+×–×=
8 6 16–+=
2–=

For any two square matrices, A and B, of the same order, .det AB( ) det A( )det B( )=

For what value(s) of k will the matrix  be singular?
1 k–( ) 1 1

1 1 k–( ) 1
1 1 k

E 25.9XAMPLE

S
o
l
u
t
i
o
n

1 k–( ) 1 1
1 1 k–( ) 1
1 1 k
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Checking these solutions by substituting back into the original matrix, we find that for 
k = 0, the determinant is zero, for  the determinant is  while for 

 the determinant is . Therefore, only solution is k = 0.

Properties of determinants

There are a number of useful properties of determinants that can reduce the amount of work 
involved when evaluating them. We list some of these now.

We subtract column 2 from column 1 (i.e., ) and column 3 from column 2 (i.e., ).

i.e., 

Next, we expand along the first row (as two of the elements are zero):

1 k–( ) 1 k–( ) 1
1 k

1 1 1
1 k

– 1 1 1 k–( )
1 1+ 0=

1 k–( ) k 1 k–( ) 1–[ ] k 1–[ ]– 1 1 k–( )–[ ]+∴ 0=
1 k–( ) k k2– 1–( ) k– 1 k+ +⇔ 0=

k3 2k2– 2k–⇔ 0=
k k2 2k– 2–( )⇔ 0=

k k 1– 3+( ) k 1– 3–( )⇔ 0=
k∴ 0 or 1 3 or 1 3+–=

k 1 3–= 4 1 3–( )
k 1 3+= 4 1 3+( )

1. If all of the elements of a row (or column) of a matrix A are zero, then det(A) = 0.
2. If two rows (or columns) of a matrix A are identical or in proportion, then det(A) = 0.
3. If any two rows (or columns) of a matrix A are interchanged (call this new matrix B),

then, det(B) = – det(A).
4. If we add any non-zero multiple of one row (or column) of a matrix A to a different

row (or column), (call this new matrix B), then det(B) = det(A).
5. If each of the elements in a row (or column) of a matrix A are multiplied by some

scalar, k (call this new matrix B), then, det(B) = kdet(A).

Show that .
1 1 1
x y z
x2 y2 z2

x y–( ) y z–( ) z x–( )=
E 25.10XAMPLE

S
o
l
u
t
i
o
n

C1 C2– C2 C3–
1 1 1
x y z
x2 y2 z2

0 0 1
x y– y z– z

x2 y2– y2 z2– z2
=
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Searching for the inverse of a 3 by 3 matrix

We begin this section by considering the following example.

Using the TI–83 we have:

So, . That is, .

We can rewrite  as . 

However, we also know that  and so we have that .

That is, .

In Example 25.11 we were able to find the inverse of a matrix based on the result that if the 
product of two matrices produces the identity matrix (or a multiple of the identity matrix) then the 
matrices must be inverses of each other. The problem here is that we need to be given the two 

0 0 1
x y– y z– z

x2 y2– y2 z2– z2
0 0– 1 x y– y z–

x2 y2– y2 z2–+=

x y–( ) y2 z2–( ) y z–( ) x2 y2–( )–=
x y–( ) y z–( ) y z+( ) y z–( ) x y–( ) x y+( )–=
x y–( ) y z–( ) y z+( ) x y+( )–[ ]=
x y–( ) y z–( ) z x–( )=

Find the product AB where  and 

Hence find .

A
1 1 2
3 4 1
1 3 2–

= B
11– 8 7–
7 4– 5
5 2– 1

=

A 1–

E 25.11XAMPLE

S
o
l
u
t
i
o
n

AB
1 1 2
3 4 1
1 3 2–

11– 8 7–
7 4– 5
5 2– 1

6 0 0
0 6 0
0 0 6

= = AB 6I=

AB 6I= A 1
6---B  × I=

A A 1–× I= A 1– 1
6---B=

A 1– 1
6---

11– 8 7–
7 4– 5
5 2– 1

=
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matrices such that their product will result in the identity matrix (or a multiple of the identity 
matrix). So, what happens when we do not have two such matrices?
It should also be noted at this stage that the TI–83 can also produce the inverse of a 3 by 3 matrix. 
Using Example 25.11 we have:

In §25.2.1 we were able to obtain the inverse of non-singular 2 by 2 square matrices. A similar 
result can also be obtained for a 3 by 3 matrix, however, the process for obtaining the general 
form for the inverse of a 3 by 3 matrix is beyond the scope of this course. Nonetheless, we can 
still obtain the inverse of a 3 by 3 (or other squares matrices of higher order) by using a method 
known as the Gaussian method, (also known as the Gauss–Jordan Elimination Method) named 
after the great mathematician, Carl Friedrich Gauss (1777–1855) and the German geodesist 
Wilhelm Jordan (1842–1899) who later generalised Gauss’s method to solve problems in large-
scale surveying.
The method requires the pairing of the matrix A and the identity matrix, in a form known as the 
augmented matrix form. Then, by making use of basic arithmetic applied to the rows of the 
augmented matrix we convert the matrix A to the identity matrix – and in the process the identity 
matrix is converted to . That is, 

We set up the augmented matrix form, :

The aim is now to use linear combinations of the rows to reduce the left hand half of the tableau 
to the identity matrix. The first step is to halve the first row to make the top left entry 1.

A 1–

Step 1: Set up augmented matrix form: 
Step 2: Use a sequence of elementary row operations

(i.e., , replaces  with )
Step 3: Continue Step 2 until the augmented matrix 

is achieved.
Step 4: .

 A  I  [ ]

Ri αRi βR j+→ Ri αRi βR j+
 I   B [ ]

B A 1–=

Find the inverse of .A
2 1– 4
1 2 0
2 1 2

=
E 25.12XAMPLE

S
o
l
u
t
i
o
n

 A  I  [ ]
2 1– 4
1 2 0
2 1 2

    
1 0 0
0 1 0
0 0 1
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The next step is to replace row 2 with row 2 – row 1 and row 3 with row 3 – twice row 1. This will 
make the first column correct.

The next thing to do is reduce the term in the second row and second column to 1 by dividing 
each element in the row by .

 

Next, we use the term in the second row and second column as the pivot (the basis for reducing 
the next column). Row 1 is replaced by row 1 + half row 2. Row 3 is replaced by row 3 – twice 
row 2.

Next, reduce the bottom right element to 1 by dividing the bottom row by :

Finally, use the 1 to reduce the elements above it to zero. Replace row 1 by row 1 minus  times 

row 3. Row 2 is replaced by row 2 + ×row 3.

R1
1
2--- R1×→ 1 1

2---– 2
1 2 0
2 1 2

    
1
2--- 0 0
0 1 0
0 0 1

R2 R2 R1  –→
R3 R3 2R1–→

1 1
2---– 2

0 21
2--- 2–

0 2 2–

    
1
2--- 0 0
1
2---– 1 0
1– 0 1

21
2---

R2 R2 21
2---÷→

1 1
2---– 2

0 1 4
5---–

0 2 2–

    
1
2--- 0 0
1
5---– 2

5--- 0
1– 0 1

R1 R1
1
2---R2+→

R3 R3 2R2–→

1 0 13
5---

0 1 4
5---–

0 0 2
5---–

    

2
5---

1
5--- 0

1
5---– 2

5--- 0
3
5---– 4

5---– 1

2
5---–

R3 R3
2
5---–  ÷→

1 0 13
5---

0 1 4
5---–

0 0 1

    

2
5---

1
5--- 0

1
5---– 2

5--- 0
3
2--- 2 21

2---–

13
5---

4
5---
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From this we can conclude that the inverse of  is .

1. Find the determinants of the following matrices:

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

2. Find the inverses of these matrices, where they exist.

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi)

R1 R1 13
5--- R3×–→

R2 R2
4
5--- R3×+→

1 0 0
0 1 0
0 0 1

    
2– 3– 4
1 2 2–
3
2--- 2 21

2---–

2 1– 4
1 2 0
2 1 2

2– 3– 4
1 2 2–
3
2--- 2 21

2---–

EXERCISES 25.2

2 6
2 4

3 0
2 3

3– 2
0 4–

4 2–
1 0

3 3–
4 1

1
3---

2
3---–

1
3---

2
3---

0.4 0.1–
0.2– 1.3

1
2------- 3

2-------–
1
2------- 5

2-------

θcos θsin–
θsin θcos

x 2
1 x

a a
1 a

3
2------- 1
1
2--- 3

2– 4
1 0

3 2
4– 2–

2– 2–
4 3–

1 0
2– 4–

4– 1–
1 0

3 2
6 4

1– 3–
4 3–

3 2–
4 4–

0.2– 0.2
0.2– 0.8–

0 1
1
3---

1
3---–

1
4---

1
4---

1
6---

1
6---–

2
9---

1
3---

1
9---

1
3---–

3 4
2 3

x 1
2x 3

2 x
3 x

x x 1–
x 1+ 1

x 1–-----------
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3. Find the value(s) of x such that  is singular.

4. Find the value(s) of x such that 

5. If , find the value of a.

6. Find the determinant of the following matrices

(a) (b) (c) (d)

7. Using the Gaussian method find the inverse (where it exists) of each of the matrices in Q.6.

8. Find the determinant and using the Gaussian method, find the inverse of .

9. For the matrix: , find the value of p such that the determinant of the matrix is

35. Find the inverse of this matrix.

10. Prove that for two square matrices A & B, , where ,

11. Find the determinant and, using the Gaussian method, find the inverse of .

12. Find the value of x such that the matrix  is singular.

13. Find the determinant and inverse of the matrix .

14. If A is a  matrix, and k is a real non-zero number, prove that
(a) (b)

x 2
2 x

1
x---

3– 4
3 4

4 4–
3– 3–

1 0
0 1=

2 4
1 1

a 2
a– 1–

1 0
0 1=

2 1– 3
1 3 4
2 2 1

4 2– 3
3 1– 2–
2 4 1–

3 2– 1
2 1 4–
1 1 3–

0 3 1–
3 2– 1
2– 0 1

1 0 2
0 2 1
1 1 0

1– 3 p
3 2– 1
4 1– 2–

AB( ) 1– B 1– A 1–= A 0 B≠ ≠

1– 0 2–
2 1 1–
1
2---

3
4--- 3

x 3– x
1– 0 2
2 1 5–

2 5 2–
1– 5 2
3 1 4–

2 2×
kA( ) 1– k 1– A 1–= Am( ) 1– A 1–( )m=
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15. (a) If  and , find the product . Hence find .

(b) If  and , find the product . Hence find .

(c) If  and , find the product . Hence find .

16. Find x for each of the following

(a) (b)  = 0

17. If  and  prove that .

18. (a) If  prove that .
(b) Show that for any square matrix A i. .

ii. .

(c) Prove that 

(d) If A is a  matrix, show that .

Hence find the real numbers  and  such that  and .

(e) If  show that i. show that .
ii. show that .
iii. find .

19.  If  and a, b and c are unequal real numbers, show that a + b + c = x.

20. Prove that if  then A = I if  and  if 

21. Find the value(s) of k for each of the following

(a) (b)

A
1 2– 4
2 1 2–
1– 2 1

= B
1 2 0
0 1 2
1 0 1

= AB A 1–

A
5 8– 1–
2 3– 1–
3– 5 1

= B
2 3 5
1 2 3
1 1– 1

= AB A 1–

A
8 1– 3–
2 1– 0
7– 2 3

= B
1 1 1
2 1– 2
1 3 2

= AB A 1–

x 1– 1 2
1 1 x– 1
1– 1 2 x–

0=
1 x 1+ x 1+

x 1+ 0 2
x 1+ 2 0

αX2 βX γI+ + O= A Y 1– XY= αA2 βA γI+ + O=

A A 1–= A 2 1– 0=
An A n=
kA k A=

a k+ b
c k+ d

a b
c d

k b
k d

+=

2 2× A2 a d+( )A– A I+ O=

α β A2 αA βI+= A 5 6
8 9=

A2 A= I A+( )2 I 3A+=
I A+( )n I 2n 1–( )A+=

A

1 ab cx+ c2

1 bc ax+ a2

1 ca bx+ b2
0=

A2 I= A I+ 0≠ A I–= A I– 0≠

x y x y+
y x y+ x

x y+ x y
k x3 y3+( )=

x y y
y x y
y y x

x 2ky–( ) x ky+( )2=
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The special definition of matrix multiplication makes it possible to apply matrix methods to the 
problem of solving simultaneous equations. A system of two simultaneous equations in two 
unknowns can be represented as a single matrix equation as follows.

(a) The matrix version of the pair of equations  is .

The left hand side is represented by a 2 by 2 matrix containing the coefficients of the
equations multiplied by a column matrix containing the variables. The right hand side is
represented by a column matrix containing the right hand sides of the original equations.

The reason that the two representations are equivalent can be seen when the matrix version is 

expanded:

The two matrices given as equal above are only equal if corresponding elements are identical. So, 
the top elements must be equal giving  and the bottom elements must be equal 
giving , which are the two equations we were given.

(ii) The second of the equations  must be rearranged to  

before writing in matrix form to get: .

Now that we can convert a pair of simultaneous equations to matrix form, we are in a position to 
solve the system. The process for using matrices to solve simultaneous equations can be 
summarised as follows:

SIMULTANEOUS EQUATIONS25.3

Represent the following pairs of equations in matrix form.

(a) (b)4x 2y+ 2–=
4x y– 11–=

x y+ 1=
y 3x 31–

4------------------=

E 25.13XAMPLE

S
o
l
u
t
i
o
n

4x 2y+ 2–=
4x y– 11–=

4 2
4 1–

x
y

2–
11–=

4 2
4 1–

x
y

2–
11–

4x 2y+
4x y–

2–
11–=⇔=

4x 2y+ 2–=
4x y– 11–=

x y+ 1=
y 3x 31–

4------------------= 3x 4y– 31=

1 1
3 4–

x
y

1
31=

If a system of equations is represented by the matrix equation, AX = B, where
the matrix A is non-singular (i.e.,  exists), then,A 1–

AX B A 1– AX⇔ A 1– B X⇔ A 1– B= = =
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This is equivalent to the method used to solve simple equations such as:

Central to the method is to multiply both sides of the equation by the multiplicative inverse of the 
coefficient of x. This coefficient is 2 and its inverse is . The result of this process is that the left 
hand side is reduced to x and the solution is produced.
The process described for solving a matrix equation is very similar to the process used to solve 
the equation . The first step is to find the inverse of the matrix of coefficients.

(a) The matrix version of this pair of equations is:  (i.e., AX = B)

This can be solved by pre-multiplying both sides of this equation by the inverse of the 2 by 2 

coefficients matrix. In this case the coefficient matrix is  and the inverse is

. So, we have  (i.e., ).

Remember that matrix multiplication is non-commutative and that we must be careful to pre-
multiply by the inverse on both sides of the equation. This version of the problem looks much 
more complicated than other methods such as substitution. This, however, is not really the case as 
the left hand side (much as it does in the case of simple algebraic equations) should simplify to 
the matrix of the unknowns.

 (i.e., )

This should always be the case, provided the inverse has been found correctly, and so does not 
require any work. All that is necessary is to perform the matrix multiplication on the right hand 

side.    

The solution is x = –2, y = 3 or, as a number pair (–2,3).

2x 12 1
2--- 2x× 1

2--- 12× x 6=⇔=⇔=

1
2---

2x 12=

Solve the following pairs of equations using the matrix method.

(a) (b)4x 2y+ 2–=
4x y– 11–=

x y+ 1=
y 3x 31–

4------------------=

E 25.14XAMPLE

S
o
l
u
t
i
o
n

4 2
4 1–

x
y

2–
11–=

4 2
4 1–

1
12------ 1

6---
1
3---

1
3---–

1
12------ 1

6---
1
3---

1
3---–

4 2
4 1–

x
y

1
12------ 1

6---
1
3---

1
3---–

2–
11–= AX B A 1– AX⇔ A 1– B= =

1 0
0 1

x
y

1
12------ 1

6---
1
3---

1
3---–

2–
11–

x
y

1
12------ 1

6---
1
3---

1
3---–

2–
11–=⇔= X A 1– B=

x
y

2–
3=
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(b) In matrix form, this is: . The inverse of  is . 

Premultiplication by this inverse gives:

The solution is  x = 5, y = –4 or, as a number pair (5,–4).

Such a system of equations can also be solved by adapting the Guassian method encountered in 
the previous section. This adaptation requires that we write the system of equations, AX = B, in 
the augmented matrix form .

That is,

Then, once we have the augmented form we use elementary row operations to achieve the 

solution form: , i.e.,  and .

The system of equations has the augmented matrix form:

Using elementary row operations we have:

            

From which we then have the solution x = –2 and y = 3.

Using a Graphics Calculator

Both methods that were used in Examples 25.13 and 25.14 can also be solved using the TI–83.

1 1
3 4–

x
y

1
31= 1 1

3 4–
1
7---

4 1
3 1–

1
7---

4 1
3 1–

1 1
3 4–

x
y

1
7---

4 1
3 1–

1
31

x
y

5
4–=⇔=

 A   B [ ]

a1x b1y+ c1=
a2x b2y+ c2=

a1 b1
a2 b2

x
y

⇔ c1
c2

a1 b1
a2 b2

c1
c2

⇔=

   1 0
0 1

d1
d2

    x d1= y d2=

Use the Guassian method to solve the system of equations .4x 2y+ 2–=
4x y– 11–=

E 25.15XAMPLE

S
o
l
u
t
i
o
n

4 2
4 1–     2–

11–

R1
1
4---R1→

R2 R2 R1–→
1 1

2---
0 3–

    
1
2---–
9–

R2
1
3---R2–→

1 1
2---

0 1
    

1
2---–
3

R1 R1
1
2---R2–→ 1 0

0 1     2–
3
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Matrix Form

The matrix method is particularly suited to implementation on a graphics calculator. Returning to 

the first of these examples, , the solution would proceed as follows:

The matrices  must be entered under 

the MATRIX EDIT menu. Remember to use the key (-) for negative 
quantities, not the subtraction key.
Now pre-multiply B by the inverse of A. Using the TI-82/3, the 
names of the matrices are accessed using the MATRIX NAMES 
menu. The inverse of A is calculated using the  key. The 
sequence of operations is to first return to the home screen by using 
2nd QUIT. Then use MATRIX NAMES and select matrix A. Press 

 and finally use MATRIX NAMES and select matrix B.

Augmented Matrix form

The TI–83 can also be used to set up our matrix equation, AX = B,
into its augmented matrix form.
Step 1: Define the matrix A and B.
Step 2: Call up the MATRIX window and then select the

MATH menu followed by option 7:augment( 
Enter the matrices in the correct order, A first
followed by ‘,’ and then B followed by ‘)’.

Step 3: Store the augmented matrix by pressing 
followed by calling up the MATRIX window and
selecting a matrix [C] (say) and then press 
ENTER.

Step 4: Call up the MATRIX window and select the 
MATH menu from which option B:rref( 
is selected (make use of the down arrow key). 
Then press ENTER.

Step 5: Select the MATRIX Window and choose 
matrix [C] press ‘)’ and then ENTER.
This will provide the reduced row-echelon form
which will enable us to quote the solutions
directly from the screen.

From the last screen, we have the solution 
x = –2 and y = 3.

4 2
4 1–

x
y

2–
11–=

A 4 2
4 1– B, 2–

11–= =

x 1–

x 1–

1.

2.

3.

4. 
& 5.

STO
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There are occasions on which simultaneous equations either have no solutions or infinite solution 
sets. This problem was covered in Chapter 2, §2.3. If we use the matrix method to solve one of 
these types of equations, we will find that the matrix of coefficients is singular and has no inverse. 
In this case, the simple matrix method fails. If you encounter a pair of equations of this type, it is 
best to handle them using an algebraic method as the matrix method, i.e., AX = B, will not tell you 
whether the equations have no solutions or an infinite solution set. 

However, using the augmented matrix form , then depending on the end form of the 
reduced row-echelon matrix we have the following results:

The methods described for 2 by 2 matrices hold equally for 3 by 3 matrices.

From Example 25.11 we have that  = 6I

Then, as  and .

In the matrix form we have the system of equations as  or .

 A   B [ ]

Form 1   Form 2 Form 3
     Unique solution Infinitely many solutions        No solution

                 

where .

   1 0
0 1

d1
d2

       1 k
0 0

d1
0

       1 k
0 0

d1
d2

    

d2 0≠
y                                             y                                                  y

x                                             x                                                   x
Lines intersect at 
one unique point.

Lines are coincident.
i.e. they are identical.

Lines are parallel and 
so never meet.

Find the product AB where  and 

Hence solve the system of equations 

A
1 1 2
3 4 1
1 3 2–

= B
11– 8 7–
7 4– 5
5 2– 1

=

x y 2z+ + 9=
3x 4y z+ + 2–=
x 3y 2z–+ 4=

E 25.16XAMPLE

S
o
l
u
t
i
o
n

AB
1 1 2
3 4 1
1 3 2–

11– 8 7–
7 4– 5
5 2– 1

6 0 0
0 6 0
0 0 6

= =

AB 6I A 1–⇒ 1
6---B= = B 1– 1

6---A=

1 1 2
3 4 1
1 3 2–

x
y
z

9
2–
4

= A
x
y
z

9
2–
4

=



Matrices – CHAPTER 25

905

So, pre-muliplying both sides by  we have  or .

But,  and  = 

And so we have .

(Of course, we used a graphics calculator to evaluate the required products.)

In this case we will make use of the Gaussian method. Setting up the augmented matrix

form we have:

Applying elementary row operations we have:

And so the solution set is x = 1, y = 3 and z = –1.

A 1– A 1– A
x
y
z

A 1–
9
2–
4

= I
x
y
z

A 1–
9
2–
4

=

I
x
y
z

x
y
z

= A 1–
9
2–
4

1
6---B

9
2–
4

1
6---

11– 8 7–
7 4– 5
5 2– 1

9
2–
4

= = 1
6---

143–
91
53

x
y
z

1
6---

143–
91
53

x⇔ 143
6--------- y,– 91

6------ z, 53
6------= = = =

Solve the system of equations .
x 2y z+ + 6=

x y– z– 1–=
3x y– 2z– 2=

E 25.17XAMPLE

S
o
l
u
t
i
o
n

1 2 1
1 1– 1–
3 1– 2–

    
6
1–
2

R2 R2 R1–→
R3 R3 3R1–→

1 2 1
0 3– 2–
0 7– 5–

    
6
7–
16–

R3 3R3 7R2–→

1 2 1
0 3– 2–
0 0 1–

    
6
7–
1

R1 R1 R3+→
R2 R2 2R3–→

R3 R– 3→

1 2 0
0 3– 0
0 0 1

    
7
9–
1–

R1 R1
2
3---R

2
+→

R2
1
3---R2→

1 0 0
0 1 0
0 0 1

    
1
3
1–
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However, making use of the TI–83 is so much quicker!

Again, the issues dealing with a unique solution, no solution and an infinite number of solutions 
are dealt with in detail in Chapter 2 . A similar summary to that provided for a 2 by 2 system can 
be presented – so, we conclude our work on solutions to systems of equations in three unknowns 
with a summary for the 3 by 3 (or really 3 by 4) augmented matrix form and leave it to you to 
refer back to Chapter 2, §2.3. Suffice to say, however, that if the inverse matrix exists, then a 
unique solution will exist.

NOTE: There are other geometrical outcomes:
No solutions:

1. Two of the planes meet along a line and this line is parallel to (and
does not meet) the third plane.

Infinitely many solutions:
1. The three planes are coincident.

1. Solve the following pairs of simultaneous equations using the matrix method. Give your
answers as ordered pairs, (x,y).
(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

x = 1y = 3z = –1

Form 1   Form 2 Form 3
     Unique solution Infinitely many solutions        No solution

                    
1 0 0
0 1 0
0 0 1

d1
d2
d3

      
1 m n
0 1 k
0 0 0

d1
d2
0

      
1 m n
0 1 k
0 0 0

d1
d2
d3

    

Geometrically:
Three planes meet at one point.

Geometrically:
Three planes meet along one 
line.

Geometrically:
At least two planes are 
parallel.

d3 0≠Where

EXERCISES 25.3

3x 2y– 5=
x y+ 0=

2x 2y+ 2=
4x 3y+ 7=

4x– y+ 9=
2x 6–=

x 3y+ 5–=
x y– 1–=

5x 3y– 5–=
3x– 3y+ 9=

y 5 5x–
2---------------=

6x 4y– 6=
3x– 4y+ 12=
4x 2y– 6–=

x 3y+ 10=
4x 2y– 16–=

2x 3y+ 7=
2– x 4y+ 7=
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(x) (xi) (xii)

(xiii) (xiv) (xv)

2. Find the values of a and b such that the equations  have:
(i) an infinite set of solutions (ii) no solutions.

3. If the equations  have no solutions, what are the possible value(s) of a. 

4. Use a graphics calculator to solve the simultaneous equations:

(a) (b) (c)     

5. Find AB if  and . Hence solve .

6. Find AB if  and . Hence solve .

7. For what value(s) of m will the system of equations  have
(a) a unique solution?
(b) no solution?
(c) an infinite number of solutions?
Give a geometrical interpretation for each of these cases.

8. Find the determinant of . For what values of p and k will the system of

equations  have
(a) a unique solution?
(b) no solution?
(c) an infinite number of solutions?

0.2x 0.4y+ 0.64=
0.4x– 3y– 2.6–=

y x 11–
4--------------=

y x– 2–=
x 2y+ 2=

2x 3y+ 2=
2
3---x 1

2---y+ 21
6---=

1
3---x 5y+ 22

3---=
x– 2.5y– 0=

1.5x 2y+ 3.5=
1.6x 0.8y– 4.8=

5x 0.2y– 24.2=

3x ay+ 2=
6x– 4y+ b=

ax y+ 7=
4x ay+ 19=

3x 7y 4z+ + 10–=
4x 2y– 3z+ 16=

x– 3y 2z–+ 14–=

x 2z+ 3=
2x 3y z–+ 2=

x y 2z–+ 4=

x y– 4z+ 2–=
3x y– z+ 1=

2x 2y– 3z+ 3=

A
5 8– 1–
2 3– 1–
3– 5 1

= B
2 3 5
1 2 3
1 1– 1

=
2a 3b 5c+ + 8=

a 2b 3c+ + 5–=
a b– c+ 2=

A
3 4 1
13 1– 3–
5 3 2–

= B
1 1 1–
1 1– 2
4 1 5–

=
3x 4y z+ + 5=

13x y– 3z– 2=
5x 3y 2z–+ 3=

x my+ 2=
m 1–( )x 2y+ m=

A
p 3
2 1

p 1–------------=

px 3y+ k=
2 p 1–( )x y+ 2=
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9. Use the Gaussian method to solve the following systems of equations.
(a) (b)      (c)      

(d) (e)      (f)      

(g) (h)      (i)      

10. A parabola passes through the points (–1, –19), (2, 2) and (3, 13). Set up a system of
equations that satisfy these conditions. Use the Gaussian method to find its equation.

11. A parabola passes through the points (–1, –19), (2, 2). Set up a system of equations that
satisfy these conditions. Use the Gaussian method to find its equation.

12. (a) If  and , solve the system of equations  where

i. ii.

(b) Solve the system of equations .

13. (a) Solve for .

(b) For what value(s) of  will the system of equations  have

i. no solutions?
ii. a unique solution?
iii. an infinite number of solutions?

3x 4y+ 12=
2x 3y– 8=

x– 2y+ 6=
2x 4y– 9=

4x y+ 5=
x– 3y– 7=

x 3y z–+ 13=
3x y z–+ 11=
x y 3z–+ 11=

x 2y+ 10=
3x 2y 4z–+ 18=

y z+ 3=

x 2y– 3z– 3=
x y 2z–+ 7=

2x 3y– 2z– 0=
x y– z– 2=

3x 3y 7z–+ 7=
x 2y 3z–+ 3=

x 2y– 1–=
x– y– 3z+ 1=

y z– 0=

2x– y 2z–+ 5=
x 4z+ 1=

x y 10z+ + 10=

A 3 1 2
2– 3 1–= X

x
y
z

= AX B=

B 0
0= B 2

1–=

3x y 2z+ + 0=
2x– 3y z–+ 0=

x y z+ + 0=
t 1 1
1 t 1
1 1 t

0=

λ
λx y z+ + 3=
x λy z+ + 2=
x y λz+ + 1=
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26.1.1 SCALAR AND VECTOR QUANTITIES

Numerical measurement scales are in widespread use. It is important to be able to distinguish 
between two distinct types of measurement scales, scalars and vectors.

Scalar Quantities

A scalar is a quantity that has magnitude (size) but no direction. For example, we measure the 
mass of objects using a variety of scales such as ‘kilograms’ and ‘pounds’. These measures have 
magnitude in that more massive objects (such as the sun) have a larger numerical mass than 
small objects (such as this book). Giving the mass of this book does not, however, imply that this 
mass has a direction. This does not mean that scalar quantities must be positive. Signed scalar 
quantities, such as temperature as measured by the Celsius or Fahrenheit scales (which are 
commonly used) also exist.

Vector Quantities

Some measurements have both magnitude and direction. When we pull on a door handle, we 
exert what is known as a force. The force that we exert has both magnitude (we either pull hard or 
we pull gently) and direction (we open or close the door). Both the size of the pull and its 
direction are important in determining its effect. Such quantities are said to be vectors. Other 
examples of vectors are velocity, acceleration and displacement. The mathematics that will be 
developed in this section can be applied to problems involving any type of vector quantity.

The following situations need to be described using an appropriate measure. Classify the measure 
as a scalar (s) or a vector (v).

1. A classroom chair is moved from the front of the room to the back.

2. The balance in a bank account.

3. The electric current passing through an electric light tube.

4. A dog, out for a walk, is being restrained by a lead.

5. An aircraft starts its takeoff run.

6. The wind conditions before a yacht race.

7. The amount of liquid in a jug.

8. The length of a car.

INTRODUCTION TO VECTORS26.1

C
H

A
P

T
E
R

 2
6

EXERCISES 26.1
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26.2.1 DIRECTED LINE SEGMENT

There are a number of commonly used notations for vectors:

Notation 1:

This vector runs from A to B and is depicted as   or AB with the arrow 
giving the direction of the vector. Point A is known as the tail of the vector 

 and point B is known as the head of vector  . 
We also say the  is the position vector of B relative to (from) A.

In the case where a vector starts at the origin (O), the vector running from O 
to another point C is simply called the position vector of C,  or OC.

Notation 2:

Rather than using two reference points, A and B, as in notation 1, we can also 
refer to a vector by making reference to a single letter attached to an arrow. In 
essence we are ‘naming’ the vector.

The vector a can be expressed in several ways. In text books they are often 
displayed in bold type, however, in written work, the following notations are generally used:

We will consider another vector notation later in this chapter.

26.2.2 MAGNITUDE OF A VECTOR

Similarly, if we are using vector notation 2, we may denote the magnitude of a by .

Note then that .

26.2.3 EQUAL VECTORS

Notice that if , then vector b is simply a translation of vector a. Using this notation, where 

REPRESENTING VECTORS26.2

A

B

AB

AB AB
AB

O

C

OC

a

 a ã a  = =

The magnitude or modulus of a vector is its length, which is the distance between its tail 
and head. We denote the magnitude of AB by  (or more simply by AB).AB

a a=

a 0≥

Two vectors a and b are said to be equal if they have the 
same direction and the same magnitude. 
i.e.,  if they point in the same direction and .a b= a b=

a b

a b=
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there is no reference to a fixed point in space, we often use the word free vectors. That is, free 
vectors are vectors that have no specific position associated with them. In the diagram below, 
although the four vectors occupy a different space, they are all equal.

Note that we can also have that the vectors , so that 
although they do not have the same starting point (or ending point) 
they are still equal because their magnitudes are equal and they 
have the same direction.

26.2.4 NEGATIVE VECTORS

The negative of a vector a, denoted by ‘–a’ is the vector a but 
pointing in the opposite direction to a.

Similarly, the negative of AB is –AB or BA, because rather than 
starting at A and ending at B the negative of AB starts at B and ends 
at A.

Note that  and .

26.2.5 ZERO VECTOR

The zero vector has zero magnitude,  and has no definite direction. It is represented 
geometrically by joining a point onto itself. Note then that for any non-zero vector a, 

26.2.6 ORIENTATION AND VECTORS

Vectors are very useful when representing positions relative to some starting point. Consider
(a) the position of a man who has walked 2.8 km across a field in a direction East 30˚ S or 
(b) a car moving at 20 km/h in a direction West 40˚ N for 2 hours. 
Each of these descriptions can be represented by a vector.

We start by setting up a set of axes and then we represent the above vectors showing the 
appropriate direction and magnitude. Representing the magnitude can be done using a scale 
drawing or labelling the length of the vector.

a
b

c
d

A

B

C

D

a

–a

AB
AB

AB CD=

a a–= AB AB– BA= =

0 0=
a 0>

N

S

W E 30˚

Scale: 1cm = 1 km

2.8 km

(a) (b)

N

S

W E
40˚

40 km

Scale: 1cm = 10 km
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We start by representing her journey using a vector diagram:

Next, we find the angle BOA:
 

          

That is, the bushwalker is 3.56 km E 47˚ N from her starting point.

Although we will investigate the algebra of vectors in the next section, with Example 26.1 we 
have already looked at adding two vectors informally. That is, the final vector  was found by 
joining the vectors  and . Writing this in vector form we have, .

Find the position of a bushwalker if on the first part of her journey she 
walks 2.8 km across a field in a direction East 30˚ South and then continues for a further 4 km in 
a Northerly direction.

E 26.1XAMPLE

S
o
l
u
t
i
o
n N

S

W E 30˚

Scale: 1cm = 1 km

2.8 km N

S

W E

O

A

B

4.0 km

The first part of her journey is represented by vector OA and 
the second part by AB. Note then that because her final 
position is at point B, her final position, relative to O, is 
given by the vector OB. 

All that remains is to find the direction of OB and its 
magnitude. To do this we make use of trigonometry.
Finding :
Using the cosine rule we have
  

OB

OB2 OA2 AB2 2 AB( ) OA( ) 60°( )cos–+=
OB2 2.82 4.02 2 2.8 4.0 0.5×××–+=

12.64=
OB∴ 3.56=

60˚

AB2 OA2 OB2 2 OA( ) OB( ) BOA∠( )cos–+=
4.02 2.82 12.64 2 2.8( ) 12.64( ) BOA∠( )cos–+=

BOA∠( )cos∴ 2.82 12.64 4.02–+
2 2.8( ) 12.64( )---------------------------------------------=

BOA∠ cos 1– 0.2250( )=
76°59′45″=

77°≈

OB
OA AB OB OA AB+=

To add two vectors, a and b, geometrically we
1. first draw a,
2. draw vector b so that its tail meets the arrow end of vector a,
3. draw a line segment from the tail of vector a to the arrow end of vector b.

This vector then represents the result a + b.

a b

a

ba + b
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(a) CA = –AC = –a.
(b) To get from B to C we first get from B to A and then from A to C. That is, we ‘join’ the

vectors BA and AC. In vector notation we have:

However, 
        

(c) .

1. Using a scale of 1 cm representing 10 units sketch the vectors that represent
(a) 30 km in a Westerly direction.
(b) 20 newtons applied in a NS direction.
(c) 15 m/s N 60˚ E.
(d) 45 km/h W 30˚ S.

2. The vector  represents a velocity of 20 m/s due West. Represent the
following vectors:
(a) 20 m/s due East
(b) 40 m/s due West
(c) 60 m/s due East
(d) 40 m/s due NE

3. State which of the vectors shown
(a) have the same magnitude.
(b) are in the same direction.
(c) are in the opposite direction.
(d) are equal.
(e) are parallel.

4. For each of the following pairs of vectors, find a + b.

For the equilateral triangle shown, express in terms of a and b
(a) CA (c) BC (d) AB BC+

A
B

C
a

b

E 26.2XAMPLE

S
o
l
u
t
i
o
n

BC BA AC+=
AB b BA⇒ AB– b–= = =

BC∴ b– a+=
AB BC+ AC a AB BC+∴ a= = =

EXERCISES 26.2

                  

a

b
c d e

f
gu

(a) (b) (c) (d)
a
b

a b
a
b

a b

(e) (f) (g) (h)
a

b
a
b a      b a

b
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5. For the shape shown, find a single vector which is equal to
(a)
(b)
(c)
(d)
(e)

6. Consider the parralelogram shown alongside.
Which of the following statements are true?
(a) (b)
(c) (d)
(e)

7. For each of the following
i. complete the diagram by drawing the vector AB + BC.
ii. find .

8. Two forces, one of 40 Newtons acting in a Northerly direction and one of 60 Newtons
acting in an Easterly direction, are applied at a point A. Draw a vector diagram
representing the forces. What is the resulting force at A?

9. Two trucks, on opposite sides of a river, are used to pull a barge along a straight river. They
are connected to the barge at one point by ropes of equal length. The angle between the
two ropes is 50˚. Each truck is pulling with a force of 1500 Newtons.
(a) Draw a vector diagram representing this situation.
(b) Find the magnitude and direction of the force acting on the barge.

10. An aircraft is flying at 240 km/h in a Northerly direction when it encounters a 40 km/h
wind from
i. the North.
ii. the North-East.
(a) Draw a vector diagram representing these situations.
(b) In each case, find the actual speed and direction of the aircraft.

11. Patrick walks for 200 m to point P due East of his cabin at point O, then 300 m due North
where he reaches a vertical cliff, point Q. Patrick then climbs the 80 m cliff to point R.
(a) Draw a vector diagram showing the vectors OP, PQ and QR.
(b) Find i.

ii.

A

B C

D

A

B                                  C

D
a

b

AB BC+
AD DB+
AC CD+
BC CD DA+ +
CD DA AB BC+ + +

AB DC= a b=
BC b= AC CD+ b=
AD CB=

AB BC+
(a) (b) (c)

20 km

20 km

A

B

C

20˚

N
W            E

S

A

B

C15 km

10 km
45˚

45˚

N
W            E

S

10 m/s
60˚

20 m/s

80˚N
W            E

S

A

B

C

OQ
OR
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26.3.1 ADDITION OF VECTORS

We have already had an ‘informal’ look at the addition of vectors in §26.2.5. We now take this a 
step further. 

It should be noted:
1.  does not necessarily equal . In fact,  – which is known as

the Triangle Inequality.
Under what circumstances will  = ?

2. Properties of vector addition

Closure Since  is a vector, the operation of vector addition is closed.

Commutative

Associative

Additive identity There exists a unique zero vector, 0 (identity vector under addition), 
such that .

Additive Inverse The inverse vector under addition is that vector which, when added
to any vector, gives the zero vector. For any vector a then, the vector
–a (the negative of a) is called the additive inverse of a, so that

ALGEBRA AND GEOMETRY OF 
VECTORS

26.3

The vector sum of two vectors a and b is given by the unique vector c (also known as the 
resultant) by using the Triangle Law of Addition or the Parallelogram Law of Addition.
Triangle Law of Addition

Method:
1. Vector b is translated so that its tail

coincides with the head of vector a. 
2. Then, the vectors sum of a and b is

the vector c which closes the triangle.

Parallelogram Law of Addition

Method:
1. Vector b is translated so that its tail

coincides with the tail of vector a. 
2. The vectors a and b then form

adjacent sides of a parallelogram,
so that their sum, vector c, is
represented by the diagonal as
shown.

a
b

c = a + b

a
b

a
b

b

a
c = a + b

a b+ a b+ a b+ a b+≤
a b+ a b+

a b+

a b+ b a+=

a b+( ) c+ a b c+( )+=

a 0+ 0 a+ a= =

a a–( )+ a–( ) a+ 0= =
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26.3.2 SUBTRACTION OF VECTORS

Using the properties of vector addition we are now in a position to define the difference a – b of 
two vectors a and b. Rather than subtracting vector b from vector a, we add vector –b to vector a.

That is,

26.3.3 MULTIPLICATION OF VECTORS BY SCALARS

Multiplication of a vector by a scalar is best seen as the repeated use of the addition of the same 
vector. That is, the vector a + a, is by definition a vector having the same direction as a but twice 
its length and so, we can write a + a as 2a. We can then extend this to a + a + a = 2a + a = 3a so 
that the vector 3a is a vector in the same direction as a but three times its magnitude. The process 
can then be continued indefinitely. Notice then that this is not restricted to integer multiples. 
Similarly the vector  can be seen as representing a vector in the same direction as a but having 
half its magnitude. Geometrically we then have:

We can formalise scalar multiplication as follows:

It should be noted:

1. From the above definition, we can restate the condition for two vectors to be parallel:
i.e.,

Where, a and b are in the same direction if k > 0 (i.e., parallel) and in opposite directions
if k < 0 (i.e., anti-parallel).

2. Properties of multiplication by a scalar

Closure Since  is a vector, multiplication by a scalar is closed.

a b– a b–( )+=

Therefore, to subtract vector b from vector a we reverse the direction of vector b 
and then add it to vector a according to the triangle law (or parallelogram law):

a
b

a
–b

a

–ba – b
Reverse sign of b: Add (–b) to a:

1
2---a

a 2a –3a
1
2---a

For any scalar k, the product ka is a vector parallel to a whose magnitude is  times 
that of a. i.e., .
In particular,

1. if k > 0 then ka and a have the same direction.
2. if k < 0 then ka and a are in opposite direction.
3. if k = 0 then ka = 0, the zero vector.

k
ka k a=

a b  if  a|| kb=

ka
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Commutative

Associative

Distributive 1.
2.

Geometrically, the distributive properties can be seen as follows:
1. 2.

26.3.4 ANGLE BETWEEN VECTORS

For the vectors  and , the angle between the
vectors a and b , , is given by the angle AOB, and is taken to be 
positive when measured in an anticlockwise direction. 

Note then that to find such an angle, the vectors must first be joined tail to tail. 

26.3.5 APPLICATIONS TO GEOMETRY

As already seen in §26.2 vectors have clear applications to problems that involve geometry and 
trigonometry. In this section we concentrate on how the operations on vectors defined so far can 
be used to prove geometrical properties. Unlike geometric proofs encountered in the earlier years 
of schooling, vectors may be used very neatly to prove many of these theorems. We shall 
illustrate this by means of several examples.

(a) We first need the vector 2b and then we add it to the vector a.

a k× k a×=

k m×( )a k ma( )×=

k m+( )a ka ma+=
k a b+( ) ka kb+=

k m+( )a ka ma+= k a b+( ) ka kb+=
a

ka

ma(k+m)a =

a
b

a + b kb

ka

ka+kb

a

b
O

A

B
θ

a OA= b OB=
θ

Using the vectors shown, draw the vector diagrams showing
(a) a + 2b (b) –a + (c) 3a – 2b1

2---b a b
E 26.3XAMPLE

S
o
l
u
t
i
o
n

b a

2ba + 2b

a

2b a + 2b

Method 1:                            Method 2:

Then, 2b is
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(b) This time we need the vectors –a  and 

(c) For this problem we need the vectors 3a and – 2b.

(a) We start by drawing the figure under discussion:
The diagonals are:

    
and

(b) i.  = 10 [using Pythagoras’s Theorem]
ii.

   

(c)

  

1
2---b

b Method 1:                            Method 2:Then,       is1
2---b

a –aThen, –a is a– 1
2---b+ a– 1

2---b+
1
2---b

1
2---b

–a–a

b Method 1:                            Method 2:

Then, 3a is
a

Then, –2b is

3a

–2b3a – 2b 3a – 2b

3a

–2b

The rectangle OABC is such that OA = 8, AB = 6 and OA = a and OC = b.
(a) Express the two diagonals in terms of a and b.
(b) Find i. ii. .
(c) Find .

OB OB CA+
OA AC CO+ +

E 26.4XAMPLE

S
o
l
u
t
i
o
n

O                              C

A                               B

a

bOB OA AB+=
OA OC+=
a b+=

AC AB BC+=
OC CB–( )+=
OC OA–( )+=
b a–=

OB OC 2 CB 2+ 82 62+= =
OB CA+ OC CB+( ) CO OA+( )+=

OC CO+( ) CB OA+ +=
OC OC–( )+( ) a a+ +=
0( ) 2a+=

2a=
OB CA+∴ 2a 2 a 2 8× 16= = = =

OA AC CO+ + OA AO OC+( ) CO+ +=
OA AO+( ) OC CO+( )+=

0 0+=
0=
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Notice that in Example 26.4 we consistently kept re-expressing the diagonals in terms of the sides 
of the rectangle. In fact you will find that for many problems that involve geometric shapes, it 
helps to express vectors in terms of the sides of the shape under discussion.

(a) In this case we have no given shape to make reference to, however, we can still simplify
the sum by referring to the head and tail of each vector and ‘grouping’ a head to a
corresponding tail:
AB + BC + DE + CD = AB + BC + CD + DE [rearranging]

  =      AC      +      CE [grouping] 
  = AE

That is, when adding AB and BC we observe that one vector ends at B while the second
starts from B, this becomes a common point and so we ‘group’ those two vectors, then we
complete the triangle ABC, i.e., AB + BC = AC. 

(b) 2AB + 4AC + 4BA + 6CD + 2DA + 2DC
= 2AB + 4BA + 4AC + 6CD + 2DA + 2DC
= 2AB + 2BA + 2BA + 4AC + 4CD + 2CD + 2DA + 2DC
= 2AB – 2 AB + 2BA + 4(AC + CD) + 2(CD + DC) + 2DA
=          0          + 2BA +       4AD       +         2(0)       + 2DA
= 2BA + 2AD + 2AD + 2DA 
= 2(BA + AD) +2(DA + AD)
=       2BD        +      2(0)
= 2BD 

Consider the triangle ABC where D and E are the
mid-points of  and  respectively.
We then need to express DE in terms of AB.
First we note that  and . 
Then, we have

    

Simplify the following expressions
(a) AB + BC + DE + CD
(b) 2AB + 4AC + 4BA + 6CD + 2DA + 2DC

E 26.5XAMPLE

S
o
l
u
t
i
o
n

Prove that the line segment joining the mid-points of two sides of a triangle 
is parallel to the third side and half its length.

E 26.6XAMPLE

S
o
l
u
t
i
o
n

A

B

CD

E
AC BC

DC 1
2---AC= CE 1

2---CB=
DE DC CE+=

1
2---AC 1

2---CB+=
1
2--- AC CB+( )=
1
2---AB=
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Now, as  we can make two observations
1.
2. , i.e., DE is half the length of AB.

Hence we have shown that the line segment joining the mid-points of two sides of a triangle is 
parallel to the third side and half its length.

Start by drawing a random quadrilateral, i.e., one without any 
pre-conceived properties. The reason we do this is because 
had we drawn two opposite sides as being equal and parallel 
then we would have a parallelogram and then, we might make 
assumptions during our proof (asumptions that we are trying 
to prove!)

Consider the quadrilateral ABCD as shown:
From the information given, we have that .
Note that we could have chosen any two sides to be parallel and equal (even though the diagram 
does not reflect this).

Now, AD = AB + BD
       = DC + BD [since AB = DC]
       = BD + DC [rearranging terms]
       = BC

That is, we have shown that AD = BC, meaning that the other two sides of the quadrilateral are 
equal in length and parallel. Then, by definition, the quadrilateral is a parallelogram.

As the problem makes reference to the position vector of point P 
we need to introduce an origin. Let O be this origin. Then, let 
OA = a, OB = b and OP = p where AP:PB = m:n.
Then, 

  

  

DE 1
2---AB=

DE AB||||||||
DE 1

2--- AB=

Prove that if one pair of opposite sides of a quadrilateral is equal and 
parallel, then the quadrilateral is a parallelogram.

E 26.7XAMPLE

S
o
l
u
t
i
o
n

A

B

C

D
AB DC=

Find the position vector of the point P which divides the line segment AB in 
the ratio m:n.

E 26.8XAMPLE

A

B
P

O

a p
b

S
o
l
u
t
i
o
n

OP OA AP+ OA m
m n+--------------AB+= =

a m
m n+-------------- AO OB+( )+=

a m
m n+-------------- a– b+( )+=
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That is, 

     

Consider the parallelogram OABC where OA = a and
OC = c. Let P be the mid-point of  and Q be the
mid-point of .

 [Triangular Law of addition]
     [Q is the mid-point of ]

     [ ]

        – (1)

Next,  [P is the mid-point of ]

     [Triangular Law of addition]

         – (2)

From (1) and (2)  meaning that P and Q are the same point and so, as they are also the 
midpoints of the diagonals, this means that the diagonals of a parallelogram bisect each other.

1. For the quadrilateral OABC, where OA = a, OB = b and 
OC = c, find in terms of a, b and c an expression for
(a) AC
(b) BC
(c) the mid-point of  relative to O

OP m n+
m n+-------------   a m

m n+------------- a– b+( )+=
1

m n+------------- ma na ma– mb+ +( )=
1

m n+------------- na mb+( )=

Prove that the diagonals of a parallelogram bisect each other.E 26.9XAMPLE

S
o
l
u
t
i
o
n

A B

CO
P
Qa

c

OB
AC

OQ OA AQ+=
OA 1

2---AC+= AC

a 1
2--- a– c+( )+= AC AO OC+ OA– OC+= =

O∴ Q 1
2--- a c+( )=

OP 1
2---OB= OB
1
2--- OC CB+( )=

OP∴ 1
2--- c a+( )=

OP OQ=

EXERCISES 26.3

A

B

COAB
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2. Using the vectors shown below, draw the vectors
(a) a – b 
(b) b – 2a 
(c) 2b – 3a 
(d)

3. Simplify (a) WX + XY + YW
(b) PQ – SR + QR 
(c) AX – BX + BZ + YD – YZ – YD
(d) 3OA + 6BC + 2AO + AB + 5OB

4. Consider the triangle ABC whose vertices have position vectors a, b and c respectively.
Find the position vector of
(a) P, the mid-point of .
(b) Q, the point of trisection of , with Q closer to B.
(c) R, the mid-point of the median CP.

5. Prove that (a)
(b)
(c) if  then A, B, C are collinear

6. If M is the mid-point of  and N is the mid-point of , show that 2MN = AC + BD.

7. Consider the cuboid ABCD, EFGH with vectors as shown on the diagram. Express, in
terms of a, b and c the following:
(a) BC
(b) AG
(c) BH

8. In question 7.,  and . Find (a) BC (b) BH

9. Prove that the sum of the vectors from the centre to the vertices of a regular hexagon is 0.

10. In the diagram alongside, P and Q are the mid-points of
WY and XZ respectively.
Show that  + YZ.

11. Show that the line segments joining the mid-points of the sides of any quadrilateral form a
parallelogram.

12. Show that a quadrilateral whose diagonals bisect each other is a parallelogram.

a b
1
2--- b 2a+( )

A
B

CO

AB
AB

AB BO OA+ + 0=
XY YO OZ ZX+ + + 0=

AO OB+ BO OC+=

AB CD

A

D
E

H

c
b

a
B

F
C

G

a 2 b, 4= = c 10=

W                                         X

Y
Z

P Q4PQ WX WZ YX+ +=
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13. A, B C are the mid-points of the sides PQ, QR and RP respectively of the triangle PQR.
Show that OP + OQ + OR = OA + OB + OC where O is some origin.

14. Prove that
(a) A and B are coincident points if MB + NM = NA + BA.
(b) A, B, C are collinear if OC = 3OB – 2OA.
(c) if ABCD is a quadrilateral then AC – BD = AB – CD.

15. If the vectors  and , find the scalars m and n such that
 where  and u and v are non-parallel vectors.

16. Consider the parallelogram ABCD where the point P is such that AP:PD = 1:2 and BD
intersects CP at Q where DQ:QB = 1:3.
Find the scalar m if CP = mCQ.

26.4.1 REPRESENTATION IN 2-D

When describing vectors in two-dimensional space it is often 
helpful to make use of a rectangular Cartesian coordinate 
system. 

As such, the position vector of the point P, OP, has the 
coordinates (x, y).

The vector a can be expressed as a column vector . That is,

26.4.2 UNIT VECTOR AND BASE VECTOR NOTATION

We define the unit vector  as the position vector of the point having coordinates (1, 0), 

and the unit vector  as the position vector of the point having coordinates (0, 1). 

The term unit vector refers to the fact that the vector has a magnitude of one.

a 2u 3v–= b 5u 4v+=
c ma nb+= c 12u 7v+=

A                                        B

D                                        C

P
Q

CARTESIAN REPRESENTATION OF 
VECTORS IN 2-D AND 3-D

26.4

O                                         X

Y
P(x, y)

a a = OP

x
y  

a =  is the position vector OP where P has the coordinates (x,y).x
y  

i 1
0  =

j 0
1  =
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The unit vectors i and j are also known as the base vectors.
If we confine ourselves to vectors that exist in the
plane of this page, the most commonly used basis is:

Notice the definite direction of the base vectors, 
i.e., i points in the positive x–axis direction while j 
points in the positive y–axis direction.

Vectors can now be expressed in terms of these base vectors.

The vector  is ‘three steps to the right and two steps up’ and can be written in terms of 
the standard basis as . 

The vector  is ‘one step to the left and three steps up’. ‘One step to the left’ is in the 
opposite direction of the basis element  and is written , giving the definition of the vector 

. The vectors  and  are known as components of the vector .

The other definitions follow in a similar way.

26.4.3 REPRESENTATION IN 3-D

When vectors are represented in three dimensional space, a third vector must be 
added to the basis, in this case it is a unit vector k and is such that the three unit 
vectors are mutually perpendicular as shown.

a =  =  +  = x  + y  = xi + yj 
i.e., the position vector of any point can be expressed
as the sum of two vectors, one parallel to the x–axis
and one parallel to the y–axis.

x
y   x

0   0
y   1

0   0
1  

a yj
xi

i
j
O

P(x,y)Y

X

i
j where i j 1= =

ij

a 3i 2 j+ 3
2  = =

b i– 3 j+ 1–
3  = =

c 2i 3 j– 2
3–  = =

d 3i– 5 j– 3–
5–  = =

a
a 3i 2 j+=
b

i i–
b i– 3 j+= i– 3 j b

i
j

k
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In addition, extra basis vectors can be added to generate higher dimensional vector spaces. These 
may not seem relevant to us, inhabiting as we do, a three dimensional space. However, it remains 
the case that it is possible to do calculations in higher dimensional spaces and these have 
produced many valuable results for applied mathematicians.

As was the case for vectors in two dimensions, we can represent vectors in three dimensions 
using column vectors as follows:

26.4.4 VECTOR OPERATIONS

Addition and Subtraction

Scalar Multiplication

The position vector a = OP where P has coordinates (x, y, z)
is given by

          
Where this time the base vectors are 

,  and 

a
x
y
z     x

0
0     0

y
0     0

0
z    

+ + x
1
0
0    

y
0
1
0    

z
0
0
1    

+ += = =

xi yj zk+ +=

i
1
0
0    

= j
0
1
0    

= k
0
0
1    

=

P(x,y,z)

i

jk

(0,0,z)

(x,0,0)

(0,y,0)

a

O

X

Y

Z

If  and  then a x1
y1   x1i y1 j+= = b x2

y2   x2i y2 j+= =

a b± x1
y1   x2

y2  ± x1 x2±
y1 y2±   x1 x2±( )i y1 y2±( ) j+= = =

If  and  then a
x1
y1
z1     

x1i y1 j z1k+ += = b
x2
y2
z2     

x2i y2 j z2k+ += =

a b±
x1
y1
z1      x2

y2
z2     

±
x1 x2±
y1 y2±
z1 z2±     

x1 x2±( )i y1 y2±( ) j z1 z2±( )k+ += = =

If  then , .

If  then , 

a x
y   xi yj+= = ka k x

y   kx
ky   kxi kyj+= = = k ∈

a
x
y
z    

xi yj zk+ += = ka k
x
y
z     kx

ky
kz    

kxi kyj kzk+ += = = k ∈
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Vectors are added ‘nose to tail’:

(a) Vectors are added in much the same way as are algebraic terms. Only like terms can be
added or subtracted, so that

(b) This problem is solved in a similar way:

Note that we could also have expressed the sum as .
      

(i.e., the negative of a vector is the same length as the original vector but points in the opposite 
direction.)
(c) Combining the properties of scalar multiplication with those of addition and subtraction

we have

If  and , find:
(a) (b) (c)

a 2i j–= b i– 3 j+=
a b+ b a– 3b 2a–

E 26.10XAMPLE

S
o
l
u
t
i
o
n

ij

a– 2– i j+=
(a) (b)

a 2i j–=

b i– 3 j+=

b i– 3 j+=

a b+ 2i j–( ) i– 3 j+( )+=
2 1–( )i 1– 3+( ) j+=
i 2 j+=

b a– i– 3 j+( ) 2i j–( )–=
1– 2–( )i 3 1–( )–( ) j+=

3i– 4 j+=
b a– b a–( )+ i– 3 j+( ) 2i– j+( )+= =

3i– 4 j+=

3b 2a– 3 i– 3 j+( ) 2 2i j–( )–=
3i– 9 j 4i– 2 j+ +=
7i– 11 j+=

If  and , find:

(a) (b) (c)

p
3
1–
4     

= q
2–
0
3     

=

p q+ p q2---– 3
2---q p–

E 26.11XAMPLE
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(a)

(b)

(c)

The position vectors are: Lighthouse  and Town . 
Then, to get from L to T we have

   

This means that the town is 6km East of the lighthouse and 8km South.

1. If  and  find:
(i) (ii) (iii) (iv)

2. The position vectors of A and B are  and . Find:
(i) (ii) (iii) (iv)

S
o
l
u
t
i
o
n

p q+
3
1–
4      2–

0
3     

+
3 2–
1– 0+

4 3+      1
1–
7     

= = =

p q2---–
3
1–
4     

1
2---

2–
0
3     

–
3 1+
1– 0–

4 1.5–      4
1–

2.5     
= = =

3
2---q p– 1.5

2–
0
3      3

1–
4     

–
3– 3–

0 1+
4.5 4–      6–

1
0.5     

= = =

A surveyor is standing at the top of a hill. Call this point ‘the origin’ (O). A 
lighthouse (L) is visible 4km to the West and 3km to the North. A town (T) is visible 5km to the 
South and 2km to the East. Using a vector basis in which  is a 1km vector running East and  is 
a 1km vector running North. Find the position vectors of the lighthouse,  and the town . 
Hence find the vector  and the position of the town relative to the lighthouse.

i j
OL OT

LT

E 26.12XAMPLE

S
o
l
u
t
i
o
n

OL 4– i 3 j+= OT 2i 5 j–=

O

L

T

N
j
i

LT LO OT+=
OL– OT+=

4– i 3 j+( )– 2i 5 j–( )+=
4i 3– j 2i 5 j–+=
6i 8 j–=

EXERCISES 26.4

a i 7 j k–+= b 4i 7 j 5k+ +=
4a 3b 2a b– 2 a b–( )

OA 3i– 4 j 2k–+= OB i 4 j– 3k–=
AO OA 5OB– 5OA– 3OB+ 3OA 6BO+
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3. The vectors  and  are defined by  and . Find:

(i) (ii) (iii) (iv)

4. Find the position vectors that join the origin to the points with coordinates A (2,–1) and 
B (–3,2). Express your answers as column vectors. Hence find 

5. A point on the Cartesian plane starts at the origin. The point then moves 4 units to the
right, 5 units up, 6 units to the left and, finally 2 units down. Express these translations as
a sum of four column vectors. Hence find the coordinates of the final position of the point.

6. Two vectors are defined as  and . Find:
(i) (ii) (iii) (iv)

7. If  and , express the following as column vectors.

(i) (ii) (iii) (iv)

8. Find the values of A and B if 

9. Two vectors are defined as  and . Find values of the scalars X and

Y if  is equal to: (i) (ii) (iii)

10. A submarine (which is considered the origin of the vector system) is 60 metres below the
surface of the sea when it detects two surface ships. A destroyer (D) is 600 metres to the
East and 800 metres to the South of the submarine. An aircraft carrier (A) is 1200 metres
to the West and 300 metres to the South.

(a) Define a suitable vector basis for this problem.

(b) Using the submarine as the origin, state the position vectors of the destroyer and
the aircraft carrier.

(c) A helicopter pilot, based on the aircraft carrier wants to make a supplies delivery to
the destroyer. Find, in vector terms, the course along which the pilot should fly.

p q p
1–
2–
4     

= q
6
1
2     

=

p 2q+ 3 p– 5q– 3 p 2 p 3q+

AB

a i j 4k+ += b 7i– j– 2k+=
6a– 2b– 5a– 2b+ 4a 3b+ 2 a 3b+( )–

x
4
4–
2     

= y
4
3
7     

=

2x 3 y+ x 2 y+ 5x 6 y– x 6 y–

A 7i 7 j 4k+ +( ) 3 3i j– Bk+( )– 37i– 25 j– 5k+=

a
3–
1
4     

= b
6
6–
5–     

=

Xa Yb+
36–
32
33      30

22–
31–      12–

24
1     



Vectors – CHAPTER 26

929

26.5.1 MAGNITUDE OF A VECTOR

If a vector is expressed in terms of the unit length basis of vectors, , the length of the vector 
can be found using the Theorem of Pythagoras.

The length of a vector is sometimes known as its magnitude or absolute value. The length of a 
vector  is often represented by  If the vector represents some physical quantity such as a 
force, the length of the vector is the size of the force, without its direction. The length of a vector 
is a scalar quantity.

The magnitude of a vector can be found by applying Pythagoras’s Theorem in the case of vectors 
in two  dimensions and repeated use of Pythagoras’s Theorem in the case of vectors in three  
dimensions.

FURTHER PROPERTIES OF VECTORS 
IN 2-D AND 3-D

26.5

i j k, ,

a a

P(x,y,z)

i

jk

(0,0,z)

(x,0,0)

(0,y,0)

a

O

X

Y

Z
P(x,y)

i
j

a

O X

Y

x

y

y
x

z

Q

Q

The magnitude of a vector 
 

is given by .

a x
y   xi yj+= =

a x2 y2+=

The magnitude of a vector 

 

is given by .

a
x
y
z    

xi yj zk+ += =

a x2 y2 z2+ +=

PROOF:

OP 2 OQ 2 QP 2+=
a 2∴ x2 y2+=
a∴ x2 y2+ a 0>( ),=

OP 2 OQ 2 QP 2+=
a 2∴ x2 y2+( ) z2+=
a∴ x2 y2 z2+ + a 0>( ),=

Find the lengths of the vectors:

(a) (b) (c)3i 4 j– i– 2 j 5k–+
3
1–
2     

E 26.13XAMPLE
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(a) The vector  is represented by the diagram:

(b)  = 

(c)  = 

26.5.2 UNIT VECTORS

The unit vector, as the name implies, is a vector having a magnitude
(length) of one unit. We use the notation , read as “a hat”. Then,  
is a vector of length one unit in the same direction as . 

For example, if we had a vector r of length four units, to find the corresponding unit vector, , we 
would need to divide the vector r by four, resulting in a vector parallel to r but of unit length.

We then have the definition that

(i) . This is the length of the vector. In order to produce a
vector of unit length, we can keep the original components of the vector, scaling them
down to produce the required unit vector: 

(ii)  The required unit vector is: .

i
j 3

4

S
o
l
u
t
i
o
n

3i 4 j–
3i 4 j– 32 4–( )2+=

9 16+=
25=

5=

i– 2 j 5k–+ 1–( )2 22 5–( )2+ += 30

3
1–
2     

32 1–( )2 22+ += 14

a

â

â â
a

r̂

   â aa------   =

Find unit vectors in the same directions as the vectors:

(a) (b)5i 2 j–
3–
6
4     

E 26.14XAMPLE

S
o
l
u
t
i
o
n

5i 2 j– 52 2–( )2+ 29= =

1
29---------- 5i 2 j–( )

3–
6
4     

3–( )2 62 42+ + 61= = 1
61----------

3–
6
4     
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Let , then 

.
That is, we have a vector that is parallel to u and of unit length. If we now multiply this
unit vector by 10 we will produce a vector parallel to u but of length 10 units.
Required vector is .

1. Find the lengths of these vectors, expressing your answers as surds. It is not necessary to
simplify these surds.
(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

2. Find unit vectors in the same directions as these vectors:

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

3. A mass sitting on the ground is being pulled by a force of 4 Newtons in a Northerly
direction, 3 Newtons in a Westerly direction and 1 Newton upwards.
(i) Express the forces acting on the mass in terms of an appropriate vector basis.
(ii) Find the total magnitude of the force acting on the mass

4. (a) Find a vector of length 3 units in the direction of .
(b) Find a vector of length  units in the direction of .

5. The vectors  and  are of equal length. Find x.

6. Find the maximum speed of a particle whose velocity, v m/s, at time t seconds is given by
, t ≥ 0.

Find a vector of length 10 units in the direction of .2i 3 j– k+E 26.15XAMPLE

S
o
l
u
t
i
o
n

u 2i 3 j– k+= û 1
u------u

1
22 3–( )2 12+ +

----------------------------------------- 2i 3 j– k+( )= =

1
14---------- 2i 3 j– k+( )=

10û 10
14---------- 2i 3 j– k+( )=

EXERCISES 26.5

i 3 j+ 5 i j+( ) 5i 2 j– k+ 2i j 2k+ +( )–

4i 6 j k–+ 2i 6 j k+ +
2
3
1      2

3–
2–     

4i 4 j+ 4i 5 j+ i– 2 j– i 6 j 3k–+

2 j 4k+ 2i 2 j– 3k–
2
1
2      1–

5
1     

i j– k+
3 3i j– 2k+

a 2 j 4k+= b xi 3k+=

v 2 ti tj 3k+cos+sin=



MATHEMATICS – Higher Level (Core)

932

26.6.1 DEFINITION OF THE SCALAR PRODUCT

The scalar product (or dot product) of two vectors is defined by: 

where θ is the angle between the two vectors which 
may be an obtuse angle. The angle must be measured 
between the directions of the vectors. That is, the angle 
between the two vectors once they are joined tail to 
tail.

The three quantities on the right hand side of the equation are all scalars and it is important to 
realise that, when the scalar product of two vectors is calculated, the result is a scalar.

Let  and , then to determine the scalar product, , we
need to find 1.

2.
3. , where θ is the angle between a and b.

Finding 1. .
2. .
3. :

Finding  requires a little work. Relative to a common origin O, 
the points A(2, –3, 1) and B(1, 1, –1) have position vectors a and b.

Before making use of the cosine rule we need to determine the length 
of AB. Using the distance formula between two points in space, we have

Cosine rule:
       

       

Next, from the definition of the scalar product, , we have

SCALAR PRODUCT OF 2 VECTORS26.6

a b• a b θcos=

θ θ
a
b a

b

Find the scalar product of the vectors  and .2i 3 j– k+ i j k–+E 26.16XAMPLE

S
o
l
u
t
i
o
n

a 2i 3 j– k+= b i j k–+= a b•
a
b

θcos

θ a

b

O

A

Ba 22 3–( )2 12+ + 14= =
b 12 12 1–( )2+ + 3= =

θcos
θcos

AB 1 2–( )2 1 3–( )–( )2 1– 1–( )2+ + 1 16 4+ + 21= = =
AB2 OA2 OB2 2 OA OB θcos⋅⋅⋅–+=
21( )2 14( )2 3( )2 2 14 3 θcos⋅ ⋅ ⋅–+=

21 14 3 2 42 θcos–+=
θcos∴ 2

42----------–=

a b• a b θcos=
a b• 14 3 2

42----------–×× 2–= =
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The solution to Example 26.16 was rather lengthy, however, we now look at the scalar product 
from a slightly different viewpoint.

First consider the dot product : Using the definition, we have that
 

[the angle between the vectors  and  is 0 and so cosθ = cos0 = 1].

Next consider the product : Using the definition, we have that

[the angle between the vectors  and  is 90˚ and so cosθ = cos90˚ = 0].

Similarly, we end up with the following results for all possible combinations of the ,  and  
vectors:

 
and 

Armed with these results we can now work out the scalar product of the vectors 
 and  as follows,

    
    

   
That is, if

Using this result with the vectors of Example 26.16,   and  we have:

A much faster process!

However, the most usual use of scalar product is to calculate the angle between vectors using a 
rearrangement of the definition of scalar product:

i i•
i i• i i 0cos 1 1 1×× 1= = =

i i

i j•
i j• i j 90cos 1 1 0×× 0= = =

i j

i j k

 i i• j j• k k• 1 = = =
 i j•••• i k•••• j k•••• j i•••• k i•••• k j•••• 0 = = = = = =

a x1i y1 j z1k+ += b x2i y2 j z2k+ +=
a b• x1i y1 j z1k+ +( ) x2i y2 j z2k+ +( )•=

x1x2 i i•( ) x1y2 i j••••( ) x1z2 i k••••( )+ +=
y1x2 j i••••( ) y1y2 j j•( ) y1z2 j k••••( )+ + +
z1x2 k i••••( ) z1y2 k j••••( ) z1z2 k k•( )+ + +

a∴ b• x1x2 y1y2 z1z2+ +=

 and  then a x1i y1 j z1k+ += b x2i y2 j z2k+ += a b• x1x2 y1y2 z1z2+ +=

2i 3 j– k+ i j k–+
2i 3 j– k+( ) i j k–+( )• 2 1 3–( ) 1 1 1–( )×+×+×=

2 3– 1–=
2–=

θcos a b•
a b------------=

For the following pairs of vectors, find their magnitudes and scalar 
products. Hence find the angles between the vectors, correct to the nearest degree.

(a)  and (b)  and i– 3 j+ i– 2 j+
0
5–
4      5–

1–
3–     

E 26.17XAMPLE
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(a) In using the scalar product, it is necssary to calculate the magnitudes of the vectors.
 and 

Next, calculate the scalar product: 

Finally, the angle is: 

(b)  and 

Next, the scalar product:

Finally, the angle can be calculated:

The use of cosine means that obtuse angles between vectors (which occur when the scalar 
product is negative) are calculated correctly when using the inverse cosine function on a 
calculator.

26.6.2 PROPERTIES OF THE SCALAR PRODUCT

Closure The scalar product of two vectors is a scalar (i.e., the result is not a vector).
The operation is not closed and so closure does not apply.

Commutative Now,
That is, .
Therefore the operation of scalar product is commutative

Associative If the associative property were to hold it would take on the form 
. However,  is a real number and therefore

the operation  has no meaning [you cannot ‘dot’ a scalar with a
vector].

Distributive The scalar product is distributive (over addition)
We leave the proof of this result as an exercise.

Identity As the operation of scalar product is not closed, an identity cannot exist.

Inverse As the operation of scalar product is not closed, an inverse cannot exist.

S
o
l
u
t
i
o
n

i– 3 j+ 1–( )2 32+ 10= = i– 2 j+ 1–( )2 22+ 5= =

i– 3 j+ i– 2 j+
i– 3 j+( ) i– 2 j+( )• 1 1– 3 2×+×– 7= =

θcos a b•
a b------------ 7

10 5×-----------------------= = θ 8°≈⇒

0
5–
4     

02 5–( )2 42+ + 41= =
5–
1–
3–     

5–( )2 1–( )2 3–( )2+ + 35= =

0
5–
4      5–

1–
3–     

• 0 5–( ) 5–( ) 1–( )×+× 4 3–( )×+ 7–= =

θcos a b•
a b------------ 7–

41 35×--------------------------= = θ 101°≈⇒

a b• a b θcos b a θcos b a•= = =
a b• b a•=

a b•( ) c• a b c•( )•= a b•
a b•( ) c•



Vectors – CHAPTER 26

935

Note that although the scalar product is non-associative, the following ‘associative rule’ holds for 
the scalar product:

If , then, 

26.6.3 SPECIAL CASES OF THE SCALAR PRODUCT

1. Perpendicular Vectors

[Note: We are assuming that a and b are non-zero vectors.]

2. Zero vector

3. Parallel vectors

[Note: We are assuming that a and b are non-zero vectors.]

Combining the results of 1., and 2., above, we have the important observation that

Notice how this result differs from the standard Null Factor Law when dealing with real numbers, 
where given ab = 0 then a or b or both are zero! That is, the cancellation property that holds for 
real numbers does not hold for vectors.

A nice application using the perpendicular property above can be seen in the next example.

k ∈ a kb( )• k a b•( )=

If the vectors a and b are perpendicular then, .a b• a b 90°cos 0= =

For any vector a, .a 0• a 0 θcos 0= =

If the vectors a and b are parallel then, .

If the vectors a and b are antiparallel then, .

a b• a b 0cos a b= =

a b• a b πcos a– b= =

If  then either
1. a and/or b are both the zero vector, 0. 
Or
2.  a and b are perpendicular with neither a nor b being the zero vector.

a b• 0=

Three towns are joined by straight roads. Oakham is the state capital and is 
considered as the ‘origin’. Axthorp is 3km East and 9km North of Oakham and Bostock is 5km 
East and 5km South of Axthorp.

Considering  as a 1km vector pointing East and  a 1km vector pointing North:

(a) Find the position vector of Axthorp relative to Oakham.
(b) Find the position vector of Bostock relative to Oakham.

A bus stop (S) is situated two thirds of the way along the road from Oakham to Axthorp.
(c) Find the vectors  and .
(d) Prove that the bus stop is the closest point to Bostock on the Oakham to Axthorp road.

i j

OS BS

E 26.18XAMPLE
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(a) Axthorp is 3km East and 9km North of Oakham so 
(b)
(c)

(d) The next step is to calculate the angle between  and  by calculating the scalar
product of the two vectors:

This means that  and  are at right angles to each other. It follows that the bus stop is the 
closest point to Bostock on the Oakham to Axthorp road.

As the two vectors are perpendicular, then 

     

Let the vector perpendicular to  be . 
Then, as  so that 

         – (1)
Unfortunately, at this stage we only have one equation for two unknowns! We need to
obtain a second equation from somewhere. To do this we recognise the fact that if v is
perpendicular to u, then so too will the unit vector, , be perpendicular to u.
Then, as  – (2)

From (1) we have that  – (3)

Substituting (3) into (2) we have:        

S
o
l
u
t
i
o
n

OA 3i 9 j+=
OB OA AB+ 3i 9 j 5i 5 j–+ + 8i 4 j+= = =
OS 2

3--- OA( ) 2
3--- 3i 9 j+( ) 2i 6 j+= = =

BS BO OS+ 8i 4 j+( )– 2i 6 j+ + 6i– 2 j+= = =
OS BS

OS BS• 2i 6 j+( ) 6i– 2 j+( )• 2 6–( )× 6 2×+ 0= = =
OS BS

Find the value(s) of m for which the vectors  and 
 are perpendicular.

2mi mj 8k+ +
i 3mj k–+

E 26.19XAMPLE

S
o
l
u
t
i
o
n

2mi mj 8k+ +( ) i 3mj k–+( )• 0=
2⇒ m 3m2 8–+ 0=
3m2 2m 8–+⇔ 0=

3m 4–( ) m 2+( )⇔ 0=
m⇔ 4

3--- or  m 2–= =

Find a vector perpendicular to .u 4i 3 j–=E 26.20XAMPLE

S
o
l
u
t
i
o
n

u 4i 3 j–= v xi yj+=
u v u v•⇒⊥ 0= 4i 3 j–( ) xi yj+( )• 0=

4x 3y–∴ 0=

v̂
v̂ 1 x2 y2+⇒ 1 x2 y2+∴ 1= = =

y 4
3---x=

x2 4
3---x   2

+ 1 25x2⇔ 9 x⇔ 3
5---±= = =
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Substituting into (3) we have: 

Therefore, both  and  are perpendicular to u.

From the triangle rule for vector addition we have .
Now, using the scalar product we have:

Let the vector  be perpendicular to both a and b.
Then, we have that  and .
From  we obtain:  – (1)
From  we obtain:  – (2)
In order to solve for the three unknowns we need one more equation. We note that if c is
peprendicular to a and b then so too will the unit vector, . So, without any loss in
generality, we can assume that c is a unit vector. This will provide a third equation.
As we are assuming that c is a unit vector, we have:        – (3)
We can now solve for x, y and z:

(1) + (2):  – (4) 
2×(1) – (2):  – (5) 

Substituting (4) and (5) into (3):

y 4
5---±=

v 3
5---i

4
5--- j+= v 3

5---i
4
5--- j+  –=

Use a vector method to derive the cosine rule for the triangle shown.

A
B

C

a
b

c

θ

E 26.21XAMPLE

S
o
l
u
t
i
o
n

a c+ b c⇔ b a–= =

c c• b a–( ) b a–( )•=
b b b a a b a a•+•–•–•=
b 2 2a b a 2+•–=

c 2∴ b 2 a 2 2 a b θcos–+=

Find a vector perpendicular to both  and .a 2i j k–+= b i 3 j k+ +=E 26.22XAMPLE

S
o
l
u
t
i
o
n

c xi yj zk+ +=
a c• 0= b c• 0=

a c• 0= 2i j k–+( ) xi yj zk+ +( )• 2x y z–+ 0= =
b c• 0= i 3 j k+ +( ) xi yj zk+ +( )• x 3y z+ + 0= =

ĉ

c 1 x2 y2 x2+ +∴ 1= =

3x 4y+ 0=
5y 3z+ 0=

4
3---y–   2

y2 5
3---y–   2

+ + 1=
16⇔ y2 9y2 25y2+ + 9=

50⇔ y2 9=
y⇔ 3

5 2----------±=

y∴ 3 2
10----------±=
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Substituting into (4) and (5) we obtain  and .

Therefore,  or  are two vectors perpendicular to 
a and b. Of course any multiple of this vector will also be perpendicular to a and b.

As we have already seen in Example 26.21, the scalar product is a very powerful tool when 
proving theorems in geometry. We now look at another theorem that is otherwise lengthy to prove 
by standard means.

Consider the triangle ABC as shown, where M is the mid-point of the base . Next, let 
 and . We then wish to show that  (or ).

Now, 

   

Therefore, 

         

          [because ] 
          [because ] 

Therefore, as  and , then .
i.e., the median is perpendicular to the base.

26.6.4 DIRECTION COSINES

Let  and  denote the angles that the position vector

makes with the positive directions of the x-, y- and z- axes
respectively.

These angles, are known as the direction angles of r and the 
cosines of these angles, i.e.,  and  are known
as the direction cosines of r.

x 4
3---

3 2
10----------±×– 2 2

5----------+−= = z 5
3---

3 2
10----------±×– 2

2-------+−= =

2 2
5----------i  3 2

10---------- j  2
2-------k+−±+− 2 2

5----------i 3 2
10---------- j– 2

2-------k+  +−

Prove that the median to the base of an isosceles triangle is perpendicular to 
the base.

E 26.23XAMPLE

S
o
l
u
t
i
o
n

BC
a AB= b AC= AM BC⊥ AM BC• 0=

A

B                   M                     C

a                b

AM AB BM+ AB 1
2---BC+= =

a 1
2--- b a–( )+=

1
2--- a b+( )=

AM BC• 1
2--- a b+( ) b a–( )•=
1
2--- a b a a b b b a•–•+•–•( )=
1
2--- a 2– b 2+( )= a b• b a•=
0= a b=

AM 0≠ BC 0≠ AM BC• 0 AM BC⊥⇒=

P(x,y,z)i

jk

r

O

x

y

z

α
β

γ

A

B

C

α β, γ
OP r xi yj zk+ += =

α βcos,cos γcos
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We denote the direction cosines of r by the letters l, m and n respectively.
So that

Where  is obtained from 

 is obtained from  

and  is obtained from 
Also, realise then, that the unit vector, , is such that

This gives the results  or .

This means that if  is the angle between two vectors,  and 
 with direction cosines  and  respectively, then

We will come across this result at a later stage, when we look at the angle between two straight 
lines. At this stage however, you should realise that this result is a simple extension of using the 
scalar product to find the angle between two vectors. That is, the cosine of the angle between the 
vectors a and b is the same as the cosine of the angle between their unit vectors  and  – which 
is what we are saying when we use .

(a) We first need to find : .
Then,  = 

So that the direction cosines are ,  and .

(b) As in part (a) we find the unit vector of b: .

   l αcos x
r-----     m, βcos y

r-----     n, γcos z
r-----   = = = = = =

αcos x
r-----= OAP∆

βcos y
r-----= OBP∆

γcos z
r-----= OCP∆
r̂

r̂ 1
r-----r

1
r----- xi yj zk+ +( ) x

r-----i
y
r----- j

z
r-----k+ + αcos i βcos j γcos k+ += = = =

  cos2α cos2β cos2γ+ + 1  =   l2 m2 n2+ + 1  =

θ a x1i y1 j z1k+ +=
b x2i y2 j z2k+ += l1 m1 n1, , l2 m2 n2, ,

  θcos l1l2 m1m2 n1n2
 + +=

â b̂
θcos l1l2 m1m2 n1n2+ +=

Consider the vectors  and .
(a) Find the direction cosines of the vector a.
(b) Find the direction angles of b.
(c) Find the cosine of the angle between a and b.

a 2i 2 j– k+= b i– 2 j k–+=E 26.24XAMPLE

S
o
l
u
t
i
o
n

a a 22 2–( )2 12+ + 7= =
â 1
a------ 2i 2 j– k+( )= 1

7------- 2i 2 j– k+( ) 2
7-------i 2

7------- j– 1
7-------k+=

αcos 2
7-------= βcos 2

7-------–= γcos 1
7-------=

b 1 4 1+ + 6= =
b̂∴ 1

6-------i– 2
6------- j 1

6-------k–+=
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To find the directional angles of b we have,
 so that 

 so that 

and  so that 

(c) If  is the angle between a and b then using the direction cosines of a and b we have

         

1. Find the scalar product, , for each of the following

2. Find the scalar products of these pairs of vectors.
(i)  and (ii)  and 
(iii)  and (iv)  and 
(v)  and (vi)  and 

(vii)  and (viii)  and (ix)  and 

3. Find the angles between these pairs of vectors, giving the answers in degrees, correct to
the nearest degree.
(i)  and (ii)  and 
(iii)  and (iv)  and 

αcos 1
6-------–= α arccos 1

6-------–   114°6′≈=

βcos 2
6-------= β arccos 2

6-------   35°16′≈=

γcos 1
6-------–= γ arccos 1

6-------–   114°6′≈=

θ
θcos l1l2 m1m2 n1n2+ + 2

7------- 1
6-------–× 2

7-------–   2
6-------× 1

7------- 1
6-------–  ×+ += =

2– 2 2– 1–
42---------------------------------=

3 2 2+
42-------------------–=

EXERCISES 26.6

a b•

40˚

20˚

a

b

a 2=
b 4= 120˚

20˚

a

b

a 3=
b 5=

30˚
a

b

a 5=
b 10=

(a) (b) (c)

3i 2 j+ 2i 3 j+ 3i 7 j+ 2i 3 j+
3i j– 2– i 2 j+ 6i j k–+ 7i– 4 j– 3k+
j– 5k+ 4i– j k+ + i– 5 j 4k+ + 5i 4– k
0
6
1      7

2
6–      3–

1–
7      3

2
1      6–

1–
7      7

3
5     

4i– 4 j– 3i– 2 j+ i j– 3i 6 j+
4i– 2 j– i– 7 j– 7i– 3 j+ 2i– j–
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(v)  and (vi)  and 

(vii)  and (viii)  and 

4. Two vectors are defined as  and . Find the value of x if:
(i) the vectors are parallel.
(ii) the vectors are perpendicular.

5. If ,  and , find, where possible,
(a) (b) (c)
(d) (e) (f)

6. If ,  and  find, where possible,
(a) (b)
(c) (d)

7. Find the value(s) of x for which the vectors  and  are perpendicular.

8. P, Q and R are three points in space with coordinates (2, –1, 4), (3, 1, 2) and (–1, 2, 5) 
respectively. Find angle Q in the triangle PQR.

9. Find the values of x and y if  is perpendicular to both 
and .

10. Find the unit vector that is perpendicular to both  and .

11. Show that if u is a vector in three dimensions, then .

12. (a) Find a vector perpendicular to both  and .
(b) Find a vector perpendicular to .

13. Show that if , where  and , then a and b are perpendicular.

14. If  where a ≠ 0 ≠ b, what conclusion(s) can be made?

15. Find the direction cosine of the following vectors
(a) (b)

16. (a) Find the direction cosines of the vector .
(b) Hence, find the angles,  and  that r makes with the positive x-, y- and z- axes

respectively.

i 3 j 7k+ + 6i 7 j k–+ j 3k+ j– 2k–
3–
1–
5–      4

5
5–      2–

7
7–      5

2
5–     

a 2i xj+= b i 4 j–=

a 2i 3 j– k+= b i– 2 j 2k+ += c i k+=
a b• a b–( ) c• a b c••
a b–( ) a b+( )• a

c--- b 0•

a 2i 3 j–= b 3i j–= c i j+=
a b c+( ) b c a–( ) c a b–( )•+•+• b c–( ) c b–( ) b+• 2

2 a 2 3c c•– a
a------
b
b------
c
c-----+ +

xi j k–+ xi 2xj– k–

u xi 2yj 8k–+= v 2i j– k+=
w 3i 2 j 4k–+=

a 3i 6 j k–+= b 4i j k+ +=

u u i•( )i u j•( ) j u k•( )k+ +=

a i– 2 j 4k+ += b 2i 3 j– 2k+=
2i j 7k–+

a b– a b+= a 0≠ b 0≠
a b• a c•=

3i 4 j+ 2i j k–+

r 2i– 2 j k+ +=
α β, γ
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17. Using the scalar product for vectors prove that the cosine of the angle between two lines
with direction cosines  and  is given by .

18. Find the cosine of the acute angle between
(a) two diagonals of a cube
(b) the diagonal of a cube and one of its edges.

19. (a) On the same set of axes sketch the graphs of x + 3y – 6 = 0 and 2x – y + 6 = 0,
clearly labelling all intercepts with the axes.

(b) Find a unit vector along the line
i. x + 3y – 6 = 0.
ii. 2x – y + 6 = 0.

(c) Hence find the acute angle between the two lines x + 3y – 6 = 0 and 2x – y + 6 = 0

20. Find a unit vector a such that a makes an angle of 45˚ with the z–axis and is such that the
vector i – j + a is a unit vector.

21. Using the scalar product for vectors prove 
Pythagoras’s Theorem for the triangle ABC shown.

22. Prove that an angle inscribed in a semicircle 
is a right angle.

23. In the trapezium shown, BE:BC = 1:3.
Show that 
where ,  and 

24. Prove that the altitudes of any triangle are concurrent.

25. An oil pipeline runs from a well (W) to a distribution point (D) which is 4km East and
8km North of the well. A second well (S) is drilled at a point 9km East and 7km South of
the distribution point. It is desired to lay a new pipeline from the second well to a point (X)
on the original pipeline where the two pipes will be joined. This new pipeline must be as
short as possible.
(a) Set up a suitable vector basis using the first well as the origin.
(b) Express  in terms of your basis.
(c) Write a unit vector in the direction of .
(d) If the point X is d km along the pipeline from the first well, write a vector equal to

.
(e) Hence find the vector  such that the new pipeline is as short as possible.

l1 m1 n1, , l2 m2 n2, , θcos l1l2 m1m2 n1n2+ +=

A

B

Cb

ac

a
b OB                                     C

A

A                    B

D                                          C

E3AC DE• 2 4m2 n2–( )=
AB m= DC 2 AB= DA n=

WD WS DS, ,
WD

WX
WX



Vectors – CHAPTER 26

943

26.6.5 USING A GRAPHICS CALCULATOR

Many models of graphics calculator allow entry of vectors and limited calculations with them. 
The TI 82/3 models use the matrix menu system. After entering the vectors as column matrices, 
simple arithmetic calculations can be performed. The matrix menu structure will be considered in 
more detail later in this chapter. More advanced models such as the TI-85 can calculate absolute 
values and scalar products. These are under the VECTOR, MATH menus.

We consider two examples.
Example 1 (Addition/subtraction):

To enter and calculate a vector sum such as  the steps are:

Step 1: Enter the two matrices using the MATRIX menu,
EDIT option.

Step 2: Choose matrix A and define the correct dimensions for
the vectors, i.e.,   and enter the correct components. 

Remember to use the ‘negative key’ (–) rather than the subtraction key 
when entering the negative number. Repeat for matrix B.

Step 3: The calculation is now completed by keying it as if it
were a normal numerical calculation using the memories
of the calculator. 

In this case the names of the two vectors are accessed using the 
MATRIX NAMES menu and highlighting the name required at each 
stage of the calculation.

Example 2 (Scalar product):

To find the scalar product,  choose the Matrix A as having dimensions  and 

Matrix B as having dimension . Then multiply the matrices:

So that in this case, the dot product, is –20.

3
2
3–
1     

× 4
5–
2
4–     

–

3 1×

2
3–
1      5–

2
4–     

• 1 3×

3 1×



MATHEMATICS – Higher Level (Core)

944

26.7.1 VECTOR EQUATION OF A LINE IN 2–D

We start this section by considering the following problem:

Relative to an origin O, a house, situated 8 km North of O, stands next to a straight road. The road 
runs past a second house, located 4 km East of O. If a person is walking along the road from the 
house North of O to the house East of O, determine the position of the person while on the road 
relative to O.

We start by drawing a diagram and place the person 
along the road at some point P. 

We need to determine the position vector of point P.

We have

Now, as P lies somewhere along , we can write
, where , so that when  

the person is at A and when  the person is at B.

Next, , and so we have that 
.

This provides us with the position vector of the person while walking on the road.

We take this equation a little further. The position vector of P can be written as  and 
so we have that 

That is, we have  meaning that
 and 

The equations  – (1) and  – (2) are known as the parametric form of the 
equations of a straight line

Next, from these parametric equations we have  – (3) and  – (4)

Then, equating (3) and (4) we have . This equation is known as the Cartesian form of 
the equation of a straight line. We can go one step further and simplify this last equation.

which corresponds to the straight line passing through A and B.

This approach to describe the position of an object (or person) is of great use when dealing with 

VECTOR EQUATION OF A LINE26.7

B(4,0)

A(0,8)

O

N

j
i

P(x,y)

r
r OP OA AP+= =

AB
AP λAB= 0 λ 1≤ ≤ λ 0=

λ 1=

AB AO OB+ 8 j– 4i+= =
r 8 j λ 8 j– 4i+( )+=

r xi yj+=

xi yj+ 8 j λ 8 j– 4i+( )+=
xi yj+ 4λi 8 8λ–( ) j+=

x 4λ= y 8 8λ–=

x 4λ= y 8 8λ–=

λ x
4---= λ y 8–

8–-----------=
x
4---

y 8–
8–-----------=

x
4---

y 8–
8–----------- 2x–⇔ y 8 y⇔– 2x– 8+= = =
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objects travelling in a straight line. When planes are coming in for landing, it is crucial that their 
positions along their flight paths are known, otherwise one plane could be heading for a collision 
with another plane in the air.

We now formalise the definition of the vector equation of a line in a plane:

PROOF:
Let the point P(x, y) be any point on the line L, then the vector  is parallel to the vector b.

        
So the equation of L is given by  as required.

We can now derive two other forms for equations of a line. We start by letting the coordinates of 
A be , the coordinates of P be (x, y) and the vector .

From  we have, 
This provides us with the

Next, from the parametric form we have  – (1) 

and  – (2) 
Equating (1) and (2) provides us with the

The vector equation of a line L in the direction 
of the vector b, passing through the point A with 
position vector a is given by 

where  is a scalar parameter.
r a λb+=

λ

P

r

O

a
λb

b L

y

x

A

AP
r OP=

OA AP+=
r∴ a λb+=
r a λb+=

a1 a2,( ) b b1
b2  =

r a λb+= x
y   a1

a2   λ b1
b2   x

y  ⇔+ a1 λb1+
a2 λb2+  = =

Parametric form for the equation of a straight line:
x a1 λb1+=
y a2 λb2+=

x a1 λb1 x a1–⇔+ λb1 λ⇔ x a1–
b1

--------------= = =

y a2 λb2 y a2–⇔+ λb2 λ⇔ y a2–
b2

--------------= = =

Cartesian form for the equation of a straight line:
x a1–
b1

-------------- y a2–
b2

--------------=
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The vector equation of the line L is based on finding (or using) any point on the line, such as , 

and any vector in the direction of the line L, such as .

The position vector of any point R on the line can then be written as .

As λ varies, different points on the line are generated, and conversely any point on the line has a 
corresponding value of λ. For example, substituting λ = 3 gives the point  and the point 
corresponds to λ = 8.

NB: the vector equation (in parametric form) is not unique. The equation  is an 

equally valid description of the line, and in this case substituting λ = 0.5 generates the point .

Rather than depend on a standard formula, it is always helpful to visualise problems such
as these, in particular, when we move onto straight lines in space. We draw a general
representation of this situation and work from there.

Let the point P be any point on the line L with position vector r, 
then
However, as A and P lie on the line L, then .
Therefore, 

This represents the vector equation of the line L in terms of the parameter , where .

The equation could also be written as, .

Find the vector equation of the line L, 
as shown in the diagram.

Comment on the uniqueness of this equation.

O 8

8 1
1–   

x y+ 8=R

L

y

x

E 26.25XAMPLE

S
o
l
u
t
i
o
n

0
8  

1
1–  

r 0
8   λ 1

1–  +=

3
5   8

0  

r 4
4   λ 2–

2  +=
3
5  

Find the vector equation of the line L, passing through the point A(2, 5) and 
parallel to the vector .3i 4 j–

E 26.26XAMPLE

S
o
l
u
t
i
o
n

O

A(2, 5)

P(x, y)
L

3i 4 j–

r
OP OA AP+=

AP λ 3i 4 j–( )=
r 2i 5 j+( ) λ 3i 4 j–( )+=

λ λ ∈
r 2 3λ+( )i 5 4λ–( ) j+=
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We start with a sketch of the situation described:

Let the point P be any point on the line L with position vector r, 
then
Then, as , where .

This means that we need to find the vector  which will be 
the vector parallel to the line L. So, we have

Therefore, from  we have

That is,     where 
This represents the vector equation of the straight line L.

To find the parametric form of L we make use of the equation .

As P(x, y) is any point on the line L, we write the vector equation as .
From where we obtain the parametric equations,  and .

To find the Cartesian form of L we now make use of the parametric equations.
From  we have  – (1) and from  we have  – (2) 
Then, equating (1) and (2) we have  (or ).

(a)  =  =  [which is in the form ]

(b) The direction of the line L is provided by the vector b, i.e., .

To find the unit vector we need  = . .

Find the vector equation of the line L, passing through the points A(1, 4) 
and B(5, 8). Give both the parametric form and Cartesian form of L.

E 26.27XAMPLE

S
o
l
u
t
i
o
n

O

A(1,4)
P(x, y)

L r

B(5,8)

OP OA AP+=
AP AB AP⇒|| λAB= λ ∈

AB

AB AO OB+ 1
4  – 5

8  + 4
4   4 1

1  = = = =
OP OA AP+=

OP 1
4   λ 4 1

1  ×+=

r 1
4   t 1

1  += t 4λ=

r 1
4   t 1

1  +=
x
y   1

4   t 1
1  +=

x 1 t+= y 4 t+=

x 1 t+= t x 1–= y 4 t+= t y 4–=
x 1– y 4–= y x 3+=

The vector equation of the line L, is given by .
(a) Express the vector equation in the standard form .
(b) Find a unit vector in the direction of L. 
(c) Find the Cartesian form of the line L.

r 3 2λ+
5 5λ–  =

r a λb+=

E 26.28XAMPLE

S
o
l
u
t
i
o
n

r 3 2λ+
5 5λ–  = 3

5   2λ
5λ–  + 3

5   λ 2
5–  + r a λb+=

2
5–  

2
5–   4 25+ 29= b̂∴ 1

29---------- 2
5–  =
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(c) Using the point P(x, y) as representing any point on the line L, we have that .

Therefore, we can write the vector equation as . 
From this equation we then have that  – (1) 

and  – (2) 
We can now find the Cartesian equation by eliminating the parameter  using (1) and (2).
From (1): . From (2):

Therefore, .

We must first express the lines in their vector form. To do this we need to introduce a
parameter for each line.
Let  giving the parametric equations  and .
We can now express these two parametric equations in the vector form:

 = 

This vector equation informs us that the line  is parallel to the vector .

In the same way we can obtain the vector equation of the line .

Let  giving the parametric equations  and .

From where we obtain the vector equation  = .

This vector equation informs us that the line  is parallel to the vector .

To find the angle between the two lines we use their direction vectors,  and  along

with the scalar product: 

  

  

r x
y  =

x
y   3 2λ+

5 5λ–  =
x 3 2λ+=
y 5 5λ–=

λ
λ x 3–

2-----------= λ y 5–
5–-----------=

x 3–
2----------- y 5–

5–-----------=

Find the angle between the lines  and .x 2–
4----------- y 1+

3------------= x 2+
1–------------ y 4–

2-----------=
E 26.29XAMPLE

S
o
l
u
t
i
o
n

x 2–
4----------- y 1+

3------------ λ= = x 2 4λ+= y 1– 3λ+=

x
y   2 4λ+

1– 3λ+  = 2
1–   λ 4

3  +
x 2–

4----------- y 1+
3------------= 4

3  

x 2+
1–------------ y 4–

2-----------=
x 2+

1–------------ y 4–
2----------- t= = x 2– t–= y 4 2t+=

x
y   2– t–

4 2t+  = 2–
4   t 1–

2  +
x 2+

1–------------ y 4–
2-----------= 1–

2  
4
3   1–

2  
4
3   1–

2  • 4
3   1–

2   θ 4– 6+⇒cos× 16 9+ 1 4+× θcos= =

θcos⇔ 2
5 5----------=

θ∴ 79°42′≈
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Notice that when discusing the relationship between two straight lines in a plane there are a 
number of possible outcomes:

1. The lines are parallel and never meet
In this situation, the lines have the same direction vectors and no common points.

2. The lines are not parallel and therefore intersect at some point.
In this situation, the lines have non-parallel direction vectors and a common point.

3. The lines are parallel and have a common point, meaning that they are coincident.
In this situation, the lines have the same direction vectors and all their points are
common.

If the two lines intersect then there exists a point on  and   such that .
That is, 

      
Giving the system of equations  – (1) 

and  – (2) 
Solving for : :
Hence, using the vector equation , the point of intersection has the position vector 

. That is, the lines intersect at the point .

L1 L2

O

r1
r2

b1 b2
b1 b2||r1 a1 λb1+=

r1 a2 tb2+=L2

L1 :
:

and 

L1
L2O

r1
r2

b1
b2

r1 a1 λb1+=
r1 a2 tb2+=L2

L1 :
:

L1

L2O

r1
r2

b1
b2

r1 a1 λb1+=
r1 a2 tb2+=L2

L1 :
:

b1 b2||and 

Find the point of intersection of the lines  and  whose vector 
equations are  and  respectively.

L1 L2
r1 2i 3 j λ 2i j+( )+ += r2 5i 2 j– µ i 2 j–( )+=

E 26.30XAMPLE

S
o
l
u
t
i
o
n

L1 L2 r1 r2=
2i 3 j λ 2i j+( )+ + 5i 2 j– µ i 2 j–( )+=
2 2λ+( )i 3 λ+( ) j+∴ 5 µ+( )i 2– 2µ–( ) j+=

2 2λ+ 5 µ+=
3 λ+ 2– 2µ–=

λ 2 1( ) 2( )+× 7 5λ+ 8 λ⇔ 1
5---= =

r1
r 2i 3 j 1

5--- 2i j+( )+ + 12
5------i

16
5------ j+= = 12

5------
16
5------,  
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1. For the straight line with equation  where  and 
find the coordinates of the points on the line for which
(a) i. ii. iii.
(b) Use part (a) to sketch the graph of .

2. Find the vector equation of the line passing through the point A and parallel to the vector
b, where
(a) , (b) , 
(c) , (d) , 
(e) , (f) , 

3. Find a vector equation of the line passing through the points A and B where
(a) , (b) , (c) , 

4. Find the vector equation of the straight line defined by the parametric equations
(a) (b)
(c) (d)

5. Find the parametric form of the straight line having the vector equation
(a) (b)

(c) (d)

6. Find the Cartesian form of the straight line having the vector equation
(a) (b)

(c) (d)

(e) (f)

7. Write the following lines in vector form
(a) (b) (c)

8. Find the position vector of the point of intersection of each pair of lines.
(a)  and .

(b)  and .

EXERCISES 26.7.1

r a λb+= a i 2 j+= b 2i– 3 j+=

λ 0= λ 3= λ 2–=
r i 2 j λ 2i– 3 j+( )+ +=

A 2 5,( )≡ b 3i 4 j–= A 3 4,–( )≡ b i– 5 j+=
A 0 1,( )≡ b 7i 8 j+= A 1 6–,( )≡ b 2i 3 j+=
A 1 1–,–( )≡ b 2–

10  = A 1 2,( )≡ b 5
1  =

A 2 3,( ) B 4 8,( ) A 1 5,( ) B 2– 1,( ) A 4 3–,( ) B 1– 2–,( )

x 9 λ y,+ 5 3λ–= = x 6 4t y,– 6– 2t–= =
x 1– 4λ y,– 3 8λ+= = x 1 1

2---µ y,+ 2 1
3---µ–= =

r 8–
10   µ 2

1  += r 7
4   µ 3–

2–  +=

r 5
3   µ

2---
5
1  += r 0.5 0.1t–

0.4 0.2t+  =

r 1
3   µ 3

1  += r 2
4   λ 7

5  –=

r 2
4  – λ 1

8  += r 0.5
0.2   t 1–

11  –=

r 7
5   λ 0

1  += r 2
6   λ 5

0  +=

y 1
3---x 2+= y x 5–= 2y x– 6=

r1 2
1   λ

3λ  += r2 1
3   µ 1

2  +=

r1 0
4   λ 2

5  += r2 2
2–   µ 1

1  +=
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9. Find the equation of the line that passes through the point A(2, 7) and is perpendicular to
the line with equation .

10. Let the position vectors of the points  and  be  and  respectively.
Show that the equation  represents a vector equation of the line
through P and Q, where .

11. The line L is defined by the parametric equations  and .
(a) Find the coordinates of three points on L.
(b) Find the value of k that corresponds to the point (14, –8).
(c) Show that the point (–1, 4) does not lie on the line L.
(d) Find the vector form of the line L.
(e) A second line, M, is defined parametrically by  and .

Describe the relationship between M and L for the case that 
i. a = 8 and b = 4
ii. a = 4 and b = –2

12. Find the cartesian equation of the line that passes through the point A(2, 1) and such that it
is perpendicular to the vector .

13. Find the direction cosines for each of the following lines
(a) (b)

14. (a) Show that the line  has a directional vector  and a normal

vector .
(b) By making use of directional vectors, which of the following lines are parallel to

?
i.
ii.
iii.

15. Find the point of intersection of the lines  and .

16. Find a vector equation of the line passing through the origin that also passes through the 
point of intersection of the lines  and .

17. Consider the line with vector equation . Find the point(s) of
intersection of this line with the line
(a)
(b)
(c)

r i– 3 j– λ 3i 4 j–( )+=

P x1 y1,( ) Q x2 y2,( ) p q
r 1 λ–( ) p λq+=
λ ∈

x 4 5k–= y 2– 3k+=

x a 10λ+= y b 6λ–=

4i 3 j+

r 3
4   µ 3–

2  += r 5
9   λ 4

3  +=

ax by c+ + 0= b
a–  

a
b  

L : 2x 3y+ 10=
5x 2y– 10=
6x 9y+ 20=
4x 6y+ 10–=

r 2–
1   λ 3

8  += x 3–
2----------- y

5---=

u 3
2   λ 1–

3  += v 1–
1   µ 2

1  +=

r 4i 3 j–( ) λ 3i 4 j+( )+=

u 4i 5 j+( ) µ 2i j–( )+=
v 2i– 3 j+( ) t 6i– 8 j–( )+=
w 13i 9 j+( ) s 3i 4 j+( )+=
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26.7.2 LINES IN THREE DIMENSIONS

In three dimensional work always try to visualise situations very clearly. Because diagrams are 
never very satisfactory, it is useful to use the corner of a table with an imagined vertical line for 
axes; then pencils become lines and books or sheets of paper become planes.

It is tempting to generalise from a two dimensional line like x + y = 8 and think that the Cartesian 
equation of a three dimensional line will have the form x + y + z = 8. This is not correct - as we 
will see later this represents a plane, not a line.

We approach lines in three dimensions in exactly the same way that we did for lines in two 
dimensions. For any point P(x,y,z)  on the line having the position vector r, passing through the 
point A and parallel to a vector in the direction of the line, b say, we can write the equation of the

the line as . 

So, for example, the line passing through the 
point (4, 2, 5) and having the direction vector
i – j + 2k can be written as:

. 

Or, it could also have been written in  
form as .

As for the case in 2–D, the parametric form or Cartesian form of the equation is obtained by using 

a point P(x, y, z) on the line with position vector  so that . 

From where we first get the parametric equations:
 x = 4 + λ,  y = 2 – λ  and  z = 5 + 2λ. 

Solving each of these for λ we get: .

The parameter λ plays no part in the Cartesian equation, so we drop it and write the
Cartesian equation as .

It is important to be clear what this means: if we choose x, y and z satisfying the Cartesian 
equation, then the point P(x, y, z) will be on the line. 

For example x = 10, y = –4 and z = 17 satisfies the Cartesian equation, and if we think back to our 

original parametric equation we can see that .

y

z

x

O

A
b

a

r

P(x,y,z)

r a λb+=

r
4
2
5     

λ
1
1–
2     

+=

i j k, ,
r 4i 2 j 5k λ i j– 2k+( )+ + +=

r
x
y
z     

=
x
y
z      4

2
5     

λ
1
1–
2     

+=

λ x 4– 2 y– z 5–
2-----------= = =

x 4– 2 y– z 5–
2-----------= =

10
4–

17      4
2
5     

6
1
1–
2     

+=
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To convert a Cartesian equation into parametric form we reverse the process and introduce a 
parameter λ. For example if the Cartesian equation is  we write:

You will probably have noticed the strong connection between the numbers in the fractions in the 
Cartesian form and the numbers in the vectors in the parametric form. 

Consider the Cartesian form of any straight L passing through the point :

From this equation we obtain the parametric form of the straight line:

which then leads to the vector form of the straight line:

That is, the denominators of the Cartesian form of a straight line provide the coefficients of the 
directional vector of the line. This is an important observation, especially when finding the angle 
between two lines when the equation of the line is provided in Cartesian form. 

However, rather than simply commiting this observation to memory it is always a good idea to go 
through the (very short) working involved. 

x 1–
3----------- y 2+

2------------ z 6–
4-----------= =

x 1–
3----------- y 2+

2------------ z 6–
4----------- λ= = =

x⇒ 1 3λ+=
y 2– 2λ+=
z 6 4λ+=

and  r
1
2–
6     

λ
3
2
4     

+=

P x1 y1 z1, ,( )
x x1–

a-------------- y y1–
b------------- z z1–

c-------------= =

x x1–
a-------------- λ x⇔ x1 λa+= =

y y1–
b------------- λ y⇔ y1 λb+= =

z z1–
c------------- λ z⇔ z1 λc+= =

x
y
z      x1

y1
z1     

λ
a
b
c     

+=

Find the Cartesian form of the straight line passing through the point (4,6,3) 
and having direction vector . Draw a sketch of this line on a set of axes.3i 2 j– k+

E 26.31XAMPLE
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We start by sketching the line:

The direction vector of the line is  and 
as the line passes through the point (4,6,3), the 
vector equation of the line is given by

.

From the vector equation we obtain the parametric 
form of the line:

 and .
From these equations we have, ,  and 

Then, eliminating  we have  or .
Which represents the Cartesian form of the line.

We make a very rough sketch - there is no point in trying to 
plot A and B accurately. Let the position vector of any point 
P on the line be r.

Then the vector form of the line is .
Now, .

But      and  

 and so, .

Because the lines are given in their standard Cartesian form, we know that the
denominators represent the coefficients of the direction vectors of these lines. As the angle
between the lines is the same as the angle between their direction vectors we need only use
the direction vectors of each line and then apply the dot product.

For  the direction vector is  and for  it is .

y = 6 y

x

z

x = 4

z = 3
(4,6,3)

3i
–2j

k

S
o
l
u
t
i
o
n

3i 2 j– k+

r 4i 6 j 3k+ +( ) λ 3i 2 j– k+( )+=

x 4 3λ y,+ 6 2λ–= = z 3 λ+=
λ x 4–

3-----------= λ y 6–
2–-----------= λ z 3–

1-----------=

λ x 4–
3----------- y 6–

2–-----------
z 3–

1-----------= = x 4–
3----------- y 6–

2–----------- z 3–= =

Find the vector form of the equation of the line through the point A(2,1,1) 
and the point B(4,0,3).

E 26.32XAMPLE

S
o
l
u
t
i
o
n

A B

O

P

r
r OA λAB+=

OP r OA AP+= =

AP λAB  r OA λAB+=∴= AB AO OB+ OA– OB+= =

A∴ B
2
1
1      4

0
3     

+–
2
1–

2     
= = r

2
1
1     

λ
2
1–

2     
+=

Find the acute angle between the straight lines
  and  L1: x 3–

2----------- y 2+
1–------------

z
3-------= = L2: x 1+

1------------ y 2–
1----------- z 1–

3-----------= =
E 26.33XAMPLE

S
o
l
u
t
i
o
n

L1 b1 2i j– 3k+= L2 b2 i j 3k+ +=
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Using the dot product we have:

         

From the Cartesian form of the line  (say) we obtain the parametric form  
.

We can then write this in the vector form .

Comparing the direction vectors of the two lines we see that , 
and so the direction vectors (and hence the lines) are parallel.

It is worth emphasising, that lines will be parallel or perpendicular if their direction vectors are 
parallel or perpendicular.

b1 b2• b1 b2 θ 2i j– 3k+( ) i j 3k+ +( )•∴cos 8 5 θcos×= =
2 1– 3+ 40 θcos=

θcos 4
40----------=

θ∴ 50°46′=

Write the equation of the line  in parametric form, and 
show that it is parallel to .

x 1+
3------------ 4 y–

2----------- z= =
i– 5 j k µ 6i– 4 j 2k–+( )+ + +

E 26.34XAMPLE

S
o
l
u
t
i
o
n

x 1+
3------------ 4 y–

2----------- z λ= = =
x 1– 3λ y,+ 4 2λ and z– λ= = =

r i– 4 j λ 3i 2 j– k+( )+ +=

6i– 4 j 2k–+ 2 3i 2 j– k+( )–=

Consider the two lines,  and , with directions vectors 
 and  respectively, then

1. If the two lines are perpendicular we have .

2. If the two lines are parallel we have  which in turn implies that 
 and . Then, eliminating the constant m, we have that

L1 : r1 a1 λb1+= L2 : r2 a2 λb2+=
b1 x1i y1 j z1k+ += b2 x2i y2 j z2k+ +=

b1 b2• 0 x1x2 y1y2 z1z2+ +⇒ 0= =

b1 mb2 m 0≠,=
x1 mx2 y1, my2= = z1 mz2=

L1 L2
x1
x2
-----⇔|| y1

y2
----- z1

z2
----= =

Line L passes through the points (4, 3, 9) and (7, 8, 5), while line M passes 
through the points (12, 16, 4) and (k, 26,–4), where . Find the value(s) of k, if
(a) L is parallel to M.
(b) L is perpendicular to M.

k ∈
E 26.35XAMPLE
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We first need to determine direction vectors for both L and M.
For L: Let the points be A(4, 3, 9) and B(7, 8, 5), then a direction vector for L, 

 (say), is given by .

For M: Let the points be X(12, 16, 4) and Y(k,26,–4), then a direction vector for M,

 (say), is given by .

(a) If  we must have that .

i.e., 

So that  .
(b) If  we must have that .

i.e.,

  

Intersection of 2 lines in 3–D

Two lines in space may
1. intersect at a point, or
2. be parallel and never intersect, or
3. be parallel and coincident (i.e., the same), or
4. be neither parallel nor intersect.

Of the above scenarios, the first three are consistent with our findings when dealing with lines in a 
plane (i.e., 2-D), however, the fourth scenario is new. We illustrate these now.

Two lines that meet at (at least) one point must lie in the same plane (cases 1. and 3.) Two 
intersecting lines or two parallel lines are said to be coplanar (cases 1., 2., and 3.). Two lines 
which are not parallel and which do not intersect are said to be skew – skew lines do not lie on the 
same plane – i.e., they are not coplanar. (case 4.)

S
o
l
u
t
i
o
n

b1 b1
7 4–
8 3–
5 9–     3

5
4–    

= =

b2 b2
k 12–
26 16–

4– 4–     k 12–
10
8–    

= =

L M|| b1 cb2 c ∈,=
3
5
4–    

c
k 12–

10
8–     3

k 12–--------------⇒ 5
10------ 4

8–------–= = =

3
k 12–-------------- 1

2--- k 12–⇔ 6 k⇔ 18= = =
L M⊥ b1 b2• 0=

3
5
4–     k 12–

10
8–    

• 0 3 k 12–( ) 50 32+ +⇒ 0= =

3k⇔ 46 k⇔– 46
3------–= =

L1

L2

L1

L2
L2 L1= L1

L2

z                                      z                                    z                                    z

y                                     y                                    y                                    y
 x                                     x                                    x                                    x

1.                                     2.                                  3.                                    4.
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Lines lying on the xy–, xz– and yz– planes

From the Cartesian form of the straight line, L:  we can write:

 – (1) 

 – (2) 

 – (3) 

Equations (1), (2) and (3) represent the planes perpendicular to the xy–, xz– and yz planes 
respectively. Each of these equations is an equation of a plane containing L. The simultaneous 
solution of any pair of these planes will produce the same line. In fact, the three equations are not 
independent because any one of them can be derived from the other two.

If any one of the numbers a, b or c is zero we obtain a line lying in one of the xy–, xz– or yz 
planes. For example, consider the case that c = 0 and neither a nor b is zero.

In such a case we have,  and  meaning that the line lies on the plane 
containing the point  and parallel to the xy–plane.

We start by finding the vector equations of both lines.
For L we have a direction vector given by

Then, as L passes through A(1,2,–1), it has a vector equation given by

This gives the parametric form as,  and  – (1) 
Similarly, we can find the parametric form for M.

x x1–
a-------------- y y1–

b------------- z z1–
c-------------= =

x x1–
a-------------- y y1–

b------------- b x x1–( )⇔ a y y1–( )= =
x x1–

a-------------- z z1–
c------------- c x x1–( )⇔ a z z1–( )= =

y y1–
b------------- z z1–

c------------- c y y1–( )⇔ b z z1–( )= =

x x1–
a-------------- y y1–

b-------------= z z1=
z z1=

z z1=
P x y z1, ,( )

x x1–
a-------------- y y1–

b-------------= and z z1=

x

y

z

O
For ‘convenience’ we sometimes write the 
equation as , 

although clearly,  has no meaning.

x x1–
a-------------- y y1–

b------------- z z1–
0-------------= =

z z1–
0-------------

Line L passes through the points  A(1,2,–1) and B(11,–2,–7) while line M 
passes though the points C(2,–1,–3) and D(9,–10,3). Show that L and M are skew lines.

E 26.36XAMPLE

S
o
l
u
t
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b1 11 1–( )i 2– 2–( ) j 7– 1–( )–( )k+ + 10i 4 j– 6k–= =

r i 2 j k– λ 10i 4 j– 6k–( )+ +=

x 1 10λ y,+ 2 4λ–= = z 1– 6λ–=
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The vector form of M is given by
So that the parametric form is given by  and  – (2) 

Now, as the set of coefficients of the direction vector of M and L are not proportional, 
i.e., as 

the lines L and M are not parallel.

Then, for the lines to intersect there must be a value of  and  that will provide the same point 
 lying on both L and M. Using (1) and (2) we equate the coordinates and try to 

determine this point :
– (3)
– (4)
– (5)

Solving for  and   using (4) and (5) we obtain:  and .

Substituting these values into (1), we have L.H.S =  = R.H.S.
As the the first equation is not consistent with the other two, the lines do not intersect and as they 
are not parallel they must be skew.

1. Find the vector form of the line passing through the point
(a) A(2, 1, 3) which is also parallel to the vector .
(b) A(2, –3, –1) which is also parallel to the vector .

2. Find the vector form of the line passing through the points
(a)  and .
(b)  and .
(c)  and .

3. Find the Cartesian form of the line having the vector form

(a) (b) (c)

4. Find the Cartesian equation of the line passing through the points A(5, 2, 6) and 
B(–2, 4, 2). Also, provide the parametric form of this line.

5. For the line defined by the parametric equations  and 
find the coordinates of where the line crosses the xy–plane.

r 2i j– 3k– µ 7i 9 j– 6k+( )+=
x 2 7µ y,+ 1– 9µ–= = z 3– 6µ+=

10
7------

4–
9–------

6–
6------≠ ≠

λ µ
x0 y0 z0, ,( )

x0 y0 z0, ,( )
1 10λ+ 2 7µ+=
2 4λ– 1– 9µ–=

1– 6λ– 3– 6µ+=
λ µ µ 5

39------–= λ 18
39------=

1 10 18
39------ 2 7 5

39------–×+≠×+

EXERCISES 26.7.2

i 2 j– 3k+
2i– k+

A 2 0 5, ,( ) B 3 4 8, ,( )
A 3 4 7,–,( ) B 7 5 2, ,( )
A 3 4 3–, ,–( ) B 4 4 4, ,( )

r
0
2
3    

s
3
4
5    

+= r
2–
3
1–    

t
5
0
2–    

+= r
0
0
0    

s
1
1
1    

+=

x 3 2t y,+ 4 3t–= = z 1 5t+=
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6. Convert these lines to their parametric form.
(a)    (b)    

(c) (d)

7. Convert these lines to their Cartesian form:

(a)  (b)  

8. Show that the lines  and  are parallel.

9. Find the Cartesian equation of the lines joining the points
(a)  (–1, 3 , 5) to (1, 4, 4) (b)  (2, 1, 1) to (4, 1, –1)

10. (a)  Find the coordinates of the point where the line  intersects the

x-y plane.
(b)  The line  passes through the point (a, 1, b). Find the values

of a and b.

11. Find the Cartesian equation of the line having the vector form

(a) (b) .

In each case, provide a diagram showing the lines.

12. Find the vector equation of the line represented by the Cartesian form
.

Clearly describe this line.

13. Find the acute angle between the following lines

(a)  and .

(b)  and 

(c)  and 

x 2–
3----------- y 5– 2 z 4–( )= = 2x 1–

3--------------- y 4 z–
2-----------= =

x 3–
1–-----------

2 y–
3----------- z 4–

2-----------= = 2x 2–
4--------------- 3 y–

2–-----------
2z 4–

1--------------= =

r
4
1
2–    

t
3
4–
2–    

+= r 2i k µ j 3k–( )+ +=

x 1–
2----------- 2 y– 5 z–= = 4 x–

4----------- 3 y+
2------------ 5 z+

2-----------= =

r
2–
5
3    

t
1–
2
1    

+=

x 3–
4----------- y 2+ 4 z–

5-----------= =

r
1
4
2–    

t
1
1–
0    

+= r
2
1
3    

t
2
0
0    

+=

x 1–
2----------- 1 2y–

3--------------- z 2–= =

r
0
2
3    

s
3
4
5    

+= r
2–
5
3    

t
1–
2
1    

+=

r
2
1
4    

s
2–
0
1    

+= r
1
1
1    

s
1
1
3    

+=

x 3–
1–-----------

2 y–
3----------- z 4–

2-----------= = x 1–
2----------- y 2–

2–----------- z 2–= =
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14. Find the point of intersection of the lines 
(a)  and 

(b)  and 

15. (a) Find the Cartesian form of the lines with parametric equation given by

L  : and 
M : 

(b) Find the point of intersection of these two lines.
(c) Find the acute angle between these two lines.
(d) Find the coordinates of the point where i. L cuts the x-y plane.

ii. M cuts the y-z plane.

16. Show that the lines  and  are coincident.

17. Show that the lines  and  are skew.

18. Find the equation of the line passing through the origin and the point of intersection of the
lines with equations  and .

19. The lines  and , \{0} meet at right angles. Find k.

20. Consider the lines L :  and  M : .
Find, correct to the nearest degree, the angle between the lines L and M.

21. Find the value(s) of k, such that the lines  and  are
perpendicular.

22. Find a direction vector of the line that is perpendicular to both 

and .

23. Are the lines  and  parallel? Find the point
of intersection of these lines. What do you conclude?

x 5–
2–----------- y 10– z 9–

12-----------= = x 4 y 9–
2–-----------, z 9+

6-----------= =
2x 1–

3--------------- y 5+
3------------ z 1–

2–-----------= = 2 x–
4----------- y 3+

2------------ 4 2z–
1--------------= =

x λ y, 2λ 2 z,+ 5λ= = =
x 2µ 1 y,– 1– 3µ z,+ 1 2µ–= = =

x 2–
3----------- y 3–

2–-----------
z 1+

5-----------= = x 5–
3–-----------

y 1–
2----------- z 4–

5–-----------= =

x 1–
3–----------- y 2– 7 z–

11-----------= = x 2–
3----------- y 1+

8------------ z 4–
7–-----------= =

x 2– y 1–
4----------- z, 3= = x 6–

2----------- y 10– z 4–= =

x
3---

y 2–
4----------- 3 z+= = x y z 1–

2k-----------= = k ∈

x 0 y 3–
2-----------, z 1+= = x

4---
y
3---

z 10–
1–--------------= =

x 2–
k----------- y

2---
3 z–

3-----------= = x
k 1–----------- y 2+

3------------ z
4---= =

x 1+
3------------ y 1+

8------------ z 1+
12-----------= =

1 2x–
4–--------------- 3y 1+

9--------------- z
6---= =

x 1–
5----------- y 2+

4------------ 4 z–
3-----------= = x 2+

3------------ y 7+
2------------ 2 z–

3-----------= =
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We start this section by establishing a ‘definition’.

RIGHT HANDED SYSTEM 

When dealing with three-dimensional space, three base vectors 
(not coplanar) must be defined. We also conveniently use base 
vectors that are mutually orthogonal (at right-angles) and which 
are right-handed. 

So, what do we mean by right-handed?

If we place a screw at some origin O and rotate it from OX to OY, 
then the screw would move in the direction OZ. This defines what 
is known as a right-handed system. This definition becomes 
important when we look at the operation of vector product.

27.1.1 VECTOR PRODUCT

Unlike the scalar product of two vectors, which resuls in a scalar value, the vector product or as 
it is often called, the cross product, produces a vector.

We define the vector product as follows

We now consider some properties of the vector product.

1. Direction of 

The resulting vector,  is a vector that is 
parallel to the unit vector  (unless  = 0).

The direction of  (and hence c) is always either
1. perpendicular to the plane containing a and b 

which is determined by the right-hand rule 
(as shown in the diagram).

or 
2. is the zero vector, 0.

VECTOR PRODUCT27.1

C
H

A
P

T
E
R

 2
7

O

X

Y

Z

direction of ‘motion’

The vector product (or cross product) of two vectors, a and b produces a third vector, c, 
where

and  is the angle between a and b and  is a unit vector perpendicular to both a and b, 
i.e., to the plane of . This means that the vectors a, b and  (in that order) form a 
right-handed system.

  c a b× a b θn̂  sin= =

θ n̂
a b× n̂

a b×

θ

a
b

c

n̂

Plane containing a and b

c a b×=
n̂ a b×

n̂
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2. Magnitude of 

The magnitude of  is given by 
          

But,  and , therefore, we have that

Notice that from 1., and 2., we can also conclude that

Observation 2., i.e., , implies that a and b would be either parallel or 
antiparallel, which would not define a plane and so, the unit vector would not be defined. 

This means that for any vector, a, , which brings up a very interesting result for our
i-j-k – vector system: .

So, unlike the scalar product, where  for a non-zero vector a, with the cross 
product we have . Also, recall that with the dot product, if the vectors a and b are non-
zero and perpendicular, then . So, what can we conclude about the cross product of 
two non-zero perpendicular vectors?

If the non-zero vectors a and b are perpendicular then .
This means that the magnitude of .

As a result of this property, we have for our i-j-k – vector system the following results

 
and 

The reason for the the negative signs in the above is to ensure 
consistency within the right-hand system. 

So that for example, the vectors i, j and k (in that order) form a right-hand system as do the 
vectors i, k and –j (in that order). A useful way of remembering which sign applies is to use the 
cyclic diagram shown:

a b×

a b× a b× a b θn̂sin=
a b θsin n̂=

n̂ 1= 0 θ π θ 0≥sin⇒≤ ≤

 a b× a b θsin  =

If , then either 1. a = 0 or b = 0 or both a and b are 0
or 2.  (as ).

a b× 0=
θsin 0 θ⇒ 0 or π= = 0 θ π≤ ≤

θsin 0 θ⇒ 0 or π= =

a a× 0=
i i× j j× k k× 0= = =

a a• a 2 0>=
a a× 0=

a b• 0=

θ π
2--- θsin⇒ 1 a b×∴ a b n̂= = =

a b× a b n̂ a b= =

k

ji

i j× k j k×, i k i×, j= = =
i k× j j i×,– k k j×,– i–= = =

i

jk

1. Going clockwise, we take the positive sign, 
e.g., 

2. Going anticlockwise, we take the negative sign,
e.g., 

k i× j=

j i× k–=

+ve

–ve
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3. Operational properties

Closure As  produces a unique vector, then the operation of vector
product is closed.

Commutative As  (to conform with the right-hand system) the
operation of vector product is not commutative.

In fact, because of the change in sign, we say that the vector product
is anti-commutative.
Notice also that , i.e., the vector  
has the same magnitude as  but is in the opposite direction.

Associative It is easy to verify that  (e.g., use a = i, b = j 
and c = k) and so the vector product is non-associative.

Distributive It is easy to verify that  and as such, the
vector product is distributive over addition.

Indentity No identity element exists for the operation of vector product.

Inverse No inverse element exists for the operation of vector product.

1. For each pair of coplanar vectors, find the magnitude of their cross product.
(a)  and the angle between a and b is 30˚.
(b)  and the angle between u and v is 60˚.
(c)  where a and b are parallel.
(d) , where u and v are perpendicular.
(e)  and a and b are anti-parallel.

2. Sketch the following cross products for each pair of coplanar vectors.

i. ii. iii.

a b×

a b× b a×–=

a b× b a×– b a×= = a b×
b a×

a b×( ) c× a b c×( )×≠

a b c+( )× a b× a c×+=

EXERCISES 27.1.1

a 5 b, 2= =
u 1 v, 8= =
a 3 b, 4= =
u 0.5 v, 12= =
a 7 b, 3= =

a

b

45˚

(a)       (b) (c)

a 2 b, 3= =
Where a and b can be considered
as lying on the surface of an
upright table.

60˚

a

b
a 4 b, 3= =

b a

a 2 b, 2= =
45˚45˚

a b× b a× a a×
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3. i. If ,  and , find .
ii. If ,  and , find .

4. If ,  and  = 15, find the angle between the vectors a and b.

5. If ,  and  = 6, find .

6. If ,  where a and b are mutually perpendicular, find
i. .
ii. .

27.1.2 VECTOR FORM OF THE VECTOR PRODUCT

1.    Component form

The vector product is only defined when both vectors are 
three dimensional.

The vector product of  and  is 

given by:  

This is known as the component form of the cross product. The result is a third vector that is at 
right angles to the two original vectors. This can be verified by making use of the dot product. 
Using the ‘product’  we have:

You should check for yourself that the vector product is also perpendicular to the second vector.

Also, notice that in the above diagram, the resulting vector c, points in the direction that is 
consistent with the right-hand rule.

a 5= b 4= a b• 6= a b×
a 5= b 4= a b• 12= a b×

a 2= b 9= a b×
a 3= b 3= a b× a b•

a 1= b 3=
a b+( ) a b–( )×
2a b+( ) a 2b–( )×

O

a
b
θ

X

Y

Z
k j
i c a b××××=

a
a1
a2
a3     

= b
b1
b2
b3     

=

a b×
a1
a2
a3      b1

b2
b3     

×
a2b3 a3b2–
a3b1 a1b3–
a1b2 a2b1–     

= =

a a b×( )•
a1
a2
a3      a2b3 a3b2–

a3b1 a1b3–
a1b2 a2b1–     

• a1 a2b3 a3b2–( ) a2 a3b1 a1b3–( ) a3 a1b2 a2b1–( )+ +=

a1a2b3 a1a3b2– a2a3b1 a2a1b3– a3a1b2 a3a2b1–+ +=
0=

Find the vector product .
2
4
1      1–

4
2–     

×
E 27.1XAMPLE
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Check:

2.    The Determinant form

When vectors are given in base vector notation, a more convenient method of finding the Vector 
Cross Product relies on a determinant representation. Given two vectors  
and , the vector product a × b is defined as

Applying this to the vectors in Example 27.1, where  and  we 
have:

which agrees with our previous answer.

Using the determinant form of the cross product we have:

       
       

Therefore, 

S
o
l
u
t
i
o
n

2
4
1      1–

4
2–     

×
4 2– 1 4×–×

1 1– 2–( ) 2×–×
2 4 1–( ) 4×–×      12–

3
12     

= =

2
4
1      12–

3
12     

• 24– 12 12+ + 0
1–
4
2–      12–

3
12     

•, 12 12 24–+ 0= = = =

a a1i a2 j a3k+ +=
b b1i b2 j b3k+ +=

   a b×
i j k
a1 a2 a3
b1 b2 b3

a2 a3
b2 b3
i a1 a3

b1 b3
j– a1 a2

b1 b2
k   += =

a 2i 4 j k+ += b i– 4 j 2k–+=

a b×
i j k
2 4 1
1– 4 2–

= i 4 1
4 2– j 2 1

1– 2–– k 2 4
1– 4+=

12i– 3 j 12k+ +=

Find  if  and . Hence, find .a b× a 2i k+= b 3i 4 j– 2k+= a b×E 27.2XAMPLE

S
o
l
u
t
i
o
n

a b×
i j k
2 0 1
3 4– 2

i 0 1
4– 2 j 2 1

3 2– k 2 0
3 4–+= =

0 4–( )–( )i 4 3–( ) j– 8– 0–( )k+=
4i j– 8k–=

a b× 16 1 64+ + 81 9= = =
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We first need to determine :

 = 

Next, .

From  we have that  = , where  is the 
angle between a and b. 

Then, as  and , we have:

Of course, it would have been much easier to do Example 27.3 using the scalar product!

The cross product, , will provide a vector that is perpendicular to both a and b. In
fact, it is important to realise that the vector  is pependicular to the plane that
contains the vectors a and b. This information will be very useful in the next sections,
when the equation of a plane must be determined.

Let c be the vector perpendicular to both a and b.

Now, 

      
      

However, we want a vector of magnitude 5 units, that is, we want the vector .
Now, .

So, .

Find the angle between the vectors a and b if  and 
. 

a 2i j k+–=
b 3i 4 j– 2k+=

E 27.3XAMPLE

S
o
l
u
t
i
o
n

a b×

a b×
i j k
2 1– 1
3 4– 2

i 1– 1
4– 2 j 2 1

3 2– k 2 1–
3 4–+= = 2i j– 5k–

a b× 4 1 25+ + 30= =

a b× a b θsin n̂= a b× a b θsin n̂= a b θsin θ

a 4 1 1+ + 6= = b 9 16 4+ + 29= =
30 6 29 θ θsin⇔sin× 30

6 29×-----------------------= =

θ 24°32′≈∴

Find a vector of magnitude 5 units perpendicular to both  
and .

a 2i– j k+ +=
b i 3 j– k–=

E 27.4XAMPLE

S
o
l
u
t
i
o
n

a b×
a b×

c a b×
i j k
2– 1 1
1 3– 1–

i 1 1
3– 1– j 2– 1

1 1–– k 2– 1
1 3–+= = =

1– 3+( )i 2 1–( ) j– 6 1–( )k+=
2i j– 5k+=

5ĉ
ĉ 1
c-----c

1
4 1 25+ +----------------------------- 2i j– 5k+( ) 1

30---------- 2i j– 5k+( )= = =

5ĉ 5
30---------- 2i j– 5k+( )=
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We start by drawing a diagram of the situation
described so that the triangle ABC lies on the
planes containing the points A, B and C.

Then, the vector, perpendicular to the plane
containing the points A, B and C will be parallel
to the vector produced by the cross product

.

Now, 

and    .

Then, 

Let , .

1. A set of vectors is defined by 

Find the vector products:
(i) (ii) (iii)
(iv) (v) (vi)

2. Find a vector that is perpendicular to both  and .

3. Verify that the vector  is perpendicular to the cross product  where
.

Find a unit vector that is perpendicular to the plane containing the points 
A(1, 2, 3), B(2, 1, 0) and C(0, 5, 1).

E 27.5XAMPLE

A(1, 2, 3)

B(2, 1, 0)

C(0, 5, 1)

x

y

z
AB AC×S

o
l
u
t
i
o
n

AB AC×

AB AO OB+
1
2
3  
  –

2
1
0  
  +

1
1–
3–    

= = =

AC AO OC+
1
2
3  
  –

0
5
1  
  +

1–
3
2–    

= = =

AB AC×
1
1–
3–     1–

3
2–    

×
1 2– 3 3–×–×–
3– 1– 1 2–×–×

1 3 1–( ) 1–×–×     11
5
2    

= = =

c AB AC×= ĉ∴ 1
150-------------

11
5
2    

=

EXERCISES 27.1.2

a
1
2
3  
   b,

1–
2
3–    
c,

1
0
5  
   d,

2–
4–
3    

= = = =

a b× a c× a d×
b c× b d× c d×

1
2
1  
  

4
6
2–    

a i j k+ += a b×
b 2i 3 j– k+=
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4. Verify that if ,  and  then
(a) .
(b) .

5. If  and , 
(a) Find i. ii.
(b) Show that mn – 4 = 0 if .

6. Find a vector that is perpendicular to both the vectors  and  and has 
a magnitude of 2.

7. Find a vector that is perpendicular to the plane containing the points
(a) A(0, 0, 0), B(0, 5, 0) and C(2, 0, 0).
(b) A(2, 3, 1), B(2, 6, 2) and C(–1, 3, 4).

8. Using the cross product, find, to the nearest degree, the angle between the vectors
(a)  and .
(b)  and .

9. Prove that .

10. Prove that .

11. Prove that .

12. What condition must the vectors a and b satisfy in order that the vectors a + b and a – b are
collinear?

13. Prove that if a + b + c = 0 then .

27.1.3 APPLICATIONS OF THE VECTOR PRODUCT

1.    Area

Consider the parallelogram OACB lying 
on the plane, with the vectors a and b as 
shown.

Then, the area of OACB is given by
 = 
 = 

i.e., the area of the parallelogram OACB is given by the magnitude of the cross product .

We can prove this by using the result  (Q. 11. Exercise 27.1.2) 
where we replace  with  and then carry through with some algebra. We leave this 
proof for the next set of exercises.

a i 6 j 3k–+= b i– 2 j k+ += c 2i j– k–=
a b c+( )× a b a c×+×=
a b c×( )× a c•( )b a b•( )c–=

a mi 2 j k–+= b 2i nj k–+=
a a× a b×

a b||

i 6 j 3k+ + i 2 j k–+

u 2i j– 2k+= v i– 2 j 2k+ +=
a 3i j– 2k+= b j k+=

a b+( ) a b–( )× 2b a×=

a a b×( )• b a b×( )• 0= =

a b× 2 a 2 b 2 a b•( )2–=

a b× b c× c a×= =

a

b

a b×

O A

B                                   C
b θsinθOA b θsin× a b θsin( )

a b×
a b×

a b× 2 a 2 b 2 a b•( )2–=
a b• a b θcos
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We first need to determine the cross product, :

= 
Now, 
Then, the area of the parallelogram is given  .

We construct the vectors from the vertex (1,6,3) to the vertex (0,10,1) and also the vector from 
(1,6,3) to (5,8,3).

These vectors are:  and .

Next, we calculate the vector product: 

Next using the fact that  is a measure of the area of the parallelogram 
containing the vectors a and b, we can deduce the area, A, of the triangle containing these
vectors to be .

In this case, the result is 

2.    Geometric proofs

In the same way that we used the scalar product to neatly prove geometric theorems, for example, 
proving the cosine rule, we find that the vector product serves just as well for other geometric 
theorems. We now use the vector product to prove the sine rule already encountered in Chapter 9.

Find the area of the parallelogram determined by the vectors 
 and .a 2i j 3k+ += b i 4 j k–+=

E 27.6XAMPLE

S
o
l
u
t
i
o
n

a b×

a b×
i j k
2 1 3
1 4 1–

1 3
4 1– i

2 3
1 1– j– 2 1

1 4 k+= =

13i– 5 j 7k+ +
a b× 13i– 5 j 7k+ + 169 25 49+ + 243= = =

243 unit2

Find the area of the triangle with vertices (1, 6, 3), (0, 10, 1) & (5, 8, 3).E 27.7XAMPLE

S
o
l
u
t
i
o
n

a
0
10
1      1

6
3     

–
1–
4
2–     

= = b
5
8
3      1

6
3     

–
4
2
0     

= =

a b×
1–
4
2–      4

2
0     

×
4
8–
18–     

= =

a b× a b θsin=

θ
a

AbA 1
2--- a b θsin 1

2--- a b×= =

A 1
2--- 42 8–( )2 18–( )2+ + 1

2--- 404units2 101units2= = =
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Consider the triangle  ABC with associated vectors as shown:

From the diagram we have that .
Then, 
But, as , 
then       
i.e.,       

 

          [As ] 
And so,         

   

That is, .

Similarly, we can prove that , leading to the results .

1. Find the area of the parallelogram with adjacent vectors
(a)  and 
(b)  and 

2. A parallelogram has two adjacent sides formed by the vectors  and .

(a) Find the cross product of these two vectors.
(b) Find the area of this parallelogram.
(c) Hence find the angle between the two vectors.

3. A triangle has vertices (–1,2,4), (3,7,–5) and (4,2,3). Find the area of this triangle.

4. Find x, where x > 0, if the area of the triangle formed by the adjacent vectors 
and  is 12 .

By making use of the vector product, derive the sine rule, 
a
Asin----------- b

Bsin----------- c
Csin------------= =

E 27.8XAMPLE

S
o
l
u
t
i
o
n

A

BC a

b c
π – BB

a b c–=
a a× a b c–( )×=

a a× 0=
0 a b c–( )×=
0 a b a c×–×=
a c×⇒ a b×=
a c×⇒ a b×=

 a∴ c π B–( )sin a b Csin=
 a∴ c Bsin a b Csin= π B–( )sin Bsin=
c Bsin b Csin=
c
Csin------------⇔ b

Bsin-----------=
c
Csin------------ b

Bsin-----------=
c
Csin------------ a

Asin-----------= a
Asin----------- c

Csin------------ b
Bsin-----------= =

EXERCISES 27.1.3

2i k+ i– j– 3k+
3i j– 2k+ 5i j k–+

1
2
1  
   1

2---
14–
1
1–    

xi j k–+
j k– unit2
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5. Find the area of the triangle with adjacent sides formed by the vectors  and
. Hence find the angle enclosed by these two vectors.

6. Show that the quadrilateral with vertices at O(4, 1, 0), A(7, 6, 2), B(5, 5, 4) and C(2, 0, 2)
is a parallelogram. Hence find its area.

7. Find the area of the parallelogram having diagonals  and .

8. If a and b are three-dimensional vectors and  is the angle between a and b, use the result
that  to prove that .

9. (a) Find, in terms of  and  the vector expressions for

i.
ii.
where both  and  are unit vectors.

(b) Use the vector product to prove the trigonometric identity

10. Let ABCD be a quadilateral such that its diagonals, [AC] and [BD], intersect at some point
O. If triangle ABC has the same area as triangle CBD, show that O is the mid-point of the
diagonal [AC].

11. Show that the condition for three points A, B and C to be collinear is that their respective
position vectors, a, b and c satisfy the equation .

12. Prove that the volume of the parallelepiped
determined by the vectors  is given by

.

Find the volume of the parallelepiped
determined by the vectors ,

 and .

13. (a) Consider the triangle ABC where the points M, N and P lie on the sides [AB],
[BC] and [CA] respectively and are such that ,  and

, where . Show that if the vectors  and  
form a triangle, then, .

(b) Consider the triangle ABC where the points M, N and P lie on the sides  [AB],
[BC] and [CA] respectively and are such that ,  and

, and . Find the value of k so that the area of the triangle formed
by the vectors   and  is a minimum.

2i 3 j 4k–+
2i 3 j– 4k+

u 3i j– 2k+= v i 2 j– k+=

θ
a b× 2 a 2 b 2 a b•( )2–= a b× a b θsin=

O

A
B

y

x
α β

α β
OA
OB

OA OB

α β–( )sin α β β αcossin–cossin=

a b×( ) b c×( ) c a×( )+ + 0=

a
c b

a b c, ,
a b c×( )•

a 2i j 3k+ +=
b i 4 j k–+= c 2– i j 5k+ +=

AM k1AB= BN k2BC=
CP k3CA= k1 k2 k3 ∈, , CM AN, BP

k1 k2 k3= =

AM kAB= BN kBC=
CP kCA= k ∈

CM AN, BP
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27.2.1 VECTOR EQUATION OF A PLANE

The approach to determine the vector equation of a plane requires only a small extension of the 
ideas of Chapter 26 (§26.7). In fact, apart from introducing the form that the equation of a plane 
has, this section has its foundations in Chapter 26 and § 27.1.

We begin with the vector equation of a plane.

Let P(x, y, z), whose position vector is  
be any point on the plane relative to some origin O.

Consider three points, A, B and C on this plane
where  OA = a , AB = b and AC = c. That is, the 
plane contains the vectors b and c, where b ≠ 0 ≠ c 
and the vectors a, b and c are non-coplanar.

Now, as AP, b and c are coplanar, then we can 
express AP in terms of b and c: 
for some real  and .

Then, .

That is, every point on the plane has a position vector of this form. As such, we say that the

This means that to find the vector form of the equation of a plane we need to know

1. the position vector of a point A in the plane, and 
2. two non-parallel vectors in the plane.

Let b =  and c =  be two vectors on the plane. Then, as the point (1, 2,0) lies on

the plane we let a =  be the position of this point. Using the vector form of the

PLANES IN 3-DIMENSIONS27.2

O

a

b

k
j

i

C
A

B
P(x, y, z)

c

r OP=

AP λb µc+=
λ µ

r OP OA AP+ a λb µc+ += = =

vector equation of a plane is given by r a λb µc+ +=

Find the vector equation of the plane containing the vectors  and  

which also includes the point (1, 2, 0).

2
1
1  
  

3
0
1–    E 27.9XAMPLE

S
o
l
u
t
i
o
n

2
1
1  
  

3
0
1–    

1
2
0  
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equation of a plane, i.e., , we have .

27.2.2 CARTESIAN EQUATION OF A PLANE

In the same way that we were able to produce a Cartesian equation for a line in 2-D, we now 
derive the Cartesian equation of a plane.

Using Example 27.9 we obtain the parametric equations and use them to derive the Cartesian 
equation of the plane.

From the vector equation  we obtain the following parametric 

equations: x = 1 + 2λ + 3µ – (1)
y =  2 + λ           – (2)
z =         λ –  µ   – (3)

Now we find expressions for λ and µ in terms of x, y and z, taking care to use all three equations 
while doing this:
From (1) and (3) we obtain  – (4)

From (2) and (3) we obtain  – (5)

Finally we substitute these back into one of the equations. In this particular case it will be easiest 
to use (4) and  (2) - and in fact we didn’t need the expression for µ, though in most cases we will.

Substituting (4) into (2) we obtain
and simplifying we get      .

This result tells us that the

r a λb µc+ += r
1
2
0  
   λ

2
1
1  
   µ

3
0
1–    

+ +=

r
1
2
0  
   λ

2
1
1  
   µ

3
0
1–    

+ +=

λ x 3z 1–+
5-----------------------=

µ y z– 2–=

y 2 x 3z 1–+
5-----------------------+=

x 5y– 3z+ 9–=

Cartesian form of a plane is given by the equation   ax by cz+ + d  =

Find the Cartesian equation of the plane defined by the vector equation

.r
1
3
4  
   λ

2–
1
1    

µ
1
1
2  
  + +=

E 27.10XAMPLE
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From the vector equation of the plane, namely , we produce the

parametric equations:  – (1) 
   – (2) 
 – (3) 

Next, we eliminate  and : (2) – (1):  – (4)
2×(2) – (3):  – (5)

(4) – 3×(5):

That is, the Cartesian equation of the plane is given by  or .

1. Find the vector equation of the plane containing the vectors b and c and passing through
the point A. In each case, draw a rough diagram depicting the situation.
(a) , , .
(b) , , .
(c) , , .
(d) , , .

2. Find the Cartesian equation for each of the planes in Question 1.

3. Find the (a) vector equation
(b) Cartesian equation

of the plane containing the points
i. A(2, 3, 4), B(–1, 2, 1) and C(0, 5, 6)
ii. A(3, –1, 5), B(1, 4, –6) and C(2, 3, 4)

4. A plane contains the vectors  and .
(a) Find the vector equation of the plane, containing the vectors b and c and passing

through the point
i. A(2, –2, 3).
ii. A(0, 0, 0).

(b) Find the Cartesian equation for each plane in (a).
(c) Express  in the form 
(d) What do you notice about the coefficient of x, y and z in part (b) and the values

a, b and c from part (c)?

S
o
l
u
t
i
o
n

r
1
3
4  
   λ

2–
1
1    

µ
1
1
2  
  + +=

x 1 2λ– µ+=
y 3 λ µ+ +=
z 4 λ 2µ+ +=

λ µ y x– 2 3λ+=
2y z– 2 λ+=

5y– x– 3z+ 4–=

5y– x– 3z+ 4–= x 5y 3z–+ 4=

EXERCISES 27.2.1

b 3i 2 j k+ += c 2i– j– k+= A 1 0 1, ,( )≡
b i j– 2k+= c i– j– k+= A 1– 2 1, ,( )≡
b 2i 2 j k–+= c 2i j– 3k+= A 4 1 5, ,( )≡
b 3– i j 2k–+= c i 2 j– 1

2---k+= A 2 3– 1–, ,( )≡

b 2i j– k–= c 3i j 2k+ +=

b c× ai bj ck+ +
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27.2.3 NORMAL VECTOR FORM OF A PLANE

Before we formally derive the normal vector form of a plane we consider an example that 
follows directly from the work covered so far. In particular, Q. 4 from Exercise 27.2.1. – if you 
have not attempted this problem you should do so now, before proceeding further.

Consider a plane containing the vectors  and  and passing 
through the point A(2, 1, 6). Now, the cross product  represents a vector that is 
perpendicular to the plane containing the vectors b and c.

Let n = 

= 

We now have a vector,  that is perpendicular 
to the plane in question.

Next, consider any point P(x, y, z) on this plane. As P lies on the plane the vector AP must also be 
perpendicular to the vector n. This means that .

To use the equation  we first need to find the vector AP. As AP = AO + OP, we have

Then, from  we have

That is, we have obtained the Cartesian equation of the plane containing the vectors  
 and  and passing through the point A(2, 1, 6) without making 

use of the parametric form of the plane. 

We check this result using the parametric form of the plane.

From the vector for,  we obtain the parametric equations:

     – (1)
        – (2)

and         – (3)
(1) – (2):         – (4)
(2) – 2×(3):  – (5) 

From (4) and (5) we obtain .
As expected, we produce the same equation.

b 3i j– 2k+= c 2i 2 j k+ +=
b c×

O

k
j

i

n
bc

A
Pb c×

i j k
3 1– 2
2 2 1

1– 2
2 1 i

3 2
2 1 j– 3 1–

2 2 k+= =

5i– j 8k+ +

n 5i– j 8k+ +=

n AP• 0=

n AP• 0=
AP 2i j 6k+ +( )– xi yj zk+ +( )+ x 2–( )i y 1–( ) j z 6–( )k+ += =
n AP• 0=

5i– j 8k+ +( ) x 2–( )i y 1–( ) j z 6–( )k+ +( )• 0=
5 x 2–( )– y 1–( ) 8 z 6–( )+ +⇔ 0=

5x– y 8z+ +⇔ 39=

b 3i j– 2k+= c 2i 2 j k+ +=

r
2
1
6  
   λ

3
1–
2    

µ
2
2
1  
  + +=

x 2 3λ 2µ+ +=
y 1 λ– 2µ+=
z 6 2λ µ+ +=
x y– 1 4λ+=
y 2z– 11– 5λ–=

x y– 1–
4-------------------- y 2z– 11+

5–-------------------------- 5x– y 8z+ +⇔ 39= =
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To use this method, we require a vector that is perpendicular to the plane and a point that lies on 
the plane. We could use the vector, n (say) or the unit vector , or even –n, as they are all 
perpendicular to the plane.

We can summarise this process as follows:

Notice that if two planes,  and  have normal vectors,  and 
 respectively, then the two planes,   and  are

1. parallel iff their normal vectors are parallel, i.e., iff , where 

i.e., iff 

2. perpendicular iff their normal vectors are perpendicular. i.e., iff 
i.e., iff 

Taking this one step further, this result also means that we can use the normals to find the angle 
between two planes.

The angle between two planes is defined as the angle between their normals.

If two planes,  and  have normal vectors
 and  

respectively, and intersect at an acute angle  
(or π –  depending on their direction), the 
acute angle  can be found from the product rule

n̂

To find the Cartesian equation of a plane through the point  having a non-zero 
normal vector n (or ) we
1. let P(x, y, z) be any point on the plane, and
2. find the vector . 

P0 x0 y0 z0, ,( )
n̂

n ai bj ck+ +=

Then, as  for all points P on the plane, we have

Or, after some simplifying,

P0P n⊥
P0P n• 0=

x x0–( )i y y0–( ) j z z0–( )k+ +[ ] ai bj ck+ +( )•⇒ 0=
a x x0–( ) b y y0–( ) c z z0–( )+ +∴ 0=

ax by cz+ + d=

n

P(x,y,z)P0 x0 y0 z0, ,( )

O

Π1 Π2 n1 a1i b1 j c1k+ +=
n2 a2i b2 j c2k+ += Π1 Π2

n1 m n2×= m ∈
a1
a2
----- b1

b2
----- c1

c2
---- m= = =

n1 n2• 0=
a1a2 b1b2 c1c2+ + 0=

θ

θ
n1

n2

Π1
Π2

Π1 Π2
n1 a1i b1 j c1k+ += n2 a2i b2 j c2k+ +=

θ
θ

θ

   θcos n1 n2•
n1 n2
-----------------    =
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Using the normal vector,  and a vector on the plane passing through the
point A(3, 1,1), i.e., the vector , where P(x, y, z) is an
arbitrary point on the plane, we have

That is,     
Or, after some simplification,        3x – 2y +4z = 11

The angle between the planes corresponds to the angle between their normals. So, using
the dot product we have

And so, we have that  (to the nearest degree).

To find the angle between the planes we need the normal vectors to the planes. From our
observations, we have that a normal vector can be directly obtained from the equation of a
plane by using the coefficients of each variable.

For the plane , a normal vector would be  and
for the plane , a normal vector would be .
Then, we proceed as in Example 27.12: using the cosine rule we have

         That is,  = 38˚ (to the nearest degree).

Find the Cartesian equation of the plane containing the point A(3, 1,1) and 
with the normal vector given by .n 3i 2 j– 4k+=

E 27.11XAMPLE

S
o
l
u
t
i
o
n

n 3i 2 j– 4k+=
AP x 3–( )i y 1–( ) j z 1–( )k+ +=

n AP• 0 3i 2 j– 4k+( ) x 3–( )i y 1–( ) j z 1–( )k+ +[ ]•⇒ 0= =
3 x 3–( ) 2–( ) y 1–( ) 4 z 1–( )+ + 0=

Find the angle (to the nearest degree) between the planes with normal 
vectors  and .3i 2 j– 4k+ i j– 3k+

E 27.12XAMPLE

S
o
l
u
t
i
o
n

3i 2 j– 4k+( ) i j– 3k+( )• 3i 2 j– 4k+ i j– 3k+ θcos=
3 2 12+ + 29 11× θcos=

θcos∴ 17
29 11×--------------------------=

θ 17°52′≈ 18°=

Find the angle (to the nearest degree) between the planes  
and .

2x 3y 8z–+ 9=
x– y 2z–+ 1=

E 27.13XAMPLE

S
o
l
u
t
i
o
n

2x 3y 8z–+ 9= 2i 3 j 8k–+
x– y 2z–+ 1= i– j 2k–+

2i 3 j 8k–+( ) i– j 2k–+( )• 2i 3 j 8k–+ i– j 2k–+ θcos=
2– 3 16+ +∴ 77 6× θcos=

θcos∴ 17
77 6×-----------------------=

θ 37°44′≈
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1. Find the Cartesian equation of the plane containing the point P and having a normal
vector, n.
(a) , (b) , 
(c) , (d) , 

2. Which of the planes in Q.1., pass through the origin?

3. Find the Cartesian equation of the plane containing the points
(a) A(2, 1, 5), B(3, 2, 7) and C(0, 1, 2)
(b) A(0, 2, 4), B(1, 2, 3) and C(4, 2, 5)
(c) A(1, 1, 7), B(2, –1, 5) and C(–1, 3, 7)

4. Find the angle (to the nearest degree) between the planes with normal vectors
(a)  and .
(b)  and .
(c)  and .
(d)  and .

5. Find the angle between the planes
(a)  :  and  : 
(b)  :  and  : 
(c)  :  and  : 

6. Find the equation of the plane which passes through the point A(4, 2, 1) and
(a) contains the vector joining the points B(3, –2, 4) and C(5, 0, 1).
(b) is perpendicular to the planes with equation  and

.

7. Find the equation of the plane which passes through the point A(–1, 2, 1) and is parallel
to the plane .

8. Find the equation of the plane which passes through the point A(–1, 2, 1) and is parallel
to the plane .

9. The planes  and  are perpendicular. If both planes
contain the point (1, 3, –1) find a and b.

10. (a) Find a vector equation of the line passing through the points (3, 2, 1) and (5, 7, 6).
(b) Find the normal vector of the plane .
(c) Hence, find the inclination that the line  makes with the

plane .

EXERCISES 27.2.2

n 2i j– 5k+= P 3 4 1, ,( )≡ n 4i– 6 j 8k–+= P 2– 3 1–, ,( )≡
n i– 3 j 2k–+= P 2 4 5, ,( )≡ n 5i 2 j k+ += P 1– 2 1, ,( )≡

i j– k+ i j– 3k+
3i– 5 j 2k–+ j k+

4i 2 j– 7k+ 2i 11 j 2k+ +
3i– 2 j 4k–+ 9i 6 j– 8k+

Π1 x– 3y z–+ 9= Π2 6x 2y 3z+ + 4=
Π1 2x 2y 3–+ z= Π2 2y 3z– 2+ 0=
Π1 2x y– 3z+ 2= Π2 2x y 7z–+ 8=

5x 2y– 6z 1+ + 0=
2x y– z– 4=

x 2y– 3z 2+ + 0=

2y 3– 3x 5z+=

4x y– 6z+ 5–= ax by z–+ 7=

3x 2y z+ + 6=
x 3–

2----------- y 2–
5----------- z 1–

5-----------= =
3x 2y z+ + 10=
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27.2.4 THE NORMAL FORM 

We now formalise (or at least give a complete vectorial presentation for) the equation of a plane 
in three dimensions. The good news is that the normal form of the vector equation of a plane in 
three dimensions develops in almost the same way as the vector equation of a line in two and 
three dimensions.

Let  be a (unit) vector from O normal to the 
plane and d be the distance of the plane from the 
origin. 

The condition for a point P to be on the plane is 
that OA is perpendicular to AP. 

That is,

Now, 
So that
Now, dividing by d (assumed to be non-zero)
we have

      
 [as  ]

That is, the normal vector form of the equation of a plane is given by 

If we are using  (not a unit vector) the equation becomes , where D is no longer the 
distance of the plane from the origin.

If we know the position vector  of a point on the plane we can write the equation as

.

For example  is the equation of a plane. We can get this into a Cartesian form by 

noting that r is the position vector of some arbitrary point P(x,y, z) on the plane and so we can 

write the vector expression as , or  x + y + z = 8.

Converting from Cartesian to vector form: 2x – y + 4z = 2 becomes . 

If we want to get the equation in  form, i.e., in the form  we can work out that the 

P

d

O

A

n̂

r

n̂

OA AP• 0=

AP AO OP+ d n̂– r+= =
d n̂ d n̂– r+( )• 0=

n̂ d n̂– r+( )• 0=
d n̂ n̂ n̂ r•+•–∴ 0=

n̂ r•⇒ d n̂ n̂•=
n̂ r•∴ d= n̂ n̂• 1=

n̂ r• d=

n n r• D=

a

  r n• a n  •=

r
1
1
1  
  • 8=

x
y
z  
  

1
1
1  
  • 8=

r
2
1–
4    

• 2=

n̂ n̂ r• d=
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length of the vector  is , and so, from the equation  

we divide both sides by  to get  or .

We then get the information that the distance of the plane from the origin is . 

We need to prove that  is perpendicular to . 
Rewriting x – 2y + 2z = 11  in the normal vector

form, we have .

From this equation a suitable  is the vector . 

From the vector equation of the line, the direction vector of v is .

As , the vectors are perpendicular. So the line and plane are parallel.

From the vector equation of the line we obtain the parametric equations

and 
If this line lies on the plane, then the parametric equations must satisfy the Cartesian 

2
1–
4    

22 1–( )2 42+ + 21= r
2
1–
4    

• 2=

21 1
21----------r

2
1–
4    

• 1
21---------- 2×= r 1

21----------
2
1–
4    

• 2
21----------=

2
21----------

Show that the line  is parallel to the plane x – 2y + 2z = 11.r
2
1
0  
   k

4
3
1  
  +=

E 27.14XAMPLE

n
vS

o
l
u
t
i
o
n

n v

r
1
2–
2    

• 11=

n
1
2–
2    

4
3
1  
  

1
2–
2     4

3
1  
  • 4 6– 2+ 0= =

Show that the line  lies in the plane x – 3y + 2z = –1.r
2
1
0  
   s

5
1
1–    

+=
E 27.15XAMPLE

S
o
l
u
t
i
o
n

x 2 5s+=
y 1 s+=
z s–=
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equation of the plane. Substituting, into the equation x – 3y + 2z = –1, we get
L.H.S = 
      
          = R.H.S

Therefore, the line lies in the plane.

For this set of exercises, where appropriate, make use of the normal vector form to solve the 
questions.

1. Convert these planes to Cartesian and vector form:

(a) (b)

2. Given A(1, 1, 0), B(2, 1, 3) and C(1, 2, –1), find the Cartesian equation of the plane
containing A, B and C. (Find a parametric form first by taking A as the point in the plane
and AB and AC as the two vectors in the plane.)

3. Re-solve question 2 by taking the Cartesian form as , then calculating b,
c and d (simultaneous equations in three unknowns).

4. Show that the line  and the plane  are parallel.

5. Find the distance of each of these planes from the origin (i.e. find d):

(a) 
(b)  
(c) 
(d)  

6. Find the equation of the plane through (1, 2, 3) parallel to .

7. Find the equation of the plane through the three points (1, 1, 0), (1, 2, 1) and (–2, 2, –1).

8. Show that the four points (0, –1, 0), (2, 1, 1), (1, 1, 1) and (3, 3, 2) are coplanar.

9. Find the equation of the plane through (2, –3, 1) normal to the line joining (3, 4, –1)
and (2, –1, 5).

x 3y– 2z+ 2 5s+( ) 3 1 s+( )– 2s–=
2 5s 3– 3s– 2s–+=
1–=

EXERCISES 27.2.3

r
1
1
4–    

λ
2
2
3  
   µ

3–
0
1–    

+ += r
2
1
1  
   λ

2
1
0  
   µ

0
0
1  
  + +=

x by cz+ + d=

x 1+ y 2+
3------------ 4 z–

4-----------= = 5x y 2z+ + 20=

2x 3y– 6z+ 21=
2x y– 2z+ 5=
x y 3z–+ 11=
4x 2y z–+ 20=

3x 4y 5z–+ 0=



MATHEMATICS – Higher Level (Core)

982

27.3.1 INTERSECTION OF TWO LINES

This topic was dealt with in detail in Chapter 26 (§26.7.3), however, we review it here to maintain 
a logical flow to the topic.

In general two lines (in 3 dimensions) will not intersect, but in certain circumstances they may. 

We can show, for example, that the lines  and 

do intersect, and we can find the point of intersection.

We show that there exist values of λ and µ which make the x-, y- and z- coordinates of the two 
lines identical. If we compare the x- and y-coordinates we get

We can solve these to get λ = 3 and µ = 2. The point that will decide whether the two lines 
intersect is:
 when λ = 3 and µ = 2, are the z-coordinates also equal? 
This can be tested: λ = 3 and µ = 2, l has z-coordinate = 0 + λ = 3 and m has z-coordinate = –1 + 
2µ = 3. So the lines do intersect. 

Substituting λ = 3 and µ = 2 in the expressions for the x- and y-coordinates we find that the point 
of intersection is (8, –2, 3). If the z-coordinates had been different, we would deduce that the lines 
do not intersect. 

One point of terminology: recall that lines which do not intersect and are not parallel (a situation 
we looked at in §26.7.3) are said to be skew.

1. (a) Show that the lines   and 
 intersect, and find their point of intersection.

(b) By considering the scalar product , show that the lines
from part (a) intersect at right angles.

2. Given the lines:   (a)   (b)   (c)  

find the two lines that intersect. Find also the coordinates of the point of intersection, and
the acute angle between the two lines.

INTERSECTING LINES & PLANES27.3

r
1–
4
0    

λ
3
2–
1    

+= r
4
4
1–    

µ
2
3–
2    

+=

1– 3λ+ 4 2µ+=
4 2λ– 4 3µ–=

EXERCISES 27.3.1

rA 5i j k λ i 2 j 2k–+( )+ + +=
rB 11i 4 j 2k– µ 4i j– k+( )+ +=

i 2 j 2k–+( ) 4i j– k+( )•

r
5
2
3  
   κ

1–
3
5    

+= r
1
2
1  
   λ

2
2–
3    

+= r
5
6–
2    

µ
1
1
4  
  +=
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3. Show that the line joining  (1, 4, 3) to (7, –5, –6) intersects the line ,
and find the point of intersection. (Find a parametric form for each line – remember to use
a different parameter for each line.)

4. Show that the three lines:
L: M:       N:       
intersect at a single point, and give its coordinates.

27.3.2 INTERSECTION OF A LINE AND A PLANE

If you have not attempted question 10., in Exercise 27.2.2, do so now before proceeding with this 
section.

In § 27.2.3 we considered the case of a line and a plane being parallel, and the case of a line lying 
in a plane. If neither of these happens then the line and plane must intersect in a point.

The angle between a line and a plane is defined as the angle between the line and its projection 
on the plane.

To find the angle between a line and a plane we look at the vectors  (perpendicular to the plane) 
and v (in the direction of the line):

We can find angle φ from the formula  
then subtract from 90˚ to find θ. 
Alternatively we can use the fact that  
to write directly .

Introducing a parameter λ, we have the parametric equations  and
. Substituting each of these values into the equation of the plane

 we obtain:
i.e., 

Substituting λ = 2, we get x = 4, y = –2 and z = 1, i.e. the point of intersection is (4, –2, 1).

x 1–
2----------- y– 3 z–

3-----------= =

x y 4+ z
2--- 1+= = x 1–

3----------- 2y 1+ z 5–= = x
4--- y 1+ z 3–

3-----------= =

n

θ

φ
n

v
φcos v n•
v n------------=

φcos θsin=
θsin v n•
v n------------=

Find the point of intersection of the line  and the plane 
. Find also the angle between the line and the plane.

x
2---

y 6+
2------------ 3z 1–= =

3x y z–+ 9=

E 27.16XAMPLE

S
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u
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o
n

x 2λ y, 2λ 6–= =
z λ 1+

3------------=

3x y z–+ 9= 6λ 2λ 6–( ) λ 1+
3------------–+ 9=

18λ 6λ 18– λ 1+( )–+ 27=
λ 2=∴
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Writing the equation of the plane as  and the equation of the line as 

, we have that  and . 

Then  and .

Hence cosφ = 0.81165.... , φ = 35.7˚ and finally θ = 54.3˚.

1. In each case find (i) the point of intersection of the line and plane, and (ii) the angle
between the line and plane:

line plane

(a)
(b)

(c) 

(d)

2. (a) A line joins the origin to (6, 10, 8). Find the coordinates of the point where the
 line cuts the plane .

(b) Find the point where the line joining (2, 1, 3) to (4, –2, 5) cuts the plane 
.

3. Try to describe with words and/or diagrams:
(a) the plane   
(b) the line .

Now find their point of intersection.

4. Find the distance of the point (–1, –5, –10) from the point of intersection of the line 
 and the plane .

r
3
1
1–    

• 9=

r
0
6–
1
3---     

λ
2
2
1
3--- 
  
  += n

3
1
1–    

= v
2
2
1
3--- 
  
  =

v n• 6 2 1
3---–+ 72

3--- v, 81
9---= = = n 11=

EXERCISES 27.3.2

i 2 j λ 3i j k+ +( )+ + r 2i 4 j k–+( )• 28=
x 1–

2----------- y 3 z–
4-----------= = 2x 3y z+ + 11=

3
4
2  
   κ

1–
3
3    

+
4
1
0  
   λ

0
1
1  
   µ

2–
1
2    

+ +

x 1–
2----------- y 2–

3–-----------
z 3+

4-----------= = 2x 4y z– 1–+ 0=

2x 2y z+ + 10=

2x y z–+ 3=

x y+ 6=
x 4 y, 2z= =

x 2–
3----------- y 1+

4------------ z 2–
12-----------= = x y– z+ 5=
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27.3.3 INTERSECTION OF TWO PLANES

A full treatment of solving simultaneous equations in three unknowns is provided in Chapter 2, 
§2.3.3. We revisit this area using the development of 3-D geometry that has evolved over this 
chapter and Chapter 26. You will also find in Chapter 25 a different method for solving 
simultaneous equation than that used here or in §2.3.3. Both the matrix method and the method of 
row reduction are used in Chapter 25.

If two planes are parallel they will clearly not intersect (unless they coincide), and this case will 
be identifiable because their respective  vectors will be parallel. For example the planes 

 and  are parallel because their respective  vectors are 
 and , and . If two planes are not 

parallel they must intersect in a line.

Our strategy is to eliminate z and hence write x in terms of y. 

Adding (1) and (2):  and so 

Now we eliminate y and write x in terms of z. 

Adding (1) to 3×(2):  and so 

Putting these together into a single equation we have the line .

Note: having found the line it is worth choosing a simple-valued point on the line, such as
(2, 0, 3), and checking that it lies on both planes - which in this case it does.

To find the angle between the planes we find the angle between their normal vectors. 

Rewriting the equations as  and  we can calculate:

Hence  and θ = 104.3˚. 
If the acute angle was required it would be  (180˚ – 104.3˚) =  75.7˚.

n
2x y– z– 3= 4x– 2y 2z+ + 7= n
2i j– k– 4i– 2 j 2k+ + 4i– 2 j 2k+ + 2 2i j– k–( )–=

Find the equation of the line of intersection of the planes:

Find also the angle between the two planes.

x 3y z+ + 5=
2x y– z– 1=

1( )
2( )

E 27.17XAMPLE
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3x 2y+ 6= x 6 2y–
3---------------=

7x 2z– 8= x 2z 8+
7---------------=

x 6 2y–
3--------------- 2z 8+

7---------------= =

r i 3 j k+ +( )• 5= r 2i j– k–( )• 1=

i 3 j k+ +( ) 2i j– k–( )• 2–= i 3 j k+ +( ) 11= 2i j– k–( ) 6=

θcos 2–
66----------=
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1. Where possible, find a Cartesian equation of the line of intersection of the two planes and
find the acute angle between them:
(a)    and 

(b)    and 

(c)   and 

(d)  and .

2. (a) Show that the point (5, 2, –1) lies on the line of intersection of the planes
 and .

(b) Show that the line of intersection of the planes  and
 is perpendicular to .

(c) Show that the equation of the line of intersection of the planes
 and  can be written as 
.

3. Find the angle between the lines defined by the intersection of the planes

 and 

27.3.4 INTERSECTION OF THREE PLANES

Case (i)

When we write the equations of three planes such as :
(1)
(2)
(3)

and consider their possible intersection, we are solving a system of equations in three unknowns, 
as already covered in Chapters 2 and 25. There are three possible outcomes:

(i)  a single solution
(ii) no solution
(iii) an infinity of solutions.

Before reading on it is worth playing with three planes (books, pieces of card) and trying to get a 

EXERCISES 27.3.3

x y z+ + 3= 2x y 3z+ + 0=

2x y 4z+ + 7= x– 3y z+ + 8–=

r
4
2
1     

p
1
2
0     

q
1–
1
3     

+ += r
0
2
0     

λ
1
5
3     

µ
2
1
3–     

+ +=

r 3i 2 j k+ +( )• 10= r i 4 j– 2k–( )• 8=

x 3y– z+ 2–= 2x y 3z+ + 9=

x y z+ + 2=
2x y– 3z+ 4–= x y z= =

4x 4y 5z–+ 12= 8x 12y 13z–+ 32=
x 1–

2----------- y 2–
3----------- z

4---= =

x 2y– z+ 0=
x y z–+ 0=

 x 2y z+ + 0=
8x 12y 5z+ + 0=


x y 2z+ + 0=
2x y– z+ 6–=
3x 4y z–+ 6–=
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clear picture of the geometrical interpretation of each of these possibilities.

If M is the underlying 3×3 matrix of the system, in our case , 

det M ≠ 0 leads to outcome (i) and det M = 0 leads either to (ii) or to (iii). 

Here det M = , which means a 
unique solution - i.e. a single point of intersection.

To find this point we could eliminate z from (1) and (3), then from (2) and (3):
(1) + 2(3)
(2) + (3)

and then solve. We get x = –3 and y = 1, and by going back to (1) we find z = 1. Hence the point of 
intersection is (–3, 1, 1).

(There is considerable freedom as to which variable to eliminate and how to set about eliminating 
it.)

Case (ii)

Now we look at a case where det M = 0 but there is no solution - i.e. the planes have no common 
point. Such a system is:  

(1)
(2)
(3)

We set off in the same way as in Case (i): by eliminating one of the variables in two different 
ways. For this system the obvious variable to eliminate is y:

(1) + (2)
(2) + (3)

The first equation is equivalent to  and the second is equivalent to . The 
equations are inconsistent with each other and there is no solution to the system. The three 
dimensional picture is of three planes that have no point of intersection.

Case (iii)

In this system check that det M = 0:
(1)
(2)
(3)

We could eliminate x in two ways:
3×(2) – (1)
(2) – (3) .

It is important to be clear what this means: if we choose any y and z satisfying  we 
can find the value of x such that all three equations (1, 2 and 3) are satisfied. An example would be 

, leading to x = 1; check that all three equations are satisfied. But if we chose to 

1 1 2
2 1– 1
3 4 1–

x
y
z

0
6–
6–

=

1 1 1– 4 1×–×–( ) 1 2 1– 3 1×–×( )– 2 2 4 3 1–×–×( )+ 24=

7x 9y+ 12–=
5x 3y+ 12–=

3x y 4z+ + 8=
3x y– z– 4=
x y 3z+ + 2=

6x 3z+ 12=
4x 2z+ 6=

2x z+ 4= 2x z+ 3=

3x y– z– 1=
x 2y z+ + 4=
x 5y– 3z– 7–=

7y 4z+ 11=
7y 4z+ 11=

7y 4z+ 11=

y z 1= =
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satisfy  with  we get x = 0, and again all three equations are 
satisfied. Clearly we could find as many solutions as we wanted. Solution is .

To summarise: if det M = 0 there are two possibilities.

(a) When we eliminate one of the variables in two different ways and we get two inconsistent
equations in the other two variables, then we have no solution. The three dimensional
picture of this is three planes that fail to intersect.

(b) When we eliminate one of the variables in two different ways and we get two identical
equations in the other two variables, then we have an infinity of solutions. The three
dimensional picture of this is three planes intersecting in a line. (To find the equation of
the line, find the equation of the line of intersection of any two of the planes.)

1. Three planes can fail to have any point of intersection if two or more of them are parallel.
Describe a situation where three planes fail to intersect but no pair of planes is parallel.

2. Analyse Case (ii) in a little more detail:

(a) Find a Cartesian equation of the line of intersection of  and 
.

(b) Show that this line is parallel to .

3. Analyse Case (iii) in a little more detail:

(a) Find a Cartesian equation of the line of intersection of   – (1) and
 – (2).

(b) Show that this line lies in the plane  – (3).

(c) Show that (1) = 2×(2) + (3).

4. Classify each set of planes as (i) intersecting in a single point, in which case give its
coordinates, or (ii) no point of intersection, or (iii) intersecting in a line, in which case give
a Cartesian equation.

(a)   (b)    

(c)   (d)   

7y 4z+ 11= y 5 z, 6–= =
λ 6+

7------------ 11 4λ–
7------------------ λ, ,  

EXERCISES 27.3.4

3x y 4z+ + 8=
3x y– z– 4=

x y 3z+ + 2=

3x y– z– 1=
x 2y z+ + 4=

x 5y– 3z– 7–=

x y z–+ 10=
2x 3y– z+ 5=
x 4y– 2z+ 6=

x y z+ + 10=
2x y– 9=

x– 3y 4z+ + 14=

x 2y z–+ 10=
3x y– z+ 11=

2x y 4z+ + 1–=

2x y 3z+ + 5–=
x 2y– 2z+ 9–=

3x 4y 4z+ + 1–=
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5. This question involves concepts from the whole of this chapter.

OBCDEFGH is a cuboid with O(0, 0, 0)  ;  B(0, 0, 3)  ;  C(4, 0, 3)  ;  D(4, 0, 0)  ;  
E(4, 2, 0) ; F(0, 2, 0) ;  G(0, 2, 3)  ;  H(4, 2, 3).

(a) Sketch the cuboid.

(b) Find parametric forms for the equations of lines OH and BE. Show that the two
lines intersect at the point (2, 1, 1.5).

(c) Find the Cartesian equation of plane FHD. (A parametric form is
. Now convert to Cartesian form.)

(d) Find the coordinates of the point of intersection of line BE and plane FHD, and
also the angle between the line and plane.

(e) Find the angle between plane FHD and plane GHCB.

6. Show that the equations  are inconsistent for a = 1 and describe this

situation geometrically in terms of intersecting planes.

7. Find the value of k for which the system of equations  represents 3

planes that intersect in a common line and find the vector equation in parametric form of
the line of intersection.

8. The planes  and  intersect in a line, L, that passes through
 the origin.

(a) Find the vector product of the normals to both planes.
(b) Hence, find the vector equation of L.

(c) Find the value of k for which the system of equations  has

i. no real solutions.
ii. infinitely many solutions.
iii. a unique solution.

9. (a) On a set of axes, sketch the planes .
(b) Find where the planes meet. i.e., solve the system of equations

(c) Hence, deduce the solution to the system , , 

r OF sFH tFD++=

x y z–+ 1–=
5x 3y z+ + 3=
2x y z+ + a=

8x 3y z+ + 12=
x 2z+ 3=

2x y z–+ k=

x 3y– z– 0= 3x 5y– z– 0=

x 3y– z– 0=
3x 5y– z– 0=
x– ky 2z+ + k2 4–=

x y+ 2a y z+, 2b z x+, 2c= = =

x y+ 2a=
y z+ 2b=
z x+ 2c=

x y+ 2
a---= y z+ 2

b---= z x+ 2
c---=
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10. (a) Find the two values of k for which the planes with equations
,  and 

have no unique solution.
(b) Show that for one value of k, there are in fact no solutions.
(c) Show that for the other value of k, the planes meet along a line. Find the Cartesian

equation of this line.

11. Show that the equation for the plane passing through the point  and
perpendicular to the planes  and  can be

written in the form  = 0

12. Show that the equation for the plane passing through the points ,
 and perpendicular to the plane  can be written in the

form  = 0.

13. Show that the equation for the plane passing through the point  and parallel 

to the straight lines :    and :

may be written in the form  = 0.

14. Show that the equation for the plane which contains the lines

:   and :

may be written in the form  = 0.

x– y 2z+ + 3= kx y z–+ 3k= x 3y kz+ + 13=

M x0 y0 z0, ,( )
a1x b1y c1z+ + d1= a2x b2y c2z+ + d2=

x x0– y y0– z z0–
a1 b1 c1
a2 b2 c2

M x0 y0 z0, ,( )
N x1 y1 z1, ,( ) ax by cz+ + d=

x x0– y y0– z z0–
x1 x0– y1 y0– z1 z0–

a b c

M x0 y0 z0, ,( )

L1 r
a1
b1
c1     

λ
l1
m1
n1     

+= L2 r
a2
b2
c2     

t
l2
m2
n2     

+=

x x0– y y0– z z0–
l1 m1 n1
l2 m2 n2

L1 r
a1
b1
c1     

λ
l
m
n    

+= L2 r
a2
b2
c2     

t
l
m
n    

+=

x a1– y b1– z c1–
a2 a1– b2 b1– c2 c1–

l m n
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1. (a) Evaluate i. ii.

(b) Find i.      ii.            iii.     

2. (a) Find the general solution of the differential equation .
(b) The velocity of an object, v , at time t sec is given by .

Find the distance travelled, in metres, in the first  seconds.

(c) If  and y = 1 when , find an expression for y in terms of t.

3. An object is moving in a horizontal line so that the acceleration a  at time t sec, t ≥ 0
is given by  where v is the velocity of the object. If the initial velocity of the
object is 1 , find the expression for the velocity at time t seconds.

4. (a) If  and , find .
(b) The angle between the vectors  and  is . 

Find a given that .

(c) Find a unit vector perpendicular to .

5. Consider the following continuous random variables

, , 

(a) Find (b) Find the median of Z. (c) Find k.

6. (a) Show that  when x = 1.
(b) The region bounded by the y-axis and the curves

with equations  and  is rotated
about the y-axis to form a solid of revolution.
i. Write down an expression, in the form 

of a definite integral for the volume of the
solid.

ii. Calculate, to 2 d.p. the volume of the solid.

REVISION SET E - PAPER 1 & PAPER 2 STYLE QUESTIONS

x 1
x-------+   2 xd

1
4∫ x x 1+ xd

0
1∫

2x
1 x2–

------------------ xd∫ 4
9 16x2+--------------------- xd∫ 1

1 4x2–
--------------------- xd∫

dN
dt------- N 2 N 2>,–=

ms 1– v 2t( ) t 0≥,sin=
3π
2------

y′ y2 1+= t π
2---=

ms 2–

a 1
2v 4–---------------=

ms 1–

OA 3i 2 j– k+= OB i 2k+= 2OB 3AO+
u 2i j– 3k+= v i 4 j 2k–+= θ

θcos a
14 21×----------------------=

2i j 3k–+

f x( )
1
2---x2 0 x 63≤ ≤,
0  otherwise,




= f z( ) z 0 z π
2---≤ ≤,sin

0  otherwise,



= f u( ) k 2u 0 u 1≤ ≤,–
0  otherwise,

=

P X 1
2---<  

1
x2 1+-------------- 1

2---x=

y 1
x2 1+--------------=

y 1
2---x=

y

xO

y 1
2---x= y 1

x2 1+--------------=
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7. The speed, v , of a particle moving in a straight line at time t seconds is given by 
, where x m is the position of the particle relative to a fixed origin, O. Find,

correct to the nearest cm, the distance travelled by the particle in the first 2 seconds of its
motion if it starts at the origin.

8. A salt solution has initially a volume of 100 litres. Pure water is poured into the solution at
10 litres per minute and the mixture , kept well stirred, is removed at the rate of 7 litres per
minute. Find, but do not solve, the differential equation for the mass, m kg, of salt present
at time t minutes.

9. (a) Find the equation of a plane that is perpendicular to the vector  and
contains the point A(1, 2, 1).

(b) Find the equation of the plane which contains the points (–2, 3, 1), (1, –2, 3) and
(3, 1, 2).

(c) Find the point of intersection of the line  and the plane
.

10. (a) Find the values of x between 0 and 2π for which .
(b) Sketch, on the same set of axes, the graphs of  and  for 

values of x from 0 to 2π. Hence find .
(c) Find the area enclosed between the two curves in (b).

11. During a trench-digging operation, which takes 2 hours, the rate at which earth is being
removed, after t minutes, is  cubic metres per minute, for 0 ≤ t ≤ 120.
Find the total volume of earth removed.

12. (a) Find, in i. parametric form ii. Cartesian form
the line of intersection of the planes  and .

(b) Find the point of intersection of the plane
i.  and the line .
ii.  and the line .

(c) Find the equation of the plane containing the point (1, –1, 5) and perpendicular to
the line .

13. Find a and b if the planes  and  are parallel. 

14. Find the cosine of the acute angle between the lines
 and .

15. (a) Find  if  and .
(b)  and  are parallel vectors, find a and b.
(c) The diagonals of a paralellogram are given by the vectors  and

. Find the area of the paralleleogram.

ms 1–

v 9 x2–=

4i j– 4k–

x 1–
3-----------

y 2+
4------------

z 3+
2-----------= =

2x y z–+ 27=

xsin 3 xcos=
y xsin= y 3 xcos=

x x 3 x 0 x 2π≤ ≤,cos>sin{ }

12 0.1t–( )

3x 2y z–+ 6= x 4y z–+ 1–=

3x 5y z– 2+ + 0= x 3+
2------------ y 4– z 1+

3–-----------= =
4x 5y 6z+ + 87= x 2 3t y,+ 3 4t z,+ 4– 2t+= = =

x 1 2λ y,+ 3– 5λ z,+ 2– λ–= = =

2x by– 2z 4+ + 0= ax 3y– z+ 5=

x 1– 2λ y,+ 1 3λ z,+ 2 λ–= = = x 7 5µ y,+ 8– 3µ z,– 2– µ+= = =

a b× a 2i j– 3k+= b 3i 3 j k–+=
5i 2 j– 4k+ i aj bk+ +

3i j 2k–+
i 3 j– 4k+
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16. A horizontal water trough, 0.9 metres long, has a parabolic vertical section, represented by
the parabola  from x = –0.2 to x = 0.2.

All measurements are in metres.
Water is flowing into the trough at the rate of 0.01 cubic metres / minute. At time t 
minutes, the depth of water in the trough is h metres and the volume of water in the trough
is V cubic metres.
(a) Find, in terms of h, the area enclosed between the parabola  and the line

y = h. Hence find V in terms of h.
(b) Given that , find the rate at which the water level in the trough is

rising, when the depth is 0.16 metres.  

17. Let  and 
(a) Find the coordinates of the points of intersection of the graphs of f and g.
(b) Sketch on the same set of axes the graphs of f and g.
(c) Find the area of the region enclosed between these two graphs.

18. (a) Evaluate .

(b) Differentiate . Hence evaluate .

19. The graph of the function  is shown in the following diagram.

(a) Find the coordinates of the turning point, A, and justify that it is a maximum by
considering the sign of the first derivative.

(b) i. Find the equation of the tangent at the origin O.
ii. Find  and hence show that .

y 25
4------x2=

0.2 m

–0.2                                0.2

y 25
4------x2=

y

x

y 25
4------x2=

dV
dt-------

dV
dh-------

dh
dt------×=

f x( ) 1 3
x--- x 0≠,–= g x( ) x2 3x–=

x
2--- 2xcos+sin   xd

0

π
2---∫

x2 2+( )elog 2x
x2 2+-------------- xd

0
2∫

f x( ) xe x 2/–=

a

y

x

b A(a, b)

d
dx------ xe x k/–( ) xe x 2/– xd

0
a∫ 4 2 2 a+( )e a 2/––=
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iii. Find the area of the region enclosed by the curve , the tangent to
the curve  at the origin and the straight line x = a.

(c) i. Show that .
ii. Using the results of (b) and (c) i., find the volume of the solid generated by

revolving the curve with equation  about the x-axis from x = 0 to
x = 2.

20. (a) If , find .

(b) i. Evaluate  and hence evaluate .

ii. Evaluate 

(c) i. Sketch the graph of .
ii.       Find the area of the region bounded by the graph, the x-axis and the lines 

x = –1 and x = 1.
iii.      Find the volume when the region above is rotated about the x-axis.

21. If ,  where  and  where k is a constant, find the

values of k for which the equation is true.

22. The position vector of two particles, A and B is given by 
and . If the two particles collide at a point in space find when and
where they collide and the values of a and b.

23. Consider the three planes whose equations are , , and

(a) i. Find the point(s) of intersection of the three planes, giving your answer in
terms of k.

ii. Give the values of k for which there is only 1 solution.
(b) Find a value of k for which there are no solutions.
(c) i. Find a value of k for which the planes intersect along a line.  

ii. Give the parametric equation of this line.

24. Find  if . Hence solve the system equations .

25. The matrices A, B and X are such that ,  and , where I is
the unit matrix, find BX, X and AX in terms of A and B.

y xe x 2/–=
y xe x 2/–=
d
dx------ x2e x–( ) 2xe x– x2e x––=

y xe x 2/–=

f ' x( ) 2x 2x 1–= f x( )
sin26x xd

0

π
6---∫ sin23xcos23x xd

0

π
6---∫

sin23xcos3x xd
0

π
6---∫

f  : x 2 x 2< <–{ }       where f x( ) 1
4 x2–

------------------=

A 2 1–
1– 2= X x

y
= x y 0≠, AX kX=

rA ati bt 5t2–( ) j t2k+ +=
rB 8ti 4tj– 4k+=

x y z+ + 0= kx y 2z–+ 6–=
2y k 2+( )z+ k 2–=

A2 A
0 2 1
1 1 1
1– 2– 2–

=
x 2y 2z+ + 1=

2y z+ 2–=
x y z+ + 0=

A 1– 1
2---A= B 1– 1

9---B= ABX I=
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26. The graph of the function  is shown 
in the following diagram.

(a) Find the coordinates of the turning point, A,
and justify that it is a minimum by
considering the sign of the first derivative.

(b) Find the area of the region enclosed by the
curve , the coordinates axes and
the line x = 1.

(c) i. Given that , show that .
ii. Find the volume of the solid of revolution formed when the region enclosed

by the curve with equation  and the lines x = 0 and x = 1 is
rotated about the x-axis.

27. Consider the function .
(a) Show that the graph of  has an intercept at x = 1.
(b) Find  and specify the values of x for which  is

i. positive ii. zero iii. negative.
(c) Find the coordinates of any stationary point of the graph of .
(d) Sketch the graph of , but do not make any attempt to determine any

x-intercept other than x = 1.  
(e) i. Find the equation of the tangent at the point where x = 1.

ii. Find the equation of the normal at the point where x = 1.
(f) i. Given that , find the area of the region

enclosed by the curve , the tangent to the curve at x = 1 and the
line x = 0.5.

ii. Hence find the area of the region enclosed by the curve , the
normal to the curve at x = 1 and the line x = 0.5.

28. Determine the constants A and B so that  will satisfy the
equation  for all values of t.

29. (a) Find the area of the region enclosed  by the curve with equation 
and the x-axis.

(b) The region enclosed between the curve with equation  and the 
x–axis is rotated about the x-axis to form a solid of revolution. 
Find the volume of this solid.

30. Let . 
(a) If a has the least real value for which the inverse function,  exists, find a and

define .
(b) Find the volume of the solid of revolution formed by rotating about the x-axis the

curve  between x = 0 and x = 4.

a

y

x

b A(a, b)

y e2x 4x–=

y e2x 4x–=

d
dx------ xe2x( ) e2x 2xe2x+= 8xe2x xd

0
1∫ 2e2 2+=

y e2x 4x–=

g:           , where g x( ) 2 1 x–( ) xelog+=+

y g x( )=
g' x( ) g' x( )

y g x( )=
y g x( )=

xelog( ) xd∫ x x( )e x– c+log=
y g x( )=

y g x( )=

x t A 2t B 2tsin+cos( )=
d2x
dt2-------- 4x+ 2 2tcos=

y 7x2 1 x–( )=

y 7x2 1 x–( )=

f  : x x a≥{ }       , where f x( ) x 2–( )2=
f 1–

f 1–

y f 1– x( )=
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31. (a) Find the equation of the normal to the curve  at the point where x = 1.
(b) Show the curve and the normal on a sketch graph.
(c) Find the area of the region enclosed by the normal, the curve and the y-axis.

32. (a) Find the area of the region enclosed by  and  
(b) If the region in (a) is now rotated about the x-axis. Find the volume of the solid of

revolution generated.

33. The concentration, x grams per litre, of salt in a solution at any time t minutes is given by
.

(a) If the initial concentration was 2 grams per litre, solve the differential equation,
giving x in terms of t.

(b) Find the time taken, to the nearest minute, for the salt concentration to rise to 
6 grams per litre.

34. Find the derivative of . Hence evaluate .

35. Sand is poured at a constant rate of V cubic metres per minute into an inverted conical tank
which has its base radius the same length as its height. Sand comes out of the hole at the
bottom of the tank at a rate of  cubic metres per minute, where h metres is the height
of the sand in the tank and v cubic metres is its volume at any time t minutes.
(a) Set up, but do not solve, the differential equations for v and h.
(b) Find the minimum height of the tank, in terms of V and k, if sand is not to 

eventually pour out of the top of the tank.

36. Let the position vectors of points A and B be  and .
Find (a) .

(b) the angle AOB to the nearest degree.
(c) the position vector of a point C if B is the mid-point of AC.

37. Let  where . (a) Show that .

(b) Find  in terms of A and I.

38. (a) Differentiate . Hence evaluate .

(b) Find an antiderivative of i. . ii. .

(c) Evaluate .

39. The region enclosed by the curve  and the line  is rotated about the 
x–axis. Find the volume of the solid of revolution.

y ex 2–=

y x2 1+= y 2=

dx
dt------

20 3x–
30------------------=

xTan 1– x Tan 1– x
x--------------------- xd

1
3∫

k h

OA 2i– j– k+= OB i 2 j– k–=
AB

A 1 2i
2i– 1= i2 1–= A2 2A 3I+=

A 1–

1 x2– Sin 1– x xSin 1– x
1 x2–

------------------- xd
0

3
2-------∫

x 1 x– e2x
ex 1+--------------

x2
x3 1+-------------- xd

0
1∫

y x2 1+= y 2=
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40. The position vectors of particles A, B and C from a fixed point O, at any time t, are given
by ,  and  where b is a
constant.
(a) Find the minimum distance from O to the path of particle B.
(b) If particles A and C collide, find when they collide and the value of b.

41. A vat contains 100 lires of water. A sugar solution with a concentration of 0.5 kg of sugar
per litre is pumped into the vat at 10 litres per minute. The solution is thoroughly mixed in
the vat and solution is drawn off at 10 litres per minute.
(a) If there is x kg of sugar in solution at any time t minutes, set up, but do not solve,

the differential equation for x.
(b) A mistake is made in preparing the solution to be pumped into the vat. After using

this solution, the concentration of sugar in the vat after 10 minutes is  0.2 kg per
litre. Find, correct to 2 decimal places, the concentration of the sugar solution being
pumped into the vat.

42. If , where  (a) find  as a matrix in terms of a.

(b) state when  is not defined.

(c) find x and y if a = 3.

43. The force on a bridge (in newtons) is a continuous random variable X with probability

density function given by . Find

(a) a (b) (c) (d)

44. (a) The triangle ABC is such that  and .
Find i. ii. the area of 

(b) PQRS is a trapezium with ,  and . T is the midpoint of
[QR]. Express the following in terms of p and s.
i. ii. iii. iv.

45. (a) Given that , find .

(b) If , prove by induction that for n ≥ 1, .

(c) Find the value of a such that the matrix  is singular.

rA 2t2i t 1+( ) j+= rB 2ti 2t 4–( ) j+= rC bt3i bt 4+( ) j+=

a 2
1 1

x
y

1
2= a ∈ x

y

x
y

f x( )
1
8--- a 3x+( ) 0 x 2≤ ≤,
0           otherwise




=

E X( ) Var X( ) P 1 X 1.5< <( )

AB 3i 6 j 2k–+= AC 4i j– 3k+=
BAC∠ ∆ABC

PQ p= PS s= SR 3 p=

PR QR PT ST

M θcos θsin–
θsin θcos= det M( )

A 2 a
0 1= An 2n 2n 1–( )a

0 1
=

M
3 2 1
0 1 3
1– a 1

=
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46. The position vectors of the points A, B and C are  and 
respectively. Find
(a) the angle BAC to the nearest degree.
(b) the area of the triangle ABC.

47. (a) Find the i. vector ii. parametric and iii. Cartesian
equation of the line through the point with position vector  & parallel to .

(b) Find the position vector of the point of intersection of the lines
 and 

(c) i. Are the straight lines  and  parallel?
ii. Find the point(s) of intersection of the lines in i. What do you conclude?

48. (a) i. Find the Cartesian equation of the plane defined by the vector equation

ii. Find the angle that the plane in i., makes with the plane defined by the 
vector equation 

(b) Find the acute angle between the 

i. lines  and .

ii. line  and the plane .

49. Find the point of intersection of the planes  and .

50. The position vectors of the points A, B and C are given by ,
 and  where a, b and c are constants. Find

(a) a if  is perpendicular to .
(b) b and c if O, A and C are collinear.

51. Find the equation of the line of intersection of the planes  and
. Giving your answer in vector form.

52. (a) Find a unit vector perpendicular to both  and .
(b) Find the equation of a plane containing the point (3, 1, –1) and perpendicular to the

line joining the points (1, 2, 1) and (–1, 1, –2).
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53. Let . Find all real numbers k such that the matrix A – kI has no inverse.

54. Let , ,  and .

(a) Evaluate i. ii.
(b) Find the equations of the planes produced from the matrix equation .
(c) Give the vector equation of the straight line where the two planes in (b) meet.

55. (a) Evaluate i. ii.

(b) The curve with equation  is rotated about the x–axis to form a surface
of revolution. Find the volume of the solid enclosed by this surface between x = 0
and .

(c) P is the point where x = 1 on the curve whose equation is .
i. Find the equation of the normal to the curve at P.
ii. Find the area of the region enclosed by the normal, the curve and the

coordinate axes.

56. (a) Sketch the curve whose equation is .
(b) Find the area enclosed between this curve, the line  and the x-axis.

57. (a) Show that 
(b) Find the real numbers a and b such that

i. .

ii. .

58. The region bounded by the coordinate axes, the curve whose equation is 
and the line  (where c is a constant greater than 1) is rotated about the 
y-axis to form a solid of revolution. Find the volume of this solid.

59. (a) Sketch the region .

(b) The region defined in part (a) is rotated about the x-axis to form a bead-shaped
solid of revolution, with a cylindrical hole through its centre. Find the volume of
this solid.
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60. OABC, DEFG is a cuboid with ,  and . 
(a) Find x if the angle between the diagonals given by  and  is a right angle. 
(b) Also find x if the same diagonals are 60˚ to each other.

61. Water is poured into an inverted cone of height 10 cm and base radius 5 cm at a rate of 
Q . It pours out of a hole at the vertex at a rate given by   where k is a
positive constant and h cm is the height of the cone at any time t seconds.
(a) Show that .
(b) When the height is 9 cm, the inflow of water is stopped. Find the time, to the

nearest second, for the water to flow out of the cone if k = 1.

62. The intensity of light, I units, at a given depth, x cm, in a liquid solution is given by
. For a given light source, the intensity is measured as  units at  cm and  

units at  cm. Find the intensity at the surface in terms of ,  and .

63. (a) Consider the planes  and .
Find the values of a and b if i. .

ii.

(b) Find the point of intersection of the line  and the plane

.
(c) i. Find the area of the triangle with vertices at (0,0,0), (2, 2, 1) and (–2, 9, 5).

ii. Find the equation of the plane containing the triangle in (a).
iii. Find the equation of the straight line through (0,0,0) and perpendicular to

the plane in (b). Give your answer in vector form.

64. (a) Find i. ii. .
(b) Find i. ii. .

65. Two particles P and Q move along the same straight-line path, and can overtake one
another. Their velocities are  and 
respectively at time t, for t ≥ 0.
(a) i. Find the times when the velocities of P and Q are the same.

ii. On the same set of axes, sketch the velocity-time graphs of P and Q.
(b) Given that P and Q started from the same point at time t = 0, find the time when P

and Q meet again.

66. Newton’s Law of cooling states that the rate of cooling of a body is proportional to the
excess of its temperature above that of its surroundings.
A body at a temperature of 70˚C is placed in a room whose temperature is maintained at
20˚C. If, after 10 min, the temperature of the body is 55˚C, find the temperature after a
further 15 min.
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