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PREFACE

This Revised Edition has been specifically designed to provide a comprehensive 
approach to the teaching of the International Baccalaureate Mathematics Higher and 
Standard Level Courses. For ease of reference, the major topics have been generally 
presented in single chapters and the sequence of chapters has been chosen to provide a 
suitable teaching order. There is, however, ample opportunity for individual teachers 
to choose the order which best suits their teaching style. It should be noted that each
chapter can presume knowledge of any and all previous chapters.

Chapters 1-17 contain all of the material common to both the Higher Level and 
Standard Level courses. Material which is required for the Higher Level Course but 
not the Standard Level Course is headed Higher Level and placed in shaded boxes to 
emphasise the fact that it is not required for the Standard Level Course.
Chapters 18-23 contain all material relevant to the Higher Level Core.
Chapters 24-26 contain material needed for the Higher Level Options of Statistics & 
Probability, Sets, Relations & Groups and Series & Differential Equations.

In each chapter the information relevant to the topic is discussed and several examples 
providing various approaches to the solutions are given. If the material in any Higher 
Level section is not specifically required by the syllabus, it is designated as 
"Optional". These few sections have been included either because they could be 
useful in a prescribed section which follows or because they could be of interest. As 
an example of the first type, knowledge of the formulae for the sum and product of 
the roots of a quadratic (Chapter 19.5) is extremely useful when it comes to finding a 
quadratic factor of a real polynomial when given a single non-real zero (Chapter
20.2). As an example of the second type, Chapter 11 contains a section which 
discusses vector methods for finding the volumes of parallepipeds and tetrahedra.
Knowledge of these sections is not absolutely necessary for a student to achieve a 
high grade for the course.

The exercises provided with each section have been graded from the relatively easy to 
the more difficult. Whenever a given exercise is accompanied by an asterisk (*), it is 
considered to be too challenging for some students but suitable for extending others. 
Answers to the odd-numbered questions have been provided. Where it was considered 
helpful, the answers to a few even-numbered questions have been added.

This text has not been written with the graphic display calculator (GDC) specifically
in mind. However, there are countless examples where the use of this technology
would be a definite advantage. It is left to the individual teacher to encourage sensible 
use of a GDC. Students should finally be able to decide for themselves when it is 
reasonable to call upon the technology and when a ‘by hands’ approach is more 
appropriate. It is most important that students understand the underlying mathematics 
and do not simply call upon a GDC to provide an answer when they have no idea of 
how that answer is produced.
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1.1 Subsets of the Real Numbers 

The development of the real number system has taken thousands of years. This 
development has been driven by man's need to solve problems. Initially all that was 
required were the small positive integers; enough to count the sheep in a flock for 
example. Later developments in commerce, construction of cities, navigation, 
measurement of time and warfare required quite advanced mathematical skills. 
Knowledge of numbers and the skills to manipulate them became invaluable. 

The Natural Numbers 

From the time we first learn to speak, we are introduced to the world of mathematics 
with the natural numbers 0, 1, 2, 3, … , sometimes called the counting numbers. We 
denote the set of all natural numbers by N. We now take for granted the fact that 
whenever we add or multiply any two natural numbers, the result is always another 
natural number. 

N = { 0, 1, 2, 3, … } 
N is closed under addition and multiplication 

The Integers 

It does not take long to realise that if we try to subtract one natural number from 
another we do not always obtain another natural number. For example, if the 
temperature (in degrees) is 4 and falls a further 6, the temperature is –2 which is not a 
natural number. To include such problems in the list of those we may solve with the 
available mathematics, we need to introduce the negative integers –1, –2, –3, … . 
When this is done, we obtain the set of integers denoted by Z. As before, it is 
obvious that the sum and product of any two integers are integers. 

Z = { … , –3, –2, –1, 0, 1, 2, 3, … } 
Z is closed under addition and multiplication 

The Rational Numbers 

If we attempt to divide one integer by another we do not always obtain another 
integer. For example, if we divide 5 apples equally between 2 people, each person 
does not receive an integral number of apples. We need the rational numbers to cope 
with such situations. 
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Definition A rational number is one which can be expressed in the form 
q
p  

where p and q are integers and q ≠ 0. 
 
We denote the set of all rational numbers by Q. It is obvious that the sum and product 
of two rational numbers are rational numbers. 
 

  Q = 
⎭⎭
⎬
⎫

⎩
⎨
⎧

≠∈ 0,, qqp
q
p

Z  

 Q is closed under addition and multiplication 
 

The numbers 
1
24,

3
13.0,

1
66,

3
2,

4
3

===−  are all rational, whereas the numbers 

π− ,654,
3

2,2  are not rational. They are said to be irrational. 

 
Higher Level 

 
All rational numbers and many irrational numbers are called algebraic. Any 
root of an equation of the form 001

2
2

1
1 =+++++ −

− axaxaxaxa n
n

n
n �  

where ,,, 210 aaa  na,�  are integers, is called algebraic. Numbers which are 
not algebraic are called transcendental. The most familiar transcendental 
number is π, and in this course you will be introduced to a second 
transcendental number, denoted by e. The value of e is approximately 2.71828. 
 
Joseph Liouville was the first to prove that certain numbers are transcendental. 

He found that numbers of the form �+++++ 1202462
11111

nnnnn
 where n is a 

number greater than 1 and the exponents 1, 2, 6, 24, 120 are 1, 1×2, 1×2×3, 
1×2×3×4, 1×2×3×4×5, etc., are transcendental. The particular case when n = 10 

is ++ 210
1

10
1  �++ 246 10

1
10

1  = 0.110001000000000000000001…….. . 

To prove a given number is transcendental is a difficult task, well beyond the 
requirements of this course. However, to prove a given number is irrational can 
be a much easier task. 
 

Theorem The number 2  is irrational. 

Proof (The method of reductio ad absurdum.) 
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 Suppose that 2  is rational. i.e., 
q
p

=2  where p and q are integers.

Since we may always reduce a fraction to its lowest terms, we may also 
assume that p and q are relatively prime, i.e., they have no common 
positive integer factor other than 1. 

 Then 22 2qp =  and so 2p  is even which makes p even. 
 Let p = 2r where r is an integer. 
 Then 222 24 qrp ==  which means that 22 2rq = . 
 Thus 2q  is even and so q is even. 

But this is impossible since p and q do not have 2 as a common factor. 
 Therefore 2  cannot be rational and so must be irrational. 

All rational numbers can be expressed as either a finite or a recurring decimal (or as 

both: !!5.194.1 = ). For example, 5.0
2
1

=  is a finite decimal and 3.0
3
1

=  is a 

recurring decimal. An irrational number cannot be expressed in this way. 

Example Express the recurring decimal 452.0  in the form 
q
p  where p and q

are integers and q ≠ 0. 

Let 452.0=x . 
Then 455.24100 =x . 
By subtraction we obtain 3.2499 =x . 

Hence 
110
27

990
243452.0 ===x , as required. 

The Real Numbers 

The rational and irrational numbers together make up the set of real numbers, denoted 
by R. The sets N, Z and Q are all subsets of R. In fact, N ⊂ Z ⊂ Q ⊂ R. 

The one-to-one correspondence between the real numbers and the points on the 
number line is familiar to us all. Corresponding to each real number there is exactly 
one point on the line: corresponding to each point on the line there is exactly one real 
number. 

0 1 2 3 4 5 6–1 –2 –3 –4 –5 –6 
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Throughout this book the following notation for various subsets of R will be used. In 
each case a and b are real numbers with a < b. 
 
1. R = ] , [− ∞ ∞  
 
2. x < a is denoted by  ] , [a− ∞  
 
3. x > a is denoted by ] , [a ∞  
 
4. x ≤ a is denoted by ] , ]a− ∞  
 
5. x ≥ a is denoted by [ , [a ∞  
 
6. a < x < b is denoted by ]a, b[ 
 
7. a ≤ x ≤ b is denoted by [a, b] 
 
8. a < x ≤ b is denoted by ]a, b] 
 
9. a ≤ x < b is denoted by [a, b[ 
 
 
Exercise 1.1 
 
1. Determine which of the following numbers are  (i)  integers ;     (ii)  rational ;     

(iii)  irrational. 

 –2,  ,
7
3   5 ,  

π
1 ,  441 ,  4

16 , 0.8, 8.0 ,  9.1 ,  
13

1
−

,  
318

324
−

− ,  2π . 

 
2. Determine which of the following equations have roots which are 

(i)  integral ;    (ii)  rational ;    (iii)  irrational ;    (iv)  non-real. 
 
 (a) 01032 =−− xx  ;  (b) 26 5 6 0x x+ − =  ; 

(c) 0342 2 =+− xx  ;  (d) 0342 2 =−− xx  ; 
 (e) 26 7 10 0x x− − =  ;  (f) 05522 =+− xx  ; 

 (g) 032)32(2 =++− xx  ; (h) ( ) 0332 =π−−π− xx . 
 

3. Write each of the following numbers in the form 
q
p  where p, q are integers: 

 0.04,  2.1 ,  25.12 ,  23.0 ,  0.1234,  1234.0 ,  285714.0 ,  9.0 ,  21693.1 . 

° 

° ° 

° 

° 

° 

a 

a 

a 

a 

a 

a 

a 

a 

b 

b 

b 

b 
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1.2 Order Properties and the Modulus Function 

If a and b are any two real numbers, then either baabba =<< or    or    . 

The sum and product of any two positive real numbers are both positive. 

If   0)(  then  0 >−< aa . 

If 0)(  then  >−> baba . This means that the point on the number line 
corresponding to a is to the right of the point corresponding to b. 

The most elementary rules for inequalities are: 

(1) If ba <  and c is any real number then cbca +<+ . That is we may add (or
subtract) any real number to (or from) both sides of an inequality.

(2) (i) If ba <  and 0>c , then bcac < . 

(ii) If ba <  and 0<c , then bcac > .

That is we may multiply (or divide) both sides of an inequality by a positive 
real number, but when we multiply (or divide) both sides of an inequality by a 
negative real number we must change the direction of the inequality. 

(3) (i) If ba <<0  then 220 ba << . 

(ii) If 0<< ba  then 220 ab << .

That is we may square both sides of an inequality if both sides are positive. 
However if both sides are negative we may square both sides but we must 
reverse the direction of the inequality and then both sides become positive. If 
one side is positive and the other negative we cannot square both sides. For 
example, 32 <−  and 22 3)2( <− , but 23 <−  and 22 2)3( >− . 

(4) (i) If ba <<0  then 
ab
110 << .

(ii) If 0<< ba  then 011
<<

ab
. 

That is we may take the reciprocal of both sides of an inequality only if both 
sides have the same sign and, in each possible case, we must reverse the 
direction of the inequality. 
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Example Solve the inequality 6523 +≤+ xx . 
 
 6523 +≤+ xx   ⇒ 453 +≤ xx  (subtracting 2 from both sides) 
     ⇒ 42 ≤− x       (subtracting 5x from both sides) 
     ⇒ 2−≥x .        (dividing both sides by –2) 
 

Example Solve the inequality 3
1
43

≥
+
−

x
x . 

 

 3
1
43

≥
+
−

x
x  ⇒ 03

1
43

≥−
+
−

x
x  

    ⇒ 0
1

)1(343
≥

+
+−−

x
xx  

    ⇒ 0
1

7
≥

+
−
x

 

    ⇒ 01 <+x  
    ⇒ 1−<x . 
 

 
Higher Level 

 

Example Solve the inequality 
xx
2

1
30 <
+

< . 

 

 
xx
2

1
30 <
+

<   ⇒ 
3

1
2

0 +
<<

xx ,   0, 1 0x x> + >  

    ⇒ 2230 +<< xx ,  0x >  
    ⇒ 20 << x . 
 

Example Solve the inequality  2 1 0
2 3x x

< <
+ +

. 

 

 2 1 0
2 3x x

< <
+ +

 ⇒ 23 0
2

xx +
+ < < ,  3 0, 2 0x x+ < + <  

    ⇒ 2 6 2 0x x+ < + < ,  3x < −  
    ⇒ 4 0x + < ,  3x < −  
    ⇒ 4x < − . 
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The Modulus Function 
 
Sometimes we order numbers according to their size. We denote the size or absolute 
value of the real number x by x , called the modulus of x. 

Definition 
⎩
⎨
⎧

<−
≥

=
.0  if

0  if
xx
xx

x  

 
The graph of y = ⏐x⏐ is as follows:  
 
 
  
 
 
  
Since the symbol  is used to mean any non-negative square root, we may also 
define the modulus of the real number x by: 
        2xx = . 
Geometrically x  measures the distance from the point representing the real number x 
on the number line to the origin, the point representing 0. Thus 2<x  implies that x 
is within 2 units of the origin, i.e., 22 <<− x ; and 2>x  implies that x is further 
than 2 units from the origin, i.e., 2or    2 −<> xx . 
 
In general, if a is any positive number, 
 axaax <<−⇒< , 
and axaxax −<>⇒> or    . 
 

 
Higher Level 

 
The following relations are true for all real numbers a and b: 
 

(1) aa =−  
(2) aaa ≤≤−  
(3) bababaab == and  (b ≠ 0) 
(4) baba +≤+  
(5) baba −≥−  
 
 

x 

 y 

O 
6 –6 

6 
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Example Solve the inequality 123 <−x . 
 

 123 <−x  ⇒ 1231 <−<− x  
   ⇒ 331 << x  

   ⇒ 1
3
1

<< x . 

 

Example Solve the inequality 2 1 2
1

x
x

−
<

+
. 

 

 2 1 2
1

x
x

−
<

+
       ⇒ 2 1 2 1x x− < +  

    (Square both sides since both are non-negative.) 
   24 4 1x x− +  <  24( 2 1)x x+ +  [x ≠ –1] 
          –4x + 1 <  8x + 4 
                12x >  –3 
                    x >  1

4− . 
 
Exercise 1.2 
 
1. Find the values of x which satisfy each of the following inequalities: 

(a) 1113 <−x  ; (b) 71 ≥− x  ; (c) 5)23(2 >+x  ; 

(d) 10)2(31 ≤+− x  ; (e) 
3

1
2

3 xx −
>

+  ; (f) 
5

32
2

13 −
>

+ xx  ;  

(g) 0
2

6
>

−x
 ; (h) 0

23
1

>
−
−

x
 ; (i) 3 1

2
x
x

+
<

−
; 

(j) 2
1
32

<
−
+

x
x  ; (k)  

2
5

12
15

<
+
−

x
x  ; (l) 2 3 2

4 3 3
x

x
−

> −
−

. 

 
2. Find the values of x which satisfy each of the following inequalities: 

(a) 3≤x  ; (b) 62 >x  ; (c) 823 <+x  ; 
(d) 46 ≤− x  ; (e) 0223 <++x  ; (f) 1245 >+x  ; 

(g) 1
2

<
+x
x  ; (h) 2 2 0x+ − >  ; (i) 831 <+− x  ; 

(j) 3 2 5 9x− + >  ; (k) 2
1

23
≥

+
−

x
x  ; (l) 4 3 2

2 1
x
x

−
≤

+
. 
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Higher Level 

 
3. Solve each of the following inequalities: 

 (a) 
xx
6

1
50 <
+

<  ;  (b) 0
5

2
1

3
<

+
<

+ xx
 ; 

 (c) 5 30
2 2 1x x

< <
− +

 ; (d) 2 5 0
1 2 1x x

< <
+ +

. 

  
4. Decide whether each of the following statements is true or false. If the 

statement is false, give an example to confirm that it is false. 
  (a) axax −<−⇒< 22  ; (b) 242 >⇒> xx  ; 
  (c) 42 2 >⇒> xx  ;  (d) 242 <⇒< xx  ; 

  (e) 42 2 <⇒< xx  ;  (f) 
yx

yx 11
>⇒<  ; 

  (g) yxyx <⇒<  ;  (h) 
yx

yx 110 >⇒<<  ; 

  (i) yxyx <⇒<  ;  (j) yxyx <⇒< . 
 

 
 
1.3 Roots of Real Numbers and Surds 
 
Square Roots 
 

If ba =2  then b is the square of a and a is a square root of b. We say a square root 
of b since both 422 =  and 4)2( 2 =− , and so 4 has (at least) two square roots, 2 and 

2− . We write 24 =  to mean that the positive square root of 4 is 2, and we write 
24 −=−  to mean that the negative square root of 4 is –2. 

Thus: 1. The symbol  denotes the positive square root only. 
 2. Every positive number has two square roots, one of which is positive, and 

the other negative. 
 3. The square root of zero is zero. 
 4. Negative real numbers have no real square roots. 
 
Cube Roots 
 

If ba =3  then b is the cube of a and a is the cube root of b. This time we say the 
cube root of b since 823 =  but 8)2( 3 −=− . 
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Thus: 1. No definition is needed to specify which cube root is meant since a real 
number has one and only one cube root in the real number system. 

 2. Every positive number has one and only one cube root which is positive. 
 3. The cube root of zero is zero. 
 4. Every negative number has one and only one cube root which is negative. 
 
Nth Roots 
 
In general, if n is an even positive integer then in the real number system, 
(a) if 0>a , a has two nth roots, one positive and one negative. 
(b) if a = 0 , a has one nth root which is zero. 
(c) if 0<a , a has no real nth roots. 
 
If n is an odd positive integer (not 1) then in the real number system, 
(a) if 0>a , a has one nth root which is positive. 
(b) if a = 0 , a has one nth root which is zero. 
(c) if 0<a , a has one nth root which is negative. 
 

If n is a positive integer other than 1 or 2 the radical sign n  is used to indicate an 

nth root of a real number. If n = 2 just the radical  is used. 
 
Surds 
 
A surd is an irrational number expressed with a radical (root) sign. 

13
3,4,72,2 3

+
+  are true surds. 

4
3

4
1

16
7,64.0,81,6,4 +  are written in surd form but are not true surds since 

they can be written without the radical as 2, 2.5, 3, 0.8 and 3.5 respectively. 
 
The rules used to manipulate surds should be already familiar to the reader. These 
rules may be summarised as follows: 
 

(1) Product Rule 00for    ≥≥=× b,aabba  
  e.g., 636182,55 ==×=× xx  
(2) Converse of Product Rule 0,0for    ≥≥×= babaab  
  e.g., 626424,55 =×=×= aa  

(3) Quotient Rule 0,0for    >≥= ba
b
a

b
a  

  e.g., 24
7
28

7
28,4.0

5
2

5
2

=====  
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Definition If a, b, c and d are rational with b and d not both squares of rational 
numbers, then dcba +  is a binomial surd. The conjugate of the 
binomial surd dcba +  is dcba − . 

 
Note that the product of a binomial surd and its conjugate is rational: 
 ( dcba + )( dcba − ) = dcba 22 − . 
 
We often use this result to simplify surd expressions, particularly the quotient of 
binomial surds. 
 

Example Express 35  as an entire surd. 
 

 7532535 =×= . 
 

Example Express 252  in the form ba  where a and b are integers and a is 
as large as possible. 

 

 76723749289252 =××=××=×= . 
 
 (Factorise the number, choosing the largest possible perfect square that you 

can easily find as a first factor. In this example, if you notice immediately that 
36 is a factor of 252 then this slightly shortens the working.) 

 

Example Expand ( )( )225225 −+ . 
 

 ( )( )225225 −+  = ( ) ( )22
225 −  = 5 – 8 = –3. 

 
Rationalisation 
 

If a simple surd such as 3  is multiplied by itself, the result is rational: 333 =× . 
If a binomial surd is multiplied by its conjugate, the result is also rational. We make 
use of these results when simplifying certain surd expressions by ‘rationalising the 
denominator’. 
 

Example Express 
5
2  with a rational denominator. 

 

 
5
10

5
5

5
2

5
2

=×= , as required. 
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Example Express 
3223

3
−

 with a rational denominator and in simplest 

form. 
 

 
3223

3
−

 =  
3223

3
− 3223

3223
+
+

×  

   =  ( )
1218

32233
−
+  

   =  
2

3223 + . 

 

Example Find the rational numbers a and b such that ( 2)(2 3 2) 1a b+ + = . 
 

Method 1:  ( 2)(2 3 2) 1a b+ + =  
    ⇒ 2 6 2(3 2 ) 1 1 0 2a b a b+ + + = = +  
 ⇒ Thus 2a + 6b = 1 and 3a + 2b = 0 since 2(3 2 )a b+  

must be zero if a and b are rational. Solving these 
equations gives 1

7a = −  and 3
14b = . 

 

 Method 2: ( 2)(2 3 2) 1a b+ + =   ⇒  2a b+  =  1
2 3 2+

 

   =  2 3 2
4 18
−
−

 

   =  31
7 14 2− + . 

  Thus  1
7a = −  and 3

14b = . 
 
Exercise 1.3 
 
1. Write each of the following as a single surd: 
 (a) 53 ×  ; (b) yxy ×  ; (c) 653 ××  ; (d) 33 54 × . 
 
2. Simplify each of the following: 

 (a) 26 ×  ; (b) 315 ×  ; (c) 
5

15  ; 

 (d) 
108
12  ;  (e) 

278
1812

×

×  ; (f) 
2872
4240

×
× . 
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3. Write each of the following in the form na  where a is rational and n is the 
smallest possible positive integer: 

 (a) 18  ;  (b) 200  ;  (c) 75  ; 
 (d) 72  ;  (e) 450  ;  (f) 98.0 . 
 
4. Simplify each of the following: 
 (a) 985018 −+  ;  (b) 8045204 −−  ; 
 (c) 1275 ×  ;   (d) 192125124 −− . 
 
5. Simplify each of the following: 

 (a) 5352 ×  ; (b) ( )2
73  ; (c) ( )2

611  ; 
 (d) ( )5323 −  ; (e) ( )255210 −  ; (f) ( )63212 − . 
 
6. Expand each of the following: 
 (a) ( )( )2323 +−  ;  (b) ( )( )352352 −+  ; 
 (c) ( )( )55 +− xx  ;  (d) ( )( )bbaabbaa −+  ; 

 (e) ( )2
27 −  ;   (f) ( )2

3223 +  ; 

 (g) ( )2
24 +−x   ;   (h) ( )2

mm −++ �� . 
 
7. Express each of the following with rational denominator and in simplest 

form: 

 (a) 
3

1  ;  (b) 
6

4  ;  (c) 
152
5  ; 

 (d) 
12

1
−

 ; (e) 
25

6
+

 ; (f) 
3223

6
+

 ; 

 (g) 
23
23

−
+  ; (h) 

526
5

−
 ; (i) 

223
32

+
− . 

 
8. Solve each of the following equations, expressing each answer in simplest 

surd form: 
 (a) ( ) 32531232 +=−+− xx  ; (b) ( ) 32222 =−−− xx  ; 

(c) 2
12

21
=

−
+
x

x  ; (d) 3
32

3
=

+
−

x
x . 

 
9. Find the values of the rational numbers a and b for which 

(a) ( )( ) 13253 =−+ ba  ; (b) ( )( ) 43432 =−+ ba . 
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Higher Level 

 
1.4 Irrational Equations 
 
Consider the equation x – 2 = 4. Clearly x = 6 is the only solution. But if we 
square both sides we obtain the equation 
    442 +− xx  =  16  …………… (1) 
   1242 −− xx  =    0 
  (x – 6)(x + 2) =    0 
 Thus x = 6 or x = –2. 
 
But we know that x = –2 is not a solution of our original equation. In fact this 
so-called ‘false solution’ was introduced when we squared both sides of our 
original equation. This comes about because 16)4( 2 =−  just as 1642 = . Thus 
the equation x – 2 = –4 leads, on squaring, to the same equation (1) as before. 
The process of squaring both sides is used in solving irrational equations, i.e., 
equations involving surd expressions. It is therefore always necessary to check 
any solutions obtained. 
 
Example Solve the equation 5529102 +−=+ xx . 
 
 Square both sides:             2x + 10 =  5525521881 +++− xx  
 ⇒            55218 +x  =  126 
 ⇒                552 +x  =  7. 
 Square both sides again:   2x + 55 =  49 
 ⇒  x =  –3. 
 

Check: If x = –3, LHS = 102 +x  = 4  = 2, and 
   RHS = 5529 +− x  = 499 −  = 9 – 7 = 2, which checks. 
   Therefore x = –3 is a solution. 
 

Example Solve the equation  2843 =−−+ xx . 
 

 Transpose one surd:        43 +x  =  x−+ 82 . 
 Square both sides:     3x + 4 =  xx −+−+ 8844  
    ⇒  4x – 8 =  x−84  
    ⇒    x – 2 =  x−8 . 
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 Square both sides again:          442 +− xx  =  8 – x 
         ⇒     432 −− xx  =  0 
         ⇒   (x – 4)(x + 1) =  0. 
  Whence  x = 4  or  x = –1. 
 
Check: 
If x = 4,  xx −−+ 843  = 416 −  = 4 – 2 = 2, which checks. 
If x = –1, xx −−+ 843  = 91 −  = 1 – 3 = –2, which does not check. 
Therefore x = 4, only. 
 
Exercise 1.4 
 
1. Solve each of the following equations, checking carefully all solutions 

obtained: 
 (a) 44 =+x  ;   (b) 723 =−x  ; 
 (c) xx 2123 −=−  ;  (d) xx 21314 −=−  ; 
 (e) 013213 =−−+ xx  ; (f) 01316 =−−− xx . 
 
2. Solve the following equations: 
 (a) 729 22 −=+ xx  ;  (b) 362 2 −=− xxx  ; 

 (c) 4312 2 +=− xx  ;  (d) xx −=+ 112 . 
 
3. Solve the following equations: 
 (a) 8182 =+++ xx  ; (b) 341222 +=++− xxx  ; 
 (c) 5323116 −=−+ xx  ; (d) 2143 =+++ xx  ; 
 (e) 2123 +=+−+ xxx  ; (f) 1345 +=−+ xxx . 
 
 

1.5 Exponents 
 
The rules used to manipulate exponential expressions should already be familiar to 
the reader. These rules may be summarised as follows: 
(1) Product Rule ( )( ) nmnm aaa +=  

(2) Quotient Rule )0( ≠= − aa
a
a nm

n

m

 

(3) Power of a Power Rule ( ) mnnm aa =  
(4) Power of a Product Rule ( ) mmm baab =  
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(5) Power of a Quotient Rule )0( ≠=⎟
⎠
⎞

⎜
⎝
⎛ b

b
a

b
a

m

mm

. 

For the quotient rule to hold when m = n we must agree that 0aa
a
a mm

m

m

== − , 

(a ≠ 0). Then it is natural to define 10 =a   (a ≠ 0). 

Now nn
nn aa

a
a

a
−− === 0

01   (a ≠ 0), which gives meaning to negative exponents. 

 
Rational Exponents 
 

If the product rule for exponents is to hold, then ( )( ) aaaaa === + 12/12/1 2
1

2
1

. But we 
know that ( )( ) aaa =  (a ≥ 0). Thus 2/1a  is a square root of a (provided a ≥ 0). To 
avoid any confusion, take aa =2/1  (a ≥ 0), i.e., 2/1a  is taken to be the positive 
square root of a (a > 0). 
 

More generally, if n is a positive integer, na /1  is defined by nn aa =/1 . 
Note that if n is even, a must be non-negative; if n is odd, a may be any real number. 

Next we define ( ) ( )mnmnnm aaa == /1/  which  exists for all a if n is odd and exists 
for a ≥ 0 if n is even. 
 
Example Evaluate 3/527 . 
 

 ( ) 24332727 5533/5 === . 
 

Example Evaluate 3/4064.0 − . 
 

 ( )
16
625

2
54.0064.0064.0

4
4433/4 =⎟

⎠
⎞

⎜
⎝
⎛=== −−− . 

 
Example Solve the following equations: 
 (a) 321 48 +− = xx  ; (b) 82/3 =a  ; (c) 163/2 =a . 
 

 (a) 321 48 +− = xx  
   Here we may express each side as a power of 2. 
     ( ) x−132  =  ( ) 3222

+x
 

  ⇒   x332 −  =  642 +x  
  ⇒   3 – 3x =  4x + 6 
  ⇒           x  =  3 7− . 
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 (b)       3 2a  =  8 
  ⇒      1 2a  =  3 8   =  2 
  ⇒           a =  4. 
 

 (c)       3/2a  =  16 
  ⇒      3/1a  =  4±  
  ⇒           a =  64± . 
 
Exercise 1.5 
 
1. Express each of the following in simpler form: 
 (a) ( )( )42 aa  ; (b) ( )( )( )243 bbb  ; (c) ( )( )22 −xx  ; 

 (d) 
a

a3

 ; (e) 3

2

a
a  ; (f) ( )( )

( )( )14

23

−−

−−

yx
yx . 

 
2. Write each of the following without brackets or negative exponents: 
 (a) ( )32x  ; (b) ( )32−x  ; (c) ( ) 21 −−x  ; (d) ( )232 yx  ; 

 (e) ( )223 ba−  ; (f) ( )22 yx −  ; (g) 
1

3

2 −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

y
x  ; (h) 

3

3

22
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

y
x . 

 
3. Write each of the following without exponents: 
 (a) 2/34  ;  (b) 4/316  ;  (c) 2/19−  ; 
 (d) 2/304.0 ; (e) 2/301.0 − ; (f) ( ) 2/12x . 
 
4. Solve each of the following equations: 

 (a) 162 1 =−x  ; (b) 
81
13 =x  ; (c) 191 =−x  ; 

 (d) 15 0.008x− = ; (e) 
8
14 =x  ; (f) 25.022 =−x . 

 
5. Solve each of the following equations: 
 (a) 42 =a  ; (b) 273 =a  ; (c) 42/1 −=a  ; 
 (d) 272/3 =a  ; (e) 163/4 =a  ; (f) 25.03/2 =a  ; 

 (g) 3 5 64a =  ; (h) 35 0.04a =  ; (i) 4/3 13
27

a = . 
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Higher Level 

 
6. Solve each of the following equations: 
 (a) 1 25 4 0x x− + =  ;  (b) ( )2 22 4 2 5x x−+ =  ; 

  (c) 9 10(3 ) 9 0x x− + =  ;  (d) ( )4 3 2 12 33 2 1 0x x+ −− + =  ; 

  (e) 4 3 2 39 8 0x x− + =  ;  (f) 3 3 219 216x x+ =  ; 
 (g) 3 2 3 28 27 215x x−− =  ;  (h) 2 3 2 336 36 97x x−+ = . 
  
 
 

1.6 Exponential and Logarithmic Functions 
 
Functions of the form )1,0()( ≠>= aaaxf x , are called exponential functions. 
If 1>a  the graph of xaxf =)(  has the form: 

        
 
 
This is a function with domain ] [,−∞ ∞ , i.e., R, and range ] [0,∞ , i.e., +R . The x-
axis is an asymptote and the y-intercept is 1. 
 
If 10 << a  the graph of the function 

xaxf =)(  has the form: 

     
 x 

 y 
 f (x) = xa  

O 

1 

1 

 y 

x 

xy a=

O 
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This is a function with domain ] [,−∞ ∞ , i.e., R, and range ] [0,∞ , i.e., +R . The x-
axis is an asymptote and the y-intercept is 1. 

The second graph may be obtained from the graph of xby =  where 11
>=

a
b  by 

reflecting in the y-axis. 
 
These functions often occur in nature. 
 

Since the function 1)0or  0( <<>= aaay x  is also one-to-one (no horizontal line 
crosses the graph in more than one place), its inverse is also a function. 
 

The inverse of the function xay =  has an equation yax = . When we make y the 
subject of the formula (i.e., write y as a function of x), we write xy alog= , i.e., y is 
the logarithm of x in base a. The inverses of exponential functions are logarithmic 
functions. 
 
The graph of a logarithmic function is found by reflecting the graph of the 
corresponding exponential function in the line y = x. 
 

 
 

 
 
 

 
 

 y = x 

  y = xa  

 y 

 y  = xa  

0 < a < 1 xy alog=

logay x=

O 

 y 

 a > 1 

 O  x 

 y = x 

 1 

 1 

 1 

 1 
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The domain of xy alog=  is ] [0,∞ , i.e., +R , and the range is ] [,−∞ ∞ , i.e., R. 
 
Each exponential expression has a corresponding logarithmic expression. 
 
The relationship is yxay a

x log=⇔= . 
 
Thus we may write yaay log= , and so the logarithm of any positive number y in base 
a is equal to the exponent needed to express y as a power of a. 
 

For example, 100102 = , and 2100log10 = ;  301.02log10 ≈ , and 210 301.0 ≈ . 
 
Example (a) Write 6443 =  in logarithmic form. 
  (b) Write qpm =log  in exponential form. 
 
 (a) 6443 =  ⇒ 364log 4 = . 
 (b) qpm =log  ⇒ qmp = . 
 
Example Find the numerical value of 3

3 9log . 
 
 Let 3

3 9log=y , then 3
23

33
23/23 9log393 =⇒=⇒== yy . 

 
The Laws of Logarithms 
 
1. The Multiplication Law  nmmn aaa loglog)(log +=  
 
 Proof  If )(logandlog,log mnznymx aaa ===  then xam = , 

yan =  and zamn = . 
  Now yxzaaaamn zyxyx +=⇒=== + . 
  Thus nmmn aaa loglog)(log += , as required. 
 

2. The Division Law  nm
n
m

aaa logloglog −=⎟
⎠
⎞

⎜
⎝
⎛  

 Proof If ⎟
⎠
⎞

⎜
⎝
⎛===

n
mznymx aaa logandlog,log  then xam = , 

yan =  and za
n
m

= . 
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  Now yxzaa
a
a

n
m zyx

y

x

−=⇒=== − . 

  Thus nm
n
m

aaa logloglog −=⎟
⎠
⎞

⎜
⎝
⎛ , as required. 

 
3. The Power Law   ( ) mpm a

p
a loglog =  

 
 Proof If ( )p

aa mzmx logandlog ==  then xam = , zp am = . 

  Now ( ) pxzaaam zpxpxp =⇒=== . 
  Thus ( ) mpm a

p
a loglog = , as required. 

 

4. The Change of Base Law 
a
b

b
c

c
a log

log
log =  

 Proof If bx alog=  then ba x = . 
  Take logarithms in base c of both sides:  ( ) ba c

x
c loglog = . 

  This gives 
a
b

xbax
c

c
cc log

log
loglog =⇒= . 

  Thus 
a
b

b
c

c
a log

log
log = , as required. 

 
Note: The change of base rule is very useful since all logarithmic calculations (even 
using (some) graphics calculators) are performed either in base 10, or in base e 
(e ≈ 2.71828). In this text we will denote x10log  by log x and xelog  by ln x (the 
‘natural’ logarithm of x). The student should be aware that some texts may use log x 
for the natural logarithm of x and not ln x. In any such text, a base-10 logarithm must 
indicate the base, although lg x may sometimes be used. 
 
Example If 23xy = , find a linear expression connecting log x and log y. 
 

 Since 23xy = , then ( ) ( ) xxxy log23loglog3log3loglog 22 +=+== . 
 
Example Write an expression equivalent to log y = 3 – 2log x without using 

logarithms. 
 

 ( ) 22
2 10001000loglog1000loglog23log

x
y

x
xxy =⇒⎟

⎠
⎞

⎜
⎝
⎛=−=−= . 
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Example Write an expression equivalent to log y = 2 + 0.301x without using 
logarithms. 

 
 log y = 2 + 0.301x is equivalent to )301.02(10 xy += , and in fact this answer will 

do. However a ‘neater’ answer can be found as follows: 
 log y = 2 + 0.301x ≈ log 100 + xlog 2 = ( )x2log100log +  = ( )x2)100(log  
 Thus xy 2)100(≈ . 
 
Example Evaluate 50log5 . 
 
 As 50 cannot be expressed as a simple power of 5, a change of base can be 

used here. 

 43.2
5log

50log50log5 == . 

 
Example Solve the equations (a) 5 0.04x =  ; (b) 5 0.4x = . 
 

 (a) Since 0.04 = 1
25

 = 25−  we do not need logarithms. 

   Here 25 5x −=  and so x = –2. 
 
 (b) 0.4 cannot (easily) be written as a power of 5 and so logarithms 

should be used. 

  log0.45 0.4 log5 log0.4 0.569
log5

x x x= ⇒ = ⇒ = = − . 

 
Example Solve the equation 123 32 −= xx . 
 

 Since 123 32 −= xx , then 3xlog 2 = (2x – 1)log 3. 
 Thus                             2log3x  =  3log3log2 −x  
             2log33log2 xx −  =  3log  
            )2log33log2( −x  =  3log . 

 This gives 33.9
2log33log2

3log
=

−
=x . 

 
Growth and Decay 
 
There are many situations encountered in real life in which the exponential function 
provides the most accurate mathematical model. 
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Example The amount, ( ) gramA t , of radioactive material in a sample after t 

years is given by ( )100( ) 80 2 tA t −= . 
 (a) Find the amount of material in the original sample. 
 (b) Calculate the half-life of the material. [The half-life is the 

time taken for half of the original material to decay.] 
 (c) Calculate the time taken for the material to decay to 1 gram. 
 
 (a) The original amount of material present is 
   A(0)  =  ( )080 2   = 80 gram. 
 
 (b) For the half-life, A(t) = 40. 
  ⇒ 40 =  ( )10080 2 t−  

  ⇒ 1
2

 =  1002 t−  

  ⇒  2 =  1002t  
  ⇒ 100

t  =  1 
  ⇒   t =  100. 
  Therefore the half-life is 100 years. 
 

 (c) ( )A t   =  1 ⇒   ( )10080 2 t−  =  1 

    ⇒         1002 t−  =  1
80  

    ⇒          1002t  =  80 
    ⇒      100 log 2t  =  log80  

    ⇒       t  =  100log80
log 2

  =  632. 

  Therefore it will take 632 years for the material to decay to 1 gram. 
 
 

Higher Level 
 
The Empirical Determination of Formulae 
 
Example Values of two related quantities are measured in the laboratory. 

The collected data is given in the following table: 
 
    x 0.8 2.4 3.8 5.2 8.5 
    y 78 8.7 3.5 1.8 0.69 
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 Draw the graph of the values of log y against those of log x, and use this 

graph to find a relationship between x and y which does not use logarithms. 
 
  From the data found in the laboratory, we obtain the following table of 

corresponding values of log x and log y: 
 
  log x –0.10 0.38 0.58 0.72   0.93 
  log y   1.89 0.94 0.54 0.26 –0.16 
 
  The graph of log y against log x is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 Since the graph of log y against log x is a straight line, log y and log x can 

be connected by a relationship of the form 
 
    log y = m log x + c 
 
 where m is the gradient and c is the vertical axis intercept. 

 From the graph 2
03.1

05.2
93.010.0

16.089.1
−≈

−
=

−−
+

=m  and c = 1.7. 

 Therefore ( ) ⎟
⎠
⎞

⎜
⎝
⎛=+≈+−= −

2
2 50log50loglog7.1log2log

x
xxy . 

 Thus the required relationship is 2
50
x

y = . 

 
 
 
 
 
 
 

log y 

log x 
O 1.2 0.2 0.6 

1.0 

2.0 
1.7 
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Exercise 1.6 
 
1. Write each of the following in logarithmic form: 

 (a) 932 =  ; (b) 
4
12 2 =−  ; (c) 3qp =  ; 

 (d) y
x

=⎟
⎠
⎞

⎜
⎝
⎛

2
1  ; (e) �=3k  ; (f) qp =−5 . 

 
2. Write each of the following in exponential form: 

 (a) 481log3 =  ; (b) 1
2
1log 2 −=⎟

⎠
⎞

⎜
⎝
⎛  ; (c) 2log −=qp  ; 

 (d) ut =5log  ; (e) zy =2/1log  ; (f) dcb =log . 
 
3. Find the numerical value of each of the following: 
 (a) 32log2  ; (b) 8log 4  ; (c) 7log6  ; 
 (d) 125log5  ; (e) 008.0log5  ; (f) 10log9 . 
 
4. Find a linear expression connecting log x and log y in each of the following: 
 (a) 37xy =  ; (b) 210 −= xy  ; (c) taxy = . 
 
5. Find a relationship between x and y which does not use logarithms in each of 

the following: 

 (a) xy log32loglog +=  ; (b) xy log
2
15loglog −=  ; 

 (c) xy log32log +=  ; (d) xy log
4
1699.0log += . 

 
6. Solve each of the following equations: 
 (a) 36 =x  ; (b) 5.08 =x  ; (c) 19 2 =−x  ; 
 (d) 43.0 =x  ; (e) 242 53 −+ = xx  ; (f) 125.016 21 =− x . 
 
7. The amount, A(t) gram, of radioactive material in a sample after t years is 

given by the following formulae. In each case find the time taken for half of 
the material to decay (i.e., find the half-life). 

 (a) 10( ) 250 2 tA t −= ×  ;  (b) 20( ) 50 10 tA t −= ×  ; 
 (c) 25( ) (0) 5 tA t A −= ×  ;  (d) 2 75( ) (0) e tA t A −= × . 
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8. The weight, W(t) gram, of bacteria in a certain culture t hours after it was 
established is given by 10( ) 0.10 etW t = × . Find the time taken for the amount 
of bacteria to double. 

 
9. The speed, V(t), of a certain chemical reaction at t oC is given by 

30( ) (0) 5tV t V= × . At what temperature will the speed of reaction be twice 
that at 0oC? 

 
10. The number, N(t), of bacteria present in a culture t minutes after it is 

established is given by 100( ) 500etN t = . Find the time taken for the number of 
bacteria in the culture to double. 

 
11. The population of a city, P(n), n years after the population was p is given by 

( )30( ) enP n p= . Find 
 (a) the time taken for the population to double ; 
 (b) the time taken for the population to reach 1 million from an original 

population of 10 000. 
 
12. If W0 gram of radioactive substance decays to W(t) gram in t years and k is the 

half-life of the material, then it is known that 0( ) 2 t kW t W −= × . Find the half-
life of the substance, 50 gram of which decays to 49 gram in ten years. 

 

13. The speed, S(t) 1m s− , at which a man falls t seconds after jumping from a 

plane is given by ( )0.3( ) 48 1 2 tS t −= − .  After how long is the man falling at 

 (a) 124 m s−  ; (b) 130 m s−  ; (c) 145 m s− ? 
 

 
Higher Level 

 
14. The temperature of hot coffee in a container, T(t) oC, t minutes after it is 

placed in a room whose ambient temperature is AoC, is given by 
( ) e t kT t A B −= + . Five minutes after the coffee with an initial temperature 

of 100oC is placed in a room, the temperature of the coffee is 60oC and five 
minutes after that the temperature is 40oC. 

 (a) Find A, B and k. 
 (b) Find the time taken for the temperature of the coffee to reach 30oC. 
 (c) Find the temperature of the coffee 20 minutes after the coffee was 

placed in the room. 
 (d) Find the time taken for the coffee to reach a temperature which is 

within 1oC of the ambient room temperature. 
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15. The times of oscillation for simple pendulums of various lengths were 

found by experiment, and the following results obtained: 
 
 Length (  cm� )   100   80   65   49   30   20   10 
 Time (t s)   2.00 1.79 1.61 1.40 1.10 0.89 0.63 
 
 Draw a graph of log t against log �  and find a formula connecting t and �  

which does not contain logarithms. 
 
16. If a given mass of gas is compressed, or expanded, suddenly, Boyle’s Law 

(pV = constant) does not hold. The following table shows how pressure and 
volume were connected in such a case: 

 
   V 100 80 60 40   20 
   p   14 19.1 28.6 50.5 133 
 
 Draw the graph of log p against log V to find the formula which holds in 

this case. 
 
17. Values of x and corresponding values of y are given in the following table: 
 
  x   2   4   6   8   10 
  y 18.4 42.2 68.7 97.0 127 
 
 By drawing the graph of log y  against log x, show that ny kx=  where k 

and n are real numbers. Use your graph to find the values of k and n. 
 
18. Two variables x and y are thought to satisfy a relationship of the form 

( )xy A b−=  where A and b are constants. Some values of x and the 
corresponding values of y are found by experiment, and are given in the 
following table. 

 
   x     1   2   3 4 5 6 
   y 184 67.7 24.9 9.16 3.37 1.24 
 By plotting a graph of log y against x, confirm the suspected relationship 

and find the values of A and b. 
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Required Outcomes 

 
After completing this chapter, a student should be able to 
• convert a repeating decimal to rational form. 
• solve inequalities which can be reduced to linear form, including those 

involving the modulus function. 
• simplify expressions containing surds. 
• solve irrational equations which simplify to linear or quadratic form. (HL) 
• solve simple exponential equations.  
• convert a number from logarithmic form to exponential form. 
• change the base of any logarithm. 
• determine the relationship between two variables from a graph. (HL) 
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2.1 The General Form of the Equation of a Straight Line 
 
Whenever A, B and C are constants with A and B not both zero, the graph of the 
equation Ax + By + C = 0 is a straight line. 
 
This form of the equation of a straight line is called the general form. 
 

Now By = –Ax – C  and so  )0( ≠−−= B
B
Cx

B
Ay . 

This equation is now in the form y = mx + b (called the slope-intercept form), and so 

we see that the gradient of the line Ax + By + C = 0 is 
y
x

B
A

 oft coefficien
 oft coefficien

−=− . 

We are able to use this information to enable us to write down the equation of any 
straight line in its general form once we know its gradient and any point on it. 
 
Example Find the equation of the straight line which passes through the point 

(2, –3) and has gradient 3
1− . 

 

 Since the gradient is 3
1−  we may choose A = 1 and B = 3, and so the equation 

of the line is x + 3y + C = 0. 
 But the point (2, –3) lies on the line and so x + 3y = 2 + 3(–3) = –7. 
 Thus the required equation is x + 3y = –7  or  x + 3y + 7 = 0. 
 
Note: With practice, all the required steps can be carried out at once. 
 

Example Write down the equation of the straight line with gradient 2
3−  and 

passing through the point (4, 1). 
 
 The required equation is 3x + 2y = 14. (3 × 4 + 2 × 1 = 14) 
 
Example Find the equation of the straight line passing through A(–2, 5) and 

B(4, 17). 
 

 The gradient of (AB) = 
24
517

+
−  = 2. (Let A = 2 and B = –1.) 

 The equation is 2x – y = –9.  (2×–2 – 5 = –9  or  2×4 – 17 = –9) 
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Exercise 2.1 
 
1. Write down the gradient of each of the following straight lines: 
 (a) 5x + 4y + 3 = 0 ;  (b) 3x + y = 10 ; 
 (c) 4x – 3y + 2 = 0 ;  (d) 3x + 5 = 2y ; 
 (e) 3y = 6x – 5 ;   (f) 11x + 5y = 9 ; 
 (g) 5x – 7y + 35 = 0 ;  (h) 9y + 5x = 27 ; 
 (i) y = 7 – 3x ;   (j) 5x + 8 = 0 ; 
 (k) 7 – 8y = 0 ;   (l) 3(x – 2) + 7(2 – y) = 21. 
 
2. Write down the equation of the straight line passing through the given point 

and with the given gradient in each of the following: 
 (a) (4, 3), 4

3−  ; (b) (5, –2), –3 ; (c) (–2, –3), 2
1  ; 

 (d) (7, –1), 4 ; (e) (0, 0), 2
14  ; (f) (6, –6), 3

13− . 
 
3. Find the equation of the straight line passing through each of the following 

pairs of points: 
 (a) (2, 1), (5, 3) ; (b) (–1, –4), (7, 4) ; (c) (4, 0), (0, 3) ; 
 (d) (–2, 3), (–2, –7) ; (e) (–4, 1), (5, 1) ; (f) (a, b), (b, a), a ≠ b. 
 
4. Find the equation of the line through the given point and parallel to the given 

line in each of the following: 
 (a) (6, 2), 4x – 3y = 0 ; (b) (–2, 3), 2x + 5y = 10 ; 
 (c) (–3, –4), 7x + 3y = 0 ; (d) (4, –5), y = 5 – 4x. 
 
5. Find the equation of the line through the given point and perpendicular to the 

given line in each of the following: 
 (a) (3, 2), 2x + 3y = 7 ; (b) (–1, –3), y = 3x + 5 ; 
 (c) (0, –3), 5x – 4y = 20 ; (d) (7, 2), 5y – 3x = 2. 
 
6. Find the coordinates of the point of intersection of the lines (AB) and (CD) 

where A = (7, –2), B = (0, 4), C = (5, 7) and D = ( –9, –2). 
 
7. Find the coordinates of the orthocentre of the triangle ABC in which 

A = (0, 4), B = (2, 9) and C = (6, 3). 
 [The orthocentre of a triangle is the point of intersection of the three 

altitudes.] 
 
8. Find the coordinates of the circumcentre of the triangle ABC in which 

A = (1, 0), B = (5, 0) and C = (3, 4). 
 [The circumcentre of a triangle is the point of intersection of the three 

perpendicular bisectors of the sides.] 
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9. Find the coordinates of the centroid of the triangle ABC in which 
A = )3,6( −− , B = (3, –7) and C = (0, 6). 

 [The centroid of a triangle is the point of intersection of the three medians – 
the lines joining each vertex to the mid-point of the opposite side.] 

 
10. The triangle ABC has vertices A(1, –1), B(1, 3) and C(5, 7). Determine the 

coordinates of the orthocentre, the circumcentre and the centroid of the 
triangle, and show that these points are collinear. [In fact the orthocentre, 
circumcentre and centroid of every triangle are collinear.] 

 
Higher Level 

 
2.2 The Distance of a Point from a Line 
 
Consider the point ),(P 11 yx  which does not lie on the straight line with 
equation Ax + By + C = 0 (A, B not both zero). Let Q(x, y) be that point on the 
line which is closest to P, and let the length of the line segment [PQ] be d. 
 
Theorem The shortest distance from the point ),(P 11 yx  to the straight line 

Ax + By + C = 0 is given by 1 1

2 2

Ax By C
d

A B

+ +
=

+
. 

Proof 
 
 
 
 
 
 
 
 
 
 

  The gradient of the given line is 
B
A

− , and so the gradient of (PQ) is 
A
B . 

  Thus 
A
B

xx
yy

=
−
−

1

1 . 

  Let Akxx =− 1  and Bkyy =− 1  for some real number k.    ……….(*) 
  Now           2d  =  2

1
2

1 )()( yyxx −+−  
   =  2222 kBkA +  
   =  ( )222 BAk + . 

  Thus            d =  22 BAk + . 

Ax + By + C = 0 

),(P 11 yx

Q(x, y) 

d 

x 

 y 

O 
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From (*), Akxx += 1  and Bkyy += 1 , and Q(x, y) lies on Ax + By + C = 0. 

Hence 0)()( 11 =++++ CBkyBAkxA  giving 22
11 )(

BA
CByAx

k
+

++−
= . 

Therefore   1 1 1 12 2
2 2 2 2

( )Ax By C Ax By C
d A B

A B A B

− + + + +
= + =

+ +
. 

 
Example Find the shortest distance from the point (–3, 4) to the straight line 

3x + y = 5. 
 

 The required distance is  10
10

10

13

54)3(3
22

==
+

−+−
. 

 
Example Find the area of the triangle ABC in which A = (1, 2), B = (7, 5) 

and C = (2, 11). 
 

  The gradient of (AB) = 
2
1

17
25

=
−
− , and so its 

equation is x – 2y = –3. The altitude from C 
to (AB) is the shortest distance from C to 

(AB) with length h = 
5

17

21

3222
22

=
+

+−
. 

   Also AB = 5336 22 =+ , and the area of 

ΔABC = h×AB2
1  = 

5
17532

1 ××  = 2
125 . 

 
Example Find the value of p if the shortest distance from the point (2, –1) to 

the straight line px + 4y = 12 is 2. 
 

 The distance from (2, –1) to px + 4y = 12 is 2
16

1242
2

=
+

−−

p

p
. 

 Therefore 162162 2 +=− pp  so that 168 2 +=− pp . 

 Squaring both sides gives 166416 22 +=+− ppp  or  p = 3. 
 
Example Find the equations of the two bisectors of the angles between the 

lines x + y = 5 and x – 7y + 11 = 0. 
 
 

A 

B 

C 
 y 

x 5 O 

D 

h 
5 

10
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 If P(x, y) lies on a bisector of an angle between the given lines, then P is 

equidistant from these lines. 

 Thus 
25

117

2

5 +−
=

−+ yxyx
  ⇒  11755 +−=−+ yxyx . 

 This gives 5(x + y – 5) = ±(x – 7y + 11) or x + 3y = 9 and 3x – y = 7 which 
are the required bisectors. 

 
Exercise 2.2 
 
1. Find the shortest distance from the origin to each of the following lines: 
 (a) 3x + 4y = 15 ; (b) 5x – 12y = 26 ; (c) 8x + 15y + 34 = 0 ; 
 (d) x + 2y = 5 ; (e) y = 2x + 10 ; (f) y = 5 – 3x. 
 
2. In each of the following, find the shortest distance from the given point to 

the given line: 
 (a) (3, 1), 2x – 3y = 16 ;  (b) (3, 2), x + 2y = 27 ; 
 (c) (1, –2), 3x + 4y = 5 ;  (d) (–3, –4), x – 4y = 3 ; 
 (e) (2, 6), 2x – 5y = 3 ;  (f) (–3, 2), 6x – 2y + 11 = 0 ; 
 (g) (7, –2), x + 5 = 0 ;  (h) (3, –5), y = 3x + 2 ; 
 (i) (a, b), lx + my + n = 0 ;  (j) (p, q), qx + py = pq. 
 
3. Find the distance between each of the following pairs of parallel lines: 
 (a) 3x + 5y = 1, 3x + 5y + 9 = 0 ; (b) 7x – 3y = 5, 7x – 3y = 12 ; 
 (c) 3x – 4y = 3, 3x – 4y + 12 = 0 ; (d) 2x + 2y = 9, x + y + 9 = 0 ; 
 (e) 7x – y = 6, y = 7x – 31 ; (f) x – 2y = 10, 2x – 4y + 1 = 0. 
 
4. Show that the lines 4x – 3y = 15, 12x + 5y + 39 = 0 and x = –3 are 

equidistant from the origin. 
 
5. Calculate the area of the triangle 
 (a) with vertices (0, 0), (5, 6) and (–3, 5) ; 
 (b) with vertices (5, 4), (3, –2) and (7, 1) ; 
 (c) with vertices (–2, 3), (–3, –2) and (7, –4) ; 
 (d) whose sides have equations 2y + 3 = 0, 2y + x = 4 and 3y – x = 1 ; 
 (e) whose sides have equations y = x + 3, 8x + y = 39 and x + 2y = 3. 
 
6. Find the distance, r, of (–3, 7) from the line 3x + 4y = 9, and then find the 

coordinates of the two points on the y-axis which are r units from 
3x + 4y = 9. 

 
7. Find the value of k if the straight line 2x – 3y = k is a tangent to the circle 

of radius 5 and centre (3, –1). 
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8. Find the value of p for which the shortest distance from the point (2, –1) to 

the straight line px + y = 5 is 2. 
 
9. Find the values of p for which the line px + y = 9 is a tangent to the circle 

with centre (3, –2) and radius 5 . 
 
10. Find the equations of the bisectors of the angles between lines y = 8x – 7 

and 4x + 7y = 11. 
 
*11. The equation of the side AB of the triangle ABC is x + y = 8, that of side 

AC is x – y = –4, and that of BC is 7x + y = 44. 
 
 (a) Write down three inequalities in x and y if P(x, y) lies inside the 

triangle ABC. 
 
 (b) Find the equations of the interior bisectors of the angles A and B of 

the triangle. 
 
 (c) Find the coordinates of the incentre of the triangle. 
  [The incentre of a triangle is the point of intersection of the interior 

bisectors of the angles of the triangle.] 
 

 
 
2.3 The General Quadratic Function 
 
The function f : cbxaxx ++2�  where a, b and c are constants and a ≠ 0 is a 
quadratic function. The graph of such a function is always a parabola. The turning 
point of the graph of a quadratic is called its vertex, and the vertical line through the 
vertex is called the axis of the parabola. 
 
Completing the Square 
 
An algebraic process which proves to be very useful in discussions of quadratic 
functions is called "completing the square". The process involves writing the 
expression 2ax bx c+ +  in the form 2( )a x h k− + . The procedure uses the fact that 
the square of the binomial x p+ , i.e., 2( )x p+ , is equal to 2 22x px p+ +  where the 
constant term, 2p , is found by halving the coefficient of x and squaring the result 
thus "completing the square". The following examples illustrate the method. 
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Example Find the values of h and k for which 2 24 5 ( )x x x h k+ − = − +  for all 
values of x. 

 

 2 4 5x x+ −  =  2 4x x+ +  – 5 [leaving a temporary space for a constant 
to be added so that the first 3 terms form a 
perfect square] 

  =  2 4 4 5 4x x+ + − −  [ 2 24 4 ( 2)x x x+ + = + ] 
  =  2( 2) 9x + −  
  ⇒  h = –2 and k = –9.          
 

Example Find the values of h and k for which 2 22 3 1 2( )x x x h k− + = − + . 
 

 22 3 1x x− +  =  2 3
22( ) 1x x− + +   [preparing to complete the square] 

  =  ( )2 2 23 3 3
2 4 42 ( ) 1 2( )x x− + + −  

  =  ( )23 1
4 82 x − − . 

 Therefore h = 3
4  and k = 1

8− . 
 

Example Complete the square for the quadratic 21
26 x x− − . 

 

 21
26 x x− −  =  21

2 ( 2 ) 6x x− + + +  

  =  21 1
2 2( 2 1) 6x x− + + + +  

  =  21 1
2 2( 1) 6x− + + . 

 
The Coordinates of the Vertex and the Equation of the Axis 
 
Consider      y =  )(xf  
  = cbxax ++2    (a ≠ 0) 

  =  cx
a
bxa +⎟

⎠
⎞

⎜
⎝
⎛ +2   {Preparing to complete the square.} 

  =  
a

bc
a

bx
a
bxa

44

2

2

2
2 −+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++  

  =  
a

bac
a

bxa
4

4
2

22 −
+⎟

⎠
⎞

⎜
⎝
⎛ +  

  =  
aa

bxa
42

2 Δ
−⎟

⎠
⎞

⎜
⎝
⎛ +     where Δ = acb 42 − . 

  [Δ is called the discriminant of the quadratic.] 
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If a > 0, 0
2

2

≥⎟
⎠
⎞

⎜
⎝
⎛ +

a
bxa  and so 

a
y

4
Δ

−≥  with equality when 
a

bx
2

−= . 

Then the graph of cbxaxy ++= 2  will open at the top, and its vertex will have 

coordinates ⎟
⎠
⎞

⎜
⎝
⎛ Δ

−−
aa

b
4

,
2

. The equation of the axis of symmetry will be 
a

bx
2

−= . 

 
In this case the graph will be of the form: 
 

 
 
 

If a < 0, 0
2

2

≤⎟
⎠
⎞

⎜
⎝
⎛ +

a
bxa  and so 

a
y

4
Δ

−≤  with equality when 
a

bx
2

−= . 

Then the graph of cbxaxy ++= 2  will open at the bottom, and its vertex will have 

coordinates ⎟
⎠
⎞

⎜
⎝
⎛ Δ

−−
aa

b
4

,
2

. The axis of symmetry will again be 
a

bx
2

−= . 

 
In this case the graph will be of the form: 
 

   
 
 

a
bx

2
−=

a
y

4
Δ

−=

a
bx
2

−=

4
y

a
Δ

= −
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Example Find the coordinates of the vertex of the graph of 532 2 −+= xxy  
and the equation of its axis of symmetry. 

 
 Method 1 (Completing the square.) 
            y =  532 2 −+ xx  
     =  ( ) 52 2

32 −+ xx  

     =  ( ) 8
9

16
9

2
32 52 −−++ xx  

     =  ( ) 8
492

4
32 −+x  

    The vertex is ( )8
49

4
3 , −− , and the axis is 4

3−=x . 
 
 Method 2 The x-coordinate of the vertex is 4

3
2 −=− a
b , and the y-

coordinate of the vertex is ( ) ( ) 8
49

4
32

4
3 532 −=−−+− . 

   The results are the same as with method 1. 
 
 Method 3 4

3
2 −=− a
b , and 49)5)(2(4942 =−−=−=Δ acb . 

  The vertex is ( ) ( )8
49

4
3

42 ,, −−=−− Δ
aa

b  giving the same results 
as in the previous methods. 

 
 Method 4 A graphic display calculator may be used to find the min-

imum value of 532 2 −+= xxy . The coordinates of the 
vertex obtained are (–0.75, –6.125) which give the same 
results as with all the previous methods. 

 
Example The sum of two numbers is 10. What is the least value of half the 

sum of their squares? 
 
 Let the numbers be x and 10 – x. Then half the sum of their squares is given 

by S = [ ]22
2
1 )10( xx −+  

   = [ ]22
2
1 20100 xxx +−+  

   = 50102 +− xx  
   = 25)5( 2 +−x . 
 
 Thus the least value of half the sum of the squares of the two numbers is 25. 
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Sketching Graphs of Quadratic Functions 
 
A graphic display calculator can clearly be used to determine the graph of a quadratic 
function. However students should be able to use simple algebraic techniques which 
are not only easy to perform but are more informative. 
 
The graph of a quadratic function can be sketched by drawing the axis of symmetry, 
plotting the vertex and y-intercept, and then using the symmetry property. If the x-
intercepts can also be found by factorising the quadratic, the task is made even easier. 
 
Example Sketch the graph of the quadratic 322 −+= xxy . 
 
 The x-coordinate of the vertex is 12 −=− a

b . 

The y-coordinate of the vertex is ( ) 4321 2 −=−−− . 
The axis is 1−=x  and the y-intercept is at (0, –3) which has an image of 

)3,2( −−  under reflection in the axis. 
Since )1)(3(322 −+=−+ xxxx , the x-intercepts are –3 and 1. 
The graph is as follows: 
 
 

 
  

 
Example Sketch the graph of 2223 xxy −−= . 
 
 y = 2223 xx −−  
  = 3)(2 2 ++− xx  
  = 2

1
4
12 3)(2 ++++− xx  

  = 2
12

2
1 3)(2 ++− x . 

 
 The vertex is )3,( 2

1
2
1− ; the axis is 2

1−=x ; the y-intercept is 3. 

 y 

x 

(–1, –4) •

2 2 3y x x= + −

1 –3 O 

–3 (–2, –3) •
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 The graph is as follows: 
 

 
 
Exercise 2.3 
 
1. For the graph of each of the following functions find the coordinates of the 

vertex and the equation of the axis by "completing the square": 
 (a) 322 −+= xxy  ;  (b) 342 +−= xxy  ; 
 (c) 222 xxy −−=  ;  (d) 245 xxy −+=  ; 
 (e) 42 −+= xxy  ;   (f) 232 +−= xxy  ; 
 (g) 25 xxy −=  ;   (h) 233 xxy −−=  ; 
 (i) 433 2 −−= xxy  ;  (j) 2326 xxy −−= . 
 
2. Sketch the graph of each of the following functions: 
 (a) 862 +−= xxy  ;  (b) 22 xxy −−=  ; 
 (c) 342 2 ++= xxy  ;  (d) 2243 xxy −−=  ; 
 (e) 123 2 −+−= xxy  ;  (f) 22

2
1 −+= xxy  ; 

 (g) 122
3
1 +−= xxy  ;  (h) xxy +−= 2

2
1  ; 

 (i) 12 2
12 −+= xxy  ;  (j) 22

3
1 +−−= xxy . 

 
3. The perimeter of a rectangle is 36 cm. What is its greatest possible area? 
 
4. The square of a number is subtracted from the number. What is the maximum 

value of the result? 
 
5. One hundred metres of fencing is used to form 3 sides of a rectangular 

enclosure with the wall of a shed providing the fourth side. Find the largest 
area that the enclosure may have. 

 
6. A farmer has 2 km of fencing with which he wishes to enclose a rectangular 

field. What is the largest number of hectares he can enclose?  

 y 

x 

23 2 2y x x= − −

1 1
2 2( , 3 )−

•

–2 –1 1 

3 

O 
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2.4 The General Solution to a Quadratic Equation 
 

Consider the equation cbxax ++2 = 0    (a ≠ 0). 

Then x
a
bx +2  = 

a
c

−  

 2

2
2

4a
bx

a
bx ++  = 2

2

4a
b

a
c

+−  

 
2

2
⎟
⎠
⎞

⎜
⎝
⎛ +

a
bx  = 2

2

4
4

a
acb −  = 24a

Δ . 

Thus 
a

bx
2

+  = 
a2
Δ

±  

and  x = 
a

b
2

Δ±−   where  acb 42 −=Δ . 

 

This is called the general solution of the quadratic equation 02 =++ cbxax . 
 
Example Solve the equations (a) 0232 2 =−− xx  ; 
     (b) 0132 2 =−− xx . 
 
 (a) Since the quadratic is easily factorised we do not need the general 

solution. 
  232 2 −− xx  =  (2x + 1)(x – 2)  =  0 when x = 2

1−  or x = 2. 
 
  Note that the general solution may be used. 
  Here a = 2, b = –3, c = –2 and so 25169 =+=Δ . 

  Therefore the solution is 2
1or  2

4
53

4
253

−=
±

=
±

=x . 

 
  A graphic display calculator may also be used. 
 
 (b) This quadratic does not factorise easily so we use the general 

solution. Here  a = 2, b = –3, c = –1 and so 1789 =+=Δ . 

  Therefore the solution is 
4

173 ±
=x . 

 
When solving quadratic equations without the use of a graphic display calculator look 
to see if the given quadratic can be easily factorised. If so, factorise it and solve. If 
not, use the general solution. 
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Exercise 2.4 
 
1. Solve each of the following equations by 
 (1) factorising the given quadratic ; (2) using the general solution. 
 (a) 0652 =++ xx  ;  (b) 01272 =++ xx  ; 
 (c) 02092 =++ xx  ;  (d) 01072 =+− xx  ; 
 (e) 0562 =+− xx  ;  (f) 022 =−+ xx  ; 
 (g) 01452 =−+ xx  ;  (h) 02142 =−+ xx  ; 
 (i) 01032 =−− xx  ;  (j) 022 =−− xx . 
 
2. Solve the following equations: 
 (a) 0384 2 =++ xx  ;  (b) 0276 2 =++ xx  ; 
 (c) 0372 2 =+− xx  ;  (d) 08143 2 =+− xx  ; 
 (e) 0222 =−− xx  ;  (f) 0132 2 =−− xx  ; 
 (g) 0656 2 =−+ xx  ;  (h) 025 2 =−− xx  ; 
 (i) 01076 2 =−+ xx  ;  (j) 04215 2 =+− xx . 
 
3. Solve the following equations: 
 (a) 092 =− xx  ;   (b) 254 2 =x  ; 
 (c) 0462 2 =++ xx  ;  (d) 09123 2 =++ xx  ; 
 (e) 0132 2 =+− xx  ;  (f) 020102 =+− xx  ; 
 (g) 015 2 =−− xx  ;  (h) 0132 2 =−− xx  ; 
 (i) 062 2 =−− xx  ;  (j) 02918 2 =−− xx . 
 
4. By substituting y x= , or otherwise, solve the equations 
 (a) 5 6 0x x− + =  ; (b) 2 3 2 0x x+ − =  . 

 
 

Higher Level 
 

5. Solve the following equations: 
 (a) 4 24 13 9 0x x− + =  ; (b) 4 23 14 8 0x x− + =  ; 
 (c) 6 38 7 1 0x x+ − =  ; (d) 1 23 4 0x x− − =  ; 

 (e) 2 3 1 3 6 0x x+ − =  ; (f) ( ) ( )22 23 12 3 20 0x x x x− − − + = . 
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2.5 The Roots of a Quadratic Equation 
 
We have already seen that the roots of the quadratic equation 02 =++ cbxax  (a ≠ 0) 

are given by 
a

acbbx
2

42 −±−
= . 

We define the discriminant Δ to be acb 42 −=Δ . 

If 0>Δ  the equation has two distinct real roots given by 
a

bx
2

Δ+−
=  and 

a
bx

2
Δ−−

= . 

 
If Δ = 0  the equation has only one real root (or two coincident roots) given by 

a
bx
2

−= . 

 
If 0<Δ  the equation has no real root since a negative real number cannot have a real 
square root. 
 
Geometrically the graph of cbxaxy ++= 2  (a ≠ 0) meets the x-axis 
(1) in two distinct points if 0>Δ  ; 
(2) in exactly one point if Δ = 0 ; 
(3) in no point at all if 0<Δ . 
 
If 0>>a  we have: 
 
 

 
 
 
 
 
 

0>Δ 0=Δ 0<Δ  

x 

 y  y  y 

x 
x 

O 

O 
O 
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If 0<a  we have: 
 
 

 
 
If 0>a  and 0<Δ , the graph of cbxaxy ++= 2  lies entirely above the x-axis. In 
this case the quadratic cbxax ++2  is said to be positive definite. 
 

If 0<a  and 0<Δ , the graph of cbxaxy ++= 2  lies entirely below the x-axis. In 
this case the quadratic cbxax ++2  is said to be negative definite. 
 
Example Find the number of real roots that each of the following equations 

possesses:     (a)    0452 2 =−+ xx  ;     (b)    0452 2 =++ xx . 
 

 (a) The quadratic 452 2 −+ xx  has discriminant 
057)4)(2(452 >=−−=Δ . 

Thus the given equation has two real (distinct) roots. 
 
 (b) The quadratic 452 2 ++ xx  has discriminant 03225 <−=Δ . 
  Thus the given equation has no real roots. 
 
Example Show that the quadratic 12 2 +−= xxy  is positive definite and find 

the minimum value of y. 
 
 The discriminant of the given quadratic is 07)1)(2(4)1( 2 <−=−−=Δ  and 

02 >=a . Therefore the quadratic is positive definite. 
 
 To find the minimum value of y we may use a graphic display calculator or 

use any one of several algebraic methods as follows: 
 
 
 

x 

 y 

0>Δ 0=Δ 0<Δ

 y 

x 

 y 

x 

O 

O 
O 
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 Method 1 y = 12 2 +− xx  
   = ( )( ) ( ) 122 2

4
12

4
1

2
12 +−+− xx  

   = ( ) 8
72

4
12 +−x . 

  Minimum y = 8
7 . 

 

 Method 2 The x-coordinate of the vertex = 4
1

2 =− a
b  and so the y-

coordinate of the vertex = ( ) 8
7

4
12

4
1 12 =+− . 

  Minimum y = 8
7 . 

 

 Method 3 The y-coordinate of the vertex = 8
7

4 =− Δ
a . 

  Minimum y = 8
7 . 

 

Example Find the values of k for which the equation 2 ( 1) 1 0x k x+ + + =  has: 
 (a) two distinct real roots ; 
 (b) no real roots. 
 

 Δ =  2( 1) 4k + −  
  =  2 2 3k k+ −  
  =  ( 3)( 1)k k+ −  
  =  0 when k = –3 or k = 1. 
 
 
 
 (a) For two distinct real roots Δ > 0 and so k > 1  or  k < –3. 
 
 (b) For no real roots Δ < 0 and so –3 < k < 1. 
 
 

Higher Level 
 

Example Show that 
543

22
2 +− xx

 is positive for all real values of x and find 

its greatest value. 
 
 The discriminant of the quadratic 543 2 +− xx  is 0446016 <−=−=Δ  

and since a = 3 > 0, the quadratic is positive definite. 

 Hence 
543

22
2 +− xx

 is positive for all real values of x as required. 

 

–3 1 
+ – + sign of Δ 
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 Now 543 2 +− xx  has a minimum value of 
3

11
4

=
Δ

−
a

 and so 

543
22

2 +− xx
 has a maximum value of 6

311
22

= . 

 
 
 
Exercise 2.5 
 
1. In each of the following find the value of the discriminant and so decide 

whether the equation has one, two or no real solutions. If the equation has any 
real solutions, find them. 

 (a) 0532 =−+ xx  ;  (b) 042 2 =−− xx  ; 
 (c) 0322 2 =+− xx  ;  (d) 0223 2 =−+ xx  ; 
 (e) 09124 2 =+− xx  ;  (f) 03165 2 =++ xx  ; 
 (g) 0263 2 =++ xx  ;  (h) 0253 2 =++ xx  ; 
 (i) 042025 2 =+− xx  ;  (j) 0376 2 =+− xx . 
 
2. In each of the following, find the values of k for which the equation has only 

one real root: 
 (a) 23 4 0x x k− + =  ;  (b) 2 1 0x kx+ + =  ; 
 (c) 2 ( 3) 0x kx k+ + + =  ;  (d) 022 2 =++ kxkx  ; 
 (e) 2 ( 1) 1 0kx k x+ + + =  ;  (f) 2 12 ( 9) 0kx x k+ + + = . 
 
3. Show that the values of the following functions have the same sign for all real 

values of x: 
 (a) 12 ++ xx  ; (b) 222 +− xx  ; (c) 14 2 +− xx  ; 
 (d) 22 2 −− xx  ; (e) 634 2 −− xx  ; (f) 245 2 −− xx . 
 
4. Prove that of all rectangles with a given perimeter, the square has the largest 

area. 
 
5. Triangle ABC is right-angled at B. The lengths of AB and BC are 4 cm and 

7 cm respectively. The points P, Q and R lie on AB, AC and BC respectively 
such that PQRB is a rectangle. If BR = x cm, show that the area of the 
rectangle PQRB is 22

7
4 cm)4( xx − . Hence find the positions of P, Q and R 

for which this area is a maximum. What is the maximum area? 
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6. A piece of wire 1 m long is cut into two pieces. If one piece is bent to form a 
circle and the other piece bent to form a square, find the maximum and 
minimum values of the sum of the areas of the circle and square. 

 
7. A farmer wishes to use an existing fence as one side of a rectangular 

enclosure and has 1.2 km of fencing to use for the other three sides. What is 
the maximum number of hectares that can be enclosed? 

 
 

Higher Level 
 

8. (a) Show that 322 ++ xx  is positive definite. 

 (b) Find the values of a and b if 
3232

17105
22

2

++
+=

++
++

xx
ba

xx
xx  for 

all real values of x. 

 (c) Prove that 6
32
171055 2

2

≤
++
++

<
xx
xx  for all real values of x. 

 
9. Find the largest value of m and the smallest value of M for which 

M
xx

m ≤
++

<
452

14
2 . 

 
10. Find the largest value of m and the smallest value of M for which 

M
xx

m <
−−

≤ 2412
9 . 

 
*11. Triangle ABC is such that AB + AC = 10 cm and BC = 6 cm. If AB = x cm 

and D is the foot of the altitude from A to BC, show that 

  (a) ( )1610
9

16AD 22 +−−= xx  ; 

  (b) the maximum area of the triangle occurs when the triangle is 
isosceles. 

 
  Find the maximum area of the triangle ABC. 
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2.6 Inequalities Depending on the Product of two Linear Factors 
 
The product ab of two factors is positive if and only if 
 (i) a > 0 and b > 0  or (ii) a < 0 and b < 0. 
 
Thus (x – 1)(x + 2) > 0 if and only if 
 (i) x – 1 > 0 and x + 2 > 0 or (ii) x – 1 < 0 and x + 2 < 0 
 i.e., x > 1 and x > –2  or  x < 1 and x < –2 
 i.e., x > 1   or  x < –2. 
 
Although this method is sound it is not of much practical use in more complicated 
problems. A better method which is useful in more complicated problems is the 
following which uses the "sign diagram" of the product (x – 1)(x + 2). 
 
 (x – 1)(x + 2) > 0 
 The critical values are x = 1 and x = –2. (i.e., the values of x at which either 

factor is zero.) 
 The sign diagram of (x – 1)(x + 2) is thus: 
 
 Since one or other of the two factors must change sign at each of the critical 

values, the product (x – 1)(x + 2) must also change sign at each of the critical 
values. Therefore the signs displayed on the above diagram are determined 
once any one of them is known. To determine one of these signs, choose a 
value of x which is not critical. Calculate the sign of the product (x – 1)(x + 2) 
for this value of x and display this sign in the appropriate place on the diagram. 
The other signs are then determined automatically. The answer can now be 
read from this sign diagram. The answer is x > 1  or  x < –2 as before. 

 
Example Solve the inequality (x + 3)(x – 2) > 0. 
 
 The critical values are x = –3, x = 2. 
 
 The required sign diagram is: 
 
 The answer is x > 2  or  x < –3. 
 
Example Solve the inequality (1 – x)(2x + 1) > 0. 
 
 The critical values are x = 1, x = 1

2− . 
 
 The required sign diagram is: 
 
 The answer is x > 1

2−   and  x < 1  which is written  1
2−  < x < 1. 

–2 1 
+ – + 

–3 2 
– + + 

1
2−  1 

+ – – 
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Example Solve the inequality 22 3 0x x− − < . 
 

 22 3 0x x− − <  
 (2x – 3)(x + 1) < 0 
 The critical values are x = 1

21 , x = –1. 
 The sign diagram is: 
 The answer is –1 < x < 1

21 . 
 
Example Solve the inequality x(x + 4) > x – 4. 
 
 x(x + 4) > x – 4 
 2 3 4 0x x+ + >  
 Δ = 32 – 4(1)(4) < 0 and so no real critical values exist since 2 3 4x x+ +  is 

positive definite. Therefore the given inequality is true for all values of x. 
 
Example Solve the inequality ( 4) 1x x x+ > − . 
 

( 4) 1x x x+ > −  
2 3 1 0x x+ + >  

The critical values are 1 1
2 2( 3 9 4) ( 3 5)x = − ± − = − ± . 

 
The sign diagram is: 
 
 
Therefore the answer is x > 1

2 ( 3 5)− +   or  x < 1
2 ( 3 5)− − . 

 
Example Solve the inequality 2 1 0x x+ + < . 
 
 2 1 0x x+ + <  
 Δ = 1 – 4 < 0 and so the quadratic is positive definite. 
 Thus the inequality is true for no real values of x. 

 
Exercise 2.6 
 
1. Solve the following inequalities: 
 (a) (x – 1)(x + 2) > 0 ;  (b) (x + 2)(x + 3) > 0 ; 
 (c) (x + 1)(x – 5) < 0 ;  (d) (x – 3)(x – 4) < 0 ; 
 (e) (2x – 1)(x + 3) > 0 ;  (f) (x + 2)(3x – 2) < 0 ; 
 (g) (4x + 3)(x + 2) < 0 ;  (h) (x – 1)(2x – 1) < 0.  
 

–1 
– + + 

1
21

+ – + 
1
2 ( 3 5)− − 1

2 ( 3 5)− +
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2. Solve the following inequalities: 
 (a) 2 3 2 0x x− + >  ;  (b) 2 7 12 0x x+ + <  ; 
 (c) 2 6 8 0x x− + <  ; (d) 2 12 0x x+ − >  ; 
  (e) 23 2 0x x− − >  ; (f) 23 5 2 0x x− − < . 
 
3. In each of the following, find the range of values of k for which the equation 

has real roots: 
 (a) 2 2 3 0kx x− + =  ;  (b) 22 2 0x kx+ + =  ; 
 (c) 2 1x kx= +  ;   (d) 22 5 0x x k+ + =  ; 
 (e) 2 2( 4) 0kx k x k+ + + =  ;  (f) 2 (2 1) 1 0kx k x k+ + + + = . 
 
2.7 Inequalities Depending on the Quotient of two Linear Factors 
 
The quotient a/b of two factors is positive if and only if 
 (i) a > 0 and b > 0  or  (ii) a < 0 and b < 0. 
 
These are the same conditions under which the product ab is positive. Therefore 

solving inequalities such as 3 0
1

x
x

+
>

−
 is the same as solving (x + 3)(x – 1) > 0. 

 

Example Solve the inequality 2 1 0
2

x
x

−
<

+
. 

 
 The critical values are x = 1

2 , x = –2. 
 
 The sign diagram is: 
 
 The answer is 1

22 x− < < . 
 

Example Solve the inequality 2 1 4
2

x
x

−
>

+
. 

 

 2 1 4 0
2

x
x

−
− >

+
 

 2 1 4( 2) 0
2

x x
x

− − +
>

+
 

 2 9 0
2

x
x

− −
>

+
 

 The critical values are x = 1
24− , x = –2. 

+ – + 
–2 1

2
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 The sign diagram is: 
 
 The answer is 1

24−  < x < –2. 
 

Example Solve the inequality 2 1 2
2

x
x

−
>

+
. 

 

 2 1 2 0
2

x
x

−
− >

+
 

 2 1 2( 2) 0
2

x x
x

− − +
>

+
 

 5 0
2x

−
>

+
 

 x + 2 < 0 
 x < –2. 
 

Example Solve the inequality 3 2 4
2
x

x
+

≥
−

. 

 

 3 2 4 0
2
x

x
+

− ≥
−

 

 3 2 4(2 ) 0
2

x x
x

+ − −
≥

−
 

 7 6 0
2
x

x
−

≥
−

 

 The critical values are x = 6
7 , x = 2. 

 
 The sign diagram is: 
 

 The answer is 6
7 2x≤ <  since the quotient 7 6

2
x

x
−

−
 is undefined when x = 2. 

 
Exercise 2.7 
 
1. Solve the following inequalities: 

 (a) 2 0
1

x
x

−
>

+
 ; (b) 3 0

1
x
x

+
<

+
 ; (c) 2 1 0

1
x

x
+

<
−

 ; 

 (d) 1 2 0
1 2

x
x

−
>

+
 ; (e) 2 3 0

1
x
x

+
≤

+
 ; (f) 4 3 0

3 4
x

x
−

≥
+

.  

 
 

– + – 
–2 1

24−

6
7 2 

– + – 
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2. Solve the following inequalities: 

 (a) 3 2
1

x
x

−
>

+
 ; (b) 2 3

3
x
x

+
<

−
 ; (c) 2 1 3

1
x

x
−

<
−

 ; 

 (d) 1 4 2
2
x

x
−

>
−

 ; (e) 3 2 3
2

x
x

+
≤

−
 ; (f) 3 2 1

3 2
x
x

+
≥

−
. 

 
2.8 Solving General Inequalities 
 
The techniques illustrated in the previous pages can be used to solve more 
complicated inequalities. There are also other techniques which may be used in 
special cases. 
 

Example Solve the inequality 
2( 1)( 1) 0
2

x x
x

− +
>

+
. 

 
 The critical values are x = 1, x = –2. [Note: x2 + 1 is positive definite and so 

does not contribute any critical value.] 
 
 The sign diagram is: 
 
 The answer is x > 1  or  x < –2. 
 

Example Solve the inequality 
2( 1)( 1) 0

2
x x

x
− +

≥
+

. 

 
 The critical values are x = 1, x = –1, –1, x = –2. [Note: Since (x + 1) is a 

'double factor', there are two critical values of –1.] 
 
 The sign diagram is: 
 
 [The sign changes twice at x = –1 because of the double critical value.] 
 
 The answer is x ≥ 1  or  x < –2  or  x = –1. 
 
Example Solve the inequality 2 2 1x x+ > − . 
 
 Since both sides of the inequality are non-negative we can square both sides 

giving 
  2 24 4 4 4 1x x x x+ + > − +  
  23 8 3 0x x− − <  
  (3x + 1)(x – 3) < 0 
 
 The critical values are x = 1

3− , x = 3. 

–2 1 
+ – + 

+ – – + 
–2 –1, –1 1 
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 The sign diagram is: 
 

 The answer is 1
3 3x− < < . 

 
 An alternative method is to use a graph. 
 
 
 

  
 
 For the coordinates of A we solve the equation x + 2 = 1 – 2x   ⇒   x = 1

3− . 
 For the coordinates of B we solve the equation x + 2 = 2x – 1   ⇒   x = 3. 
 Thus we obtain 1

3 3x− < < , as before. 
 

Example Solve the inequality 21 3x x− > − . 
 

 We cannot square both sides since 2 3x −  may be negative. 
 A suitable approach is to sketch the graphs of the two functions involved. 
 

 
 
 For A we solve x – 1 = x2 – 3. This gives x = 2 or x = –1. But xA > 1 so xA = 2. 
 For B we solve 1 – x = x2 – 3. This gives x = 1

2 ( 1 17)− ± . But xB < 1 so 

xB = 1
2 ( 1 17)− − . This gives 1

2 ( 1 17) 2x− − < < . 
 
 
 
 

1
3− 3 

+ – + 

• 

• 

 y 

x 

 

O 

A 

B 

 y = ⏐2x – 1⏐ 
 y = ⏐x + 2⏐ 

 y 

x 
O 

 y = x2 – 3 

 y = ⏐x – 1⏐ 

A 

B 

1 
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Exercise 2.8 
 
1. Find the values of x for which 

 (a) 0
3 1

x
x

>
−

 ;   (b) 7 2
5

x
x

>
−

 ; 

 (c) (3 5)(1 2 ) 0x x− + >  ;  (d) 2
3 3

21
x

x
<

+
 ; 

 (e) 2 10
3

x
x
−

< <  ;   (f) 1 1
4x

≤ .  

 
2. Find the values of x for which 
 (a) 2 ( 5) 6x x x− >  ;   (b) 2 2( 4) 5x x x+ <  ; 

 (c) 
2 12 7x

x
+

>  ;   (d) 
2 6 5x
x
+

>  ; 

 (e) 1x x≤ −  ;   (f) 2 2 3x x+ > +  ; 
 (g) 3 2 6x x− ≥ +  ;  (h) 5 2 3 4 5x x− < −  ; 

 (i) ( 1)( 3) 0
2

x x
x

− +
<

−
 ;  (j) 2 3 0

( 2)( 5)
x

x x
−

>
+ −

 ; 

 (k) 6 1
4

x
x

< +
−

 ;   (l) 2
5 1

3 2
x

x x
−

<
− +

 ; 

 (m) 2 1 3 2x x+ < +  ;  (n) 1 3x x+ > −  ; 

 (o) 2 3 2 2x x− − <  ;  (p) ( 5) 6x x − >  ; 

 (q) 2
4

x
x

<
+

 ;   (r) 
2 4 3x
x
−

≤ . 

 
2.9 Transformations of Graphs in the Plane 
 
Vertical Shift 
 
The graph of ( )y f x=  is given a vertical translation of q units. 
   
  If P(x, y) maps onto P'(x', y '), the transformation equations are 

x' = x and y ' = y + q. Thus the equation of the curve, ( )y f x= , 
becomes ' ( ')y q f x− =  which is the condition that P'(x', y ') lies 
on the curve ( )y f x q= + . 

 

P(x, y) 

P'(x', y ') 

q 
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In particular when the graph of the function 2( )y f x x= =  is given a vertical shift of 
q units, the equation of the image is 2y x q= + . 
 
If q > 0 the shift is upwards; if q < 0 the shift is downwards. 
 

Example The graph of the function 3( ) 2 2f x x x= + −  is given a vertical shift 
of 2 units upwards. Write down the equation of its image. 

 

 The required equation is 3 3( ) 2 2 2 2f x x x x x= + − + = + . 
 
Horizontal Shift 
 
The graph of ( )y f x=  is given a horizontal translation of p units. 
 
 The transformation equations are x' = x + p and y ' = y. Thus 

( )y f x=  becomes ' ( ' )y f x p= −  which is the condition that 
P'(x', y ') lies on the curve whose equation is ( )y f x p= − . 

 

In particular when the graph of the function 2( )y f x x= =  is given a horizontal shift 
of p units, the equation of the image is 2( )y x p= − . 
 
If p > 0 the shift is to the right; if p < 0 the shift is to the left. 
 
Example The graph of the function ( ) logf x x=  is given a horizontal shift of 2 

units to the left. Find the equation of its image. 
 
 The required equation is ( ) log( 2)f x x= + . 
 
Translation 

The graph of ( )y f x=  is given a translation with vector 
p
q

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
 This is a combination of vertical and horizontal 

shifts. The equations are x' = x + p and y ' = y + q. 
  Thus ( )y f x=  becomes ' ( ' )y q f x p− = −  which is 

the condition that P'(x', y ') lies on the curve whose 
equation is ( )y f x p q= − + . 

 

In particular when the graph of 2( )y f x x= =  is translated with vector 
p
q

⎛ ⎞
⎜ ⎟
⎝ ⎠

, the 

equation of the image is 2( )y x p q= − + . 

P(x, y) P'(x', y ') 
 p 

 p 

q 

P(x, y) 

P'(x', y ') 
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Example The function 1( ) 2f x
x

= +  (x ≠ 0) is given a translation with vector 

2
3

⎛ ⎞
⎜ ⎟−⎝ ⎠

. Find the equation of its image. 

 

 The required equation is 1 1( ) 2 3 1
2 2

f x
x x

= + − = −
− −

 (x ≠ 2). 

 
Vertical Stretch 
 
Here, all points on the curve ( )y f x=  are translated parallel to the y-axis so that the 
point P(x, y) maps to the point P'(x, hy). The number h is called the stretch constant. 
 
  
 The transformation equations are x' = x and y ' = hy. 
  Thus ( )y f x=  becomes '/ ( ')y h f x=  or ' ( ')y hf x=  which 

is the condition that P'(x', y ') lies on the curve whose equation 
is ( )y hf x= . 

 
The distance of translation is proportional to the distance of P from the x-axis and so 
points on the x-axis are invariant (i.e., they do not move). 
 

In particular when the graph of 2( )y f x x= =  is given a vertical stretch with stretch 
constant h, the equation of the image is 2y hx= . 
 
Example The graph of the function ( ) 3 2f x x= +  is given a vertical stretch of 

constant 3 parallel to the y-axis. Write down the equation of its 
image. 

 
 The required equation is ( ) 3(3 2) 9 6f x x x= + = + . 
 
Horizontal Stretch 
 
Here, all points on the curve ( )y f x=  are translated parallel to the x-axis so that the 
point P(x, y) maps to the point P'(kx, y). The number k is called the stretch constant. 
 
 The transformation equations are x' = kx and y ' = y. 
  Thus ( )y f x=  becomes ' ( '/ )y f x k=  which is the condition 

that P'(x', y ') lies on the curve whose equation is ( / )y f x k= . 
 
The distance of translation is proportional to the distance of P from the y-axis and so 
points on the y-axis are invariant. 
 

P(x, y) 

P'(x', y ') 

(h–1)y 

P(x, y) P'(x', y ') 
(k–1)x 
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In particular when the graph of 2( )y f x x= =  is given a horizontal stretch with 

stretch constant k, the equation of the image is ( )2y x k= . 
 

Note: For the graph of the function 2( )y f x x= = , a horizontal stretch with stretch 
constant k is also a vertical stretch with stretch constant 21 k  since 

( )2 2
2

1y x k x
k

= = . 

 
Example The graph of the function ( ) 2xf x =  is given a horizontal stretch 

parallel to the x-axis with stretch constant 3. Write down the equation 
of its image. 

 
 The required equation is 3( ) 2xf x = . 
 
Reflection in the x-axis 
 
  The equations of the transformation are x' = x and y ' = –y 

and so the curve ( )y f x=  becomes ' ( ')y f x− =  which is 
the condition that P'(x', y ') lies on the curve with equation 
is ( )y f x= − . 

 
Example The graph of the function 3 2( ) 2 3 1f x x x= + +  is reflected in the 

x-axis. Write down the equation of its image. 
 
 The required equation is 3 2( ) 2 3 1f x x x= − − − . 
 
Reflection in the y-axis 
 
 The equations of the transformation are x' = –x and y ' = y 

and so the curve ( )y f x=  becomes ' ( ')y f x= −  which is 
the condition that P'(x', y ') lies on the curve with equation 
is ( )y f x= − . 

 

Example The graph of the function 3 2( ) 2 3 1f x x x= + +  is reflected in the 
y-axis. Write down the equation of its image. 

 
 The required equation is 3 2 3 2( ) 2( ) 3( ) 1 2 3 1f x x x x x= − + − + = − + + . 
 

x 

P(x, y) 

P'(x', y ') 

P(x, y) P'(x', y ') 

 y 
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The results of the above transformations on the graph of 2y x=  are summarised in 
the following table: 
 
 

      Transformation Image of 2y x=                 Graph 

Vertical shift of q units 2y x q= +   

   
 

Horizontal shift of p units 2( )y x p= −   

    
 
 
 

Translation – vector 
p
q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
2( )y x p q= − +   

       
 
 

Vertical stretch with 
stretch constant h 
 
 
 
 
 
 
 
 

2y hx=  
 
 
 
 
 
 
 
 

 

           
 
 
 

2y x=

2y x q= +

q 

2y x= 2( )y x p= −

 p 

2y x=

2( )y x p q= − +

 p 

q 

2y x=

2y hx=a 

ha 
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    Transformation Image of 2y x=                  Graph 

Horizontal stretch with 
stretch constant k 

( )2/y x k=   

      
 

Reflection in the x-axis 2y x= −   

     
 

Reflection in the y-axis 2 2( )y x x= − =  2y x=  is symmetrical about 
the y-axis and is therefore its 
own image under a reflection 
in the y-axis. 

 
Example Describe the transformation under which 2y x=  maps onto 

2( 1) 2y x= − + . 
 

 The required transformation is a translation with vector 
1
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

Example The graph of 2( ) 2 3f x x x= + −  is given a reflection in the y-axis and 

its image is then given a translation with vector 
2
3

−⎛ ⎞
⎜ ⎟−⎝ ⎠

. Find the 

equation of the final image. 
 

 Under the reflection the image is 2 2( ) ( ) 2( ) 3 2 3f x x x x x= − + − − = − − . 
 
 Under the translation the image of this function is 

2 2( ) ( 2) 2( 2) 3 3 2 6f x x x x x= + − + − − = + − . 
 

Example Describe the transformation(s) under which 2y x=  maps onto 
25 2( 3)y x= − + . 

 

2y x= 2( / )y x k=

a ka 
2y x=

2y x= −
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 One possible order of transformations would be a shift of 3 units to the left, 
followed by a stretch parallel to the y-axis with stretch constant 2, a reflection 
in the x-axis and an upward vertical shift of 5 units. 

 
Example The following diagram shows the graph of the curve ( )y f x= . 

Sketch, on separate axes, the graph of each of the following curves: 
(a) ( 2)y f x= +  ;  (b) ( 1) 2y f x= + −  ; 
(c) (1 )y f x= −  ;  (d) 1 ( )y f x= − . 

 

                                
 
 (a) ( 2)y f x= +    (b) ( 1) 2y f x= + −  
 

         
 
 (c) (1 )y f x= −    (d) 1 ( )y f x= −  
 

       
 
 
 
 
 
 

• (2, 2) 

(–2, –2) • 

 y 

 x  O 

( )y f x=

–2 

2 

 y 

 x  O 

1 

 y 
 x  O 

(–1, –2) 

 y 

x O 

1 

–1 1 

x 

 y 

O 1 

horizontal shift of 
2 to the left 

translation with 

vector 
1
2

−⎛ ⎞
⎜ ⎟−⎝ ⎠

 

horizontal shift of 1 
left followed by a 
reflection in y-axis 

reflection in the x-
axis followed by a 
vertical shift of 1 
upwards 
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Exercise 2.9 
 
1. In each of the following write down the equation of the image of the graph of 

( )f x  under the given transformation. 

 (a) ( ) sinf x x=  –  translation with vector 
2
1

⎛ ⎞
⎜ ⎟−⎝ ⎠

 ; 

 (b) ( ) exf x =  – reflection in the y-axis ; 
 (c) 2( ) logf x x=  – stretch parallel to the y-axis with stretch constant 2; 
 (d) 2( ) 3 2f x x x= − −  – reflection in the x-axis ; 
 (e) ( ) cosf x x=  – a stretch parallel to the x-axis with stretch constant 3 ; 

 (f) 1( ) 2
3

f x
x

= +
+

 – translation with vector 
3
5

−⎛ ⎞
⎜ ⎟−⎝ ⎠

. 

 

2. Sketch the graph of each function and the graph of 2y x=  on the same set of 
coordinate axes in each case: 

 (a) 2 2y x= +  ;  (b) 2 3y x= −  ; 
 (c) 2( 2)y x= −  ;  (d) 2( 1)y x= +  ; 
 (e) 2( 2) 3y x= − −  ; (f) 2( 2) 1y x= + +  ; 
 (g) 22y x=  ;  (h) 2 9y x=  ; 
 (i) 22( 2) 3y x= − −  ; (j) 21 3( 1)y x= − +  ; 
 (k) 2(2 3) 4y x= − +  ; (l) 23 (3 2)y x= − − . 
 
3. Sketch graphs of the functions ( )y f x=  and ( )y F x=  for each of the 

following: 
 (a) 2( )f x x= , ( ) ( 2) 3F x f x= + −  ;  (b) ( ) 2xf x = , ( ) ( ) 2F x f x= +  ; 

 (c) 1( )f x
x

= , ( ) ( 2) 1F x f x= − +  ; (d) 3( )f x x= , ( ) 2 ( ) 1F x f x= −  ; 

 (e) ( ) logf x x= , ( ) 2 (1 )F x f x= −  ; (f) ( )f x x= , ( ) 2 ( ) 3F x f x= − . 
 
4. Find the equation of the image of each of the following graphs under a 

reflection in the x-axis: 
(a) 2 2 1y x x= − +   ;  (b) 22 3 5y x x= + −  ; 
(c) 22 2 3y x x= − −  ;  (d) 24 3 2y x x= − −  ; 
(e) 3 2 3y x x= − +  ;  (f) 2 31 2 3y x x x= − − − . 
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5. Find the equation of the image of each of the following graphs under a 
reflection in the y-axis: 

 (a) 2 4 1y x x= + +  ;  (b) 23 2 1y x x= − −  ; 
 (c) 24 3 2y x x= − −  ;  (d) 25 3y x= −  ; 
 (e) 3 22 3y x x= − +  ;  (f) 2 33 2 3y x x x= + + − . 
 
6. Find in simplified form the equation of the image of each of the following 

graph under translation with the given vector: 

 (a) 2 2 1y x x= + −  ,  
2
1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ;  (b) 23 1y x x= − +  ,  
1
2

−⎛ ⎞
⎜ ⎟−⎝ ⎠

 ; 

 (c) 23 2y x x= − −  ,  
1
4

⎛ ⎞
⎜ ⎟−⎝ ⎠

 ; (d) 23 2y x x= −  ,  
3
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ; 

 (e) 3 2 3y x x= − +  ,  
1
2

−⎛ ⎞
⎜ ⎟−⎝ ⎠

 ; (f) 2 23 2 2y x x x= − + −  ,  
1
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 

7. (a) The graph of 2( )f x x=  is translated with vector 
2
3

⎛ ⎞
⎜ ⎟−⎝ ⎠

 and the 

resulting graph is then reflected in the x-axis. Find the equation of the 
final image. 

 

 (b) The graph of 2( )f x x=  is stretched parallel to the y-axis with stretch 
constant 2 and the result is then shifted horizontally a distance of 3 
units to the right. If the image after these transformations is then 
reflected in the y-axis, find the equation of the final curve. 

 
 (c) Describe the transformation(s) under which the graph of ( )y f x=  

maps onto 2 ( 1) 3y f x= − + . 
 
 (d) Describe the transformation(s) under which the graph of ( )y f x=  

maps onto 1
21 ( 2)y f x= − + . 
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Required Outcomes 

 
 After completing this chapter, a student should be able to 
• find the equation of any straight line in 2-space. 
• find the shortest distance between a point and a line in 2-space. (HL) 
• calculate the area of any triangle in 2-space from the coordinates of the 

vertices. (HL) 
• find the coordinates of the vertex of any quadratic function. 
• sketch the graph of any quadratic function. 
• solve any quadratic equation which has real solutions. 
• determine whether or not a given quadratic is positive/negative definite. 
• solve inequalities depending on the product or quotient of two linear 

factors. 
• solve general inequalities using a sign diagram. 
• perform common transformations of curves, particularly the quadratic 

curve 2y x= . 
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3.1 The Sine Rule 
 
We know from our work with the congruence of triangles that a triangle is completely 
defined if we are given 
(1) the lengths of its sides ; 
(2) the measures of any two angles and the length of one side ; 
(3) the lengths of any two sides and the measure of the included angle. 
 
To ‘solve’ a triangle, we are required to determine the lengths of all three sides and 
the measures of all three angles. This can clearly be done if we are given the three 
pieces of data in (1), (2) or (3) above. 
 
We may also be able to solve a triangle when we are given the lengths of any two 
sides and the measure of a non-included angle. 
 
We cannot determine the lengths of the sides of a triangle, however, if we are given 
only the measures of the three angles. For example, we can construct an equilateral 
triangle of any size we require. 
 
Also, we are already able to solve right-angled triangles given the required amount of 
data (two pieces other than the right angle). The following ‘Sine Rule’ and ‘Cosine 
Rule’ will enable us to solve non-right-angled triangles given sufficient data. 
 
Preliminary Theorems 
 
The Triangle Inequality 
 
In any triangle, the sum of the lengths of any two sides is greater than the length of 
the third side. This is simply a statement of the fact that ‘the shortest distance between 
any two points in a plane is the length of the straight line joining the points’. 
 
 

AC + CB > AB 
 or 
AB + BC > AC 
 or 
BA + AC > BC. 

A 

B 
C 
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Example In the triangle ABC, AB = x, AC = 2x – 1 and BC = 2x + 1. 
Show that x > 2. 

 
 x must be positive and so BC is the longest side. 
 By the triangle inequality, AB + AC > BC and so x + 2x – 1 > 2x + 1 which 

gives x > 2, as required. 
 
Notation: In all the work that follows, block letters, A, B, C, …., will be used to 
represent the angles A, B, C, …., (and their measures), and small letters, a, b, c, …., 
will be used to represent the lengths of the sides opposite the angles A, B, C, … .  
 
Theorem The area of a triangle ABC = Csin2

1 ab . 
  (That is, the area of a triangle is equal to half the product of the 

lengths of any two sides and the sine of the angle included by these 
sides.) 

 
Proof 
 
 
 
 
 

Draw (AD) perpendicular to (BC) 
to meet (BC) in D. 

 
 
 
 
 The area of the triangle ABC = AD2

1 ×a . 

 Now in triangle ADC, 
AC
ADCsin = , and so CsinAD b= . 

 Therefore the area of triangle ABC = Csin2
1 ab , as required. 

 
Example Find the area of a triangular flower bed which has one angle of 30° 

and the sides about this angle of lengths 10 m and 12 m. 
 
 The required area =  2

2
1 m3030sin)12)(10( =° . 

 
 
 
 
 

a 
D 

A 

B C 

b c 
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Theorem  In any triangle ABC,  
CsinBsinAsin

cba
== . 

  (The Sine Rule) 
 
 
Proof  The area of the triangle ABC = Asin2

1 bc  = Bsin2
1 ac  = Csin2

1 ab . 

  Divide throughout by abc2
1 : 

cba
CsinBsinAsin

== . 

  Taking reciprocals gives: 
CsinBsinAsin

cba
== , as required. 

 
 
Notes on the Sine Rule 
 
The Sine Rule is used to find the remaining sides and angles of a (non-right-angled) 
triangle if we are given 
(1) two angles and one side ; 
(2) two sides and a non-included angle. 
 
In case (2), there may be two different triangles possible. The Sine Rule cannot show 
whether an angle is acute or obtuse since the sine of each is positive. For example, if 
we know that 2

1Asin = , we cannot be sure that A = 30° since sin 150° = 2
1  also. An 

example of this ‘ambiguous case’ will be given in the following examples. 
 
Example In the triangle ABC, a = 10 cm, A = 30°, B = 40°. Find c. 
 
 C = 110° (angle sum of a triangle is 180°). 

 Also 
AsinCsin

ac
=  (Sine Rule). 

 Thus 8.18
30sin
110sin10

=
°

°
=c cm. 

 
Example In the triangle ABC, a = 8 m, b = 10 m and A = 30°. Find the size of 

the angle C. 
 

 From the Sine Rule we have 
ab

AsinBsin
=  and so 

625.0
8

30sin10Bsin =
°

= . 

 Using a calculator we find that arcsin 0.625 = 38.7°. 
 But sin 141.3° = 0.625, also. 



Chapter 3 

68 

 Therefore B = 38.7° or 141°. 
 Then  C = 111° or 8.68°. 
 
 
 
 

(This is the ambiguous 
case mentioned earlier.) 

 
 
 
 
 
Example From a point A, I observe that the angle of elevation of the top of a 

tree is 21°. I walk 10 m towards the foot of the tree to a point B, from 
where the angle of elevation of the top of the tree is 34°. Calculate the 
height of the tree above the level of observation. 

 
Angle ATB = 13° (exterior 
angle of a triangle is equal to 
the sum of the interior opposite 
angles.) 
 
 

 
  

In the triangle ABT 
Asin

BT
Tsin

AB
= . 

 That is   
°

°
=

13sin
21sin10BT . 

 In triangle BTF, 91.8
13sin

34sin21sin1034sinBTFT =
°

°°
=°= . 

 Thus the height of the tree above the level of observation is 8.91 m. 
 
Note: Since Pythagoras’ theorem and simple definitions of sine and cosine can be 

used to solve any right-angled triangle, the Sine Rule is a waste of time in 
such cases. Also, the Sine Rule is not needed to solve an isosceles triangle as  
two congruent right-angled triangles can be created by joining the vertex to 
the mid-point of the base. 

 
 
 
 

30° A 
1B 2B

C 

111.3° 

141.3° 38.7° 

8.7° 10 m 

8 m 
8 m 

A B F 

T 

13° 

34° 21° 
10 m 
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Example Solve the triangle ABC in which a = 15 cm, B = 35° and C = 110°. 
 
 
 
 
 
 
 
 
 
 Firstly,  A = 35° (angle sum of a triangle is 180°). Therefore the triangle ABC 

is isosceles and so b = 15 cm. Join C to M, the midpoint of [AB]. Then, in the 
triangle ACM, (right-angled at M), AM = 15 cos 35° = 12.29 cm which gives 
c = 2 × 12.29 = 24.6 cm. 

 
Theorem If d is the length of the diameter of the circumcircle of triangle ABC, 

then 
Asin

ad = . 

 
 
Proof Let O be the centre of the 

circumcircle of the triangle ABC, 
and let CD be a diameter of length 
d. Then triangle BCD is right-
angled at B and angle BDC = 
angle BAC (same segment). Now, 

in triangle BCD, sin D = 
d

BC  and 

so 
AsinDsin

BC ad == . 

 
 

 
Higher Level 

 
Example From a point A, the summits of two mountains, B and C, are on 

bearings of 024° and 058°, and the angles of elevation are 8.5° and 
9.3° respectively. If B is 850 m above A, and C is due east of B, 
calculate 

  (a) the horizontal distance from B to A ; 
  (b) the height of C above A. 

A B 

110° 

M 

15 cm 

35° 

A 

B 

C 

O 

D 

C 
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 (a) In triangle ABP,  5690
5.8tan

850AP
AP
8505.8tan =

°
=⇒=° . 

  Therefore the horizontal distance from A to B is 5690 m. 
 

 (b) In triangle APQ, P = 114°, Q = 32° and 
°

=
° 32sin

AP
sin114

AQ . 

  ⇒ APsin114 850sin114AQ
sin32 tan8.5 sin 32

° °
= =

° ° °
. 

  In triangle ACQ,  
AQ
CQ3.9tan =°  

  ⇒ 1610
32sin5.8tan

3.9tan114sin8503.9tanAQCQ =
°°

°°
=°= . 

  Therefore C is 1610 m above A. 
 

 
Exercise 3.1 
 
[Hint: Never try to solve geometric type trigonometric problems without first 
drawing a neat sketch.] 
 
1. In each of the following, solve the triangle ABC: 
 (a) b = 20, A = 120°, B = 30° ; 
 (b) a = 20, B = 125°, C = 30° ; 
 (c) b = 12, c = 20, C = 60° ; 
 (d) a = 15, c = 10, A = 30° ; 
 (e) a = 10, c = 15, A = 30°. 

A 

N 
B 

C 

P 
Q 

E W 

S 

24°
8.5° 

34° 9.3° 

850 m 
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2. The longer diagonal of a parallelogram is 36 cm long and forms angles of 44° 
and 26° with the sides. Determine the lengths of the sides of the 
parallelogram. 

 
3. A landmark M is observed from two points A and B, 1.2 km apart. Angle 

BAM = 58° and angle ABM is 73°. Find the distance of M from A. 
 
4. In a parallelogram ABCD, AC = 65 cm, AD = 30 cm and angle BAD = 46°. 

Calculate the measure of the angle BAC. 
 
5. Point B is 500 m due east of point A on a straight east-west road. From A the 

bearing of a landmark is 064.5°, and from B the bearing is 032.5°. Find the 
distance of the landmark from the road. 

 
6. Town B is 25 km from town A on a bearing of 085°. Town C is 30 km from A 

and its bearing from B is 190°. Find the bearing of A from C. 
 
7. Points A and B are 60 m apart on one bank of a straight river. Point C is on 

the other bank, and the angles CAB and CBA are observed to be 46.4° and 
67.6° respectively. Find the width of the river. 

 
Higher Level 

 
8. In a triangle ABC, the angle ACB is 31° and the ratio AB : AC = 2 : 3. If 

BC = 20 cm, calculate the lengths AB and AC. 
 
9. A chord of a circle is 18 cm long and subtends an angle of 46° at the 

circumference. Find the length of a chord of this circle which subtends an 
angle at the circumference of 23°. 

 
10. Calculate the area of the circumcircle of the triangle ABC in which 

A = 76°, B = 48° and c = 1.2 m. 
 
11. In a triangle ABC, AC = 30 cm and BC = 40 cm. Find the greatest measure 

of the angle B. If B = 35°, solve the triangle. 
 
12. In triangle ABC, BC = 56 cm, angle ABC = 102° and angle ACB = 29°. 

Point X lies on BC such that AX = 43 cm. Find the size of the angle AXC. 
 
13. Consider the triangle ABC in which A, °<<° 90A0 , a and b are given. 

Show that (a) no triangle exists if Asinba <  ; 
    (b) exactly one triangle exists if Asinba =  or ba ≥  ; 
    (c) two distinct triangles exist if bab <<Asin . 
 Under what conditions is the triangle right angled? 
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14. Four landmarks A, B, C, D are such that B is 4.8 km from A in a direction 

152°, C’s bearings from A and B are 193° and 234° respectively, and D 
bears 323° from C and is 6 km from A. Given that the angle ADC is acute, 
find the bearing of D from A and its distance from C. 

 
15. Points P and Q lie in the same horizontal plane, P being 2500 m north of Q. 

The bearings of a mountain from these two points are 250° and 295° 
respectively. The angle of elevation of the summit from P is 20.4°. Find the 
height of the mountain. 

 
16. Points A and B are on the same horizontal level as the foot of a wireless 

mast. Point A is due west of the mast and point B is 300 m from A in a 
direction of 118° from A. If the mast is north-east of B and subtends an 
angle of 13.3° at A, find the height of the mast. 

 
 
3.2 The Cosine Rule 
 

Theorem In any triangle ABC, Acos2222 bccba −+= . 
 
Proof Draw rectangular coordinate axes so that A coincides with the origin and 

[AB] coincides with the positive x-axis. 
 

The coordinates of A are (0, 0), 
B is the point (c, 0) and C is the 
point (b cos A, b sin A). 

 
 
 
 

 
 2BC  =  22 )0Asin()Acos( −+− bcb  
  =  AsinAcos2Acos 22222 bcbcb ++−  
  =  ( ) Acos2AsinAcos 2222 bccb −++ . 2 2[cos sin 1]A A+ =  
 Thus Acos2222 bccba −+= , as required. 
 

By symmetry  Bcos2222 accab −+=      and     Ccos2222 abbac −+= . 

Also by a re-arrangement of terms, 
bc

acb
2

Acos
222 −+

= , 
ac

bca
2

Bcos
222 −+

=  and  

ab
cba

2
Ccos

222 −+
= . 

C(b cos A, b sin A) 

x 
O B(c, 0) 

A 

 y 

a 

c 

b 
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Notes on the Cosine Rule 
 
The Cosine Rule is used to solve a (non-right-angled) triangle if we are given 
(1) the lengths of its three sides ; 
(2) the lengths of two sides and the measure of the included angle. 
 
Since each of these sets of data completely determines the triangle, there can be no 
ambiguity in the use of the Cosine Rule. In any case, the cosine of an acute angle is 
positive and the cosine of an obtuse angle is negative. 
 
If the lengths of the three sides are given, always find the largest angle (opposite the 
longest side) using the Cosine Rule first. This will ensure that if the Sine Rule is then 
used, any further angle found must be acute and any ambiguity is avoided. 
 
As with the Sine Rule, the Cosine Rule is a waste of time with any right-angled or 
isosceles triangle. 
 
Example The sides of a triangle ABC are a = 6 cm, b = 8 cm and c = 5 cm. Find 

the angles of the triangle. 
 
 Angle B is the largest angle since it is opposite the longest side. 

 Also 
20
1

60
642536

2
Bcos

222

−=
−+

=
−+

=
ac

bca . 

 Therefore  B = 92.9°. 

 Using the Sine Rule now gives  
8

Bsin6AsinBsinAsin
=⇒=

ba
, and so 

A = 48.5° (A cannot be obtuse since B is the largest angle), and C = 38.6°. 
 
Example In a triangle ABC, B = 60°, c = 12 cm and a = 7 cm. Solve the 

triangle. 
 
 °−+=−+= 60cos16814449Bcos2222 accab , giving b = 10.4 cm. 
 
 The safest way to proceed now if the Sine Rule is used, is to find the measure 

of the angle A (not C, the largest angle, since this may be obtuse and the Sine 
Rule will not reveal it). 

 

 Then °=⇒°=⇒
°

=⇒= 5.84C5.35A60sin7AsinBsinAsin
bba

. 
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Example Calculate the area of triangle ABC if a = 5 cm, b = 6 cm and c = 7 cm. 
 

 2.0arccosC
60

493625
2

Ccos
222

=⇒
−+

=
−+

=
ab

cba  and the area of the 

triangle is then ( ) 2cm7.142.0arccossin15Csin
2
1

==ab . 

 
Higher Level 

 
Example The bearing of a television tower on the top of a hill from a point A 

is 343°, and from a point B, on the same horizontal level as A, the 
bearing of the tower is 295°. From A, the angle of elevation of the 
top of the tower is 2.1° and from B, the angle of elevation is 2.7°. 
If the top of the tower is 850 m above the level of A and B, 
calculate the distance and bearing of B from A. 

 
 
 
 
 
 
 
 
 
 

 In triangle ACT, 
°

=⇒=°
1.2tan

850AC
AC
8501.2tan . 

 In triangle BCT,  
°

=⇒=°
7.2tan

850BC
BC
8507.2tan . 

 In triangle ABC,  
40017AB48cos)BC)(AC(2BCACAB 222 =⇒°−+= . 

  In triangle ABC,  °=⇒
°
°

=⇒
°

= 50.3A
7.2tanAB

48sin850Asin
AB

48sin
BC

Asin . 

 Therefore B is 17.4 km from A on a bearing of 033.3°. 
 

 
Exercise 3.2 
 
1. In each of the following, solve the triangle ABC: 
 (a) B = 60°, a = 12 cm, c = 15 cm ; 
 (b) B = 117°, a = 3.4 m, c = 2.7 m ; 
 (c) a = 17 cm, b = 21 cm, c = 34 cm ; 
 (d) a = 5 m, b = 8 m, c = 5 2 m . 

B 

C 

T 

North 
North 

17° 

2.1° 

65° 

2.7° 
65° 

48° 

A 
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2. A parallelogram has sides of lengths 5 cm and 6 cm, and one angle of 45.9°. 
Calculate the lengths of its diagonals. 

 
3. Find the largest angle of the triangle whose sides have lengths 
 (a) 4 cm, 6 cm, 7 cm ;  (b) 1.2 m, 85 cm, 77 cm. 
 
4. In the triangle ABC, AB : AC = 5 : 7 and A = 60°. Find the ratio AB : BC and 

the measure of angle C. 
 
5. Town A is 3 km from Town B in a direction of 031°, while Town C is 5.25 

km from Town B in a direction of 057°. Calculate the distance between 
Towns A and C. 

 
6. In the triangle ABC, BC = 15 cm, A = 75° and 3AC = 2AB. Calculate the 

length of AC and the measure of the angle B. 
 
7. (a) Find the angles of a triangle whose sides are in the ratio 3 : 5 : 7. 
 (b) Find the angles of a triangle whose sines are in the ratio 4 : 5 : 6. 
 
8. The sides of a triangular field are 550 m, 680 m and 830 m. Calculate the area 

of the field in hectares. 
 

Higher Level 
 
9. A triangle has sides of lengths (x + 1) cm, (2x + 1) cm and (2x + 3) cm. 
 (a) Show that 1>x . 
 (b) Find the angles of the triangle if x = 10. 
 (c) Find the value of x for which the triangle is right-angled. 
 (d) Find, in terms of x, the cosine of the largest angle, and hence find 

the value of x for which one angle of the triangle is 120°. 
 (e) Find the value of x for which one angle of the triangle is 60°. 
 
10. Points O, A and B are at different levels. The bearing of A from O is 045° 

and its angle of elevation from O is 30°. The bearing of B from O is 310° 
and its angle of elevation from O is 60°. If A is 70 m higher than O, and B 
is 85 m higher than O, find the angle of elevation of B from A. 

 
11. Points A and B are 5000 m apart. Hill, H, is on a bearing of 027.5° from A 

and 292° from B. If the angles of elevation of the top of the hill from A and 
B are 3.7° and 4.4°, respectively, find the height of the hill. 

 
12. In a tetrahedron ABCD, B, C and D lie in a horizontal plane and AB is 

vertical. If AB = 15.5 cm, AC = 21.2 cm, AD = 24.8 cm and angle 
CBD = 75°, calculate the length of CD. 
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Required Outcomes 
 

 After completing this chapter, a student should be able to 
• apply the triangle inequality when appropriate. 
• use the sine rule to solve a triangle which is not right-angled nor isosceles 

given two sides and a non-included angle or two angles and a side. 
• find both triangles in the 'ambiguous case' involving the sine rule. 
• use the cosine rule to solve a triangle which is not right-angled or isosceles 

given three sides or two sides and the included angle. 
• calculate the area of a triangle either by using the formula 1

2A sinbc A=  
directly or by using the cosine rule to first find an angle then applying this 
formula. 
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4.1 The Sine, Cosine and Tangent Functions 
 
Consider the unit circle – the circle in the xy-plane with centre at the origin and with 
a radius of 1 unit. 
 
 
 
 
 
 
 
 
 
 
 
 
If P(x, y) is any point on the unit circle, then 1OP2 = . 
Then 1)0()0( 22 =−+− yx  (distance formula), giving 122 =+ yx , which is the 
equation of the unit circle. 
Let 0P  be the point (1, 0). Rotate [OP] about O through angle θ with P initially at 0P . 
 
Note: We consider θ to be positive if we rotate in an anticlockwise direction and 

negative if we rotate in a clockwise direction. 
 
We define the cosine and sine of the angle θ to be the x- and y-coordinates 
respectively of the point P. That is x = cos θ   and   y = sin θ. The tangent of the angle 

θ is defined as sintan
cos

y
x

θ
θ = =

θ
. 

 
For example if θ = 180° (or θ = –180°, etc.), P coincides with the point (–1, 0). Thus 
sin180 0° = , cos180 1° = − , tan180 0 ( 1) 0° = − = , sin( 180 ) 0− ° = , cos( 180 ) 1− ° = −  
and tan( 180 ) 0 ( 1) 0− ° = − = . 
Similarly if θ = 90° (or θ = –270°, etc.), P coincides with the point (0, 1). Thus 
sin90 1° = , cos90 0° = , tan90 1/ 0° =  which does not exist, sin( 270 ) 1− ° = , 
cos( 270 ) 0− ° =  and tan( 270 ) 1 0− ° =  which does not exist. 

 y 

x )0,1(P0

P(x, y) 

O 
θ 

1 

1

–1 

–1 

122 =+ yx
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Since the equation of the unit circle is 2 2 1x y+ =  and cos , sinx y= θ = θ , we have 
the very important relationship 2 2cos sin 1θ + θ =  which is true for all values of θ. 
 
The Trigonometric Ratios of 0°, 30°, 45°, 60° and 90° 
 
In order to establish the sine, cosine and tangent of angles of 0°, 30°, 45°, 60° and 90° 
we require the coordinates of the point P corresponding to each angle. 
 
Consider the following diagrams of the unit circle. 
 
Let P(x, y) correspond to θ = 60°. Triangle 

0OPP  is equilateral, so if M is the mid-
point of [ ]0OP   then M = ( 2

1 , 0) and [PM] 
is perpendicular to [ ]0OP . 
 
Thus x = 2

1  and since 122 =+ yx  we find 

that 32
1=y . Hence )3,P( 2

1
2
1  corres-

ponds to θ = 60°. 
 
 
Let P(x, y) correspond to θ = 30°. Let [PQ] 
which is perpendicular to [ ]0OP , meet 
[ ]0OP  at M and the unit circle at Q. Then 
triangle OPQ is equilateral and M is the 
mid-point of [PQ]. 
 
Thus y = 2

1  and using symmetry and the 

above result we obtain x = 32
1 . Thus 

),3(P 2
1

2
1  corresponds to θ = 30°. 

 
 
Let P(x, y) correspond to θ = 45°. Let M lie 
on [ ]0OP  such that [PM] is perpendicular 
to [ ]0OP . Triangle OPM is isosceles since 
angles O and P are each equal to 45°. Thus 
y = x. From 122 =+ yx  we obtain 
x = y = 22

1 . Thus )2,2(P 2
1

2
1  corres-

ponds to θ = 45°. 
 

 y 

x 0PO M 

P(x, y) 

60° 

 y 

x 0PO M 

P(x, y) 

30° 

 y 

x 
0PO M 

P(x, y) 

45° 

1 

Q 
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We can now complete the following table, which could (should) be memorised. 
 

   θ 0°   30°   45°   60° 90° 
sin θ 0   2

1  22
1  32

1   1 

cos θ 1 32
1  22

1    2
1   0 

tan θ 0 1
3 3     1   3   –– 

 
Example Find, if possible, the three trigonometric ratios of 135° and 270°. 
 
 Using symmetry in the unit circle we find that θ = 135° corresponds to the 

point )2,2( 2
1

2
1− . 

 Therefore 2135sin 2
1==° y , 2135cos 2

1−==° x  and 1135tan −==°
x
y .  

 
 Clearly θ = 270° corresponds to the point (0, –1). 
 Therefore sin 270 1° = − , cos 270 0° =  and tan 270°  does not exist. 
 
The coordinate plane is divided into 4 quadrants, numbered 1 to 4 as in the following 
diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
In quadrant 1, both x and y are positive so all three trigonometric functions are 
positive here. 
 
In quadrant 2, x is negative and y is positive so only sin θ is positive here. 
 
In quadrant 3, x and y are both negative so only tan θ is positive here. 
 
In quadrant 4, x is positive and y is negative so only cos θ is positive here. 

x 

 y 

O 

Quadrant 1 
x > 0, y > 0 

Quadrant 2 
x < 0, y > 0 

Quadrant 3 
x < 0, y < 0 

Quadrant 4 
x > 0, y < 0 
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Exercise 4.1 
 
1. Determine, if possible, the three trigonometric ratios of 
 (a) 0° ;  (b) 90° ;  (c) 45° ; 
 (d) 120° ;  (e) –210°. 
 
2. If P is a point on the unit circle and 0P  is the point (1, 0), let θ be the angle 

0POP . In which quadrant does P lie if 
 (a) sin θ is positive and tan θ is negative ; 
 (b) cos θ is negative and tan θ is positive ; 
 (c) tan θ is negative and sin θ is negative ; 
 (d) cos θ is negative and sin θ is negative? 
 
3. (a) Given sin θ = 0.8, find the possible values of cos θ and tan θ. 
 (b) Given cos θ = 0.5, find the possible values of sin θ and tan θ. 
 (c) Given tan θ = –2, find the possible values of sin θ and cos θ. 
 
4. For what points P(x, y) on the unit circle is 
 (a) sin θ = 1 ; (b) cos θ = –0.8 ; (c) tan θ = 3 ; 
 (d) sin θ = 0.2 ; (e) cos θ = –0.5 ; (f) tan θ = –5. 
 
5. Simplify the following expressions: 

 (a) cos θ tan θ ; (b) sin
tan

θ
θ

 ; (c) 
θ

θ+θθ
tan

sintancos  ; 

(d) sintan cos
tan

θ⎛ ⎞θ θ +⎜ ⎟θ⎝ ⎠
 ; (e) ( )1 sin cos tan

tan
θ + θ θ

θ
. 

 
6. Which of the following points P lie on the unit circle? 
 (a) (0.6, 0.8) ; (b) (–1, 0) ; (c) (0.5, 0.5) ; 
 (d) )2,2( 2

1
2
1  ; (e) (–0.28, 0.96) ; (f) ),( 13

12
13
5−  ; 

 (g) ),(
5

2
5

1 −  ; (h) ),( 9
8

9
5−  ; (i) ),( 17

8
17
15 −− . 

 Let θ be the angle subtended by the arc PP0  at the centre of the circle, where 

0P  = (1, 0). Determine, if possible, the values of sin θ, cos θ and tan θ in each 
case in which P lies on the unit circle. 

 
7. Find, in each of the following, four possible values of θ for which 
 (a) sin θ = 0 ; 
  (b) cos θ = 0 or sin θ = 0 ; 

(c) tan θ does not exist. 
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4.2 The Graphs of the Trigonometric Functions 
 
The graphs of y = sin θ and y = cos θ for values of θ between –360° and 360° are: 
 
 

 
    
 
 

 
     
These graphs may be continued in either direction since the sine and cosine functions 
repeat their values every 360°. This is due to the fact that the point on the unit circle 
corresponding to an angle θ also corresponds to angles θ + k(360°) for any integer k. 
Mathematically we say that the functions sin θ and cos θ are periodic with a period of 
360°. 
 
Clearly each function has a maximum value of +1 and a minimum value of –1. 
 
The mean value of each function is zero. 
 
The maximum displacement from the mean position, called the amplitude, is 1. 
 
Each function is continuous and each is defined for all values of θ. 
 
 

–360° 360° –180° 180° 

1 

–1 

–360° 360° –180° 180° 

θ 

sin θ 

1 

–1 

θ 
O 

O 

cos θ 
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The graph of y = tan θ has quite a different shape. 
 
Firstly, tan θ is undefined when cos θ = 0. This occurs when P(cos θ, sin θ) has 
coordinates (0, 1) or (0, –1). The angles θ which correspond to either of these points 
are θ = (2k + 1)90°, k ∈ Z, i.e., all odd multiples of 90°. 
 
Secondly, the period of tan θ is 180°. 
 
Thirdly, the tangent function has no maximum or minimum values. 
  
The use of a graphic display calculator will confirm the following graph of y = tan θ 
for values of θ between –360° and 360°: 
 
 

 
 
Exercise 4.2 
 
1. Sketch the graph of y = sin θ for –180° ≤ θ ≤ 180°. Use the symmetry of your 

graph and a calculator to find all the values of  θ, –180° ≤ θ ≤ 180°, for which 
sin θ = 0.4. 

 
2. Sketch the graph of y = cos θ for –360° ≤ θ ≤ 360°. Use the symmetry of your 

graph and a calculator to find all the values of θ, –360° ≤ θ ≤ 360°, for which 
cos θ = –0.2. 

 
3. Sketch the graph of y = tan θ for –270° < θ < 270° (θ ≠ –90° or +90°). Use 

the symmetry of your graph and a calculator to find all the values of θ in the 
given domain for which tan θ = 2. 

 
4. By choosing a suitable transformation of the graph of siny = θ  for 

0 360° ≤ θ ≤ ° , sketch the graph of sin( 90 )y = θ + °  for 90 270− ° ≤ θ ≤ ° . Can 
you suggest a simpler expression for sin( 90 )θ + ° ? 

tan θ 

θ –360° –270° –180° –90° O 90° 180° 270° 360° 
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4.3 The Radian Measure of an Angle and the Double Angle Formulae 
 
In plane geometry angles were measured in turns or degrees. 
For example, 
  the measure of a right angle = 4

1 turn = 90° ; 
  the measure of a straight angle = 2

1 turn = 180° ; 
  the measure of a full turn = 360°. 
 
It is convenient to introduce another unit for measuring angles – the radian. 
 
An angle of 1 radian ( c1 ) is the angle subtended by an arc of length 1 unit at the 
centre of the unit circle. 
 
 
 
 
 
 
 
 
 
 
 
 
Note: c1  is also the size of the angle subtended at the centre of a circle of radius r 

by an arc of length r. 
 
Now the angle subtended by the whole circumference of a unit circle at the centre is 
360° and since the length of the circumference is 2π units we have 
 
 2π radians = 360 degrees or π radians = 180 degrees. 
 

Thus we have 1 radian = 
π

180  degrees ≈ 57.3 degrees. 

 

Example Convert 60° to radians and 
6

7π  radians to degrees. 

 

 60° = 3
1  of 180° = π3

1  radians ; 
 

 
6

7π  radians = 
6
7  × 180° = 210°. 

 y 

x O 

P 

1 
c1

0P

1 
arc PP0  = 1 
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In all our work so far our trigonometric functions have mapped angles into real 
numbers. For example, the sine function maps an angle of 30° into the real number 
0.5 since sin 30° = 0.5. 
 
This is fine for surveyors, etc., but not always for scientists who often require the trig-
onometric functions (then called circular functions) to map real numbers into real 
numbers. 
 
Therefore we define the circular functions of the real number x to be the 
trigonometric functions of the angle of x radians. 
Thus if x is any real number, sin x = csin x  , cos x = ccos x  and tan tan cx x= . 
 
Example Evaluate cos 2. 
 
 (Note: cos 2 is not equal to cos 2°!) 
 
 cos 2 = –0.416  (from a calculator in radian mode). 
 
Double Angle Formulae 
 
It can be shown (see Sections 4.11 and 4.13) that 
 

1. sin 2 2sin cosθ = θ θ  
    and that 

2. 2 2cos 2 cos sinθ = θ − θ . 
 

[The proofs of these formulae are beyond the scope of the Standard Level course.] 
 

Since 2 2sin cos 1θ + θ = , the second of the double angle formulae can be written in 
the forms 

 2 2 2cos2 cos (1 cos ) 2cos 1θ = θ − − θ = θ −  
 
or 2 2 2cos2 (1 sin ) sin 1 2sinθ = − θ − θ = − θ . 

 
The identities:  sin 2θ  =  2sin cosθ θ  
 cos2θ  =  2 2cos sinθ − θ  
  =   22cos 1θ −  
  =  21 2sin− θ  
 
are known as the "double angle formulae". 
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Example If 4
5sin A =  and 1

2 Aπ < < π , find the values of sin 2 , cos 2A A  and 
tan 2A  without the use of a calculator. 

 
 ( )22 2 94

5 25cos 1 sin 1A A= − = − =  and so 3
5cos A = ± . 

 But A is in the second quadrant where cosines are negative so 3
5cos A = −  . 

 Therefore ( )( )34 24
5 5 25sin 2 2sin cos 2A A A= = − = − , 

 ( ) ( )2 22 2 3 74
5 5 25cos2 cos sinA A A= − = − − = −  and 

 
24
25 24

77
25

sin 2tan 2
cos2

AA
A

−
= = =

−
. 

 
Exercise 4.3 
 
1. Convert each of the following radian measures to degree measure: 
 (a) cπ  ; (b) c

2
1 π  ; (c) c

3
2 π  ; (d) c

5
3 π  ; 

 (e) c
9

11 π  ; (f) c
12
5 π  ; (g) c8.0  ; (h) c23.1 . 

 
2. Convert each of the following degree measures to radian measure: 
 (a) 45° ; (b) 150° ; (c) 40° ; (d) 105° ; 
 (e) 195° ; (f) 270° ; (g) 32° ; (h) 123°. 
 
3. Using the table of values found on page 79, and the symmetry of the unit 

circle, copy and complete the following table: 
 

θ° 0° 30° 45° 60° 90° 120° 135° 150° 180° 
cx           

sin x          
cos x          
tan x          

 
4. Use your table in Question 3 to evaluate each of the following: 
 (a) sin 30° + cos 60° ; (b) tan 45° – sin 30° ; 
 (c) π+π 4

1
4
1 cossin  ; (d) π+π 4

1
2
1 cossin  ; 

 (e) π−π 2
1

6
1 cossin  ; (f) °+° 30cos60sin 22  ; 

 (g) sin 150° – cos 120° ; (h) 1cos2 3
22 −π  ; 

 (i) π− 6
52sin21  ; (j) π−π 4

32
4
32 sincos  ;  

 (k) 2 22 2
3 3sin cosπ + π  ; (l) ππ+ππ 3

2
6
5

3
2

6
5 sinsincoscos . 
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5. Verify the following for π=θ 3
1 : 

 (a) 1cossin 22 =θ+θ  ;  (b) θ=θ−π sin)sin( . 
 (c) sin 2θ = 2 sin θ cos θ ;  (d) cos 2θ = 1 – 2 θ2sin  ; 

 (e) 
θ−

θ
=θ 2tan1

tan22tan  ;  (f) 
θ+
θ−

=θ 2

2

tan1
tan12cos . 

 Are these also true for π=θ 4
3 ? 

 
6. Evaluate each of the following without the use of a calculator. 
 (a) 2sin15 cos15° °  ; (b) 1 1

2 22sin 22 cos22° °  ; (c) 1 1
12 122sin cosπ π  ; 

(d) 1 1
8 8sin cosπ π  ; (e) 2 2cos 30 sin 30° − °  ; (f) 2 2sin 15 cos 15° − °  ; 

 (g) 2 1
82cos 1π −  ; (h) 21 2sin 15− °  ; (i) 2 1

82sin 1π − . 
 
7. Simplify each of the following: 
 (a) 2sin( 20 )cos( 20 )x x+ ° + °  ; (b) 2 2sin 2 cos 2x x−  ; 
 (c) 2 2cos 3 sin 3x x+  ;  (d) 2 1

41 2sin ( )x− + π  ; 

 (e) 2 1
21 sin x−  ;   (f) 2(sin cos )x x− . 

 
8. Find the values of sin 2 , cos2  and tan 2x x x  in each of the following without 

the use of a calculator: 
 (a) 3

5sin x =  ; (b) 12
13cos x =  ; (c) 3

4tan x = − . 
 
9. If 3sin 2 2cosx x= , find the values of cos2x . 
 
10. (a) If 1

9cos2A = −  and 1
20 A< < π , find the values of sin , cosA A  and 

tan A  without the use of a calculator. 
 
 (b) If 7

25cos x = − , find 1 1 1
2 2 2sin , cos  and tanx x x  without the use of a 

calculator. 
 

11. Simplify: (a)  cos2 1
cos

x
x
+  ; (b)  cos2 1

sin 2
x

x
−  ; (c)  4 4cos sinx x− . 
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4.4 Graphs of Circular Functions of the Forms y a xsin=  
 
Multiplying the functions sin  and cosx x  by the positive number a simply changes 
the amplitude of each from 1 to a. The maximum value of sina x (and cosa x ) is a 
and the minimum value of each is –a. 
 
The graphs of siny x= , 2siny x=  and 3cosy x= , 0 2x≤ ≤ π , are as follows: 
 
 

 
 
 
Multiplying the functions sin  and cosx x  by the negative number a first reflects the 
graphs in the x-axis and then changes the amplitude of each from 1 to ⏐a⏐ = –a. 
The graphs of siny x= , cosy x= −  and 2siny x= − , x−π ≤ ≤ π , are as follows: 
 

  
 
 
The corresponding effects on the graph of tany x=  are: 
(1) a > 0 – a stretch parallel to the y-axis with scale factor a. 
(2) a < 0 – a stretch parallel to the y-axis with scale factor ⏐a⏐ = –a followed by 

a reflection in the x-axis (or y-axis in this case). 
 

The graphs of tany x= , 2 tany x=  and 2 tany x= − , 1 1
2 2x− π < < π , are: 

 

 y 

 x 

 3 

 2 

 1 

 O 

–1 

–2 

–3 

3cosy x=
2siny x=

siny x=

 π  2π 

 y 

 x  π –π O 

2 

1 

–1 

–2 

siny x=

cosy x= −

2siny x= −
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Exercise 4.4 
 
1. On the one set of coordinate axes, sketch the graphs of siny x= , 2siny x=  

and 1
2 siny x= − , 0 2x≤ ≤ π . 

 
2. On the one set of coordinate axes, sketch the graphs of cosy x= , 3cosy x=  

and 2cosy x= − , x−π ≤ ≤ π . 
 
3. On the one set of coordinate axes, sketch the graphs of tany x= , 3tany x=  

and 1
2 tany x= − , 1 1

2 2x− π < < π . 
 
4.5 Graphs of Circular Functions of the Form y bxsin==  
 
Multiplying the arguments of the functions siny x= , cosy x=  and tany x=  by the 
positive number b simply changes the period of the function. 
 
Periodicity 
 
Definition A function ( )y f x=  is periodic with period p if there exists a 

positive number p such that ( ) ( )f x p f x+ =  for all x in the domain 
of definition. 

 
Example Show that the function ( ) sin 2f x x=  is periodic with period π. 
 
 ( )f x + π  =  sin(2[ ])x + π  
  =  sin(2 2 )x + π  
  =  sin 2x  
  =  ( )f x ,  and so ( )f x  is periodic with period π. 

 x 1
2 π1

2− π O 

tany x=

2 tany x=

2 tany x= −

  y 
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Theorem If b is a positive number, sin  and cosbx bx  are each periodic with 
period 2 bπ , and tan bx  is periodic with period bπ . 

 
Proof Let ( ) sinf x bx= , let ( ) cosg x bx=  and let ( ) tanh x bx= , 0b > . 
 Then ( 2 )f x b+ π  =  ( )sin [ 2 ]b x b+ π  
  =  sin( 2 )bx + π  
  =  sinbx , and so sinbx  is periodic with period 2 bπ ; 
 
 and    ( 2 )g x b+ π  =  ( )cos [ 2 ]b x b+ π  
  =  cos( 2 )bx + π  
  =  cosbx , and so cosbx  is periodic with period 2 bπ . 
 
 Also     ( )h x b+ π  =  ( )tan [ ]b x b+ π  
  =  tan( )bx + π  
  =  tan bx ,  and so tan bx  is periodic with period bπ . 
    
Thus the periods of 1

2sin 2 , cos ,   tan 3   and  sinx x x xπ  are respectively π ( )2 2= π , 
4π ( )1

22= π , 3π  and 2 ( )2= π π . 
 
The graphs of sin , sin 2  and sin3y x y x y x= = = , 0 x≤ ≤ π , are: 
 
 

  
 
 
Multiplying the argument of the function by the negative number b, simply reflects 
the graph in the x-axis and changes the period from 2π for sine and cosine to 2 bπ  
or from π for tangent to bπ . 
 
 

 y 

O  x π π/2 

1 

–1 

siny x=

sin 2y x=
sin3y x=
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Exercise 4.5 
 
1. On the one set of coordinate axes, sketch the graphs of sin 4y x= , sin 2y x=  

and sin( 2 )y x= − , 0 x≤ ≤ π . 
 
2. On the one set of coordinate axes, sketch the graphs of cos2y x= , 

cos( 2 )y x= −  and cos3y x= , x−π ≤ ≤ π . 
 
3. On the one set of coordinate axes, sketch graphs of tan 2y x= , 1

2tany x=  
and tan( 2 )y x= − , 1 1

2 2x− π < < π . 
 
4. Sketch the graph of each of the following functions: 
 (a) 2sin3 , 0y x x= ≤ ≤ π  ;  (b) 3cos2 , 0y x x= ≤ ≤ π  ; 
 (c) sin 3 ,y x x= − − π ≤ ≤ π  ; (d) 4sin( 2 ),y x x= − − π ≤ ≤ π  ; 
 (e) 1 1

2 22cos 4 ,y x x= − − π ≤ ≤ π  ; (f) 1 1
2 2sin , 2 2y x x= − π ≤ ≤ π . 

 
5. Show that the function ( ) sin 2 2cos5f x x x= +  is periodic with period 2π. 
 
6. Show that the function ( ) sin3 sin 6f x x x= +  is periodic with period 2 3π . 
 

 
Higher Level 

 
7.  Find a value of p for each of the following functions given that each 

function is periodic with period p: 
 (a) ( ) 3sin 2 cos2f x x x= +  ; (b) ( ) 3cos2 cos4f x x x= +  ; 
 (c) ( ) tan tan3f x x x= −  ;  (d) ( ) sin 2 cos3f x x x= +  ; 
 (e) ( ) sin 2 cos4f x x x=  ;  (f) ( ) cos3 tanf x x x= . 

 
 
 
4.6 Graphs of Circular Functions of the Form y x csin( )== −  
 
If P '( ', ')x y  is the image of P(x, y) under a translation of c units to the right, c > 0, 
then 'x x c= + (or ' )x x c= −  and 'y y= . Under this transformation, ( )y f x=  
becomes ' ( ' )y f x c= −  which is the condition that P '( ', ')x y  lies on the curve with 
equation ( )y f x c= − . Thus under such a transformation the image of ( )y f x=  is 

( )y f x c= − . 
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Subtracting the positive number c from the argument simply translates the graph of 
the function c units to the right. Adding the positive number c to the argument simply 
translates the graph c units to the left. 
 

The graphs siny x= , 1
4sin( )y x= − π  and 1

4sin( )y x= + π , 0 2x≤ ≤ π  are: 
 

  
 
Note: In order to sketch graphs of trigonometric functions with arguments of the 
form (bx + c) , we must first express the argument in the form ( )b x c b+ . This gives 
a function with period 2 bπ  shifted horizontally a distance c b . 
 

For example, the function 1 1
2 4sin(2 ) sin 2( )y x x= + π = + π  has period π = 2π/2 and 

its graph is that of sin 2y x=  shifted π/4 to the left. 
 
Exercise 4.6 
 
1. On the one set of coordinate axes, sketch graphs of siny x= , 1

2sin( )y x= − π  
and 1

3sin( )y x= + π , x−π ≤ ≤ π . 
 

2. On the one set of coordinate axes, sketch graphs of cosy x= , 1
6cos( )y x= + π  

and 2
3cos( )y x= − π , 0 2x≤ ≤ π . 

   
3. Sketch the graph of each of the following: 
 (a) sin( ), 0 2y x x= − π ≤ ≤ π  ; (b) 1

2cos( ),y x x= + π − π ≤ ≤ π  ; 
 (c) 1

42sin( ), 0 2y x x= + π ≤ ≤ π  ; (d) 3cos( 1), 0 2y x x= − ≤ ≤ π  ; 
 (e) 31 1

4 4 4tan( ),y x x= − π − π < < π  ; (f) 51 1
3 6 6tan( ),y x x= + π − π < < π . 

 
4. Sketch the graph of each of the following: 
 (a) sin(2 2), 0y x x= − ≤ ≤ π  ; (b) cos( 3 ),y x x= π − − π ≤ ≤ π  ; 
 (c) 1

23sin(2 ),y x x= + π − π ≤ ≤ π  ; (d) 2sin(3 2), 0 3y x x= − − ≤ ≤ . 

 x O 
π 2π π/4 3π/4 5π/4 7π/4 

1 

–1 

2 2

2 2−
siny x=

1
4sin( )y x= + π

1
4sin( )y x= − π

π/4 
π/4 

 y 
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4.7 Graphs of Circular Functions of the Form y x dsin= +  
 
Adding the positive constant d to the functions simply translates their graphs d units 
upwards. Adding the negative constant d to the functions simply translates their 
graphs ⏐d⏐ = –d units down. 
 
The graphs of cosy x= , cos 2y x= +  and cos 1y x= −  are: 
 
 

  
 
 
Example For the function 2sin3 1y x= + , find 
  (a) the period ; (b) the maximum and minimum values. 
  Sketch the graph of the function for 0 x≤ ≤ π . 
 
 (a) The period = 2 3π . 
 (b) The amplitude is 2 and so the maximum and minimum values of y are 

1 ± 2, i.e., 3 and –1. 
 
 The graph of 2sin3 1y x= +  follows: 
 

  
 
 

 y 

 x 
O π –π 

3 

1 

–1 

–2 

cosy x=

cos 2y x= +

cos 1y x= −

 y 

 x O π π/2 

3 

–1 

1 
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Example Sketch the graph of the function 4 3cos2y x= −  for x−π ≤ ≤ π . 
 
 The period of this function is 2 2π  = π and the maximum and minimum 

values are 4 ± 3, i.e., 7 and 1. 
 Also to obtain the graph of this function we must first reflect the graph of 

3cos2y x=  in the x-axis to give the graph of 3cos2y x= −  as follows: 
 
 

  
 
 
Exercise 4.7 
 
1. On the one set of coordinate axes, sketch graphs of each of the following 

pairs of functions: 
(a) siny x=  and 2sin 1y x= − , 0 2x≤ ≤ π  ; 
(b) cos3y x=  and 3cos3 2y x= − , 0 x≤ ≤ π  ; 
(c) 4cosy x=  and 1 4cosy x= − , 1 1

2 2x− π ≤ ≤ π  ; 
(d) 1

23siny x=  and 1
24 3siny x= − , 2 2x− π ≤ ≤ π . 

 
2. Sketch graphs of each of the following functions for the domain indicated: 
 (a) 4cos3 3, 0y x x= − ≤ ≤ π  ; 
 (b) 1 1

2 23tan 2,y x x= + − π < < π  ; 
 (c) 1

62 sin( ),y x x= − − π − π ≤ ≤ π  ; 
 (d) 3cos2 2, 0y x x= + ≤ ≤ π  ; 
 (e) 1

2sin(2 ) 1, 0 2y x x= − π − ≤ ≤ π  ; 
 (f) 2 3sin , 2 2y x x= − π − ≤ ≤  ; 
 (g) 3 2sin(2 1), 0 2y x x= − + ≤ ≤ π  ; 
 (h) 4cos(2 3 ) 1, 0 4y x x= − + ≤ ≤ . 
 
 

 y 

 x O π –π π/2 –π/2 

7 

1 

–3 

4 

3cos2y x= −

4 3cos2y x= −

3 
3cos2y x=
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4.8 Mensuration of the Circle 
 
The Length of an Arc of a Circle 
 
Consider a circle of radius r. Let s be the length of the arc of this circle which 
subtends an angle of θ radians at the centre. 
 

 
From the diagram, 

π
=

2
arc by the subtended angle

ncecircumfere
arc  theoflength  . 

Thus  
π

θ
=

π 22 r
s  which gives s = r θ. 

 
 
 
That is the length s of the arc of a circle of radius r which subtends an angle of θ 
radians at the centre of the circle is given by 
      s = r θ . 
 
 
Example Find the length of the arc which subtends an angle of 60° at the centre 

of a circle of radius 4 cm. 
 

 The required length = π=π× 3
4

3
14 cm. 

 
Example Find the angle at the centre of the circle of radius 10 cm subtended by 

an arc of length 6 cm. 
 

 s = r θ  and so  °≈===θ 4.346.0
10
6 c

r
s . 

 
The Area of a Sector of a Circle 
 
 

If θ radians is the angle of a sector of a 
circle of radius r, then 

 
π

=
2

sector  theof angle
circle of area
sector of area . 

  Thus A(sector) = θ=
π

θ
×π 2

2
12

2
rr . 

 

  

r O 

r 

θ 

s 

θ 
r 

r 
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That is the area of the sector of a circle of radius r which subtends an angle of θ 
radians at the centre, is given by 
     A = θ2

2
1 r  . 

 
Example Calculate the area of the sector of a circle of radius 6 cm which 

subtends an angle of 75° at the centre. 
 
 The required area = 2

180
75

2
12

2
1 cm5.736 π=π××=θr . 

 
Example An arc of a circle of radius 8 cm is 12 cm in length. Find the area of 

the sector bounded by this arc and the radii at its ends. 
 

 s = r θ  which gives  c5.1==θ
r
s . 

 Therefore the area of the sector = 22
2
1 cm485.18 =×× . 

 
The Area of a Segment of a Circle 
 

 
In the diagram, the area of the shaded segment 
is given by 
 
Area of  segment 
= area of sector OAB – area of triangle OAB 
= θ−θ sin2

2
12

2
1 rr . 

 
 

 
That is the area of the segment of a circle of radius r which subtends an angle of θ 
radians at the centre, is given by 
     )sin(2

2
1 θ−θ= rA  . 

 
Example Find the area of the segment of the circle of radius 20 cm which 

subtends an angle of 72° at the centre. 
 
 The required area = )sin()20( 5

2
5
22

2
1 π−π   or  )72sin()20( 5

22
2
1 °−π  

  =  2cm1.61 . 
 
Note: The first expression above is the one to be evaluated using a calculator when 

radian mode is used, and the second, when degree mode is used. 

O A 

B 

θ 
r 

r 
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Example Calculate the area of the segment of the circle of radius 4 cm if the arc 
of the segment has length 6 cm. 

 

 s = r θ  gives c5.1==θ
r
s . 

 Therefore the area of the segment = 2
2
1 cm02.4)5.1sin5.1)(16( =− , making 

sure that your calculator is in radian mode. 
 
Exercise 4.8 
 
1. Given that s is the length of the arc of a circle of radius  r which subtends an 

angle of θ at the centre of the circle, find s when 
 (a) r = 10 cm and θ = 30° ;  (b) r = 12 cm and θ = 50° ; 
 (c) r = 1.2 m and θ = 123° ;  (d) r = 65 cm and θ = 36.5°. 
 
2. Given that s is the length of the arc of a circle of radius r which subtends an 

angle of θ at the centre of the circle, find: 
 (a) θ when s = 3 cm and r = 2 cm ; 
 (b) θ when s = 1.0 m and r = 80 cm ; 
 (c) r when s = 12.5 cm and θ = 110° ; 
 (d) r when s = 95 cm and θ = 56.5°. 
 
3. Chord PQ subtends an angle of 40° at O, the centre of a circle of radius 

12 cm. Calculate: (a) the length of the chord PQ ; 
     (b) the length of the minor arc PQ. 
 
4.  

A right-circular cone is made by cutting 
a sector of a circle of angle 120° from a 
circle of radius 12 cm and joining the 
two radii OA, OB. 
Calculate: 
(a) the length of the major arc AB ; 
(b) the perpendicular height of the cone. 

 
5. (a) Calculate the perimeter of a sector of a circle of radius 25 cm if the 

angle of the sector is 160°. 
 (b) The sides of the sector formed by the radii in part (a) are joined 

together to form a right-circular cone. Find the base-radius of the 
cone and its perpendicular height. 

 

120° 12 
cm 

12 
cm 

A B 

O 
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6. Two wheels of radii 10 cm and 5 cm have their centres, X and Y, 25 cm apart. 
The wheels are connected by a taut belt as shown in the following diagram. 
Find the length of the belt. [Hint: [XA] and [YB] are parallel.] 

 
 
 
 
 
 
 
 
 
 
 
7. A circle of radius 2 m is drawn on a rectangle of dimensions 6 m by 3 m with 

the centre of the circle at the point of intersection of the diagonals of the 
rectangle. Find the area of overlap. 

 
8. Given that s is the length of the arc of a circle of radius r which subtends an 

angle of θ at the centre of the circle, find the area of the sector and the 
segment defined by: 

 (a) r = 10 cm and θ = 50° ;  (b) r = 2.6 cm and θ = 48° ; 
 (c) s = 12.5 cm and θ = 110° ; (d) s = 1.05 m and θ = 64.5°. 
 
9. 

Chord AB subtends an angle of 80° at O, 
the centre of a circle of radius 10 cm. 
Calculate: 
(a) the length of the chord AB ; 
(b) the length of the minor arc AB ; 
(c) the area of the shaded segment. 

 
 
 
 
 
10. Find the area of the segment of a circle of radius 12 cm cut off by a chord of 

length 10 cm. 
 
11. Show that the curved surface area of a right-circular cone of base-radius r and 

slant-height s is given by A = πrs. 
 
12. Two circles of radii 15 cm and 8 cm have their centres 17 cm apart. Find the 

area common to both circles. 
 

X Y 
 25 cm 

10 cm 
5 cm 

O 80° 

A 

B 

10 cm 

10 cm 

A 

B 
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13.  
Consider two circles. One circumscribes 
an equilateral triangle ABC of side 10 
cm, and the other has A as its centre and 
passes through both B and C. 
 
Find the area shaded in the diagram. 
 
 

 
 
 
14. Ten equal circles of radii 10 cm fit snugly into an equi- 

lateral triangle as shown in the diagram. Find: 
 (a) the length of each side of the 

equilateral triangle ; 
 (b) the area of the equilateral triangle 

not covered by the circles. 
 
4.9 Trigonometric Equations 
 
The Solution of Equations Reducible to the Forms sin x = a, cos x = a, and 
tan x = b for ⏐a⏐≤ 1 and b ∈ R 
 
Because of the periodic nature of the trigonometric functions, equations of the form 
sin x = a and cos x = a have an infinite number of solutions if ⏐a⏐ ≤ 1. Equations of 
the form tan x = b have an infinite number of solutions for all real b. 
 
Example Solve the equation 2 cos x = 1. 
 

 2 cos x = 1 ⇒ 2
1cos =x  ,  and so ππ= 3

5
3
1 ,x   (+2πk, k ∈ Z). 

  
This solution is known as the general solution of the given equation. 
 
If we restrict our domain so that 0 ≤ x ≤ 2π, there are only two solutions. They are 
x = ππ 3

5
3
1 , . 

 
On the other hand, if we restrict our domain so that –π ≤ x ≤ π, the only solutions are 

π±= 3
1x . 

 
The following examples illustrate the general method. 
 
Example Solve the equation tan x + 1 = 0 for 0° ≤ x ≤ 360°. 
 

A 

B C 
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 tan x + 1 = 0 ⇒ tan x = –1 
 The ‘working angle’ = 45°. We illustrate the possible quadrants for any 

solution with the following diagram: 
 

The general solution is x = 45° (+180°k, k ∈ Z). 
 [tan x has period 180°] 
 For 0° ≤ x ≤ 360°,  x = 135°, 315°. 
 
Example Solve the equation 4 sin x + 3 = 0 for –π ≤ x ≤ π. 
 
 4 sin x + 3 = 0 ⇒  sin x = –0.75 
 The ‘working angle’ is that value of x, 0 ≤ x ≤ π2

1 , such that sin x = 0.75. 
 The working angle = 0.8481. 
 The corresponding diagram is: 
 
 
 
 
 Therefore   x =  π + 0.8481, 2π – 0.8481 (+2πk, k ∈ Z) 
  =  3.990, 5.435 (+2πk) 
  =  –2.29, –0.848 (–π ≤ x ≤ π). 
 

Example Solve the equation 02cos3cos2 2 =−+ xx  for 0 ≤ x ≤ 2π. 
 

   02cos3cos2 2 =−+ xx  
 ⇒ (2 cos x – 1)(cos x + 2) = 0 
  ⇒ 2

1cos =x   or  cos x = –2. 
 But cos x ≠ –2 since ⏐cos x⏐ ≤ 1. 
 Therefore 2

1cos =x  only. 
 The working angle = π3

1 . 
 The general solution is x = ± π3

1  (+2πk, k ∈ Z). 
 Thus ππ= 3

5
3
1 ,x   (0 ≤ x ≤ 2π). 

 

Example Solve the equation 1sincos2 2 =− xx  for –180° ≤ x ≤ 180°. 
 
   1sincos2 2 =− xx  
 ⇒ 01sin)sin1(2 2 =−−− xx  
 ⇒ 01sinsin2 2 =−+ xx  
 ⇒ (2 sin x – 1)(sin x + 1) = 0 
 ⇒ 2

1sin =x   or  sin x = –1. 

0.8481 0.8481 

π3
1

π3
1

45° 
45° 

30° 30° 
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 The working angles are 30°, 90°. 
 The general solution is x = 30°, 150°, –90°  (+360°k, k ∈ Z). 
 Thus x = 30°, 150°, –90°   (–180° ≤ x ≤ 180°). 
 
Example  Solve the equation 3 cos x – sin x = 0 for –π ≤ x ≤ π. 
 
 3 cos x – sin x = 0 ⇒ sin x = 3 cos x 

     ⇒ 
x
x

cos
sin  = tan x = 3 . 

 The working angle = π3
1 . 

 The general solutions is x = π3
1  (+πk, k ∈ Z). 

 Thus π−π= 3
2

3
1 ,x   (–π ≤ x ≤ π). 

 
Example Solve the equation cos 2 cos 0x x− =  for 0 360x° ≤ ≤ ° . 
 
   cos 2 cos 0x x− =  
 ⇒ 22cos 1 cos 0x x− − =  
 ⇒ 22cos cos 1 0x x− − =  
 ⇒ (2cos 1)(cos 1) 0x x+ − =  
 ⇒ 1

2cos   or  cos 1x x= − = . 
 The working angles are 0° and 60°. 
 
 Therefore 0 , 120 , 240 , 360 (0 360 )x x= ° ° ° ° ° ≤ ≤ ° . 
 
The Solution of Equations of the Form sin (x + αα) = k 
 
The method is best illustrated with examples. 
 
Example Solve the equation 2 sin (x – 60°) = 1 for 0° ≤ x < 360°. 
 

 2 sin (x – 60°) = 1 
 ⇒ sin (x – 60°) = 2

1 . 
 The working angle = 30°. 
 The general solution is 

x – 60° = 30°, 150° (+360°k, k ∈ Z). 
 Thus x = 90°, 210°  (+360°k), 

and so x = 90°, 210°  (0° ≤  x < 360°). 
 

π3
1

π3
1

30° 30° 

60° 
60° 

• 
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Example Solve the equation 3 cos (x – π6
1 ) + 1 = 0 for –π < x ≤ π. 

 
   3 cos (x – π6

1 ) + 1 = 0 
 ⇒ 3

1
6
1 )cos( −=π−x . 

 The working angle ≈ 1.231. 
 The general solution is 
 231.16

1 ±π=π−x   (+2πk, k ∈ Z). 
 Thus x = 231.16

7 ±π   (+2πk), which gives x = –1.40, 2.44  (–π < x ≤ π). 
 
The Solution of Equations of the Form sin nx = k 
 
Once again the method is best illustrated with examples. 
 
Example Solve the equation 3 sin 3x + 1 = 0 for 0 ≤ x ≤ π. 
 
   3 sin 3x + 1 = 0 
 ⇒ 3

13sin −=x . 
 The working angle = 0.3398. 
 Thus 3x = –0.3398, –π + 0.3398  (+2πk, k ∈ Z). 
 This gives the general solution 

x = –0.1133, –0.9339  ( kπ+ 3
2 ). 

 Thus x = 1.16, 1.98  (0 ≤ x ≤ π). 
 

Example Solve the equation tan 4x = 3  for 0° ≤ x ≤ 180°. 
 

 tan 4x = 3  
The working angle is 60° and so 
4x = 60°  (+180°k, k ∈ Z). 

 The general solution is x = 15°  (+45°k). 
 Thus x = 15°, 60°, 105°, 150°  (0° ≤ x ≤ 180°). 
 
 

Example Solve the equation 1 tan 4
tan

x
x

+ =  for x−π ≤ ≤ π . 
 

 1 tan 4
tan

x
x

+ =  ⇒ 21 tan 4 tanx x+ =  

  ⇒ 2tan 4 tan 1 0x x− + =  

  ⇒ 4 16 4tan 2 3
2

x ± −
= = ± . 

1.231 
1.231 

0.3398 0.3398 

60° 
60° 
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 tan 2 3x = +  ⇒ x = 1.31, 1.309 – π = 1.31, –1.83. 
 tan 2 3x = −  ⇒ x = 0.262, 0.2618 – π = 0.262, –2.88. 
 Therefore x = –2.88, –1.83, 0.262, 1.31  ( x−π ≤ ≤ π ). 
 
Exercise 4.9 
 
1. Find the values of x, 0 ≤ x < 2π, for which 
 (a) 2 cos x + 1 = 0 ;   (b) 2 sin x = 3  ; 
 (c) tan x = 1

2−  ;   (d) 3 sin x + 4 cos x = 0 ; 
 (e) 3sin x = 5 ;   (f) 4 cos x + 1 = 0 ; 
 (g) 4cos9 2 =x  ;   (h) xx 22 cossin =  ; 
 (i) 0sinsin2 2 =+ xx  ;  (j) 02tan5tan2 2 =+− xx  ; 
 (k) )1(cos2sin3 2 += xx  ;  (l) 24 tan 1 3tanx x− = . 
 
2. For each of the following equations, find the solutions in the given interval: 
 (a) cos (x + 30°) = 1,   0° ≤ x < 360° ; 
 (b) 3 tan (x – 1) = 4,    0 ≤ x < 2π ; 
  (c) 3 sin (x + 1) = 2,    0 ≤ x < 2π ; 
 (d) 4 cos (x – 42°) + 1 = 0,   –180° ≤ x ≤ 180° ; 
 (e) 1

23sin( ) 2x − π = ,   0 ≤ x < 2π ; 
 (f) 5 tan (x + 123°) = 12,   0° ≤ x < 360°. 
 
3. Solve the following equations for 0° ≤ x < 360°: 
 (a) sin 3x = 0.5 ;   (b) cos 2x + 1 = 0 ; 
 (c) sin 2x + 3 cos 2x = 0 ;  (d) tan 3x = 2 ; 
 (e) 2 cos (2x + 25°) + 1 = 0 ; (f) 3 sin (2x – 45°) = 2 ; 
 (g) sin 3x = 2 cos 3x ;  (h) 5 cos 3x = 1 ; 
 (i) 02cos22cos2 =+ xx  ;  (j) 012cos2sin 2 =++ xx . 
 
4. For each of the following equations, find the solutions in the given interval: 
 (a) cos 0.25x = ,   0 2x< < π  ; 
 (b) 04cos4cos3 2 =− xx ,  90 90x− ° ≤ ≤ °  ; 
 (c) 4 tan(3 2) 5x + = ,  0 x≤ ≤ π  ; 
 (d) 3sin(3 2 ) 1 0x− + = ,  π≤≤π− 2

1
2
1 x  ; 

 (e) 012sin52sin6 2 =+− xx , 0 x≤ ≤ π  ; 
  (f) sin3 2cos3 0x x+ = ,  3 3x− < <  ;  
 (g) tan 2 cos2x x= ,   0 180x° ≤ ≤ °  ; 
 (h) 2 3tan 4 0x− = ,   0° ≤ x ≤ 90° ; 
 (i) 13cos3sin 2 −= xx ,  0 x≤ ≤ π  ; 
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 (j) 13cos3sin 22 =+ xx ,  0 180x° ≤ ≤ ° ; 
 (k) 03sin3sin4 3 =− xx ,  0 180x° ≤ ≤ °  ; 
 (l) sin 2 tanx x= ,   0 2x≤ ≤ π  ; 
 (m) cos 2 3 5sinx x= − ,  0 180x° ≤ ≤ ° . 
 

 
Higher Level 

 
4.10 The Six Circular Functions, their Graphs and Identities 
 
If P(x, y) is the point of the unit circle corresponding to angle θ, we have 
 
 the sine of angle θ :  sin θ = y ; 
 
 the cosine of angle θ :  cos θ = x ; 
 

 the tangent of angle θ :  )0(
cos
sintan ≠=

θ
θ

=θ x
x
y  ; 

 

 the cosecant of angle θ : )0(1
sin

1csc ≠=
θ

=θ y
y

 ; 

 

 the secant of angle θ :  )0(1
cos

1sec ≠=
θ

=θ x
x

 ; 

 

 the cotangent of angle θ : )0(
sin
cos

tan
1cot ≠=

θ
θ

=
θ

=θ y
y
x . 

 
Further Graphs of the Trigonometric Functions 
 
The function cscy = θ  is undefined when sin 0θ = . This occurs when 
P(cos θ, sin θ) has coordinates (1, 0) or (–1, 0). The angles θ which correspond 
to either of these points are θ = k(180°), k ∈ Z, i.e., all multiples of 180°. Also, 
since –1 ≤ sin θ ≤ 1, the reciprocal function csc θ ≥ 1 or csc θ ≤ –1, i.e., the 
values of csc θ cannot lie between –1 and +1. 
 
The graph of y = csc θ is at the top of the next page: 
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The function secy = θ  is undefined when cos 0θ =  and we have already seen 
that this occurs when θ is any odd multiple of 90°. As with csc θ, sec θ ≥ 1 or 
sec θ ≤ –1, i.e., the values of sec θ cannot lie between –1 and +1. The graph of 
y = sec θ is as follows: 
   

    
 
The function y = cot θ is undefined when sin θ = 0, i.e., when θ = k(180°), 
k ∈ Z. The graph of y = cot θ, which can be confirmed by the use of a graphic 
display calculator, is as follows: 
 

  
 

csc θ 

cot θ 

θ 

θ 
–360° –180° 180° 360° 

–360° –180° 360° 180° O 

1 

O 

1 

–360° –180° O 360° 180° –270° –90° 90° 270° 
θ 

–1 

–1 

secθ
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Relationships between the Six Trigonometric Ratios 
 
1. 1cossin 22 =θ+θ  
 
 Proof  P(cos θ, sin θ) lies on the unit circle 122 =+ yx . 
   Therefore 1)(sin)(cos 22 =θ+θ   or  1cossin 22 =θ+θ . 
 
2. θ=θ+ 22 sectan1   (cos θ ≠ 0) 
 
 Proof  From 1, 1sincos 22 =θ+θ . 
  Dividing both sides by θ2cos  gives 

   
θ

=
θ
θ

+
θ
θ

22

2

2

2

cos
1

cos
sin

cos
cos  

  which simplifies to θ=θ+ 22 sectan1   (cos θ ≠ 0). 
 
3. θ=θ+ 22 csccot1   (sin θ ≠ 0) 
 
 Proof  From 1, 1cossin 22 =θ+θ . 
  Dividing both sides by θ2sin  gives 

     
θ

=
θ
θ

+
θ
θ

22

2

2

2

sin
1

sin
cos

sin
sin  

  which simplifies to θ=θ+ 22 csccot1   (sin θ ≠ 0). 
 
Example Prove tan cot sec cscθ + θ = θ θ  whenever both sides have meaning. 
 
 L.H.S. =  tan θ + cot θ 

  =  
θ
θ

+
θ
θ

sin
cos

cos
sin  

  =  
θθ

θ+θ
sincos
cossin 22

 

  =  
θθsincos

1  

  =  sec θ csc θ 
  =  R.H.S.  provided sin θ ≠ 0 and cos θ ≠ 0, i.e., θ ≠ kπ2

1 , k ∈ Z. 
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Example Prove: 
  1cos2sin3cos3sin21cos4sin 222222 −−=−=+− AAAAAA . 
 

 L.H.S. =  )cos(sincos4sin 2222 AAAA ++−  
  =  AA 22 cos3sin2 −  
  =  Middle 
  =  AAA 222 coscos2sin2 −−  
  =  )sin1(cos2sin2 222 AAA −−−  
  =  1cos2sin3 22 −− AA  
  =  R.H.S. 
 

Example Prove that 
A

A
A

A
2

2

2

2

cot1
sin

tan1
cos

+
−

+
 = A2sin21−  whenever both 

sides have meaning. 
 

 L.H.S. =  
A
A

A
A

2

2

2

2

csc
sin

sec
cos

−  

   =  AA 44 sincos −  
   =  )sin)(cossin(cos 2222 AAAA +−  
   =  AA 22 sincos −  
   =  AA 22 sin)sin1( −−  
   =  A2sin21−  
  =  R.H.S. provided tan A and cot A both exist, i.e., cos A ≠ 0 and    

sin A ≠ 0. Thus both sides have meaning provided A ≠ kπ2
1 , 

k∈Z. 
 
Exercise 4.10 
 
1. Simplify the following: 
 (a) AA 2cos2sin 22 +  ; (b) A4

12tan1+  ; 

 (c) 3cos3sin 22 +  ; (d) 1cot 2 +θ  ; 
 (e) AA 4sin4cos 22 +  ; (f) 2

12
2
12 1sin1cos +  ; 

 (g) 
θ
θ

+
θ
θ

sec
cos

csc
sin  ; (h) 22 )cos(sin)cos(sin AAAA −++  ; 

 (i) A2sin1−  ; (j) B2cos1 2−  ; 
 (k) 1sec2 −θ  ; (l) A2csc1− . 
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2. Prove the following provided all expressions have meaning: 
 (a) 1cos2sin21sincos 2222 −θ=θ−=θ−θ  ; 
 (b) 2sec1tansectan2 2222 −θ=−θ=θ−θ  ; 
 (c) θ−−=θ−−=θ−θ 2222 cot3csc2csc3cot2  ; 
 (d) sec A(sin A – cot A) = tan A – csc A ; 
 (e) sin A sec A cot A + cos A csc A tan A = 2 ; 
 (f) cot A(1 + tan A) = 1 + cot A ; 
 (g) AAAAAA 222222 cscseccsctanseccot +=+ . 
 
3. Prove the following provided each expression has meaning: 
 (a) 2cos2sin3cos4sin 2222 −−=− AAAA  ; 
 (b) 3csccot6cot3csc2 2222 +−=+ AAAA  ; 
 (c) AAAA 2222 tan3sec41sec3tan2 +−=−  ; 
 (d) )sin1)(cos1(2)1sin(cos 2 AAAA −+=+− . 
 
4. Prove that the following statements are true whenever the functions 

involved have meaning: 
 (a) cos A tan A = sin A ; 
 (b) cos A csc A = cot A ; 
 (c) sec A cos A + AA 22 csccot =  ; 
 (d) 1cossin2)cos(sin 2 +θθ=θ+θ  ; 

 (e) θ=
θ−

2
2 sec

sin1
1  ; 

 (f) θ=
θ

θ+
+

θ+
θ csc2

sin
cos1

cos1
sin  ; 

 (g) AA
A

A cossin2
tan1
tan2

2 =
+

 ; 

 (h) 
1tan
1tan1

cossin
cos2

−
+

=+
− A

A
AA

A  ; 

 (i) 1
cot1

cot
tan1

tan
−=

−σ ι ν
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*5. Prove that the following statements are true whenever the functions 

involved have meaning: 
 (a) 1)sinsincos(cos)sincoscos(sin 22 =++− BABABABA  ; 
 (b) (cos A + sec A)(sin A + csc A) = 2 sec A csc A + sin A cos A ; 
 (c) (1 + cot A + tan A)(1 – cot A – tan A) = 1 – AA 22 seccsc −  ; 

 (d) AA
AA
AA

AA
AA sectan4

tansec
tansec

tansec
tansec

=
+
−

−
−
+  ; 

 (e) A
AA
AA cos

)tan1)(csc1(
)cot1)(sin1(

=
−−
−−  ; 

 (f) AA
A
A

A
A cottan

cot1
tan1

tan1
cot1

+=
−
−

−
+
+ . 

 
4.11 Addition Formulae 
 
1. BABABA sinsincoscos)cos( +=−  
2. BABABA sinsincoscos)cos( −=+  
3. BABABA sincoscossin)sin( +=+  
4. BABABA sincoscossin)sin( −=−  
 
Proof [Note: The scalar product of two vectors required for this proof is 

defined in Chapter 11.] 
 
 1. Consider the points A )sin,(cos AA  and B )sin,(cos BB  on the 

unit circle. 
 
 
 
 
 
 
 
 
 

  SÔA  = A  and  SÔB  = B and so BÔA  = A – B. 

   cos(A – B) =  OA OB
OA OB

⋅���� ����
���� ����   

   =  
cos cos
sin sin

A B
A B

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

•   since OA OB 1= =
���� ����

. 

  Thus BABABA sinsincoscos)cos( +=− . 
 

O x 

 y 
A(cos A, sin A) 

B(cos B, sin B) 

S(1, 0) 



 Trigonometry  

 109 

 
 2. Replace B with –B in 1. 
  )cos( BA +  =  )sin(sin)cos(cos BABA −+−  
  )cos( BA +  =  BABA sinsincoscos − . 
 

 3. Replace A with A+π
2  in 2. 

  )cos( 2 BA ++π  =  BABA sin)sin(cos)cos( 22 +−+ ππ  
      )sin( BA +−  =  BABA sincoscossin −−  
         )sin( BA +  =  BABA sincoscossin + . 
 
 4. Replace B with –B in 3. 
  )sin( BA −  =  )sin(cos)cos(sin BABA −+−  
  )sin( BA −  =  BABA sincoscossin − . 
 
Example Verify, without the use of a calculator, the addition formula for 

)sin( BA +  when 3π=A  and 6π=B . 
 
 )sin( BA +  =  BABA sincoscossin +  
 When 3π=A , 6π=B , LHS = )63sin( π+π  = )2sin(π  = 1. 
                                   RHS = )6sin()3cos()6cos()3sin( ππ+ππ  
   = 2

1
2
1

2
1

2
1 33 ×+×  

   =  1  which verifies the formula. 
 
Example Simplify θ+θ sin3cos 2

1
2
1 . 

 
 )cos(sinsincoscossin3cos 3

1
3
1

3
1

2
1

2
1 π−θ=πθ+πθ=θ+θ . 

 
Example If π<α<=α 2

1
5
3 0,sin  and π<β<π=β 2

1
5
4 ,sin , evaluate 

)cos( β+α  without the use of a calculator. 
 
 π<α<=α 2

1
5
3 0,sin , so 5

4cos =α ;  π<β<π=β 2
1

5
4 ,sin , so 5

3cos −=β . 
 Thus    )cos( β+α  =  βα−βα sinsincoscos  
   =  ( ) 5

4
5
3

5
3

5
4 ×−−×  

   =  25
24− . 
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Example Find a value for π12
7sin  in simplest surd form. 

 

  π12
7sin  =  )sin( 4

1
3
1 π+π  

  =  ππ+ππ 4
1

3
1

4
1

3
1 sincoscossin  

  =  223 2
1

2
1

2
1

2
1 ×+×   =  )26(4

1 + . 
 

Example Verify that the expressions BA cottan +  and 
BA

BA
sincos

)cos( −  are 

equal whenever both expressions have meaning. 
 
 LHS = BA cottan +  

  =  
B
B

A
A

sin
cos

cos
sin

+  

  =  
BA

BABA
sincos

coscossinsin +  

  =  
BA

BA
sincos

)cos( −   =  RHS  Q.E.D. 
 
Exercise 4.11 
 
1. Verify the following identities using the addition formulae: 
 (a) θ=θ+π cos)sin( 2

1  ;  (b) θ=θ−π sin)cos(2
1  ; 

 (c) θ−=θ+π sin)cos(2
1  ;  (d) θ−=θ+π sin)sin(  ; 

 (e) θ−=θ−π cos)cos(  ;  (f) θ−=θ−π sin)2sin( . 
 
2. Without the use of a calculator verify the addition formula for 
 (a) )sin( β−α  when π=βπ=α 3

1
3
2 ,  ; 

 (b) )sin( β+α  when π=βπ=α 6
1

2
1 ,  ; 

 (c) )cos( β+α  when π=βπ=α 6
5

2
3 ,  ; 

 (d) )cos( β−α  when π=βπ=α 3
1, . 

 
3. Expand each of the following and simplify where possible: 
 (a) )2sin( yx +  ; (b) )403sin( °+B  ; (c) )(2sin BA +  ; 
 (d) )2sin( yx −  ; (e) )sin( 6

1 π−θ  ; (f) )cos( 2
1 yx +  ; 

 (g) )(3cos BA +  ; (h) )cos(6
1 A−π  ; (i) )cos(3

1 A+π  ; 
 (j) )cos( CB −  ; (k) )sin( B−π  ; (l) )2cos(3

1 A+π  ; 
 (m) )sin( 3

2 x−π  ; (n) x2sin  ; (o) x2cos . 
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4. Express each of the following as a single trigonometric function: 
 (a) °°+°° 40sin50cos40cos50sin  ; (b) °α−°α 40sincos40cossin  ; 
 (c) ππ−ππ 6

1
3
2

6
1

3
2 sincoscossin  ; (d) AAAA sin2sincos2cos +  ; 

 (e) °°−°° 35sin55sin35cos55cos  ; (f) π−π 3
1

3
1 sincoscossin xx  ; 

 (g) ππ−ππ 10
1

15
4

10
1

15
4 sincoscossin  ; (h) AA cos3sin 2

1
2
1 −  ; 

 (i) BB cos2sin2 2
1

2
1 +  ; (j) AA 22 sincos − . 

 
5. If α is an angle in quadrant 1 and β is an angle in quadrant 2 such that 

5
3cos =α  and 5

3sin =β , evaluate each of the following without the use of a 
calculator: 

 (a) )cos( β+α  ; (b) )sin( β−α  ; (c) )cos( β−α . 
 
6. If α is an angle in quadrant 2 and β is an angle in quadrant 3 such that 

5
4sin =α  and 15

8tan =β , evaluate each of the following without the use of 
a calculator: 

 (a) )cos( β−α  ; (b) )sin( β+α  ; (c) )cos( β+α . 
 
7. Find in simplest surd form the value of each of the following: 
 (a) cos 105° ; (b) cos 75° ; (c) sin 15° ; (d) sin 75°. 
 
8. Find in simplest surd form the value if each of the following:  
 (a) π12

7sin  ; (b) π12
13cos  ; (c) π12

1cos  ; (d) π12
23cos . 

 
9. Verify that the following identities are true whenever the expressions have 

meaning: 
 (a) θ+θ=π−θ sin3cos)cos(2 3

1 ;  (b) θ−θ=π+θ sincos)cos(2 4
1  ; 

 (c) θ−φ=
φθ

φ+θ tancot
sincos

)cos(  ; (d)    1cottan
sincos

)sin(
+=

+ BA
BA

BA  ; 

 (e) βα=β−α+β+α cossin2)sin()sin(  ; 
 (f) β−α=β−αβ+α 22 sinsin)sin()sin(  ; 
 (g) )cos(sin)sin(cossin BAABAAB −=−+ . 
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4.12 Addition Formulae for the Tangent Function 
 

1. 
BA
BABA

tantan1
tantan)tan(

−
+

=+   

 

2. 
BA
BABA

tantan1
tantan)tan(

+
−

=−  

 

Proof 1. )tan( BA +  =  
)cos(
)sin(

BA
BA

+
+  

   =  
BABA
BABA

sinsincoscos
sincoscossin

−
+  

   =  
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

BA
BA

BA
BA

BA
BA

BA
BA

coscos
sinsin

coscos
coscos

coscos
sincos

coscos
cossin

 

   =  
BA
BA

tantan1
tantan

−
+ . 

 
 2. Put –B for B in 1. 

  )tan( BA −  =  
)tan(tan1
)tan(tan

BA
BA

−−
−+  

   =  
BA
BA

tantan1
tantan

+
− . 

 
Example If π<<π−= 2

3
13
5 ,sin AA  and π<<π−= BB 2

1
5
3 ,cos , find the 

value of )tan( BA −  without the use of a calculator. 
 
 12

5tan =A  and 3
4tan −=B  

 Therefore )tan( BA −  =  
BA
BA

tantan1
tantan

+
−  

  =  
3
4

12
5

3
4

12
5

1 ×−

+
 

  =  
2036
4815

−
+  

  =  16
63 . 
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Exercise 4.12 
 
1. Verify the following identities using appropriate addition formulae: 

 (a) AA tan)tan( =+π  ; (b) 
A
AA

tan1
tan1)tan(4

1

+
−

=−π . 
 
2. Verify, without the use of a calculator, the addition formula for 
 (a) )tan( BA −  if π=π= 6

1
3
1  and BA  ; 

 (b) )tan( BA +  if π=π= 3
2

3
1  and BA . 

 
3. Simplify each of the following: 

 (a) 
°°−
°+°

25tan20tan1
25tan20tan  ;  (b) 

BA
BA

tantan
tantan1

−
+  ; 

 (c) 
ππ+

π−π

3
2

6
5

3
2

6
5

tantan1
tantan

 ;  (d) 
A
A

tantan1
tantan

4
1

4
1

π−

+π
 ; 

 (e) 
A
A

tan1
tan1

−
+  ;   (f) 

A
A
2tan1

tan2
−

. 

 

4. If 5
4cos =A  where A is in the first quadrant and 17

8sin =B  where B is in 
the second quadrant, find the value of each of the following without the use 
of a calculator: (a) tan(A + B) ;  (b) tan(A – B). 

 
5. Verify that the following are true whenever the expressions have meaning: 

 (a) 
xx
xxx

sintancos
costansin)tan(

α−
α+

=α+  ; 

 (b) )cot(
sincos
sincos)tan( 4

1
4
1 A

AA
AAA +π=

+
−

=−π  ; 

 (c) )tan(tan
cottan
tantan BAB

BA
BA

−=
+
−  ; 

 (d) )tan(
sintancos
costansin

α+=
α−
α+ x

xx
xx . 

 

6. Find in simplest surd form the values of        (a)  5
12tan π  ;       (b)  11

12tan π . 
 

7. Show that yx
yyx
yyx tantan

cot)tan(
tan)tan(

−=
−−
+−  whenever all expressions have 

meaning. 
 

8. Simplify 
°+°
°−°

35cot80tan
35tan80tan . 
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4.13 Duplication and Half-angle Formulae 
 
Duplication Formulae 
 
1. AAA cossin22sin =  
2. A2cos  =  AA 22 sincos −  
  =  1cos2 2 −A  
  =  A2sin21 −  

3. 
A

AA 2tan1
tan22tan

−
=  

 
Proof 1. A2sin  =  )sin( AA +  
   =  AAAA sincoscossin +  
   =  AAcossin2 . 
 
 2. A2cos  =  )cos( AA +  
   =  AAAA sinsincoscos −  
   =  AA 22 sincos −  
   =  ( )AA 22 cos1cos −−  
   =  1cos2 2 −A  
   =  ( ) 1sin12 2 −− A  
   =  A2sin21 − . 
 
 3. A2tan  =  )tan( AA +  

   =  
AA
AA

tantan1
tantan

−
+  

   =  
A

A
2tan1

tan2
−

. 

 
Example If π<<π= AA 2

1
5
3  and sin , find the values of AA 2cos and 2sin  

without the use of a calculator. 
 
 5

4
5
3 cossin −=⇒= AA  

 Therefore,  A2sin  =  AAcossin2  and  cos 2A =  21 2sin A−  
  =  ( )5

4
5
32 −××  =  ( )9

251 2−  

  =  25
24− . =  7

25− . 
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Example Show that x
xx
xx cot

12sin2cos
12sin2cos

=
−+
+−  whenever both expressions 

have meaning. 
 

 
12sin2cos
12sin2cos

−+
+−

xx
xx  =  

1cossin2sin21
1cossin21cos2

2

2

−+−
+−−

xxx
xxx  

  =  
xxx
xxx

2

2

sin2cossin2
cossin2cos2

−
−  

  =  ( )
( )

2cos cos sin
2sin cos sin

x x x
x x x

−
−

 

  =  xcot . 
 
Further Duplication Formulae 
 

1. 
A

AA 2tan1
tan22sin

+
=   2. 

A
AA 2

2

tan1
tan12cos

+
−

=  

 

Proof 1. 
A

A
2tan1

tan2
+

 =  
AA

AA
22

2

cos)tan1(
costan2

+
 

   =  
AA

AA
22 sincos

cossin2
+

 

   =  A2sin . 
 

 2. 
A
A

2

2

tan1
tan1

+
−  =  

AA
AA

22

22

cos)tan1(
cos)tan1(

+
−  

   =  
AA
AA

22

22

sincos
sincos

+
−  

   =  A2cos . 
 
Example Find the value of xtan  if 2.32cos82sin =+ xx . 
 

 Let xt tan=  then 21
22sin

t
tx

+
=  and 2

2

1
12cos

t
tx

+
−

= . 

 Therefore 
5

16
1

)1(8
1

2
2

2

2 =
+
−

+
+ t

t
t
t  

 ⇒ )1(16)1(4010 22 ttt +=−+  
 ⇒ 0241056 2 =−− tt  
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 ⇒ 012528 2 =−− tt  
 ⇒ 0)47)(34( =+− tt  
 Therefore 7

4
4
3 or  tan −== tx . 

 
Half-angle Formulae 
 

1. 
2
cos1sin 2

1 AA −
±=  

2. 
2
cos1cos 2

1 AA +
±=  

3. 
A
AA

cos1
cos1tan 2

1

+
−

±=  

 
Proof 1. AA 2

12sin21cos −=  (duplication formula for cosine) 

     ⇒ 
2
cos1sin 2

12 AA −
=  

     ⇒ 
2
cos1sin 2

1 AA −
±= . 

 
 2. 1cos2cos 2

12 −= AA  (duplication formula for cosine) 

     ⇒ 
2
cos1cos 2

12 AA +
=  

     ⇒ 
2
cos1cos 2

1 AA +
±= . 

 

 3. 
A
A

A
A

A
cos1
cos1

cos
sin

tan
2
12
2
12

2
12

+
−

==  

     ⇒ 
A
AA

cos1
cos1tan 2

1

+
−

±= . 

 
Note: Formulae 1 and 2 are sometimes very useful in the forms: 
 AA 2cossin 2

1
2
12 −=     and    AA 2coscos 2

1
2
12 += . 
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Example If 25
7cos −=A , find the values of AAA 2

1
2
1

2
1 tan  and  cos,sin . 

 

 5
4

2
1

2
cos1sin ±=

−
±=

AA  ; 

 5
3

2
1

2
cos1cos ±=

+
±=

AA  ; 

 3
4

2
1

cos1
cos1tan ±=

+
−

±=
A
AA . 

 

Example If 24
72tan =A , π<< 4

10 A , find the value of Atan . 
 

 Method 1: A2tan  =  
A

A
2tan1

tan2
−

 

  ⇒ 2
7 2 tan
24 1 tan

A
A

=
−

 

  ⇒ AA tan48tan77 2 =−  
  ⇒ 07tan48tan7 2 =−+ AA  
  ⇒ 0)7)(tan1tan7( =+− AA  
  ⇒ 7

1tan =A  since 7tan −=A  is impossible for π<< 4
10 A . 

 

 Method 2: 25
24

24
7 2cos2tan =⇒= AA  

  ⇒ Atan  = 
A
A

2cos1
2cos1

+
−    )0(tan >A  

    =  
25

49
25

1
 

    =  7
1 . 

 
 Method 3: Let O be the centre, and AB the diameter of a semi-circle 

of radius 25. Let C be a point on the semicircle such that 
the angle COB = 2A. Let CD be drawn perpendicular to 
OB to meet OB at D. 

 
  CD = 7 
  OD = 24 
  OC = OA = 25 

 Therefore CD 7 1tan
AD 24 25 7

A = = =
+

. 

   

A B 
O 

C 

D 
2A A 
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Example Prove that 1 sin 2 cos sin
cos2 cos sin

A A A
A A A

+ +
=

−
 whenever both expressions 

have meaning. 
 

 RHS =  cos sin cos sin
cos sin cos sin

A A A A
A A A A

+ +
×

− +
 

  =  
2 2

2 2
cos 2sin cos sin

cos sin
A A A A

A A
+ +

−
 

  =  1 sin 2
cos2

A
A

+  

  =  LHS, as required. 
 
Exercise 4.13 
 
1. Verify the formulae for 
 (a) A2sin  when π= 6

1A  ; (b) A2cos  when π= 4
1A  ; 

 (c) A2tan  when π= 3
1A  ; (d) A2sin  when 3tan =A  ; 

 (e) A2cos  when 1tan =A  ; (f) A2
1sin  when 2

1cos =A  ; 
 (g) A2

1cos  when 1cos −=A  ; (h) A2
1tan  when 0cos =A . 

 
2. Express each of the following in terms of the half angle (e.g. 

)2cos2sin24sin xxx = : 
 (a) A6sin  ; (b) Asin  ;  (c) A8sin  ; 
 (d) x3sin  ;  (e) x4cos  ; (f) xcos  ; 
 (g) x4tan  ; (h) π3

1tan  ; (i) °50cos  ; 
 (j) )2sin( x−π  ; (k) 12cos −A  ; (l) )tan(2

1 A−π . 
 
3. Evaluate each of the following without the use of a calculator: 
 (a) °° 15cos15sin2  ; (b) °−° 2

12
2
12 22sin22cos  ; 

 (c) π− 8
12sin21  ; (d) °° 75cos75sin  ; 

 (e) 
°−

°
15tan1

15tan2
2  ; (f) 

°

°−

2
1

2
12

22tan
22tan1

 ; 

 (g) °+° 75sin75cos 22  ; (h) ππ+ππ 12
1

12
13

12
1

12
13 sincoscossin  ; 

 (i) ππ 8
32

8
32 cossin  ; (j) °−° 15sin15cos 44 . 
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4. Simplify each of the following: 
 (a) )(sin)(cos 2

12
2
12 BABA +−+  ; (b) )sin()cos( 4

1
4
1 xx −π−π  ; 

 (c) AAA 4cos2cos2sin  ; (d) AA 2cottan1 −  ; 

 (e) xxx tan3cos3sin −  ; (f) 
A
A

cos1
cos1

+
−  ; 

 (g) 
A

A
sin

2cos1 −  ; (h) 
xx

x
sincos
2sin1

−
− . 

 
5. (a) If 3

1cos −=A , find A2
1sin  and A2

1cos . 
 (b) Find xxx tan and cos,sin  if 8

12cos =x . 

 (c) Prove that 12tan 8
1 −=π . 

 (d) If A, B, C are acute angles such that tan 1, tan 2A B= = , tan 3C = , 
show that A + B + C = π without the use of a calculator. 

 (e) If xx cos2sin5 = , find the values of x2cos . 
 (f) If 5

1tan =A , 239
1tan =B  with both A and B acute, prove that 

π=− 4
14 BA . 

 (g) In triangle ABC, 4
3tan −=A  and 3

1tan =B . Prove that the triangle 
is isosceles. 

 

6. (a) Prove that the expressions tan3 tan
tan3 tan

A A
A A

+
−

 and 2cos2A  are equal 

whenever all expressions have meaning. 
 
 (b) Prove that ( )1 1

4 2sec tan tanA A A+ = π + . 
 
4.14 Functions of the Form θθ+θ cossin ba  
 
The function θ+θ cossin ba  can always be expressed in the form )sin( α+θk  
or )cos( α+θk  where k and α are constants. 
 
If αθ+αθ=α+θ=θ+θ sincoscossin)sin(cossin kkkba , equating the 
coefficients of θθ cos  and  sin  gives α=α= sin  and  cos kbka . 
 
Squaring and adding gives: 222222 )sin(cos kkba =α+α=+ . 

This gives 22 bak +±=  but we are free to choose k > 0 so 22 bak +=  will 
do. 
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Then abkakb =α=α=α tanor    cos  and  ,sin . A suitable value of α can 
then be found. 
 
Example Express θ−θ cos4sin3  in the form )sin( α−θk  where 0>k  and 

π<α< 2
10 , and hence find the maximum and minimum values of 

θ−θ cos4sin3 . 
 
 If  θ−θ cos4sin3  =  )sin( α−θk  =  αθ−αθ sincoscossin kk  then 
 4sin  and  3cos =α=α kk . 
 Choosing 0>k  we get 543 22 =+=k , then 

5
4

5
3 sin  and  cos =α=α  

which gives α = 0.927  ( π<α< 2
10 ). 

 Hence )927.0sin(5cos4sin3 −θ=θ−θ  and clearly the maximum and 
minimum values are 5 and –5 respectively. 

 
Example Solve the equation 5.6sin12cos5 =+ xx  for π<≤ 20 x . 
 
 Let α+α=α−=+ sinsincoscos)cos(sin12cos5 xAxAxAxx . 

 Firstly, 13125 22 =+=A , then 12sin  and  5cos =α=α AA  giving 
1760.1=α . 

 We need to solve the equation 5.6)cos(13 =α−x  or 2
1)cos( =α−x . 

 α−x  =  ),2(3
1 Z∈π+π± kk  

        x =  )2(3
1 kπ+π±α  

  =  0.129, 2.22  )20( π<≤ x . 
 
Note: Clearly a graphic display calculator can be used here. 
 
 
Exercise 4.14 
 
1. Express each of the following functions in the form )sin( α+xA  where 

A > 0 and π<α< 2
10 . State the maximum and minimum values of each 

function. 
 (a) xx cos3sin2 +  ; (b) xx cossin3 +  ; (c) xx sin2cos5 + . 
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2. Express each of the following functions in one of the forms )sin( α±xA  

or )cos( α±xA : 

 (a) xx cossin −  ; (b) xx sincos3 +  ; (c) xx sin5cos3 − . 
 
 
3. By expressing each of the following functions in the form )sin( α±xA  or 

)cos( α±xA , solve the equations for π<≤ 20 x . 
 (a) 1sin2cos =− xx  ; (b) 4cos5sin3 =− xx  ; 
 (c) 3cossin5 =+ xx  ; (d) 17sin15cos8 =+ xx . 
 
4. Solve each of the following equations for π<θ≤ 20 : 
 (a) 12cos22sin3 =θ−θ  ;  (b) 23sin3cos4 =θ+θ  ; 
 (c) 5cos3sin6 =θ+θ  ;  (d) 012sin32cos =+θ+θ . 
 
5. Solve each of the following equations for π<≤ 20 x  
  (i) by expressing xx 2sin  and  2cos  in terms of xt tan=  ; 
  (ii) using an expression of the form )2cos(or    )2sin( α±α± xAxA . 
 (a) 22sin2cos2 =+ xx  ;  (b) 4.02cos2sin2 =+ xx  ; 
 (c) 02.02sin22cos3 =+− xx  ; (d) 5.02cos32sin2 =− xx . 
 
6. The function xmxm sincos)21( +−  is written in the form )cos( α−xA  

where A > 0. 
 (a) Find the values of A and αtan  in terms of m. 
 (b) Find the maximum value of xmxm sincos)21( +−  in terms of m. 
 (c) Show that the maximum value must be greater than or equal to 55

1  
and find the value of m for which the maximum value occurs. 
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Required Outcomes 

 
 After completing this chapter, a student should be able to: 
• quote the sine, cosine and tangent of angles of 0°, 30°, 45°, 60° and 90°. 
• sketch graphs of the trigonometric functions of sine, cosine and tangent. 
• convert from radians to degrees and vice versa. 
• use the double angle formulae for sin 2θ  and cos2θ  to simplify 

trigonometric expressions and/or solve equations. 
• sketch the graphs of circular functions sine, cosine and tangent. 
• calculate arc length, area of a sector and area of a segment of a circle. 
• solve simple trigonometric equations. 
• define and sketch the graphs of the functions cosecant, secant and 

cotangent.  (HL) 
• prove simple trigonometric identities.  (HL) 
• recall and use the addition formulae.  (HL) 
• recall and use the duplication and half-angle formulae.  (HL) 
• write sin cosa bθ + θ  in the forms sin( )k θ ± α or cos( )k θ ± α . (HL) 
• solve trigonometric equations using the formulae above.  (HL) 
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5.1 Relations and Functions – Domain and Range 
 
The concept of an ordered pair (x, y) where x is a member of one set, A, and y is a 
member of another set, B, is very common in mathematics. For the coordinates (x, y) 
of a point in the plane, x ∈ R and y ∈ R. For the ordered pairs (x, y) for which 
y = sin x, x could be any member of the set of all angles, and y any real number 
between –1 and 1 inclusive. The rational number qp  could be represented by the 
ordered pair (p, q) where p is any integer and q is any non-zero integer. 
 
Relations 
 
We are already familiar with the idea of a relation between x and y, the coordinates of 
any point in the Cartesian plane satisfying the equation, say, y = 3x – 2. 
 
Definition A relation is any set of ordered pairs. 
 
R = {(x, y) ⏐ x ∈ R and y = 3x – 2}, 
S = {(x, y) ⏐ x ∈ [–1, 1] and 2 2 1x y+ = } and 
T = {(x, y) ⏐ x ≥ 0 and 21y x= + } are examples of relations. 
 
The set A of all possible values of x is called the domain of the relation and the set B 
of all possible values of y is called the range of the relation. 
 
For the relation R above, the domain is the set of all real numbers R, and the range is 
also R. 
For the relation S, the domain = {x ⏐ x ∈ [–1, 1]} = [–1, 1] and the range is the same 
as the domain since 2 2 1x y+ =  represents the unit circle. 
For the relation T, the domain = {x ⏐ x ≥ 0} = [0, ∞ [ and the range = {y ⏐ y ≥ 1} = 
[1, ∞ [. 
 
[Note: The variable used in the definitions of the domain and range is a "dummy" 
variable since any symbol may be used. The sets {x ⏐ x ≥ 0}, {y ⏐ y ≥ 0} and 
{z ⏐ z ≥ 0} are identical. The 'name' of the variable is irrelevant.] 
 

Notation: If x ∈ R and y ∈ R, then (x, y) ∈ 2� . Thus the Cartesian plane is 
denoted by 2� . 
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Functions 
 
Definition A function is a relation in which no two different ordered pairs have 

the same first member. 
 
Geometrically the graph of a function cannot be cut by any vertical line in more than 
one place. 
 
More formally, a relation f with domain A and range B is a function if 

• for every x ∈ A there exists at least one y ∈ B such that (x, y) ∈ f ; 
• if 1( , )x y f∈  and 2( , )x y f∈ , then 1 2y y= . 

 
Example Show that the relation f = { (x, 3x – 2) ⏐ x ∈ R} is a function. 
 
 Consider any x ∈ R. There exists (exactly) one value of (3x – 2) ∈ R, and if 

1( , )x y f∈  and 2( , )x y f∈ , then 231 −= xy  and 232 −= xy  giving 

1y  = 2y .  Therefore f is a function. 
 
Note: For subsets of the Cartesian plane, if a is any member of the domain, then the 
vertical line x = a must cross the graph of a function in exactly one point. 
 
Example Show that the relation 

 f = { (x, y) ⏐ x ∈ [–1, 1], y ∈ [–1, 1], 122 =+ yx } 
is not a function. 
 

 ( )2
3

2
1 ,  ∈ f since 2

1  ∈ [–1, 1], 2
3  ∈ [–1, 1] and ( ) ( ) 1

2

2
32

2
1 =+ , and 

similarly ( )2
3

2
1 , −  ∈ f, but 2

3
2
3 −≠ . 

 
 Therefore f is not a function. 
 
 
 
 
 
 
 
 
 
 
 
 Clearly there is at least one vertical line which crosses the graph at more than 

one point. 
 

x 

 y 

O 1 –1 

–1 

1 

122 =+ yx

( )2
3

2
1 ,

( )2
3

2
1 , −
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Example Show that the relation f = { (x, y) ⏐ y = 
x
1 , x ∈ R } is not a function. 

 
 Since there is no value of y for which x = 0, f is not a function. 
 

Note that the relation f = { (x, y) ⏐ 
x

y 1
= , x ∈ R, x ≠ 0 } is a function since for any 

x ∈ R, x ≠ 0, there exists at least one value of y ∈ R for which (x, y) ∈ f, and if 
(x, 1y ) and (x, 2y ) ∈ f, then 1y  = 2y . 
 
Finding the Domain of a Function 
 
The domain of a function may be given explicitly when the function is defined or it 
may be implied by the expression used to define the function. The implied domain is 
the set of all real numbers for which the expression is defined. 
 

For example, the function 1( )
1

f x
x

=
−

 has an implied domain which consists of all 

real numbers x except for x = 1 since division by zero is undefined. 
 
The function ( )f x x=  is undefined for negative x and so the implied domain is the 
set of all non-negative values of x or [0, ∞ [. 
 
The function ( ) logf x x=  is defined for all positive values of x and so the implied 
domain is +� . 
 
The range of a function can be quite difficult to find, and perhaps it is best obtained 
from a graph of the function. A GDC is often the best tool to use here. 
 
Example Find the domain and range of each of the following functions: 

  (a) 2( )
1

xf x
x

+
=

+
 ;  (b) 1( )

log
f x

x
= . 

 

 (a) 2( )
1

xf x
x

+
=

+
 is not defined when x = –1 and so the domain of f is the 

set of all real numbers x except x = –1 or ] −∞ , –1[ ∪ ]–1, ∞ [. 
 

  2 1( ) 1
1 1

xy f x
x x

+
= = = +

+ +
 and so (y – 1)(x + 1) = 1 which means 

that y cannot be equal to 1 {zero × (x + 1) ≠ 1} and so the range is all 
real numbers y except y = 1 or ] −∞ , 1[ ∪ ]1, ∞ [ . 



Chapter 5 

126 

     

  
  It is clear from the graph that the domain consists of all real x except 

x = –1 and the range consists of all real y except y = 1. 
 

 (b) 1( )
log

f x
x

=  is not defined if log x is not defined or if log x = 0. 

  Therefore the domain of f is the set of all positive real numbers x 
except for x = 1 or ]0, 1[ ∪ ]1, ∞ [. 

 

  The following is a graph of y = 1( )
log

f x
x

= : 

              

 
 
  From the graph we see that the range is the set of all real numbers y 

except for y = 0 or ] −∞ , 0[ ∪ ]0, ∞ [. 
 
Notation 
 
We often use the notation f : A → B to indicate that f is a function with domain A and 
range B. We interpret this as: “f is a function defined on A with values in B ”. Using 
Euler’s notation, we usually write the statement “(x, y) ∈ f ” as y = f (x). 
 
This notation suggests the fact that for each value of x belonging to the domain, there 
exists a unique value of f (x) belonging to the range. 

2
1

xy
x

+
=

+

 y 

x 

 y 

 x 

1
log

y
x

=

O 

x = –1

 y = 1 

–1 
1 

O 

x = 1 

1 
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If the function f (x) describes how the value of f (x) is calculated for each value of x, 
then we write 
   )(: xfxf � . 
 
Thus if f = { (x, 3x – 2) : x ∈ R }, we write f : R → R  or  f : 23 −xx� . 
 
The function f : A → B can be pictured in the following way: 
 
 
 
 
 
 
 
Definition Two functions 111 : BAf →  and 222 : BAf →  are said to be equal, 

21 ff = , if 21 AA = , 21 BB = , and if x ∈ 1A , )()( 21 xfxf = . 
 
Thus equal functions have the same domain and range, and have equal values for each 
element of the domain. 
 
Example Consider the following functions from R to R. State the range of 

each. 
  (a) 3x – 2 ; (b) 3x  ; (c) cos x ; (d) x3 . 
 
 (a) Range = R.  (b) Range = R. 
 

 (c) Range = [–1, 1].  (d) Range = +R . 
 
Exercise 5.1 
 
1. Determine which of the following relations are functions: 
 (a) { (1, 4), (2, 7), (3, 10), (4, 13), (5, 16) } ; 
 (b) { (4, 1), (5, 2), (6, 0), (7, 1), (8, 2), (9, 0) } ; 
 (c) { (–3, 9), (–2, 4), (–1, 1), (0, 0), (1, 1), (2, 4), (3, 9) } ; 
 (d) { (0, 2), (0, 4), (0, 6), (0, 8) }. 
 
2. Determine which of the following relations are functions, giving reasons for 

your answers: 
 (a) R = { (x, y) ⏐ x ∈ R, 3x – y = 2 } ; 
 (b) S = { (x, y) ⏐ x ∈ R, y = 2x  } ; 
 (c) T = { (x, y) ⏐ x ∈ R, (x – 1)(y – 1) = 1 } ; 
 (d) U = { (x, y) ⏐ x ∈ +R , y = x2log } ; 
 (e) V = { (x, y) ⏐ x ∈ R, y = x2log  } ; 
 (f) W = { (x, y) ⏐ x ∈ Q, xy = 4 }. 

A B 
x  y 

 f 
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3. State the range of each of the following functions: 
 (a) xx 45 −�  with domain R ; 
 (b) xx�  with domain [0, ∞ [ ; 
 (c) 12 +xx�  with domain R ; 
 (d) xx log�  with domain +R  ; 
 (e) 2sin3 +xx�  with domain R ; 
 (f) xx 2cos�  with domain [0, π] ; 
 (g) 29 xx −�  with domain [–3, 3] ; 
 (h) xx 1�  with domain +R  ; 

 (i) 21log xx −�  with domain ]–1, 0] ; 
 (j) )4(4 2xx +�  with domain R ; 
 (k) 21 (2 4 3)x x x− +�  with domain R ; 

 (l) 2
94x
x

−�  with domain [ 3
2 , ∞ [. 

 
4. In each of the following, suggest a suitable domain and range to ensure that 

the relation is a function: 
 (a) { (x, y) ⏐ y = 7 – 5x } ; (b) { (x, y) ⏐ y = 2x  } ; 
 (c) { (x, y) ⏐ y = 1−x  } ; (d) { (x, y) ⏐ y = 24 x− } ; 
 (e) { (x, y) ⏐ y = x3 } ; (f) { (x, y) ⏐ y = xlog } ; 

 (g) { (x, y) ⏐ y = )1log( 2 −x } ; (h) { (x, y) ⏐ y = 241 x− } ; 
 (i) { (x, y) ⏐ y = )1log( 2 +x } ; (j) { (x, y) ⏐ y = sin x + 1 } ; 
 (k) { (x, y) ⏐ y = xcos  } ;  (l) { (x, y) ⏐ y = tan x }. 
 
5. In each of the following, state the 'largest' domain possible for the function 

and find the range corresponding to this domain: 

 (a) 2: 1f x x −�  ;  (b) 2
2:f x
x

�  ;  

 (c) 1:
2

f x
x −

�  ;   (d) 1:
1

xf x
x

+
−

�  ;  

 (e) 1:
( 1)( 2)

f x
x x− −

�  ;  (f) 2
2:

2 6 5
f x

x x− +
�  ; 

 (g) : ln(2 3)f x x −�  ;  (h) : ln( 2)f x x +�  ; 
 
 (i) : lnf x x�  ;   (j) ( ) secf x x= . 
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Higher Level 

 
6. In each of the following, give an example of a function which has the given 

domain and range: 
 (a) Domain = R, Range = [–2, 2] ; 
 (b) Domain = R, Range = ]2, ∞ [ ; 
 (c) Domain = [–4, 4], Range = [0, 2] ; 
 (d) Domain = ]2, ∞ [, Range = R ; 
 (e) Domain = ]– ∞ , 0[ ∪ ]0, ∞ [, Range = +R . 
 
 

 
5.2 The Composition of Functions 
 
Consider the functions f : A → B and g : B → C, i.e., the range of f is the same as the 
domain of g. Then, the function h : A → C, defined by ( ))(()( xfgxh =  and 
sometimes written ))(()( xfgxh �= , is called a composition of f and g. 
 
The situation in diagrammatic form would be: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example Given that f = {(1, 2), (2, 3), (3, 4)} and g = {(2, 4), (3, 6), (4, 8)}, 

find the numerical values of g(f (1)), g(f (2)) and g(f (3)). 
 
 g(f (1)) = g(2) = 4 ; g(f (2)) = g(3) = 6 ; g(f (3)) = g(4) = 8. 
 
Example For functions f : R → R defined by 12)( += xxf  and g : R → R 

defined by xxg −= 1)( , find the composite functions gf �  and 
fg � . 

 
 ( gf � )(x) = f (g(x)) = f (1 – x) = 2(1 – x) + 1 = 3 – 2x,  and 
 ( fg � )(x) = g(f (x)) = g(2x + 1) = 1 – (2x + 1) = –2x. 

A B 
C 

 f g 

x  f (x) g(f (x)) 

h 
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Example For functions f : R → R, g : R → R, defined by 1)( += xxf  and 
3)( xxg = , find the composite functions fg � , gf � , ff � , gg � . 

 

 ( fg � )(x) = g(x+1) = 3)1( +x  ;  ( gf � )(x) = f ( 3x ) = 13 +x  ; 
 ( ff � )(x) = f (x+1) = x + 2 ;  ( gg � )(x) = )( 3xg  = 33 )(x  = 9x . 
 
Note: We often use the shorthand notation 2f  for ff � . Thus, if ( ) 6f x x= − , 

then ( )2 ( ) ( ( )) 6 6 (6 )f x f f x f x x x= = − = − − = . 
 
Exercise 5.2 
 

1. For the functions 3( ) 3   and  ( ) 2 3f x x x g x x= + = +  find 
 (a) ( )(2)f g�  ; (b) ( )( 1)f g −�  ; (c) 1

2( )( )f g�  ; 
 (d) ( )(2)g f�  ; (e) ( )( 1)g f −�  ; (f) 1

2( )( )g f� . 
 
2. For the following functions f  and  g, find ( )( 2)f g −�  and ( )( 2)g f −� . 
 (a) ( ) 2 3f x x= +  ,  2( ) 2 3g x x= −  ; 
 (b) 3 2( )f x x x= +  ,  2( ) 3 2g x x= −  ; 
 (c) ( ) 3f x x= +  ,  2( )g x x=  ; 
 (d) ( ) lnf x x=  ,  2( ) exg x −=  ; 

 (e) 2( )
2 3

f x
x

=
−

 ,  3 2( ) xg x
x
+

= . 

 
3. For the functions f = {(1, 2), (2, 3), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)} and 

h = {(1, 3), (2, 2), (3, 1)}, find the numerical value of each of the following: 
 (a) )1)(( gf �  ; (b) )2)(( fg �  ; (c) )3)(( fh �  ; 
 (d) )2)(( ff �  ; (e) )1)(( hg �  ; (f) )3)(( hh � . 
 
4. Given the functions f , g and h all with domain and range R, defined by 

2: +xxf � , 13: −xxg �  and 
3

1: +xxh � , find in simplest form the 

composite functions: 
 (a) gf �  ; (b) g �  h ; (c) h �  g ; (d) 2h . 
 

5. If f (x) = x  and g(x) = 2x – 1, find the composite functions f �  g and g �  f , 
and state the domain and range of each. 
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6. In each of the following find f �  g and g �  f : 

 (a) ( ) 1, ( ) 1f x x g x x= + = −  ; (b) 3( ) 4 3, ( )
4

xf x x g x −
= + =  ; 

 (c) 2( ) 2 , ( ) 3f x x x g x x= + = −  ; (d) ( ) ln(2 ), ( ) exf x x g x= =  ; 

 (e) 1 1( ) 1 , ( )
1

f x g x
x x

= − =
−

 ; (f) 2 2( ) , ( )
1 1

x xf x g x
x x

− +
= =

+ −
 ; 

 (g) 3( ) e , ( ) 2lnxf x g x x= =  ; (h) 2( ) 2 , ( ) 3log 2xf x g x x= =  ; 

 (i) ( )21
2

1( ) ( 0), ( ) 4f x x x g x x x
x

= − > = + +  . 

 
 

Higher Level 
 
7. For each of the following functions ( )f x  find a function ( )g x  so that 

( )( )f g x x=� : 
 (a) ( ) 3 2f x x= +  ; (b) ( ) 7f x x= −  ; 
 (c) 3( ) 1f x x= +  ; (d) ( ) 2lnf x x=  ; 

 (e) 3 2( )
5

xf x +
=   ; (f) 2( ) 1f x x= +  (domain of g is 1x ≥ ) ; 

 (g) 3( ) e xf x =  ; (h) 1( )
1

f x
x

=
+

 . 

 
8. Let f and g be functions each with domain R and range R. Let 

12)( −= xxf  and xxg 32)( −= . Find a function h : R → R such that 
 (a) (f � h)(x) = x ;   (b) (h �  g)(x) = 6x + 1 ; 
 (c) (h �  f )(x) = 6x + 1 ;  (d) (g �  h)(x) = 12x. 
 
9. Let f and g be functions each with domain R and range R defined by 

xxf 23)( −=  and 32)( += xxg . If h is a function with domain and range 
R, find the value of 

 (a) h(1) if f �  h = h �  f ;  (b) h(–3) if g �  h = h �  g. 
 

10. Show that the domain and range of the function 
)12(2

52)(
−

−
=

x
xxf  are the 

same, and find the function 2f . 
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*11. Let f : R → 2R  and g : 2R  → R be functions defined by 
),32()( xxxf +=  and )(),( 3

1 yxyxg += . Find  f �  g and g �  f. 
 

 

*12. Find the domain of the function 
dcx
baxxf

+
+

=)(  (c ≠ 0 and ad – bc ≠ 0). 

Show that the range is equal to the domain provided d = –a, and then 
xxf =)(2 . 

 
*13. Prove that the associative law holds for the composition of functions. That 

is, if f : A → B, g : C → A, and h : D → C are three functions, then 
    f �  (g �  h) = (f �  g) �  h. 
 

 
 
 
5.3 Inverse Functions 
 
Consider the function ( ) 2 1f x x= +  with domain A = {1, 2, 3, 4} and range 
B = {3, 5, 7, 9}. Thus f = {(1, 3), (2, 5), (3, 7), (4, 9)}. 
 
By interchanging the x- and y-coordinates of each element of f we form the inverse 
function of f , which is denoted 1f − . The inverse function has domain B and range A 
and can be written 1 1

2( ) ( 1) {(3,1), (5, 2), (7, 3), (9, 4)}f x x− = − = . 
The function and its inverse have the effect of 'undoing' each other. 
 
If we denote the functions by 'machines' which take input and provide output, we may 
represent the function composition as follows: 
 
 
 
 
 
 
 
 
 
From this we see that ( ( ))g f x x= , i.e., function g has undone the effect of applying 
function f to the number x. 
 
 

multiply 
by 2  f : x  → →  2x  → add 1 →  2x + 1 

divide 
by 2  g : 2x + 1  → →  2x → subtract 1 →  x 
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Note that function f undoes the effect of applying function g: 
 
 
 
 
 
 
 
 
 
Again we see that ( ( ))f g x x=  verifying that function f does indeed undo function g. 
 
Definition Let f and g be two functions such that 

• ( ( ))f g x x=  for every x in the domain of g, and 
• ( ( ))g f x x=  for every x in the domain of f. 

Then the function g is the inverse of the function f and we write 
1g f −= . 

 
Clearly from this definition, if function g is the inverse of function f, then function f is 
the inverse of function g. Thus the functions f and g are inverses of each other. 
 
Definition The function e(x) = x with domain and range equal to R is called the 

identity function. 
 

Example Show that the functions 3( ) 4 2f x x= +  and 3
2( )

4
xg x −

=  are 

inverses of each other. 
 
 First we note that the domain and range of both functions is R, the set of all 

real numbers. We need to show that ( ( ))  and ( ( ))f g x x g f x x= = . 

 
3

3 3
2 2 2( ( )) 4 2 4 2 2 2

4 4 4
x x xf g x f x x

⎛ ⎞ ⎛ ⎞− − −⎛ ⎞= = + = + = − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
  and 

 ( )
3 3

33 33 34 2 2 4( ( )) 4 2
4 4

x xg f x g x x x+ −
= + = = = =  which completes the 

proof. 
 
If (a, b) lies on the graph of f, then the point (b, a) lies on the graph of 1f −  and vice 
versa. Thus the graph of 1f −  is found by reflecting the graph of f  in the line y = x. 
 

 g : x  → subtract 1 →  x – 1  → divide 
by 2 

→  1
2 (x – 1) 

 f : 1
2 (x – 1)  → multiply 

by 2 
→  x – 1  → add 1 →  x 
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Example Find the inverse of the function :f →� �  defined by ( ) 3 2f x x= −  
and sketch the graphs of both y = ( )f x  and y = 1( )f x−  on the same 
set of coordinate axes. 

 
 To find the inverse of f we simply interchange x and y in the equation of f and 

then make y the subject of this new equation. 
 
 For the function 1f −  we have x = 3y – 2 or y = 1

3 ( 2)x + . 

 Thus 1 1
3( ) ( 2)f x x− = + . 

 
 The graphs of the functions f  and 1f −  are as follows: 
 
 

 
 
 
 
 
 
 
 
 
 
 
The Existence of an Inverse Function 
 
A given function may not have an inverse function. For example, the function 

2( ) ,f x x x= ∈�  does not have an inverse function since the relation 2y x=  can 
have two differing elements (1, 1) and (1, –1) with the same first member and so 
cannot be a function. 
 
 
Definition A function f is said to be one-to-one if no two different ordered pairs 

have the same second member. 
 
More formally, a function f is said to be one-to-one if for all a and b belonging to its 
domain, ( ) ( )f a f b=  implies that a = b. 
 
Geometrically the graph of a one-to-one function cannot be crossed by a horizontal 
line in more than one place. 
 
 

 y 

 x 

 3 2y x= −   y x=  

 1
3 ( 2)y x= +  

1 

1 

O 
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Example Show that the function ( ) 3 1f x x= − , x∈� , is one-to-one. 
 
 Let a and b be any real numbers such that ( ) ( )f a f b= . 
 Then 3a – 1 = 3b – 1 which gives a = b. 
 Thus f is one-to-one. 
 
Theorem A function f has an inverse function 1f −  if and only if f is one-to-one. 
 
 
Example Determine whether or not each of the following functions has an 

inverse function: 
 (a) ( ) 3 2f x x= − , x∈�  ; (b) 2( ) 2f x x x= − , x∈� . 
  If the inverse function does not exist, give a domain which is as 

'large' as possible so that an inverse function does exist. 
 
 (a) Let a and b be any two real numbers such that ( ) ( )f a f b=  where 

( ) 3 2f x x= − . 
  Then 3 – 2a = 3 – 2b 
  ⇒    – 2a = –2b 
  ⇒         a = b. 
 
  Therefore f is one-to-one and the inverse function exists. 
 
 (b) Let a and b be any two real numbers such that ( ) ( )f a f b=  where 

2( ) 2f x x x= − . 
  Then   2 2a a−  = 2 2b b−  
  ⇒        2 2 1a a− +  = 2 2 1b b− +  
  ⇒   2( 1)a −  = 2( 1)b −  
  ⇒       a – 1  =  ±(b – 1) 
  ⇒ a = b  or  a = 2 – b. 
  Thus the function f is not one-to-one and 1f −  does not exist. 
 

  2 2( ) 2 1 1 ( 1) 1f x x x x= − + − = − −  
  Thus f is one-to-one if x ≥ 1 since 2 2( 1) 1 ( 1) 1a b− − = − −  implies 

that 2 2( 1) ( 1)a b− = −  which in turn implies that a – 1 = b – 1 since 
both a – 1 ≥ 0 and b – 1 ≥ 0. Then a possible domain could be [1, ∞ [. 
{It can be shown that  f  is also one-to-one if 1x ≤ .}  
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  The answers given can be verified by the following graph. 
 
 

    
 
 
In part (b) of the previous example, all we need to do to prove that 1( )f x−  does not 
exist is to show that (2) (0)f f=  so that  f  is not one-to-one. 
 
 
Finding the Inverse of a Function 
 
To find the inverse of a one-to-one function ( )y f x= , follow the procedure below. 
 

1. Write the function in the form y = ( )f x . 
2. Interchange x and y. 
3. Make y the subject of this formula. 
4. Replace y with 1( )f x− . 

 
As further confirmation that you have a correct inverse, check that the domain of  f  is 
the range of 1f −  and that the domain of 1f −  is the range of  f . 
 
Example Find the inverse of the function :f →� �  defined by y = 6 – x. 
 
 Let a and b be any two real numbers such that ( ) ( )f a f b= . 
 Then 6 – a = 6 – b which gives a = b. 
 Therefore f is one-to-one. 
 
 For the function 1f − , x = 6 – y or y = 6 – x, with domain and range both R. 
 Thus 1( ) 6f x x− = − .   [Function f is its own inverse.] 
 
 

 y 

 x 

 y = 2 2x x−  

O 3 2 1 
–1 
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Example Find the inverse of the function 3 2:
1

xf x
x

+
−

�  with domain x ≠ 1. 

 

 Let a and b be two real numbers not equal to 1 such that 3 2 3 2
1 1

a b
a b

+ +
=

− −
. 

 Then (3a + 2)(b – 1) = (3b + 2)(a – 1) 
 ⇒ 3ab – 3a + 2b – 2 = 3ab + 2a – 3b – 2 
 ⇒ 5a = 5b 
 ⇒ a = b. 
 Therefore f is one-to-one. 
 

 For 1f −  we have 3 2
1

yx
y

+
=

−
 

   ⇒ x(y – 1) = 3y + 2 
   ⇒ xy – x = 3y + 2 
   ⇒ xy – 3y = x + 2 
   ⇒ y(x – 3) = x + 2 

   ⇒ 2
3

xy
x

+
=

−
    (x ≠ 3). 

 Thus 1 2( )
3

xf x
x

− +
=

−
  with domain x ≠ 3. 

 Now if y = 3 2
1

x
x

+
−

 = 53
1x

+
−

 then (y – 3)(x – 1) = 5 and so y ≠ 3. 

 
 Therefore the range of f is y ≠ 3. 
 

 Similarly the domain of 1f −  is x ≠ 3 and since 2 51
3 3

xy
x x

+
= = +

− −
 implies 

that (y – 1)(x – 3) = 5, then y ≠ 1. 
 

 Thus f and 1f −  are such that the domain of f is the range of 1f −  and the 
domain of 1f −  is the range of f. This completes the check. 

 

Example Show that the function 1( ) 2 xf x −=  with domain �  is one-to-one and 
find the inverse function 1( )f x−  stating its domain. Sketch the graphs 
of  f and 1f −  on the same set of coordinate axes. 

 
 Let a and b be two real numbers such that ( ) ( )f a f b= . 
 Thus 1 12 2a b− −=  which gives 1 – a = 1 – b or a = b. 
 Therefore f  is one-to-one. 
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 For the inverse function we have 12 yx −=  ⇒ 1 – y = 2log x  ⇒ 21 logy x= − . 
 Thus 1

2( ) 1 logf x x− = −  with domain ]0, ∞ [. 
 

 The graphs of  f  and 1f −  are as follows: 
 
   

  
 
 
Note: The inverse of the function should not be confused with its reciprocal. 

 The reciprocal of ( )f x  is ( ) 1 1( )
( )

f x
f x

− = . 

 
A diagrammatic relationship between inverses could be as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
The Inverse Trigonometric Functions 
 
The function ( ) sinf x x=  with domain 1 1

2 2[ , ]− π π  is one-to-one. Then an inverse 

function, 1( ) arcsinf x x− = , exists.  
 
 
 

g(b) = a b = f (a) 

 f 

1−= fgA B 

 y  y = x 

 x 

12 xy −=

21 logy x= −

O 

2 

2 
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The graphs of siny x=  and arcsiny x=  are as follows: 
 
 

           
 
 
The function ( ) cosf x x=  with domain [0, π] is also one-to-one and so an inverse 
function, 1( ) arccosf x x− = , exists. The graphs of cosy x=  and arccosy x=  are as 
follows: 
 
 

       
 
 
 
The function ( ) tanf x x=  with domain 1 1

2 2] , [− π π  is also one-to-one and so an 

inverse function, 1( ) arctanf x x− = , exists. The graphs of tany x=  and arctany x=  
are as follows: 
 
 

     
 
 

1 

1 

–1 

–1 π/2 

π/2 

–π/2 

–π/2 

x x 

 y 
 y 

( ) sinf x x= 1( ) arcsinf x x− =

–1 

1 

x 

 y 

O 

–1 
x 

 y 

O 1 

π 

π 

O O 

cosy x=  
arccosy x=

x 

 y 

x 

 y 

O 
O 

1
2 π

1
2 π

1
2− π  

1
2− π  
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Exercise 5.3 
 
1. Decide whether the following functions are one-to-one: 
 (a) xxf −= 2)(  with domain �  ; 
 (b) xxf sin)( =  with domain �  ; 
 (c) 3)( xxf =  with domain �  ; 
 (d) xxf log)( =  with domain +�  ; 
 (e) xxf cos)( =  with domain [0, 2π] ; 
 (f) )1(2)( 2xxf +=  with domain R ;  
 (g) xxf =)(  with domain [0, ∞ [ ; 
 (h) ( ) ( 2)f x x x= +  with domain �  ; 

 (i) 24)( xxf −=  with domain [–2, 2] ; 
 (j) ( ) cosf x x=  with domain [0, π] ; 
 (k) xxf 21)( +=  with domain �  ; 
 (l) xxf arctan)( =  with domain � . 
 

2. Find the 'largest' domain for which the function defined by 21)( xxf −=  is 
one-to-one. For the domain chosen, find the inverse function 1( )f x− . 

 

3. Show that the function 2( ) 2f x x x= +  with domain ] –∞ , –1] is one-to-one 
and find the inverse function 1( )f x− . 

 

4. In each of the following, express )(1 xf −  in terms of x: 
 (a) xxf 3)( =  ; (b) xxf −= 4)(  ; (c) 23)( += xxf  ; 

 (d) 3)( xxf =  ; (e) 
x

xf 4)( =  ; (f) 1)( 3 += xxf  ; 

(g) 
x

xf 12)( −=  ; (h) 
x

xf
−

=
1

3)( . 

 

5. For the function f (x) = 2x + 3, find the inverse function, 1−f (x) and sketch 
the graphs of the function and its inverse on the same set of coordinates axes. 

 

6. In each of the following, express )(1 xf −  in terms of x: 

  (a) 
1

1)(
+

=
x

xf  ;   (b) 
1
2)(

−
+

=
x
xxf  ; 

 (c) 
x
xxf

21
21)(

+
−

=  ;   (d) 
23
32)(

−
−

=
x
xxf . 



 Relations and Functions 

 141 

7. For the function 
2
32)(

−
−

=
x
xxf , x ≠ 2, show that xxff =))(( , and write 

down the inverse function 1−f (x). 
 
8. Show that the function 3( ) 2e xf x =  is one-to-one for all real x and find the 

inverse function 1( )f x− . 
 
9. Show that the function 2( ) 2 4 3f x x x= − +  with domain [1, ∞ [ is one-to-

one. Find the inverse function, 1−f (x), and sketch graphs of both y = f (x) and 
y = 1−f (x) on the same set of axes. 

 
10. Show that the function 5( ) log (2 1)f x x= −  with domain 1

2] , [∞  is one-to-

one and find the inverse function 1( )f x− . Sketch graphs of both the function 
and its inverse on the same set of coordinate axes. 

 
11. For the functions 3( ) 3  and  ( ) 1f x x g x x= + = + , find the functions 1( )f g −�  

and 1( )g f −� . 
 

 
 

Higher Level 
 

12. Prove that the function 2
2

1( ) , 0f x x x
x

= − >  is one-to-one but the 

function 2
2

1( ) , 0f x x x
x

= + >  is not one-to-one. 

 

13. Show that the function 
acx
baxxf

−
+

=)( , where c ≠ 0 and x ≠ 
c
a , is self-

inversing provided 2 0a bc+ ≠ . 
 

*14.  Let f : +�  → �  be a function defined by 
x

xxf 2
2

)( −= . Show that f has 

an inverse function. Find 1−f (x), and sketch the graph of both f (x) and 
1−f (x) on the same set of coordinate axes. 
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Required Outcomes 

 
 After completing this chapter, a student should be able to: 

• define the terms relation and function. 
• find the (largest) range of a given function. 
• combine any two functions under composition of functions. 
• determine whether or not a given function is one-to-one. 
• find the inverse of a function, if it exists. 
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6.1 Sequences 
 
Definition A sequence is a function whose domain is the set of positive integers. 
 
The elements of a sequence f, as defined above, would be written as ordered pairs in 
the form (1, f (1)), (2, f (2)), (3, f (3)), … , (n, f (n)), … , but it is customary to list 
only the second components of the ordered pairs. 
 
Thus the sequence is written as f (1), f (2), f (3), … , f (n), … . 
 
The elements in the range of the sequence are called its terms, and f (n) is called the 
nth term of the sequence. 
 
In practice we denote the nth term of the sequence by nnn uta ,, , etc., and we denote 
the sequence by }{},{},{ nnn uta  respectively. 
 
Example Write down the first 5 terms of the following sequences: 

  (a) {5n} ;  (b) {3n – 2} ; (c) 
⎭
⎬
⎫

⎩
⎨
⎧ −

n
12 . 

 
 (a) {5n} = {5, 10, 15, 20, 25, … } 
 
 (b) {3n – 2} = {1, 4, 7, 10, 13, … } 
 

 (c) { }...,1,1,1,1,112 5
4

4
3

3
2

2
1=

⎭
⎬
⎫

⎩
⎨
⎧ −

n
 

 
If we are given the first few terms of a sequence and asked for an expression for the 
nth term, there is an infinite number of possible answers, if indeed one exists. An 
example of a sequence for which a simple expression for the nth term does not exist 
(as of this time), is the sequence {2, 3, 5, 7, … }, the sequence of consecutive prime 
numbers. However there is generally a simple pattern to the sequence, and it is 
normal to choose this pattern as your answer. For example the nth term of the 
sequence which begins {1, 2, 3, 4, … }, could be of the form 

)()4)(3)(2)(1( nfnnnnnun −−−−+= , for any f (n). But the simple answer is 
clearly  nun = . 
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In any problem requiring a formula for the nth term of a sequence, it is an obvious 
formula that is requested. 
 
A sequence is sometimes defined recursively. That is the terms are not expressed as a 
function of n, but instead each term, except for possibly the first few, is found from 
previous terms. 
 
Example Sequence }{ nu  is defined as follows: 1221 2,1 ++ +=== nnn uuuuu , 

1≥n . Write down the first 5 terms of the sequence. 
 
 112,52,32 435324213 =+==+==+= uuuuuuuuu , etc. 
 Therefore the first 5 terms are {1, 1, 3, 5, 11, … }. 
 
Exercise 6.1 
 
1. Write down the first three terms and the 10th term of the following 

sequences: 
 (a) {3n} ;  (b) {2n – 5} ; (c) { }12 −n  ; 

 (d) 
⎭
⎬
⎫

⎩
⎨
⎧

+
+
1
12

n
n  ; (e) { }nn )1.0(  ; (f) { }n)1(2 −− . 

 
2. Find a suitable nth term for each of the following sequences: 
 (a) {2, 4, 6, 8, … } ; (b) {5, 7, 9, 11, … } ; 
 (c) {5, 8, 11, 14, … } ; (d) {67, 58, 49, 40, … } ; 
 (e) {4, 16, 36, 64, … } ; (f) { }...,,4,,,3 11

49
7
25

5
16  ; 

 (g) {3, 7, 15, 31, … } ; (h) {1, 3, 6, 10, 15, 21, … }. 
 
3. (a) A sequence is defined recursively as follows: 
     nnn uuuuu +=== ++ 1221 ,1  for all 1≥n . 
  Write down the first 10 terms of this sequence. 
 (b) Calculate the first 5 terms of the sequence }{ nu  where 

   
nn

nu ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
=

2
51

5
1

2
51

5
1 . 

 
6.2 Arithmetic Sequences (Arithmetic Progressions) 
 
In the sequence {3n + 2} = {5, 8, 11, 14, … }, each term can be found by adding a 
constant number (in this case 3) to the previous term. 
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Similarly in the sequence {16 – 6n} = {10, 4, –2, –8, … }, each term can be found by 
subtracting a constant number (in this case 6) from the previous term. This is of 
course equivalent to adding a constant (in this case –6) to the previous term. 
 
These sequences are examples of arithmetic sequences or arithmetic progressions 
(APs), in which there is a common difference between successive terms. 
 
Definition A sequence { }nu  is said to be arithmetic if duu nn =−+1  ( 1≥n ), 

where d is a constant. The constant d is called the common 
difference of the sequence. 

 
An arithmetic sequence }{ nu  can be written }...,3,2,,{}{ 1111 dududuuun +++= . 
The nth term is given by 
   dnuun )1(1 −+= . 
 
Example Find a formula for the nth term of the arithmetic sequence {7.5, 6.6, 

5.7, … }. Which term of the sequence has the value –4.2? 
 
 9.0 and5.71 −== du  
 )1(9.05.7)1(1 −−=−+= ndnuun , giving nun 9.04.8 −= . 
 
 If ,2.4−=nu  –4.2 = 8.4 – 0.9n ⇒ 0.9n  =  12.6 ⇒ n = 14. 
 Therefore the 14th term has the value –4.2. 
 
Example The 5th term of an arithmetic sequence is 15 and the 10th term is 45. 

Find the first three terms of the sequence, and find an expression for 
the nth term. 

 
 155 =u     ⇒   du 415 1 +=    and   4510 =u    ⇒    du 945 1 += . 
 Solving these simultaneous equations gives: d = 6 and 91 −=u . 
 Thus the first 3 terms are {–9, –3, 3, … } and 156)1(69 −=−+−= nnun . 
 
Example Find the number of positive terms of the arithmetic sequence {59.2, 

58.4, 57.6, … }, and find the value of the first negative term. 
 
 8.0and2.591 −== du  
 nndnuun 8.060)1(8.02.59)1(1 −=−−=−+=  
 The terms are positive provided 0>nu  or 60 – 0.8n > 0. 
 Solving gives n < 75 and so there are 74 positive terms. 
 
 Now since the 75th term is zero, the first negative term is –0.8. 



Chapter 6 

146 

Example Prove that the sequence whose nth term is given by nun 532 −=  is 
arithmetic, and find the first negative term. 

 
 5)532()1(5321 −=−−+−=−+ nnuu nn  which is constant. 
 Therefore the sequence is arithmetic. 
 
 4.60 >⇒< nun  and so the first negative term is 37 −=u . 
 
Example Given that 24, 5x + 1 and 12 −x  are three consecutive terms of an 

arithmetic progression, find the values of x and the numerical value 
of the fourth term for each value of x found. 

 
 The common difference is d = 5x + 1 – 24 = )15(12 +−− xx . 
 This gives 021102 =+− xx  ⇒ (x – 7)(x – 3) = 0 ⇒ x = 3 or 7. 
 
 If x = 3 the terms are 24, 16, 8 and so the 4th term is 0. 
 If x = 7 the terms are 24, 36, 48 and so the 4th term is 60. 
 
Example Three numbers are in arithmetic progression. Find the numbers if 

their sum is 30 and the sum of their squares is 332. 
 
 Let the numbers be a – d, a, a + d. Their sum is 3a = 30 and so a = 10. 
 The sum of their squares is 332)10(100)10( 22 =+++− dd . 
 This gives 416322 22 ±=⇒=⇒= ddd . 

Therefore the numbers are 6, 10, 14 (or 14, 10, 6). 
 
Exercise 6.2 
 
1. Decide which of the following sequences could be arithmetic. If the sequence 

is arithmetic, find the common difference. 
 (a) {9, 13, 17, 21, … } ;  (b) {a, 4a, 7a, 10a, … } ; 
 (c) {2, 4, 8, 16, … } ;  (d) {7, 1, –5, –11, … } ; 
 (e) {5, –8, 11, –14, … } ;  (f) {3a – 2b, 2a – b, a, … }. 
 
2. The following pairs of numbers are respectively the first term and the 

common difference of an arithmetic sequence. Find the first 4 terms and the 
10th term of each sequence. 

 (a) 5, 6 ;  (b) 43, –5 ;  (c) –7, 4 ; 
 (d) –1, –7 ;  (e) 2

18 , 4
11  ; (f) a – 3b, 2a + b. 
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3. Find the nth term and the 10th term of each of the following APs: 
 (a) {5, 9, 13, … } ;  (b) {87, 75, 63, … } ; 
 (c) {2.3, 2.9, 3.5, … } ; (d) {2 + 3x, 2 + x, 2 – x, … }. 
 
4. In each of the following find the first 3 terms of the arithmetic sequence 

}{ nu  where 
 (a) 101,46 83 == uu  ; (b) 1,35 95 −== uu  ; 
 (c) buau == 85 ,  ;  (d) baubau 58,2 114 −=+= . 
 
5. Find the first term and the common difference of the arithmetic sequence 

}{ nu , if 
 (a) 66,52 8253 =+=+ uuuu  ; (b) 44,14 10573 −=+−=+ uuuu  ; 
 (c) 96,2 11329 =+= uuuu  ; (d) 8,82 251928 =+=− uuuu . 
 
6. (a) Find the number of positive terms of the arithmetic sequence 

{97, 96.2, 95.4, … }. 
 (b) Find the first positive term of the sequence {–40.3, –38.8, –37.3, … }, 

given that the sequence is arithmetic. 
 (c) How many negative terms are there of the arithmetic sequence {–16, 

8
515− , 4

115− , … }? 
 (d) Write down the nth term of the arithmetic sequence {4, 11, 18, … }. 

What is the term nearest 140? Find the least value of n for which the 
nth term is greater than 250. 

 
7. (a) The sum of three numbers in arithmetic progression is 51, and the 

difference between the squares of the greatest and least is 408. Find the 
numbers. 

 (b) The sum of four numbers in arithmetic progression is 38, and the sum 
of their squares is 406. Find the numbers. 

 (c) The sum of five numbers in arithmetic progression is 10, and the 
product of the first, third and fifth is –64. Find the numbers. 

 
 

Higher Level 
 

8. Given that 
cbbab 2

1,1,
2

1
−−

 are in arithmetic progression, prove that 

)( cba − , ac, c(b – a) are also in arithmetic progression. 
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6.3 Arithmetic Series and Sigma Notation 
 
Sigma Notation 
 

The symbol Σ is used to simplify expressions for the sum of many terms. For 
example the sum 3 + 5 + 7 + … + 201 can be written more concisely in the form 

∑
=

+
100

1

)12(
r

r . This is read as “the sum of terms of the form ‘2r + 1’ where r takes the 

integer values from 1 to 100 inclusive”. Thus 2r + 1 takes the values 3, 5, 7, … , 201, 
and these values are added together. 
 

Example Evaluate ∑
=

+
5

1

)23(
r

r . 

 

  ∑
=

+
5

1

)23(
r

r  

  = (3 × 1 + 2) + (3 × 2 + 2) + (3 × 3 + 2) + (3 × 4 + 2) + (3 × 5 + 2) 
 = 5 + 8 + 11 + 14 + 17 
 = 55. 
 

The sum 1 2 3
1

...
n

r n
r

u u u u u
=

= + + + +∑  of terms of an arithmetic sequence is called 

an arithmetic series. 
 
We denote the sum of the first n terms of the sequence by nS . 

Thus ∑
=

=++++=
n

r
rnn uuuuuS

1
321 ... . 

 
To find a formula for nS , we note that: 

nnnn ududududuuS +−+−++++++= )()2(...)2()( 111 , and in reverse order, 

111 )()2(...)2()( ududududuuS nnnn ++++++−+−+= . 
Adding these we obtain: 

)()()(...)()()(2 111111 nnnnnnn uuuuuuuuuuuuS ++++++++++++=  
       )( 1 nuun += . 

Hence   )(
2 1 nn uunS += . 
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An alternative formula is found by replacing nu  with dnu )1(1 −+ , as follows: 

   ( )dnuunSn )1(
2 11 −++= ,     simplifying to 

   ( )dnunSn )1(2
2 1 −+= . 

 
Example Find the sum of 9 terms of the arithmetic series –12 – 5 + 2 + … . 
 
 Here 121 −=u  and d = 7. 

 Thus the required sum = ( ) 1447824
2
9

=×+− . 

 

Example Evaluate ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −100

1 2
100

n

n . 

 

 Firstly the sequence for which 
2
100−

=
nun  is arithmetic since 

 
2
1

2
100

2
99

1 =⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −

=−+
nnuu nn , which is constant. 

 Thus ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −100

1 2
100

n

n  = ( ) 2475)05.49(50
2

100
1001 −=+−=+ uu . 

 
Example Find the first term and the common difference of the arithmetic 

sequence in which 110 and 29 1010 −=−= Su . 
 

 ( ) 7110)29(5
2

10
1110110 =⇒−=−=+= uuuuS . 

 429979110 −=⇒−=+=+= ddduu . 
 
Example The sum of the first 8 terms of an arithmetic series is 100, and the 

sum of the first 15 terms is 555. Find the first term and the common 
difference. 

 

 100)72(
2
8

18 =+= duS  ⇒ 2572 1 =+ du  

 555)142(
2

15
115 =+= duS  ⇒ 74142 1 =+ du  

 Solving these equations gives 121 −=u  and d = 7. 



Chapter 6 

150 

Example Consider the arithmetic series for which nun 672 −= . If the sum of 
the first n terms of the series is 378, find n. Explain why it is that 
there are two possible values of n. 

 

 378)67266(
2

)(
2 1 =−+=+= nnuunS nn  

 ⇒               n(23 – n) =  126 
⇒ 126232 +− nn  =  0 

 ⇒ (n – 9)(n – 14) =  0. 
 Thus n = 9 or n = 14. 
 
  The sum of 9 terms is the same as the sum of 14 terms since the sum of the 

10th to 14th terms is zero. ( 0,6,12 121110 === uuu , 12,6 1413 −=−= uu .) 
 
Example Find the sum of all the multiples of 11 which are less than 1000. 
 
 The required sum is 

 11 + 22 + 33 + … + 990  =  ( )99011
2

90
+   =  45 045. 

 
Example Consider the series 29.8 + 29.1 + 28.4 + … . Find the sum of all the 

positive terms. 
 
 If 0>nu  then 29.8 – 0.7(n – 1) > 0  ⇒  0.7n < 30.5  ⇒  n ≤ 43. 

 Therefore the sum of the positive terms is 3.649)7.0426.59(
2
43

=×− . 

 
Exercise 6.3 
 
1. Find the sum of the following arithmetic series to the number of terms given 

in parentheses: 
 (a) 2 + 5 + 8 + …  (50) ;  (b) 14 + 22 + 30 + …  (20) ; 
 (c) 2.4 + 3.6 + 4.8 + …  (25) ; (d) 34 + 31.5 + 29 + …  (12) ; 
 (e) a + 3a + 5a + …  (2a) ;  (f) 5a + 2a – a – …  (3a). 
 
2. Prove that each of the following series is arithmetic and find each sum: 

 (a) ∑
=

+
14

1

)17(
n

n  ;   (b) ∑
=

−
20

1

)365(
n

n  ; 

 (c) ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −201

1 5
101

n

n  ;   (d) ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ +

40

1

25
5

2

n

n . 
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3. Find the first three terms and the 12th term of the arithmetic sequence for 
which: 

 (a) 102 and 8 121 =−= Su  ;  (b) 45 and 12 104 == Su  ; 
 (c) 4 and 4 1616 −=−= Su  ;  (d) 432 and 192 128 == SS  ; 
 (e) 392 and 160 1410 −=−= SS  ; (f) 165 and 255 3015 =−= SS . 
 
4. The first three terms of an arithmetic sequence are 12, 24a  and 10a. Find the 

possible values of a and the sum of the first 10 terms of the sequence for each 
value of a found. 

 
5. (a) If a, b are positive constants, prove that the sequence defined by 

( )1log −= n
n abu  is arithmetic. 

 (b) Show that the sum of the first n terms of the series 
   log 4 + log 12 + log 36 + … 
  is 3log)1(2log2 2

1 −+ nnn . 
 
6. The sum of the first 5 terms of an arithmetic series is 5 and the sum of the 

next 5 terms is 80. Find the first term and the common difference. 
 
7. Find the maximum sum of the arithmetic series 100 + 93 + 86 + … . 
 
8. (a) Find the sum of all the positive integers less than 100 which are not 

multiples of 4. 
 (b) Find the sum of all the integers between 500 and 1000 which are not 

divisible by 7. 
 (c) Find the sum of all the positive integers less than 100 which do not 

contain the digit 4. 
 
9. A large water tank begins to leak, and the amount of water escaping is 25 

litres more each hour that the leak remains undetected. When the leak was 
eventually discovered, the rate of leakage was 900 litres per hour. For how 
long had the tank been leaking? What was the total amount of water lost 
between the beginning of the leakage and the time of discovery? 

 
10. Find the values of n for which the sum of the first n terms of the arithmetic 

series 1 + 1.2 + 1.4 + … exceeds 1000. 
 
11. Two friends, A and B, begin work together but with differing pay scales. A’s 

starting salary is $30 000 per year with a yearly increment of $1000. B’s 
starting salary is $6 000 per half-year with a half-yearly increment of $500. 
At the end of how many years will B have received more than A in total? 
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Higher Level 

 
12. If a is a positive integer and b is any real number, prove that the sum of the 

series a + (a + b) + (a + 2b) + (a + 3b) + … + (a + ab) is (b + 2) times the 
sum of the series 1 + 2 + 3 + … + a. 

 

13. Prove that the series for which nnSn 92 2 +=  is arithmetic, and find the 
first four terms. 

 
*14. An arithmetic progression consists of 3p terms. The sum of the first p terms 

is a; the sum of the next p terms is b; the sum of the last p terms is c. Prove 
that )(4)( 22 acbca −=− . 

 
*15. Find the sum of n terms (brackets) of the series: 
 (a) (1) + (3 + 5) + (7 + 9 + 11) + … ; 
 (b) (2) + (4 + 6 + 8) + (10 + 12 + 14 + 16 + 18) + … . 
 

*16. The first term of an arithmetic progression is 12 +− nn  and the common 
difference is 2. Prove that the sum of the first n terms is 3n  and hence 
show that 11973,532,11 333 ++=+== , and so on. Deduce the sum of 
the cubes of the first n positive integers. 

 
 
6.4 Geometric Sequences (Geometric Progressions) 
 
In the sequence 2, 6, 18, 54, 162, … , the ratio of any one term to the preceding term 
is 3 (a constant) and each term is obtained by multiplying the previous term by 3. 
 
Similarly in the sequence 32, –16, 8, –4, 2, –1, … , the ratio of any one term to the 
preceding term is 2

1−  (a constant) and each term is obtained by multiplying the 
previous term by 2

1− . 
 
These are examples of geometric sequences or geometric progressions (GPs) in 
which there is a common ratio between successive terms. 
 

Definition A sequence }{ nu  is said to be geometric if )1(1 ≥=+ nr
u

u

n

n , where r 

is a constant. The constant r is called the common ratio of the 
sequence. 

 

A geometric sequence }{ nu  can be written },,,,{}{ 3
1

2
111 �rururuuun = . The nth 

term is given by  1
1

−= n
n ruu . 
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Example Find the first three terms of the geometric sequence in which the 
common ratio is 3

1−  and the 7th term is 81
2− . 

 

 81
26

17 −== ruu     ⇒    ( ) 81
26

3
1

1 −=−u     ⇒    1836
81
2

1 −=×−=u . 
 Thus the first three terms are –18, 6, –2. 
 

Example Prove that the sequence defined by n
nu )2(3 −=  is geometric. 

 

 2
)2(3

)2(3 1
1 −=

−
−

=
+

+
n

n

n

n

u
u

 which is constant for all n. 

 Therefore the given sequence is geometric. 
 
Example (a) Show that if a, b, c are three consecutive terms of a 

geometric sequence, then acb =2 . 
 (b) If a – 4, a + 8 and 54 are three consecutive terms of a 

geometric sequence, find the possible values of a, and the 
numerical value of the next term for each value of a found. 

 

 (a) Since a, b, c are terms of a geometric sequence, 
b
c

a
br == , which 

gives acb =2  as required. 
 
 (b) From part (a), a – 4, a + 8, 54 are terms of a geometric sequence 

provided )4(54)8( 2 −=+ aa . 
  Thus  280382 +− aa  = 0 
  ⇒     (a – 10)(a – 28) = 0 
  ⇒      a = 10  or  a = 28. 
 
  If a = 10 the terms are   6, 18, 54, and so the next term is 162. 
  If a = 28 the terms are 24, 36, 54, and so the next term is   81. 
 
Example The product of three consecutive numbers in geometric progression 

is 27. The sum of the first two and nine times the third is –79. Find 
the numbers. 

 Let the numbers be axx
a
x ,, . 

 The product of the numbers is 27, and so 273 =x , giving x = 3. 
 The sum of the first two and nine times the third is –79. 

 Thus 3 3 27 79a
a

+ + = −   ⇒  038227 2 =++ aa   ⇒  (27a + 1)(a + 3) = 0. 

 This gives a = –3 or 27
1− , and the numbers are: –1, 3, –9  or  –81, 3, 9

1− . 
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Exercise 6.4 
 
1. Decide which of the following sequences could be geometric. If the sequence 

is geometric, find the common ratio. 
 (a) },48,12,3{ �  ;   (b) },4,8,16{ �−  ; 
 (c) },18,12,6{ �  ;   (d) },1,,{ 2 �−− aa  ; 
 (e) 71

4 9{2 , 2, 1 , }�  ;  (f) },2,1,2{ 2
1 � . 

 
2. The following pairs of numbers are respectively the first term and the 

common ratio of a geometric sequence. Find the first three terms of each 
sequence. 

 (a) 5, 2 ;  (b) 25, 2
1  ;  (c) –4, –3 ; 

 (d) 10, 0.3 ; (e) a, –b ;  (f) –a, –b. 
 
3. Write down in exponent form, the 5th, 12th and nth terms of each of the 

following geometric sequences: 
 (a) {5, 15, 45, }�  ;  (b) },18,6,2{ �−  ; 
 (c) },12,18,27{ �  ;  (d) },,,{ 232 �yxyxx − . 
 
4. Find the common ratio and write down the first three terms of the geometric 

sequence, }{ nu , for which 
 (a) 75.3,30 85 −== uu  ;  (b) 9

64
73 ,36 == uu  ; 

 (c) 4
3

86 ,3 −=−= uu  ;  (d) 6
6

3
3 , buau =−= . 

 
5. Find the first term to exceed 1000 in each of the following geometric 

sequences: (a) },69.1,3.1,1{ �  ; (b) },36,24,16{ � . 
 
6. (a) The sum of three numbers in geometric progression is 13 and their 

product is 27. Find the numbers. 
 (b) The product of three numbers in geometric progression is 125 and their 

sum is –21. Find the numbers. 
 (c) Three numbers are in geometric progression. The product of the first and 

third is 9, and the sum of the first and third is 7.5. Find the numbers. 
 

Higher Level 

7. If a, b, c are in geometric progression, show that 
cbbab ++

1,
2
1,1  are in 

arithmetic progression provided each term exists. 
 
8. The 1st, 5th and 12th terms of an arithmetic sequence are 3 consecutive 

terms of a geometric sequence. Find the common ratio of the geometric 
sequence. 
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6.5 Geometric Series 
 
The sum �+++ 321 uuu  of terms of a geometric sequence, }{ nu , is called a 
geometric series. 
 
We denote the sum of the first n terms of the sequence, as with an arithmetic 
sequence, by nS . 
 
To find a formula for nS  we note that: 
    nS  =  1

1
2

1
2

111
−− +++++ nn rurururuu � ,                 and multiplying by r, 

  nrS  =         nnn rururururu 1
1

1
2

1
2

11 +++++ −−� . 
Subtracting the second row from the first we obtain n

n ruuSr 11)1( −=− . 
 

Hence  1,
1

)1(
or

1
)1( 11 ≠

−
−

=
−
−

= r
r
ru

S
r
ru

S
n

n

n

n . 

 
Note: If r = 1, 11111 nuuuuuSn =++++= �  which is a ‘trivial’ result. 
 
Example Find the sum of the first 8 terms of the geometric series 
  32 – 16 + 8 –  … . 
 

 2
1

1 ,32 −== ru , and so 8S  =  
( )( )
( )2

1

8
2
1

1
132

−−

−−
 

  =  ( )256
1

3
64 1 −  

  =  25.21 . 
 

Example Evaluate ∑
=

50

1

99.0
n

n . 

 Firstly the sequence }99.0{ n  is geometric since 99.0
99.0

99.0 1
1 ==

+
+

n

n

n

n

u
u

 which 

is constant. Here 99.01 =u  and r = 0.99. 

 Thus ( ) ( ) 1.3999.0199
99.01
99.0199.099.0 50

5050

1

=−=
−
−

=∑
=n

n . 

 
Example Find the first term and the common ratio of the geometric series for 

which 14
45

−

−
= n

nn

nS . 

 Firstly 111 == Su . 
 Also 4

5
4
9

122 1 =−=−= SSu , and so 4
5=r . 
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 Note: ( )( ) ( )5
45

4 5
4

15 44 4 1
14

nn n n
n nS

−⎛ ⎞−
= = − =⎜ ⎟ −⎝ ⎠

 giving 11 =u  and 4
5=r . 

 
Exercise 6.5 
 
1. Find the sum of the following geometric series to the number of terms given 

in parentheses. (Simplify the expressions, including any adjustment of signs, 
but do not evaluate.) 

 (a) )10(48123 �+++  ; (b) )12(88.24.22 �+++  ; 
 (c) )20(2.16.03.0 �−+−  ; (d) )15(672.068.12.4 �+−+− . 
 
2. Prove that each of the following series is geometric and find each sum: 

 (a) ∑
=

10

1

)5.0(8
n

n  ; (b) ∑
=

−−
20

1

1)1.0(
n

n  ; 

 (c) ∑
=

−
15

1

)5(20
n

n  ; (d) ∑
=

100

1

)99.0(100
n

n . 

 
3. Find the sum of n terms of the geometric series 3 + 4.5 + 6.75 + … . How 

large must n be so that this sum is greater than 6000? 
 
4. Nine numbers are in GP and are alternately positive and negative. If the first 

number is 24 and the last is 32
3 , find the sum of the numbers. 

 

5. Evaluate ( )∑
=

+
100

1

99.001.0
n

nn . 

 
6. The growth of a certain tree during any year is 90% of its growth during the 

previous year. It is now 10 m high and one year ago it was 9 m high. What 
will be its growth this year? Next year? Find the height of the tree in 15 years 
time. 

 
7. A man is appointed to a position at a salary of $30 000 per annum, and each 

year his salary is to be increased by 5%. Find his salary at the end of 20 years 
of service and his average annual salary for the twenty years. 

 
Higher Level 

 
8. The bob of a pendulum swings through an arc of length 25 cm in its first 

swing from left to right, and with each successive swing (from right to left 
or left to right), the distance decreases by 1% of the previous swing. Find 
the extent of the 100th swing and the total distance covered by the bob in 
the first 100 swings. 
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*9. (a) Show that if }{ nu  is geometric and nS  is the sum of the first n 

terms, then the common ratio is given by )1(1 ≠
−
−

= r
uS
uS

r
nn

n . 

 (b) A geometric progression has a first term of –0.08, a last term of 
0.6075, and a sum of 0.3325. Find the common ratio. 

 
 
6.6 Compound Interest 
 
One of the most important practical applications of geometric series is in the 
calculation of compound interest. 
 
Suppose $P is invested at r% per annum compound interest. What is the value of the 
investment (the amount) after n years? 
 
At the beginning of the first year the investment is worth $P. During that year interest 

of ⎟
⎠
⎞

⎜
⎝
⎛ ×

100
$ rP  is added to the account so that at the end of year 1 the amount in the 

account is ⎟
⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ ×+

100
1$

100
$ rPrPP . Similarly at the end of year 2 the amount 

in the account is 
2

100
1$ ⎟

⎠
⎞

⎜
⎝
⎛ +

rP . Continuing in this way, the amount in the account at 

the end of year n is nA$  where 
n

n
rPA ⎟

⎠
⎞

⎜
⎝
⎛ +=

100
1 . 

 
 

Higher Level 
 
Now consider the case where an amount of $P is deposited in the account at the 
beginning of each year. What is the amount in the account at the end of n years? 
 
If the annual deposit of $P is made into a new account each year, then after n 
years, $P will have been in the first account for n years; $P will have been in a 
second account for (n – 1) years; …... ; $P will have been in the last (nth) 
account for 1 year. 
Therefore the total amount after the n years is given by nS , where 
 nn AAAAS ++++= �321  
with each term of the series found from the compound interest formula above. 

Thus ( ) ( )
1

132

−
−

=++++=
R
RPRRRRRPS

n
n

n �  where 
100

1 rR += . 
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Example A woman makes an annual deposit of $1000 into an account which 

pays 5% interest compounded annually. How much money should 
be in the account at the end of 10 years? 

 
 The required amount =  ( )1032 05.105.105.105.11000 ++++ �  

  =  ( )
105.1

105.11050 10

−
−  

  =  $13 206.79. 
 
Often interest is paid monthly, weekly or even daily. If there are N equal time 
periods for each of which r% interest (per time period) is paid, the amount after 

these N time periods = 
NrP ⎟

⎠
⎞

⎜
⎝
⎛ +

100
1$  if $P is the initial investment. 

 
Example Calculate the amount in an account after 1 year if $1000 is invested 

at 6% per annum compound interest, and interest is paid 
 (a) annually ; (b) every 6 months ; (c) quarterly ; 
 (d) monthly ; (e) weekly ; (f) daily. 
 
 (a) The amount = 1000 × 1.06 =  $1060. 
 (b) The amount = 203.11000 ×  =  $1060.90. [3% per period] 
 (c) The amount = 4015.11000 ×  =  $1061.36. [1.5% per period] 
 (d) The amount = 12005.11000 ×  =  $1061.68. [0.5% per period] 
 (e) The amount = ( )52

5200
611000 +  =  $1061.80. 

 (f) The amount = ( )365
50036
611000 +  =  $1061.83. 

 
How can we calculate the amount if interest is paid continuously? 
We need a result the proof of which is beyond the requirements of this course. 

That is x
n

n n
x e1lim =⎟

⎠
⎞

⎜
⎝
⎛ +

∞→
 where e is the transcendental number 

mentioned briefly in Chapter 1. 
 
In the case of payment of continuous interest, $1000 invested at 6% per annum 
compound interest for 1 year will amount to 

 84.1061$e1000
100

611000lim 06.0 ==⎟
⎠
⎞

⎜
⎝
⎛ +

∞→

n

n n
. 
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Exercise 6.6 
 
1. (a) Calculate the amount at compound interest on an investment of 

$5000 for 10 years at 6% per annum. 
 (b) Calculate the total amount of interest payable on a loan of $2500 at 

8.5% per annum compounded annually over 4 years. 
 
2. How many years will it take for an investment to double in value at 

compound interest if the rate is 7.18% per annum? 
 
3. An amount of $1000 is invested at a rate of 5.05% per annum compound 

interest. 
 (a) Find the amount in the account after 5 years. 
 (b) Find the time taken for the investment to amount to $1500. 
 
4. (a) Land which was purchased n years ago for $A is now worth $An 

where 0.15e n
nA A= . Find the current value of land which was 

purchased 30 years ago for $500. 
 (b) If the original cost of the land from part (a) had been invested at 

compound interest, what rate of interest would have been required to 
keep pace with land investment? 

 
 

Higher Level 
 
5. (a) A woman makes an annual deposit of $500 into an account which 

pays 5.75% interest compounded annually. How much money 
should be in the account 

  (i) immediately after the tenth deposit ; 
  (ii) at the end of 10 years (before the 11th deposit)? 
 (b) A mother puts aside an amount of $100 every half-year for her 

daughter in an account which pays 4.75% interest compounded 
annually. How much money should be in the account immediately 
before the 21st payment? 

 
6. An amount of $10 000 is deposited in an account. How much money is in 

the account after 5 years if compound interest of 6.5% per annum is added 
 (a) annually ; (b) monthly ; (c) weekly ; (d) daily? 
 
7. An amount of $10 000 is invested in an account which pays 7.2% interest 

per annum over a period of 10 years. Calculate how much more would be 
in the account if interest was paid continuously instead of yearly. 
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8. If $A is borrowed at r% per annum compound interest and equal 

repayments of $x are made at the end of each year over a period of 5 years, 
show that the annual repayment is given by 

    
5

5
( 1)

1
AR Rx

R
−

=
−

 where 1
100

rR = + . 

 
9. (a) Calculate the annual repayment if $1000 is borrowed at 10% per 

annum compound interest for 5 years. 
 (b) Calculate the annual repayment if $20 000 is borrowed at 12.5% per 

annum compound interest for 8 years. 
 

 
6.7 Infinite Geometric Series 
 

Consider the infinite geometric series ∑
∞

=

−

1

1
1

n

nru  where the sum of the first n terms is 

( )
r
ruS

n

n −
−

=
1
11   (r ≠ 1). 

 
If 11 <<− r , 0→nr  as ∞→n . 

Thus 
( )

r
u

r
ru

S
n

nnn −
=

−
−

=
∞→∞→ 11

1
limlim 11  provided 11 <<− r . 

 

If 1>r  then +∞→nr  as ∞→n  and so nn
S

∞→
lim  does not exist. 

 

If 1−<r  then nr  takes alternating negative and positive values which increase 
numerically without bound as ∞→n . Once again nn

S
∞→

lim  does not exist. 
 

If r = –1 then the values of nr  alternate between –1 and +1, and so 1uSn =  if n is 
odd and 0=nS  if n is even. Thus nn

S
∞→

lim  does not exist. 
 
If r = 1 the series consists of constant terms all equal to 1u . Thus 1nuSn =  and 

nn
S

∞→
lim  does not exist. 

We say that the infinite geometric series ∑
∞

=

−

1

1
1

n

nru  has a sum to infinity which is 

equal to 
r

u
−1

1  provided 11 <<− r  or that the series converges to 
r

u
−1

1  if 11 <<− r . 
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Example Express the recurring decimal 32.0  as a rational number. 
 

 32.0  =  �+++ 642 10
32

10
32

10
32  which is an infinite geometric series with first 

term 32.01 =u  and common ratio 01.0=r . 

 Since –1 < r < 1 the sum to infinity exists and is equal to 
99
32

99.0
32.0

1
1 ==

− r
u

. 

 Therefore 
99
3232.0 = . 

 

Example Consider the infinite geometric series 
n

n

x∑
∞

=

⎟
⎠
⎞

⎜
⎝
⎛ −

1 2
3110 . 

  (a) For what values of x does a sum to infinity exist? 
 (b) Find the sum of the series if x = 1.3. 
 

 (a) A sum to infinity exists provided  1
2

311 <−<−
x  

   ⇒ 0
2

32 <−<−
x  

   ⇒ 034 <−<− x  
   ⇒ 3

40 << x . 
 

 (b) When x = 1.3, 95.0
2
9.31 −=−=r  and 5.91 −=u . 

  The sum to infinity = 
39

190
95.1

5.9
1

1 −=
−

=
− r
u

. 

 
 
Example A ball is dropped from a height of 10 m and after each bounce, 

returns to a height which is 84% of the previous height. Calculate the 
total distance travelled by the ball before coming to rest. 

 
 The total distance travelled by the ball 
 = { }�+×+×+×+ 32 84.01084.01084.010210  

 = 
⎭
⎬
⎫

⎩
⎨
⎧

−
+

84.01
4.8210  [Sum to infinity of a geometric series with r = 0.84.] 

 = 115 m. 
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Exercise 6.7 
 
1. Find the sum to infinity of each of the following geometric series: 
 (a) �++++ 8

1
4
1

2
11  ;  (b) �++++ 13927  ; 

 (c) �+−+− 141664  ;  (d) �+−+− 08.04.0210   ; 
 (e) 1000 900 810 729− + − +�  ; (f) 125 25 5

27 9 3 1− + − +�  . 
 
2. Find the values of x for which the sum to infinity of each of the following 

geometric series exists: 

 (a) ...
4

3
2

33
2

+++
xx ; (b) ...

9
)2(

3
)2()2(

32

+
−

+
−

+−
xxx ; 

 (c) ...
3

5
3

5
3

5 32

−⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−

xxx  ; (d) ...
2

5
2

5
2

5 32

−⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ − xxx . 

 
3. By considering the sum to infinity of an appropriate geometric sequence, 

express each of the following recurring decimals in rational form: 
 (a) 45.0  ;  (b) 021.2  ;  (c) 67823.0 .  
 
4. In each of the following geometric series, find the number of terms needed to 

give a sum which is within 610−  of the sum to infinity: 
 (a) �++++ 4

1
2
112  ;  (b) �++++ 81

16
27
8

9
4

3
2  ; 

 (c) �++++ 432 9.09.09.09.0  ; (d) �+−+− 216
125

36
25

6
51  . 

 
5. Find the sum to infinity of the geometric series �+++ 08.18.13  . How 

many terms of the series are needed to give a sum which is within 1% of the 
sum to infinity? 

 

6. An infinite geometric series 
1

n
n

u
∞

=
∑  has a common ratio r and a sum to 

infinity of 4. The infinite series found by adding the odd numbered terms, 

2 1
1

n
n

u
∞

−
=

∑ , has a sum to infinity of 3. Find the value of  r. 

 
7. Find the smallest value of n for which the sum of the first n terms of the  

geometric series, 
0

0.999n

n

∞

=
∑ , is greater than half of its sum to infinity. 
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8. A ball is dropped from a height of 2 metres and every time it strikes the 
ground it rebounds to a height which is 75% of its previous height. 

 (a) Find the height reached by the ball after the fifth bounce. 
 (b) Find the total distance travelled by the ball as it comes to rest. 
 
9. The sum to infinity of a geometric series with a common ratio r is equal to 

twenty five times the sum of the first twenty five terms. 
(a) Find the value of r. 
(b) Find the sum to infinity, correct to three significant figures, if the 

first term is 3.1. 
 
10. (a) Expand the product 2( 2)(2 2 1)x x x+ − − . 
 (b) Use the result of part (a) to find the exact solutions of the equation 

3 22 2 5 2 0x x x+ − − = . 
 (c) The first term of an arithmetic sequence is 1 and the common 

difference is x. The first term of a geometric sequence is 2 and the 
common ratio is x. If the sum of the third and fourth terms of the 
arithmetic sequence is equal to the sum of the third and fourth terms 
of the geometric sequence, show that 3 22 2 5 2 0x x x+ − − = . 

 (d) For which value of x found in part (c) does a sum to infinity of the 
geometric series exist? For this value of x, find the sum to infinity, 
writing your answer in the form 3a b+  where a and b are integers. 

 
 

 
Higher Level 

 
11. For what positive values of k is the sum to infinity of a geometric series 

equal to k times the first term? 
 
12. (a) Expand the product (r + 2)( 12 −− rr ) and find all three roots of 

the equation 02323 =−−+ rrr . 
 (b) The geometric series �++++ 321 rrr  is such that the sum of 

the 1st, 3rd and 4th terms is three times the sum of the 1st and 2nd 
terms. Find the possible values of r. 

 (c) Find the value of r for which the sum to infinity of the geometric 
series in part (b) exists, and write this sum to infinity in the 
form 5ba +  where a and b are rational numbers. 
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13. A ball is dropped from a height of h m. Each time it strikes the ground it 

rebounds to a height which is p% of the previous height, (0 < p < 100). 
Show that the total distance, D m, travelled by the ball before coming to 

rest is given by 
p
phD

−
+

=
100

)100( . 

 
14. Consider the geometric series �++++ 321 rrr  , 0 < r < 1, in which the 

sum of the first n terms is denoted by nS  and the sum to infinity by S. If 

nS  is to be used as an approximate value for S, find an expression for the 
percentage error and show that if this percentage error is to be less than 

p%, then 
r

pn
log

2log −
> . 

 
15. (a) Find the range of values of x for which the geometric series 

�++++ 32 )2(10)2(10)2(1010 xxx  has a sum to infinity. 
 (b) Find the sum to infinity of the geometric series in part (a) if x = –0.1, 

and the smallest value of n for which the sum of the first n terms 
exceeds 99% of the sum to infinity. 

 
 
 

Required Outcomes 
 
 After completing this chapter, a student should be able to: 

• recognise an arithmetic sequence and be able to find formulae for the nth 
term and the sum of the first n terms. 

• recognise a geometric sequence and be able to find formulae for the nth 
term and the sum of the first n terms. 

• calculate the compound interest on $P at r% per annum for n years. 
• calculate the compound interest on $P at r% per annum for n time periods 

(years, months, quarters, weeks, days).  (HL) 
• determine whether or not a given geometric series has a sum to infinity, 

and if it has, find it. 
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7.1 Frequency Tables and Frequency Histograms 
 
In this chapter we shall be concerned with various methods of collecting, representing 
and analysing data. The data will refer to a given set of 'objects' called a population. 
A population could be the set of all children in a school which is finite, or the set of 
all prime numbers which is infinite. We often gather information concerning a large 
population, for example the ages of all inhabitants of Germany, by measuring that 
particular characteristic (variable) of a smaller sample from the population. Some 
variables are discrete, others continuous. If the variable can take only certain values, 
for example the number of apples on a tree, then the variable is discrete. If however, 
the variable can take any decimal value (in some range), for example the heights of 
the children in a school, then the variable is continuous. 
 
Frequency Tables 
 
(1) Discrete Data 
 
 The test scores out of 20 achieved by a class of 15 children are (in class-list 

order): 15, 20, 18, 18, 8, 16, 18, 10, 17, 14, 11, 11, 12, 16, 13. This data could 
be represented in tabular form as follows: 

 
Test Score (x) Frequency (f ) Test Score (x) Frequency (f ) 
 8  1            15  1 
 9  0            16  2 
           10  1            17  1 
           11  2            18  3 
           12  1            19  0 
           13  1            20  1 
           14  1   

 
 If there is a large number of students taking the test, tally marks can be used 

to find the required frequencies. The following are the marks out of 20 
obtained by 50 students. 

   18  15  17  17  12    9  16  10  12  12 
   12    5  18  13  19  15    7  18  15  16 
   20  11  18    9  19  16  14  18  10  11 
   16  18  20  15  15  10  12  17    8  16 
   19  17  15    8    5  17  11  16  16    7 
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Score 
  (x) 

Tally Frequency  
     (f ) 

Score  
  (x) 

Tally Frequency  
     (f ) 

    5 11       2   13 1       1 
    6        0   14 1       1 
    7 11       2   15 1111  1       6 
    8 11       2   16 1111  11       7 
    9 11       2   17 1111       5 
  10 111       3   18 1111  1       6 
  11 111       3   19 111       3 
  12 1111       5   20 11       2 
     Total:  50 

 
 The test scores in the previous example could be grouped into various classes. 
 

Score Tally      Frequency 
  0-5 11              2 
  6-10 1111   1111              9 
11-15 1111   1111   1111   1            16 
16-20 1111   1111   1111   1111   111            23 
  Total:  50 

 
(2) Continuous Data 
 
 The weights in kg correct to the nearest kg of 25 students are given in the 

following list 
 55  63  67  59  62  65  54  46  57  59 
 58  48  56  52  56  53  55  51  57  58 
 52  61  63  55  53 
 
 Although the data given appear to be discrete, a measurement of 55 kg could 

have come from any weight w kg such that 54.5 55.5w≤ < . This is an 
example of continuous data. A grouped frequency table could be constructed 
as follows: 

 
Weight (kg)      Tally      Frequency 
44.5 ≤ w < 49.5 11              2 
49.5 ≤ w < 54.5 1111   1              6 
54.5 ≤ w < 59.5 1111   1111   1             11 
59.5 ≤ w < 64.5 1111               4 
64.5 ≤ w < 69.5 11               2 
  Total:   25 
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 Note: The interval 44.5 49.5w≤ <  can be written 45 – 49. 
 
 The values 44.5, 49.5, 54.5, 59.5, 64.5, 69.5 are called the class boundaries 

and the differences between the consecutive class boundaries are called the 
interval widths. Here the interval widths are all 5 kg. 

 
 The mid-interval values are equal to the means of the class boundaries. Here 

the mid-interval values are 47, 52, 57, 62 and 67 kg. 
 
 The lower interval boundaries are respectively 44.5, 49.5, 54.5, 59.5 and 

64.5 kg. The upper interval boundaries are respectively 49.5, 54.5, 59.5, 64.5 
and 69.5 kg. 

 
 The interval width = upper interval boundary – lower interval boundary. 
 
Frequency Histograms 
 
Frequency histograms are used to give a graphical description of grouped data. A 
frequency histogram may contain equal class widths. 
 
Example The following frequency table gives the results of a test taken by 80 

students. Draw a histogram to represent the data. 
 

Score      Frequency 
  0 – 9              6 
10 – 19            12 
20 – 29            18 
30 – 39            22 
40 – 49              8 
50 – 59              4 
 Total:  80 

 
 A suitable histogram could be: 
 
 
 
 
 
 
 
 
 
 
 

Test Score 

Frequency 

10 

20 

10 20 30 40 50 60 0 
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A frequency histogram may also have unequal class widths. 
 
Example The ages in completed years of 100 students in a certain school are 

given by the following table: 
 

Age (years)        Frequency 
  5 – 9              22 
10 – 11              18 
12 – 13              20 
14 – 15              25 
16 – 19              15 
 Total:  100 

 
 Draw a histogram to represent the data. 
 
 The interval widths are 5, 2, 2, 2, 4. 
 Now the area of a given rectangle is proportional to the frequency of the 

interval and so in order to find the height of each rectangle we calculate the 
value of the frequency density for the corresponding class. 

 

   FrequencyFrequency Density
Interval Width

=  

 

 The frequency densities are 22
5 , 18

2 , 20
2 , 25

2 , 15
4  or 4.4, 9, 10, 12.5, 3.75. 

 A suitable histogram follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 10 15 20 0 

5 

10 

15 

Age (years) 

Frequency Density 



 Statistics 1  

 169 

Exercise 7.1 
 
1. From the following histogram find the number of screws with lengths in the 

intervals 
 (a) 5–10 mm ; (b) 10–20 mm ; (c) 20–30 mm ; (d) 30–50 mm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Find the total number of screws in the population. 
 
2. Draw a histogram to represent the following data. 
 

Rainfall (mm) Frequency 
    0–30      24 
  30–40      55 
  40–60    105 
  60–100      64 
100–150      52 

  
 
3. The heights in cm of 40 students are given in the following list. 
 
  148  144  149  130  137  143  132  134  143  147 
 130  137  141  140  132  146  145  140  135  148 
 145  126  140  123  139  127  144  121  130  145 
 120  131  134  142  127  147  138  136  139  126 
 
 Draw a histogram to illustrate the data using class boundaries 120, 125, 130, 

135, 140, 145, 150. 
 
4. Draw a histogram to represent the data given at the top of the next page which 

concerns the scores in a test achieved by a group of year 12 students. 
 

Frequency Density 

Screw Lengths (mm) 
5 10 20 30 40 50 0 

1 

2 
3 
4 
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Score        Frequency 
  0 – 5                6 
  6 – 10              11 
11 – 15              24 
16 – 20              30 
21 – 25              21 
26 – 30                8 
 Total:  100 

 
5. The times in completed minutes of the telephone calls made by a group of 

children on a particular evening are given in the following table. 
 

Time (min)  0 – 9 10 – 14 15 – 19 20 – 24  25–29 30 – 39 
Frequency    15     24     22     12      7       6 

 
 Draw a histogram to represent the data. 
 
6. Draw a histogram to represent the data in Question 5 if the times given are 

correct to the nearest minute. 
 
7. The masses in kg to the nearest kg of 100 students are given in the following 

table. 
 

Mass (kg) 40 – 49 50 – 54 55 – 59 60 – 64 65 – 75 
Frequency     16     17     26     23     18 

 
 Draw a histogram to represent the data. 
 
7.2 Measures of Central Tendency – Mean, Median, Mode 
 
There are several measures of an 'average' value for a given set of data. The mean, 
median and mode are three of the most commonly used. 
 
The Mean 
 
Consider the set of n values 1 2 3, , , , nx x x x� . The mean of these values is denoted 
and defined by 

   1 2 3 nx x x xx
n

+ + + +
=

�  =  
1

n
i

i

x
n=

∑  =  
1

1 n

i
i

x
n =
∑ . 

 
1. Finding the mean from raw data. 
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Example Find the mean of the numbers 24, 26, 27, 29, 32, 42. 
 

 The mean is 1
6

x x= =∑ 1 (24 26 27 29 32 42)
6

+ + + + +  1 (180)
6

= = 30. 

 
Example The mean number of matches in nine boxes is 51. How many matches 

must there be in the tenth box if the mean number of matches in all 
ten boxes is 52? 

 
 The total number of matches in the first nine boxes = 9 × 51 = 459. 
 For the mean number in all ten boxes to be 52, there must be a total of 

10 × 52 = 520 matches in the ten boxes. 
 Therefore the number of matches in the tenth box is 61. 
 
2. Finding the mean from a frequency distribution. 
 

 The mean value from a frequency distribution is given by 
fx

x
f

= ∑
∑

. 

 
Example Find the mean from the following frequency distribution. 
 

        x    10    11    12    13    14 
Frequency ( f )       5       10    11      8      6 

 
  

x         f          fx 
10         5          50 
11       10        110 
12       11        132 
13         8        104 
14         6          84 
 40f =∑  480fx =∑  

 

 Therefore the mean is 
fx

x
f

= =∑
∑

 480
40

=  12. 

 
If the data has been grouped into intervals, we cannot know the values of the variable 
for all instances within the interval and so we must estimate the mean of these values. 
To achieve this, we assume that the interval frequency is spread 'evenly' throughout 
the interval by using the mid-interval value for all values of the variable. 
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Example Estimate the mean of the following frequency distribution. 
 

Mass (kg) 32–36 37–41 42–46 47–51 52–56 57–61 
Frequency ( f )      6    14    24    15    12         9 

 

 The mid-interval values are 34 1
2[ (31.5 36.5)]= + , 39, 44, 49, 54 and 59. 

 
Mass (kg) Mid-interval, x          f           f x 
32–36          34          6          204 
37–41          39        14          546 
42–46          44        24        1056 
47–51          49        15          735 
52–56          54        12          648 
57–61          59          9          531 
  f∑  = 80 f x∑  = 3720 

 

 Therefore the mean = 
f x
f

∑
∑

 = 3720
80

 = 46.5 

 
The Median 
 
If a set of numbers is arranged in ascending order, the middle number or the mean of 
the two middle numbers is called the median. Thus there are as many numbers less 
than the median as there are greater than the median. 
 
Consider the numbers 1 2 3, , , , nx x x x�  written in ascending order. 
 

If n is odd, the median is ix  where i = 1
2 ( 1)n + . 

 

If n is even, the median is 1
12 ( )i ix x ++  where i = 1

2 n . 
 
Example Find the median of the numbers 
  (a) 12, 9, 17, 16, 10, 10, 13 ; 
  (b) 56, 46, 61, 57, 48, 50, 47, 44. 
 
 (a) In ascending order the numbers are:  9, 10, 10, 12, 13, 16, 17. 
   There are 7 numbers and so the median is in position 1

2 (7 1)+  = 4. 
Therefore the median is 12. 

 
 (b) In ascending order the numbers are 44, 46, 47, 48, 50, 56, 57, 61. 
  There are 8 numbers and so the two middle numbers are in 1

2 (8) = 4th 
and 5th positions. 

  Therefore the median is 1
2 (48 50)+  = 49. 
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From grouped data, the median like the mean, can only be estimated. Linear 
interpolation is generally used. 
 
Example Estimate the median from the following grouped data. 
 

Class Frequency 
  0–4        4 
  5–9        5 
10–14        5 
15–19        4 
20–24        2 
 f∑  = 20 

 
 There are 20 values and so the median is the mean of the 10th and 11th values 

in ascending order, i.e. the '10.5th' value. There are 9 values in the first two 
classes and so the median must lie in the next class. This class has a lower 
class boundary of 9.5, a width of 5 and contains 5 values. The difference 
between 10.5 and 9 is 1.5. 

 Therefore the median is approximately 9.5 + 1.5
5 5×  = 11. 

 
The Mode 
 
The mode is the value with the largest frequency. For grouped data, the modal class is 
the class with the greatest frequency. There may of course be more than one mode or 
modal class. 
 
Exercise 7.2 
 
1. Find the mean, median and mode of each of the following sets of numbers.

 (a) 6, 10, 4, 13, 11, 9, 1, 6, 12 ; 
 (b) 193, 195, 202, 190, 189, 195 ; 
 (c) 0.77, 0.73, 0.61, 0.73, 0.65, 0.83, 0.81, 0.65, 0.73, 0.69, 0.74, 0.76. 
 
2. Find the mean and median of the following frequency distributions. 
 (a) 

x  1  2  3  4  5  6 
f 32 27 26 35 33 27 

 
 (b) 

x 10 11 12 13 14 
f 23 19 16 24 18 
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 (c) 
x   2   3   5   7 11 13 
f 28 32 35 17   6   2 

 
 (d) 

x 3.2 3.6 4.0 4.4 4.8 5.2 
f    4    9  26  35  42  34 

 
3. Estimate the mean and median of the following grouped frequency 

distributions. 
 

(a) 
x 0–2 2–4 4–6 6–8 
f  20  19  25  16 

 
 (b) 

x 10–14 15–19 20–24 25–29 30–34 35–39 
f    61    50    37    27    16      9 

 
 (c) 

x   0–9 10–19 20–29 30–39 40–49 50–60 
f      3    24    46    38    28    11 

 
4. The frequency table giving the ages in completed years of the population of a 

small country town is shown below. Estimate the mean age and the median 
age of the towns-people. 

 
Age (x years)   0–19 20–29 30–39 40–49 50–59 
Frequency (f )   258   761   906   832   756 

 
Age (x years) 60–69 70–79 80–89 90–99 100–109 
Frequency (f )   484   305   148    44       6 

 
 
7.3 Cumulative Frequency – Quartiles and Percentiles 
 
To find the cumulative frequency corresponding to a given class we sum the 
frequencies up to the upper class boundary. 
 
Example The frequencies of the scores of 80 students in a test are given in the 

following table. Complete the corresponding cumulative frequency 
table. 

 



 Statistics 1  

 175 

Test Score Frequency 
  0–9         8 
10–19       18 
20–29       24 
30–39       20 
40–49       10 

 
 A suitable table is as follows: 
  

Test Score Cumulative Frequency 
≤ –0.5    0 
≤   9.5    8 
≤ 19.5  26    (8 + 18) 
≤ 29.5  50    (26 + 24) 
≤ 39.5  70    (50 + 20) 
≤ 49.5  80    (70 + 10) 

 
The information provided by a cumulative frequency table can be displayed in 
graphical form by plotting the cumulative frequencies given in the table against the 
upper class boundaries, and joining these points with a smooth curve. 
 
The cumulative frequency curve corresponding to the data in the previous example is 
as follows: 
 
 

 
 
 
 
Note: If we join the points with straight lines, we form a cumulative frequency 

polygon. 
 
Example The results obtained by 200 students in a mathematics test (maximum 

mark = 50) are given in the following table. 

20 

40 

60 

80 

Cumulative 
Frequency 

Test Score 
10 20 30 40 50 0 
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Mark Frequency 
  1–10       22 
11–20       35 
21–30       72 
31–40       60 
41–50       11 

 
 Draw a cumulative frequency curve and use it to estimate 
 (a) the median mark ; 
 (b) the number of students who scored less than 22 marks; 
 (c) the pass mark if 120 students passed the test ; 
 (d) the minimum mark required to obtain an A grade if 10% of 

the students received an A grade. 
 
 The required cumulative frequency curve is as follows: 
 
 
 

        
 
 
 
 From the graph: 
 (a) the median mark was 26. 
 (b) approximately 69 students scored less than 22 marks. 
 (c) the pass marks was 28. 
 (d) the minimum mark required to obtain an A grade was 38. 
 
Quartiles and Percentiles 
 
Twenty five percent of the observations have values which are less than the lower 
quartile, 1Q , and twenty five percent of the observations have values which are 
greater than the upper quartile, 3Q . Thus the lower quartile, median and upper 
quartile divide the distribution into four equal parts. 

26 28 

Cumulative 
Frequency 

Test Score 

38 22 

200 

100 

10.5 50.5 20.5 30.5 40.5 0.5 



 Statistics 1  

 177 

When data is grouped, we can only estimate the values of the quartiles and we use a 
cumulative frequency curve for this purpose. 
 
A useful measure of the dispersion of the observations is the interquartile range, 

3 1Q Q− . This is not affected by any extreme values at either end of the range of 
values. The 'middle' 50% of the population have values between 1Q  and 3Q  and so 
the interquartile range provides a measure of the spread of the middle half of the 
population. 
 
A similarly useful measure of dispersion is the semi-interquartile range, 1

3 12 ( )Q Q− . 
 
The nth percentile, nP , has n% of the observations with values less than nP . Thus 
20% of the observations have values less than 20P  and 20% of the observations have 
values greater than 80P . As with quartiles, we estimate the percentiles from grouped 
data by reading information from the corresponding cumulative frequency curve. 
 
Example The heights of 500 students in a school were measured and the results 

were as follows. 
 

Height (cm) Frequency Height (cm) Frequency 
140–144         8 165–169       92 
145–149       19 170–174       88 
150–154       35 175–179       53 
155–159       68 180–184       42 
160–164       81 185–189       14 

 
 Draw a cumulative frequency curve and use it to 
 (a) estimate the median height of the students ; 
 (b) determine the interquartile range ; 
 (c) determine 90 10P P−  (the 10 to 90 percentile range). 
 
 The cumulative frequencies are given in the following table: 

Height (cm) Cumulative 
Frequency 

Height (cm) Cumulative 
Frequency 

   < 139.5         0    < 169.5     303 
   < 144.5         8    < 174.5     391 
   < 149.5       27    < 179.5     444 
   < 154.5       62    < 184.5     486 
   < 159.5     130    < 189.5     500 
   < 164.5     211   
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The cumulative frequency curve is as follows: 
 

        
 
 
 
 (a) Median height = 162 cm. 
 (b) Interquartile range = (168 – 154) cm = 14 cm. 
 (c) 90 10P P−  = (176 – 148) cm = 28 cm. 
 
Box and Whisker Plots 
 
A box and whisker plot is a simple but effective way to represent data in the form of a 
picture. It is based on the smallest of the observations, the upper and lower quartiles, 
the median and the largest observation. 
 
Example The scores of 15 students in a small test were: 
 2, 4, 4, 5, 5, 5, 6, 6, 8, 8, 8, 9, 9, 10, 10. 
 Find the upper and lower quartiles and the median and represent the 

results in a box and whisker diagram 
 
 The median = 8 6x = , the lower quartile is 4 5x =  and the upper quartile is 

12 9x = . 
 The required diagram is as follows: 
 
 
 
 
 
 
 
 
 
 
The middle 50% of the scores are inside the box and the length of the box is clearly 
equal  to the inter-quartile range. 
 

140 

100 

200 

300 

400 

500 

median 3Q  1Q10P 90P
190 150 180 170 160 

0 2 4 6 8 10 
Score 

lowest 
score 

Q1 m Q3 largest 
score 
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Exercise 7.3 
 
1. Construct a cumulative frequency curve for the following data. 
 

Test Mark Frequency 
    1–20         4 
  21–40       25 
  41–60       71 
  61–80       38 
  81–100       12 

 
 Use your graph to estimate 
 (a) the median score ; 
 (b) the interquartile range ; 
 (c) the pass mark if 60% of the candidates passed ; 
 (d) the smallest mark required to obtain an A grade if 10% of the 

candidates received an A grade. 
 
2. The following table gives the number of people (in thousands) in a large town 

in the given age ranges. 
 

Age Number of people Age Number of people 
  0–9  24 50–59  18 
10–19  27 60–69  15 
20–29  31 70–79  12 
30–39  28 80–89    8 
40–49  23 90–    3 

 Draw a cumulative frequency curve for these data. 
 Use your graph to 
 (a) estimate the median age ; 
 (b) the semi-interquartile range ; 
 (c) estimate the number of people in the town who are eligible to drive a 

car if the legal driving age is between 18 years and 75 years ; 
 (d) the age exceeded by 90% of the population. 
 
3. The following graph is that of a cumulative frequency curve for the 

distribution of the number of marks obtained by 180 candidates in an 
examination. Use the graph to estimate 

 (a) the median mark ; 
 (b) the interquartile range ; 
 (c) the number of candidates who passed if 60 were the pass mark. 
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 Complete the grouped frequency table corresponding to the class intervals 

0 9− , 10–19, 20–29, etc. and draw the corresponding histogram. 
 
4. The life-times (in hours) of 200 light bulbs were determined and the results 

are given in the following table. 
 

 

 
 Draw a cumulative frequency curve and use it to estimate 
 (a) the median life-time of the bulbs ; 
 (b) the percentage of bulbs lasting between 970 hours and 1070 hours ; 
 (c) the life-time below which 30% of the bulbs failed ; 
 (d) the probability that a similar light bulb will fail before 840 hours ; 
 (e) the number of similar light bulbs from a batch of 3000 which could 

be expected to last at least 1120 hours. 
 
5. Box and whisker plots representing the heights (in cm) of the boys and girls 

at a certain school are shown below: 
 
 
 
 
 
 
 
 
 (a) Estimate the median height of the girls. 
 (b) Estimate the probability that a girl selected at random has a 

height which is greater than the lower quartile height of the boys. 

Life-time Frequency Life-time Frequency 
  800–849         4 1000–1049       31 
  850–899       18 1050–1099       48 
  900–949       23 1100–1149       38 
  950–999       28 1150–1199       10 

100 

0 

180 

20 40 60 80 100 

Cumulative Frequency 

Mark 

Heights (cm) 140 150 160 170 180 190 

girls 

boys 
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6. Using the data from Question 4, draw the corresponding box and whisker 
plot. 

 
7. The table below records the lengths of telephone calls (in minutes) made by a 

sample of 50 students on a particular day. 
 

Length of call (minutes) Number of calls 
 0–2             7 
 2–4            12 
 4–6            18 
 6–8              9 
 8–10              4 

 
 (a) Draw a cumulative frequency diagram. 
 (b) Estimate the median and the quartiles. 
 (c) Draw a box and whisker diagram to illustrate the data. 
 
8. The following box-and-whisker plots record the maximum daily temperatures 

during January at two cities some distance apart. 
 
 
 
 
 
 
 
 (a) Which city recorded the (i) highest,  (ii) lowest temperatures? 
 (b) Which city could be described as the 'hotter' of the two? 
 (c) Which city recorded the greater range of temperatures? 
 (d) Which city had the more variable temperature? 
 
 
7.4 Measures of Dispersion – Discrete Data 
 
The simplest measure of the dispersion (spread) of data is the range. The range is 
equal to the difference between the largest value and the smallest value and is 
completely determined by these extreme values. 
 
Consider the following data sets: 
(a) 8, 9, 10, 11, 12 ;  (b) –45, –8, 2, 42, 59. 
 
Each has a mean of 10, but the second set is clearly more spread out than the first. In 
fact the range of the first is 12 – 8 = 4 but the range of the second is 59 – (–45) = 104. 
 

City A 

City B 

Temperature °C 15 20 25 30 35 
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We have already met at least one other measure of spread – the interquartile range. 
Its disadvantage is that it is quite 'insensitive' to changes in the lower and upper 
quarters of the data. Much more useful measures of the spread of data are the 
variance and its square root, the standard deviation. 
 
Variance Let the observed values be 1 2 3, , , , nx x x x� . Then the variance is 

denoted and defined by 

      

2

2 1
( )

n

i
i

x x
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 is the mean of the data. 

 
Standard Deviation The standard deviation of the observed values above is 

denoted and defined by 
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 which is clearly the square root of the variance. 
 
The variance is thus the mean of the squared deviations from the mean and the 
standard deviation is simply the square root of this. 
 
The following results follow directly from the definitions of mean and standard 
deviation. 
 
(1) When all the data values are multiplied by a constant a, the new mean and 

new standard deviation are equal to a times the original mean and standard 
deviation. 

 The mean of  1 2 3, , , , nax ax ax ax�  is ax , and the standard deviation is as. 
 
(2) When a constant value, b, is added to all the data values, then the mean is also 

increased by b. However, the standard deviation does not change. 
 The mean of 1 2, , , nx b x b x b+ + +�  is x b+ ; the standard deviation is s. 
 
Example The six runners in a 200 metre race clocked times (in seconds) of 24.2, 

23.7, 25.0, 23.7, 24.0, 24.6. 
 
 (a) Find the mean and standard deviation of these times. 
 (b) These readings were found to be 10% too low due to faulty 

timekeeping. Write down the new mean and standard deviation. 
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 (a) 24.2 23.7 25.0 23.7 24.0 24.6 24.2
6

x + + + + +
= = seconds. 

   
2 2 2(24.2 24.2) (23.7 24.2) (24.6 24.2)

6
s − + − + + −

=
�  

      0 0.25 0.64 0.25 0.04 0.16
6

+ + + + +
=  

      0.473= seconds. 
 
 (b) We must divide each time by 0.9 to find the correct time. 
   The new mean = 24.2/0.9 = 26.9 seconds, and the new standard 

deviation = 0.4726/0.9 = 0.525 seconds. 
 
The method which uses the formula for the standard deviation is not necessarily the 
most efficient. Consider the following: 
 

 Variance =  
2( )x x

n
−∑  

  =  
2 2( 2 ( ) )x xx x

n
− +∑  

  =  
2

2 1
2 ( )

x x
x x

n n n
− +∑ ∑ ∑    (since x  is a constant) 

  =  
2

22 ( )
x

x x x
n

− +∑  

  =  
2

2( )
x

x
n

−∑ . 

 
Example The heights (in metres) of six children are 1.42, 1.35, 1.37, 1.50, 1.38 

and 1.30. Calculate the mean height and the standard deviation of the 
heights. 

 Mean =  1
6 (1.42 + 1.35 + 1.37 + 1.50 + 1.38 + 1.30) = 1.39 m. 

 Variance =  2 2 2 2 2 2 21
6 (1.42 1.35 1.37 1.50 1.38 1.30 ) 1.387+ + + + + −   

  =  0.00386 2m . 
 Standard Deviation = 0.0038556 0.0621m= . 
 
 
Exercise 7.4 
 
1. Find the mean and standard deviation of 25.2, 22.8, 22.1, 25.3, 24.6, 25.0, 

24.3 and 22.7. 
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2. Using the mean and standard deviation of the set of numbers {3, 5, 6, 8, 10}, 
find the mean and standard deviation of each of the following sets of 
numbers. 

 (a) {6, 8, 9, 11, 13} ;  (b) {9, 15, 18, 24, 30} ; 
 (c) {2.7, 4.5, 5.4, 7.2, 9.0}. 
 Find the mean and standard deviation of the set containing numbers which are 

5% higher than those in the original set. 
    

3. The mean height of a group of 5 people is 155cmh =  and the standard 
deviation of their heights is 5 cm. 

 (a) Calculate h∑  and 2h∑  for this data. 
 (b) If an extra person of height 165 cm is added to the group, calculate 

the new mean and standard deviation of the heights. 
 
4. Consider the set of data 1 2 3{ , , , , }nx x x x�  with mean, x , and standard 

deviation, s. 
 (a) Prove that the set of data 1 2 3{ , , , , }nx a x a x a x a+ + + +� , where a is 

a constant, has mean x a+  and standard deviation s. 
 (b) Prove that the set of data 1 2 3{ , , , , }nbx bx bx bx� , where b is a 

constant, has mean bx  and standard deviation bs. 
 

5. The mean and variance of 1 2 3, , , , nx x x x�  are x  and 2s  respectively. State 
the mean and variance of 1 2 32 3 , 2 3 , 2 3 , , 2 3 nx x x x− − − −� . 

 
6. Twenty values of a random variable have a mean of 15 and a variance of 1.5. 

Another thirty values of the same random variable have a mean of 14 and a 
variance of 1.4. Find the mean and variance of the combined fifty values. 

 
7. The mean daily maximum temperature at a fixed location for the month of 

January was 22°C and the standard deviation of these daily maxima was 2°C. 
For the following February which was not a leap year, the mean was 24°C 
and the standard deviation was 4°C. Calculate the mean and standard 
deviation of the daily maximum temperatures for the two months combined. 

 
8. A sample of 165 values of a random variable have a mean of 23.4 and a 

standard deviation of 1.6. When combined with another 219 values, the mean 
of all 384 values was 24.8 and the standard deviation was 2.2. Find the mean 
and standard deviation of the 219 values which were added to the original 
sample. 

 
9. Twenty values of a random variable have a mean value of 12.5 and a variance 

of 1.35. If two more values are added to the original 20 the mean remains at 
12.5 but the variance is increased by 0.082. Find the two values added. 
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7.5 The Mean and Variance for Grouped Data 
 
The mean for grouped data where the mid-interval value for the ith group is ix  which 
occurs with frequency if  (so that if n=∑ ) is 
 

   i i i i

i

f x f x
x

f n
= =∑ ∑

∑
. 

 

The variance is  
22 2

2 2( ) ( )i i i i i i

i

f x x f x x f x
s x

f n n
− −

= = = −∑ ∑ ∑
∑

, 

 
and the standard deviation, s, as always, is the square root of the variance. 
 
In the first example we will use the above formulae, but a GDC should be used in 
practice. 
 
Example The number of customers served lunch in a restaurant over a period 

of 60 days is as follows: 
 
 

Number of customers 
     served lunch 

Number of days in the 
      60-day period 

         20–29    6 
         30–39  12 
         40–49  16 
         50–59  14 
         60–69    8 
         70–79    4 

 
 

Find the mean and standard deviation of the number of customers 
served lunch using this grouped data. 

 
In the 40–49 group, we do not know on exactly how many of the 16 days, 44 
customers say, were served lunch so we assume that on each of these days, 
44.5 customers were served. We choose the mid-interval value ( )1

2 [40 49]+  
as representative of the group as a whole and use this to estimate the mean 
and standard deviation. 
 
 
 
 



Chapter 7 

186   

 
Group 
 

Mid-interval 
value ( ix ) 

Frequency 
     ( )if  

      i if x       2
i if x  

20–29     24.5        6      147   3 601.5 
30–39     34.5      12      414 14 283.0 
40–49     44.5      16      712 31 684.0 
50–59     54.5      14      763 41 583.5 
60–69     64.5        8      516 33 282.0 
70–79     74.5        4      298 22 201.0 
  

if∑ =60 i if x∑ =2 850 2
i if x∑ =146 635 

 

 The mean is 2850 47.5
60

i i

i

f x
x

f
= = =∑

∑
. 

The standard deviation is 
2

2 2146635 47.5 13.7
60

ii

i

f x
s x

f
= − = − =∑

∑
. 

 
Example The age distribution of the population of a small country town on 

January 1, 2001 is given in the following table: 
 

Age Group 
  (years) 

Mid-interval 
 ( ix  years) 

Frequency 
     ( if ) 

    0–14       7.5     856 
  15–29     22.5   1120 
  30–44     37.5   1054 
  45–59     52.5     792 
  60–74     67.5     651 
  75–89     82.5     288 
  90–104     97.5       96 

 
 Calculate the mean and standard deviation of the population age on 

January 1, 2001. 
 
 It should be noted that people from age 15 to almost 30 lie in the group 15–29 

and so it is correct to take 1
2 (15 30) 22.5+ =  as the mid-interval value. 

 From the GDC, x  = 39.1 years and s = 23.6 years. 
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Exercise 7.5 
 
1. Calculate the mean and standard deviation from the following data. 
 
 (a)  

Test Score Frequency 
  1–10        6 
11–20      17 
21–30      29 
31–40      23 
41–50      10 

 
 (b) 

Test Mark Frequency 
    1–20         4 
  21–40       25 
  41–60       71 
  61–80       38 
  81–100       12 

 
2. The ages of the people living in a country town are grouped as follows: 
 

Age group Frequency Age group Frequency 
    0–9    1205   60–69      954 
  10–19    1528   70–79      532 
  20–29    2006   80–89      187 
  30–39    1857   90–99        56 
  40–49    1621 100–109          4 
  50–59    1483   

 
 Calculate the mean and standard deviation of the ages of the people in the 

town. 
 
3. The heights in centimetres of a group of people are given in the following 

table. Calculate the mean and standard deviation of these heights. 
  

Height (cm) Frequency Height (cm) Frequency 
140–144         5 170–174     173 
145–149       18 175–179     130 
150–154       27 180–184       72 
155–159       62 185–189       35 
160–164       87 190–194       12 
165–169     115 195–199         2 

 



Chapter 7 

188   

4. The life-times (in hours) of 200 light bulbs were determined and the results 
are given in the following table. 

 
 

 
 Calculate the mean and standard deviation of the life-times of the bulbs. 
 
 

Required Outcomes 
 

After completing this chapter, a student should be able to: 
• draw frequency histograms for both discrete and continuous data. 
• calculate the mean, median and mode of discrete data. 
• construct cumulative frequency curves and use them to estimate the 

median, quartiles and percentiles of a distribution. 
• construct and interpret box-and-whisker plots. 
• calculate various measures of dispersion – the range and interquartile 

range, and the variance and standard deviation of a sample. 

Life-time Frequency Life-time Frequency 
  800–849         4 1000–1049       31 
  850–899       18 1050–1099       48 
  900–949       23 1100–1149       38 
  950–999       28 1150–1199       10 
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8.1 The Product Principle 
 
The aim of this chapter is to develop some techniques for determining, without direct 
enumeration, the number of possible outcomes of a particular experiment or the 
number of elements in a given set. Such techniques are sometimes referred to as 
combinatorial analysis. 
 
A procedure known as the product principle is very useful in this endeavour. 
 
If some procedure can be performed in 1n  different ways, and if, following this 
procedure, a second procedure can be performed in 2n  different ways, and if, 
following this procedure, a third procedure can be performed in 3n  different ways, 
and so on; then the number of ways the procedures can be performed one after the 
other in the given order is the product 1 2 3n n n× × ×� . 
 
Example A car license plate is to contain three letters of the alphabet, the first 

of which must be R, S, T or U, followed by three decimal digits. How 
many different license plates are possible? 

 
 The first letter can be chosen in 4 different ways, the second and third letters 

in 26 different ways each, and each of the three digits can be chosen in ten 
ways. 

 
 Hence there are 4 × 26 × 26 × 10 × 10 × 10 =  2 704 000 plates possible. 
 
Example (a) How many numbers of four different digits can be formed? 

(b) How many of these are odd? 
(c) How many are multiples of 5? 
 

 (a) There are nine ways to choose the first digit since 0 cannot be the first 
digit, and nine, eight and seven ways to choose the next three digits 
since no digit may be repeated. 

 
  Therefore there are 9 × 9 × 8 × 7 = 4536 numbers possible. 
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 (b) The last digit must be a 1, 3, 5, 7 or 9. There are five ways of choosing 
it. Then the first digit can be chosen in eight different ways since it 
cannot be a zero or the number chosen for the last digit. The other two 
digits can be chosen in eight and seven ways respectively. 

 
  Therefore the number of odd numbers is 8 × 8 × 7 × 5 = 2240. 
 
 (c) The last digit must be 0 or 5. But there is a problem when we next wish 

to establish the number of possibilities for the first digit which cannot 
be 0. This choice depends on our choice for the last digit. We therefore 
count the number which end in 0 and the number which end in 5 
separately and add the two answers. 

  The number ending in 0 is 9 × 8 × 7 × 1 = 504, and 
  the number ending in 5 is 8 × 8 × 7 × 1 = 448. 
 
  The required number = 952. 
 
Example In how many different ways can 6 people sit in a row? In how many 

ways if 2 of them, A and B, must sit together? 
 
 The number of ways = 6 5 4 3 2 1× × × × ×  = 720. 
 
 If A and B are considered as one 'person', the number of arrangements is equal 

to 5 4 3 2 1× × × ×  = 120. For each of these arrangements there are 2 ways of 
seating A and B. 
Therefore the required number of ways = 2 × 120 = 240. 

 
Exercise 8.1 
 
1. If there are three different roads joining town A to town B and four different 

roads joining town B to town C, in how many different ways can I travel from 
A to C via B and return if 

 (a) there are no restrictions ; 
 (b) I am not able to return on any road I used on the outward journey? 
 
2. An ant is at one vertex of a cube. In how many different ways can it travel 

along three different edges to arrive at the opposite vertex? 
 
3. (a) How many 3-digit numbers can be formed using only the digits 1, 2, 

3, 5, 7 and 8? 
 (b) How many of these numbers are even? 
 (c) How many are less than 500? 
 
4. Answer Question 3 if no digit may be repeated. 
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5. (a) How many numbers of 4 different digits can be formed using only the 
digits  0, 1, 2, 5, 7 and 8? 

 (b) How many of these numbers are even? 
(c) How many of these numbers are multiples of 5? 

 
6. (a) In how ways can three boys and two girls sit in a row? 
 (b) In how many ways can they sit in a row if the boys are to sit together 

and the girls are to sit together? 
 (c) In how many ways can they sit in a row if only the girls must sit 

together? 
 
7. (a) How many four-digit numbers are there? 
 (b) How many four-digit numbers contain at least one digit 3? 
 
8. There are 20 teams in the local football competition. In how many ways can 

the first four places in the premiership table be filled? 
 
 

Higher Level 
 
9. Four distinct letters are to be placed in four differently addressed envelopes 

with one letter in each envelope. 
 (a) In how many ways can this be done? 
 (b) In how many ways will exactly one letter be placed in its correct 

envelope? 
 (c) In how many ways will exactly three letters be placed in their 

correct envelopes? 
 
10. In how many different ways can the digits 0 to 9 be arranged in a row if the 

first four must all be odd and zero is not among the last three? 
 
11. (a) In how many different ways can 4 distinct objects be placed in 3 

separate compartments? 
 (b) In how many ways can this be done if no compartment is to 

contain more than two objects? 
 

 
8.2 Factorial Notation 
 
The product of the positive integers from 1 to n inclusive occurs often in mathematics 
and is therefore denoted by the special symbol n! (read "n factorial"). 
 
Thus ! 1 2 3 ( 2) ( 1)n n n n= × × × × − × − ×� . 
 
It is also convenient to define 0! = 1. 
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Example Simplify: (a) 6!
4!

 ; (b) ( 1)!
( 1)!
n
n

+
−

 ; (c) ( 1)! ( 1)!
!

n n
n

+ − − . 

 

  (a) 6! 6 5 4! 6 5 30
4! 4!

× ×
= = × = . 

 (b) ( 1)! ( 1) ( 1)! ( 1)
( 1)! ( 1)!
n n n n n n
n n

+ + −
= = +

− −
. 

 (c) ( 1)! ( 1)! ( 1) ( 1)! ( 1)! ( 1) 1 11
! ( 1)!

n n n n n n n n n
n n n n n

+ − − + − − − + −
= = = + −

−
. 

 
Exercise 8.2 
 
1. Find the value of: 

 (a) 15!
13!

 ; (b) 9!
11!

 ; (c) 6! 5!−  ; (d) 10! 9!
8!
− . 

 
2. Express in factorial notation: 
 (a) 5 4 3 2× × ×  ; (b) 4 3×  ; (c) 10 9 8 7× × ×  ; 

 (d) 1
8 7 6 5× × ×

 ; (e) 12 11 10 9
4 3 2 1
× × ×
× × ×

 ; (f) n(n – 1)(n – 2). 

 
3. Simplify: 

 (a) ( 1)!
( 2)!
n
n

−
−

 ; (b) ( 2)!
!

n
n
+  ; (c) ( 2)! !

( 1)!
n n

n
+ −

−
. 

 
4. Without multiplying all the terms, show that 
 (a) 10! = 6! 7! ;  (b) 10! = 7! 5! 3! ; 
 (c) 16! = 14! 5! 2! ;  (d) 9! = 7! 3! 3! 2!. 
 
8.3 Permutations 
 
An arrangement of a set of n objects in a given order is called a permutation of the 
objects (taken all at a time). 
 
An arrangement of any r ≤ n of these objects in a given order is called an r-
permutation of the n objects or a permutation of the n objects taken r at a time. 
 
The number of permutations of n objects taken r at a time is denoted by ,n

r n rP P  or 
n

rP . 
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Example Find the number of permutations of 4 objects (taken all at a time). 
 
 The first object can be chosen in 4 different ways, and following this, the 

second object can be chosen in 3 different ways, and following this, the third 
object can be chosen in 2 different ways and finally the last object can be 
chosen in 1 way. 

 
 Thus, by the product principle, the number of permutations of the 4 objects is 

4 × 3 × 2 × 1 = 24. 
 
The result of the previous example can be generalised: 
 
  the number of permutations of n different objects is n!. 
 
 
Example Find the number of permutations of 6 objects taken 3 at a time. 
 
 The first object can be chosen in 6 different ways; following this, the second 

object can be chosen in 5 different ways; following this, the last object can be 
chosen in 4 different ways. Thus, by the product principle, there are 6 × 5 × 4 
or 120 possible permutations of 6 objects taken 3 at a time. ( )6

3i.e., P 120=  
 

The derivation of the formula for Pn
r  follows the procedure in the preceding example. 

The first object in an r-permutation of n objects can be chosen in n different ways; 
following this, the second object can be chosen in (n – 1) different ways; and 
following this, the third object can be chosen in (n – 2) different ways. Continuing in 
this way, we have that the rth (last) object can be chosen in (n – r + 1) different ways. 
Thus, 

 !P ( 1) ( 2) ( 1)
( )!

n
r

nn n n n r
n r

= × − × − × × − + =
−

�  . 

 
In particular, when r = n we have P ( 1) ( 2) 3 2 1 !n

n n n n n= × − × − × × × × =�  . 
 
Example (a) In how many different ways can six people be arranged in a 

row? 
 (b) In how many different ways can these six people be arranged 

in a circle? 
 (c) Answer parts (a) and (b) if two particular people, A and B 

must sit next to each other. 
 
  (a) The number of ways is equal to the number of permutations of six 

objects which is 6! = 720. 
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 (b) The six different permutations in a row, ABCDEF, BCDEFA, 
CDEFAB, DEFABC, EFABCD and FABCDE all give the same 
permutation in a circle since the circle has no "ends". Therefore, the 
number of permutations of six people arranged in a circle is 

  6! 5! 120
6

= = . 

  [This is a particular case of the rule: The number of different ways of 
arranging n different objects in a circle is (n – 1)!.] 

 
 (c) First we join A and B together and consider them as one 'object'. We 

can arrange the five objects "AB", C, D, E, F in 5! = 120 different 
ways in a row and 4! = 24 different ways in a circle. Now the pair 
"AB" can be arranged in 2! = 2 different ways for each of these ways. 
Therefore the number of ways of arranging 6 people in a row so that 
A and B sit next to each other = 2 × 120 = 240. 

  Also, the number of ways of arranging 6 people in a circle so that A 
and B sit next to each other = 2 × 24 = 48. 

 
*Permutations with Repetitions (Optional) 
 
Frequently we would like to know the number of permutations of objects some of 
which are alike. 
 
Example Suppose we have 6 identical discs except for the fact that one is 

black, one is white, one is yellow and the other 3 are green. How 
many distinct permutations of the 6 discs are there? 

 
 If the 6 discs were all distinguishable, there would be 6! different 

permutations. 
 However, the 3 green discs are indistinguishable, and there are 3! 

(indistinguishable) ways of arranging them. 
 Therefore the number of (distinguishable) ways of arranging the given discs 

is 6! 120
3!

= . 

 
This is a particular example of the following general result: 
 
 The number of permutations of n objects of which 1n  are indistinguishable, 

2n  are indistinguishable, … , rn  are indistinguishable is 
1 2

!
! ! !r

n
n n n× × ×�

. 

 
Example How many different words of 5 letters (not necessarily sensible), can 

be formed from the letters of the word 
  (a) MATHS ;  (b) POPPY ? 
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 (a) Number of different words  =  5! = 120. 
 

 (b) Number of different words =  5!
3!

  (the 3 "P"s are indistinguishable) 

  =  5 × 4 
  =  20. 
 
Example In how many different ways can 4 identical red balls, 3 identical 

green balls and a yellow ball be arranged in a row? 
 

 Number of ways = 8!
4! 3!×

 = 8 7 6 5
3 2 1
× × ×

× ×
 = 280. 

 
Exercise 8.3 
 
1. Find the number of ways of arranging 5 different books in a row in a 

bookshelf. 
 
2. In how many ways can I arrange six of eight different books in a row in a  

bookshelf? 
 
3. There are ten teams in the local football competition. In how many ways can 

the first four places in the premiership table be filled? 
 
4. In how many ways can seven people arrange themselves 
 (a) in a row of seven chairs ; 
 (b) around a circular table? 
 
5. In how many different ways can five identical blue balls, two identical red 

balls and a yellow ball be arranged in a row? 
 
6. How many different permutations can be formed from all the letters of the 

word 
(a) NEWTON ; (b) INTERNATIONAL ; (c) BACCALAUREATE? 

 
7. Find the number of arrangements of four different letters chosen from the 

word PROBLEM which 
 (a) begin with a vowel ;  (b) end with a consonant. 
 
8. How many different 4-digit numbers can be formed using the digits 0, 1, 2, 3, 

4, 5 if 
 (a) no digit may be repeated ; (b) repetitions are allowed? 
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Higher Level 

 
9. In how many ways can three books be distributed among ten people if 
 (a) each person may receive any number of books ; 
 (b) no person may be given more than one book ; 
 (c) no person may be given more than 2 books? 
 
10. (a) How many different 6-digit numbers can be formed using the digits 
    1, 2, 2, 3, 3, 3? 
 (b) How many of the 6-digit numbers in part (a) are even? 
 
11. (a) In how many ways can five men, four women and three children be 

arranged in a row so that the men sit together, the women sit together 
and the children sit together? 

 (b) Answer part (a) if they sit around a circular table. 
 
12. Three boys and four girls sit in a row. How many different arrangements 

are possible if 
 (a) there are no restrictions ; 
 (b) the girls are to sit together ; 
 (c) the girls are to sit together and the boys are to sit together ; 
 (d) the sexes alternate? 
 

 
8.4 Combinations 
 
In some problems the order in which objects are arranged is not important. For 
example, when three people are selected from a group to form a social committee, the 
order in which the three people are selected is irrelevant. 
 
The number of combinations of r different objects out of a set of n is the number of 
different selections, irrespective of order, and is denoted by  or  or n n

r n r rC C C  or 

sometimes by 
n
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Suppose that we wish to select three people from a group of five people. The number 
of permutations of five people taken three at a time is 5 × 4 × 3 = 60. However, since 
any selection of three people can be arranged in 3! = 6 different ways, each selection 
of three people will appear six times in the set of possible permutations. Hence the 

total number of selections of three people from five people is 5 4 3 10
6

× ×
= . Thus the 

number of combinations of 5 objects taken three at a time = 
5

3

3!
P  = 5!

2!3!
 = 10. 
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This is a particular case of the general rule which tells us that the number of different 
selections of r objects chosen from n distinct objects is given by 
 

   !
! !( )!

n
n r
r

P nC
r r n r

= =
−

. 

 
For each selection of r objects from n distinct objects, there is a corresponding 
selection of n – r objects, those not among the r objects selected. Therefore we have 
 

 n n
r n rC C −= . …………….(*) 

 
Also it is clear that all n objects can be chosen in one way only, and there is only one 
selection of no objects possible. Thus 
 
   0 1n n

nC C= = . 
 

To evaluate n
rC  "by hand", the simplest rule to apply is 

 

   ( 1)( 2) ( 1)
!

n
r

n n n n rC
r

− − − +
=

�  
 
where the numerator is the product of exactly r consecutive integers starting from n 
down. 
 
By using rule (*) on the previous page, we can simplify the working for values of r 
which are close to n, as follows: 

  20
18

20 19 18 4 3
18!

C × × × × ×
=

�    (eighteen integers in the numerator) 

where sixteen of the eighteen integers in the numerator cancel with sixteen of the 
factors of 18!, and so a better approach is 

  20 20
18 2

20 19 190
2!

C C ×
= = = . 

 
Example Evaluate: (a) 8

3C  ;  (b) 20
16C . 

 (a) 8
3

8 7 6 56
3 2 1

C × ×
= =

× ×
. 

 (b) 20 20
16 4

20 19 18 17 4845
4 3 2 1

C C × × ×
= = =

× × ×
. 

 
Example How many different committees of 3 people can be chosen from a 

group of 12 people? 
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 Number of committees = 12
3

12 11 10= 220
3 2 1

C × ×
=

× ×
. 

 
Example A football team of 11 is to be chosen from 15 players. 
 (a) How many different teams can be selected? 
 (b) How many teams can be selected if the Captain must be in the 

team? 
 (c) How many teams can be selected if the Captain must be in the 

team and one of the other players is injured and cannot play? 
 

 (a) The number of teams possible = 15 15
11 4

15 14 13 12= = =1365
4 3 2 1

C C × × ×
× × ×

. 

 (b) Since the Captain must be in the team, the selectors' job is to select 
another 10 players from the 14 available to join the Captain. 

  The number of teams possible = 14 14
10 4

14 13 12 11= = = 1001
4 3 2 1

C C × × ×
× × ×

. 

 (c) Since the Captain must be in the team and one player is ruled out due 
to injury, the selectors' job is the select another 10 players from the 
13 available to join the Captain. 

  The number of teams possible = 13 13
10 3

13 12 11= = = 286
3 2 1

C C × ×
× ×

. 

 
Example A committee of 5 is to be chosen from 12 men and 8 women. In how 

many ways can this be done if there are to be 3 men and 2 women on 
the committee? 

 

 The number of ways of choosing the men = 12
3

12 11 10= = 220
3 2 1

C × ×
× ×

. 

 The number of ways of choosing the women = 8
2

8 7= = 28
2 1

C ×
×

. 

 Therefore the total number of ways of choosing the committee (given by the 
product rule) = 220 × 28 = 6160. 

 
Note: There is no general formula for dealing with selections made from sets 

containing objects which are not all distinct, as there was for permutations in 
such cases. 

 
Example How many different ways are there of selecting 4 letters from the 

letters of the word POPPED? 
 

The number of selections containing one P and three other letters = 1. 
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 The number of selections containing two Ps and two other letters from the 
remaining three = 3

2 = 3C . 
 The number of selections containing three Ps and one other letter from the 

remaining three = 3
1 = 3C . 

 Therefore the total number of selections of 4 letters = 1 + 3 + 3 = 7. 
 
 

Higher Level (Optional) 
 

Example Prove Pascal's identity: 1
1

n n n
r r rC C C+

−= +  for 1 ≤ r ≤ n. 
 

 1
n n
r rC C −+  =  ! !

!( )! ( 1)!( [ 1])!
n n

r n r r n r
+

− − − −
 

  =  { }! ( 1)
!( 1)!

n n r r
r n r

− + +
− +

 

  =  ( 1)!
!([ 1] )!

n
r n r

+
+ −

 

  =  1n
rC + . 

 
Partitions of Like Objects 
 
Consider the problem of deciding how many different ways 6 indistinguishable 
balls can be placed in a box which has 4 compartments. 
 
One such arrangement might be: OO  OO OO 
 
We can designate this as  OO⏐⏐OO⏐OO where the Os represent the balls and 
the ⏐s represent the "walls" between compartments. (For 4 cells there are 3 
"walls".) All possible arrangements of the 6 balls into 4 compartments is thus 
equivalent to the number of ways of arranging 9 objects (6 balls and 3 "walls") 
of which 6 are alike and 3 are alike. 

Therefore the number of ways = 9!
6!3!

 = 84. 

 
The general rule is as follows: 
 
  The number of ways in which n identical objects can be 

  placed in r cells = 1 1
1

( 1)! =   or  
!( 1)!

n r n r
n r

n r C C
n r

+ − + −
−

+ −
−

. 
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Example In how many ways can I distribute eight $2 coins between 5 girls? 
 
 The problem is to find the number of ways of placing 8 identical objects 

into 5 cells. 

 The number of ways = 8 5 1 12
8 4

12 11 10 9= = = 495
4 3 2 1

C C+ − × × ×
× × ×

. 

 
Ordered Partitions 
 
Suppose an urn A contains seven marbles numbered 1–7. We wish to find the 
number of ways we can draw firstly 2 marbles from the urn, then 3 marbles 
from the urn and lastly 2 marbles from the urn. In other words we wish to 
calculate the number of ordered partitions { }1 2 3, ,A A A  of the set of 7 marbles 
into cells 1A  containing 2 marbles, 2A  containing 3 marbles and 3A  containing 
2 marbles. We call these ordered partitions since we wish to distinguish 
between ( ){1,2},{3,4,5},{6,7}  and ( ){6,7},{3,4,5},{1,2}  each of which yields 
the same partition of A. 
 

Since we begin with 7 marbles in the urn, there are 7
2C  ways of drawing the 

first two marbles to determine the first cell 1A ; following this, there are 5 
marbles left in the urn and so there are 5

3C  ways of drawing the three marbles to 
determine the second cell 2A ; finally there are 2 marbles left in the urn and so 
there are 2

2C  ways of determining the last cell 3A . 

Thus there are 7 5 2
2 3 2

7 6 5 4 3 2 1= = 210
2 1 3 2 1 2 1

C C C × × × ×
× × × ×

× × × ×
 different ordered 

partitions of A into (named) cells containing 2, 3 and 2 marbles respectively. 
 

Note: 7 5 2
2 3 2

7! 5! 2! 7!=
2! 5! 3! 2! 2! 0! 2! 3! 2!

C C C× × × × =
× × × × ×

. 

 
The general rule is as follows: 
 
  Let set A contain n elements and let 1 2 3, , , , rn n n n�  be positive 
  integers such that 1 2 3 rn n n n n+ + + + =� . Then there are 

  
1 2 3

!
! ! ! !r

n
n n n n× × × ×�

 different ordered partitions of A of the form 

  ( )1 2 3, , , rA A A A�  where 1A  contains 1n  elements, 2A  contains 2n   
  elements, 3A  contains 3n  elements,  …  , rA  contains rn  elements. 
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Example In how many ways can 9 toys be distributed between 4 children if 

the youngest child is to receive 3 toys and each of the others 2 
toys? 

 
 This problem is really asking how many different ordered partitions of 9 

objects into cells containing 3, 2, 2, 2 objects respectively are possible? 

 The number = 9!
3! 2! 2! 2!× × ×

 = 7560. 

 
Example In how many ways can 9 people be partitioned into 
  (a) two teams of 5 and 4 people each ; 
  (b) three named teams of 3 people each ; 
  (c) three unnamed teams of 3 people each? 
 
 (a) If we select the team of 5, the team of 4 automatically consists of 

those who were not selected. 

  The number of ways = 9 9
5 4

9 8 7 6= = =126
4 3 2 1

C C × × ×
× × ×

. 

 (b) We require the number of ordered partitions of 9 people into cells 
containing 3, 3 and 3 people respectively. 

  The number of ways = 9! =1680
3! 3! 3!× ×

. 

 (c) There are 3! = 6 ways of ordering three sets 1 2 3, ,A A A . 

  The number of ways = 1680
6

 = 280. 

 
 

Exercise 8.4 
 
1. Evaluate: (a) 4

2C  ; (b) 9
3C  ; (c) 16

4C . 
 
2. Evaluate: (a) 7

5C  ; (b) 16
13C  ; (c) 10

7C . 
 
3. How many committees of 3 students can be selected from 20 students? 
 
4. How many teams of 6 can be selected from 10 players? 
 
5. In how many ways can a team of 2 men and 3 women be selected from 6 men 

and 7 women? 
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6. A student is to answer 8 out of 10 questions in an examination. 
 (a) How many choices has she? 
 (b) How many choices has she if she must answer the first 4 questions? 
 (c) How many choices has she if she must answer at least 4 of the first 5 

questions? 
 
7. A basketball team of 6 is to be chosen from 11 available players. In how 

many ways can this be done if 
 (a) there are no restrictions ; 
 (b) 3 of the players are automatic selections ; 
 (c) 3 of the players are automatic selections and 2 other players are 

injured and cannot play? 
 
8. In how many ways can 7 toys be divided between 3 children if the youngest 

gets 3 toys and each of the others gets 2 toys? 
 
9. In how many ways can 9 people be placed in 3 cars which can take 2, 3 and 4 

passengers respectively, assuming that the seating arrangements inside the 
cars are not important? 

 
10. A committee of 5 people is to be selected from 10 men and 8 women. In how 

many ways can the committee be selected if 
 (a) it must contain 2 men and 3 women ; 
 (b) it must have at least one member of each sex? 
 

 
Higher Level (Optional) 

 
11. In how many ways can 12 people be divided into 
 (a) two groups each with 6 people ; 
  (b) three groups each with 4 people? 
 
12. How many numbers of 5 different digits can be constructed so that the 

digits are in ascending order from left to right? 
 
13. Use Pascal's identity (page 199) to prove that if 0 2k n≤ ≤ − , then 
  2

2 2 12n n n n
k k k kC C C C+

+ + += + + . 
 
14. Show that if n, r and k are integers with 0≤ k ≤ r ≤ n then 
   n r n n k

r k k r kC C C C −
−× = × . 

 
15. Find the number of ways in which 6 coins can be distributed between 3 

people if the coins are 
 (a) all different ;  (b) indistinguishable. 
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16. Find the number of ways in which 10 different books can be divided 

between 2 girls such that no girl receives more than 8 books. 
 
17. If 5 straight lines are drawn in a plane with no two parallel and no three 

concurrent, how many different triangles can be formed by joining sets of 
3 of the points of intersection? 

 
18. If m straight lines and n circles are drawn in a plane, what is the maximum 

number of possible points of intersection? 
 
19. Twelve points in a plane are such that 4 of them lie on a straight line but no 

other set of 3 or more points are collinear. What is the maximum number 
of different straight lines which can be drawn through pairs of the given 
points? 

 
20. In how many ways can 12 distinct objects be partitioned into 
 (a) two sets of 5 and 7 each ; 
 (b) two named sets of 6 objects each ; 
 (c) two unnamed sets each containing 6 objects ; 
 (d) three named sets of 4 objects each ; 
 (e) three unnamed sets each containing 4 objects? 
 
21. In how many ways can 5 identical rings be placed on the 4 fingers of one 

hand? 
 
22. In how many ways can I place 8 identical objects into 5 compartments so 

that each compartment contains at least one object? 
 
23. (a) How many distinct non-negative integer solutions to the equation 
   1 2 3 4 10x x x x+ + + =  
  exist? 
 
 (b) How many positive integer solutions to the equation in part (a) exist? 
 

 
 
8.5 The Binomial Theorem 
 

Theorem For every integer n ≥ 1, 
0

( )
n

n n r r

r

n
a b a b

r
−

=

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠
∑ . 
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Proof (Combinatorial) 
If the product ( ) ( )( )( ) ( )na b a b a b a b a b+ = + + + +�  is multiplied out, each term of 
the answer will be of the form 1 2 3 k nc c c c c� �  where, for all k, kc  is either a or b. 
 
Thus if kc a=  for all k we obtain the term ka . If kc b=  for one of the terms and 

kc a=  for the rest, we obtain terms such as ,b a a a a a b a a a× × × × × × × × × ×� � , 
, , ,a a b a a a a a a b a a a a a b× × × × × × × × × × × × × × × ×� � � � , and their sum 

is 1nna b− . 
 
If kc b=  for r of the terms and kc a=  for the rest we obtain a number of terms of the 
form n r ra b− . 
 
The number of such terms is the number of ways in which r of the 1 2, , , nc c c�  can 

be selected as equal to b. This number is 
n
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 

Thus 
n
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the coefficient of n r ra b−  in the expansion of ( )na b+ . 

Hence  
0

( )
n

n n r r

r

n
a b a b

r
−

=

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠
∑ . 

 

The following properties of the expansion of ( )na b+  should be observed: 
• There are n + 1 terms. 
• The sum of the exponents of a and b in each term is n. 
• The exponents of a decrease term by term from n to 0; the exponents of b 

increase term by term from 0 to n. 

• The coefficient of any term is 
n
k

⎛ ⎞
⎜ ⎟
⎝ ⎠

 where k is the exponent of either a or b. 

• The coefficients of terms equidistant from the ends are equal. 
 
Example Write down the expansions of each of the following: 
  (a) 4( )a b+  ; (b) 3( )a b−  ; (c) 5( 2 )x y+ . 
 

 (a) 4( )a b+  =  4 0 3 2 2 3 0 44 4 4 4 4
0 1 2 3 4

a b a b a b ab a b
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

   =  4 3 2 2 3 44 6 4a a b a b ab b+ + + + . 
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 (b) 3( )a b−  =  3 0 2 2 0 33 3 3 3
( ) ( ) ( ) ( )

0 1 2 3
a b a b a b a b

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

   =  3 2 2 33 3a a b ab b− + − . 
 

 (c) 5( 2 )x y+  =  5 0 4 3 2 0 55 5 5 5
(2 ) (2 ) (2 ) (2 )

0 1 2 5
x y x y x y a y

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
�  

   =  5 4 3 2 2 3 4 510 40 80 80 32x x y x y x y xy y+ + + + + . 
 
Example Find the coefficient of 3x  in the expansion of each of the following: 

  (a) 5(2 1)x −  ;  (b) 
6

2 1x
x

⎛ ⎞−⎜ ⎟
⎝ ⎠

 ; 

(c) 2 9(1 2 )(3 )x x x− + − . 
 

 (a) The term in rx  is 55
(2 ) ( 1)r rx

r
−⎛ ⎞

−⎜ ⎟
⎝ ⎠

 and so the term in 3x  has r = 3. 

  The coefficient of this term = 3 25
2 ( 1)

3
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 = 80. 

 

 (b) The (r + 1)st term in descending powers of 2x  is 2 66 1( )
r

rx
r x

−⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

which can be written 12 36
( 1)r rx

r
−⎛ ⎞

−⎜ ⎟
⎝ ⎠

; the term in 3x  has r = 3. 

  The required coefficient = 36
( 1)

3
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 = –20. 

 
 (c) The (r + 1)st term in descending powers of x in the expansion of 

9(3 )x−  is 99
( ) 3r rx

r
−⎛ ⎞

−⎜ ⎟
⎝ ⎠

. Therefore the coefficients of the terms 

containing 2 3, ,x x x  are 8 2 7 3 69 9 9
( 1)3 , ( 1) 3 , ( 1) 3

1 2 3
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 respect-

ively ; that is 8 7 69 3 , 36 3 , 84 3− × × − × . 
  To obtain the term in 3x  we must multiply the first by 2, the second 

by –1, the third by 1, and then add the results. 
  The required coefficient is 63 { 162 108 84}− − −  = –258 066. 
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Note: If only one term of the binomial contains the variable (x), then the exponent 
of x is known and so is the exponent of the other term. The required binomial 
coefficient is then also known. Observe the following example. 

 

Example Find the term independent of x in the expansion of 
12

2
2x
x

⎛ ⎞−⎜ ⎟
⎝ ⎠

. 

 

 
12 12

12
2 3

2 21x x
x x

⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  and 12
12
kx

x
×  is independent of x. 

 The coefficient of 12x−  in the expansion of 
12

3
21
x

⎛ ⎞−⎜ ⎟
⎝ ⎠

 is 8 412
1 ( 2)

4
⎛ ⎞

× × −⎜ ⎟
⎝ ⎠

. 

 Therefore the term independent of x = 8 412
1 ( 2)

4
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 = 7920. 

 

Example Find the coefficient of the term in 3x−  in the expansion of 
72

2
x

x
⎛ ⎞+⎜ ⎟
⎝ ⎠

. 

 

 
77 2

7
2 1 2

2 2
x x

x x
⎛ ⎞⎛ ⎞+ = +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 so the coefficient of 3x−  is 5

2

7 12
2 2

⎛ ⎞
× ×⎜ ⎟

⎝ ⎠
 = 168. 

 
Exercise 8.5 
 
1. Use the binomial theorem to expand each of the following: 
 (a) 4( )x y+  ; (b) 7( )a b−  ; (c) 2 6(2 )p+  ; 

 (d) 5(2 )h k−  ; (e) 
31x

x
⎛ ⎞+⎜ ⎟
⎝ ⎠

 ; (f) 
81

2
z

z
⎛ ⎞−⎜ ⎟
⎝ ⎠

. 

 
2. If n is a positive integer, use the binomial expansion of ( )na b+  with suitable 

values of a and b to prove that 

 (a) 2
0 1 2

n n n n n
n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
�  ; 

 (b) 0 ( 1)
0 1 2

nn n n n
n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
� . 

 

3. Expand and simplify: 
5 5

2 2
1 12 2x x
x x

⎛ ⎞ ⎛ ⎞+ + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 
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4. Find the coefficients of 3x  and 4x  in the expansion of 
51x

x
⎛ ⎞+⎜ ⎟
⎝ ⎠

. 

 
5. Find the value of n if the coefficient of 3x  in the expansion of (2 3 )nx+  is 

twice the coefficient of 2x . 
 
6. In the binomial expansion of ( )1

31
n

+  in ascending powers of 1
3 , the fourth 

and fifth terms are equal. Find the value of n. 
 
7. The coefficient of 5x  in the expansion of 8(1 5 )x+  is equal to the coefficient 

of 4x  in the expansion of 7( 5 )a x+ . Find the value of a. 
 
8. Use the expansion of 4( )a b+  to evaluate 41.03  correct to 2 decimal places. 
 
9. Use the expansion of 5(2 )x−  to evaluate 51.98  correct to 5 decimal places. 
 
10. Find the first 4 terms in ascending powers of x in the expansion of 15(1 2 )x+ . 

Hence evaluate 151.002  correct to 5 decimal places. 
 
11. In the expansion of each of the following, find the coefficient of the specified 

power of x: 
 (a) 7 4(1 2 ) ,x x+  ;   (b) 7 4(5 3) ,x x−  ; 

 (c) 3 5 11(3 2 ) ,x x x−  ;  (d) 
8

22 ,x x
x

⎛ ⎞−⎜ ⎟
⎝ ⎠

 ; 

 (e) 
10

2 14 ,x x
x

−⎛ ⎞+⎜ ⎟
⎝ ⎠

 ;  (f) 
9

33 ,
6
x x

x
⎛ ⎞−⎜ ⎟
⎝ ⎠

. 

 

12. Find the term independent of x in the expansion of 
12

22 x
x

⎛ ⎞−⎜ ⎟
⎝ ⎠

. 

 
 

Higher Level 
 
13. Find the possible values of the constant k if the coefficient of 5x−  in the 

expansion of 
91kx

x
⎛ ⎞+⎜ ⎟
⎝ ⎠

 is 16. 
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14. (a) Determine the coefficient of x in the expansion of 7(2 )(2 )x x+ − . 
 (b) Find the integer p, 0 8p≤ ≤ , for which the coefficient of px  in the 

expansion of 7(2 )(2 )x x+ −  is zero. 
 
15. Find the coefficient of 
 (a) 6x  in the expansion of 8(2 )(1 )x x+ +  ; 
 (b) 5x  in the expansion of 7(1 )(2 )x x+ −  ; 
 (c) 8x  in the expansion of 2 9(2 )(3 )x x− +  ; 
 (d) 4x  in the expansion of 2 6(1 )(2 )x x x− + + . 
 

16. The first 3 terms of the expansion of (1 )nax+  in ascending powers of x are 
given below. In each case find a and n and the next term in the expansion. 

 (a) 21 8 28x x+ + +�  ; (b) 21 4 7.5x x+ + +�  ; 

 (c) 
231

4 100
x x

− + + �  ; (d) 2631 6
4

x x− + +�  . 

 

17. Show that the coefficient of 2x  in the expansion of (2 )(1 )nx x+ +  is 2n  
and the coefficient of 3x  is 1

6 ( 1)(2 1)n n n− − . 
 

18. Find the coefficient of rx , 1 ≤ r ≤ 8, in the expansion of 8(2 )(1 )x x− +  and 
hence show that one of the coefficients of the expansion is zero. 

 
*19. Find the coefficient of the given power of x in the expansion of 

 (a) 2 8 4(1 ) (1 ) ,x x x− +  ; (b) 
2

5 21 (1 ) ,x x x
x

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 ; 

 (c) 2 12 3(1 ) ,x x x+ +  ; (d) 2 3 5 4(1 ) ,x x x− + . 
 

 
Required Outcomes 

 
 After completing this chapter, a student should be able to: 

• use the product principle to count the number of possible outcomes of an 
'experiment'. 

• use permutations and combinations to enumerate possible outcomes. 
• apply the binomial theorem in a variety of contexts. 
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9.1 Matrix Addition 
 
Definition A matrix is a rectangular array of mn numbers arranged in m 

horizontal rows and n vertical columns. 
 
We write 

 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

mnmmm

n

n

n

aaaa

aaaa
aaaa
aaaa

�
					

�
�
�

321

3333231

2232221

1131211

A  , 

 
where ija  is the element in the ith row and jth column of A. 
[A short-hand notation which is often used is A = ( ija ).] 
 
Dimension A matrix which has m rows and n columns is said to have dimension  

m × n. 
 
The dimension of a matrix is sometimes called its shape or its size. 
 
If m = n the matrix is called square. 
 
For example the matrix 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
01
32

A  

is a 2 × 2 matrix or a square matrix of order 2. 
 

Example Consider the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
013
132

A . 

 A has dimension 2 × 3. 
 0,3 2312 == aa , but 31a  does not exist since A does not have 3 rows. 
 
A matrix of dimension m × 1 is called a column vector, or simply a vector. 
A matrix of dimension 1 × n is called a row vector. 
We sometimes denote a column vector by a and a row vector by Ta . 
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Equality Two matrices A and B are equal iff (if and only if) they have the 
same dimension and ijij ba =  for all i and j. 

 
Example Consider the matrices 

                      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
405

123
A , 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

41
02
53

B , 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=
000
405

123
C , ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
405

123
D . 

 A and B are not equal since they do not have the same dimension. 
 A and C are not equal since C has an extra row. 
 A and D are equal. 
 
Addition If two matrices are of the same dimension we can define their sum, 

C = A + B, as that matrix with the same shape as A and B and such 
that ijijij bac += . Thus each entry in C is equal to the sum of the 
corresponding entries in A and B. 

 
Example Consider the matrices 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
=

215
123

,
42

21
21

,
32
04
12

CBA . 

 

 Then 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−++−
+−+
+−+

=+
10

23
13

)4(322
20)1(4
2112

BA . 

 However A + C and B + C do not exist since C does not have the same 
dimension as A or B. 

 
The Zero Matrix The zero matrix has all its entries equal to zero. 
 
We denote the zero matrix of dimension m × n by nm×O , or if the dimension is 
obvious, by O or more simply by 0. The zero matrix of dimension 2 × 2 is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=× 00

00
22O . 

 
If A has dimension m × n and O is the zero matrix of dimension m × n then 
A + O = O + A = A. Thus O is the additive identity matrix. 
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Multiplication by a Scalar If A = )( ija  and s is a scalar, sA = ( ijsa ). The entries of 
sA are found by multiplying each of the entries of A 
by s. 

 

Example Given ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

64
12

A , find 2A, –A and A2
1 . 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

−
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

32
1

 and
64

12
,

128
24

2 2
1

2
1 AAA . 

 
Transpose The transpose of the m × n matrix )( ija=A  is defined to be the 

n × m matrix )(T
jia=A . Thus TA  is the matrix whose rows are the 

same as the columns of A and whose columns are the same as the 
rows of A. 

Example If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

254
123

A  then 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

21
52
43

TA . 

 
Exercise 9.1 
 

1. If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
23

12
A  and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

=
32
13

B , find 

 (a) A + B ; (b) 2A – B ; (c) T)( BA +  ; (d) TT BA + . 
 

2. If 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
23

42
15

, 
020
524

,
042
312

CBA , find if possible 

 (a) A + B ; (b) A + TC  ; (c) 3A – 2B ; (d) 3B – C ; (e) B – T2C . 
 
3. Verify the associative law of addition for 2 × 2 matrices. That is, show that 

for any 2 × 2 matrices A, B and C, A + (B + C) = (A + B) + C. 
 
4. Where possible, find the unknown matrix X in each of the following: 

 (a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+

1614
24

54
21

3X  ; 
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 (b) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 51

16
3

21
43

2 X  ; 

 (c) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

104
241

14
22

01
32

T

X  ; 

 (d) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
192
824

3
234

211 TX . 

 
5. In each of the following, A, B, C and X are matrices of the same dimension. 

Express X in terms of A, B and C. 
 (a) X – (2A + 3B – C) = 2(X  – A) – (X + B) + 3(X – 2C) ; 
 (b) 3(X – 2A) + 2(B – 2X) – 3(2X + C) = 0. 
 
9.2 Matrix Multiplication 
 
Let A be an m × n matrix and B be an n × p matrix. Then the product C = AB is a 

matrix of dimension m × p such that njinjiji

n

k
kjikij babababac +++== ∑

=

�2211
1

 for 

i = 1, 2, 3, … , m and j = 1, 2, 3, … , p. 
 
Thus the element in the ith row and jth column of the product AB is found by 
multiplying the corresponding entries in the ith row of A and the jth column of B and 
then adding the n products. 
 
Matrix multiplication is not always possible. Matrices are said to be conformable for 
multiplication if the number of columns of the first matrix is equal to the number of 
rows of the second matrix. The product matrix has the same number of rows as the 
first matrix and the same number of columns as the second matrix. 
 
In the product AB, we say that A pre-multiplies B or B post-multiplies A. 
 
As the next example shows, matrix multiplication is not commutative, i.e., AB ≠ BA 
in general. 
 

Example If 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

40
21
13

 and 
204
132

BA , find AB and BA. 

 
 A is 2 × 3 and B is 3 × 2. Therefore AB exists and has dimension 2 × 2. 
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 Now ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×+×+××+×+×

×−+×+××−+×+×
=

1212
49

422014021034
4)1(23120)1(1332

AB . 

 B is 3 × 2 and A is 2 × 3. Therefore BA exists and has dimension 3 × 3. 

 Now 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

×+−××+××+×
×+−××+××+×
×+−××+××+×

=
8016
3310
1910

24)1(004304420
22)1(102314221
21)1(301334123

BA . 

 It is obvious from this that AB ≠ BA. 
 

Example If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

41
53

 and 
203
142

BA , find, if possible 

 (a) AB ;  (b) BAT  ;  (c) BA. 
 
 (a) AB does not exist since the number of columns of A (3) is not equal 

to the number of rows of B (2). 
 
 (b) TA  is 3 × 2 and B is 2 × 2. Thus BAT  exists with dimension 3 × 2. 

  Now 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++
++

++
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

135
2012
229

8523
020012

121036

41
53

21
04
32

T BA . 

 
 (c) B is 2 × 2 and A = 2 × 3. Thus BA exists with dimension 2 × 3. 

  Now ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++
+++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

8104122
103012156

203
142

41
53

BA  

              ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9414
131221

. 

 
Example The school shop sells two sorts of cold drinks, milk and orange juice. 

Milk costs $1.20 per carton and orange juice is $1.50 per carton. On a 
given week 100 cartons of milk and 75 cartons of orange juice were 
sold. In the succeeding week 120 cartons of milk and 70 cartons of 
orange juice were sold. In the third week 110 cartons of milk and 80 
cartons of orange juice were sold. Find, using matrices, the total 
number of cartons of each sort of drink sold in the three weeks and 
the total cost. 
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 Let X = ( )1.2 1.5 , Y = 
100 120 110
75 70 80

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and Z = 
1
1
1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 Now  YZ = 
1

100 120 110
1

75 70 80
1

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

 = 
330
225

⎛ ⎞
⎜ ⎟
⎝ ⎠

   and 

X(YZ) = ( )
330

1.2 1.5
225

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = ( )733.5 . 

 
 Therefore 330 cartons of milk and 225 cartons of orange juice were sold at a 

total cost of $733.50. 
 
Note: Positive integer powers of a matrix have a similar meaning to positive integer 

powers of a real number. 
For example, AAAAAAAAAAA ×=×=××=×= 2232 , , etc. 

 
Exercise 9.2 
 
1. The matrix A has 4 rows and 5 columns while the matrix B has 5 rows and 4 

columns. Find the dimensions of AB and BA. 
 
2. Given matrices A, B, C and D such that D = A(B – C) where A, B have 

dimensions m × n and n × p respectively, find the dimensions of C and D. 
 
3. Find the following products: 

 (a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
04
31

23
12

 ; (b) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
35
12

25
13

 ; 

 (c) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

432
321

01
32
52

 ; (d) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

30
32
14

123
241

 ; 

 (e) ( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−
−

1
1
2

531  ; (f) ( )213
1
3
2

−−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
 ; 

 (g) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− 3201

1423
21
42

 ; (h) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

34
21

25  ; 
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 (i) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−−

23
05
42

203
415
223

 ; (j) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−

126
202
872

645
213
526

 ; 

 (k) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

−

111
354

587

311
121
132

; (l) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

3
5
1
2

7564
5213

. 

 
4. Show that multiplication of 2 × 2 matrices distributes over addition, i.e., show 

that for any 2 × 2 matrices A, B and C, A(B + C) = AB + AC. 
 

5. If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

=
12
24

 and 
21
42

BA , show that AB is the zero matrix and find the 

matrix BA. 
 
6. Show that AB = AC does not imply that B = C by showing that AB = AC for 

the matrices 
4 2 3 1 2 1

, ,
2 1 5 2 3 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

A B C . 

 

7. Find the numbers a and b for which ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
33

1
66
4

66
4

33
1 abba

. 

 

8. Consider the matrices ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

15
41

 and 
51
32

,
43
21

CBA . 

 Evaluate both 222 2 and )( BABABA +++ . Explain why they are not equal. 
Can you suggest the correct expansion for 2)( BA + ? Show that your 
suggestion is correct for these matrices. 

 
9. Find real numbers a and b for which 

 (a) ( ) ( )11
23
12

3 ba =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

 ; (b) ( ) ( )21114 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
ab
ba

 ; 

 (c) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−− 10

14
32

56
b
a

 ; (d) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− 84

62
42
31

2
0

b
a

. 

 

10. If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

10
01

 and IA
dc
ba

, show that 0)()(2 =−++− IAA bcadda . 
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11. The percentages by mass of silver, lead and zinc in four samples of ore are 

given by the matrices A = 
0.5
2.2
1.5

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, B = 
0.2
2.5
1.0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, C = 
0.1
3.1
0.9

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 and D = 
0.3
2.6
1.4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. If 

these samples have masses of 12kg, 8kg, 10kg and 6kg respectively, find the 

matrix ( )1 12 8 10 6
36

+ + +A B C D  and interpret the result. 

 
12. A company manufactures three different TV sets – Types A, B and C. Each 

set requires one or more of each of three components – X, Y and Z. 
 Type A requires 5 of X, 3 of Y and 1 of Z ; 
 Type B requires 4 of X, 4 of Y and 2 of Z ; 
 Type C requires 6 of X, 2 of Y and 3 of Z. 
 Each component X costs $2.50, each component Y costs $4.20 and each 

component Z costs $3.00, and in a given week the company manufactures 10 
sets of type A, 8 sets of type B and 12 sets of type C. 

 Let L, M, N be the matrices L = ( )2.5 4.2 3 , M = 
5 4 6
3 4 2
1 2 3

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, N = 
10
8

12

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 (a) Find the matrix MN and interpret the result. 
 (b) Find the matrix LMN and interpret the result. 
 

13. If 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

571
8710

1477
 and 

123
412
231

BA , show that AB = BA. 

 

14. If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

11
11

2
1A , show that ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=

10
014A . 

 

15. (a) If ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−−

=
13
31

2
1A , evaluate 3A . 

 (b) If 
1 31

2 3 1

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
B , evaluate 6B . 

 

16. If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

10
01

 and 
13
12

IA , show that IAA =− 32 . Use the result that 

AIAAI ==  to find an expression for 4A  in terms of A and I. 
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Higher Level 

17. Find the matrix B for which AB = I where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

10
01

 and 
34
45

IA . 

 
18. Show that it is not possible to find a matrix B for which AB = I in the case 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

10
01

 and 
23
46

IA . 

 

19. Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
b

a
1

1
A  where a and b are scalars. Find a and b if 

 (a) OA =2  ; (b) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
012A  ;  (c) AA =2 . 

 

20. If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

=
y
x

XA  and 
21
43

 where x and y are not both zero, find the 

values of k for which XAX k=  and for each value of k find a suitable 
matrix X. 

  
 
9.3 The Determinant of a (Square) Matrix 
 
The Determinant of a 2 ×× 2 Matrix 
 

Definition The determinant of the 2 × 2 matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dc
ba

A  is denoted and 

defined by bcad
dc
ba

−==Adet . 

 
Clearly the determinant is a scalar (number). 

 

Example Find the determinant of the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=
12

53
A . 

 
 71035)2()1(3det =+−=×−−−×=A . 
 
Definition A matrix A for which det A = 0 is called a singular matrix. 
 

Example For what values of a is the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−
=

a
a

41
83

A  singular? 
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 det A = (3 – a)(–4 – a) – 8 = 202 −+ aa  = (a + 5)(a – 4) 
 Thus A is singular when a = –5 or a = 4. 
 
The Determinant of a 3 × 3 Matrix 
 

Consider the matrix 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

333231

232221

131211

aaa
aaa
aaa

A . 

Before we look at the general method, it is helpful to define what is meant by the 
minor of an element of a matrix. 
 
Definition The minor of the element ija  of matrix A, denoted by ijm , is the 

determinant of the matrix left when the ith row and jth column of A 

are removed. Thus 
3331

2321
12

3332

2322
11 ,

aa
aa

m
aa
aa

m == , etc. 

 
The determinant of A can be evaluated in 6 different ways (a graphic display 
calculator may also be used).  

∑
=

+−=
3

1

)1(det
k

ikik
ki maA  for i = 1, 2 or 3  [by rows] 

or ∑
=

+−=
3

1

)1(det
k

kjkj
jk maA  for j = 1, 2 or 3 [by columns]. 

Thus 131312121111det mamama +−=A  evaluating by the first row, or 
 232322222121det mamama −+−=A  evaluating by the second row, or 
 333323231313det mamama +−=A  evaluating by the third column, etc. 
 
Note: If the sum of the row and column number of the element and its minor is odd, a 
negative sign is attached to the product of the matrix element and its minor. If the sum 
is even, a positive sign is used. 
 

Example Evaluate the determinant of the matrix 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

243
412
231

A . 

43
12

)2(
23
42

3
24
41

det −+−=A  

         )38(2)124(3)162( −−−−−=  
         102414 −+−=  
         0= . 
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The work required to evaluate a 3 × 3 determinant can be reduced considerably if a 
row or column contains one or more zeros among its entries. 
 

Example Find the value of the determinant 
2 5 0
3 2 3

4 1 0
− . 

 
 Since the third column has two zero entries, we evaluate the determinant by 

the third column. 

 This gives 
2 5 0
3 2 3

4 1 0
−  =  

3 2 2 5 2 5
0 3 0

4 1 4 1 3 2
−

− +
−

  

   =  
2 5

3
4 1

−  

   =  54. 
 
Theorem If A and B are any two square matrices of order n, then 
   det(AB) = (det  A)(det B). 
 
Proof  (n = 2 only) 
 

 Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

hg
fe

dc
ba

BA  and . 

 Then det A = ad – bc, det B = eh – fg and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

=
dhcfdgce
bhafbgae

AB . 

  det(AB) =  (ae + bg)(cf + dh) – (af + bh)(ce + dg) 
  =  acef + adeh + bcfg + bdgh – acef – adfg – bceh – bdgh 
  =  adeh – adfg – bceh + bcfg 
  =  ad(eh – fg) – bc(eh – fg) 
  =  (ad – bc)(eh – fg) 
  =  (det A)(det B). 
 

Theorem If A is any square matrix of order n, then AA det)det( T = . 
 
Proof   

 If n = 2, let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dc
ba

A . 

 Then AAA det)det( and TT =−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= bcad

db
ca

. 
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 If n = 3, let 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

333231

232221

131211

aaa
aaa
aaa

A  then 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

332313

322212

312111
T

aaa
aaa
aaa

A . 

 Then Tdet A  =  
2313

2212
31

3313

3212
21

3323

3222
11 aa

aa
a

aa
aa

a
aa
aa

a +−  

  =  
2322

1312
31

3332

1312
21

3332

2322
11 aa

aa
a

aa
aa

a
aa
aa

a +−  

  =  det A. 
  

Note: TT

1

T

1

det)1()1(det AA =−=−= ∑∑
=

+

=

+
ki

n

k
ki

ik
n

k
ikik

ki mama , +∈Zn . 

The expression for det A is evaluated by the ith row and the expression for Tdet A  is 
evaluated by the ith column. 
 
Exercise 9.3 
 
1. Evaluate the determinant of each of the following matrices: 

 (a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
14
15

 ;   (b) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
41

31
 ; 

 (c) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
αα
α−α

cossin
sincos

 ;  (d) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α−α

αα
cossin

sincos
 ; 

 (e) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

−

131
002
123

 ;   (f) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−

141
113

121
 ; 

 (g) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−−

313
211
122

 ;  (h) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−
472
211

221
. 

 

2. Show that the matrix 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

987
654
321

A  is singular. 

 

3. If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

21
4k

A  and  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
21

3
k

k
B , find the values of k for which the 

matrix product AB is singular. 
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4. Find the values of k for which 
1 2
2 1 2 0

4 1

k

k

−
= . 

 
5. Find, in terms of λ, the determinant of the matrix 

2 1 3
1 1 1
1 1 2

− λ⎛ ⎞
⎜ ⎟= − λ⎜ ⎟
⎜ ⎟− − − − λ⎝ ⎠

A . 

 

6. For what real value of k is the matrix 
1 2 1

2 1 1
1 6 2

k
k

k

− −⎛ ⎞
⎜ ⎟= − − −⎜ ⎟
⎜ ⎟− +⎝ ⎠

A  singular? 

 
Higher Level 

 

7. Solve the equation 
2 1 1

1 1 2 0
8 2 1

x
x

x

− −
− − =

− −
 for x ∈ R. 

 

8. (a) If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
11
23

A , find ( )2det A  and ( )A2det . 

 (b) If 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

143
212
121

A , find ( )2det A  and ( )A2det . 

 
9. If A is a square matrix of order n such that det A = x, what is the value of 
 (a) ( )2det A  ;  (b) ( )mAdet ,  +∈Zm ? 
 
10. If A is a square matrix of order n such that det A = x, what is the value of 
 (a) ( )A2det  ;  (b) ( )Amdet ,  R∈m ? 
 
11. (a) Expand (a – b)(b – c)(c – a). 
 
 (b) If a, b and c are distinct real numbers show that the matrix 

2 2 2

1 1 1
a b c

a b c

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 is not singular. 
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9.4 Matrix Algebra 
 
Addition 
 
Consider the set S of all square matrices of order n. 
 
(a1) S is closed under addition. Thus the sum of any two n × n matrices is an n × n 

matrix. 
 
(a2) S is commutative under addition. That is if A and B are any two n × n 

matrices, then A + B = B + A. 
 
(a3) S is associative under addition. That is if A, B and C are any n × n matrices, 

then A + (B + C) = (A + B ) + C. 
 
(a4) There exists an additive identity, O ∈ S, such that for any n × n matrix A, 

A + O = O + A = A. 
 
(a5) Each n × n matrix A has an additive inverse n × n matrix (–A) such that 

A + (–A) = AA +− )(  = O. 
 
Multiplication 
 
Consider the set S of all square matrices of order n. 
 
(m1) S is closed under multiplication. That is the product of any two n × n matrices 

is an n × n matrix. 
 
(m2) S is associative under multiplication. That is if A, B and C are any n × n 

matrices, A(BC) = (AB)C. 
 
(m3) There exists a multiplicative identity, I ∈ S, such that for any n × n matrix A, 

AI = IA = A. 
 
(m4) Matrix multiplication distributes over addition. That is if A, B and C are any 

n × n matrices, then A(B + C) = AB + AC. 
 
Note: I from (m3) is called the identity matrix and has all elements on its “leading 

diagonal” equal to 1 and all other elements equal to zero. The 2 × 2 identity 

matrix is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=× 10

01
22I  and the 3 × 3 identity matrix is 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=×

100
010
001

33I . 
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The following ‘field axioms’ are not generally satisfied by matrices in S: 
 
(a) Commutativity of multiplication. 
 It is not generally true that if A and B are any two n × n matrices then 

AB = BA. 
 
(b) Inverse under multiplication. 
 Not all n × n matrices A have multiplicative inverses and so it may not be 

possible to find an n × n matrix 1−A  such that IAAAA == −− 11 . 
 

Example For matrices 
2 1 3 2

  and  
1 2 2 1

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

A B , show that AB ≠ BA. 

 

 AB = 
2 1 3 2
1 2 2 1

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

 = 
4 5
1 4

⎛ ⎞
⎜ ⎟−⎝ ⎠

 

 BA = 
3 2 2 1
2 1 1 2

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

 = 
8 7
3 0

⎛ ⎞
⎜ ⎟−⎝ ⎠

 

 Clearly AB ≠ BA. 
 

Example Show that the matrix A = 
2 3
4 6

⎛ ⎞
⎜ ⎟
⎝ ⎠

 does not have an inverse but the 

matrix B = 
2 1
5 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

 does. Find the matrix 1−B . 

 

 Let the inverse of A be 1 a b
c d

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
A , if it exists. 

 Then 1− =AA I   or  
2 3 1 0
4 6 0 1

a b
c d

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
. 

 ⇒ 
2 3 2 3 1 0
4 6 4 6 0 1

a c b d
a c b d

+ +⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

 ⇒ 
2 3 1
4 6 0

a c
a c

+ =⎧
⎨ + =⎩

 and 
2 3 0
4 6 1
b d
b d

+ =⎧
⎨ + =⎩

 

 ⇒ 
2 3 1
2 3 0

a c
a c

+ =⎧
⎨ + =⎩

 and 1
2

2 3 0
2 3

b d
b d

+ =⎧
⎨ + =⎩

 . 

 Since 2a + 3c cannot be both 1 and 0, and 2b + 3d cannot be both 0 and 1
2 , no 

values of a, b, c and d can be found. Thus A does not have an inverse. 
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  Let the inverse of B be 1 e f
g h

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
B , if it exists. 

 Then 1− =BB I   or  
2 1 1 0
5 3 0 1

e f
g h

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
. 

 ⇒ 
2 2 1 0
5 3 5 3 0 1

e g f h
e g f h

+ +⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

 ⇒ 
2 1

5 3 0
e g

e g
+ =⎧

⎨ + =⎩
 and 

2 0
5 3 1

f h
f h

+ =⎧
⎨ + =⎩

 

 Solving these simultaneous equations gives e = 3, f = –1, g = –5, h = 2. 

 Therefore B has an inverse and 1 3 1
5 2

− −⎛ ⎞
= ⎜ ⎟−⎝ ⎠

B . 

 

Example For matrices ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

64
32

?  and 
3 6
2 4

⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

B , find AB. 

 

 
2 3 3 6 0 0
4 6 2 4 0 0

⎛ ⎞⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠

AB O  

 
Note: From this example we see that if AB = O, we cannot say that A = O or B = O. 

However, the following 'cancellation' theorem should be known. 
 
Theorem If AB = O and the inverse of A exists, then B = O. 
 
Proof AB = O 

 ⇒ ( )ABA 1−  =  ( )OA 1−  since 1−A  exists and S is closed under 
multiplication 

 ⇒  ( )BAA 1−  =  O since matrix multiplication is associative 
 ⇒            IB  =  O 
 ⇒             B  =  O. 
 
The Existence of a (Multiplicative) Inverse of a 2 × 2 Matrix 
 

Consider the 2 × 2 matrix  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dc
ba

A  and its inverse, if it exists, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

hg
fe1A . 

Then ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++
++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

10
011

dhcfdgce
bhafbgae

hg
fe

dc
ba

AA . 

Thus ae + bg = 1 ………. (i)   af + bh = 0 ………. (iii) 
 ce + dg = 0 ………. (ii)   cf + dh = 1 ………. (iv). 
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Multiply  (i) by c: ace + bcg = c ………. (v). 
Multiply (ii) by a: ace + adg = 0 ………. (vi). 

Subtract (v) from (vi): (ad – bc)g = –c so 
bcad

cg
−

−
=  provided ad – bc ≠ 0. 

Multiply  (i) by d: ade + bdg = d ………. (vii). 
Multiply (ii) by b: bce + bdg = 0 ………. (viii). 

Subtract (viii) from (vii): (ad – bc)e = d so 
bcad

de
−

=  provided ad – bc ≠ 0. 

Since equations (iii) and (iv) are essentially the same as equations (i) and (ii) with a 
replaced by c, b replaced by d, e replaced by f and g replaced by h, the solutions for f 

and h are 
bcad

b
dacb

bf
−

−
=

−
=   and  

bcad
a

dacb
ah

−
=

−
−

=  provided ad – bc ≠ 0. 

Thus ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−−
−

−
−

−=−

ac
bd

bcad
bcad

a
bcad

c
bcad

b
bcad

d
11A  provided ad – bc ≠ 0. 

But ad – bc = det A so ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=−

ac
bd

A
A

det
11  provided det A ≠ 0. 

Thus the inverse of A exists provided A is not singular. 
 
If det A ≠ 0, then the inverse of the 2 × 2 matrix A is found by multiplying by Adet1  
that matrix formed by interchanging the elements on the ‘leading diagonal’ and 
changing the signs of the elements on the ‘off diagonal’. 
 

Example Find the inverse of the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

26
38

A . 

 

 det A = 16 – 18 = –2 ⇒ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=−

43
11

86
32

2
1 2

1
1A . 

 
 

Higher Level 
 
The Inverse of a 3 ×× 3 Matrix (Optional) 
 
Finding the inverse of a 3 × 3 matrix is most easily done using a graphic display 
calculator, however we should know how to accomplish the task ‘by hand’. 
 

Consider the matrix 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

333231

232221

131211

aaa
aaa
aaa

A . 



Chapter 9 

226 

 

Definition The cofactor of the element ija  is defined by ij
ji

ij mc +−= )1(  
where ijm  is the minor defined in section 9.3. 

 Thus cofactors are simply ‘signed minors’. 
 
Definition The adjoint of matrix A is the transpose of the matrix of its 

cofactors. Thus T)(adj ijc=A . 
 

Definition The inverse of matrix A is A
A

A adj
det

11 =−  provided det A ≠ 0. 
 

Example Find the inverse of the matrix 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−
=

431
102
321

A . 

 

 112
31

21
43

32
2det −=+−=

−−
−

−−
−=A  

 3
43

10
11 =

−−
=c  7

41
12

12 =
−−

−=c  6
31

02
13 −=

−−
=c  

 1
43

32
21 −=

−−
−=c  1

41
31

22 −=
−−

=c  1
31

21
23 =

−−
−=c  

 2
10
32

31 ==c  5
12
31

32 =−=c  4
02
21

33 −==c  

 Therefore 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−
−−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−
−

−=−

416
517
213

416
517
213

1A . 

 
Sometimes the inverse of a 3 × 3 matrix can easily be found from information 
given in the question. 
 

Example If 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

−
=

212
111
221

A , evaluate 3A  and hence find 1−A . 

 

 2A  =  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

−

153
324

461

212
111
221

212
111
221
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3A  =  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

−

1300
0130
0013

153
324

461

212
111
221

 

 
 Therefore IA 133 =  which gives ( )21

13 =A A I  

 ⇒ 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

−
==−

153
324

461

13
1

13
1 21 AA . 

 
 
Theorem If AB = I then 1−= AB .  (There is no need to show that BA = I.) 
 
Proof AB = I  ⇒  det (AB) = det I  ⇒  (det A)(det B) = 1  ⇒  det A ≠ 0. 
 Therefore 1−A  exists. 
 Hence )(1 ABA−  =  IA 1−  
  BAA )( 1−  =  1−A  
             IB =  1−A  
              B =  1−A . 
 
Theorem 111)( −−− = ABAB  
 
Proof { } { } IAAIAAABBAABAB ==== −−−−−− 111111 )())((  
 Thus from the previous theorem 111)( −−− = ABAB . 
 
Example Find the matrix A such that 

 (a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
52
12

74
53

A  ;  (b) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− 47

11
49

27
A . 

 

 (a) Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

74
53

B  then ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=−

34
571B  and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

=
52
12

BA . 

  Therefore )(1 BAB −  =  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
112

184
52
12

34
57

. 

  ⇒ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

===−

112
184

)( 1 AIAABB . 
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 (b) Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
49

27
B  then ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−−
−=−

79
24

46
11B  and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

47
11

BA . 

  Therefore, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
−=−

5
3

47
11

79
24

46
1)(1 BAB . 

  ⇒ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

===−

5
3

)( 1 AIAABB . 

 

Example Given matrices ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

45
23

 and 
41
22

BA , find { }1)(det −? ? . 

 

 { }
20
1

210
1

))(det(det
1

)det(
1)(det 1 =

×
===−

BAAB
AB . 

 
Exercise 9.4 
 
1. Find the inverse of each of the following matrices: 

 (a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
37
25

 ;   (b) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
811
34

 ; 

 (c) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

23
35

 ;   (d) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
42
52

 ; 

 (e) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−16
03

 ;   (f) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
αα
α−α

cossin
sincos

 ; 

 (g) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α−α

αα
cossin

sincos
 ;  (h) 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−

−
+

++
−

2

2

2

22

2

1
1

1
2

1
2

1
1

m
m

m
m

m
m

m
m

. 

 

2. If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

64
54

 and 
310
27

BA , find 

 (a) 1−A  ;  (b) 1−B  ;  (c) 11 −− BA  ; 
 (d) 11 −− AB  ; (e) 1)( −AB  ; (f) 1)( −BA . 
 

3. If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

25
23

 and 
86
42

BA , find the value of { }1)(det −AB . 

 



 Matrices & Linear Equations 

 229 

4. Show that the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
512

125
13
1A  is its own inverse. 

 

5. If A is the matrix ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−−

13
31

2
1 , find 3A . Hence, or otherwise, find the 

inverse of A. 
 

6. Given ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
45
56

A , show that 022 =+− IAA . Hence deduce 1−A . 

 
7. In each of the following, find the matrix A: 

 (a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
12
21

31
52

A  ;  (b) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
10

1
26
59

A  ; 

 (c) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
53

20
43
76

A  ; (d) ( )1711
45
72

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
A  ; 

 (e) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
20

12
53
74

14
27

A . 

 

8. Given 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−=

110
512
212

A , evaluate 3A  and deduce 1−A . 

 

9. Given 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

−
=

201
210
121

A , 

 (a) show that 0743 =+− IAA  and deduce 1−A  ; 

 (b) find the matrix X such that 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

7
1
2

AX . 

 

10. If 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

−
=

211
201

112
A , find 13  and −AA , and hence find a matrix X such that 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

2
5
3

111
534
212

X . 
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11. Let 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−
=

212
102
111

A . Find 2A  and write down the inverse of A. 

 

12.  Show that the inverse of the matrix 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−=

111
121
223

A  is the matrix 

IAB 82 −= . 
 

13. Let 
1 3 3
2 1 1
4 5 2

−⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

A  and let 22= −B I A . Evaluate AB and find 1−A . 

 

14. Given 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
=

128
211
112

A , find 3A  and deduce the inverse of A. 

 

15. If 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
533
423
432

A , evaluate 2A  and find the inverse of A. 

 
 

Higher Level (Optional) 
 
16. Find the inverses of the following matrices: 

 (a) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−

621
213
111

 ; (b) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

821
213
312

 ; 

 (c) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−−

414
102
423

 ; (d) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−

412
221
202

. 

 

17. Solve the equation Ax = b where 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−
−

=
21
9

16
 and 

423
111
212

bA . 
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9.5 Systems of Linear Equations 
 
Consider the following system of linear equations: 
 

mnmnmmm

nn

nn

nn

bxaxaxaxa

bxaxaxaxa
bxaxaxaxa
bxaxaxaxa

=++++

=++++
=++++
=++++

�
											

�
�
�

332211

33333232131

22323222121

11313212111

 

 
There are m equations in n unknowns ( nxxxx ,,,, 321 � ). The 'a's are called the 
coefficients and the 'b's are called the constants. 
 
A solution of the system is any set of values for nxxxx ,,,, 321 �  which satisfies 
each of the m equations. 
 
In solving such a system, any one of three possibilities may be encountered. 
 
1. A unique solution exists. That is there is one set, and only one set, of values 

for nxxxx ,,,, 321 �  which satisfies all m equations. 
2. An infinite number of solutions exist. That is there is an infinite number of 

sets of values for nxxxx ,,,, 321 �  which satisfy all m equations. 
3. No solution exists. That is no set of values for nxxxx ,,,, 321 �  satisfies all m 

equations. 
 
Definition A system of linear equations in which all the constants are zero is said 

to be homogeneous. 
 
In the case of a homogeneous system of equations, possibility 3 cannot occur since 

0321 ===== nxxxx �  is a trivial solution. 
 
Note that the given equations can be presented in matrix form: 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

mnmnmmm

n

n

n

b

b
b
b

x

x
x
x

aaaa

aaaa
aaaa
aaaa

		
�

					
�
�
�

3

2

1

3

2

1

321

3333231

2232221

1131211

 

which is in the form AX = B or Ax = b where A is called the matrix of the system. 
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The matrix 

   

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

mmnmmm

n

n

n

baaaa

baaaa
baaaa
baaaa

�
						

�
�
�

321

33333231

22232221

11131211

 

 
is called the augmented matrix of the system. 
 
Example Consider the system   x  +   y  +   z  =    3 
     3x  –   y  +   z  =  – 1 
     4x  + 2y  + 3z  =    7. 
 
 There are 3 equations in 3 unknowns. The unknowns are x, y, z. The matrix of 

the system is 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

324
113
111

 and the augmented matrix is 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−
7324
1113

3111
. 

The constants are 3, –1, 7. 
 
 It can be shown that this system has an infinite number of solutions which are 

given by x = t, y = t + 2, z = 1 – 2t for all real values of t. 
 
Methods of Solution 
 
Method 1 Gaussian Elimination (Row Operations) 
 
Given a system of linear equations, S, we obtain systems which are equivalent to S 
(i.e. they have the same set of solutions as S), but which are progressively simpler, 
until we reach a system from which all solutions (if any) may be read off. To do this, 
we can use any of the following basic row operations. 
 
(i) Interchange any two rows. 
(ii) Multiply any row by a non-zero constant. 
(iii) Add to any row any multiple of any other row. 
 
Example Solve the following system of equations: 
  1R :   x + 2y + 5z =  4 
  2R : 3x + 5y + 9z =  7 
  3R : 2x –   y – 3z =  0. 
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  Procedure: (i) Replace 2R  by 12 R3R −  and 3R  by 13 2RR − . 
This gives the equivalent system 

   :R1  x + 2y +   5z =    4 
   2R :    –   y –   6z =  –5 
   3R :    – 5y – 13z =  –8 
 
  (ii) Replace 3R  by 23 R5R − , This gives 
   :R1  x + 2y +   5z =    4 
   2R :    –   y –   6z =  –5 
   3R :               17z =  17. 
 
  The solution can now be read off by the method of back 

substitution. 
  From 3R , z = 1. Then substituting this in 2R  gives y = –1. 

Finally, substituting these values for y and z in 1R  gives 
x = 1. 

  Therefore the solution is x = 1, y = –1, z = 1. 
 
Example  Solve the system 1R :   x + 2y +   5z = 4 
      2R : 3x – 2y –      z = 4 
      3R : 2x + 5y + 12z = 9. 
 
 Replace 2R  by 12 R3R −  and 3R  by 13 R2R − . 
 This gives 1R :   x + 2y +   5z =   4 
    2R :      – 8y – 16z = –8 
    3R :           y +   2z =   1 
 

 Replace 2R  by 28
1 R− . 

 This gives 1R :   x + 2y + 5z = 4 
    2R :           y + 2z = 1 
    3R :           y + 2z = 1 
 
 Replace 3R  by 3R – 2R . 
 This gives 1R :   x + 2y + 5z = 4 
    2R :           y + 2z = 1 
    3R :       0 = 0 
 
 Putting z = t, we obtain y = 1 – 2t from 2R  and then x = 2 – t from 1R . 
 Therefore the solution is x = 2 – t, y = 1 – 2t, z = t for all real t. 
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Since the process of reduction depends only on the coefficients on the left hand side 
and not on the names of the variables or on the right hand side, we may set the 
calculation out in detached coefficient form. 
 
Example Solve the system   x + 2y –   z =   9 
     2x + 3y + 2z = 19 
     3x – 2y +   z =   7. 
  

The system is 1   2   –1     9 
 2   3     2   19 
 3 –2     1     7 
 1   2   –1     9 

122 R2RR −← : 0 –1     4     1 
:R3RR 133 −←  0 –8     4 –20 

 1   2   –1     9 
 0 –1     4     1 

:R8RR 233 −←  0   0 –28 –28 
 
 The third equation reads –28z = –28 and so z = 1. 
 The second equation reads –y + 4z = 1 and so y = 3 since z = 1. 
 The first equation reads x + 2y – z = 9 and so x = 4 since y = 3 and z = 1. 
 Hence the solution is x = 4, y = 3, z = 1. 
 
Example Solve the system   x + 3y –   z =   4 
     2x + 5y + 2z =   9 
     3x + 8y +   z = 14. 
 

The system is 1   3 –1   4 
 2   5   2   9 
 3   8   1 14 
 1   3 –1   4 

:R2RR 122 −←  0 –1   4   1 
:R3RR 133 −←  0 –1   4   2 

 1   3 –1   4 
 0 –1   4   1  

:RRR 233 −←  0   0   0   1 
 
 The last equation reads 0x + 0y + 0z = 1 which is impossible and so no 

solution exists. 
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Method 2 Inverse Matrix Method 
 
Consider the system 4x – 3y = 1 
    3x – 2y = 2. 
 

This system can be written in matrix form as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

2
1

23
34

y
x

 which is in the form 

AX = B where A is the 2 × 2 matrix of coefficients and X and B are each 2 × 1 
column matrices. Now, since AX = B ⇒ ( ) ( ) B?XAAB?AXA 1111 −−−− =⇒=  ⇒ 

B?IX 1−=  provided 1−A  exists, the solution of the system is given by B?X 1−= . 
 

We have ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
23
34

A  where det A = –8 + 9 = 1 and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=−

43
321A . 

Therefore ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

5
4

2
1

43
32

y
x

X   or  x = 4 and y = 5. 

 

Note: If  det A = 0 ( 1−A  does not exist), there is no unique solution to the given 
system and this method cannot be used. 

 
Example Use this method to solve the system 5x – 7y = 37 
       9x + 4y = 50. 
 

 The solution is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

1
6

50
37

59
74

83
1

50
37

49
75 1

y
x

. 

 This is x = 6 and y = –1. 
 
Example Solve the system   x + 2y + 4z =   0 
      2x –   y + 3z =   5 
      4x – 3y + 5z = 11. 
 

0)46(4)1210(295
534
312
421

=+−+−−+−=
−
−  and so the inverse of the 

matrix of the system does not exist and the solution by matrix methods cannot 
be found. Gaussian elimination must be used. 
 
The system is 1     2     4   0 
 2   –1     3   5 
 4   –3     5 11 
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 1     2     4   0 
:R2RR 122 −←  0   –5   –5   5 
:R4RR 133 −←  0 –11 –11 11 

 1     2     4   0 
 0   –5   –5   5 

:RRR 25
11

33 −←  0     0     0   0 

 
Put z = t and from the second equation we get y = –t – 1. Then from the first 
equation we get x = 2 – 2t. 
 
Therefore the solution is x = 2 – 2t, y = –t – 1 and z = t for all real values of t. 
 

Example Given 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−−

=
313
211
122

A  , find 3A  and hence solve the equations: 

  (a) 2x – 2y –   z = –18 (b) x + 7y – 5z = 9 
     x +   y – 2z =   –2  x +   y –   z = 3 
   3x +   y – 3z = –10 ;  x + 4y – 2z = 6. 
 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−
−−

=
482
333
571

2A      and     IA 6
600
060
006

3 =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=  

 Therefore ( ) AAAA 6
1122

6
11   and  ==

−− . 

 (a) The system is 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

10
2

18

z
y
x

A  so 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−
−−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

2
5
3

10
2

18

482
333
571

6
1

10
2

18
1A

z
y
x

. 

 
The solution is therefore x = –3, y = 5 and z = 2. 
 

(b) The system is   –x – 7y + 5z =   –9 
   –3x – 3y + 3z =   –9 
   –2x – 8y + 4z = –12 
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 which is 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

12
9
9

2

z
y
x

A  and so 

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

0
1
2

12
9
9

313
211
122

6
1

12
9
9

12A
z
y
x

 . 

 
The solution is therefore x = 2, y = 1 and z = 0. 
 

Exercise 9.5 
 
1. Solve each of the following systems of linear equations by each of the two 

methods described: 
 (a)   x + 2y = 13  (b) 3x + 4y = 10 
   3x +   y = 14 ;   4x +   y =   9 ; 
 (c) 6x – 5y = 28  (d) 14x –   3y = 39 
   5x + 3y =   9 ;     6x + 17y = 35. 
 
2. Find the values of k for which the system kx +        2y = 1 
        3x + (k–1)y = 1 
 does not have a unique solution. If k does not have these values, find the 

unique solution. For each value of k for which no unique solution exists, 
determine whether or not any solution of the system exists. 

 
3. Find the values of k for which the system   x + 2y + 2z = 1 
        2x +   y + 2z = 4 
        3x + 3y + kz = 5 
 has a unique solution. Find this unique solution and solve the system for any 

values of k for which the unique solution does not exist. 
 
4. Solve each of the following systems of equations: 
 
 (a)   x –   y + 3z = 3   (b)   x +   y +   z =   3 
   2x – 3y + 2z = 1    2x +   y – 2z =   0 
   4x – 5y + 7z = 6 ;   3x – 2y + 5z = 23 ; 
 
 (c)   x + 2y – 2z =   5  (d)   x –   y + 3z = 1 
   3x + 5y +   z =   2     x + 2y + 6z = 7 
   4x + 7y – 3z = 11 ;   2x +   y + 9z = 8 ; 
 
 (e) 2x + 3y +   z =   6  (f) 2x +   y – 2z = 10 
   5x +   y – 4z = –4     x – 2y +   z =   3 
     x –   y – 2z = –2 ;     x –   y + 2z = 20 ; 
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 (g) 3x +   y – 2z =  6  (h) 6x +   5y – 2z = 7 
   4x – 3y – 4z =  0   8x – 16y + 3z = 3 
   5x + 2y + 6z = 6 ;   2x –   5y +   z = 1. 
 

5. Show that the inverse of the matrix 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−

221
122
213

 is 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

856
745
322

 and 

hence solve the following systems of equations: 
 
 (a) 3x +   y – 2z = 7  (b) 2x – 2y – 3z =   2 
   2x – 2y +   z = 7   5x – 4y – 7z =   1 
     x + 2y – 2z = 1 ;  6x – 5y – 8z = 10. 
 
6. Solve the system x + 3y – 2z = 0 
     x – 2y + 3z = 0 
        – 2y +   z = 1. 
 

7. For the matrices 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

−−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−=

526
8310

627
  and  

122
412

221
BA  find AB. Use 

this result to solve the system   7x + 2y  – 6z =  3 
      10x + 3y  – 8z =  2 
        6x + 2y  – 5z =  k. 
 
8. For the equations   x + 2y –   z = 1b  
    2x + 3y + 2z = 2b  
    3x + 5y +   z = 3b , 
 find the condition on 321 ,, bbb  for which a solution exists. 
 Find all solutions of the system when 3 and 2,1 321 === bbb . 
 
9. (a) Find the values of x, y and z in terms of a, b and c for which 

   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

c
b
a

z
y
x

1174
852
321

. 

 (b) Use the result of part (a) to write down the inverse of 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1174
852
321

. 
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10. (a) Solve the system of equations 2x +   y –   z = 0 
      2x + 3y + 5z = 0 
      5x + 4y + 2z = 0. 
 
 (b) Use the result of part (a) to find a set of values for x, y and z (not all 

zero) for which AX = X where 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

345
542
113

A  and 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

z
y
x

X . 

 
Higher Level 

 
9.6 Geometrical Interpretation of Solutions (Optional) 
 
Two Equations in two Unknowns 
 
In general, the system ax + by = e 
    cx + dy = f 
represents two straight lines in a plane and the solution of the system represents 
the coordinates of the point(s) where the two lines meet. 
 
There are three possibilities: 
(i) The two lines meet in a single point – a unique solution. 
(ii) The two lines coincide – an infinite number of solutions. 
(iii) The two lines are parallel and distinct – no solution. 
 

Since ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dc
ba

A  is the matrix of the system, there is a unique solution iff 

det A ≠ 0. If det A = 0, there will be either no solution or an infinite number of 
solutions. 
 
Two Equations in three Unknowns 
 
In general, the system 1111 dzcybxa =++  
    2222 dzcybxa =++  
represents two planes in 3-space and the solution of the system represents the 
coordinates of the points where the two planes meet. 
 
There are three possibilities: 
(i) The two planes meet in a line – an infinite number of solutions. 
(ii) The two planes coincide – an infinite number of solutions. 
(iii) The two planes are parallel and distinct – no solution. 
 
A unique solution is not possible in this case. 
 



Chapter 9 

240 

 
Three Equations in three Unknowns 
 
In general, the system 1313212111 bxaxaxa =++  
    2323222121 bxaxaxa =++  
    3333232131 bxaxaxa =++  
represents three planes in 3-space and the solution of the system represents the 
coordinates of all points which lie on each of the three planes. 
There are eight possibilities: 
(i) The three planes coincide – an infinite number of solutions. 
(ii) Two of the planes coincide and the third is parallel to and distinct from 

the others – no solution. 
(iii) Two of the planes coincide and the third is not parallel to them – an 

infinite number of solutions. 
(iv) All three planes are parallel and distinct – no solution. 
(v) Two of the planes are parallel and distinct and the third is not parallel to 

them – no solution. 
(vi) The line of intersection of any two of the planes is parallel to and 

distinct from the third plane – no solution. 
 
 
 
 
 
(vii) All three planes meet in a line – an infinite number of solutions. 
 
 
 
 
 
 
 
(viii) The three planes meet in a single point – a unique solution. 
 
 
 
 
 
 
 
 
 
 
 

Point of 
intersection 
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Since 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

333231

232221

131211

aaa
aaa
aaa

A  is the matrix of the system, there will be a unique 

solution [possibility (viii)] iff det A ≠ 0, and either an infinite number of 
solutions or no solution at all if det A = 0. 
In practice, any of possibilities (i) to (v) can be detected at sight. There is no 
need to solve the system of equations using the techniques described. This is 
because at least two of the given equations represent the same plane or parallel 
planes. 
 
Example Solve the equations   x – 2y + 4z = 5 
       2x +   y + 3z = 7 
      2x – 4y + 8z = 3. 
 
  The first and last equations represent parallel and distinct planes. These 

planes never meet and so the system has no solution. [Possibility (v).] 
 
Example Solve the equations     x + 2y –   z =   3 
       –2x – 4y + 2z = –6 
        3x + 5y – 2z =   9. 
 
  The first two equations represent the same plane and the third plane is not 

parallel to them. Therefore there are an infinite number of solutions. 
[Possibility (iii).]  

 
   The system is  1          2        –1          3 
      3          5        –2          9 
      1          2        –1          3 
   2 2 1R R 3R← −  : 0        –1          1          0 
 
  Put z = t. Then y = t (from 2R ) and x = 3 – t (from 1R ). 
  Therefore the solution is x = 3 – t, y = t, z = t for all real t. 
 
Example Solve the following systems of linear equations and give a 

geometrical interpretation of each. 
 
 (a)   x + 3y –     z = 5 (b)   x –   y – 2z =   0 
    2x + 7y +   2z = 2  2x – 3y – 5z = –1 
   3x + 7y – 11z = 8 ;  5x + 4y –   z =   9 ; 
 
 (c)   x – 4y + 3z =   2 
    3x – 8y +   z =   2 
   4x – 5y +   z = –3. 
 



Chapter 9 

242 

  
 (a) The system is  1          3        –1          5 
      2          7          2          2 
      3          7      –11          8 
      1          3        –1          5 
   2 2 1R R 2R← −  : 0          1          4        –8 
   3 3 1R R 3R← −  : 0        –2        –8        –7 
      1          3        –1          5 
      0          1          4        –8 
   3 3 2R R 2R← +  : 0          0          0      –23 
 
  Therefore the system has no solution. 
 
  Geometrically the line of intersection of any two of the planes is 

parallel to and distinct from the third plane. 
 
 (b) The system is  1        –1        –2          0 
     2        –3        –5        –1 
     5          4        –1          9 
     1        –1        –2          0 
  2 2 1R R 2R← −  : 0        –1        –1        –1 
  3 3 1R R 5R← −  : 0          9          9          9 
     1        –1        –2          0 
     0        –1        –1        –1 
  3 3 2R R 9R← +  : 0          0          0          0 
  
  Put z = t, then y = 1 – t (from 2R ) and x = 1 + t (from 1R ). 
  Therefore the solution is x = 1 + t, y = 1 – t, z = t for all real t. 
 
 Geometrically the three planes meet in the line whose parametric 

equations  are x = 1 + t, y = 1 – t, z = t. 
 
 (c) The system is  1        –4          3          2 
     3        –8          1          2 
     4        –5          1        –3 
     1        –4          3          2 
  2 2 1R R 3R← −  : 0          4        –8        –4 
  3 3 1R R 4R← −  : 0        11      –11      –11 
     1        –4          3          2 
  1

2 24R R←  :  0          1        –2        –1 
  1

3 311R R←  :  0          1        –1        –1 
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     1        –4          3          2 
     0          1        –2        –1 
  3 3 2R R R← −  : 0          0          1          0 
  
 Therefore z = 0 (from 3R ), y = –1 (from 2R ), x = –2 (from 1R ). 
 The solution is x = –2, y = –1, z = 0. 
 
 Geometrically the three planes meet in the point (–2, –1, 0). 
 
Exercise 9.6 
 
1. Solve the following systems of linear equations and give a geometrical 

interpretation of the result: 
 
 (a)   x + 2y =   5   (b) 3x –   y = 4 
  3x +   y = 10 ;    5x + 3y = 9 ; 
 
 (c)     x –   5y = 2   (d) 2x – 3y =   1 
  –2x + 10y = 4 ;    9y – 6x = –3 ; 
 
 (e)   x + 2y + 3z = 2   (f) 2x – 2y + 4z = 7 
  2x + 5y + 5z = 3 ;   3x – 3y + 6z = 2 ; 
 
 (g)   x + 2y +   z =   6  (h)   x + 3y –   z = 4 
  3x + 5y –   z = 13   2x –   y + 3z = 3 
  4x + 7y – 2z = 17 ;   3x + 9y – 3z = 1 ; 
 
 (i) 2x –   y – 3z = 11  (j)   x + 4y –   2z =   1 
    x –   y – 2z =   5   2x + 7y –   5z =   0 
  3x – 2y – 5z = 16 ;   3x + 8y – 10z = –1 ; 
 
 (k)   2x –   y + 3z =     7  (l)   x +   y – 3z =   0 
      x – 2y – 3z =     2   2x + 3y – 7z = –1 
  –4x + 2y – 6z = –14 ;   5x – 6y – 4z = 16 ; 
 
 (m) 2x –   y –   z =   3  (n)   x + 2y + 3z = 0 
    x + 2y –   z =   3   2x –   y –   z = 2 
  3x – 4y + 2z = –1 ;   5x – 5y – 6z = 0. 
 
2. Solve for x, y and z, the system of equations   x + 2y –   z =   5 
       3x –   y + 4z =   1 
       5x + 3y + 2z = 11. 
 What is the geometrical significance of your result? 
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3. Show that the system   x + 3y + 2z = 5 
    2x + 5y –   z = 1 
    3x + 8y +   z = 5 
 does not possess any solution. State the geometrical significance of this. 
 
4. Show that the system of linear equations  3x – 5y + 2z = 2 
         x – 2y + 3z = 6 
       5x – 9y + 8z = a 
 can be solved iff a = 14. 
 Interpret this geometrically. 
 
5. For what values of k does the system of equations         x +  ky = 2 
        (k–2)x + 3y = 2 
 not have a unique solution? If k does not have those values, find the unique 

solution. For each value of k for which no unique solution exists, 
determine whether or not any solution to the system of equations exists. 
Interpret your results geometrically.     

 
6. Prove that if a ≠ 3, the equations  x + 2y – 2z = 1  
       2x + ay – 3z = 4     

       3x + 4y – 4z = b 
  have a unique solution. 
 
 If a = 3, classify the values of b such that 
 (a) the equations have no solution ; 
 (b) the equations have an infinite number of solutions. 
 Interpret each result geometrically. 
 

 
Required Outcomes 

 
 After completing this chapter, a student should be able to: 

• add and multiply matrices. 
• evaluate the determinants of 2 × 2 and 3 × 3 matrices. 
• determine whether a 2 × 2 or a 3 × 3 matrix has an inverse and find the 

inverse if it exists. 
• solve systems of linear equations with up to 3 equations in 3 unknowns by 

either Gaussian elimination or by matrix inverse methods. 
• discuss the geometrical significance of a system of linear equations and its 

solution.  (HL – Optional) 
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10.1 Limits 
 
The concept of a limit is a very important one in mathematics and an understanding of 
it is crucial to the study of both the differential calculus and the integral calculus. 
 
In the work of this chapter we shall be discussing the behaviour of a given function 

( )f x  as x takes values closer and closer to a given value a, i.e., as x approaches a. 
Sometimes ( )f x  will be defined at x = a and sometimes it will not be defined there. 
We shall use the notation lim ( )

x a
f x

→
 for the limit of ( )f x  as x approaches a. 

 
Example Consider the function : 2 1f x x +� . Find 

2
lim ( )
x

f x
→

. 

 
 
 
 
 
 
 
 
 
 
 
 It is immediately obvious that as x approaches 2,  the values of ( )f x  approach 

2(2) + 1 = 5 and so 
2

lim ( ) 5
x

f x
→

= . 

 
Note: In this example 

2
lim ( ) (2)
x

f x f
→

= . 

 

Example For the function 
22 3 2:

2
x xf x

x
− −
−

� ,  find 
2

lim ( )
x

f x
→

. 

 Here 
22 3 2 (2 1)( 2)( ) 2 1

2 2
x x x xf x x

x x
− − + −

= = = +
− −

 provided x ≠ 2, and since 

( )f x  does not exist at x = 2, the graph of ( )y f x=  will be the same as that 
of y = 2x + 1 except that the point (2, 5) is missing. 

 y

 x 

 y = 2x + 1 

 O  2  4 

 5   (2,5) 
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 It is obvious that we can make ( )f x  as close to 5 as we please by choosing x 

sufficiently close to 2. That is 
2

lim ( ) 5
x

f x
→

= . However in this case (2)f  does 

not exist and so the statement 
2

lim ( ) (2)
x

f x f
→

=  is obviously not true. 

 

 In practice we write: 
2

2

2 3 2lim
2x

x x
x→

− −
−

 =  
2

(2 1)( 2)lim
2x

x x
x→

+ −
−

 

   =  
2

lim(2 1)
x

x
→

+  

   =  2(2) + 1 
   =  5. 
 
Note: When we are asked to find lim ( )

x a
f x

→
 we are not at all interested in what 

happens at x = a. As we have seen, lim ( )
x a

f x
→

 may exist even though ( )f a  does not. 

 

Example Evaluate 
3 2

0

2 4lim
2t

t t t
t→

− + . 

 

 
3 2 2

0 0

2 4 2 4 4lim lim 2
2 2 2t t

t t t t t
t→ →

− + − +
= = = . 

 

Example Find, if possible, 
2

22

2 3 2lim
( 2)x

x x
x→

− −
−

. 

 

 
2

2 22 2 2

2 3 2 ( 2)(2 1) 2 1lim lim lim
2( 2) ( 2)x x x

x x x x x
xx x→ → →

− − − + +
= =

−− −
 which does not exist since 

the denominator, x – 2 becomes smaller and smaller numerically as x → 2 

and so 2 1
2

x
x

+
−

 becomes larger and larger numerically. 

 

 y

 x 

 y = 2x + 1 

 O  2  4 

 5   (2,5) ° 
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Example Discuss the behaviour of the function 2
1( )f x
x

=  as x → 0. 

 

 As we select values of x closer and closer to 0, 2
1
x

 takes increasingly larger 

values. Thus 2
1( )f x
x

=  has no limit as x tends to 0. 

 

 We may describe the behaviour of 2
1( )f x
x

=  by writing: as x → 0, 

( )f x → ∞  where " → ∞ " is read "tends to infinity". 
 

Example Discuss the behaviour of 1( )f x
x

=  as x → ∞  and as x → −∞ . 
 
 As x takes increasingly larger positive values, ( )f x  takes smaller and smaller 

positive values. Thus as , ( ) 0x f x→ ∞ →  from above { ( ) 0 }f x +→ . 
 
 As x takes numerically larger negative values, ( )f x  takes numerically 

smaller and smaller negative values. Thus as , ( ) 0x f x→ −∞ →  from below 
{ ( ) 0 }f x −→ . 

 
 

Higher Level 

Example Evaluate 
4

2lim
4x

x
x→

−
−

. 

 

 
( )( )4 4 4

2 2 1 1lim lim lim
4 422 2x x x

x x
x xx x→ → →

− −
= = =

− +− +
. 

 
 Alternative Method: 

 
4

2lim
4x

x
x→

−
−

 =   
( )( )
( )( )4

2 2
lim

4 2x

x x

x x→

− +

− +
 

  =   
( )( )4

4lim
4 2x

x
x x→

−

− +
 

  =   
4

1lim
2x x→ +

 

  =   1 4 . 
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Limit Theorems 
 
If lim ( )

x a
f x m

→
=  and lim ( )

x a
g x n

→
= , then 

1. lim{ ( ) ( )}
x a

f x g x m n
→

+ = +  

2. lim { ( )}
x a

k f x km
→

=  for any number k 

3. lim{ ( ) ( )}
x a

f x g x mn
→

=  

4. ( )lim
( )x a

f x m
g x n→

=  provided n ≠ 0 

 (a) If n = 0 and m ≠ 0, no limit exists. 
 (b) If n = 0 and m = 0 there may be a limit. 

  (i) 
2

1 1

( 1)lim lim( 1) 0
1x x

x x
x→ →

−
= − =

−
 

  (ii) 21 1

1 1lim lim
1( 1)x x

x
xx→ →

−
=

−−
 which does not exist. 

 

Example Evaluate 
2

2
3 4 5lim
3 4 5x

x x
x x→∞

− +
− −

. 

 

 
2

2
3 4 5lim
3 4 5x

x x
x x→∞

− +
− −

 =  
2

2

4 53
lim 3 4 5x

x x

xx
→∞

− +

− −
  =  3

5
−   {Theorems 1 and 4} 

 
Exercise 10.1 
 
1. Discuss the behaviour as x → 0 of each of the following: 

 (a) 3x ;  (b) 
4
x  ;  (c) 

2
x
x

 ; 

 (d) 1
2x

 ;  (e) 
2 2x x

x
−  ; (f) 3

3
x

x +
 ; 

 (g) 3
3

x
x

+  ;  (h) 2
2

2
x

x x+
 ; (i) 

2

2
5 2x x

x
−  ; 

 (j) 
2 2

2
x x

x
−
−

 ; (k) 
2(3 ) 9x

x
− −  ; (l) 2

8
(4 ) 16

x
x+ −

. 
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2. Discuss the behaviour as x → 1 of each of the following: 

 (a) 2 1x
x
+  ; (b) 

2

1
x x
x

−
−

 ; (c) 
2

1
x x
x

+
−

 ; 

 (d) 
2

2
2x x

x x
+ −

−
 ; (e) 

2

2
2 1

1
x x

x
− +

−
 ; (f) 

2

2
2 5 3

2 2
x x

x x
− +

−
 ; 

 (g) 
3 2

2
2 1

3 4
x x

x x
− +

− +
 ; (h) 

3

2
1
1

x
x

−
−

 ;  (i) 1
1

x
x

−
−

 ; 

 (j) 
2(3 ) 4
1

x
x

− −
−

 ; (k) 
2

3 2
1

2
x

x x x
−

− +
 ; (l) 1

3 2
x

x
−

+ −
. 

 
3. Evaluate the limit, if it exists, of each of the following as t → 2: 

 (a) 
4

3 2
16
2

t
t t

−
−

 ; (b) 
3

2
3 22

4
t t

t
− −
−

 ; (c) 
2

3 2
2

2
t t
t t

− −
−

 ; 

 (d) 
3 2

2
2 5 4

3 2
t t
t t

− +
− +

 ; (e) 
3 2

3
2 2
8

t
t

−
−

 ; (f) 7 3
2

t
t
+ −
−

. 

 
4. Find the limit as x → ∞  of each of the following: 

 (a) 1
1x −

 ;  (b) 2
1
x

 ;  (c) 2 3
1

x
x

+
−

 ; 

 (d) 3 5
4 3

x
x

−
−

 ; (e) 
2

2
2 2 1
3 4
x x

x x
+ +

− −
 ; (f) 

2

3
2 3 4
3 3 2

x x
x x

− +
− +

. 

 
5. Evaluate each of the following: 

 (a) 
2

22

2 3 14lim
3 7 2x

x x
x x→−

− −
+ +

 ;  (b) 
2

2
2 3 14lim
3 7 2x

x x
x x→∞

− −
+ +

 ; 

 (c) 
3 2

3 23

4 6lim
2 5 2 3x

x x x
x x x→

− + +
− − −

 ;  (d) 
3 2

3 2
4 6lim

2 5 2 3x

x x x
x x x→∞

− + +
− − −

. 

 
 
10.2 Gradient 
 
The Gradient of a Straight Line 
 
Consider the straight line joining the points 1 1 2 2P( , ) and Q( , )x y x y . We define the 

gradient of the line (PQ) to be the value of the quotient 2 1 1 2

2 1 1 2
 or y y y y

x x x x
− −
− −

. 
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Therefore the gradient of the line (PQ) is defined to be 
  

the change in 
the corresponding change in 

y y
x x

δ
=

δ
, 

 
and its value is independent of the positions of P and Q. Thus the gradient of a 
straight line is constant. 
 
The Gradient of a Curve 
 
The gradient of a curve at a point depends on the position of the point on the curve 
and is defined to be the gradient of the tangent to the curve at that point. 
 
In the diagram below, ( )P , ( )x f x  is any point on the graph of ( )y f x=  and Q is a 
neighbouring point ( ), ( )x h f x h+ + . 
    
 

    
 
 
 
As Q approaches P along the curve, the gradient of the secant PQ approaches the 
gradient of the tangent PT at P. The gradient of the tangent at P is thus defined to be 
the limit of the gradient of the secant PQ as Q approaches P along the curve, i.e., as 
h → 0. 

Now the gradient of PQ is ( ) ( ) ( ) ( )
( )

f x h f x f x h f x
x h x h
+ − + −

=
+ −

. 

 
Thus we define the gradient of the tangent at P and hence the gradient of the curve at 
P to be 

 
0

( ) ( )lim
h

f x h f x
h→

+ − . 

 
 
Example Find the gradient of the curve 2( )f x x=  at the point P(1, 1). 

tangent 

P(x, ( )f x ) 

x 

 y 

Q(x+h, ( )f x h+ ) 

O 

•

•

•
• h 

T •

( )y f x=
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 Let Q be the point ( )21 , (1 )h h+ + . 

 Then the gradient of the secant PQ = 
2 2(1 ) 1 2

(1 ) 1
h h h
h h

+ − +
=

+ −
. 

 Therefore the gradient of the curve at P 
2

0 0

2lim lim( 2) 2
h h

h h h
h→ →

+
= = + = . 

 
Example Find the equation of the tangent to the curve 2( ) 5 6f x x x= − +  at the 

point P(2, 0). 
 
 Let Q be the point on the curve with coordinates ( )2 , (2 )h f h+ + . 

 Then the gradient of PQ 
2 2(2 ) 0 (2 ) 5(2 ) 6f h h h h h

h h h
+ − + − + + −

= = = . 

 Thus the gradient of the tangent at P is 
2

0 0
lim lim( 1) 1
h h

h h h
h→ →

−
= − = − . 

 The equation of the tangent is therefore x + y = 2. 
 
Example Show that the gradient of the curve ( ) 3 1f x x= −  is constant and 

equal to 3 (as we expect!). 
 
 Let P(a, 3a – 1) be a general point on the curve and let Q(a + h, 3(a + h) – 1) 

be a neighbouring point. The gradient of the curve at P is defined to be 

 ( )
0

lim gradient of PQ
h→

 =  
0

3( ) 1 (3 1)lim
h

a h a
h→

+ − − −  

  =  
0

3lim
h

h
h→

 

  =  
0

lim 3
h→

 

  =  3 regardless of the position of P. 
 
 Therefore the gradient of the curve is constant and equal to 3. 
 
Exercise 10.2 
 
1. P is the point (1, 10) on the curve 212 2y x= −  and Q is the point on the curve 

whose x-coordinate is 1 + h. Write down the gradient of the secant PQ and 
determine its limit as h → 0. Interpret the result. 

 
2. Find the gradient of the tangent to the curve 2( ) 2f x x x= −  at the point on 

the curve where x = 1. Can you explain this result? 
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3. Find the gradient of each of the following curves at the given point: 
 (a) 2( ) 1f x x= −  at (1, 0) ; (b) 2( )f x x x= −  at (2, –2) ; 

 (c) 3( )f x x=  at (2, 8) ; (d) 1( )f x
x

=  at (–1, –1) ; 

 (e) 2( )f x x x= +  at (–3, 6) ; (f) ( ) 3 7f x x= −  at (5, 8). 
 

 
Higher Level 

 
4. Find the equation of the tangent to each of the following curves at the 

given point: 
 (a) 2( ) 3f x x=  at (1, 3) ; (b) 2( ) 1f x x= −  at (–2, –3) ; 
 (c) 3( )f x x x= −  at (–1, 0) ; (d) 2 3( ) 2 3f x x x= −  at (0, 0) ; 

 (e) 1( ) xf x
x
+

=  at (1, 2) ; (f) 3( )
1

xf x
x

+
=

+
 at (1, 2) ; 

 (g) 
2

( )
1

xf x
x

=
+

 at (1, 1
2 ) ; (h) ( )f x x=  at (4, 2). 

 
 
10.3 The Derived Function 
 

If ( ) ( )P , ( )  and Q , ( )x f x x h f x h+ +  are any two points on the curve ( )y f x= , we 
have shown that the gradient of the curve at P is given by 

  ( )
0 0

( ) ( )lim gradient of PQ lim
h h

f x h f x
h→ →

+ −
= . 

 
The expression on the right above defines another function of x called the derived 
function of f (x), or the derivative of f (x). We denote the derived function of f (x) [the 
derivative of f (x)] by ( )f x′ . 
 

Thus,  
0

( ) ( )( ) lim
h

f x h f xf x
h→

+ −′ = . 

 
 
When we evaluate ( )f x′  for a particular value of x, say x = a, we obtain the number 

( )f a′  which is called the differential coefficient of f (x) at x = a. 
 
 

Thus,  
0

( ) ( )( ) lim
h

f a h f af a
h→

+ −′ = . 
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Put x = a + h so that h = x – a. Then as h → 0, (x – a) → 0 or x → a. Thus from the 
above definition of the differential coefficient of f (x) at x = a we have 
 

  ( ) ( )( ) lim
x a

f x f af a
x a→

−′ =
−

. 

 
The two definitions of ( )f a′  are equivalent. 
 
The process used to obtain ( )f x′  is called differentiation. 
 

 
Higher Level 

 

Example Find the differential coefficient of 2( ) 2f x x x= +  at x = 1. 
 
 The differential coefficient of 2( ) 2f x x x= +  at x = 1 is denoted and 

defined by 
 either     or 

 (1)f ′  =  
1

( ) (1)lim
1x

f x f
x→

−
−

 (1)f ′  =  
0

(1 ) (1)lim
h

f h f
h→

+ −  

  =  
2

1

2 3lim
1x

x x
x→

+ −
−

 =  
2

0

(1 ) 2(1 ) 3lim
h

h h
h→

+ + + −  

  =  
1

( 1)( 3)lim
1x

x x
x→

− +
−

 =  
2

0

4lim
h

h h
h→

+  

  =  ( )
1

lim 3
x

x
→

+  =  ( )
0

lim 4
h

h
→

+  

  =  4. =  4. 
 
Example If 2( ) 3 1f x x= − , find ( )f a′ . 
 
 Either or 

 ( )f a′  =  ( ) ( )lim
x a

f x f a
x a→

−
−

 ( )f a′  =  
0

( ) ( )lim
h

f a h f a
h→

+ −  

  =  
2 23 1 (3 1)lim

x a

x a
x a→

− − −
−

  =  
2 2

0

3( ) 1 (3 1)lim
h

a h a
h→

+ − − −  

  =  3( )( )lim
x a

x a x a
x a→

− +
−

  =  
2

0

6 3lim
h

ah h
h→

+  

  =  lim 3( )
x a

x a
→

+   =  ( )
0

lim 6 3
h

a h
→

+  

  =  6a.  =  6a. 
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Example Find the derivative of 2( )f x
x

= . 

 
 Either or 

 ( )f a′  =  ( ) ( )lim
x a

f x f a
x a→

−
−

 ( )f x′  =  
0

( ) ( )lim
h

f x h f x
h→

+ −  

  =  

2 2

lim
x a

x a
x a→

−

−
  =  

0

2 2

lim
h

x h x
h→

−
+  

  =  2 2lim
( )x a

a x
ax x a→

−
−

  =  
0

2 2( )lim
( )h

x x h
x x h h→

− +
+

 

  =  2( )lim
( )x a

x a
ax x a→

− −
−

  =  
0

2lim
( )h

h
x x h h→

−
+

 

  =  2lim
x a ax→

−   =  
0

2lim
( )h x x h→

−
+

 

  =  2 2
2 2( )f x

a x
− −′⇒ = .  =  2

2
x
− . 

 
Using the definitions to obtain the derivative or differential coefficient is said to 
be differentiating from first principles. 
 
Exercise 10.3 
 
1. Find from first principles the differential coefficient of 2( )f x x=  at x = –3. 
 
2. Find from the definition the differential coefficient at x = 1 of each of the 

following functions: 
 (a) 23 1x −  ; (b) 32 4x x−  ; (c) 2x + 5 ; 

  (d) 3
x

 ;  (e) 
1

x
x +

 ;  (f) 2
2 3x

x
− . 

 
3. Find from first principles the derivative of each of the following functions: 

 (a) 22 3 1x x+ −  ; (b) 32x  ; (c) 2 1
1

x
x

+
+

  (x ≠ –1) ; 

 (d) 2
2
x

  (x ≠ 0) ; (e) 
2 1

2 1
x

x
+
−

  (x ≠ 1
2 ) ; (f) x   (x > 0). 
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4. For the function 2( ) 2 3f x x x= − , find f (1), and the value of (1)f ′  from 
first principles. Hence write down the equation of the tangent to the curve 

( )y f x=  at the point where x = 1. 
 
5. Find the equation of the tangent at x = 1 on each of the following curves: 
 (a) 2( )f x x x= +  ;  (b) 2( ) 1 3f x x= −  ; 

 (c) 4( )f x
x

=  ;  (d) ( )
2

xf x
x

=
+

 ; 

 (e) 2 3( )
1

xf x
x

+
=

+
 ;  (f) 

2

( )
3

xf x
x

=
+

. 

 
6. Find from first principles the derivative of each of the following functions: 
 (a) ( ) 1f x =  ; (b) ( )f x x=  ; (c) 2( )f x x=  ; 
 (d) 3( )f x x=  ; (e) 4( )f x x=  ; (f) 1 2( )f x x= . 
 For the function ( ) nf x x=  where n is a rational number, guess a formula 

for ( )f x′ . 
 

10.4 The Derivative of nx  
 

Theorem If ( ) nf x x=  where n is rational, then 1( ) nf x nx −′ = . 
 
Proof  (For positive integers n only.) 
  Let ( ) nf x x=  where n is a positive integer. 
  Then from the definition we have 

  ( )f x′  = 
0

( ) ( )lim
h

f x h f x
h→

+ −  

   = 
0

( )lim
n n

h

x h x
h→

+ −  

   = 

1 2 2 1

0

1 2 1
lim

n n n n n n

h

n n n
x x h x h xh h x

n
h

− − −

→

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�
 

   = 1 2 2 1

0
lim

1 2 1
n n n n

h

n n n
x x h xh h

n
− − − −

→

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪+ + + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
�  

   = 1

1
nn

x −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

   = 1nnx − . 
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   In general, if ( ) nf x ax=  where a and n are real numbers, then 1( ) nf x anx −′ = . 
 
 
Example Find ( )f x′  for each of the following: 
 (a) 4( ) 3f x x=  ; (b) ( ) 5f x x=  ; (c) 1 3( )f x x=  ; 

 (d) 5 4( )f x x=  ; (e) 4( )f x
x

=  ; (f) ( ) 5f x x= . 

 
 (a) 4( ) 3f x x=  ⇒ 3 3( ) (3)4 12f x x x′ = =  
 (b) ( ) 5f x x=  ⇒ 0( ) (5)1 5f x x′ = =  
 (c) 1 3( )f x x=  ⇒ 2 31

3( )f x x−′ =  

 (d) 5 4( )f x x=  ⇒ 1 45
4( )f x x′ =  

 (e) 1( ) 4f x x−=  ⇒ 2 2( ) (4)( 1) 4f x x x− −′ = − = −  
 (f) 1 2( ) 5f x x=  ⇒ 1 2 1 21 1

2 2( ) 5( ) 5f x x x− −′ = =  
 
The Derivative of a Constant 
 
If ( )f x k=  where k is a constant, then 0( )f x kx=  and so 1( ) 0f x k x−′ = × × , i.e., 

( ) 0f x′ =  for all x. This is consistent with the fact that geometrically ( )f x k=  
represents a straight line parallel to the x-axis and hence its gradient is 0 at all points 
on it. 
 
The Derivative of a Polynomial 
 
The derivative of any polynomial may be found using the limit theorems together 
with the rule for the derivative of nx . 
 
Example Differentiate each of the following with respect to x: 
  (a) 2 5 6x x− +  ;  (b) 34 3 5x x+ −  ; 

  (c) ( )23 4x −  ;  (d) 
22 3 4x x

x
− + . 

 
 (a) Let 2( ) 5 6f x x x= − + , then ( ) 2 5f x x′ = − . 
 
 (b) Let 3( ) 4 3 5f x x x= + − , then 2( ) 3 15f x x′ = − . 
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 (c) Let ( )2 2( ) 3 4 9 24 16f x x x x= − = − + , then ( ) 18 24f x x′ = − . 
 

 (d) Let 
2

3 2 1 2 1 22 3 4( ) 2 3 4x xf x x x x
x

−− +
= = − + , then 

        1 2 1 2 3 23
2( ) 3 2f x x x x− −′ = − − . 

 
An Alternative Notation for the Derivative of a Function 
 
A small change in the value of x is sometimes denoted by δx ("delta x"). The 
corresponding change in y is therefore denoted by δy. 
 
Consider the point P(x, y) on the curve ( )y f x=  and let Q(x + δx, y + δy) be a nearby 
point. 
 
The derivative of ( )y f x=  is defined to be  

 
0

( ) ( )lim
x

f x x f x
xδ →

+ δ −
δ

 

=   
0

lim
x

y y y
xδ →

+ δ −
δ

 

=   
0

lim
x

y
xδ →

δ
δ

  which is written d
d
y
x

 and read as "dee y by dee x". 

 
Note:  In this context, d, dx and dy have no separate meanings. 
 

Both d( ) and 
d
yf x
x

′  are widely used and so differentiation results may be written 

using either notation. 
 

Thus if 2( )f x x= , then ( ) 2f x x′ = ; if 2y x= , then d 2
d
y x
x

= . 

We can think of d
dx

 as a symbol indicating the operation of differentiation, writing 

( )2d 2
d

x x
x

= . 

 
Exercise 10.4 
 
1. Write down the derivative of each of the following functions: 
 (a) 4x  ;  (b) 34x  ;  (c) 28x  ; 
 (d) 2 4 5x x− +  ; (e) 34 3 2x x− −  ; (f) 4 33 4 5x x x− +  ; 
 (g) 2 33 2x x−  ; (h) 5 32 3 6x x− −  ; (i) 2 35 4 2 5x x x− − − . 

P(x, y) 

Q(x + δx, y + δy) 

δx

δy 

x 

 y 

O 

 y = f (x) 



Chapter 10 

258   

2. Differentiate each of the following with respect to x: 

 (a) 2
5
x

 ;  (b) 3 x  ;  (c) 3 2
5
x

x
+  ; 

 (d) ( )22 5x −  ; (e) 2
x

 ;  (f) 
2 3 5x x

x x
− −  ; 

 (g) 3
6
x

 ;  (h) ( )32 1x −  ; (i) ( )24 1
2

x
x
+

. 

 

3. (a) Find the equation of the tangent to the curve 2 4 5y x x= − −  at the 
point (1, –8). 

 (b) Find the equation of the tangent to the curve 23 4y x x= −  at the point 
where x = 2

3 . 
 

4. (a) The gradient of the curve 2y ax bx= +  at the point (2, 8) is 10. Find 
the values of the real numbers a and b. 

 

 (b) The gradient of the curve 2 by ax
x

= +  at the point (1, –5) is –1. Find 

the values of the real numbers a and b. 
 
 (c) Find the values of the real numbers a and b if 7x – 2y = 4 is a tangent 

to the curve 
2

2
ax by

x
+

=  at the point ( )1 1
2 4, − . 

 
5. Differentiate each of the following with respect to t: 

 (a) 2 3
3 4 5
t t t

− +  ;  (b) 3
63 4

5
t

t
− −  ; 

 (c) 2 3
3 4

(2 ) (3 )t t
−  ;  (d) ( )( )3 2 2 5t t− +  ; 

 (e) 32 2 (5 )t t tπ + π −  ; (f) 2
2 25 3

tt
− +

π
. 

 

6. For the function 3 2( ) 2 3 12 20f x x x x= − − + , 
(a) show that (2) 0f =  and factorise ( )f x  ; 
(b) find the values of x for which  (i)  ( ) 0f x =  ;   (ii)  ( ) 0f x′ = . 

 

7. For the function 2( ) 3 10 3f x x x= − + , 
(a) find the values of ( )f x′  when ( ) 0f x =  ; 
(b) find the value of ( )f x  when ( ) 0f x′ = . 
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8. (a) If 3 2tP
t

−
= , find the value of d

d
P
t

 when 

  (i) t = 4 ;  (ii) P = 1. 

 (b) Find d
d
m
t

 if 2 26 3 4mt t t= − + . 

 (c) If 
44 3xy

x
−

= , show that d 16 3
d
yx y
x x

+ = . 

 
10.5 The Second Derivative – Motion of a Body on a Straight Line 
 
Consider the function ( )y f x= . If we differentiate the derivative of y with respect to 
x, we obtain the second derivative of y with respect to x. We denote this second 

derivative by ( )f x′′  or 
2

2
d
d

y
x

 (pronounced "dee two y by dee x squared"). 

 

Thus 
2

2
d d d
d d d

y y
x x x

⎛ ⎞ =⎜ ⎟
⎝ ⎠

  or  ( )d ( ) ( )
d

f x f x
x

′ ′′= . 

 
Similarly, higher order derivatives may be found: 

 ( )
2 3

2 3
d d d d ( ) ( )
d dd d

y y f x f x
x xx x

⎛ ⎞
′′ ′′′= = =⎜ ⎟

⎝ ⎠
, the third derivative ; 

 ( )
3 4

(iv)
3 4

d d d d ( ) ( )
d dd d

y y f x f x
x xx x

⎛ ⎞
′′′= = =⎜ ⎟

⎝ ⎠
, the fourth derivative, and so on. 

 
Motion of a Body on a Straight Line 
 
Consider a body moving along the x-axis such that its displacement, x metres to the 
right of the origin O after a time t seconds (t ≥ 0), is given by ( )x f t= . 
 
The average velocity of the body in the time interval [t, t + h] is given by 

 total displacement ( ) ( )
total time taken

f t h f tv
h

+ −
= =   (h ≠ 0). 

 
In order to find the instantaneous velocity of the body at time t seconds, we find the 
average velocity in the time interval [t, t + h] and let h take smaller and smaller 
values. In fact, the instantaneous velocity of the body at time t seconds is defined by 

 
0

( ) ( )( ) lim
h

f t h f tv t
h→

+ −
= . 

 

This is clearly the first derivative of the function ( )x f t=  and so d( ) ( )
d
xv t f t
t

′= = . 
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Note: When differentiating with respect to time, the "dot" notation is often used. 

Thus if ( )x f t= , then d( ) ( )
d
xv t x f t
t

′= = =
 . 

 
We define velocity to be the time rate of change of displacement. 
 
Acceleration is defined to be the time rate of change of velocity. Thus the 
acceleration of the body moving along a straight line with displacement x(t) at time t 

seconds is given by ( ) ( )
2

2
d d( ) ( ) ( ) ( ) ( ) ( ) ( )
d d

a t v t v t v t x t x t x t
t t

′ ′′= = = = = =
 

 . 

 
Velocity is a vector quantity and so the direction is critical. If the body is moving 
towards the right (the positive direction of the x-axis), its velocity is positive and if it 
is moving towards the left, its velocity is negative. Therefore, the body changes 
direction when the velocity changes sign. A sign diagram of the velocity provides a 
great deal of information regarding the motion of the body. 
 
Example A body moves along the x-axis so that at time t seconds its 

displacement x metres to the right of the origin is given by 
3 22 9 12x t t t= − + . Draw a sign diagram of the velocity and describe 

the motion of the body for the first three seconds. 
 

 3 22 9 12x t t t= − +    ⇒   2 26 18 12 6( 3 2) 6( 1)( 2)v t t t t t t= − + = − + = − − . 
 
 The sign diagram of v is : 
 
 
 When t = 0, x = 0 and v = 12; when t = 1, x = 5 and v = 0; when t = 2, x = 4 

and v = 0; when t = 3, x = 9 and v = 12. 
 

 Therefore the body starts at the origin with velocity 112 m s− . After 1 second, 
it comes to rest at 5 metres to the right of the origin and changes direction. 
After 2 seconds it comes to rest again 4 metres to the right of the origin and 
changes direction once more. For the third second, the body moves off to the 
right and reaches a point 9 metres to the right of the origin with a speed of 

112 m s− . 
 
On the other hand, speed is a scalar quantity and direction is irrelevant. In fact 
speed = velocity  or the magnitude of the velocity. 
 
We define the average speed of the body over the time interval [t, t + h] to be 

 total distance travelled
total time taken

v = . 

 

+ +–
1 2
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Example A body moves along the x-axis such that its displacement x metres to 
the right of the origin at time t seconds is given by 3 2( ) 3x t t t= − . 
Find the acceleration of the body when its velocity is zero and the 
velocity of the body when its acceleration is zero. 

 
 3 2( ) 3x t t t= −  ⇒     2( ) 3 6 3 ( 2)v t t t t t= − = −  
    ⇒     ( ) 6 6 6( 1)a t t t= − = − . 
 
 Thus the velocity is zero when t = 0 or t = 2, and the acceleration is zero when 

t = 1. 
 Therefore when the velocity is zero, a(0) = 26 m s−−  and a(2) = 26 m s− . 

When the acceleration is zero, v(1) = 13 m s−− . 
 
Example A body moves along the x-axis so that at time t seconds 

3 2( ) 3 9x t t t t= + − . 
 Find: (a) the position and velocity of the body at t = 0, 1, 2 ; 
  (b) where and when the body comes to rest ; 
 (c) the maximum speed of the body in the first 1 second 

of motion ; 
 (d) the maximum velocity of the body in the first 1 

second of motion ; 
 (e) the total distance travelled by the body in the first 2 

seconds of motion. 
 
 (a) 3 2( ) 3 9x t t t t= + −  ⇒ 2( ) 3 6 9 3( 1)( 3)v t t t t t= + − = − +  
  When t = 0, x = 0 and v = –9; when t = 1, x = –5 and v = 0; when 

t = 2, x = 2 and v = 15. 
  At t = 0 the body is at the origin with a velocity of 19 m s−− . 
  At t = 1 the body is 5 m to the left of O with velocity 0. 
  At t = 2, the body is 2 m to the right of O with velocity 115 m s− . 
 
 (b) The body is at rest when v = 0. This occurs when t = 1 (t ≥ 0). 
  At this time the body is 5 m to the left of the origin. 
 
 (c) The velocity is increasing in the interval [0, 1] since ( ) 6 6 0v t t′ = + > . 
  v(0) = –9 and v(1) = 0. 
  Therefore the maximum speed in the first 1 second is 19 m s− . 
 

(d) From part (c), the maximum velocity is 10 m s− . 
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 (e) The following diagram illustrates the position of the body from t = 0 
to t = 2. 

 
 
 
 
  From the diagram the total distance travelled is 12 m. 
 
Exercise 10.5 
 
1. Write down the first and second derivatives of each of the following: 
 (a) 5 4x −  ;  (b) 23 6 5x x− −  ; (c) 3 22 5 4 2x x x− + +  ; 

 (d) 3 2x
x

−  ; (e) 3 2x
x
+  ; (f) 2 3

6 3 4
x x x

− + . 

 

2. (a) If 
24( ) xf x

x
−

=  show that 24 ( ) 3 ( )x f x f x′′ = . 

 
 (b) If 3 2( ) 3 3 1f x x x x= − + −  show that ( ) ( ) 18 ( )f x f x f x′′ ′ = . 
 (c) If 3 2( ) 3 5 1f x x x x= − + + , find 
  (i) ( )f x′  when ( ) 0f x′′ =  ; 
  (ii) ( )f x′′  when ( ) 0f x′ = . 
 
3. A body moves along the x-axis so that its position is x(t) metres to the right of 

the origin at time t seconds. 
 (a) If 3 2( ) 3x t t t= −  explain why the total distance travelled in the first 

three seconds of motion is not equal to the displacement in that time. 
 (b) If 3 2( ) 3 3x t t t t= − +  explain why the distance travelled in the first 

three seconds of motion is now equal to the displacement in that time. 
 
4. A particle moves along the x-axis such that its displacement is x(t) metres to 

the right of the origin at time t seconds. 
(a) If 3 2( ) 3 4 5x t t t t= − +  find the initial velocity and displacement. 

  (b) If 3 2( ) 3 7 2x t t t t= − +  find the velocity and acceleration of the 
particle at the times when it is at the origin. 

 (c) If 3 2( ) 2 21 60x t t t t= − +  find the position and acceleration of the 
particle when it is momentarily at rest. 

 (d) If 3 2( ) 2 15 36 1x t t t t= − + +  find the times at which the particle is at 
rest and calculate the distance travelled by the particle in the first 4 
seconds of motion. 

 x 
 0  –5  2 
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5. A particle is moving along the x-axis such that its position, x(t) metres to the 
right of the origin at time t seconds, is given by 3 2( ) 9 24 18x t t t t= − + − . 
Describe the particle's motion during the first five seconds and calculate the 
distance travelled in that time. 

 
6. A particle moves along the x-axis so that at time t seconds its position is given 

by 3 2( ) ( 6 36 ) mx t t t t= − − . Find the maximum speed and the maximum 
velocity in the first seven seconds of motion and also the average speed and 
average velocity in that time. 

 
7. A ball is thrown vertically into the air so that it reaches a height of 

219.6 4.9y t t= −  metres in t seconds. 
 (a) Find the velocity and acceleration of the ball at time t seconds. 
 (b) Find the time taken for the ball to reach its highest point. 
 (c) How high did the ball rise? 
 (d) At what time(s) would the ball be at half its maximum height? 
 
10.6 Points of Increase, Points of Decrease and Stationary Points 
 
If at a point where x = a on the curve ( )y f x= , ( ) 0f a′ > , i.e., the tangent at x = a 
has a positive slope, then on passing through this point in the direction of increasing 
x, the value of ( )f x  is increasing. We call such a point x = a a point of increase of f. 
 
Definition If ( ) 0f a′ > , then x = a is a point of increase of f. 
 
For such a point, ( ) ( )f x f a>  if x is just greater than a, and 
   ( ) ( )f x f a<  if x is just less than a. 
Thus whenever ( ) 0f x′ > , the function ( )f x  is said to be increasing. 
 
Definition If ( ) 0f a′ < , then x = a is a point of decrease of f. 
 
For such a point, ( ) ( )f x f a<  if x is just greater than a, and 
   ( ) ( )f x f a>  if x is just less than a. 
Thus whenever ( ) 0f x′ < , the function ( )f x  is said to be decreasing. 
 
If, however, ( ) 0f a′ = , the point x = a may be 
 (1) a point of increase (point D in the following diagram); 
 (2) a point of decrease (point C in the following diagram); 
or (3) neither a point of increase nor a point of decrease (points A and B in 

the following diagram). 
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Concavity 
 
Whenever a curve bends at a given point so that the tangent at the point lies above it, 
we say that the curve is concave downwards (or concave), and as we pass through the 
point in the direction of increasing x, the slope of the curve is continually 
decreasing. That is ( )f x′  is decreasing and so its derivative ( )f x′′  must be negative. 
 
Definition A curve is said to be concave downwards (or concave) in an interval 

]a, b[ if ( ) 0f x′′ <  for all x ∈ ]a, b[. 
 

       
         concave downwards 
 
Similarly, if the curve bends at a given point so that the tangent at the point lies below 
it, we say that the curve is concave upwards (or convex), and as we pass through the 
point in the direction of increasing x, the slope of the curve is continually increasing. 
That is, ( )f x′  is increasing and so its derivative, ( )f x′′ , must be positive. 
 
Definition A curve is said to be concave upwards (or convex) in an interval 

]a, b[ if ( ) 0f x′′ >  for all x ∈ ]a, b[. 
 
 

        
 

           concave upwards 
 

A •

B 

C 

•

•
D 
•
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Points of Inflexion 
 
Definition The point x = c is a point of inflexion of the continuous function 

( )y f x=  if ( ) 0f x′′ >  on one side of x = c and ( ) 0f x′′ <  on the other. 
 
If x = c is a point of inflexion of f , then the concavity of the curve ( )y f x=  changes 
at x = c. 
 
For a continuous curve with a continuous first derivative, x = c is a point of inflexion 
of ( )y f x=  if ( ) 0f c′′ =  and ( )f x′′  changes sign at x = c. 
 

Example Find the point of inflexion on the curve 3( ) 2 3f x x x= + − . 
 

 3( ) 2 3f x x x= + −   ⇒  2( ) 3 2f x x′ = +   ⇒  ( ) 6f x x′′ =  
 Therefore x = 0 is a point of inflexion since (0) 0f ′′ =  and ( )f x′′  clearly 

changes sign at x = 0. 
 
Although ( ) 0f c′′ =  is a necessary condition for x = c to be a point of inflexion on a 
continuous curve with a continuous first derivative, it is not a sufficient condition. 
 

Consider the function 4( )f x x=  for which 3( ) 4f x x′ =  and 2( ) 12f x x′′ = . The point 
x = 0 is not a point of inflexion (it is a minimum) even though (0) 0f ′′ =  
 

 
 
Stationary Points 
 
Definition The point x = a for which ( ) 0f a′ =  is defined to be a stationary 

point of the function f. 
 
A stationary point may be either 

• a local maximum, so-called because it is the highest point in the immediate 
neighbourhood ; 

• a local minimum ;    or 
• a horizontal (stationary) inflexion. 

The tangent to a curve at any stationary point must be horizontal. 

 x O 

 y 4( )f x x=
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Determining the Natures of Stationary Points 
 
The position of any stationary point is found by solving the equation ( ) 0f x′ = . 
There are two common methods for determining the nature of these points. 
 
The first method uses the sign of the first derivative. The second method considers the 
sign of the second derivative. Unfortunately the second method fails when both 

( ) 0f c′ =  and ( ) 0f c′′ =  since then the point x = c may be a point of increase of 
( )f x′ , a point of decrease of ( )f x′ , or neither a point of increase nor a point of 

decrease of ( )f x′ . 
 
These methods are summarised in the following tables. 
 
Method 1 The First Derivative Test 
 

        Maximum         Minimum     Horizontal Inflexion 
If x = c is a local max-
imum, ( ) 0f c′ = . Just 
before x = c, ( )f x′  is 
positive and just after 
x = c, ( )f x′  is neg-
ative. 
The sign of ( )f x′  is: 
 
 
 

If x = c is a local min-
imum, ( ) 0f c′ = . Just 
before x = c, ( )f x′  is 
negative and just after 

x = c, ( )f x′  is pos-
itive. 
The sign of ( )f x′  is: 
 

At such points, ( ) 0f c′ = , 
but the sign of ( )f x′  is 
the same just before x = c 
as just after x = c. 
The sign of ( )f x′  is: 
 
 
 
 
      or 
 
 
 

 
Method 2 The Second Derivative Test 
 

         Maximum          Minimum          Not Determined 
If ( ) 0f c′ =  and 

( ) 0f c′′ <  then ( )f x′  
is decreasing at x = c. 
Hence x = c is a local 
maximum. 

If ( ) 0f c′ =  and 
( ) 0f c′′ >  then ( )f x′  

is increasing at x = c. 
Hence x = c is a local 
minimum. 

If ( ) 0f c′ =  and ( ) 0f c′′ =  
this method fails since x = c 
may then be a point of 
increase of ( )f x′ , a point 
of decrease of ( )f x′  or 
neither. 

 
As an example of the failure of the second derivative test to establish the type of 
stationary point, consider the functions 3( )f x x= , 4( )f x x=  and 4( )f x x= − . Here 

+ – 
c 

+ – 
c 

+ + 

– – 

c 

c 
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(0) (0) 0f f′ ′′= =  in all three cases, but x = 0 is a point of inflexion, a local minimum 
and a local maximum respectively. 
 
Example Determine the position and nature of the stationary points and points 

of inflexion of the function 3 2( ) 6 9f x x x x= − +  and sketch its 
graph. 

 

 Method 1 ( )f x′  = 23 12 9x x− +  Method 2 ( )f x′  = 23 12 9x x− +  
   = 23( 4 3)x x− +    = 23( 4 3)x x− +  
   = 3(x – 3)(x – 1)   = 3(x – 3)(x – 1) 
   = 0 when x = 3, 1.   = 0 when x = 3, 1. 

 
 ( )f x′′  = 6x – 12 

  
0 for 1
0 for 3.

x
x

< =⎧
⎨ > =⎩

 

       ( )f x′′ = 6x – 12 = 0 when x = 2 and ( )f x′′  changes sign at x = 2. 
  
 Therefore (1, 4) is a local maximum and (3, 0) is a local minimum and (2, 2) is 

a (non-stationary) point of inflexion. 
 

 The graph of 3 2( ) 6 9y f x x x x= = − +  follows. 
 

     
 

Example Find the stationary points and points of inflexion of 5 3( ) 3 20f x x x= −  
and sketch its graph. 

 

 ( )f x  =  5 33 20x x−  
 ( )f x′  =  4 215 60x x−  
  =  2 215 ( 4)x x −  
  =  215 ( 2)( 2)x x x− +  
  =  0  when x = 0, 0, ±2. 

+ +– sign of ( )f x′  

x 

 y 

O 
1 2 3 

4 

3 1 

(1, 4) 

(2, 2) 

• 

• 
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 Therefore  (–2, 64) is a local maximum, 
  (0, 0) is a stationary inflexion (on a falling curve), 
 and (2, –64) is a local minimum. 
 

 ( )f x′′  =  360 120x x−  
  =  260 ( 2)x x −  
  =  60 ( 2)( 2)x x x− +  
 
 Clearly ( )f x′′  = 0 and changes sign at 0, 2x = ± . 
 Thus points ( 2, 28 2) (1.41, 39.6)− ≈ − and ( 2, 28 2) ( 1.41, 39.6)− ≈ −  

are (non-stationary) inflexions. 
 [The stationary inflexion at x = 0 has already been found from the first 

derivative.] 
 

     
 
 
Exercise 10.6 
 
1. Find the position and nature of any stationary points that the following 

functions may have and sketch the graph of each: 
 (a) 3 23 3y x x= − +  ;  (b) 4 34y x x= +  ; 
 (c) 3 26 12 8y x x x= − + −  ;  (d) 2 42y x x= −  ; 
 (e) 4 33y x x= −  ;   (f) 3 2( 5)y x x= − . 
 
2. Find the position and nature of each stationary point of the following 

functions. Find also any non-stationary points of inflexion. In each case 
sketch the graph of the function. 

+ +  – – sign of ( )f x′  

 y 

 x 

(–2,64) 

(2,–64) 

O  –2 –1  1  2 

50 

–50 

–2 0,0 2 

5 33 20y x x= −
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 (a) 3 2( ) 3 2f x x x= − +  ;  (b) 3( ) 9f x x x= +  ; 
 (c) 3( ) 6 2f x x x= −  ;  (d) 3( ) 3 2f x x x= − +  ; 
 (e) 2 3( ) 3f x x x= −  ;  (f) 41

4( )f x x x= + . 
 
3. The function 3 2( ) 2f x x ax bx= + +  has stationary points at x = –1, x = 2. 

Find the values of the real numbers a and b and sketch the graph of the 
function. 

 
4. Find the values of x for which the values of 4 3 2( ) 4 4f x x x x= − +  exceed the 

y-coordinate of the local maximum. 
 

5. (a) The curve 3 2y x ax bx= + +  has a stationary point at (1, 4). Find the 
values of the real numbers a, b and the coordinates of the second 
stationary point. 

 

 (b) The curve 3 2y x ax bx c= + + +  has a stationary point at (2, 1) and  
passes through the point (–1, 1). Find the values of the real numbers 
a, b, c. Find also the equation of the tangent to the curve at (–1, 1). 

 

 (c) The curve 3 2y ax bx cx= + +  has a stationary point at (2, d), and the 
equation of the tangent at the point x = 1 on the curve is 12x + y = –1. 
Find the values of the real numbers a, b, c, d and find the coordinates 
of the point where the tangent at x = 1 cuts the curve. 

 
 

Higher Level 
 

6. Find the position and nature of each stationary point of 38 6y x x= −  and 
hence show that 38 6 1 0x x− + =  has three real roots all numerically less 
than 1. By putting cosx = θ  and using the identity 

3cos3 4cos 3cosθ = θ − θ , find these roots. 
 

 
10.7 Extreme Points 
 
If ( )y f x=  is a continuous function on the interval [a, b] and c ∈ [a, b], then ( )f c  is  

• a local maximum value of f  if ( ) ( )f x f c≤  for all values of x in the 
'immediate neighbourhood' of x = c. 

• a local minimum value of f  if ( ) ( )f x f c≥  for all values of x in the 
'immediate neighbourhood' of x = c. 
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• the absolute maximum value of f  if ( ) ( )f x f c≤  for all x ∈ [a, b]. 
• the absolute minimum value of f  if ( ) ( )f x f c≥  for all c ∈ [a, b]. 

 
We call any maximum or minimum value of the function, an extreme value of the 
function. 
 
[The plurals of maximum, minimum and extreme are maxima, minima and extrema 
respectively.] 
 
Extreme values of a function can occur not only at interior points but also at the end-
points of the domain of definition. 
In the following diagram we find a number of extreme values of the function f . Two 
extreme values occur at the end-points of the domain (points A and E), two occur at 
interior points (points B and C) where ( ) 0f x′ = , and one occurs at an interior point 
(point D) where ( )f x′  does not exist. 
 
 
 

  
 
 
Thus for a continuous curve ( )y f x=  defined on [a, b], the only points where f  can 
have an extreme point are 

• at x = c where a < c < b and ( ) 0f c′ = . 
• at x = c where a < c < b and ( )f c′  does not exist. 
• at x = a or at x = b, the endpoints of the domain. 

 
Definition The point x = c is called a critical point of the continuous function f  

defined on [a, b] if c ∈ ]a, b[ and ( ) 0f c′ =  or ( )f c′  does not exist. 
 
Theorem The absolute maximum and absolute minimum values of a 

continuous function f  defined on [a, b] will be found at critical points 
within the domain or at the end points of the domain. 

 
Therefore, to find the absolute maximum and minimum values of a continuous 
function f defined on [a, b] 

 y 

 x 

 •  

 •  

 •  

 •  

 A 

 B 

 C 

 D 

 •   E 

 O 
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 1. find the critical points 1 2, ,x c c= �   ; 
 
 2. evaluate 1 2( ), ( ),f c f c �  ; 
 
 3. evaluate ( )f a  and ( )f b  ; 
 
 4. take the largest and smallest values of 1 2( ), ( ), ( ), , ( )f a f c f c f b� . 
 

Example Find the largest and smallest values of 3 2( ) 2 3 12 24f x x x x= − − +  
for 0 ≤ x ≤ 3. 

 

 ( )f x  =  3 22 3 12 24x x x− − +  
 ( )f x′  =  26 6 12x x− −   
  =  26( 2)x x− −  
  =  6(x + 1)(x – 2) 
  =  0 when x = –1, 2. 
 
 
         +       –               + 
 
Hence (–1, 31) is a local maximum and (2, 4) is a local minimum – the critical points. 
 
Now (0) 24, (2) 4 and (3) 15f f f= = =  and so the largest value of ( )f x  in the 
interval 0 ≤ x ≤ 3 is 24 and the smallest value is 4. [See the following diagram.] 
 
 

 
 

Example Find the absolute maximum and minimum values of 1 3( )f x x=  on 
the interval [–1, 8]. 

 

 1 3 2 31
3 2 3

1( ) ( )
3

f x x f x x
x

−′= ⇒ = =  

 Therefore ( )f x′  is never zero but is undefined at x = 0. 

x 

( )f x 3 2( ) 2 3 12 24f x x x x= − − +

(0,24) 

(2,4) 

(–1,31) 

–1 2 
sign of ( )f x′  

•
•

•

O –2 2 

•(3,15) 
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 Thus there is only one extreme point at x = 0, and (0)f = 0. 
 Also ( 1)f −  = –1 and (8)f  = 2. 
 Therefore the maximum value of f is 2 and the minimum value is –1. 
 

 The graph of 1 3( )y f x x= = , –1 ≤ x ≤ 8,  follows. 
 
 

                   
 
 
Example Find the coordinates of any critical points that the graph of the 

function ( ) 2 1f x x x= − − , 2.5 3x− ≤ ≤ , may have. 
 
 The graph of ( )y f x=  is as follows: 
 
 
 

       
The critical points are (0, –2) and (1, 1) where ( )f x′  does not exist. 

 
 

Higher Level 
 
Example Find the values of x at the extreme points of the graph of  

2 3 5
2( ) ( )f x x x= − , 0.7 2x− ≤ ≤ , and sketch its graph. Calculate 

the absolute maximum and minimum values of ( )f x  in the given 
domain. Find also the x-coordinates of any points of inflexion. 

 y 

x 
–1 2 

2 

–1 

1 

4 6 8 

( )f x  

x 

( ) 2 1f x x x= − −

O 

O 1 2 3 

1 

–2 

–2 –1 

2 3( )f x x=
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 2 3 2 3 5 35 5
2 2( ) ( )f x x x x x= − = −    ⇒   1 3 2 3 1 35 5 5

3 3 3( ) (1 )f x x x x x− −′ = − = −  
 
 Therefore extreme points occur at x = 0 (where ( )f x′  is undefined) and at 

x = 1 (where ( )f x′  = 0). 
 
 Now ( 0.7) 2.52, (0) 0, (1) 1.5 and  (2) 0.794f f f f− = = = = . 
 Thus the absolute minimum of ( )f x  is 0;  the absolute maximum is 2.52. 
 

 4 3 1 3 4 35 10 5
9 9 9( ) (2 1)f x x x x x− − −′′ = − − = − +  

 The only point of inflexion occurs at x = 1
2−  (where the second derivative 

changes sign).  { 4 3 1 3 4( )x x− −=  which is never negative.} 
 
 

    
 
 
Example The first derivative of the function ( )y f x=  is ( ) ( 1)f x x x′ = + . 
  (i) State the values of x for which f is increasing. 
  (ii) Find the x-coordinate of each extreme point of f. 
  (iii) State the values of x for which the curve of f is concave 

upwards . 
  (iv) Find the x-coordinate of each point of inflexion. 
  (v) Sketch the general shape of the graph of f indicating the 

extreme points and points of inflexion. 
 
 (i) ( ) ( 1)f x x x′ = +             sign of ( )f x′  
 
   Therefore f is increasing for x < –1 or x > 0. 
 
 (ii) The extreme points are at x = –1 and x = 0. 
 
 (iii) 2( ) ( ) 2 1f x x x f x x′ ′′= + ⇒ = +       sign of ( )f x′′  
 
   The curve is concave upwards for 1

2x > − . 

 y 

 x 

–1 0 
+ – + 

– 1
2  

1 

2 

–0.7 

1 

2 O 

2 3 5
2( ) ( )f x x x= −

+ – 
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 (iv) x = 1
2−  is a point of inflexion. 

 
 (v)  
 

   
 

 
 
Exercise 10.7 
 
1. Find the largest and smallest values of 2( ) ( 2)f x x x= −  for 
 (a) –1 ≤ x ≤ 3 ; (b) 0 ≤ x ≤ 2 ; (c) 1 2

3 3x− ≤ ≤ . 
 
2. Find the largest and smallest values of each of the following functions 

defined on the domain, and sketch the graph of each function for this domain: 
 (a) 3( ) 3f x x x= − , 0 ≤ x ≤ 2 ; 
 (b) 4 3( ) 3 4 1f x x x= − + , –1 ≤ x ≤ 1.5 ; 
 (c) 3 5( )f x x= , –1 ≤ x ≤ 1 ; 

 (d) ( )2 3 2( ) 1f x x x= − , –1 ≤ x ≤ 1. 
 
3. For each of the following functions 
   (i) find all of the zeros ; 
   (ii) find the extreme points ; 
   (iii) find the points of inflexion ; 
   (iv) sketch the graph of f. 
 (a) 3 2( ) 3f x x x= +  ; (b) 3 2( ) 3 9 2f x x x x= + − −  ; 
 (c) 4 3( ) 3 8f x x x= +  ; (d) 2 2( ) ( 2)f x x x= −  ; 
 (e) 2 3 2( ) 3 ( 16)f x x x= −  ; (f) 1 3( ) ( 3)f x x x= + . 
 
 
 
 

 

x 

extreme 
point 

extreme 
point 

•
•

•

–1 – 1
2  0 

point of inflexion 
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Higher Level 

 
4. For each of the following functions where the first derivative is given 
  (i) find the values of x for which f is increasing ; 
  (ii) find the extreme points ; 
 (iii) state the values of x for which the curve of f is concave upwards ; 
 (iv) find any points of inflexion ; 
 (v) sketch the general shape of the graph of f indicating the extreme 

points and points of inflexion. 
 (a) ( ) ( 2)f x x x′ = −  ;  (b) ( ) (1 )(2 )f x x x′ = − +  ; 
 (c) ( ) ( 1)( 2)( 3)f x x x x′ = − − +  ; (d) 2( ) ( 1) ( 2)f x x x′ = − +  ; 
 (e) 1 3( ) ( 2)f x x x−′ = +  ;  (f) 2 3( ) ( 2)f x x x−′ = − . 
 
 

10.8 Optimisation 
 
We would often like to know the greatest or least value of some variable. Least cost, 
greatest profit, maximum volume for a given surface area, etc,. The techniques 
developed in the early part of this chapter are extremely useful in the solution of such 
problems. We seek the absolute maximum or minimum of a given function defined 
on some finite interval. 
 
Example The sum of the lengths of the radius and height of a cylinder is 15 cm. 

Find the largest volume of the cylinder. 
 
 r + h = 15 and 0 ≤ r ≤ 15 
 
 The volume of the cylinder is V =  2r hπ  
      =  2 (15 )r rπ −  
      =  2 3(15 )r rπ − . 

         d
d
V
r

 =  2(30 3 )r rπ −  

      =  3 (10 )r rπ −  
      =  0 when r = 0, 10. 
 
         –                  +                    – 
 
 
 Therefore V is a maximum when r = 10. 

The maximum volume = 2 3(10 )(15 10) 500 cmπ − = π . 

sign of d
d
V
r

 
0 10 
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Example An open-topped baking tin with a volume of 3864 cm  is to be 
constructed with a square base and vertical sides. Find the least 
amount of tin plate required. 

 
 
 2 864x y =   

 ⇒  2
864y
x

= .  

 
The area of tin plate required is given by 

 A =  2 4x xy+  = 2
2

8644x x
x

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

  =  2 3456x
x

+  

 d
d
A
x

 =  2
34562x

x
−  

  =  
3

2
2( 1728)x

x
−  

  =  0 when 3x  = 1728 or x = 12. 
 
       –          + 
 
 
 
 Then A is least when x = 12. 

 Therefore the least amount of tin plate required is 2 345612
12

+  = 2432 cm . 

 
Summary of Method 
 
1. Draw a large, neat, labelled diagram. 
 
2. Find an expression for the variable to be maximised (or minimised). 
 
3. Eliminate all but one independent variable from this expression. 
 
4. Differentiate with respect to this remaining independent variable. 
 
5. Equate this derivative to zero. 
 
6. Draw a sign diagram of this derivative (or use the second derivative method). 
 
7. Answer the question required taking care to check the end-points of the 

domain of the independent variable. 
 
[Clearly, after step 3 one can use a GDC.] 

12 
sign of d

d
A
x

 

x cm 
x cm 

 y cm 
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Example Triangle ABC is isosceles with AB = AC = 5 cm and BC = 6 cm. 
Another isosceles triangle is formed with one vertex at M, the mid-
point of BC, and the other vertices P and Q being any two points on 
[AB] and [AC] respectively such that MP = MQ. Find the greatest 
area of the triangle MPQ. 

 
1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Let N be the mid-point of [PQ], let PN = x cm and let NM = y cm. The area A 

of the triangle MPQ is given by A = xy. 
 
3. BM = 3 cm and AM = 4 cm (Pythagoras) 

 Triangles APN, ABM are similar and so AN PN
AM BM

= . 

 Thus 3
4

4 (4 )
4 3

y x x y−
= ⇒ = − . 

 Hence 23 3
4 4(4 ) 3A y y y y= − = − . 

 

4. 3
2

d 3
d
A y
y

= −  

 

5. d 0 when 2
d
A y
y

= = . 

 
6. 
      +  – 
 
 
7. A is a maximum when y = 2. [0 ≤ y ≤ 4 and A = 0 at both end-points.] 
 The greatest area of triangle MPQ = 23 cm . 

A 

B C M 

N P Q x 

 y 

3 cm 3 cm 

5 cm 5 cm 

sign of d
d
A
y

 
2 
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Exercise 10.8 
 
1. The radius of the base r cm and the perpendicular height h cm of a right-

circular cone together equal 12 cm. Find the ratio r : h when the volume of the 
cone is a maximum. 

 
2. A rectangular block, the length of whose base is twice the width, has a total 

surface area of 2108 cm . Find the depth of the block if it has the maximum 
possible volume. 

 
3. A closed rectangular box has a square base and the sum of the lengths of its 

twelve edges is 8 m. Find the largest volume of the box. 
 
4. What are the inside dimensions of a closed cylindrical can of capacity 1 litre 

if the amount of material required to make the can is the least possible? 
 
5. A closed cylinder has a total inside surface area of 2800 cm . Find the radius 

of the cylinder when its volume is a maximum. 
 
6. The sum of two non-negative numbers is 50. Find the greatest and least 

values of the sum of their squares. 
 
7. Show that of all rectangles of a given area, a square has the smallest 

perimeter. 
 
8. Show that of all rectangles with a given perimeter, the one with the largest 

area is a square. 
 
9. An existing fence is to form one side of a rectangular enclosure. What 

minimum length of fencing is required to form the other three sides if the area 
enclosed is to be 1.28 hectare? 

 
10. A sheet of cardboard 15 cm by 8 cm has four equal squares cut out of its 

corners and the sides turned up to form an open rectangular box. Find the 
length of the edge of the squares cut out so that the box may have the 
maximum possible volume. 

 
11. A wire of length 10 m has a piece of length x m cut from one end and formed 

into a circle. The other piece is then formed into a square. Find the value of x 
if the sum of the areas enclosed by the two pieces of wire is 

 (a) a minimum ; 
(b) a maximum. 
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Higher Level 

 

12. A rectangle has an area of 2128 m . Find its dimensions if the distance from 
one vertex to the mid-point of a non-adjacent side is a minimum, and find 
this minimum distance. 

 
13. A swimming pool is in the shape of a rectangle with semi-circles at each 

end as in the following diagram. The surface area of the pool is a constant 
2 mA . 

 
 
 
 
 
 
 
 
 The cost of tiling the curved walls of the pool is 25% more expensive than 

that for tiling the straight walls. Show that the total cost of tiling the walls 
is a minimum when the area of the semi-circular ends is 2

3 A . 
 
14. A right-circular cone is to be cut from a sphere. Show that the volume of 

the cone cannot exceed 8
27  of the volume of the sphere. 

 [Hint: Let the distance from the centre of the sphere to the centre of the 
base of the cone be x and express the volume of the cone in terms of x.] 

 
*15. A cylindrical can has a radius of r, a height of h and a slip-on lid of fixed 

length a. If the can and its lid are to be made from 2cmA  of metal, show 
that the tin has a maximum volume when h = 2r + a. 

 
 
 
 
 
 
 
 
 
 
 
 

 

r 

a 

h 
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Required Outcomes 
 
 After completing this chapter, a student should be able to: 

• evaluate simple limits. 
• differentiate simple functions from first principles.  (HL) 
• know and apply the limit theorems. 
• differentiate functions of the form nx . 
• find the gradient of a curve at any point on it. 
• find the gradient and equation of the tangent to a curve at a given point. 
• find higher order derivatives. 
• discuss the motion of a particle along a straight line given the displacement 

as a function of time. 
• find the extreme and critical points of a continuous curve. 
• find the position of any point of inflexion on a continuous curve. 
• determine the general shape of a continuous curve from the first and 

second derivatives of the function. (HL) 
• optimise simple functions. 
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11.1 Addition of Vectors – The Zero Vector – Scalar Multiples 
 
Definition A vector is a directed line segment. That is to say, a vector has a 

given length and a given direction. 
 
We denote the vector which joins the point A 
to the point B by AB  or by v. 
 
A is called the initial point or tail of 
AB  and B is called the terminal point 
or tip of AB . 
 
If the initial point of a vector is fixed, the vector is called a bound or localised vector.  
All other vectors are called free vectors. 
 
The length of a vector AB  is denoted by AB  or simply AB. 

The length of the vector v is denoted by v  or v. 
 
The length of a vector is a scalar (real number). 
 
The Zero Vector 
 
The zero vector is a vector of length zero. We denote the zero vector by 0 or, because 
it is completely defined by its length, 0. 
 
Multiplication by a Scalar 
 
If v is a vector and s is a scalar, then sv is a vector. 
(1) If s > 0, sv has the same direction as v and a length equal to s times the length 

of v. 
(2) If s < 0, sv has a direction opposite to that of v and a length equal to ⏐s⏐ 

times the length of v. 
(3) If s = 0, sv is the zero vector. 
 
 

B 

A 

v 
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Parallel Vectors 
 
Two vectors a and b are parallel iff 
(1) they have the same direction, or 
(2) they have opposite directions. 
 
Thus a and b are parallel iff one can be expressed as a scalar multiple of the other. 
That is, a and b are parallel iff a = sb where s is a scalar, or b = ta where t is a scalar. 
 
Equal Vectors 
 
Two vectors a and b are equal, a = b, iff they have the same length and the same 
direction. 
 
Addition of Vectors 
 
Vectors may be added in two different ways: 
(1) If the tails of a and b are together, complete the parallelogram which has 

a and b as two adjacent sides. Then a + b is that vector which joins the point 
of intersection of a and b to the opposite vertex. 

 
 
 ABCD is a parallelogram. 
 
 AC  = a + b 
 
 
(2) If the tail of b is joined to the tip of a, then a + b is that vector which joins the 

tail of a to the tip of b. 
 
 
 
 
 
Subtraction of Vectors 
 
The vector a – b is equal to a + (–b). Thus a – b can be found by adding vector –b to 
vector a. 
 
 
 
          OR 
 
 

A B 

C D 

b 

a a + b 

a 

b 

a + b 

a – b 
a – b 

–b 

b 

a 
a 



 Vector Geometry  

 283 

Example Simplify DC  BC  AB −+ . 
 
 DC  BC  AB −+  =  CD  BC  AB ++  
    =  CD  AC +  
    =  AD . 
 
 
Example In the diagram, ABCD is a quadrilateral and E is an interior point.  

AB  = a, BE
����

 = b, DC
����

 = c and DE
����

 = d. 
 (a) Find expressions for AE

����
, EC
����

, BC
����

 and AC
����

 in terms of a, 
b, c and/or d. 

 (b) What can you say about the position of E if a + b = c – d ? 
 
 (a) In triangle ABE, AE = +a b

����
. 

  In triangle CDE, EC = −c d
����

. 
  In triangle BCE, BC = + −b c d

����
. 

  In triangle ACE, AC AE EC= +
���� ���� ����

 
           = + + −a b c d . 
 
 (b) If a + b = c – d, then AE EC=

���� ����
 and so E is the mid-point of AC. 

 
 
Example Vector a has a length of 6 and a direction east. 
  Vector b has a length of 8 and a direction north. 
  Find the length and direction of the vector 
 (a) a + b ;  (b) a – b. 
 
 PR = SQ = 10 and °=θ⇒=θ 9.36tan 4

3 . 

 PR  = a + b and SQ  = a – b. 
 
 Therefore a + b has length 10 and direction 

036.9°. 
 
 Also a – b has length 10 and direction 

143.1°. 
 
 
 
 

A 

B 
C 

D 

A 

B C 

D 

E 

a b 

c 
d 

East 

North 

P Q 

R S 
a+b 

a–b 

a 

b 
θ 
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Example Prove that the line joining the mid-points of any two sides of a 
triangle is parallel to the third side and equal in length to half the 
length of the third side. 

 Let M and N be the mid-points of the sides 
AB and AC of the triangle ABC. 

 Let AM  = a and AN  = b. 
 
 Then AB  = 2a and AC  = 2b. 
  Now MN  = b – a and 
 BC  = 2b – 2a = 2(b – a) = MN2 . 
 
 Therefore MN is parallel to BC and 

MN = BC2
1 , as required. 

 
Exercise 11.1 
 
1. With the aid of diagrams, show that vectors are both associative and 

commutative under addition. 
 
2.  Simplify each of the following: 
 (a) AB  + BC  ;  (b) AB  + BA  ; 
 (c) AB  – CB  ;  (d) AB  + BC  + CD  ; 
 (e) CBDCAB −−  ; (f) AB  – DC  – DA  – CB . 
 

3. In the pentagon ABCDE, AB  = a, BC  = b, CD  = c and BE  = d. Find each 
of the following vectors in terms of a, b, c and d. 

 (a) AC  ; (b) AD  ; (c) AE  ; (d) DE . 
 

4. In the regular hexagon ABCDEF, AB  = a and BC  = b. Find expressions in 
terms of a and/or b for each of the following vectors: 

 (a) DE  ; (b) AD  ; (c) CD  ; (d) DF . 
 

5. In the triangle PQR, M and N are points on PQ and PR such that PQPM 3
1=  

and PRPN 3
1= . Prove that MN is parallel to QR and equal in length to one-

third of the length of QR. 
 

6. In the triangle ABC, AB  = a, AC  = b and CÂB  = 120°. Given a  = 3 and 
b = 5, find ba − . 

 

A 

B 

C M 

N a 
b 
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7. The points P, Q, R, S are the mid-points of the sides AB, BC, CD, DA of the 
quadrilateral ABCD. Prove that PQRS is a parallelogram. 

 
8. In the parallelogram ABCD, E is the mid-point of the diagonal AC. If AB = a 

and AD = b, find in terms of a and/or b the vectors BD  and BE . Hence 
prove that the diagonals of a parallelogram bisect each other. 

 
9. Vector a has a length 10 and a direction west, vector b has a length 20 and a 

direction south and vector c has a length 10 and a direction 030°. Find the 
length and direction of each of the following vectors: 

 (a) a + b ; (b) a – b ; (c) a + c ; (d) b – c. 
 
*10. In parallelogram ABCD, M is the mid-point of BC and BD meets AM at E. 

Use vectors to prove that E is a point of trisection of both BD and AM. 
 
*11. Prove that for any vectors a and b, 
 (a) ⏐a – b⏐ ≥ ⏐a⏐ – ⏐b⏐ ; (b) ⏐a – b⏐ ≥ ⏐b⏐ – ⏐a⏐. 
 
 Deduce that ⏐a – b⏐ ≥ ⏐⏐a⏐ – ⏐b⏐⏐. 
 Under what conditions is ⏐a – b⏐ = ⏐⏐a⏐ – ⏐b⏐⏐? 
 
 
11.2 Position Vectors and the Ratio Formula (Optional) 
 
Definition The vector which joins the origin, O, to the point P is called the 

position vector of P with respect to O, or simply the position vector 
of P. 

 
We sometimes denote the position vector of P by P . That is, POP = . 
 
Consider the vector AB , the position vector of B with respect to A . 
 
From the diagram, OAOBAB −=  
Thus     ABAB −= . 
 
(The rule is "second minus first".) 
 
 
 
 
 
 

O 

A 

B A

B

AB −
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Higher Level 

(Optional) 
The Ratio Formula 
 
If P  is a point on the line (AB) such that ABAP ρ=  where ρ is a scalar, then 

 AP −  =  )AB( −ρ  

 ⇒   P  =  ABA ρ−ρ+  

 ⇒   P  =  BA)1( ρ+ρ− . 
 
Thus: (1) If ρ = 0, 0AP =  and so P coincides with A. 
  (2) If ρ = 1, ABAP =  and so P coincides with B. 
  (3) If ρ < 0, AB and AP  have opposite directions and so P is external 

to the line segment [AB] and closer to A than B. 
 (4) If 0 < ρ < 1, AB and AP  have the same direction and AP < AB. 

Thus P lies between A and B. 
 (5) If ρ > 1, AB and AP  have the same direction and AP > AB. Thus 

P is external to the line segment [AB] and closer to B than to A. 
 
 In particular, if P is the mid-point of the line segment [AB], ρ = 2

1  and 

BAP 2
1

2
1 += . 

 
Example Find the position vector of the point P which divides [AB] 
 (a) internally ; (b) externally, 
 in the ratio 1 : 3. 
 
 (a) Here   AP  =  AB4

1 . 
 
  Thus,   P  =  BA)1( 4

1
4
1 +−  = BA 4

1
4
3 + . 

 
 (b) Here   AP  =  AB2

1− . 
 
  Thus,     P  =  BABA)1( 2

1
2
3

2
1

2
1 −=−+ . 

 
Example Prove that the medians of a triangle are concurrent in a point 

which divides each median in the ratio 2 : 1. 
 

A B P 

A B P 

A 

B 

ρ<0 ρ=0 

ρ=1 
ρ>1 

0<ρ<1 
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 Let AM be a median of the triangle ABC and let G be a point on [AM] 

such that AG : GM = 2 : 1. 
 Then CBM 2

1
2
1 +=  and AMAG 3

2= . 

 Thus MA)1(G 3
2

3
2 +−=  

   )CB(A 2
1

2
1

3
2

3
1 ++=  

   )CBA(3
1 ++= . 

 
 Similarly if BN is a median and H lies on BN such that BH : HN = 2 : 1, 

then H )CBA(3
1 ++= ; and if CP is a median and K lies on CP such that 

CK : KP = 2 : 1, then K )CBA(3
1 ++= . 

 
 Therefore G, H and K coincide (same position vector) and the result is 

proved. 
 

 
Exercise 11.2 
 
1. Prove that if ABCD is a parallelogram then DBCA +=+  and hence prove 

that the diagonals of a parallelogram bisect each other. 
 
2. The position vectors of A, B, C and D are 3a + b, a – b + 2c, a – 2b + c and 

3a – c  respectively. Show that ABCD is a parallelogram. 
 
3. Prove that the points A, B, C with position vectors a – 2b, 2a + b, 4a + 7b 

respectively are collinear. 
 
4. In a regular hexagon OABCDE the position vectors of A and B relative to O 

are a and b respectively. Find expressions in terms of a and b for the vectors 
AB  and BC . Find also the position vectors of C, D and E. 

 
 

Higher Level (Optional) 
 

5. Find in terms of A  and B  the position vector of the point P which divides 
the line segment [AB] 

 (a) internally in the ratio 2 : 1 ; (b) internally in the ratio 4 : 3 ; 
 (c) internally in the ratio 2 : 3 ; (d) externally in the ratio 1 : 3 ; 
 (e) externally in the ratio 5 : 2 ; (f) externally in the ratio 3 : 4. 
 
 

A 

B 
C 

M 

G •
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6. Prove that the points A, B and P are collinear iff P  can be expressed in the 
form BAP ts +=  where s + t = 1. 

 
7. (a) If P is a point on the line (AB) such that P divides AB internally in 

the ratio m : n, show that 
nm
nm

+
+

=
ABP . 

 
  (b)  If P is a point on the line (AB) such that P divides AB externally in 

the ratio m : n, show that 
nm
nm

−
−

=
ABP . 

 
8. In trapezium ABCD where AB is parallel to DC, AB has length 4 and CD 

has length 9. If P and Q are the mid-points of the diagonals BD and AC 
respectively, prove that PQ is parallel to AB and find the length of PQ. 

 
*9. The vertices A, B and C of the parallelogram ABCD have position vectors 

a, b and c respectively. If M is the mid-point of BC and BD meets AM at 
N, find in terms of a, b and/or c the position vectors of M and N. 

 
*10. A median of a tetrahedron is the line joining a vertex to the point of 

intersection of the medians of the opposite face. Prove that the medians of 
a tetrahedron are concurrent in a point which divides each median in the 
ratio 3 : 1. 

 
*11. Prove that the three lines joining pairs of midpoints of opposite edges of a 

tetrahedron are concurrent. 
 

 
 
11.3 Vectors in Cartesian 2-Space 
 

We denote the position vector of the point P(x, y) by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

y
x

POP . 

x is called the first component of the vector ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

 and y is called the second 

component. Thus the components of the position vector of a given point are simply 
the coordinates of that point. 
 
Unit Vectors 
 
A unit vector has a length of one unit. 
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The unit vector in the direction of the vector a is the vector a
a

a ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

1ˆ . 

The unit vectors in the directions of the positive x and y axes are denoted by i and j 

respectively. Thus i = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
1

 and  j = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
0

. 

 

The Vector s ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

 

 

If s is a scalar and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

 is a vector then ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
sy
sx

y
x

s . 

 
Addition 
 

If 1

1

x
y

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and 2

2

x
y

⎛ ⎞
⎜ ⎟
⎝ ⎠

 are vectors their sum is defined by 1 2 1 2

1 2 1 2

x x x x
y y y y

+⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

 
This definition is consistent with the original definition of addition for if A, B are 
points with coordinates 1 1 2 2( , ) , ( , )x y x y  respectively and OACB is a parallelogram, 
then C has coordinates 1 2 1 2( , )x x y y+ + . 
 
Equality 
 

Two vectors 1

1

x
y

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and 2

2

x
y

⎛ ⎞
⎜ ⎟
⎝ ⎠

 are equal iff 1 2x x=  and 1 2y y= , that is their respective 

components are equal. 
 
Unit Vector Representation 
 

Since 
1 0
0 1

x
x y

y
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, every vector 
x
y

⎛ ⎞
⎜ ⎟
⎝ ⎠

 can be expressed as a linear 

combination of i and j as follows: 
x
y

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = xi + yj . 

 
 
 
 



Chapter 11 

290   

The Vector AB
����

 
 
Let 1 1A( , )x y  and 2 2B( , )x y  be any two points in Cartesian 2-space. Then the vector 

AB
����

 is given by 2 1

2 1
AB

x x
y y

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

����
. 

 
Note: The rule is "second minus first". 
 

The Length of Vector AB
����

 
 

From the distance formula we have 2 2
2 1 2 1AB ( ) ( )x x y y= − + −

����
. 

 
Example If A = (3, 1) and B = (6, –3) find 
 (a) AB

����
 ; 

  (b) AB
����

 ; 

 (c) the components of the unit vector in the direction of AB
����

. 
 

 (a) 
6 3 3

AB
3 1 4
−⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

����
. 

 (b) AB 9 16 5= + =
����

. 

 (c) The required unit vector is 
3
5

4
5

31
45

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟−−⎝ ⎠ ⎝ ⎠

. 

 
 

Higher Level (Optional) 
 
Example Points A and B have coordinates (1, 5) and (–2, 2) respectively. 
  Find the coordinates of the point 
  (a) P which divides [AB] internally in the ratio 2 : 1 ; 
  (b) Q which divides [AB] externally in the ratio 2 : 1. 
 
 (a) 2

3AP AB=
���� ����

 

  ⇒  1 2
3 3

1 2 11 2P A B
5 2 33 3

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�� �� ��
  and P = (–1, 3). 

 
 (b) AQ 2AB=

���� ����
  

  ⇒  
1 2 5

Q A 2B 2
5 2 1

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + = − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�� �� ��
  and Q = (–5, –1). 

A P B 

A B Q 
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Example Show that the points A(1, –1), B(5, 1) and C(–1, –2) are collinear and 
find the ratio in which C divides [AB]. 

 

 
6 2 1CB   and  AC CB
3 1 3

−⎛ ⎞ ⎛ ⎞
= = = −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

���� ���� ����
 

 Therefore AC  and  CB
���� ����

 are parallel vectors and C is common to both. 
 Thus A, B and C are collinear and C divides [AB] externally in the ratio 1 : 3. 
 
Exercise 11.3 
 
1. Find OA

����
, OA
����

 and the components of the unit vector in the direction of OA
����

 
when A has coordinates  (a)   (2, –1) ;     (b)   (2.5, 6) ;     (c)   (–5, –2). 

 
2. Find AB

����
, AB
����

 and the components of the unit vector in the direction of AB
����

 
 when   (a)   A = (–2, 3) and B = (1, –1) ;   (b)   A = (6, 7) and B = (4, 9). 
 
3. Find the unit vector in the direction of AB

����
 in each of the following: 

 (a) A = (2, 3), B = (5, –1) ;  (b) A = (3, –4), B = (–2, 8) ; 
 (c) A = (3, 5), B = (–3, –1) ; (d) A = (5, 4), B = (8, 2). 
 
4. Show that the points with position vectors 2i + 3j, 5i – j and –4i + 11j are 

collinear. 
 
5. Prove that the points with position vectors 3i – j, 6i + 3j, 2i + 6j and –i + 2j 

are vertices of a square. 
 
6. The position vectors of the points A, B and D are 2i – 3j, 6i + j, –3i + 7j 

respectively. Find the position vector of the point C if ABCD is a 
parallelogram. 

 
7. Find the shape of the triangle with the following vertices. 
 (a) (4, 1), (6, 4), (1, 3) ; 
 (b) (–1, –2), (–6, 3), (6, –1) ; 
 (c) (1, 1), (1, 4), ( 3

21 3+ , 5
2 ). 

 
8. Find the shape of the quadrilateral with the following vertices. 
 (a) (3, –1), (5, 4), (6, 8), (4, 3) ; 
 (b) (9, 2), (7, –2), (3, 0), (5, 4) ; 
 (c) (–1, –2), (7, –1), (11, 6), (3, 5) ; 
 (d) (2, 3), (10, 9), (5, –1), (13, 5). 
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Higher Level (Optional) 

 
9. Find the coordinates of the point P which divides the line segment [AB] 

internally such that 
 (a) A = (3, 1), B = (–2, 11) and  AP : PB = 1 : 4 ; 
 (b) A = (–5, 2), B = (4, –1) and  AP : PB = 2 : 1 ; 
 (c) A = (–3, –2), B = (7, 13) and  AP : PB = 3 : 2 ; 
 (d) A = (4, –1), B = (8, 5) and  AP : PB = 1 : 3. 
 
10. Find the coordinates of the point Q which divides the line segment [AB] 

externally such that 
 (a) A = (5, –1), B = (3, 4) and  AQ : QB = 3 : 2 ; 
 (b) A = (–1, 4), B = (8, 7) and  AQ : QB = 1 : 4 ; 
 (c) A = (6, –5), B = (–2, –9) and  AQ : QB = 1 : 3 ; 
 (d) A = (10, –1), B = (8, 0) and  AQ : QB = 3 : 4. 
 
11. Show that the centroid of triangle ABC where A = 1 1( , )x y , B = 2 2( , )x y  

and C = 3 3( , )x y  has coordinates [ ] [ ]( )1 1
1 2 3 1 2 33 3,x x x y y y+ + + + . 

 
12. The points A, B and C have coordinates (2, –1), (6, 3) and (4, 7) 

respectively. Point P is the mid-point of [AC], point Q divides [AB] 
internally in the ratio 3 : 1 and point R divides [BC] externally in the ratio 
1 : 3. Find the coordinates of P, Q and R and show that these points are 
collinear. Find also the ratio in which R divides [PQ]. 

 
13. The point P divides the line segment [AB] where A = (3, 1) and B = (–2, 6) 

internally in the ratio k : 1 (k > 0). Find the value of k if P also lies on the 
line 5x – y = 2. 

 
14. In the triangle ABC, P divides AB internally in the ratio 2 : 1 and Q divides 

BC internally in the ratio 3 : 2. The side AC is produced to meet the line 
PQ produced in R. Find the position vector of R in terms of the position 
vectors of A and C. 

 
11.4 The Scalar Product of Two Vectors – Orthogonal Projection 
 
Definition The scalar product of the vectors 1 2a a= +a i j  and 1 2b b= +b i j  is 

denoted and defined by 
      cos= θia b a b  
 where θ is the angle between a and b. 
 

This product is called the scalar product since the result cosθa b  is a scalar. 
 
The scalar product is often called the dot product since a 'dot' is used to denote it. 
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Alternative definition  1 1 2 2a b a b= +ia b  
 

Thus 1 1 2 2cos a b a bθ = +a b . 
 
Proof Let A, B have coordinates 1 2 1 2( , ) , ( , )a a b b  respectively. 
 Then OA =

����
a  and OB =

����
b . 

 
 Let θ be the angle between 

vectors a and b as shown in 
the diagram on the right. 

 
 
 
 
 Now in triangle OAB,  2 2 2AB OA OB 2(OA)(OB)cos= + − θ   {cosine rule} 

and so 2 2 2 22 2
1 1 2 2 1 2 1 2( ) ( ) 2(OA)(OB)cosa b a b a a b b− + − = + + + − θ  which 

gives 
2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 1 2 1 22 2 2(OA)(OB)cosa a b b a a b b a a b b− + + − + = + + + − θ  

and finally gives 1 1 2 2 OA OB cos cosa b a b+ = θ = θa b
���� ����

 which completes 
the proof. 

 
Perpendicular Vectors 
 
Non-zero vectors a and b are perpendicular iff 0=ia b . 
 
Proof (a) If a and b are perpendicular the angle between them is 90° and so 

cos 0θ = . 
  Therefore (0) 0= =ia b a b . 
 
 (b) If 0=ia b  then cos 0θ =a b . 
  But a and b are non-zero vectors and so 0≠a  and 0≠b . 
  Therefore cos 0θ =  and so θ = 90°. 
  Thus a and b are perpendicular. 
 

Note: Since 0
a b

ab ba
b a

⎛ ⎞ ⎛ ⎞
• = − =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

, we can always find a vector which is 

perpendicular to a given vector in 2-space by simply interchanging the 
components and then changing the sign of either one of them. 

 

O 

A(a1 , a2) 

B(b1 , b2)  y 

x 
θ a 

b 
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Some Properties of the Scalar Product 
 
1. =i ia b b a  

2. 2=ia a a  
3. ( ) ( ) ( )+ = +i i ia b c a b a c  

4. 2 2( ) ( )+ − = −ia b a b a b  
 
The Angle between Two Vectors 
 

Since cos= θia b a b , then cosθ =
ia b

a b
. 

Thus given any two non-zero vectors, the cosine of the angle between them (and 
hence the angle itself) can be found by dividing the scalar product of the vectors by 
the product of their lengths. 
 
Example Given vectors a = 3i – 2j and b = –2i – 4j, find ia b . 
 
 ia b  = 3(–2) + (–2)(–4) = 2. 
 
Example Show that the triangle ABC in which A = (3, –1), B = (5, 4) and 

C = (0, 6) is right-angled. 
 

 AB
����

 = 2i + 5j, BC
����

 = –5i + 2j and so AB BC
���� ����
i  = 2(–5) + 5(2) = 0. 

 Thus AB is perpendicular to BC and so the triangle ABC is right-angled. 
 

Example Find the size of �ABC  of the triangle ABC where A = (3, 10), 
B = (1, 4) and C = (7, 7). [Note: �ABC  is the angle between vectors 
BA
����

 and BC
����

 (B is the tail of both vectors).] 
 

 � BA BC (2 6 ) (6 3 ) 12 18 1cosABC
40 45 2 10 3 5 2BA BC

+ + +
= = = =

× ×

���� ����
i i

���� ����
i j i j . 

Therefore �ABC = 45°. 
 
Orthogonal Projection 
 
Definition The orthogonal projection of a on b is defined to be 

 �cosθ = =
a ba a b

b
i i  

 where �b  is the unit vector in the direction of b. 
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When the angle θ between a and b is acute, 
the orthogonal projection of a on b is equal 
to the length of the vector OM

�����
. 

 
(See diagram on the right.) 
 
When the angle θ between a and b is 
obtuse, the orthogonal projection of a on b 
is equal to the negative of the length of 
OM
�����

.  (See diagram on the right.) 
 
 
 
When a and b are perpendicular, the orthogonal projection of a on b is zero. 
 
The orthogonal projection of a on b is sometimes described as the projection of a in 
the direction of b. 
 
Example Find the (orthogonal) projection of a = 3i + 10j on b = 4i – 3j. 
 

 The required projection = 18 3.6
5

= − = −
a b

b
i . 

 
Example The vertices of the triangle ABC are A(2, –1), B(7, 5) and C(4, 13). 
  (a) Write down vectors AB

����
 and AC

����
. 

  (b) Find a vector n which is perpendicular to AB
����

. 
 (c) Find the projection of AC

����
 in the direction of n. 

 (d) Calculate the area of the triangle ABC. 
 

 (a) 
5

AB
6

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

����
 and 

2
AC

14
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

����
 

 (b) 
6

5
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

n   

 (c) The required projection 
2 2

2 6
AC 14 5 58

616 5
h

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = =

+

n

n

���� ii
. 

 (d) The area of  ABC ( ) ( )1 58 1 58AB 61 29
2 261 61

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

θ 

a 

b 
O 

A 

B 
M 

O 

A 

B θ 
M 

a 

b 

A B 

C 
n 

h 
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Exercise 11.4 
 
1. Evaluate the following scalar products: 

 (a) 
5 2
3 3

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
i  ; (b) 

3 2
1 4
− −⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
i  ; (c) 

7 3
2 5

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
i  ; 

 (d) 
1 2
4 3

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
i  ; (e) 

12 3
5 4

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i  ; (f) 
2 10

5 4
−⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i  ; 

 (g) 
15 3

2 20
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

i  ; (h) 
8 3

0 12
− −⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i  ; (i) 
7 5

2 6
− −⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i . 

 
2. Evaluate each of the following scalar products: 
 (a) i ii  ;   (b) i ji  ; 
  (c) j ji  ;   (d) (2 3 ) (4 )− +i j i ji  ; 
 (e) (5 4 ) (2 3 )+ −i j i ji  ; (f) (4 5 )−i i ji  ; 
 (g) ( 2 ) (3 5 )− +j i i ji  ; (h) 2 (4 3 )+j i ji  ; 
 (i) (4 3 ) (3 4 )+ −i j j ii  ; (j) (12 5 ) ( 8 20 )− − −i j i ji . 
 
3. Use the scalar product to show that in each of the following the three given 

points are the vertices of a right-angled triangle: 
 (a) (5, –1), (–2, 4), (3, 11) ; (b) (1, 8), (–3, 4), (2, 7) ; 
 (c) (–2, –1), (2, 5), (3, 0) ; (d) (–1, –1), (5, 7), (–2, 0). 
 
4. Find the cosine of the angle between each of the following pairs of vectors: 
 (a) a = –i + 2 j , b = –2i + j ; (b) a = 4i + 3 j , b = –5i + 12j ; 
 (c) a = 8i – j , b = 4i + 7j ; (d) a = 3i – 2j , b = 6i + 9j ; 
 (e) a = 3j – 2i , b = –3i + 4j ; (f) a = –4i + j , b = 5i – 12j. 
 
5. Find the projection of a on b in each of the following: 
 (a) a = 4i – j , b = 3i + 4j ; (b) a = 2j – 3i , b = 5i + 12j ; 
 (c) a = 4i – 3j ; b = i + j ; (d) a = 6j – 2i , b = 24i + 7j ; 
 (e) a = i – 3j , b = 9i + j ; (f) a = –5i – 2j , b = 3i + j. 
 
6. Write down a vector which is perpendicular to each of the following vectors: 

 (a) 
2

9
−⎛ ⎞

⎜ ⎟
⎝ ⎠

 ; (b) 
6
5

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ; (c) 
7
11

−⎛ ⎞
⎜ ⎟−⎝ ⎠

 ; (d) 3i + 5j ;  

 (e) 2i + 7j ; (f) 4j – i ; (g) –4i – 5j ; (h) j – 2i .  
 
7. Use the technique of the last example on the previous page to calculate the 

area of each of the following triangles whose vertices are given: 
 (a) (2, –3), (9, 2), (–1, 12) ; (b) (–3, –3), (3, 5), (–5, 11) ; 
 (c) (1, 7), (–3, 5), (2, 8) ; (d) (10, 9), (25, 17), (13, 5). 
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8. The vertices of the quadrilateral ABCD are A(1, 3), B(10, 15), C(7, 18) and 
D(1, 10). 

 (a) Show that (AB) is parallel to (CD). 
 (b) Find the lengths of [AB] and [CD]. 
 (c) What can you say about the quadrilateral? 
 (d) Write down a vector n which is perpendicular to vector AB

����
. 

 (e) Find the projection of AD
����

 in the direction of n. 
 (f) Calculate the area of ABCD. 
 
9. Show that the points A(2, 5), B(6, –2) and D(–5, 1) are three vertices of a 

square ABCD and find the coordinates of C. 
 
10. The origin O and the point A(4, –3) are two vertices of a square OABC. Find 

the coordinates of B and C. 
 
11. Find the angles of the triangle whose vertices are: 
 (a) (2, 1), (5, 3), (0, 4) ; (b) (–5, 2), (–3, 3), (–1, –1) ; 
 (c) (1, 3), (5, 5), (4, 12) ; (d) (–1, 2), (7, 1), (0, 8). 
 
12. If a = i – j and b = 7i + j , find 
 (a) a  ;  (b) the projection of b on a ; 
 (c) −a b  ;  (d) the projection of b on a – b. 
 
13. Prove that the diagonals of a rhombus are perpendicular. 
 
14. Prove that the angle in a semi-circle is a right-angle. 
 

 
Higher Level 

 
15. Prove that the three altitudes of a triangle are concurrent. 
 
16. Triangle ABC is right-angled at A and P, Q are points of trisection of [BC]. 

Prove that 2 2 25
9AP AQ BC+ = . 

 
17. In the trapezium ABCD, AB is parallel to DC. If AB = x, AD = y, DC = 2x 

and E divides [BC] in the ratio 1 : 2, prove that 2 22
3AC DE (4 )x y= −

���� ����
i . 

 
18. Prove that if − = +a b a b  then a and b are perpendicular. 
 
19. Find the value of t if the angle between the vectors a = 8i + j and b = 4i + tj 

is 5
13arccos . 
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20. Use the result 2=a a ai  to prove Apollonius' theorem: The sum of the 
squares of the lengths of two sides of a triangle is equal to twice the sum of 
the squares of the lengths of half the third side and the median to the third 
side. 

 
      i.e. If M is the mid-point of BC, prove 
      that ( )2 2 2 2AB AC 2 BM AM+ = + . 

      [Hint: Let AB
����

 = b and AC
����

 = c.] 
 
 
 

 
11.5 The Vector Equation of a Line in Cartesian 2-Space 
 

Consider the line �  which passes through the point A with position vector 1

2

a
a

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
a  

and which is parallel to the vector 1

2

v
v

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
v . Let 

x
y

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
r  be the position vector of a 

general point P on � . 
 
Since AP is parallel to v, AP t= v

����
 where t is a scalar. 

 
Thus  OP OA t− = v

���� ����
 or t= +r a v . 

 
 

The equation t= +r a v   or  1 1

2 2

a vx
t

a vy
⎛ ⎞ ⎛ ⎞⎛ ⎞

= +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 is the vector equation of the line � . 

 
The conversion of the vector equation to the normal Cartesian equation is illustrated 
in the following example. 
 

Example Write the vector equation 
2 3
1 2

x
t

y
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 in the form ax + by = c. 

 

 
2 3 2 3
1 2 1 2

x t
t

y t
+⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 which gives x = 2 + 3t and y = –1 – 2t. 

A 

B C 
M 

�  

v 

O 

A 
P 

a 
r 
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 Making t the subject of each equation gives t = 2
3

x −  and 1
2

yt +
=

−
. Hence 

2 1
3 2

x y− +
=

−
 and so –2x + 4 = 3y + 3  or  2x + 3y = 1. 

 
Motion of a Body Moving in a Straight Line in Cartesian 2-Space 
 
In the following work, the vector components each represent a displacement of 1 unit 
of distance either in the direction of the x-axis or in the direction of the y-axis. 
 

A body moves in a straight line in the direction of the vector 1

2

v
v

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
v . If the body 

starts from point A with position vector a at time t = 0, the position vector of the body 
at any subsequent time t is given by r = a + tv. 
 
The vector v is called the velocity vector of the body and the length of this vector, v , 
denotes the (constant) speed of the body. 
 
Example A body initially at the point (2, 1) has a velocity vector 3i – 4j. If the 

distance unit is a metre and the time unit is a second, find: 
 (a) the position vector of the body after 8 seconds ; 
 (b) the speed of the body. 
 
  The position vector of the body after t seconds is given by 
    r = 2i + j + t(3i – 4j). 
 (a) When t = 8, r = 2i + j + 8(3i – 4j) = 26i – 31j. 
 (b) The speed of the body = 3 4−i j  = 15 m s− . 
 
Example If a body moving in the direction of the vector 7i + 24j where the 

component unit is a kilometre and the speed of the body is 1200 m s− , 
find the body's velocity vector. 

 
 Let v = k(7i + 24j). Then v  = 2 27 24k +  = 25k. But v  = 200, so k = 8. 
 Therefore the velocity vector is v = 8(7i+ 24j) = 56i + 192j. 
 
The Intersection of two Lines with Equations given in Vector Form 
 
In order to find the point of intersection of two lines whose equations are given in 
vector form, each equation must have a separate parameter. The method is illustrated 
in the following example. 
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Example Find the point of intersection of the lines r = 3i + j + 1t (2i – j) and  
r = 5i – 12j + 2t (i + j). 

[These lines must meet since their direction vectors, 2i – j and i + j are not parallel.] 
 
 By equating the components in the first line we have x = 3 + 2 1t , y = 1 – 1t , 

and in the second line we have x = 5 + 2t , y = –12 + 2t . 
 For intersection 
     3 + 2 1t  =  5 + 2t    and 
       1 – 1t  =  –12 + 2t . 
 Solving these equations simultaneously we find that 1t  = 5 and  2t  = 8. 
 Hence these lines meet at the point with position vector 13i – 4j. 
 

Example Car A has position vector 1
5 2
1 3

t
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r  1t  minutes after noon on a 

given day. Car B has position vector 2
5 3

11 2
t

−⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
r  2t  minutes 

after noon the same day. Show that the cars collide and find the time 
of collision. 

 
 For intersection of the two directions we have 5 + 2 1t  =  –5 + 3 2t    and 
        1 + 3 1t  =  11 + 2 2t . 
 Solving gives 1t  = 2t  = 10. 
 Since the cars start at the same time and each travels for 10 minutes to reach 

the point of intersection, the cars collide. The time of collision is 12:10. 
 
Exercise 11.5 
 
1. Find a vector equation for the straight line passing through the point A and 

parallel to the vector v in each of the following: 
 (a) A = (3, 2), v = 3i + j ;  (b) A = (2, –1), v = –i – j ; 
 (c) A = (–4, 0), v = i ;  (d) A = (2, –5), v = –7i + 3j. 
 
2. Find a vector equation for the line joining the following pairs of points: 
 (a) (4, 1) and (6, 2) ;  (b) (3, –2) and (–1, 1) ; 
 (c) (–2, –3) and (–2, 5) ;  (d) (4, –2) and (9, 8). 
 
3. Find a Cartesian equation in the form ax + by = c for each line in Question 1. 
 

4. (a) Show that if the gradient of a straight line is p
q

, then the vector 

v = qi  + pj is parallel to the line and find a vector which is 
perpendicular to the line. 
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 (b) Show that vector v = ai + bj is perpendicular to the line ax + by = c 
and find a vector which is parallel to the line. 

 
5. Find a vector which is parallel to each of the following lines: 
 (a) y = 2x – 1 ; (b) y = 3 – 2

3 x ; (c) x + 2y = 5 ; 
 (d) 3x – 4y = 5 ; (e) 3x + 2 = 0 ; (f) 5y = 2. 
 
6. Find a Cartesian equation for a line which passes through the point A and 

which is perpendicular to the vector v, in each of the following: 
 (a) A = (2, 3), v = 3i + j ;  (b) A = (2, –1), v = 2i – 5j ; 
 (c) A = (–1, 0), v = –6i + 5j ; (d) A = (4, –2), v = 5i + j ; 
 (e) A = (5, –3), v = 5i ;  (f) A = (–2, –5), v = j. 
 
7. Find a Cartesian equation for a line which passes through the point A and 

which is parallel to the vector v, in each of the following: 
 (a) A = (–1, 2), v = 2i + 3j ;  (b) A = (–2, –3), v = 5i – 4j ; 
 (c) A = (0, 3), v = i – 2j ;  (d) A = (5, 3), v = i + 3j ; 
 (e) A = (–2, –4), v = i ;  (f) A = (3, 4), v = –2j. 
 
8. A car is moving in the direction of vector a with a speed 1 km hrs − . Find the 

velocity vector in each of the following.  
 (a) a = 3i – 4j, s = 65 ; (b) a = i + j, s = 70.7 ; 
 (c) a = 0.28i + 0.96j, s = 75 ; (d) a = 2i + 3j, s = 78. 
 
9. At time t seconds, the position vector r of a moving particle is given by 

3 5
1 12

t
−⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
r . (Displacement unit = 1 metre.) 

 (a) What is the initial position vector of the particle? 
 (b) Find the (constant) speed of the particle. 
 (c) Show that the particle passes through the point with position vector 

49.5 125− +i j . At what time is this? 
 
10. Particle A starts from the point with position vector 46i + 8j and travels with 

velocity vector 3i + 4j. Three minutes later, particle B starts from the point 
with position vector 10i + 15j and travels with velocity vector 12i + 5j. 

 (a) If the displacement unit is 1 metre and the time unit is 1 minute, find 
the speed of each particle. 

 (b) Show that these particles collide. 
 (c) Find the position vector of the point of collision. 
 (d) When do they collide? 
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11.6 Vectors in Cartesian 3-Space 
 
Almost all of the work with vectors in 2-space can be extended to 3-space by adding 
another coordinate or another component. 
 
We denote the position vector of the point P(x , y , z) by OP P x y z= = + +i j k

���� ��
. 

z is called the third component of the vector x y z+ +i j k . 

The unit vectors in 3-space are 
1 0 0
0 , 1 and  0
0 0 1

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

i j k . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A scalar multiple of the vector xi + yj + zk is defined as follows: 
 s(xi + yj + zk) = (sx)i + (sy)j + (sz)k . 
 
Vectors xi + yj + zk and ui + vj + wk are equal iff x = u, y = v and z = w. 
 
The sum of two vectors xi + yj + zk and ui + vj + wk is defined as follows: 
 (xi + yj + zk) + (ui + vj + wk) = (x + u)i + (y + v)j + (z + w)k. 
 

If A = 1 1 1( , , )x y z  and B = 2 2 2( , , )x y z , then 2 1 2 1 2 1AB ( ) ( ) ( )x x y y z z= − + − + −i j k
����

 

and 2 2 2
2 1 2 1 2 1AB ( ) ( ) ( )x x y y z z= − + − + −

����
. 

 
The scalar product of the vectors 1 2 3a a a= + +a i j k  and 1 2 3b b b= + +b i j k  is 
denoted and defined by cos= θa b a bi  where θ is the angle between a and b. As 
before we can show that 1 1 2 2 3 3a b a b a b= + +a bi . 
 

x 

 y 

z 

O 

(1,0,0) 

(0,1,0) 

(0,0,1) 

i 
 j 

k 

x 

 y 

z 

O 

(x,0,0) 

(0,y,0) 

(0,0,z) 

P(x,y,z) 
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Example Quadrilateral ABCD has A = (2, 1, –2), B = (4, 2, –4), C = (5, –1, 2) 
and D = (3, –2, 4). Show that ABCD is a parallelogram. 

 

 AB 2 2= + −i j k
����

 and DC 2 2= + −i j k
����

. 
 Therefore AB DC=

���� ����
 and so AB = DC and (AB) is parallel to (DC). 

 Thus ABCD is a parallelogram. 
 

 
Higher Level 

 
Example Show that the components of the unit vector in the direction of  

vector a are equal to the cosines of the angles that a makes with the 
coordinate axes. 

 
 If α, β, γ are the angles that a = 1 2 3a a a+ +i j k  makes with the x-axis, 

y-axis, z-axis respectively, then 1cos a
α = =

a i
a i a
i  , 2cos a

β = =
a j
a j a
i  and 

3cos a
γ = =

a k
a k a
i .  [These are called the direction cosines of a.] 

 The unit vector in the direction of a is 
1

2

3

cos
1 cos

cos

a
a
a

⎛ ⎞ α⎛ ⎞
⎜ ⎟ ⎜ ⎟= = β⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ γ⎝ ⎠⎝ ⎠

a
a a

a
a

 which is 

as required. 
 
Example Find the angles between the vector a = 2i – 2j + k and the 

coordinate axes. 
 
 2 2 22 ( 2) 1 3= + − + =a  and so the unit vector in the direction of a is 

�
2 3
2 3

1 3

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

a .  Thus 2
3cos 48.2α = ⇒ α = ° , 2

3cos 131.8β = − ⇒ β = ° , and 

1
3cos 70.5γ = ⇒ γ = ° . 

 
 
Exercise 11.6 
 
1. Given a = 2i + 3j – 6k and b = 4j + 3k find 
 (a) a + b ;  (b) a – b ;  (c) 2a – 3b ; 
 (d) a  ;  (e) b  ;  (f) +a b . 
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2. For each of the following points P, find the length of the vector OP
����

 and the 
angles which OP

����
 makes with the coordinate axes: 

 (a) (2, 2, 1) ; (b) (1, 0, –1) ; (c) (3, –2, 6) ; (d) (0, –4, 3). 
 
3. Points A and B have coordinates (3, 2, –1) and (6, –4, 8) respectively. Find 

the coordinates of the point which divides [AB] internally in the ratio 
 (a) 2 : 1 ; (b) 1 : 3 ; (c) 4 : 5 ; (d) 5 : 2. 
 
4. Points A and B have coordinates (–1, 4, 3) and (5, –8, –3) respectively. Find 

the coordinates of the point which divides [AB] externally in the ratio 
 (a) 1 : 2 ; (b) 3 : 2 ; (c) 4 : 1 ; (d) 2 : 5. 
 
5. Find the shape of the quadrilateral whose vertices are: 
 (a) (3, 4, 1), (5, 0, –1), (1, –1, 6), (–1, 3, 8) ; 
 (b) (2, 3, –1), (12, 14, 1), (2, 4, –4), (–8, –7, –6) ; 
 (c) (–1, 2, –2), (3, –2, 1), (5, 3, 5), (1, 7, 2) ; 
 (d) (2, –1, –1), (4, 1, 0), (3, 3, 2), (1, 1, 1) ; 
 (e) (5, 1, 2), (3, –1, 5), (9, 0, 4), (7, –2, 7). 
 
6. Find the angles of the triangle whose vertices are 
 (a) (3, 1, 1), (4, –1, 3), (5, 3, 2) ; 
 (b) (2, –1, 3), (3, 2, 4), (6, –4, –1) ; 
 (c) (1, 2, –2), (3, 3, –1), (–1, 1, –1) ; 
 (d) (2, 4, 1), (0, 2, 2), (3, 5, 1). 
 
7. Prove that the points (1, 1, 0), (5, –5, 2), (–1, 4, –1) and (13, –17, 6) are 

collinear. 
 
8. Find the scalar t if the vectors ti – 2j + (t – 2)k and 3i + j + tk are 

perpendicular. 
 

 
Higher Level 

 
9. Find the coordinates of the point in which the line (AB) meets the XOY 

plane if A = (4, –2, 1) and B = (–5, 4, –2). 
 
10. Given vectors a = 2i + 3j – k and b = 4i – j – 2k find vectors c and d such 

that c is parallel to a, d is perpendicular to b and a + b = c + d. 
 
11. Points P and Q divide the sides AB and AC of triangle ABC in the ratios 

1 : 2 and 3 : 1 respectively. Show that PQ
����

 is parallel to 5AC 4BC+
���� ����

. 
 

12. (a) Prove that the vector +b a a b  bisects the angle between a and b. 
 (b) Find a unit vector in the plane of a = –2i – j –2k and b = 6i + 2j + 3k 

which bisects the angle between a and b. 



 Vector Geometry  

 305 

 
13. Find the scalar p if the angle between the vectors a = 2i + 3j – k and 

b = 6i + pj + 4k is 60°. 
 
14. If A, B, C and D are the vertices of a tetrahedron with coordinates (1, 2, 3), 

(3, 3, 5), (2, 4, 1) and (–1, 4, 4) respectively, show that (AB), (AC) and 
(AD) are mutually perpendicular and find the volume of the tetrahedron. 

 
11.7 The Vector Product of Two Vectors 
 
Definition The vector product of 1 2 3a a a= + +a i j k  and 1 2 3b b b= + +b i j k  is 

denoted and defined by 
 
   2 3 3 2 3 1 1 3 1 2 2 1( ) ( ) ( )a b a b a b a b a b a b× = − + − + −a b i j k . 
 
This product is called the vector product since the result is a vector. The vector 
product is sometimes called the cross product. 
 
The vector product of any two vectors is perpendicular to each of these vectors. 
 
Proof With vectors a and b as given in the above definition, 
 1 2 3 3 2 2 3 1 1 3 3 1 2 2 1( ) ( ) ( ) ( ) 0a a b a b a a b a b a a b a b× = − + − + − =a a bi   and 
 1 2 3 3 2 2 3 1 1 3 3 1 2 2 1( ) ( ) ( ) ( ) 0b a b a b b a b a b b a b a b× = − + − + − =b a bi . 
 Therefore a × b is perpendicular to both a and b. 
 
Although the proof is beyond the scope of this book, it can be shown that 
 
  ˆsin× = θa b a b u  
 
where θ is the angle between a and b, and û  is a unit vector which is 
perpendicular to both a and b and with a direction given by the following "right 
hand" rule: If the index finger of the right hand gives the direction of a and the 
second finger the direction of b, then the thumb (held perpendicular to both the 
first two fingers) gives the direction of û . 
 
Clearly b × a must have a direction opposite to that of a × b. 
That is b × a = – a × b. 
 
Evaluation of a Vector Product 
 

×a b  =  2 3 3 2 3 1 1 3 1 2 2 1( ) ( ) ( )a b a b a b a b a b a b− + − + −i j k  
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 =  2 3 1 3 1 2

2 3 1 3 1 2

a a a a a a
b b b b b b

− +i j k  

 =  1 2 3

1 2 3

a a a
b b b

i j k
. 

 
Thus, the evaluation of the 3 × 3 determinant which has vectors i, j, k in the first 
row, the components of a in the second row and the components of b in the 
third row, provides us with an easy-to-remember process that we can use to find 
the components of a × b. 
 
Example Given a = 2i + 2j – k and b = i + 2j + 2k, find a × b and show that 

it is perpendicular to both a and b. 
 

 
2 1 2 1 2 2

2 2 1 6 5 2
2 2 1 2 1 2

1 2 2

− −
× = − = − + = − +

i j k
a b i j k i j k . 

 
 ( ) 2 6 2 ( 5) 2 0× = × + × − − =a a bi  and  ( ) 6 2 ( 5) 2 2 0× = + × − + × =b a bi . 
 Therefore a × b is perpendicular to both a and b. 
 
The Length of the Vector Product 
 
From the second definition, ˆsin sin× = θ = θa b a b u a b  since 0 ≤ θ ≤ π  
and ˆ 1=u . 
 
Example Given a = i – 2j + 2k and b = 3i – 4k, justify the equivalence of the 

two definitions of a × b. 
 
 From the first definition: 

  
2 2 1 2 1 2

1 2 2 8 10 6
0 4 3 4 3 0

3 0 4

− −
× = − = − + = + +

− −
−

i j k
a b i j k i j k . 

 Now 2 4 5 3 2 50 10 2× = + + = =a b i j k  (from the first definition). 
  The lengths of the vectors are 3=a , 5=b  and if θ is the angle between 

a and b then 5 1cos
3 5 3
−

θ = = = −
×

a b
a b
i  and so 2 2sin

3
θ = . 
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 Thus from the second definition we have: 

  2 2sin 3 5 10 2
3

× = θ = × × =a b a b  which agrees with the result 

obtained from the first definition. 
 
Example Prove that 2 2 2 2( )× = −a b a b a bi  
 

 2×a b  =  2 2 2sin θa b   where θ is the angle between a and b, 

  =  { }2 2 21 cos− θa b  

  =  2 2 2 2 2cos− θa b a b  

  =  2 2 2( )−a b a bi . Q.E.D. 
 
Properties of the Vector Product 
 
(a) × = − ×b a a b  
(b) ( ) ( ) ( )s s s× = × = ×a b a b a b  for any scalar s. 
(c) ( ) ( ) 0× = × =a a b b a bi i  
(d) If a and b are non-zero vectors, then a × b = 0 iff a is parallel to b. 
(e) 0× =a a  
(f) ( ) ( ) ( )× + = × + ×a b c a b a c  
(g) ( ) ( ) 2+ × − = ×a b a b b a  
 
It is worth noting the evaluation of the various cross products involving the unit 
vectors i, j and k. Clearly i × i = j × j = k × k = 0. 
Now consider the following diagram: 
 
 
 
 
 
 
Using a clockwise movement we obtain i × j = k,  j × k = i and k × i = j while 
using an anticlockwise movement we obtain i × k = –j, k × j = –i and j × i = –k. 
 
Example Evaluate the cross product (2i + 3j) × (2j – 5k). 
 
(2i + 3j) × (2j – 5k) = 4i × j – 10i × k + 6j × j – 15j × k 
 = 4k +10j + 0 – 15i 
 = –15i + 10j + 4k. 
 

i 

 j k 
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Areas using Vector Products 
 
Theorem The area of a parallelogram with vectors a and b as two adjacent 

sides is given by A = ⏐a × b⏐. 
 
Proof  
 
       The area of parallelogram ABCD 
       = 2 × area of triangle ABD 
       = 2 × 1

2 (AB)(AD) sin θ  
       = ⏐a × b⏐. 
 
 
Note: Since the area of the parallelogram is also twice the area of the triangle 
ABC, we may use the cross product of any side with a diagonal. Thus the area 
of the parallelogram in the diagram above is also given by A = AB AC×

���� ����
. 

 
It is obvious from the above proof that the area of the triangle with vectors a 
and b as two sides is given by A = 1

2 ×a b . 
 
Example Find the coordinates of the fourth vertex, D, and the area of the 

parallelogram ABCD in which A = (2, –1, –3), B = (5, 2, 0) and 
C = (–3, 7, 2). 

 
 In any parallelogram ABCD, OA OC OB OD+ = +

���� ���� ���� ����
 and so D = (–6, 4, –1). 

 
 The area of the parallelogram = AB AC×

���� ����
 

  = 3 3 3
5 8 5−

i j k
 

 = 9 30 39− − +i j k  

 = 3 278 . 
 
Since we cannot define the cross product of vectors in 2-space, we need to 
modify our approach if we wish to find the area of a triangle or parallelogram. 
 
Example Calculate the area of the triangle ABC with A = (1, 2), B = (7, 4) 

and C = (–2, 10). 
 

A 

B C 

D 

a 

b 
θ 
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 The equation of the XOY-plane is z = 0 so we simply give each point a 

third coordinate of zero and proceed as before. 
 
 The area of triangle ABC =  1

2 AB AC×
���� ����

 

  =  1 6 2 0
2

3 8 0−

i j k
 

  =  1
2 54k  

  =  27. 
 
A second method, which requires the evaluation of a determinant, does not 
require any vector techniques. However, it is a useful method for finding the 
area of a triangle or parallelogram in 2-space. 
 
Consider triangle ABC in which A = 1 1( , )x y , B = 2 2( , )x y  and C = 3 3( , )x y . 
Using the method described above, we find that the area of the triangle ABC is 
given by  A = 1

2 AB AC×
���� ����

 

 = 2 1 2 1

3 1 3 1

1 0
2

0
x x y y
x x y y

− −
− −

i j k
 

 = ( )1
2 1 3 1 3 1 2 12 ( )( ) ( )( )x x y y x x y y− − − − − k  

 = 1
2 1 3 1 3 1 2 12 ( )( ) ( )( )x x y y x x y y− − − − − . 

 

Note  
1 1

2 2

3 3

1
1 1
2

1

x y
x y
x y

 =  1
2 3 3 2 1 3 2 1 3 22 ( ) ( )x y x y x y y y x x− − − + −  

  =  1
2 3 2 1 1 3 3 2 3 1 1 22 x y x y x y x y x y x y− − − + +  

  =  1
2 3 2 1 1 3 1 1 3 2 3 1 1 2 1 12 x y x y x y x y x y x y x y x y− − + − + + −  

  =  1
2 3 1 1 3 2 3 2 1 1 2 12 ( ) ( ) ( ) ( )x y y x y y x y y x y y− − − − − + −  

  = 1
2 1 3 1 3 1 2 12 ( )( ) ( )( )x x y y x x y y− − − − −   which is the 

result already obtained. 
 
Example Use the method just outlined to calculate the area of the triangle 

ABC in which A = (–1, –2), B = (5, 9) and C = (8, 1). 
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 The area = 
1 1 2

1 1 5 9
2

1 8 1

− −
 

  = 1
2 5 72 (1 9) 2(8 5)− + − − −  

  =  40.5. 
 
Exercise 11.7 
 
1. Find each of the following vector products: 
  i × i ;     i × j ;     i × k ;     j × k ;     i × (j × k) ;     (i × j) × k. 
 
2. Find a × b in each of the following: 
 (a) a = i + 2j – k , b = 4i – j – k ; 
 (b) a = i + 2j + 2k , b = 3i – 4j + k ; 
 (c) a = i + j – k , b = 2i – j – 3k ; 
 (d) a = 3i – 2j – 2k , b = 6i + 6j ; 
 (e) a = 3i + j – 2k , b = 4i – 4j – 7k. 
 
3. Verify each of the following using a = 3i – 2j – 2k, b = i + 2j + 4k and 

c = 2i + j – 2k:  
 (a) a × a = 0 ; 
 (b) b × a = –a × b 
 (c) a × (b + c) = (a × b) + (a × c) 
 (d) ( ) ( ) ( )× × = −a b c a c b b c ai i . 
  
4. In each of the following the vertices of a triangle are given. Find the area of 

each triangle. 
 (a) (1, 2, 3), (2, 0, 1), (3, 2, 1) ; 
 (b) (0, –1, –2), (4, 1, 0), (1, 0, –1) ; 
 (c) (–3, 9), (5, –2), (2, 11) ; 
 (d) (2, –3), (7, 3), (3, 9). 
 
5. The vectors a and b are two sides of a parallelogram in each of the 

following. Calculate the area of each parallelogram. 
 (a) a = 3i + j, b = –3i – 2j + 2k ; 
 (b) a = 4i – j + 3k , b = 8i + 3j + k ; 
 (c) a = 2i – 2j + k, b = i – 5k ; 
 (d) a = 2i + 3j – 5k, b = i + 5j – 6k. 
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6. Find the fourth vertex of  the parallelogram ABCD and the area of the 

parallelogram in each of the following: 
 
 (a) A = (2, 1, 0), B = (3, 2, –1), C = (0, –1, 1) ; 
 (b) A = (3, 2, –1), B = (2, 4, 5), D = (4, 6, 2) ; 
 (c) A = (0, 3, 2), C = (2, 5, 1), D = (1, 4, 0) ; 
 (d) B = (5, 2, 3), C = (1, 2, 2), D = (–1, –1, –1). 
 
7. Verify the formula sin× = θa b a b  for each of the following: 
 (a) a = –i + 2j + 2k , b = 2i – 2j + k ; 
 (b) a = 4i + 3k , b = 6i – 2j – 3k ; 
 (c) a = i + j + k , b = 5i – j + 7k ; 
 (d) a = 3i – 2j – 2k , b = 5i + 2j – 6k ; 
 (e) a = 3i + 2j – 5k , b = –i + 2j – k. 
 
8. (a) Use the scalar product of the vectors (cos ) (sin )= α + αa i j  and 

(cos ) (sin )= β + βb i j  to derive the formula 
   cos( ) cos cos sin sinα − β = α β + α β . 
 
 (b) Use the vector product of the vectors (cos ) (sin ) 0= α + α +a i j k  

and (cos ) (sin ) 0= β + β +b i j k  to derive the formula 
  sin( ) sin cos cos sinα − β = α β − α β . 
 
9. The vectors a, b and c form three edges of a cuboid ABCDEFGH. 
 
 
 
 
 
 
 
 
 
 
 
 If the lengths of a, b and c are a, b and c respectively, find the value of 

each of the following: 
 (a) ( )× ×a b c  ; (b) ( )×a b ci . 
 
10. Prove that the area of a parallelogram ABCD is given by A = 1

2 AC BD×
���� ����

. 
 

a 

b 

c A 

B C 

D 

E 

F G 

H 
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11.8 Volumes of Parallelepipeds and Tetrahedra (Optional) 
 
Definition A parallelepiped is a solid with six faces with opposite faces pairs 

of congruent parallelograms. 
 
Theorem The volume of a parallelepiped which has vectors a, b and c are 

three concurrent edges is given by V •= ×a b c . 
 
Proof 
 
 
 
 
 
 
 
 
 
 
 A parallelepiped is clearly a prism, and the volume of a prism is equal 

to the area of the base multiplied by the 'height'. 
 
 The volume of the prism in the above diagram 
 =  Area of parallelogram ABCD × AK. 
 
 Now the area of the base = ⏐b × c⏐ and the length of AK is given by 

⏐a⏐ cos θ. 
  Thus the volume of the parallelepiped is given by 
   cosV = × θa b c . 
 
 But θ is the angle between a and the normal to the plane ABCD, and 

since b × c is normal to the plane ABCD, cos
• ×

θ =
×

a b c
a b c

. This gives 

cos• × = × θa b c a b c , and the area of the parallelepiped is 
V •= ×a b c , as required. 

 
Note: There is no need for parentheses around b × c for (a • b) × c has no 

meaning since a • b is a scalar. 
 Also, the volume can be found using any order of a, b and c in the 

formula. Thus V • •= × = ×b a c c b a  and so on. 

A B 

C 
D 

E F 

G H 

K 
a 

b 
c 

θ 
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Example In the parallelepiped ABCDEFGH, AE, BF, CG and DH are 

parallel edges. Given that A, B, D and E have coordinates (1, 2, 3), 
(3, 1, 1), (2, 4, 0) and (–1, 4, 4) respectively, find the coordinates of 
the other vertices and the volume of the parallelepiped. 

 
 The coordinates of C, F, G and H are shown in the following diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 AB =

����
2i – j – 2k, AD =

����
i + 2j – 3k and AE =

����
–2i + 2j + k 

 AD AE 1 2 3 8 5 6
2 2 1

× = − = + +
−

i j k
i j k

���� ����
 

 Required volume = (2 2 ) (8 5 6 ) 1•− − + + =i j k i j k . 
 
Theorem The volume of a tetrahedron with vectors a, b and c as three 

concurrent edges is given by 1
6V •= ×a b c . 

 
Proof  
 
 
 
 
 
 
 
 
 
 
 The parallelepiped can be split into 6 tetrahedra of equal volumes. In the 

diagram above one can easily see that the tetrahedra ABDE, BDEH and 
BEFH together provide exactly half the volume of the parallelepiped. 

A 

D 

E F 
a 

b 
c 

(1,2,3) B(3,1,1) 

(2,4,0) 

(–1,4,4) 

C(4,3,–2) 

(1,3,2) 

G(2,5,–1) 
H(0,6,1) 

A 

D 

E F 
a 

b 
c 

B 

C 

G 
H 
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  Each of the first two have BDE as a base and, by symmetry, equal heights 

since A and H are equal distances from this base. Therefore the tetrahedra 
ABDE and BDEH have equal volumes. The second and third tetrahedra 
have equal bases BEH and equal heights since D and F are equal distances 
from this base. Therefore the tetrahedra BDEH and BDFH have equal 
volumes. Thus all three tetrahedra have the same volume. 

  Thus the volume of the tertahedron ABDE is given by 
  V = 1

6 (volume of the parallelepiped) = 1
6 • ×a b c , as required. 

 
Example The points A(1, 2, 3), B(2, 4, 1), C(–2, 3, –1) and D(0, –2, 4) are 

the vertices of a tetrahedron. Calculate the volume of this 
tetrahedron. 

 AB 2 2= + −i j k
����

 and AC AD 3 1 4 15 7 13
1 4 1

× = − − = − + +
− −

i j k
i j k

���� ����
. 

 The required volume =  1
6 AB AC AD• ×
���� ���� ����

 

  =  1
6 ( 2 2 ) ( 15 7 13 )+ − • − + +i j k i j k  

  =  1
6 27×  

  =  1
24 . 

Exercise 11.8 
 
1. In each of the following, the coordinates of the vertices of a tetrahedron are 

given. Calculate the volume of each tetrahedron. 
 (a) (1, 2, 3), (3, 6, 4), (4, 0, 5), (1, –4, –3) ; 
 (b) (–3, –5, 1), (3, –4, –1), (6, –1, –1), (0, –6, 5) ; 
 (c) (2, 4, 5), (–3, 0, 4), (3, 3, 4), (5, 3, 8) ; 
 (d) (–4, –3, 1), (1, –6, 5), (–3, –1, 0), (–6, –5, 0). 
 
2. In each of the following, a, b and c are three concurrent edges of a parallel-

epiped. Calculate the volume of the parallelepiped in each case. 
 (a) a = i + 2j + 2k, b = 2i + j, c = –i + 3k ; 
 (b) a = i + j + k, b = 2i – j – k, c = 3i – 2k ; 
 (c) a = 3i + 2j – k, b = –2i – j + 2k, c = 4i + 3j +k ; 
 (d) a = 2j – 3k, b = 3i + j, c = 2i – 5k. 
 

3. (a) Prove that if AB AC AD 0• × =
���� ���� ����

, points A, B, C, D are coplanar. 
 (b) Determine which of the following sets of points are coplanar: 
  (i) (2, 1, –2), (8, 2, 6), (–4, 5, 0), (0, 5, 4) ; 
  (ii) (1, 1, 3), (2, 3, 4), (–1, 0, 5), (0, –3, –1) ; 
  (iii) (3, –1, 2), (–1, 3, –3), ( 1

2 , 2, 3
2− ), ( 3

4 , 1
2 , 1

4− ). 
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4. Consider the points (4, 2, 1), (6, x, 0), (x, 4, 2) and (11, 5, 3). Find the 

values of x for which 
 (a) the points are coplanar ; 
 (b) the points are vertices of a tetrahedron which has a volume of 2. 
 
11.9 The Equations of a Line 
 
The Line passing through a Given Point with a Given Direction 
 
Consider the line passing through the point A with position vector a and parallel 
to the vector v. Let r be the position vector of a general point P on the line. 
 

Since AP
����

 is parallel to v, AP = λv
����

 for some scalar λ. 
 
 
 
 
 
 
 
Thus r – a = λv  or  r = a + λv. 
 
This form of the equation of a line is known as the vector-parametric form. 
 
The vector v is called the direction vector of the line. 
 
Example Find the vector-parametric equation of the line which passes 

through the point A(2, –1, 3) and which is parallel to the vector 
2j – k. 

 
 The required equation is r = 2i – j + 3k + λ(2j – k). 
 
 This can be written in the form r = 2i + (2λ – 1)j + (3 – λ)k. 
 
The Equation of a Line passing through Two Points 
 
Consider the line passing through the points A, B with position vectors a, b 
respectively. 
 
 
 
 
 
 
 
 

O 

A 

P v 
λv 

a 

r 

O 

A 

B 
P 

a 

b 

r 
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If a point P with position vector r is any point on this line then AP AB= λ
���� ����

 for 
some scalar λ. Thus −r a =  λ(b – a)  or  r = a + λ(b – a). 
 
Hence the equation of the line passing through two points is  r = (1 – λ)a + λb. 
 
In the form r = a + λ(b – a) this is essentially the same as the vector-parametric 
form. 
 
Example Find an equation for the line passing through the points A(2, 3, 1) 

and B(3, –1, 4). 
 
 A suitable equation is r  =  (1 – λ)(2i + 3j + k) + λ(3i – j + 4k)   or 
                                    r =  (2 + λ)i + (3 – 4λ)j + (1 + 3λ)k. 
 
The Equation of a Line in Parametric Form 
 

The equation r = a + λv can be written in the form 
1 1

2 2

3 3

x a v
y a v
z a v

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + λ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

Equating components gives 1 1x a v= + λ  
  2 2y a v= + λ  
  3 3z a v= + λ . 
 
These three equations make up what are known as the parametric equations of 
the line. 
 
Example Write the equation of the line passing through the points A(2, 3, –1) 

and B(1, 2, 3) in parametric form. 
 

 AB
����

 = –i – j + 4k and so the parametric equations of the line are 
    x  =  2 – λ 
    y  =  3 – λ 
    z =  4λ – 1. 
 
The Cartesian Form of the Equation of a Straight Line 
 

From the parametric equations we find 31 2

1 2 3
, , z ax a y a

v v v
−− −

λ = λ = λ =  

provided 1 2 3, ,v v v  are non-zero. 

Eliminating λ gives 31 2

1 2 3

z ax a y a
v v v

−− −
= =  

which is known as the Cartesian form of the equation of a straight line. 
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By convention, the Cartesian form may be used for all values of 1 2 3, ,v v v  

including zero. For example the equations 4 2
2 0 1

x y z+ −
= =

−
 represent the 

straight line through the point (–4, 2, 0) and parallel to the vector 2i – k. 
 
Exercise 11.9 
 
1. Find the vector-parametric equation of the line with direction vector v and 

passing through the point with position vector a given that 
 (a) a = 2i – 3j + k and v = i + 2j – 3k ; 
 (b) a = i – j and v = i + j + k. 
 
2. Write the equation of each of the following straight lines in 
 (i) vector-parametric form ; (ii) parametric form ; (iii) Cartesian form. 
 
 (a) through (2, 1, –1) and parallel to i + 2j + 3k ; 
 (b) through the points (3, 2, 1) and (5, 0, 2) ; 
 (c) through the points with position vectors 3i – 2j and j + 4k ; 
 (d) through (3, 2, 4) and parallel to the x-axis ; 
 (e) through the origin and the point (–2, –1, 5). 
 
3. The position vectors of four points A, B, C and D are a = i + k, b = j – k, 

c = 7j – 7k and d = –i + 5j – 6k respectively. 
 (a) Find a vector-parametric equation for the line (AB). 
 (b) Find a vector-parametric equation for the line (CD).   [Do not use 

the parameter already used in part (a).] 
 (c) Assuming that the lines (AB) and (CD) meet, find the position 

vector of their point of intersection. 
 
4. The position vectors of the four coplanar points A, B, C and D are 

a = i + 2j, b = 3i + 4j + 2k, c = 4i – j and d = 7j + 2k respectively. Find the 
position vector of the point of intersection of (AB) and (CD). 

 
5. In the parallelogram ABCD, M is the mid-point of [BC]. The lines (AM) 

and (BD) meet at E. If the position vectors of A, B, C are a,  b and c 
respectively, find the equations of the lines (AM) and (BD) in terms of 
vectors a, b and/or c and hence show that E is a point of trisection of both 
[AM] and [BD]. 

 
*6. The vertices A, B, C of a triangle have position vectors a, b, c respectively. 

The point P divides [BC] internally in the ratio 2 : 1 and the point Q 
divides [AC] externally in the ratio 2 : 1. Find vector-parametric equations 
for the lines (AP) and (BQ). Hence find the position vector of the point of 
intersection of the lines (AP) and (BQ) in terms of a, b and/or c. 
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11.10 The Equations of a Plane 
 
The Vector-Parametric Form 
 
There is only one plane which can contain any two intersecting lines, and if 
vectors a and b are parallel to these lines, every vector in the plane can be 
expressed uniquely as a linear combination of a and b. 
 
That is, if vector c lies in a plane which contains the non-parallel vectors a and 
b, then c can be written (uniquely) in the form c = λa + μb. 
 
 
 
 
 
 
 
Consider a plane which passes through a point A with position vector a and 
which contains two non-parallel vectors p and q. Let r be the position vector of 
a general point P in the plane. 
 
 Since AP

����
 lies in the 

plane, there are scalars λ 
and μ such that 

 AP
����

 =  λp + μq 
 r – a =  λp + μq 
      r =  a + λp + μq. 
 
 
 
The equation   r  =  a + λp + μq  is called the vector-parametric equation of the 
plane. 
 
Example Write down the vector-parametric form of the equation of the plane 

passing through the point A(1, 0 –2) and containing the vectors 
i + j and k. 

 
The vector-parametric form of the equation is 
  r = i – 2k + λ(i + j) + μk 
or r = (λ + 1)i + λj + (μ – 2)k. 
 
 
 

a 

b 
c = λa + μb 

a 

λa 
b μb 

c ⇒ 

O 

A P 

a r 

λp + μq 
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The Vector Parametric Equation of a Plane passing through three Non-
Collinear Points 
 
Let r be the position vector of a general point P on a plane containing three 
points A, B, C whose position vectors are a, b and c respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since AP

����
 lies in the plane containing AB

����
 and AC

����
, there are scalars λ and μ 

such that 
 AP

����
 =  λ AB

����
 + μ AC
����

 
 r – a =  λ(b – a) + μ(c – a) 
      r =  (1 – λ – μ)a + λb + μc. 
 
The form           r =  (1 – λ – μ)a + λb + μc          
 
is an alternative vector-parametric form of the equation of the plane. 
 
Example Find in vector parametric form the equation of the plane passing 

through the points A(0, 0, –3), B(1, 4, 0) and C(3, 0, –2). 
 
 The equation is r = (1 – λ – μ)(–3k) + λ(i + 4j) + μ(3i – 2k) 
   or r = (λ + 3μ)i + 4λ j + (3λ + μ – 3)k. 
 
The Normal (Scalar Product) Form of the Equation of a Plane 
 
Definition A vector is said to be normal to a plane if it is perpendicular to 

every non-zero vector in the plane. 
 
A vector will be perpendicular to every non-zero vector in the plane if it is 
perpendicular to any two intersecting non-zero vectors in that plane. 
 
 

O 

A B 

C 

P 

a 
b 

c r 
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Consider the plane which passes through a point A with position vector a and 
which has vector n as a normal. 
 
 
 
 
 
 
 
 
 
 
 
 
If r is the position vector of a general point P in the plane, then n is 
perpendicular to AP

����
 and so AP n

����
i  =  0 

⇒ ( )−r a ni  =  0 
⇒ −r n a ni i  =  0 
⇒ r ni  =  a ni . 
 
This is a vector equation of the plane in normal or scalar product form. 
 
Now since vectors a and n are constant vectors, a ni  is a constant, p say. 
Therefore the normal form of the equation of the plane can be written in the 
form 
 r ni  = p. 
 
If the point D with position vector d is the foot of the normal from the origin O 
to the plane r ni  = p, then the perpendicular distance from the origin to the 
plane is d = ⏐d⏐. 
 
But D lies in the plane so d ni  = p and d is parallel to n giving d ni  = ±d⏐n⏐. 

Thus p d= =d n ni  which gives =
p

d
n

. 

 
Thus the plane r ni  = p is perpendicular to a vector n and its shortest distance 

from the origin is 
p
n

. 

 
 

O 

A 

P 

a r 

n 
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Example Find in scalar product form the equation of the plane passing 

through the point (2, 1, 3) with normal vector 2i – j + 4k and find 
the shortest distance from the origin to the plane. 

 
 The equation is (2 4 ) (2 3 ) (2 4 )− + = + + − +r i j k i j k i j ki i  which can 

be written as (2 4 ) 15− + =r i j ki . 
 

 The shortest distance from the origin to the plane is 15 15
4 1 16 21

=
+ +

. 

 
Example Find in scalar product form the equation of the plane passing 

through the points A(0, 0 –3), B(1, 4, 0), C(3, 0, –2). 
 

 Vectors AB
����

 and AC
����

 are two intersecting vectors in the plane and their 

cross product AB AC 1 4 3 4 8 12 4( 2 3 )
3 0 1

× = = + − = + −
i j k

i j k i j k
���� ����

 is a 

normal. 
 
 Therefore, the equation of the plane is 
  ( 2 3 ) ( 3 ) ( 2 3 )+ − = − + −r i j k k i j ki i   or  ( 2 3 ) 9+ − =r i j ki . 
 
The Cartesian Equation of a Plane 
 
Consider the plane which has n = ai + bj + ck as a normal and which passes 
through the point Q 0 0 0( , , )x y z . Let P(x, y, z) be a general point in the plane. 
Then n is perpendicular to QP

����
 and so QP 0=n

����
i . 

Thus 0 0 0( ) ([ ] [ ] [ ] ) 0a b c x x y y z z+ + − + − + − =i j k i j ki  
⇒ 0 0 0( ) ( ) ( ) 0a x x b y y c z z− + − + − =  
⇒ 0 0 0ax by cz ax by cz+ + = + +   and since Q is a fixed point and n is fixed 
 ax + by + cz = d where d is the constant 0 0 0ax by cz+ + . 
 
This form is called the Cartesian form of the equation of a plane. 
 
Example Find in Cartesian form the equation of the plane passing through 

the point (2, 1, –3) with normal vector 2i – 3j + 5k. 
 

 The required equation is 2x – 3y + 5z = 2(2) – 3(1) + 5(–3) = –14 
 or   2x – 3y + 5z + 14 = 0. 
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Example Find an equation of the plane r = i + 3k + λ(2i – k) + μ(i + 3j + k) 

in Cartesian form. 
 
 The plane passes through point A(1, 0, 3) and contains vectors u = 2i – k 

and v = i + 3j + k. 

 The vector 2 0 1 3 3 6 3( 2 )
1 3 1

× = − = − + = − +
i j k

u v i j k i j k  is normal to the 

plane and so the Cartesian equation is x – y + 2z = 1 – 0 + 2(3) = 7 which is 
x – y + 2z = 7. 

 
Exercise 11.10 
 
1. Write down in vector-parametric form the equation of the plane passing 

through the point A and parallel to the vectors p and q in each of the 
following: 

 (a) A = (2, 3, 4), p = 2i – 3j + 2k, q = j + 2k ; 
 (b) A = (0, 0, –2), p = 3i + 3j – k, q = i – j + k ; 
 (c) A = (–2, –1, –3), p = i + k, q = 2i + j + k ; 
 (d) A = (5, 1, –4), p = i – j + k, q = 3i – j – k. 
 
2. Write the equations of each of the planes given in Question 1 in Cartesian 

form. 
 
3. Write the equation of the plane containing the points with position vectors 

i + j, j + 4k and i + 5k in 
 (a) vector-parametric form ; 
 (b) scalar product form ; 
 (c) Cartesian form. 
 
4. Find in scalar product form the equation of the plane passing through the 

point with position vector a and with normal vector n in each of the 
following: 

 (a) a = 3i – j + 2k, n = i + j – 2k ; 
 (b) a = 2i – 3k, n = 4i + 7j + 2k ; 
 (c) a = 3i, n = j. 
 
5. Find in the form p=r ni  the equation of the plane passing through the 

given point and perpendicular to the given vector in each of the following: 
 (a) (2, 1, –1),  3i – j – 2k ;  (b) (5, 1, 1),  2i + 3j – 4k. 
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6. Find the shortest distance from the origin to each of the following planes: 
 (a) (2 2 ) 12− + =r i j ki  ;  (b) (6 2 3 ) 35+ − =r i j ki  ; 
 (c) ( ) 3+ =r i ji  ;   (d) (3 4 5 ) 100+ − =r i j ki . 
 
7. Find in scalar product form the equation of the plane parallel to the vectors 

i + 3k, 2i – j + 2k and passing through the point with position vector i + j. 
 
8. Find in scalar product form the equation of the plane 
 (a) (1 3 ) (1 4 2 ) (7 )= + λ + μ + + λ − μ + μ − λr i j k  ; 
 (b) containing the lines (1 ) (1 ) (1 2 )= + λ + + λ + − λr i j k  and 
  (11 3 ) (1 )= + μ − + − μr i j k . 
 
9. Write down direction vectors for the lines r = (1 + λ)i + (2 – λ)j + (4 + λ)k 

and r = (4 + 5μ)i + j + μk and find an equation for the plane which 
contains the first line and is parallel to the second. 

 
10. Find an equation for the plane determined by the points 
 (a) (3, –1, 6), (1, 2, 2), (–2, 4, 1) ; 
 (b) (1, –1, 3), (–1, 1, –4), (3, 3, 7) ; 
 (c) (1, 4, –5), (–2, –1, –6), (3, 5, –9) ; 
 (d) (–5, 2, 6), (5, –3, 2), (0, –8, –5) ; 
 (e) (1, –1, –1), (2, 1, 1), (0, –7, 1). 
 
11. In each of the following find an equation of the plane determined by the 

data: 
 (a) through the point with position vector a = 2i + 3j – 4k and 

perpendicular to a ; 
 (b) through the points with position vectors 6i, –3k and 3i + 6j ; 
 (c) through the points (5, 2, –7), (–2, 4, –2) and the origin ; 
 (d) through the point (1, 1, –1) and containing the vectors 2i + j + 2k 

and 5j + 4k ; 
 (e) through the points (3, 2 –1), (4, 4, 0) and perpendicular to the 

plane 2x + 4y – 4z = 3 ; 
 (f) through the points (2, –1, –3), (4, –3, 2) and parallel to the x-axis ; 
 (g) through the point (3, 4, 2) and perpendicular to the x-axis. 
 
12. Find an equation for the plane passing through the point (3, 2, 1) and 

perpendicular to each of the planes 2x + 3y – z = 5 and 3x + 3z = 2. 
 
13. Find an equation for the plane containing the line of intersection of the 

planes x + y + 5z = 0, 2x + 3y + 12z = 0 and passing through (3, 1, 1). 
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11.11 The Angles between Lines and Planes 
 
The Angle between Two Lines 
 
Consider two lines whose direction vectors are a and b. If θ is the angle 

between these lines then we already know that cosθ =
a b
a b
i , 0° ≤ θ ≤ 180°. 

 
Example Find the angle between the lines 

  1 1
2 2

x y z− +
= = −   and  2 1

3 6 2
x y z+ −

= = . 

 
 Vectors a = 2i + 2j – k and b = 3i + 6j + 2k are parallel to the given lines. 

 If θ is the acute angle between these lines then 16 16cos
3 7 21

θ = = =
×

a b
a b
i

. 

 Therefore the required angle is 40.4°. 
 
The Angle between Two Planes 
 
Definition The angle between two planes is defined to be the angle between 

their normals. 
 
 
 
 
 
 
 
 
Clearly, if θ is an angle between the planes, then 180° – θ is also an angle 

between them. Thus we are free to find the acute angle θ where 1 2

1 2
cosθ =

n n
n n
i

. 

 
Example Find the angle between planes 2x + y – z = 6 and 3x + y + 2z = 2. 
 
 The vectors a = 2i + j – k and b = 3i + j + 2k are the normals to the planes. 

 If θ is the (acute) angle between the planes then 5cos
6 14

θ = =
a b
a b
i

 

and so the required angle is 56.9°. 
 

θ 
180°–θ 

Plane 1 

Plane 2 

1n

2n

θ 
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The Angle between a Line and a Plane 
 
Definition The angle between a line and a plane is defined to be the angle 

between the line and its orthogonal projection in the plane. 
 
 
 
 
 
 
 
 
 
 
 
In the diagram above, P is the point of intersection of the line and the plane, 
(PQ) is the orthogonal projection of the line in the plane, vector n is a normal to 
the plane, φ is the angle between n and the line, and θ is the angle between the 
line and the plane. 
 
Since φ is the acute angle between the line (with direction vector v) and n, then 

cosφ =
n v
n v
i

. But φ = 90° – θ, and so cos sinφ = θ . 

Therefore sin θ =
n v
n v
i

. 

 
Example Find the angle between the line (2 2 )= + − + λ − −r i j k i j k  and 

the plane 3x – 6y + 2z = 1. 
 
 n = 3i – 6j + 2k is normal to the plane and v = 2i – 2j – k is parallel to the 

line.  

  If θ is the angle between the line and the plane then 16sin
21

θ = =
n v
n v
i

. 

  The required angle is 49.6°. 
 
Exercise 11.11 
 
1. Find the (acute) angle between the following pairs of lines: 
 (a) r = i + j + λ(2i – j – k),  r = k + μ(i + j + 2k) ; 
 (b) r = 2i – 2j + k + λ(3i – k),  r = i – j + μ(j – 3k) ; 
 (c) r = i + j + k + λ(i + j – k),  r = 3k + μ(i + 5j – k). 
 

φ 

θ P 

Q 

n 

line plane 
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2. Find the (acute) angle between the following pairs of planes: 
 (a) 2x + 3y – z = 12 and 3x + y + 2z = 16 ; 
 (b) 4x – y + z = 14 and x + y – z = 0 ; 
 (c) r = i + λ(i + j + k) + μ(2i – j + 2k) and r = 2j + λi + μ(2j + 3k) ; 
 (d) r = (1 + λ)i + (2 + μ)j + (λ + μ)k and r = 2i + (λ + μ)j + 3μk. 
 
3. Find the (acute) angle between the following pairs of line and plane: 

 (a) 3 1 3
2 2 1

x y z− + +
= =

−
,  x – 2y + 2z = 9 ; 

 (b) 4x = 3y = 2z,  4x + 3y + 2z = 12 ; 
 (c) r = i + λ(2i – 2j – k),  r = λi + μj + (λ + μ + 1)k ; 
 (d) r = (1 – λ)i + (2 – 3λ)j + k,  r = (1 – λ)i + (λ + 2μ)j + (1 – λ + 2μ)k. 
 
4. In each of the following find the angle between the given line and plane: 
 (a) r = i – 3j + λ(2i – j – k),  ( 2 7 ) 10− − =r i j ki  ; 
 (b) r = (2 + λ)i – 3j + (1 – λ)k,  (4 ) 6+ − =r i j ki  ; 
 (c) r = 3λi + 2λj – 6λk,  (4 3 ) 20− =r i ki . 
 
11.12 The Intersections of Lines and Planes 
 
The Intersection of Two Lines 
 
Definition Lines in space which are not parallel and do not meet are called 

skew lines. 
 
In three dimensional space, the lines r = a + λu and r = b + μv may represent 
(i) the same line ; 
(ii) parallel and distinct lines ; 
(iii) intersecting lines ; 
(iv) skew lines. 
 
Example Show that the lines r = 5i + 4j + 5k + λ(2i + j + k) and 
 x – 1 = 2(y – 2) = 2(z – 3) are the same line. 
 
 The second line has parametric equations x = 2t + 1, y = t + 2, z = t + 3 

(equate each expression in the equation with 2t). 
 The lines meet when 2t + 1 = 5 + 2λ, t + 2 = 4 + λ  and   t + 3 = 5 + λ. 
  Each of these equations can be reduced to the same equation t – λ = 2, so 

there are an infinite number of points of intersection. Thus the lines 
coincide. 
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Example Show that the lines r = (2 – λ)i + 2(1 + λ)j + (1 + 3λ)k  and  

6(1 )x−  = 3(y – 1) = 2(z – 1) are parallel and distinct. 
 L1:    r = 2i + 2j + k + λ(–i + 2j + 3k) has direction vector –i + 2j + 3k. 

 L2:   1 1 1
1 2 3

x y z− − −
= =

−
 has direction vector –i + 2j + 3k. 

 Clearly the lines are parallel. 
 
 Now A(2, 2, 1) lies on the first line, B(1, 1, 1) lies on the second line and 

AB
����

 = –i – j which is not parallel to the direction vector of either line. 
Therefore the lines are also distinct. 

 

Example Show that the lines 5 3
3 2

x y z− −
= =  and x – 4 = y – 3 = z – 1 

intersect and find the coordinates of the point of intersection. 
 
 The parametric equations of the lines are 
 L1: x = 3t + 5, y = 2t + 3, z = t. 
 L2: x = u + 4, y = u + 3, z = u + 1. 
 
 For intersection: 3t + 5  =  u + 4 
  2t + 3 =  u + 3 
          t =  u + 1. 
 Solving the first two equations gives t = –1 and u = –2. 
 These values also satisfy the third equation (t = u + 1) and so the lines meet 

at (2, 1, –1). 
 

Example Prove that the lines 51 2
2

zx y +
− = − =  and r = 2μi – 3j + (μ – 2)k 

are skew. 
 
 The vector u = i – j + 2k is parallel to the first line and the vector v = 2i + k 

is parallel to the second line. Since u cannot be expressed as a scalar 
multiple of v, the lines are not parallel. 

 
 The parametric equations of the first line are x = 1 + t, y = 2 – t, z = 2t – 5. 
 The parametric equations of the second line are x = 2μ, y = –3, z = μ – 2. 
 These lines meet when   1 + t  =  2μ 
    2 – t  =  –3 
  2t – 5  =  μ – 2. 
 From the first two equations t = 5 and μ = 3, but these do not satisfy the 

third equation since 2(5) – 5 = 5 and 3 – 2 = 1. 
 
 Therefore the lines are skew. 
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The Intersection of a Line and a Plane 
 
The intersection of a line and a plane has three possibilities. 
 
 
 
 
 
 
        (i)          (ii)        (iii) 
 
(i) The line meets the plane in exactly one point.  (A unique solution.) 
(ii) The line lies in the plane.  (An infinite number of solutions.) 
(iii) The line is parallel to and distinct from the plane.  (No solution.) 
 
Example Show that the line r = (6 + 2λ)i – λj + (3 + 2λ)k meets the plane 

3x + y + 4z = 4 in exactly one point and find the position vector of 
this point. 

 
 The parametric equations of the line are x = 6 + 2λ, y = –λ, z = 3 + 2λ. 
 The line and plane meet when 3(6 + 2λ) – λ + 4(3 + 2λ) = 4  ⇒ λ = –2. 
 Therefore the line and plane meet in exactly one point which has position 

vector 2i + 2j – k. 
 
Example Show that the line r = i + j + k + λ(i – j – k) lies in the plane with 

equation  (5 2 3 ) 10+ + =r i j ki . 
 
 For intersection we have 5(1 + λ) + 2(1 – λ) + 3(1 – λ) = 10 
  ⇒ 5 + 5λ + 2 – 2λ + 3 – 3λ = 10 
  ⇒ 10 = 10, which is true for all values of λ. 
 
 Therefore the line lies in the plane. 
 
Example Show that the line x = –y = z + 2 does not meet the plane with 

equation x – 2y – 3z = 8. 
 
 For intersection t – 2(–t) – 3(t – 2) = 8 
  ⇒ t + 2t – 3t + 6 = 8 
  ⇒ 6 = 8, which is never true. 
 
 Therefore the line and plane do not meet (the line is parallel to the plane). 
 

 



 Vector Geometry  

 329 

 
The Intersection of Two Planes 
 
As with two lines, there are three possible intersection types. 
 
 
 
 
 
 
 
 
 
  (i)   (ii)   (iii) 
 
(i) The planes meet in a line  (an infinite number of solutions). 
(ii) The planes coincide  (an infinite number of solutions). 
(iii) The planes are parallel and distinct (no solution). 
 
Example Find parametric equations for the line of intersection of the planes 

x + y – z = 6 and 2x + y – 3z = 5. 
 
 We use Gaussian elimination: 
     1          1        –1          6 
     2          1        –3          5 
     1          1        –1          6 
  2 2 1R R 2R← −  : 0        –1        –1        –7    
 
 Therefore, the planes meet in the line whose parametric equations are 
   x = 2t – 1,  y = 7 – t,  z = t. 
 
Example Show that the planes r = (2 + λ + 3μ)i + (1 – λ – 2μ)j +(1 – λ)k 

and 2x + 3y – z = 6 are the same plane. 
 
 For intersection, 2(2 + λ + 3μ) + 3(1 – λ – 2μ) – (1 – λ) = 6 
 ⇒ 4 + 2λ + 6μ + 3 – 3λ – 6μ – 1 + λ = 6 
 ⇒ 6 = 6, which is true for all λ, μ and so the planes coincide. 
 
 Alternative solution 
 The first plane is r = 2i + j + k + λ(i – j – k) + μ(3i – 2j) and contains the 

vectors i – j – k and 3i – 2j. 
 
 
 

α α 
α 

β 

β 

β 
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 Therefore the vector 1 1 1 2 3
3 2 0

− − = − − +
−

i j k
i j k  is normal to this plane and 

the plane passes through the point (2, 1, 1). The second plane has normal 
vector 2i + 3j – k = –(–2i – 3j + k) and also contains the point (2, 1, 1). 
Therefore the planes coincide. 

 
Exercise 11.12 
 
1. Decide whether the following pairs of lines are coincident, intersecting, 

parallel or skew. If they intersect (but are not coincident), find the position 
vector of the point of intersection: 

 (a) 3
2
zx y= − = , 2

3 2
x y z−

= =  ; 

 (b) 13 3
2

yx z+
− = = + , 1 1 3x y z− = + = −  ; 

 (c) x = t – 2, y = 6 – t, z = 4 – t, x = 1 – 2u, y = 3 + 2u, z = 1 + 2u ; 

 (d) x = 1 – 3t, y = 2(t + 1), z = t + 2, 1 109
2 2

x zy− −
= − =  ; 

 (e) r = i + λ(2i – 2j – k), r = –2μi + 2(1 + μ)j + μk. 
 

2. Show that the lines 1( 1)
2 2
x zy +

= − + =
−

 and 1
26 ( 1)x y z− = = −  meet and 

find the coordinates of the point of intersection. Find also an equation for 
the plane determined by the lines. 

 
3. Show that the lines r = (1 + 2λ)i + (2 + λ) j + (3 + λ)k and x = 2y = 2z are 

parallel and distinct. Find the equation of the plane which contains both of 
these lines. 

 
4. The sides of the triangle ABC have equations as follows: 
 AB: 2 4 1x y z− = − = −  ; 

 AC: 2 12
2 2

y zx + +
+ = =  ; 

 BC: 7 12 5
5 8 4

x y z− − −
= = . 

 Find the coordinates of A, B and C, and the area of the triangle. 
 

5. Find the position vector of the point where the line 63
2 2
x zy +

= + =  meets 

the plane 3x + 2y – z = 12. 
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6. Find the position vector of the point of intersection of the line 

2 (2 1)t t= − + −r i j k  and the plane 
 (a) 2x + y – 3z = 5 ; 
  (b) ( 5 2 ) 2+ + = −r i j ki  ; 
  (c) r = i – 2j – 2k + λ(i + 4j + k) + μ(j – k) ; 
  (d) r = (1 + λ + 3μ)i + (3μ – λ – 2)j + (1 – λ – μ)k. 
 
7. In each of the following determine whether or not the given line meets the 

given plane. If the point of intersection is unique, find the position vector 
of the common point. In all other cases describe the situation 
geometrically. 

 (a) r = –3i + λ(i + j) ,   (2 ) 3+ + =r i j ki  ; 
 (b) r = (λ – 1)i + (λ + 2)j + (2λ + 3)k ,   x – y + 4z = 9 ; 

 (c) 
2 1
3 1
1 1

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + λ −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

r  ,   (3 4 ) 6+ − =r i j ki  ; 

 (d) 73
2 3
y zx +

− = =  ,   2x – y + 2z = 4 ; 

 (e) 31 2
4

zx y −
− = − =  ,   (2 2 ) 1− + =r i j ki  ; 

 (f) r = 4i + j + 2k + λ(3i + j + 2k) ,   ( ) 4+ + =r i j ki . 
 
8. (a) Show that the length of the orthogonal projection of the line 

segment [AB] on the plane d=r ni  is 
AB × n

n

����

. 

 (b) If A = (4, 9, 5) and B = (8, 11, 10), calculate the length of the 
projection of the line segment [AB] on the plane x + 2y + 2z = 14. 

 (c) Find the position vector of the point of intersection of the line (AB) 
and its projection on the plane in part (b). 

 
9. Find in parametric form the equation of the line of intersection of the 

following pairs of planes: 
 (a) x + 3y + 2z = 1 ,  2x + 5y + 3z = 2 ; 
 (b) x – y + 5z = 4 ,  3x – 4y + 11z = 11 ; 
 (c) r = i + j + 2k + λ(i + j – k) + μ(3i – k) ,  r = (λ + 2μ)i + λj – μk ; 
 (d) (3 2 ) 4+ + =r i j ki  ,  (3 2 ) 5+ + =r i j ki . 
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10. Show that in each of the following the planes are identical: 
 (a) 8x – y + 2z = 16 ,  r = (2 + λ)i + 2μj + (μ – 4λ)k ; 
 (b) r = (1 + 2λ + μ)i + (2 + λ + 2μ)j + (3 – 2λ – μ)k ,  ( ) 4+ =r i ki . 
 
11. Find an equation for the line of intersection of the planes x + y + 2z = 1 and 

3x + 2y – z = 10. Hence determine the point of intersection of the given 
planes and the plane x + 2y + 12z = 0. 

 
12. Consider the planes P1 : 3x – y – z = 7, 
   P2 : 5x + 2y – 9z = 8, 
   P3 : x – y + z = 12. 
 
 Show that the line of intersection of P1 and P2 is parallel to P3 and hence 

find an equation for the plane which is parallel to P3 and contains the line 
of intersection of P1 and P2. 

 
11.13 Shortest Distance between Points, Lines and Planes 
 
Shortest Distance from a Point to a Line 
 
Consider the line which is parallel to vector v and passes through the point A 
with position vector a and a point P which does not lie on the line. Let Q be the 
point on the line closest to P. Let d be the shortest distance from P to the line, 
i.e. d = PQ

����
. Let θ be the angle between AP

����
 and v. 

 
 
 
Now, d =  AP sin θ

����
 

 =  
AP sin θv

v

����

 

 =  
AP × v

v

����

  since θ is the angle between AP
����

 and v. 

 
Alternative Method This method is best described by an example. 

Find the shortest distance from P(5, 6, 2) to the line r = 
2 1
1 1
4 2

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ λ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

. 

With a diagram similar to that above, the line (AQ) has parametric equations 
x = 2 + λ, y = 1 + λ, z = 4 – 2λ, so we can let Q = (2 + λ, 1 + λ, 4 – 2λ). 
 

P 

Q 

A 

v 
d 

θ 
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Then 
3

QP 5
2 2

− λ⎛ ⎞
⎜ ⎟= − λ⎜ ⎟
⎜ ⎟λ −⎝ ⎠

����
 and this is perpendicular to 

1
1
2

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

v  and so QP 0=v
����
i . 

Hence 3 – λ + 5 – λ – 2(2λ – 2) = 0  or  λ = 2, and the shortest distance from P 

to the line = 
1
3 14
2

⎛ ⎞
⎜ ⎟ =⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
Note: The advantage of the alternative method is that not only did we find the 

required distance, but the coordinates of Q, the closest point to P, have 
also been determined. {Q = (4, 3, 0) in our example.} 

 
We can check this result using the first method: 

 d =  
AP × v

v

����

   where A = (2, 1, 4) lies on the line, 

  =  
(3 5 2 ) ( 2 )

2
+ − × + −

+ −
i j k i j k

i j k
 

  =  
8 4 2

6
− + −i j k

 

  =  84
6

 

  =  14 , which checks our previous solution. 
 
The Distance between a Point and a Plane 
 
Consider the plane ax + by + cz = d and the point P( 0 0 0, ,x y z ) not on the 
plane. 
Let D be the distance from P to the plane, and let Q be the foot of the normal 
from P to the plane. 
 
 
 
 
 
 
 
 
 

P( 0 0 0, ,x y z ) 

Q 

n = ai + bj + ck 

D 
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Since PQ
����

 is parallel to n, the parametric equations of (PQ) are: 
 0 0 0, ,x x ta y y tb z z tc= + = + = + . 
 
For intersection with the plane we have 
 0 0 0( ) ( ) ( )a x at b y bt c z ct d+ + + + + =  
⇒ 2 2 2

0 0 0( )a t b t c t d ax by cz+ + = − + +  

⇒ 0 0 0
2 2 2

( )d ax by czt
a b c

− + +
=

+ +
. 

 
Since Q lies on the plane, the coordinates of Q can be written in the form 

 ( )0 0 0, ,x at y bt z ct+ + + ,  where 0 0 0
2 2 2

( )d ax by czt
a b c

− + +
=

+ +
 

and the vector PQ
����

 = ati + btj + ctk. 
 
Now D = PQ

����
 = 2 2 2 2 2 2( ) ( ) ( )at bt ct t a b c+ + = + + . 

Thus D =  2 2 20 0 0
2 2 2

( )d ax by cz a b c
a b c

− + +
+ +

+ +
 =  0 0 0

2 2 2

( )d ax by cz

a b c

− + +

+ +
 which 

is usually written     D  =  0 0 0

2 2 2

ax by cz d

a b c

+ + −

+ +
 . 

 
Example Find the shortest distance from the point P(2, 3, –1) to the plane 

2x + 2y – z = 20. 
 

 The required distance is 
2 2 2

2(2) 2(3) ( 1) 20

2 2 ( 1)

+ − − −

+ + −
 = 

9
3

−
 = 3. 

 
If the coordinates of the point on the plane closest to P are required, the 
following method could be used. 
 
Example Find the point on the plane x + y + 2z = 6 which is closest the point 

P(5, 5, 7), and the shortest distance from P to the plane. 
 
 Let Q be the point on the plane closest to P. 
 Since (PQ) is parallel to the normal to the plane, n = i + j + 2k, then the 

equations of (PQ) are x = t + 5, y = t + 5, z = 2t + 7. 
 This line meets the plane when (t + 5) + (t + 5) + 2(2t + 7) = 6, i.e. t = –3. 
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 Therefore the point on the plane closest to P is Q(2, 2, 1), and the shortest 

distance = PQ = 2 2 23 3 6+ +  = 3 6 . 
 
The Shortest Distance between Two Skew Lines 
 
Consider two skew lines. One is parallel to vector u and contains the point A 
with position vector a; the second is parallel to vector v and contains the point B 
with position vector b. 
 
 
 
 
 
 
 
 
 
 
If P and Q are the points, one on each line, which are closest together then (PQ) 
is perpendicular to both lines and hence parallel to w = u × v. 
 
The required distance is then PQ

����
 which is the projection of AB on w

����
. 

 
Thus the shortest distance between two points, one on each line, is given by 

 
AB ( ) ( )

PQ
− ×

= =
×

w b a u v
w u v

����
i���� i

. 

 
Example Find the shortest distance between the skew lines 
 r = 5i + 3j + λ(2i – j)  and  r = 2i + 9k + μ(j – k). 
 
 u = 2i – j is parallel to the first line and v = j – k is parallel to the second. 

 w = u × v = 2 1 0 2 2
0 1 1

− = + +
−

i j k
i j k ; A(5, 3, 0) lies on the first line and 

B(2, 0, 9) lies on the second. 
 

 Now AB 3 3 9= − − +i j k
����

 so the distance is  
AB 3 6 18

3
3

− − +
= =

w

w

����
i

. 

 

A 

B 
P 

Q u 
v 

w 
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Note: This method does not find the two points, one on each line, which are 

closest together. If the coordinates of these points, P and Q in the 
previous diagram, are required, the method shown in the following 
example could be used. 

 
Example Find the shortest distance between the lines in the previous 

example, and find the coordinates of the two points, one on each 
line, which are closest together. 

 
  The parametric equations of the lines are: 
   x = 2λ + 5, y = 3 – λ, z = 0    and 
   x = 2, y = μ, z = 9 – μ. 
 
 Let P(2λ + 5, 3 – λ, 0) and Q(2, μ, 9 – μ) be points, one on each line. 

 Now 
3 2

PQ 3
9

− − λ⎛ ⎞
⎜ ⎟= − + μ + λ⎜ ⎟
⎜ ⎟− μ⎝ ⎠

����
 is parallel to 

1
2
2

⎛ ⎞
⎜ ⎟× = ⎜ ⎟
⎜ ⎟
⎝ ⎠

u v . 

 Thus –3 + μ + λ = 9 – μ 
 and –3 + μ + λ = 2(–3 – 2 λ). 
 
 Solving these equations gives λ = –2, μ = 7. 
 
 Therefore, P = (1, 5, 0) and Q = (2, 7, 2) are the required points and the 

shortest distance is PQ = ⏐i + 2j + 2k⏐ = 3, as before. 
 
A third method may also be used. The following example illustrates the method. 
 

Example Show that the lines 6 3 7 8 9  and  4
6 2 3 6 2

x y z x y z+ + − + −
= = = = +

−
 

are skew, and find the shortest distance between any two points, one 
on each line. 

 
  u = 6i + 2j + 3k is parallel to the first line and v = 6i – 2j + k is parallel to 

the second. Since these vectors are not scalar multiples of each other, the 
lines are not parallel. 

 The parametric equations of the lines are: 
   x = 6t – 6   x = 6u – 8 
   y = 2t – 3     and  y = 9 – 2u 
   z = 3t + 7   z = u – 4. 
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 For intersection:   6t – 6 = 6u – 8   …………(1) 
      2t – 3 = 9 – 2u   …………(2) 
 and    3t + 7 = u – 4.    …………(3) . 
 
 From equations (1) and (3) we obtain t = – 16

3 , u = –5 but these values do 
not satisfy equation (2) since LHS = 32 41

3 33− − = −  and RHS = 9 + 10 = 19. 
 Therefore the lines do not meet and since the lines are not parallel they 

must be skew. 
 
  Now 8 12 24 4(2 3 6 )× = + − = + −u v i j k i j k  and  2 3 6= + −w i j k  is 

perpendicular to both lines. 
 
 Also the plane 2x + 3y – 6z = 2(–8) + 3(9) – 6(–4) = 35 is parallel to the 

first line and contains the second line since it contains point B( 8 , 9 , 4− − ) 
on the second line. 

 
 Now A(–6, –3, 7) lies on the first line and its distance from the plane just 

found is given by 
2 2 2

2( 6) 3( 3) 6(7) 35 98 14
72 3 ( 6)

− + − − −
= =

+ + −
 which is the 

required distance. 
 
Check: Using the first method the distance is 

  
AB ( 2 12 11 ) (2 3 6 ) 98 14

7 7
− + − + −

= = =
w i j k i j k

w

����
i i

. 

 
Exercise 11.13 
 
1. Find the shortest distance from the origin to each of the following lines: 
 (a) x = 1 + t, y = 2 + t, z = 3 + t ; 
 (b) x = 2t, y = 3 – t, z = 3 – 2t ; 
 (c) x = t + 4, y = 2t + 2, z = 3t + 2 ; 
 (d) x = 3t – 1, y = 2t + 1, z = t – 6.  
 
2. Find the shortest distance between the given point and the given line in 

each of the following: 
 (a) (6, 4, –3),  r = i – k + λ (2i + j – 2k) ; 
 (b) (2, –1, 4),  r = i + 3j + λ(i + 2j + k) ; 
 (c) (7, 4, 6),  r = (1 + λ)i + λj – λk ; 

(d) ( 1
2 , 1, –1) ,  r = (2 + 3λ)i + (1 + λ)j + λk. 
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3. Find the shortest distance from the point P to the given line and the 

coordinates of the point on the line closest to P in each of the following: 
 (a) P = (3, 5, 9) ,  r = i + (6 + 2λ)j + (1 – λ)k ; 
 (b) P = (6, 1, 1) ,  r = λi + (2λ – 5)j + (7 – 4λ)k ; 
 (c) P = (8, –2, 4) ,  r = (8 + 2λ)i + (4 + 2λ)j – (2 + λ)k ; 
 (d) P = (3, 1, 2) ,  r = (1 + λ)i + (2 – λ)j + (3 + λ)k. 
 
4. (a) Show that the shortest distance d from point P to the line through 

point A and in the direction of vector v is given by 
2(AP )AP APd = −

v
v v

�������� ���� ii
i

. 

 (b) Use the result in part (a) to find the shortest distance from the point 
P to the given line in each part of Question 3. 

 
5. Find the shortest distance from the origin to each of the following planes: 
 (a) x + 2y + 3z = 14 ; (b) 2x – y – 2z = 12 ; 
 (c) 3x – 4y + 5z = 10 ; (d) (2 ) 10+ + =r i j ki  ; 
 (e) ( 3 5 ) 18− − =r i j ki  ; (f) (3 2 2 ) 15+ − =r i j ki . 
 
6. Calculate the shortest distance from the given point to the given plane in 

each of the following: 
 (a) (2, 3, 4) ,  2x – 2y + z = 11 ; 
 (b) (–1, –4, 5) ,  3x + 4y – 5z = 6 ; 
 (c) (3, –1, –2) , ( 2 2 ) 15− − =r i j ki  ; 
 (d) (–2, 3, 1) ,  ( 2 ) 15− + =r i j ki . 
 
7. Calculate the distance between each of the following pairs of parallel 

planes: 
 (a) 3x + y – z = 5 and 6x + 2y – 2z = 43 ; 
 (b) 2x + 3y – 6z = 12 and 2x + 3y – 6z = 40. 
 
8. The vertices of a tetrahedron ABCD are (4, –2, –3), (5, 3, 5), (3, –1, 1) and 

(8, –3, –4) respectively. Find: 
 (a) the area of the triangle ABC ; 
 (b) the equation of the plane ABC ; 
 (c) the shortest distance from D to the plane ABC ; 
 (d) the volume of the tetrahedron given that the volume is one-third of 

the area of the base × perpendicular height. 
 
9. Find the volume of the tetrahedra with vertices: 
 (a) (0, 0, 0), (6, 0, 0), (0, 12, 0), (1, 6, 4) ; 

(b) (1, 2, 3), (7, 2, –3), (3, 4, 0), (–5, 1, 4). 
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10. Show that the lines 
  r = (4 + 2λ)i + (2 + λ)j – (2 + 3λ)k    and 
  r = (μ + 1)i + 2j + (4 – μ)k 
 are skew and find the shortest distance between them. 
 
11. In each of the following decide whether the given lines are skew or they 

intersect. If they intersect find the coordinates of their common point; if 
they are skew, find the shortest distance between them. 

 (a) 4x = 4y = z + 3  and 7 125
2 6

x zy− −
= − =  ; 

 (b) r = –2i – 3j – 13k + λ(2i + 2j + 3k)  and 
   r = –i + 3j – 5k + μ(3i – 2j – 2k ) ; 

 (c) 1 1 2
2

x y z−
= − = −   and  2 14

3 2
y zx + +

− = =
−

 ; 

 (d) 1 2 1 1
2 2 2

x y z− + −
= =   and  1

2 3
x y z−

= = . 

 
12. In each of the following show that the lines are skew and find the 

coordinates of the two points, one on each line, which are closest together. 

 (a) 11 5 8
3 2 2

x y z− + −
= =

−
  and  x = –2t – 4, y = 5t + 9, z = 6t + 15 ; 

 (b) r = 5i + 5j + 7k + λ(2i + 2j + 3k)  and  r = 2i – 4k + μ(j + k) ; 

 (c) 9 4
6 2

x y z−
= = −

−
  and  7 3 5

3 2 2
x y z− − +

= =
− −

 ; 

 (d) r = 4i + 4j + λ(3i + 2j – k)  and  r = 14i + j + μ(6i + j + k). 
 
13. The equations of two lines are: 1L : r = 4i + j – k + λ(i + 2k) ; 
      2L :  r = 3i – 2j + μ(2i – j + 3k). 
 Find the equation of the plane which contains 1L  and is parallel to 2L . 

Hence find the shortest distance between the two points, one on 1L  and the 
other on 2L , which are closest together. 
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Required Outcomes 

 
 After completing this chapter, a student should be able to: 

• use vectors in a variety of situations. 
• solve geometric problems using vectors. 
• define and use the scalar product of 2 vectors. 
• define and use the vector product of 2 vectors.  (HL) 
• calculate the (orthogonal) projection of one vector on another. 
• find the size of the angle between two directions in 2-space. 
• define and use velocity vectors in 2-space. 
• find the size of the angle between two lines, between a line and a plane and 

between two planes.  (HL) 
• calculate the area of a triangle and a parallelogram in 2- and 3-space.  (HL) 
• find the equation of a line in 2-space in both Cartesian and vector forms. 
• find the equation of a line in any of several forms.  (HL) 
• find the equation of a plane in any of several forms.  (HL) 
• find the intersection of two lines, a line and a plane, and two planes.  (HL) 
• determine whether two lines intersect, are parallel or are skew.  (HL) 
• calculate the shortest distance between a point and a line, a point and a 

plane, and two skew lines.  (HL) 
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12.1 Derivatives of Composite Functions –The Chain Rule 
 
The functions that we have been able to differentiate to this point have been restricted 
to those which can be written as a sum of terms of the form pkx  where k and p are 
real constants. Many functions are not readily expressed in this way and we need 
techniques which enable us to differentiate them. Fortunately such techniques are 
available and are simple to apply. 
 

 
Higher Level 

 
Derivatives of Composite Functions 
 
Consider the composite function ( )( ) ( ) where ( )f g x f u u g x= =� . If function 
g is differentiable at x and the function f is differentiable at ( )g x , then the 
composite function f g�  is differentiable at x and ( )( ) ( ) ( ) ( )f g x f g x g x′ ′ ′=�  
where ( )( )f g x′  is the derivative of ( )f u  with respect to u. 
 
Using the alternative notation, we can express this rule in a more easily 
remembered form. 
 

If y is a function of u defined by ( )y f u=  and d
d

y
u

 exists, and if u is a function 

of x defined by ( )u g x=  and d
d
u
x

 exists, then y is a function of x and d
d
y
x

 exists 

and is given by d d d
d d d
y y u
x u x

= × . 

 
This is a convenient form for remembering the chain rule. It simply appears 
that du cancels but we must keep in mind that neither dy nor dx has been given 

independent meaning in the notation d
d
y
x

. 

 
 



Chapter 12 

342 

The Chain Rule 
 
 If ( ) ( )( ) ( ) where ( )y F x f g x f u u g x= = = =� , then 
 
   ( )( )( ) ( ) ( ) ( ( ) ( )F x f u g x f g x g x′ ′ ′ ′ ′= × =  
     or 

       d d d
d d d
y y u
x u x

= × . 

 
 
Note: The proof of the Chain Rule is beyond the scope of this course. 
 
Example If 3 3 3( ) (2 1) ( )  where ( )y F x x f u u f x x= = − = = =  and 

( ) 2 1u g x x= = − , then 

( )F x′  =  ( )( )( ) ( )f u g x′ ′  or d
d
y
x

 =  d d
d d

y u
u x

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 =  ( )( )23 2u    =  ( )( )23 2u  

 =  26u    =  26u  
 =  26(2 1)x − .   =  26(2 1)x − . 
 

Note: The process can be accomplished using the following steps: 
 (1) Differentiate first as if the expression in parentheses were a single 

variable. 
  e.g. ( )23 2 1x −  in the above example. 
 
 (2) Multiply by the derivative of the expression in parentheses. 
  e.g. Multiply by the derivative of 2x – 1 in our example. 
  This gives ( )2 23(2 1) 2 6(2 1)x x− = − . 
 
Example Differentiate 21y x= −  with respect to x. 
 
 ( )1 22 21 1y x x= − = −  

 ( ) ( )
1 221

2 2

d 1 2
d 1

y xx x
x x

− −
= − − =

−
. 
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Exercise 12.1 
 
1. Differentiate each of the following functions with respect to x: 
 (a) ( )33 1x +  ; (b) ( )45 2x −  ; (c) ( )51 3x−  ; 

 (d) ( )32 2x +  ; (e) ( )521 x x+ −  ; (f) 1
2 5x +

 ; 

 (g) 2
4

3 x−
 ; (h) 

( )23

2

1x +
 ; (i) 

( )32

5

1 3x−
 ; 

 (j) 5 4x −  ; (k) 3 22 5x +  ; (l) 
2

3

12 5x−
. 

 
2. (a) Find the equation of the tangent to the curve ( )32 1y x= −  at the point 

(1, 1). 
 (b) Find the equations of the tangent and normal to the curve 

2 3 6y x + =  at the point (3, 2). 
 (c) Find the values of a and b if y = ax + b is a tangent to the curve 

( )32 3 2y x x= + −  at the point (1, 3). 
 
3. (a) Find the maximum perimeter of a right-angled triangle which has a 

hypotenuse of length 20 cm. 
 (b) A right-angled triangle has a hypotenuse of length 5 . If the lengths 

of the other sides are x and y, find the maximum value of 2x + y. 
 
4. (a) A particle moves along the x-axis so that its position, x m to the right 

of the origin at time t seconds, is given by 2 4x t t t= − + . Find the 
position and velocity of the particle at t = 2 and show that the particle 
never comes to rest. 

 (b) A particle moves along the x-axis so that its position, x m to the right 
of the origin at time t seconds, is given by 23 18 2 7x t t= − + . Find 
where and when the particle is stationary, and find the acceleration at 
this time. 

 (c) A particle moves along the x-axis so that its position, x m to the right 

of the origin at time t seconds, is given by 2
245

3
x t

t
= +

+
. Find the 

initial velocity, the average velocity for the first three seconds, and 
the maximum velocity. 
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5. Find the position and nature of the stationary points of each of the following 
curves: 

 (a) 12
2

y x
x

= + +
+

 ;  (b) 3 6 5y x x= − −  ; 

 (c) 43
3 2

y x
x

= +
−

 ;  (d) 3 3(3 1) 3(3 )y x x= − + − . 

 
6. A man is in a boat at A which is 3 km from the nearest point O on a straight 

beach. His destination is C which is 6 km along the beach from O. If he can 
row at 14 km h−  and walk at 15 km h− , towards which point B on the beach 
should he row to reach his destination in the least possible time? What is the 
least possible time required? 

 
 
 
 
 
 
 
 
 
 
 Answer the question above if his destination is only 3 km from O, giving  the 

time required correct to the nearest minute. 
 

 
Higher Level 

 

7. (a) Find the equation of the tangent to the curve 2
3

( 1)
y

ax
=

−
 at the 

point where x = 1 and find the value of a for which this tangent 
passes through the origin. 

 (b) Find the values of the real numbers a and b if 4x + 3y = 7 is a 

tangent to the curve 
3 1 5

a by
x x

= +
+ +

 at the point where x = 1. 

 (c) Find the equation of the tangent to the curve ( )42 1y x= +  at the 
point where x = a. Deduce the equations of the tangents to the 
curve from the origin. 

 

8. Find the equation of the tangent to the curve 3(3 1)y x= −  at the point (1,8). 
By solving for points of intersection of the tangent and the curve, find the 
coordinates of the point where the tangent at (1, 8) cuts the curve. 

A 

O B C 
beach 

6 km 

3 km 

x km 
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12.2 The Product Rule 
 
If ( ) and ( )f x g x  are differentiable functions of x and ( ) ( ) ( )F x f x g x= , then the 
derivative of ( )F x , the product of the functions ( ) and ( )f x g x , is given by 
 
   ( ) ( ) ( ) ( ) ( )F x g x f x f x g x′ ′ ′= + . 
 
 
Proof (Higher Level only.) 
 

From the definition, 

 ( )F x′  = 
0

( ) ( )lim
h

F x h F x
h→

+ −  

  = 
0

( ) ( ) ( ) ( )lim
h

f x h g x h f x g x
h→

+ + −  

  = 
0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )lim
h

f x h g x h f x g x h f x g x h f x g x
h→

+ + − + + + −  

  = 
0 0

( ) ( ) ( ) ( )lim ( ) lim ( )
h h

f x h f x g x h g xg x h f x
h h→ →

⎛ ⎞ ⎛ ⎞+ − + −⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

  = ( ) ( ) ( ) ( )g x f x f x g x′ ′+    {limit theorems}. 
 

Example Find d
d
y
x

 in each of the following: 

  (a) 3( 2)(5 4)y x x= + −  ;  (b) 2 3 2y x x= + . 
 

 (a) 3( 2)(5 4)y x x= + −  

⇒   2 3 3 2d (5 4)(3 ) ( 2)(5) 20 12 10
d
y x x x x x
x

= − + + = − + . 

 
[Note: The product rule is not necessary here since the given 
expression for y may be expanded before differentiating: 

4 3 3 2d5 4 10 8 20 12 10
d
yy x x x x x
x

= − + − ⇒ = − + .] 

 
 (b) 2 3 2y x x= +  

  ⇒    d
d
y
x

 =  ( ) { }2 1 21
23 2 2 (3 2) (3)x x x x −+ + +  

   =  
232 3 2

2 3 2
xx x
x

+ +
+

. 
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Exercise 12.2 
 
1. Differentiate each of the following functions using the product rule. [There is 

no need to simplify your answers.] 
 (a) (3 2)(2 3)x x+ +  ;  (b) 2( 1)(2 1)x x+ −  ; 
 (c) 2(2 1)(1 3 )x x− −  ;  (d) 2 3(3 2)(2 5)x x− +  ; 

 (e) 22 2 3x x +  ;   (f) 2 2(3 1) 3 1x x− +  ; 
 (g) 3(3 1)(2 1)x x+ −  ;  (h) 2 2 2 3(1 ) (1 )x x− +  ; 
 (i) 3 23 (2 1)x x +  ;   (j) 3 2(2 3) (3 2)x x− −  ; 

 (k) 1 2 3 2(2 1) (3 1)x x− +  ;  (l) 2(1 ) 2 3x x− − . 
 
2. (a) What are the dimensions of an isosceles triangle which has a 

perimeter of 18 cm and whose area is as large as possible? 
 (b) The diagonal of a rectangle is 2 m. Find the maximum area that the 

rectangle may have. 
 
3. Find the positions and natures of the stationary points of each of the following 

curves: 
 (a) 2 3y x x= +  ; (b) 3 4y x x= +  ; (c) 2 3( 14)y x x= − . 
 
4. A triangular prism has a square base and an isosceles triangle at each end. If 

the perimeter of each end is 25 m, find the length of the prism with maximum 
possible volume. 

 
 
 
 
 
 
 
 
 
 
5. A particle moves along the x-axis such that is position, x(t) m to the right of 

the origin at time t s, is given by 2( ) ( 1)( 4)x t t t= − − . 
 (a) When and where is the particle stationary? 
 (b) During which time interval is the particle moving towards the left? 

What is the maximum speed of the particle during this time? 
 (c) Sketch the graph of x(t) versus t for 0 ≤ t ≤ 6, and the graph of the 

velocity of the particle for the same values of t. 
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 (d) For the first six seconds of motion find: 
  (i) the total distance travelled by the particle ; 
  (ii) the average speed of the particle ; 
  (iii) the average velocity of the particle. 
 

 
Higher Level 

 
6. (a) Find the equation of the tangent to the curve 3 2y x x= −  at the 

point (2, 4). 
 (b) Find the equation of the tangent to the curve 3 2(2 3) (5 8)y x x= − −  

at the point where x = 2. 
 (c) Find the values of the real numbers a and b if y = ax + 6 is a 

tangent to the curve 2( ) 3 2y x b x= + −  at the point where x = –3. 
 
7. The stiffness of a rectangular beam is proportional to the product of the 

width of the beam and the cube of its depth. Find the dimensions of the 
stiffest beam that may be cut from a log of diameter 24 cm. 

 
 
 
12.3 The Quotient Rule 
 

If ( ) and ( )f x g x  are differentiable functions of x and ( )( )
( )

f xF x
g x

= , then the 

derivative of ( )F x , the quotient of the functions ( ) and ( )f x g x , is given by 
 

  
[ ]2

( ) ( ) ( ) ( )( )
( )

g x f x f x g xF x
g x

′ ′−′ =         provided ( ) 0g x ≠ . 

 
Proof (Higher Level only.) 
 

From the definition, 

 ( )F x′  = 
0

( ) ( )lim
h

F x h F x
h→

+ −  

   = 
0

( ) ( )
( ) ( )lim

h

f x h f x
g x h g x

h→

+ −
+  

   = 
0

( ) ( ) ( ) ( )lim
( ) ( )h

f x h g x f x g x h
hg x g x h→

+ − +
+
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   = 
0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )lim
( ) ( )h

f x h g x f x g x f x g x h f x g x
hg x g x h→

+ − − + +
+

 

   = 
0

1 ( ) ( ) ( ) ( )lim ( ) ( )
( ) ( )h

f x h f x g x h g xg x f x
g x g x h h h→

⎛ ⎞+ − + −⎛ ⎞−⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠
 

   = 
[ ]2

( ) ( ) ( ) ( )
( )

g x f x f x g x
g x

′ ′− . 

 

Example Find d
d
y
x

 in each of the following: 

  (a) 3
2

xy
x

+
=

−
 ; (b) 

22
3 4

xy
x

=
+

 ; (c) 2
2

(2 3)
xy

x
=

+
. 

 (a) 3
2

xy
x

+
=

−
 ⇒ 2 2

d ( 2)(1) ( 3)(1) 5
d ( 2) ( 2)
y x x
x x x

− − + −
= =

− −
 

 (b) 
22

3 4
xy

x
=

+
 ⇒ 

2

2 2
d (3 4)(4 ) 2 (3) 2 (3 8)
d (3 4) (3 4)
y x x x x x
x x x

+ − +
= =

+ +
 

 (c) 2
2

(2 3)
xy

x
=

+
 ⇒ { }2

4 3

(2 3) (2) 2 2(2 3)(2)d 2(3 2 )
d (2 3) (2 3)

x x xy x
x x x

+ − + −
= =

+ +
 

 

Example Find the equations of the tangents to the curve 2
4

1
xy

x
=

+
 at the 

origin and at the point (1,2). 
 

 
2

2 2
d ( 1)(4) 4 (2 ) 4, 0
d ( 1)
y x x x
x x

+ −
= =

+
 at the origin and at the point (1,2). 

 The tangents are y = 4x and y = 2. 
 
 
The Derivative of nx  when n is a Negative Integer 
 
We stated in Section 10.4 that the derivative of nx  for rational n is 1nnx −  but were 
only able to prove this for positive integer values of n. However, we are now in a 
position to prove that the rule holds when n is a negative integer. 
 
[We shall prove later that the rule holds for rational values of n and later still for all 
real values of n.] 

Theorem If ny x=  where n is a negative integer, then 1d
d

ny nx
x

−= . 
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Proof  Let m = –n where n is a negative integer. 
  Then m is a positive integer. 

 Now using the quotient rule with the function 1n m
my x x

x
−= = = we 

obtain 
( ) ( )

2

d d1 (1)d d d
d

m m

m

x xy x x
x x

−
=  

      
1

2

m

m
mx
x

−−
=   [since m is a positive integer] 

      1mmx− −= −  
      1nnx −=    [since –m = n]. 
 
Exercise 12.3 
 
1. Differentiate the following with respect to x and simplify each answer: 

 (a) 
2

x
x +

 ;  (b) 4
5

x
x

−
+

 ;  (c) 
23

2 5
x

x +
 ; 

 (d) 2
3 1

(2 1)
x
x

+
−

 ; (e) 2
3 4

1
x

x
+
+

 ; (f) 
2 2

x

x +
 ; 

 (g) 
2

2
4
4

x
x

−
+

 ; (h) 3
2

(2 3)
x

x +
 ; (i) ( 1)(2 1)

2
x x

x
+ +

−
 ; 

 (j) 
2 1

x
x +

 ; (k) 2 1
2 1

x
x

+
−

 ; (l) 
2

3

2 7

x

x x− +
. 

 

2. (a) Find the equation of the tangent to the curve 3 1
1

xy
x

+
=

+
 at (1, 2). 

 (b) Find the equation of the tangent to the curve 2

2 1
xy x

x
= −

+
 at 

1x = − . 

 (c) Find the equations of the tangents to the curve 2 3
1

xy
x

−
=

+
 which are 

parallel to 5x – y = 0. 
 
3. Determine the position and nature of the stationary points of each of the 

following functions: 

 (a) 2
4

( 1)
xy

x
=

−
 ; (b) 

2

2
5 4
5 4

x xy
x x

− +
=

+ +
 ; (c) 

2 4 1
4

x xy
x
− +

=
−

. 
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4. If the tangent and normal to the curve 25 2
15

xy
x

−
=

−
 at the point P(10, 1) meet 

the y-axis in Q and R, calculate the area of the triangle PQR. 
 
5. A certain epidemic spreads so that after x months P% of the population will 

be infected where 
2

2 2
30

(1 )
xP
x

=
+

. In which month will the largest number of 

people be infected? What percentage of the population will be infected during 
this month? 

 
6. A particle moves along the x-axis so that at time t s after passing through O, 

its displacement, x(t) m to the right of O, is given by 2
2( )

1
tx t
t

=
+

. Find  when 

and where the particle comes to rest. With what velocities does it pass 
through the point 60 cm to the right of O? 

 
 

Higher Level 
 
7. (a) Find the values of the real numbers a and b if 8x – 4y = 7 is a 

tangent to the curve 2( 1)
ax by
x

+
=

+
 at x = 1. 

 (b) Find the values of the real numbers a and b if the point (4, 1
4 ) is a 

stationary point of 2 4
ax by
x

+
=

−
. 

 (c) The line y = ax + b is a tangent to the curve 13 1
1

xy
x

+
=

+
 at x = 1. 

Find the values of the real numbers a and b, and find the equation 
of the tangent parallel to y = ax + b. 

 

8. If 2
1 2
xy

x
−

=
+

, show that 
2

2
d 1
d 1
y y
x x

+
=

+
. 

 
9. Find the position and nature of the stationary points of the curve 

2

2
2 5

6 7
x xy

x x
+

=
+ −

. 

 
10. Find the position and nature of the stationary point of the graph of the 

function 
2 4( )

( 3)( 1)
x xf x

x x
+

=
+ +

. 
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11. A rectangular sheet of paper of dimensions 21 cm × 28 cm is folded so that 

one of its corners is placed on the opposite edge [see diagram]. 
 
 
 
 
      length of fold = � cm 
 
 
 
 
 
 
 
 
 
 (a) Prove that triangles XBY and YWZ are similar. 

 (b) Show that 
3

2 2
2 21

x
x

=
−

� . 

 (c) Find the value of x for which 2�  is a minimum. 
 (d) Find the minimum length of the fold. 
 
12.4 Implicit Differentiation 
 
If we are given a relation of the form 2 2 9x y+ =  and we attempt to express y in 

terms of x, we obtain two possible results; namely 29y x= −  and 
29y x= − − . 

 
Each of these functions defines y explicitly and uniquely in terms of x. Hence 
we can work with two functions, f and g, where 2( ) 9f x x= −  and 

2( ) 9g x x= − − . 
 

Now ( ) 1 221
2 2

( ) 9 ( 2 )
9

x xf x x x
yx

− − −′ = − − = =
−

 where ( )y f x= . 

Also ( ) 1 221
2 2

( ) 9 ( 2 )
9

x xg x x x
yx

− −′ = − − − = =
−

 where ( )y g x= . 

Note that the derivative, x
y

− , is independent of the function chosen. 

A B 

C D 

X 

Y 

Z 

fold �

x 
x 

W 

(originally at A) 
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However, it is not always easy (or possible) to transpose the expressions of 
certain implicit relations in order to express y explicitly in terms of x, e.g. 

5 2 3 52 6x x y y+ + = . In such cases d
d
y
x

 is most easily found by a method known 

as implicit differentiation. 
 
To illustrate the method, consider the equation introduced at the beginning of 
this section: 2 2 9x y+ = . 

We differentiate both sides with respect to x: ( ) ( )2 2d d d (9)
d d d

x y
x x x

+ =  

                 ( )2d d2 0
d d

yx y
y x

+ × =  [chain rule] 

            ⇒          d2 2 0
d
yx y
x

+ =  

            ⇒           d
d
y x
x y

−
= , as before. 

 

Example Find d
d
y
x

 if 2 22 3 5 10x xy y+ + = . 

 
 We need to differentiate the product xy with respect to x. 

 Now ( )d d d d
d d d d

x y yxy y x y x
x x x x

= + = +  using the product rule. 

 Also ( ) ( )2 2d d d d5 5 10
d d d d

y yy y y
x y x x

= × = using the chain rule. 

 Differentiating the given relation with respect to x gives: 

 d d4 3 10 0
d d
y yx y x y
x x

⎛ ⎞+ + + =⎜ ⎟
⎝ ⎠

 ⇒ d (4 3 )
d 3 10
y x y
x x y

− +
=

+
. 

 
Example Find the equation of the normal to the curve 2 22 6 9x xy y− + =  at 

the point (4, 1). 
 
 Differentiating the given equation with respect to x gives: 

 d d4 6 2 0
d d
y yx y x y
x x

⎛ ⎞− + + =⎜ ⎟
⎝ ⎠

. 

 At the point (4, 1), d d16 6 1 4 2 0
d d

y y
x x

⎛ ⎞− + + =⎜ ⎟
⎝ ⎠

  or  d 10 5
d 22 11
y
x

= = . 
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 Therefore the gradient of the normal is 11
5

−  and the required equation is 

11x + 5y = 49. 
 
The Derivative of nx when n is Rational 
 

Theorem If ny x=  where n is rational, then 1d
d

ny nx
x

−= . 

Proof Let n = p
q

 where p and q are integers. 

  Then n p q q py x x y x= = ⇒ = . 

  Differentiating with respect to x gives:  1 1d
d

q pyqy px
x

− −= . 

 Thus d
d
y
x

 =  
1

1

p

q
px
qy

−

−  

 =  
( )

1

1

p

qp q

p x
q x

−

−

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

  [since p qy x= ] 

 =  
1p

p p q
p x
q x

−

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 =  ( 1) ( )p p p qp x
q

− − −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 =  ( ) 1p qp x
q

−⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 =  1nnx − . 
 
Exercise 12.4 
 
1. If y is a function of x, write down the derivative with respect to x of each of 

the following: 

 (a) 5y ; 23y  ; y  ; 1
y

 ; 3
2
y

. 

 (b) xy ; 2x y  ; 23xy  ; 
2x

y
 ; 2 36x y . 

 (c) ( )25 2x y−  ; ( )32 3x y+  ; 2x
x y+

 ; 2 2x y+  ; 2
2

x y
x y

+
−

. 
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2. Find d
d
y
x

 in each of the following: 

 (a) 2 24 5x y+ =  ;   (b) 3 2y x=  ; 
 (c) 2 23 4 12x y− =  ;  (d) 3 2 2 32 20x x y y+ + =  ; 
 (e) 2 5x y+ =  ;   (f) 3 2 22 4 12x x y y− + = . 
 
3. Find the equations of the tangent and normal to each of the following 

curves at the indicated point: 
 (a) 3 32 3 11x xy y− + =  at (2, 1) ; (b) 3 2 7x xy y+ + =  at (–2, –3) ; 

 (c) (2x + 3y)(x – 2y) = 4 at (–2, 1) ; (d) 2 21 x xy y
y

= + +  at (0, 1). 

 

4. If the tangent and normal to the curve 2 2 5x xy y+ − =  at P(3, –1) meet the 
y-axis at Q and R, find the area of the triangle PQR. 

 
5. Find where the following curves are parallel to the coordinate axes: 
 (a) 2 24 9 36x y+ =  ; (b) 2( 2 ) 4( 2 ) 0x y x y+ + − = . 
 
6. Prove that the curves 2 2 2y x= −  and 2 22( 1) 12x y− + =  cut at right 

angles at the point (3, 2). 
 
7. Prove that the curves 2 23 24x y+ =  and 2 23 12x y− =  intersect at right 

angles at the point ( )6, 6 . 

 
8. Find the equations of the tangents to the curve 2 22 8xy x= +  which are 

parallel to the x-axis. 
 
9. The total surface area of a right-circular cone of height h and base-radius r 

is given by ( )2 2 2S r r r h= π + + . If S is constant, find d
d

r
h

 when r = 3 

and h = 4. 
 
10. A cone has a fixed volume of 3144 cmπ . Calculate the length of its least 

possible slant edge. 
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12.5 Related Rates 
 
In this section we will learn how to calculate a rate of change we cannot 
measure from a rate of change that we can measure. For example, while a 
balloon is being inflated, we may know the rate at which air is being pumped in 
is 1 litre per second. However we would really like to know the rate at which 
the radius of the balloon is increasing. The procedure which provides us with a 
suitable method to achieve our aim, is best illustrated by an example. 
 
Example Air is pumped into a spherical balloon at the rate of 1 litre per 

second. Find the rate at which the radius of the balloon is changing 
when the radius is 10 cm. 

 
 The first task is to select appropriate units. In this problem 

centimetres and seconds have been chosen. 
 
 Next, it is helpful to express the rate of change we are given in 

terms of a derivative with respect to time. In our problem, we are 

given 3 1d 1000 cm s
d
V
t

−= . 
 

 We require the rate of change of the radius of the balloon, i.e., d
d
r
t

, when 

r = 10 cm. 
 
 The equation connecting the volume of the balloon with its radius is 

34
3V r= π . 

 Differentiating this equation with respect to time gives: 2d d4
d d
V rr
t t

= π . 

 Thus 2
d 1000
d 4
r
t r

=
π

 and clearly the rate at which the radius changes is 

dependent upon the radius at the time. 
 
 In our case r = 10 cm. 
 

 Finally we obtain d 1000 5 0.796
d 400 2
r
t

= = ≈
π π

 and so when r = 10 cm, the 

radius is increasing at the rate of 10.796 cm s− . 
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The procedure is as follows: 
(1) Draw a large, neat, labelled diagram. 
(2) Choose suitable units for length, angle, time, etc. 
(3) Write down the rate(s) of change given. 
(4) Write down the rate of change required by the question. 
(5) Find a relation between the variables the rates of change of which are given 

and required. 
(6) Differentiate this relation with respect to time. 
(7) Substitute the rate given in (3) and the values of any variables at the time 

required. 
(8) Answer the question in sentence form. 
 
Example A ladder 5 m long is placed against a vertical wall. If the upper end 

slides down the wall at a rate of 16 cm s− , find the rate at which the 
lower end is moving when it is 3 m from the base of the wall. 

 
 Units: m, s 

 Given: d 0.06
d
y
t

= −     

  [This is negative since 
  y is decreasing with time.] 

 To Find: d
d
x
t

 when x = 3 

 Calculation: 2 2 25x y+ =  

 Differentiate with respect to t:  d d2 2 0
d d
x yx y
t t

+ =  which 

gives d d 0.06
d d
x y y y
t x t x

−
= = . 

 When x = 3, y = 4 and d 0.08
d
x
t

= . Therefore the lower end is 

moving at the rate of 18 cm s− . 
 
Example Two ships leave a port P at noon and sail in directions which make 

an angle of 120° with each other. Ship X sails at 124 km h−  and 
ship Y at 140 km h− . Find the rate at which the distance between 
the two ships is changing at 4 pm. 

 
 Units:  km, h 

 Given:  d d24, 40
d d
x y
t t

= =  

 

5 m 

x 

 y 

P 

X 

Y 

x 

 y 

z 

120° 
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 To Find: d
d
z
t

 when t = 4 

 Calculation: 2z  =  2 2 2 cos120x y xy+ − °  =  2 2x y xy+ +  
  Differentiate with respect to t: 

 d2
d
zz
t

 =  d d d d2 2
d d d d
x y x yx y y x
t t t t

+ + +  

  =  48x + 80y + 24y + 40x 
  =  88x + 104y. 
 

  When t = 4, x = 96, y = 160 and 2z  = 2 296 160 96 160+ + × , 

  and so  z = 224 which gives d
d
z
t

 = 88 96 104 160
448

× + ×  = 56. 
 
 At 4 pm the distance between the two ships is increasing at the rate 

of 156 km h− . 
 
Consider the following method which may be used in related rate problems in 
which all variables can be expressed as functions of time. 
 

After t hours, x = 24t, y = 40t and 2z  = 2 2(24 ) (40 ) (24 )(40 )t t t t+ +  which gives 
z = 56t. 

Now clearly d 56
d
z
t

=  and so the distance between the ships is always changing 

at the rate of 156 km h− . 
 
Exercise 12.5 
 

1. The length of the side of a square is increasing at the rate of 13 cm s− . At 
what rate is the area of the square increasing when the length of the side is 
10 cm? 

 

2. The length of the radius of a circle is increasing at the rate of 120 cm s− . 
Find the rate at which the area is changing when the radius is 1 m. 

 

3. The volume of a sphere is increasing at the rate of 3 180 cm s−π . Find the 
rate at which the surface area is increasing when the radius is 5 cm. 

 
4. A triangle ABC is right-angled at B and AC = 10 cm. If AB is increasing at 

the rate of 10.5 cm s− , find the rate of change of the length of BC when 
BC = 6 cm. 
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5. A spherical balloon is being inflated at the rate of 3 136 cm s−π . Find the 
rate at which the radius of the balloon is increasing 

 (a) when the volume is 3288 cmπ  ; 
 (b) 19 seconds after the above instant. 
 
6. Grain is pouring out of a hole in the bottom of a large inverted cone with a 

vertical angle of 90° at the rate of 3 12 m min− . Find the rate, in 1cm s− , at 
which the depth of grain in the cone is changing when the depth is 0.8 m. 

 
7. A hemispherical bowl has a radius of 1.5 m. Water is added to the bowl at 

the rate of 3 11
3 m min−π . When the depth of water in the bowl is h m, the 

volume of water is given by 2 31
6 (9 2 ) mV h h= π − . How deep is the water 

after 1 minute? At what rate is the depth increasing at this time? 
 
8. Two trains, X and Y, leave a station A simultaneously and travel in straight 

paths at an angle of 60° to each other, and with speeds of 140 km h−  and 
150 km h−  respectively. Find the distance between the trains at the end of 

30 minutes and the rate of change of this distance at that time. 
 
9. Three towns, A, B and C, are at the vertices of an equilateral triangle with 

sides 100 km. One train leaves A and travels towards B at a rate of 
180 km h−  and a second train leaves B at the same time and travels towards 

C at a speed of 160 km h− . Find the rate at which the distance between the 
trains is changing after 45 minutes. 

 

10. The volume of a cylinder is increasing at the rate of 3 120 cm s− . The radius 
of the base is increasing at the rate of 13 cm s− . How fast is the height of 
the cylinder changing when the volume is 3120 cm  and the radius is 5 cm. 

 
 
12.6 The Graphs of Rational Functions 
 
Although a graphic display calculator can be used to draw a graph of any rational 
function, the resolution of various critical parts of the curve may not be sufficiently 
clear enough. If a window is not well set-up, asymptotes may sometimes appear like 
cusps (sharp points), and indeed asymptotes may not be obvious at all. Before using a 
GDC, a student should have already determined the equations of all asymptotes, and 
should have a reasonable idea of the shape of the graph to be drawn. 
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Asymptotes 
 
If the graph of a function approaches a fixed line (or curve) as the graph moves 
further from the origin, we say that the line is an asymptote of the graph. 
 
Asymptotes arise in two distinct ways. 
 
(i) If lim ( ) or lim ( )

x x
f x a f x a

→∞ →−∞
= = , then y = a is a horizontal asymptote of 

the graph of ( )y f x= . 
 
(ii) If lim ( ) or lim ( )

x a x a
f x f x

+ −→ →
= ±∞ = ±∞ , then x = a is a vertical asymptote of 

the graph of ( )y f x= . 
 
Note: If the degree of the numerator of the rational function is greater than the 

degree of the denominator, an oblique line or a curve will replace the 
horizontal line as an asymptote. 

 
Example Find the equations of the horizontal and vertical asymptotes of the 

curve 2 3
1

xy
x

+
=

+
. 

 The first step is to divide (x + 1) into (2x + 3) giving 12
1

y
x

= +
+

. 

 The vertical asymptote occurs when the denominator is zero, i.e., 1x = −  is 
the vertical asymptote. 

 
 To establish the horizontal asymptote we must determine the behaviour of the 

function for large positive and negative values of x. 

 As x → +∞, y → 2+ since 1
1x +

 is very small and positive for large positive 

values of x. 

 As x → –∞, y → 2– since 1
1x +

 is very small and negative for large negative 

values of x. 
 Therefore y = 2 is the horizontal asymptote. 
 
From the information gathered in the determination of the behaviour near the 
asymptotes, together with any axes intercepts, we are able to make a very reasonable 
sketch of the graph. The only information which would assist with the sketch that we 
have not established at this point, is the position and nature of any stationary points. 
 
In the previous example, the axes intercepts are (0, 3) and (–1.5, 0). 
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The graph of 2 3
1

xy
x

+
=

+
 is as follows: 

 

  
   
 
 
Exercise 12.6 
 
1. Find the equations of the asymptotes of each of the following functions: 

 (a) 2 1
1

xy
x

−
=

−
 ;  (b) 3y

x
−

=  ; 

 (c) 4 3
2 5

xy
x
−

=
+

 ;  (d) 2
( 1)( 2)

y
x x

=
− −

 ; 

 (e) 2
( 1)( 2)

xy
x x

=
− −

 ; (f) 
2

2
2 1
2 3

x xy
x x

− +
=

− −
 ; 

 (g) 
2 5 4x xy

x
+ +

=  ; (h) 
2( 1)

2 2
xy

x
+

=
−

. 

 
2. Discuss the behaviour near the asymptotes and find the axes intercepts of the 

graph of each of the following functions. Sketch each graph. 

 (a) 2 3
1

xy
x

−
=

+
 ;  (b) 3

( 1)( 2)
xy

x x
+

=
− +

 ; 

 (c) 
2

2
4

4 5
x xy

x x
−

=
− −

 ; (d) 
22 1

2
x xy

x
− −

=
+

. 

 Check each sketch using the facilities of your GDC. 
 
12.7 Graphs of Rational Functions with and without the Use of a GDC 
 
Although knowledge of the exact shape of the graph is not necessary when a GDC is 
available, students should know how to establish the details "by hand". 
 

x 

 y 

x = –1 

 y = 2 

O 2 4 –2 –4 

4 
6 

–2 
–4 
–6 
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The following general procedure can be used to enable a graph of a rational function 
( )( )
( )

g xy f x
h x

= =  to be sketched: 

(i) Factorise both g(x) and h(x), if possible. 
(ii) If deg(g) ≥ deg(h), use the division process (section 19.1) to express ( )f x  in 

the form 1
1

( )( ) ( )
( )

g xf x f x
h x

= +   where 1deg( ) deg( )g h< . 

(iii) Differentiate ( )f x  with respect to x. 
(iv) Equate the derivative with zero. 
(v) Determine the nature and position of any stationary points. 
(vi) Find the zeros of g(x) and h(x) and draw a sign diagram of ( )f x . 
(vii) Discuss the behaviour of ( )f x  as x approaches any zero of h(x) to determine 

the nature of the graph near the vertical asymptotes. 
(viii) Discuss the behaviour of ( )f x  as x approaches ± ∞ to determine the nature of 

the graph near any horizontal, oblique or curved asymptote. 
(ix) Find the coordinate axes intercepts, if any. 
(x) Sketch the graph using any extra points that may help determine the shape 

more accurately. 
 

Example Discuss and sketch the graph of 
2

2
1
4

xy
x

−
=

−
. 

 

 (i) ( 1)( 1)
( 2)( 2)

x xy
x x

− +
=

− +
 

 (ii) 2
31

4
y

x
= +

−
 

 (iii) 2 2 2 2
d 6 6
d ( 4) ( 2) ( 2)
y x x
x x x x

− −
= =

− − +
 

 (iv) d 0
d
y
x

=  when x = 0 

 (v) The sign diagram of d
d
y
x

 is as follows: 

 
     +           +                  –            – 
    –2,–2             0     2,2 
  Therefore, (0, 1

4 ) is a local maximum. 
 
 (vi) The critical values of ( )f x  are ± 1 and ± 2. 
  The sign diagram of ( )f x  is as follows: 
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       +        –           +           –         + 
        
 
 (vii) As 2 ,x y+→ → +∞ , and 
  as  2 ,x y−→ → −∞ . 
  As 2 ,x y+→ − → −∞ , and 
  as  2 ,x y−→ − → +∞ . 
  x = ± 2 are vertical asymptotes. 
 (viii) As , 1x y +→ +∞ → , and 
  as  , 1x y +→ −∞ → . 
  y = 1 is a horizontal asymptote. 
 (ix) When x = 0, y = 1

4  (the stationary point) and when x = ± 1, y = 0. 
 (x) When x = ± 3, y = 1.6. 
 
 

  
 

Example Discuss and sketch the graph of 2
6 3

( 1)
xy

x
+

=
−

. 

 

 d
d
y
x

 =  
2

4
( 1) (6) (6 3)(2)( 1)(1)

( 1)
x x x

x
− − + −

−
 

  =  3
6 6 12 6

( 1)
x x

x
− − −

−
 

  =  3
6( 2)
( 1)

x
x

− +
−

 

  =  0 when x = –2. 
 
 Therefore (–2, –1) is a local minimum. 
 

x 

 y 
x = 2 x = –2 

 y = 1 
1
4  

–2 –1 2 1 

–2 1,1,1 
sign of d

d
y
x

 + – – 

2

2
1
4

xy
x

−
=

−

O 2 –2 

(–3,1.6) (3,1.6) 
••
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 y is undefined when x = 1 and so x = 1 is a vertical asymptote. 
        –               +              + 
 
        – 1

2                   1,1 

 As 1 ,x y+→ → +∞ , and 
 as  1 ,x y−→ → +∞ . 
 As , 0x y +→ +∞ → , and 
 as  , 0x y −→ −∞ → . 
 Therefore y = 0 is a horizontal asymptote. 
 The graph meets the coordinate axes at (– 1

2 , 0) and (0, 3). 
 

 Extra points:  (4, 3) and (3, 21
4 ). 

 
 The graph is as follows: 
 

   
 
 
 
Exercise 12.7 
 
1. Discuss and sketch the graphs of the following functions. Check all graphs 

using the facilities of your GDC. 

 (a) 2
1

xy
x

=
+

 ;  (b) 2
2

1
xy

x
=

−
 ; 

 (c) 2
7 2

8
xy

x x
−

=
−

 ;  (d) 
2

2
1

1
x xy

x
+ +

=
+

 ; 

 (e) 
2

2
2 5

6 7
x xy

x x
+

=
+ −

 ; (f) 
2

2
xy

x
=

−
 ; 

 (g) 
2

2(3 2)
x xy
x

+
=

+
 ;  (h) 

2 8
3

xy
x

−
=

−
 ; 

sign of y 

2
6 3

( 1)
xy

x
+

=
−

 y 

 x  •  
 (–2, –1) 

x = 1 

(4, 3)  •  
 •  (3, 21

4 ). 

O 

1
2−

 3 

 • 

 • 
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 (i) 2
1

( 1)
xy

x
−

=
+

 ;  (j) 2
2

( 1)
y

x
=

+
 ; 

 (k) 2
2 3

2 3
xy

x x
+

=
+ +

 ; (l) 
2

2
4 16 15

4 3
x xy
x x

+ +
=

+ +
. 

 

2. Sketch the graph of 2
( 1)

6
x xy

x x
−

=
− −

 and determine, correct to 4 significant 

figures, the smallest positive value of x for which 2
2
( 1)1

6
x xx x

x x
−

− − =
− −

. 

 

3. Sketch the graph of 
2

2
3 4
3 2

x xy
x x

+ −
=

+ +
 and determine, correct to 4 significant 

figures, the largest value of x for which 
2

2
2

3 43 10
3 2

x xx x
x x

+ −
+ − =

+ +
. 

 

4. Sketch the curve whose equation is 
2

2
8 7

4 4 3
xy

x x
+

=
− −

 and find the values of k 

for which the line y = k does not meet the graph. 
 

5. Find the smallest value of 2
2

16y x
x

= +  and sketch its graph. 

 

6. Show that the function 2
2 1

( 1)
xy

x
−

=
−

 has a minimum value of –1 and sketch its 

graph. Determine from your graph the number of real roots of the equation 
2( 1) (2 1)x x k x− = −  if k is (a) positive ; (b) negative. 

 
 

Required Outcomes 
 

 After completing this chapter, a student should be able to: 
• use the chain, product and quotient rules to find derivatives. 
• apply the rules in related rates problems. (HL) 
• differentiate implicitly.  (HL) 
• sketch the graph of a rational function with and without the use of a GDC. 
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13.1 Sets 
 
The concept of a set is basic to all of mathematics and mathematical applications. 
This chapter deals with the language of sets and its application to the theory of 
probability. 
 
A set is simply any collection of objects. The objects in the set are called its elements 
or  members. We denote elements of a set by small alphabetic characters, a, b, c etc., 
and the sets themselves by block capitals A, B, C etc. We therefore write p ∈ A if p is 
an element in the set A. 
 
If every element of the set A is also an element of the set B, then A is called a subset  
of B. We denote this by A ⊆ B. If A is a subset of B and there is at least one element 
of B which is not an element of A, then A is a proper subset of B and we write A ⊂ B. 
 
Two sets are equal if each is a subset of the other. Thus sets A and B are equal, A = B, 
if 
 p ∈ A   ⇔   p ∈ B. 
 
The negations of p ∈ A, A ⊂ B and A = B are p ∉ A, A ⊄ B and A ≠ B respectively. 
 
We specify a particular set by either listing its elements or by stating any property 
which may characterise the elements of the set. For example 
 A = {1, 3, 5, 7, 9} 
is the set of all positive odd numbers less than 10 and B = {x ⏐ x is prime and x < 15} 
means that B is the set of all prime numbers less than 15. 
 
We sometimes deal with sets all of which are subsets of a set U called the universal 
set or universe. The set U is either given or it can be inferred from the context. 
The set with no elements is called the empty (null or void) set and is denoted by ∅. 
The empty set is a subset of every other set. Thus for any set A we have ∅ ⊆ A ⊆ U. 
 
Set Operations 
 
Union  The union of two sets, A and B, is denoted by A ∪ B and consists of 

all the elements which are members of either A or B or both A and B. 
i.e. A ∪ B = {x ⏐ x ∈ A or x ∈ B}. 
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Intersection The intersection of sets A and B is denoted by A ∩ B and consists of 
all those elements which belong to both A and B. 

  i.e. A ∩ B = { x ⏐ x ∈ A and x ∈ B}. 
 
Difference The difference of A and B is denoted by A – B and consists of those 

elements which belong to A but not to B, i.e. belong to A only. 
 i.e. A – B = { x ⏐ x ∈ A, x ∉ B}. 
 
Complement The complement of A is denoted by A' and consists of all those 

elements in the universe which do not belong to A. 
  i.e. A' = { x ⏐ x ∈ U, x ∉ A}. 
 
 Note that A – B = A ∩ B '. 
 
Definition Two sets, A and B, are said to be disjoint if they do not have any 

common elements. Thus A and B are disjoint if A ∩ B = ∅. 
 
Venn Diagrams 
 
Venn diagrams are used to illustrate the relationships between sets. We use a 
rectangle to represent the universal set and often circles within this rectangle to 
represent other sets. 
 

         
                A ∪ B is shaded            A ∩ B is shaded 
 

 
 
   A – B is shaded                      A' is shaded 
 
 
 

U U 

A A B B 

A A B B 

U U 
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Laws of the Algebra of Sets 
 
Associative Laws (A ∪ B) ∪ C = A ∪ (B ∪ C) 
   (A ∩ B) ∩ C = A ∩ (B ∩ C) 
 
Commutative Laws A ∪ B = B ∪ A 
   A ∩ B = B ∩ A 
 
Distributive Laws A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 
   A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) 
 
De Morgan's Laws (A ∪ B)' = A' ∩ B ' 
   (A ∩ B)' = A' ∪ B ' 
 
These laws can be verified using Venn diagrams, but such verifications are not 
considered to be rigorous proofs. 
 
Example Illustrate the first of de Morgan's laws using a Venn diagram. 
 

 
    (A ∪ B)' is shaded            A' is shaded 
 
           B ' is shaded 
 
           A' ∩ B ' is shaded 
 
 From the above diagrams, it can be seen that (A ∪ B)' = A' ∩ B '. 
 

 
Higher Level 

 
A rigorous proof of the previous law could be something like: 
 
Let a ∈ (A ∪ B)'. Let a ∈ A' ∩ B '. 
Then a ∉ A ∪ B and so a ∉ A and a ∉ B. Then a ∈ A' and a ∈ B '. 
Therefore a ∈ A' and a ∈ B ' Therefore a ∉ A and a ∉ B 
⇒  a ∈ A' ∩ B '. ⇒  a ∉ A ∪ B  and so a ∈ (A ∪ B)'. 
Hence (A ∪ B)' ⊆ A' ∩ B '. Hence A' ∩ B ' ⊆ (A ∪ B)'. 
 
Therefore (A ∪ B)' = A' ∩ B '  which is the required result. 

U U 

A B A B 
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The Order of a Set 
 
The order of a finite set A is denoted by ⏐A⏐ and is equal to the number of elements 
in it. 
 
 We can see from the diagram on the left 

that the sum ⏐A⏐ + ⏐B⏐ includes the 
number of elements in A ∩ B twice. 

 
 
 
Thus ⏐A ∪ B⏐ = ⏐A⏐ + ⏐B⏐ – ⏐A ∩ B⏐. 
 
Note that union and intersection may be interchanged in this equation. Thus we also 
have  
  ⏐A ∩ B⏐ = ⏐A⏐ + ⏐B⏐ – ⏐A ∪ B⏐. 
 
Example In a class of 25 students, 19 study geography and 14 study history 

and all students study at least one of these subjects. How many 
students study both geography and history? 

 
 Let G and H represent the set of all students who study geography and history 

respectively. Then ⏐G⏐ = 19, ⏐H⏐ = 14, ⏐G ∪ H⏐ = 25. 
 
 Then   ⏐G ∩ H⏐ = ⏐G⏐ + ⏐H⏐ – ⏐G ∪ H⏐ 
       =   19   +   14   –      25 
       =   8. 
 Thus 8 students study both geography and history. 
 
Example In a survey of 100 households, 59 read newspaper X and 71 read 

newspaper Y. What can be said about the number of households who 
read both papers? 

 
 Let X and Y represent the sets of households reading those newspapers. 
 Then ⏐X ∩ Y⏐ =  ⏐X⏐ + ⏐Y⏐ – ⏐X ∪ Y⏐ 
   =    59   +   71  – ⏐X ∪ Y⏐ 
   =  130 – ⏐X ∪ Y⏐. 
 But ⏐X ∪ Y⏐ cannot exceed 100, i.e., ⏐X ∪ Y⏐ ≤ 100 and so ⏐X ∩ Y ⏐ ≥ 30. 
 
 Also, the number of elements in X ∩ Y cannot exceed the number of elements 

in X (or the number of elements in Y). Thus ⏐X ∩ Y⏐ ≤ 59. 
 
 Thus at least 30, but no more than 59, households read both newspaper X and 

newspaper Y. 
 

U 

A B 
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Exercise 13.1 
 
1. Let U = {1, 2, 3, 4, 5, 6, 7}, A = {1, 3, 5, 7}, B = {4, 5, 6, 7} and 

C = {2, 3, 5, 7}. List the elements in each of the following sets: 
 (a) A ∪ B ;  (b) A ∩ C ;  (c) B – C ; 
 (d) A ∪ B ' ; (e) C ' – A' ; (f) A' ∩ C. 
 
2. If U = {a, b, c, d, e, f, g}, A = {a, b, c, d}, B = {c, d, e, f, g} and C = {b, d, f}, 

list the elements of each of the following sets: 
 (a) A ∩ (B ∪ C) ;  (b) (A ∩ B) ∪ (A ∪ C) ; 
 (c) (A ∩ C) – B ;  (d) (A – B)' ; 
 (e) B ' – C ' ;  (f) (A' ∪ B)'. 
 

3. If n ∈ +Z , list the elements of each of the following sets: 
 (a) { n ⏐ 2 < n < 7 } ;  (b) { 2n ⏐ 1 5n≤ ≤  } ; 
 (c) { n ⏐ 1 < 2n  ≤ 40 } ;  (d) { n ⏐ n divides 143 } ; 
 (e) { n ⏐ 2 5 4n n= −  } ;  (f) { n ⏐ 22 5 3n n= −  }. 
 
 
4. If x ∈ R, find A ∪ B and A ∩ B in each of the following: 
 (a) A = { x ⏐ –3 < x < 2 } and B = {x ⏐ –1 < x < 8 } ; 
 (b) A = { x ⏐ 2 11x≤ ≤  } and B = { x ⏐ 2x ≥ −  } ; 
 (c) A = { x ⏐ ⏐x⏐ < 4 } and B = { x ⏐ –5 < x ≤ 1 } ; 
 (d) A = { x ⏐ –5 < x < –1 } and B = { x ⏐ –1 ≤ x ≤ 10 }. 
 
5. In each of the following, draw a Venn diagram showing the universal set U 

and the sets A, B and C, then shade the region representing: 
 (a) A ∪ B ∪ C ;  (b) A ∩ B ∩ C ; 
 (c) A' ∩ B ;   (d) (A ∪ B) ∩ C ' ; 
 (e) B ' ∪ C ' ;  (f) A' ∩ B ' ∩ C '. 
 
6. If U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 4, 5, 6} and B = {2, 4, 6, 8}, 

find expressions for the following sets in terms of A, B, A', B ', ∪, ∩ and/or –: 
 (a) {2, 4, 6} ; (b) {8} ;  (c) {7, 8, 9, 10} ; 
 (d) {1, 3, 5, 8} ; (e) {1, 3, 5, 7, 9, 10}. 
 
7. Use Venn diagrams to verify the following: 
 (a) A – B = A ∩ B ' ;  (b) (A ∪ B)' = A' ∩ B ' ; 
 (c) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). 
 
8. In a group of 100 children it was found that 65 play football and 58 play 

basketball. If 15 of these children play neither football nor basketball, how 
many play  (a) both football and basketball ; (b)   football but not basketball ; 

        (c) exactly one of the two sports. 
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9. How many of the positive integers less than or equal to 1000 are 
 (a) divisible by 4 ; 
 (b) divisible by 6 ; 
 (c) divisible by 4 and 6 ; 
 (d) divisible by neither 4 nor 6? 
 
10. In a survey of 100 students, it was found that 
  77 students were studying Mathematics; 
  47 students were studying Physics; 
  44 students were studying Chemistry; 
  43 students were studying both Mathematics and Physics; 
  37 students were studying both Mathematics and Chemistry; 
  12 students were studying both Physics and Chemistry; 
  12 students were studying all three sciences. 
 (a) Find the number of students from among the 100 who were not 

studying any one of the three subjects. 
 (b) Find the number of students from among the 100 who were studying 

both Physics and Chemistry but not Mathematics. 
 
13.2 Elementary Probability Theory 
 
Rolling a die (die is the singular of dice) is an example of a random experiment and 
probability is the study of such random experiments. When we roll a die, we know 
that the set of possible outcomes is S = {1, 2, 3, 4, 5, 6}, called the sample space. We 
have no idea exactly which of the elements of S will appear in any toss but we know 
intuitively that each of these outcomes is equally likely. That is, a '6' is no more likely 
to appear than a '1', which is no more likely to appear than a '2', and so on. If this 
experiment is performed on n separate occasions and s is the number of times a '6' 
appears, we know from observation that the ratio s/n becomes close to 1/6 as n 
increases. 
 
Historically, probability theory began when the mathematician Blaise Pascal was 
asked to decide just how a given stake must be divided when a game of chance was 
interrupted before it could be completed, but its modern applications are evident in 
many facets of our everyday life. 
 
Sample Spaces and Events 
 
The set S of all possible outcomes of a given experiment is called the sample space. A 
particular outcome, i.e., an element of S, is called a sample point. Any subset of the 
sample space is called an event. The event {a} consisting of a single element of S is 
called a simple event. 
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Definition Suppose that in an experiment there are n different possible outcomes 
and that these outcomes are all equally likely. Suppose also that an 
event E occurs in s of these outcomes. Then P(E), the probability of 
the event E, is given by 

  P(E) = s
n

 = number of favourable outcomes
number of possible outcomes

 = 
E
S

. 

 
Theorem Suppose that an experiment has only a finite number of equally likely 

outcomes. If E is an event, then 0 P( ) 1E≤ ≤ . 
 
Proof Since E is a subset of S, the set of equally likely outcomes, then 

0 E S≤ ≤ . Hence 

    0 1
E
S

≤ ≤     or    0 P( ) 1E≤ ≤ . 

 
Note that if E = S, then clearly ⏐E⏐ = ⏐S⏐ and P(E) = 1 (the event is certain to 
occur), and if E = ∅, then ⏐E⏐ = 0 and P(E) = 0 (the event cannot occur). 
 
Example A letter is chosen from the letters of the word "MATHEMATICS". 

What is the probability that the letter chosen is an "A"? 
 
 Since two of the eleven letters are "As", the probability of choosing a letter 

"A" is 2/11. 
 
Definition If E is an event, then E ' is the event which occurs when E does not 

occur. Events E and E ' are said to be complementary events. 
 
Theorem P(E ') = 1 – P(E) or P(E) = 1 – P(E ') 
 

Proof P(E ') = 
'E

S
 = 

S E
S
−

 = 1 – 
E
S

 

 Thus P(E ') = 1 – P(E) and clearly P(E) = 1 – P(E '). 
 
Consider two different events, A and B, which may occur when an experiment is 
performed. 
 
The event A ∪ B is the event which occurs if A or B or both A and B occur, i.e., at 
least one of A or B occurs. 
 
The event A ∩ B is the event which occurs when both A and B occur. 
 
The event A – B is the event which occurs when A occurs and B does not occur. 
 
The event A' is the event which occurs when A does not occur. 
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Example An integer is chosen at random from the set 
S = { x ⏐ x ∈ +Z ,  x < 14}. 

  Let A be the event of choosing a multiple of 2 and let B be the event 
of choosing a multiple of 3. Find  

 (a) P(A ∪ B) ; (b) P(A ∩ B) ; (c) P(A – B). 
 
 
 From the diagram, 
 (a) P(A ∪ B) = 8/13 ; 
 (b) P(A ∩ B) = 2/13 ; 
 (c) P(A – B) = 4/13. 
 
 
 
Example If 4 people A, B, C, D sit in a row on a bench, what is the probability 

that A and B sit next to each other? 
 
 The number of ways of arranging 4 people in a row is⏐S⏐ = 4! = 24. 
 
 The number of ways of arranging the 4 people so that A and B are next to 

each other = ⏐X⏐ = 2 × 3! = 12. 
 
 Thus P(A and B sit next to each other) = X S  = 1

2 . 
  
Example If 5 cards are selected at random from an ordinary deck of 52 cards, 

find the probability that exactly 2 of them are aces. 
 
 The number of ways of selecting 2 aces from the 4 aces is 4

2C  = 6. 
 The number of ways of selecting 3 non-aces from the 48 non-aces is 48

3C . 
 Therefore the number of ways of selecting 5 cards of which exactly 2 are aces 

is ⏐A⏐ = 48
36 C× . 

 The number of ways of selecting 5 cards from 52 is ⏐S⏐ = 52
5C . 

 Thus the required probability  =  
A
S

 

  =   
48
3

52
5

6 C
C
×  

  =   48 47 46 5 4 3 2 16
3 2 1 52 51 50 49 48
× × × × × ×

× ×
× × × × × ×

 

  =   0.0399 . 
 

S 

A B 
1 

2 3 
4 5 6 

7 8 
9 

10 

11 

12 13 
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Tree Diagrams 
 
A tree diagram is a means which can be used to find the number of possible outcomes 
of experiments where each experiment occurs in a finite number of ways. 
 
Example Two coins are tossed. Find the set of possible outcomes. 
 
           First coin       Second coin        Outcome 
 
 
 
 
 
 
 
 
 
 Thus the set of possible outcomes = {HH, HT, TH, TT}. 
 
Example Alan and Bob play a game of tennis in which the winner is the first to 

win 2 sets. In how many different ways can this be done? (The 
individual game scores in each set are immaterial.) 

 
      1st set 2nd set            3rd set            Outcome 
 
 
 
 
 
 
 
 
 
 
 
 
 Thus the number of possible outcomes of the game = 6. 
 
Finite Probability Spaces 
 
Let S = 1 2 3{ , , , , }na a a a�  be a finite sample space. A finite probability space is 
obtained by assigning to each point ra S∈  a real number rp  called the probability of 

ra , satisfying the following: (a) 0rp ≥   for all integers r, 1 r n≤ ≤  ; 

    (b) 
1

1
n

r
r

p
=

=∑ . 

Start 

H 
H 

H 

T 

T 

T 

HH 

HT 
TH 

TT 

Start 

A 
A 

A 

A 

A 

B 
B 

B 

B 

AA 

ABA 

ABB 
BAA 

BAB 

BB 

B 
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If A is any event, then the probability P(A) is defined to be the sum of the 
probabilities of the sample points in A. 
 
Example A coin is weighted so that heads is three times as likely to appear as 

tails. Find P(T) and P(H). 
 
 Let P(T) = p, then P(H) = 3p. 
 But P(T) + P(H) = 1. 
 Therefore  4p = 1  or  p = 1

4 . 
 Thus  P(T) = 1

4  and P(H) = 3
4 . 

 
Exercise 13.2 
 
1. An unbiased cubic die is thrown. Find the probability that the number 

showing is 
 (a) even ;  (b) prime ;  (c) less than 4. 
 
2. Three coins are tossed. Find the probability of obtaining 
 (a) 3 heads ;   (b) at least 2 tails ; 
 (c) at least 1 head and 1 tail. 
 

3. A die is loaded in such a way that P(1) = P(3) = P(5) = 1
12 , P(2) = P(6) = 1

8  
and P(4) = 1

2 . Find the probability that the number appearing is 
 (a) odd ; (b) even ; (c) prime ; (d) not 3. 
 
4. A die is thrown. Let A be the event: "an odd number appears", let B be the 

event: "a number greater than 2 appears", and let C be the event: "a prime 
number appears". Find: 

 (a) P(A ∪ B) ; (b) P(A ∩ B) ; (c) P(B ∪ C) ; 
 (d) P(B ∩ C). 
 
5. Let A, B and C be events. Illustrate with a Venn diagram and find an 

expression for the event: 
 (a) A and B but not C occurs ; (b) only B occurs. 
 
6. A die is weighted so that the probability of a number x appearing is 

proportional to x. Thus the probability of scoring a 6 is twice as likely as that 
of scoring a 3 and three times as likely as that of scoring a 2. Find the 
probability of scoring 

 (a) each of the numbers from 1 to 6 ; 
 (b) an even number ; 
 (c) a prime number less than 4 ; 
 (d) a number which is prime but not greater than 3. 
 



 Probability  

 375  

7. An integer is chosen at random from the first 200 positive integers. Find the 
probability that the number is 

 (a) divisible by 2 ;  (b) divisible by 7 ; 
 (c) divisible by 2 and 7 ; (d) divisible by neither 2 nor 7. 
 
8. The probability that a man is colour-blind is 0.05 and the probability that a 

woman is colour-blind is 0.0025. In a school of 1200 students, 400 are male. 
A student is selected at random. Find the probability that this student is 

 (a) male and colour-blind ; (b) neither male nor colour-blind. 
 
9. Two cards are drawn at random from an ordinary deck of 52 cards. Find the 

probability that 
 (a) both cards are spades ; (b) at least one card is a spade. 
 
10. Three light bulbs are selected at random from 15 bulbs of which 3 are 

defective. Find the probability that 
 (a) none is defective ; (b) exactly one is defective ; 
 (c) at least one is defective. 
 
11. The letters of the word FACETIOUS are arranged in a row. Find the 

probability that 
 (a) the first 2 letters are consonants ; 

(b) all the vowels are together. 
 
12. A hand of three cards is dealt from a well-shuffled pack of 52. Find the 

probability that the hand contains 
 (a) exactly one ace ; 
 (b) three cards of the same suit ; 
 (c) no two cards of the same suit. 
 
13.3 Sum and Product Laws 
 
Theorem If A and B are events from a sample space S, then 
    P(A ∪ B) = P(A) + P(B) – P(A ∩ B). 
 

Proof P(A ∪ B) =  
A B

S
∪

 

  =  
A B A B

S
+ − ∩

 (result from Section 13.1) 

  =  
A B A B
S S S

∩
+ −  

  =  P(A) + P(B) – P(A ∩ B). 
 
This is known as the addition law of probability. 
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Definition Events A and B are said to be mutually exclusive if the events A and 
B are disjoint, i.e., A and B cannot occur at the same time. 

 
For mutually exclusive events, A ∩ B = ∅   ⇒   P(A ∩ B) = P(∅) = 0, and so the 
addition law reduces to 
    P(A ∪ B) = P(A) + P(B). 

Example A card is drawn from a pack of 52. A is the event of drawing an ace 
and B is the event of drawing a spade. Find P(A), P(B), P(A ∩ B) and 
P(A ∪ B). 

 
 P(A) = P(an ace) = 4

52  = 1
13  

 P(B) = P(a spade) = 13
52  = 1

4  
 P(A ∩ B) = P(the ace of spades) = 1

52  
 P(A ∪ B) = P(A) + P(B) – P(A ∩ B) = 134 1

52 52 52+ −  = 16
52  = 4

13 . 
 
Example A marble is drawn from an urn containing 10 marbles of which 5 are 

red and 3 are blue. Let A be the event: the marble is red, and let B be 
the event: the marble is blue. Find P(A), P(B) and P(A ∪ B). 

 
 P(A) = 5

10  = 1
2 ,  P(B) = 3

10 , and since the marble cannot be both red and blue, 
A and B are mutually exclusive so P(A ∪ B) = P(A) + P(B) = 4

5 . 
 
Definition Two events are independent iff P(A ∩ B) = P(A) × P(B). 
 
This definition of independence seems to bear no relationship to the meaning of the 
English word independent. Sometimes it is obvious that events A and B are 
independent. For example, if we are selecting 2 discs, one after the other with 
replacement, from a box containing red and blue discs, then the events "the first disc 
is red" and "the second disc is red" are clearly independent – the result of the first 
selection has no bearing on the result of the second selection. However, it is 
sometimes impossible to tell from the description of the events whether or not they 
are independent. The following example illustrates this. 
 
Example A factory runs two machines, A and B. Machine A operates for 80% 

of the time while machine B operates for 60% of the time and at least 
one machine operates for 92% of the time. Do these machines operate 
independently? 

 
 The data does not give any clues. However we are given P(A) = 0.8, 

P(B) = 0.6 and P(A ∪ B) = 0.92. 
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 Now P(A ∩ B) =  P(A) + P(B) – P(A ∪ B) 
  =  0.8 + 0.6 – 0.92 
  =  0.48 
  =  0.8 × 0.6 
  =  P(A) × P(B) 
 and so these machines do operate independently. 
 
Example Find the probability that in 3 throws of a fair die, the 3 numbers are 

all even. 
 
 The probability that the first number is even = 1

2 . 
 The probability that the second number is even = 1

2 . 
 The probability that the third number is even = 1

2 . 
 Since these events are independent, the probability that the 3 numbers are all 

even = 1 1 1
2 2 2× ×  = 1

8 . 
 
This rule is the simplest form of the multiplication law of probability. The extension 
to events which are not independent will be considered in the next section. 
 
Exercise 13.3 
 
1. If A and B are any two events with P(A) = 3

8 , P(B) = 5
12  and P(A ∩ B) = 1

4 , 
find P(A ∪ B). 

 
2. In a certain school, the probability that a student takes mathematics is 0.65, 

the probability that a student takes physics is 0.4 and the probability that a 
student takes both mathematics and physics is 0.3. Find the probability that a 
student takes at least one of mathematics and physics. 

 
3. Events A and B are such that P(A – B) = 0.3, P(B – A) = 0.4 and 

P(A' ∩ B ') = 0.1. Find 
(a) P(A ∩ B) ; (b) P(A) ;  (c) P(B). 

 
4. Events A and B are independent with P(A – B) = 0.3 and P(B – A) = 0.2. Find 

P(A) and P(B) 
 

5. If A and B are independent events such that P(A) = 3
4 and P(B) = 5

6 , find 
 (a) P(A ∩ B) ; (b) P(A ∪ B) ; (c) P(A ∩ B ') ; 
 (d) P(A' ∪ B '). 
 

6. Two independent events A and B are such that P(A ∩ B) = 1
6 , P(A ∪ B) = 3

4  
and P(A) > P(B). Find P(A) and P(B). 
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7. A bag contains 10 red marbles numbered 1 to 10 and 10 blue marbles 
numbered 1 to 10. One marble is drawn at random from the bag. Let A be the 
event that a marble numbered 1 is drawn, let B be the event that a red marble 
is drawn, and let C be the event that an odd-numbered marble is drawn. Show 
that the events A and B are independent but that the events A and C are not 
independent. 

 
8. Three unbiased dice are thrown. Find the probability that 
 (a) the number on each die is the same ; 
 (b) the sum of the three numbers is 5 ; 
 (c) the sum of the three numbers is even. 
 

9. A die is biased so that the probability of throwing a six is 1
3 . If the die is 

thrown twice, find the probability of obtaining 
 (a) two sixes ; (b) at least one six. 
 
10. A bag contains 3 red discs, 4 blue discs and 5 green discs. Three discs are 

withdrawn from the bag one after the other with each being replaced before 
the next disc is withdrawn. Find the probability of obtaining 

 (a) three red discs ; 
 (b) exactly two blue discs ; 
 (c) one green and two blue discs. 
 
11. An unbiased die is thrown three times. Find the probability of obtaining 
 (a) 3 sixes ;  (b) exactly 2 sixes ;  
 (c) at least one six. 
 
12. Cards are drawn at random, with replacement, from a pack of 52. Find the 

probability that 
 (a) the first two cards drawn are both spades ; 
 (b) exactly two of the first three cards drawn are spades ; 
 (c) the third card drawn is a club ; 
 (d) the fourth card is the first black card to be drawn. 
 
13. Three marksmen fire simultaneously at a target. The probabilities of scoring a 

'bull' with any given shot are respectively 1 1 1
2 3 4,  and . Find the probability 

that at least one of the marksmen scores a bull with their first shot. 
 
14. Prove that if A and B are independent events, then 
 (a) A' and B are independent ; 
 (b) A' and B ' are independent. 
 
15. A and B are events with non-zero probabilities. Prove that if 
 (a) A and B are mutually exclusive they cannot be independent ; 
 (b) A and B are independent they cannot be mutually exclusive. 
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13.4 Conditional Probability and Bayes' Theorem 
 
The probability of an event B given that event A has occurred is called the conditional 
probability of B given A and is written P(B⏐A). 
 
Here P(B⏐A) is the probability that B occurs considering A as the sample space, and 

since the subset of A in which B occurs is A ∩ B, then P( )P( )
P( )
B AB A

A
∩

= . 

The general statement of the multiplication law is obtained by rearranging this result: 
  P(A ∩ B) = P(A) × P(B⏐A). 
 
Thus the probability that two events will both occur is the product of the probability 
that one will occur and the conditional probability that the other will occur given that 
the first has occurred. As A and B are clearly interchangeable, we can also write 
  P(A ∩ B) = P(B) × P(A⏐B). 
 
If A and B are independent, then the probability of B is not affected by the occurrence 
of A and so P(B⏐A) = P(B) giving P(A ∩ B) = P(A) × P(B) which is our definition of 
independence given in the previous section. 
 
Example A die is tossed. Find the probability that the number obtained is a 5 

given that the number is greater than 3. 
 
 Let A be the event that the number is a 5 and B the event that the number is 

greater than 3. Then A ∩ B = {5} and B = {4, 5, 6}. 

 We require P(A⏐B) = P( )
P( )
A B

B
∩   

  =  1 6
3 6

 

  =  1
3 . 

 
Example A coin is tossed twice in succession. Let A be the event that the first 

toss is heads and let B be the event that the second toss is heads. Find: 
 (a) P(A) ; (b) P(B) ; (c) P(B ∩ A) ; (d) P(B⏐A). 
 

 (a) P(A) = 1
2  

 (b) P(B) = 1
2  

 (c) P(B ∩ A) = P(HH) = 1
2  × 1

2  = 1
4  

 (d) P(B ⏐ A) = P( )
P( )
B A

A
∩  = 

1
4

1
2

 = 1
2  

 



Chapter 13 

380  

A tree diagram can be quite useful in the calculation of certain probabilities. The 
following example illustrates the method. 
 
Example Two discs are selected one at a time without replacement from a box 

containing 5 red and 3 blue discs. Find the probability that 
 (a) the discs are of the same colour ; 
 (b) if the discs are of the same colour, both are red. 
 
     1st disc   2nd disc Outcome Probability 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) Required probability = P(RR) + P(BB) = 20 6

56 56+  = 13
28 . 

 

 (b) Required probability = P(RR ⏐ Same Colour) = 
20

56
20 6

56 56+
 = 10

13 . 

 
 

Higher Level 
 
Bayes' Theorem 
 
The symbols P(A⏐B) and P(B⏐A) look alike but there is a great deal of 
difference between the probabilities which they represent. For example, suppose 
that A represents the event that a person has been inoculated against a disease 
and let B be the event that this person has the disease. Then P(A⏐B) is the 
probability that the person has been inoculated given that they have the disease 
and P(B⏐A) is the probability that the person has the disease given that they 
were inoculated. 
 
Since there are many instances where both probabilities are involved, we need a 
general formula which expresses one in terms of the other. 
 

red 

red 

red 

blue 

blue 

blue 

5
8

3
8  

4
7

3
7

5
7

2
7

RR 

RB 

BR 

BB 

5 204
8 7 56× =

5 3 15
8 7 56× =

3 5 15
8 7 56× =

3 62
8 7 56× =
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From the fact that P(A ∩ B) = P(A) × P(B⏐A) = P(B) × P(A⏐B), we have 
  P(A) × P(B⏐A) = P(B) × P(A⏐B) 
and hence 
 

  
P( ) P( )

P( )
P( )

B A B
B A

A
×

= . Bayes' Theorem 

 
 
Example Two machines A and B produce 60% and 40% respectively of the 

total output of a factory. Of the parts produced by machine A, 3% 
are defective and of the parts produced by machine B, 5% are 
defective. A part is selected at random from a day's production and 
found to be defective. What is the probability that it came from 
machine A? 

 
 Let A be the event that the part came from machine A and let D be the 

event that the part is defective. We require P(A⏐D). 
  Now P(A) × P(D⏐A) = 0.6 × 0.03 = 0.018 and 
 P(D) =  P(A ∩ D) + P(B ∩ D) 
  =  0.018 + 0.4 × 0.05 
  =  0.038.   

 Therefore the required probability =  0.018
0.038

 

  =  9
19 .   

 
 
 
Exercise 13.4 
 
1. A pair of fair dice is tossed. If the sum is 6, find the probability that one of the 

dice is a 2. 
 
2. A pair of fair dice is thrown. Find the probability that the sum is greater 

than 9 if 
 (a) a 5 appears on the first die ; 
 (b) a 5 appears on at least one of the dice. 
 
3. A bag contains 5 red marbles and 3 blue marbles. If marbles are withdrawn 

from the bag one at a time, find the probability that 3 red marbles are 
followed by 1 blue marble if 

 (a) each marble is replaced before another is withdrawn ; 
 (b) the marbles are not replaced after they are withdrawn. 
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4. About 5% of males are colourblind while only 0.25% of females are 
colourblind. A person is chosen from a group of 50 people, 20 of which are 
male and 30 female. If the person chosen is colourblind, what is the 
probability that this person is a male? 

 
5. The probabilities of the weather being fine, raining or snowing are 

respectively 1
2 , 1

3  and 1
6 . The probabilities that a student arrives on time for 

school under each of these conditions is 3
4 , 2

5  and 3
10  respectively. What is 

the probability that 
(a) the student arrives at school on time on any given day ; 

  (b) if the student is late, it was raining? 
 
6. A pair of fair dice is thrown. If the two numbers showing are different, find 

the probability that 
 (a) the sum is 6 ; 
 (b) a 1 appears ; 
 (c) the sum is 4 or less. 
 
7. An urn contains 4 red and 6 blue marbles. Three marbles are withdrawn from 

the urn one after the other (without replacement). Find the probability that 
 (a) the first two are red and the third is blue ; 
 (b) two of the marbles are red and the other is blue. 
 
8. A team is ranked fourth best in a 10-team competition. The probability that 

this team beats a higher ranked team is 0.4 and the probability this team beats 
a lower ranked team is 0.6. In its last match, the team won. What is the 
probability it played a lower ranked team on that day? (Ignore tied games.) 

 
9. A man is dealt 4 cards which include 3 aces (exactly) from an ordinary deck 

of 52. What is the probability that the fifth card dealt to him is the fourth ace? 
 
10. Let A and B be events with P(A) = 1

2 , P(B) = 1
3  and P(A ∩ B) = 1

4 . Find: 
 (a) P(A⏐B) ; (b) P(B⏐A) ; (c) P(A ∪ B) ; 
 (d) P(A'⏐B ') ; (e) P(B '⏐A'). 
 
11.  In a certain college, 5% of the men and 1% of the women are taller than 

180cm. Also, 60% of the students are women. If a student is selected at 
random and found to be taller than 180cm, what is the probability that this 
student is a woman? 

 
12. The probabilities that two men hit a target from a certain distance are 

respectively 1
2  and 1

3 . Each man shoots once at the target from that distance. 
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 (a) Find the probability that exactly one of them hits the target. 
 (b) If only one hits the target, what is the probability that it was the first 

man? 
 
13. A certain type of missile hits its target with probability 0.3. How many 

missiles should be fired so that there is at least a 95% chance of hitting the 
target? 

 

14. The probability that a man will live 10 more years is 1
4  and the probability 

that his wife will live 10 more years is 1
3 . Find the probabilities that 

 (a) at least one will be alive in 10 years ; 
 (b) exactly one will be alive in 10 years ; 
 (c) if exactly one is alive in ten years, it will be the wife. 
 
13.5 Binomial Probabilities 
 
A Bernoulli trial is one in which there are two possible outcomes usually referred to 
as "success" and "failure". If the probability of success is p, then the probability of 
failure is q = 1 – p. 
 
For the binomial probability distribution we are interested in the probabilities of 
obtaining "r successes in n trials", or in other words, "r successes and n – r failures in 
n attempts". 
 
In this section we shall always make the following assumptions: 
 (1) There is a fixed number (n) of trials. 
 (2) The probability of success (p) is the same for each trial. 
 (3) Each trial is independent of all the other trials. 
 
If p and q = 1 – p are the probabilities of a success and failure on any given trial, then 
the probability of exactly r successes and (n – r) failures in some specific order is 

r n rp q −  = (1 )r n rp p −− . The number of ways of arranging r 'ps' and (n – r) 'qs' in a 

row is !
!( )!

n
r n r−

 = 
n
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Thus the number of ways to choose the r trials in which the 

successes are to occur is  
n
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

. This leads to the following result: 

 
  The probability of obtaining r successes in n independent trials is 

  P(n, r, p) = (1 )r n rn
p p

r
−⎛ ⎞

−⎜ ⎟
⎝ ⎠

   for  0 ≤ r ≤ n 

   where p is the probability of a success in each trial. 
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This is the binomial distribution. 
 
It is called "binomial" since the values of the probabilities are successive terms of the 
binomial expansion of [ ](1 ) np p− + . 
 
Example A die is tossed 7 times in succession. Find the probability that 
  (a) exactly 2 tosses resulted in a 6 ; 
  (b) at least 2 tosses resulted in a 6. 
 

 (a)  Let p = P(a six) = 1
6 . 

  The required probability =  P(7, 2, 1
6 ) 

   =  
2 57 1 5

2 6 6
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

   =  0.234. 
 
 (b)     P(at least 2 successes in 7 trials) 
  = 1 – P(less than 2 successes in 7 trials) 
  = 1 – {P(7, 0, 1

6 ) + P(7, 1, 1
6 )} 

  = 1 – 0 7 67 7
0 1

p q pq
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪+⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 

  = 1 – 6{ 7 }q q p+  
  = 0.330. 
 
Example A doctor estimates that his treatment of a particular illness is 

successful 75% of the time. Find the probability that he will 
successfully treat exactly 5 of 6 patients who seek his help. 

 
 Let p = 0.75. 

  The required probability  =  P(6, 5, 0.75)  =   56
(0.75) (0.25)

5
⎛ ⎞
⎜ ⎟
⎝ ⎠

=  0.356. 

 
Example How many throws of two dice are required to ensure that the 

probability of obtaining at least one 'double 6' is greater than 0.95? 
 
 Let p = P(a 'double 6' with two dice) = 1

36  and let the pair of dice be thrown n 
times. Then the probability of at least one 'double 6' in n throws =  1 – P(no 
'double 6' in n throws) 

             =  1 – 35
36

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 
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  We require the least value of n for which 1 – 35
36

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ≥ 0.95. 

  ⇒  35
36

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ≤ 0.05 

⇒  35
36log log0.05n ≤  

  ⇒  log0.05
log(35 36)

n ≥      (The inequality changes direction since 35
36log 0< !) 

  ⇒  n ≥ 106.3 and so at least 107 throws are needed. 
 
Example Five percent of a large consignment of fruit is inedible. Find the 

probability that in a random selection of 10 pieces of fruit from this 
consignment, exactly two pieces are inedible. 

 
 Although this is strictly not a binomial distribution since the probability that a 

second piece of fruit is inedible after the selection of the first piece, is not 
constant (i.e., the trials are not independent), the change in p after each trial 
will be very small for a large consignment. Hence the binomial distribution 
provides us with an excellent approximation to the given situation. 

 
 Hence the required probability ≈  P(10, 2, 0.05) 

     =  2 810
(0.05) (0.95)

2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

     =  0.0746. 
 
Note: If, for example, the consignment contained 10 000 pieces of fruit, the actual 

probability that exactly 2 of 10 pieces selected at random are inedible is 
10 500 499 9500 9499 9493
2 10000 9999 9998 9997 9991

⎛ ⎞
× × × × × ×⎜ ⎟

⎝ ⎠
�  = 0.0746 which is the same 

answer (correct to 3 significant figures) as that obtained from the binomial 
distribution. 

 
Exercise 13.5 
 
1. A fair coin is tossed 4 times. Find the probability of obtaining 
 (a) exactly 2 heads ; (b) exactly 3 tails ; 
 (c) no tails ;  (d) at least 2 heads. 
 
2. A family has 5 children. Find the probability that the family contains 
 (a) 2 boys and 3 girls ; (b) more boys than girls. 
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3. What is the probability of throwing a sum of 9 once only in 4 throws of a pair 
of dice? 

 
4. When Peter plays Paul at tennis, Peter wins on average 2 games out of every 

3 played. If Peter and Paul play 6 games, find the probability that 
 
 (a) Peter wins exactly 4 of these games ; 
 
 (b) Paul wins more games than Peter. 
 
5. Of 1000 families with four children, how many would you expect to have 
 (a) 2 boys ; (b) 4 girls ; (c) either 2 or 3 boys? 
 
6. How many throws of a single die are required so that there is a better than 

90% chance of obtaining a six? 
 
7. Two percent of the total daily output of transistors from a factory are 

defective. If 5 transistors are selected at random, estimate the probability that 
exactly 2 of them are defective. 

 
8. The probability that a man hits a target is 1/3. 
 
 (a) If he fires 10 times, what is the probability that he hits the target at 

least twice? 
 
 (b) How many times does he need to fire to ensure that the probability he 

hits the target at least once is greater than 2/3? 
 
 

Higher Level 
 
9. Peter and Bill play a game of tennis. Peter is the more skilful, having a 

probability of 2/3 of winning any game against Bill. Find the probability 
that Peter wins the first set 6 games to 4. 

 
10. A bag contains 6 red and 3 blue marbles. One marble is withdrawn at 

random, its colour noted, and then replaced. This procedure is performed 6 
times.  What is the probability of drawing 

 
 (a) one blue marble only ;  (b) no blue marble ; 
 (c) no more than one blue marble ; (d) at least 5 red marbles ; 
 (e) no more than 4 red marbles? 
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11. Each trial of a binomial experiment has a constant probability of p of 

yielding a success. 
 
 (a) Given that 7 successes occurred in 15 independent trials, find the 

probability that the first and last trials were successes. 
 (b) Find the value of p given that in 20 independent trials the 

probability of exactly 4 successes is twice that of exactly 6 
successes. 

 
*12. An unbiased die is tossed until a 6 appears for the second time. Find the 

most likely number of throws required. 
 
*13. If p is the probability of a success in any single performance of n Bernoulli 

trials, then for fixed n and p, the value of P(n, r, p) initially increases as r, 
the number of successes increases, and finally decreases as r increases. 
Thus P(n, r, p) is a maximum for one particular value of r or perhaps for 
two consecutive values of r. 

  
  (a) If P(n, r, p) ≥ P(n, r–1, p), show that r ≤ p(n + 1). 
 
 (b) If P(n, r, p) ≥ P(n, r+1, p), show that r ≥ p(n + 1) – 1. 
 
 (c) Find the most likely number of successes in 
 
  (i) 16 Bernoulli trials where p = 0.3 ; 
 
  (ii) 19 Bernoulli trials where p = 0.4. 
 
*14. In a multiple choice test there are 2n + 1 questions, ( )n +∈Z , each with a 

choice of two answers. In order to pass the test, a student must answer 
correctly more than half of the questions. Show that the probability the 
student passes is independent of the value of n. 
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Required Outcomes 
 

 After completing this chapter, a student should be able to: 
• establish and justify set relations using Venn diagrams. 
• use de Morgan's laws in a variety of contexts. 
• understand the terms 'sample space', 'sample point', 'simple event', 'event', 

'complementary events', 'independent events', 'mutually exclusive events' 
and 'conditional probability'. 

• use Bayes' theorem (HL) and the Binomial probability distribution. 
• apply any of the above ideas to establish the probability of a variety of 

events. 
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14.1 Discrete Probability Distributions  
 
In a proper study of statistics we are interested in numbers that are associated with 
situations resulting from elements of chance, i.e., in the values of random variables. 
In the study of random variables we are interested in the probabilities with which they 
take in the range of their possible values, called their probability distributions. In this 
section we will introduce some important random variables and their probability 
distributions. Two in particular will be discussed in some detail. The binomial 
probability distribution (which is discrete) and the normal distribution (which is 
continuous). 
 
Definition A discrete random variable is a variable quantity which occurs 

randomly in a given experiment and which can assume only certain, 
well-defined values, usually integral. 

 
Definition A discrete probability distribution describes a discrete random variable 

in terms of the probabilities associated with each individual value that 
the variable may take. 

 
For a probability distribution concerning a discrete random variable X where X may 
assume any of the values 1 2 3, , , , nx x x x� , then 

       
1

P( ) 1
n

i
i

X x
=

= =∑ . 

 
Example A discrete variable X has probability distribution defined by 
       P(X = x) = 1

6 ( 1)x − , for x = 2, 3, 4. 
  Show that X is a random variable, i.e., 

all 
P( ) 1

x
X x= =∑ . 

 

 31 2
6 6 6

all 
P( ) P( 2) P( 3) P( 4) 1

x
X x X X X= = = + = + = = + + =∑  . 

 Therefore X is a random variable. 
 
Example A discrete random variable X has the following probability distribution: 
 

x 1 2 3 4 
P(X = x) 1

5  3
10  2

5  p 
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   (a) Find the value of p. 
   (b) Find P((X = 4) ⏐ (X ≥ 2)). 
 

  (a) 31 2 1
3 10 5 101p p+ + + = ⇒ =  . 

(b) Required probability 1
8

P(( 4) ( 2)) 1 10
( 2) 8 10

X X
P X
= ∩ ≥

= = =
≥

. 

 
Example Three coins are tossed. Let the random variable X represent the number 

of heads obtained. Construct a table to represent this probability 
distribution. 

 
 The probability of exactly x heads in 3 tosses 
 = P(X = x) 

=  
33 1 1

2 2

x x

x

−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
, x = 0, 1, 2, 3. 

 
 The required probability distribution is as follows. 
 
   x P(X = x) 
   0   0.125 
   1   0.375 
   2   0.375 
   3   0.125 
 
Example The probability distribution of a discrete random variable X is given by 

( )2
3P( ) for  1, 2, 3,

x
X x a x= = = �  .  Find the value of a. 

 

 X is a discrete random variable and so 
1

P( ) 1
x

X x
∞

=

= =∑  . 

 Now ( ) ( ) ( )2 32 2 2
3 3 3a a a+ + +�  =  ( ) ( ) ( )( )2 32 2 2

3 3 3a + + +�  

  =  2 3
1 2 3

a
⎛ ⎞
⎜ ⎟−⎝ ⎠

  [sum of an infinite GP] 

  =  2a. 
 Therefore 2a = 1 and so a = 1

2  . 
 
Example Of the 15 light bulbs in a box, 5 are defective. Four bulbs are selected 

at random from the box. Let the random variable X represent the 
number of defective bulbs selected. Construct a table to represent this 
distribution and show that the sum of the probabilities is 1. 
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 The probability that there are x defective bulbs in the selection of 4 must 
mean that there are (4 – x) non-defective bulbs in the selection. 

 The number of ways of selecting x defective bulbs = 
5
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and the number of 

ways of selecting (4 – x) non-defective bulbs = 
10

4 x
⎛ ⎞
⎜ ⎟−⎝ ⎠

. 

 The number of ways of selecting 4 bulbs from 15 = 
15
4

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 Therefore P(X = x) = 

5 10
4

15
4

x x
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
   x P(X = x) 
   0   0.154 
   1   0.440 
   2   0.330 
   3   0.073 
   4   0.004 
 
 The sum of the probabilities = 1.00. 
 
Exercise 14.1 
 
1. Which of the following represent discrete variables: 
 (a) the number of rivers in the world ; 
 (b) the heights of children in a school ; 
 (c) the winning margin in a football match ; 
  (d) the time taken to run 100m ; 
 (e) a human lifetime ; 
 (f) the number of children born in the world per year? 
 
 2. The discrete random variable X has the following probability distribution: 
 

x 1 2 3 4 5 
P(X = x) 0.2 p 0.3 0.15 0.1 

 
 Find: (a) the value of p ; 

(b) P(X ≤ 2) ; 
(c) P(2 ≤ X < 5) ; 
(d) P((X = 2) ⏐ (2 ≤ X < 5)). 



Chapter 14 

392 

3. The probability distribution function of the discrete random variable X is 
P(X = x) = 2ax  for x = 1, 2, 3.  Find the value of a. 

 
4. A discrete random variable X has probability distribution function given by 

P(X = x) = ( )2
5

x
a  for x = 0, 1, 2,  …  .  Find the value of a. 

 
5. For each of the following random variables find the probability distribution. 

(a) The number of heads obtained when two coins are tossed. 
(b) The number of heads obtained when three coins are tossed. 
(c) The sum of the numbers shown when two cubic dice are thrown. 
(d) The difference between the numbers shown when two tetrahedral 

dice are thrown. 
 
6. A tetrahedral die, with a number from 1 to 4 on each of 4 faces, is thrown 

twice. Let X represent the sum of the two scores. Find P(X = x) for x = 2, 3, 4, 
…, 8 and show that the sum of these probabilities is 1. 

 
7. A box contains 6 marbles of which 4 are red. Three marbles are withdrawn 

one after the other. Let X represent the number of red marbles drawn. 
Construct a table to represent this probability distribution if 

 (a) each marble is replaced before another is withdrawn ; 
 (b) the marbles are not replaced before the next is withdrawn. 
 Show that in each case the sum of the probabilities is 1. 
 
8. A box contains 8 marbles of which 3 are red. A random sample of 4 marbles 

is taken without replacement. Write down, in tabular form, the probability 
distribution for the number of red marbles in the sample. 

 
9. A discrete random variable X has the following probability distribution: 
 
   x P(X = x) 
   0       p 
   1       p 
   2     3p 
   3     3p 
   4     2p 
 
 Find: (a) the value of p ; 
  (b) P(X > 1) ; 
  (c) P(X = 3⏐X ≥ 2). 
 
10. Urn A contains 5 red and 3 blue marbles; urn B contains 2 red and 4 blue 

marbles. A marble is selected from each urn and the colour noted. Let X 
represent the number of red marbles selected. Tabulate the probability 
distribution for X. 
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11. From a pack of 52 cards, a poker-hand of 5 cards is dealt. Let the random 
variable X represent the number of aces in this hand. Construct a table to 
represent this probability distribution and show that the sum of the 
probabilities is 1. 

 
Higher Level 

 
12. A coin is tossed until a head appears. Find a formula for the probability 

distribution of X, the number of times the coin must be tossed, and show 

that  
1

P( ) 1i
i

X x
∞

=

= =∑ . 

 
13. Find a formula for the probability distribution of the random variable X 

which represents the number of times that a die must be thrown until a six 
appears. 

 
14. A discrete random variable X has the following probability distribution: 
 
   x P(X = x) 
   0   1 –  4 p 
   1   23p p−  
   2  2p – 2p2 
   3   1 – 3p 
 
  Find: (a) the value of p ;  (b) P(X = 2) ; 
  (c) P(X ≥ 2) ;  (d) P(X = 2⏐X ≥ 2). 
 
15. Three men and three women enter a room one after the other. If X 

represents the number of women entering the room before any man, 
describe the probability distribution of X, i.e., construct a table representing 
the probability distribution. 

 
16. The probability of "success" in a single Bernoulli trial is p. Let X represent 

the number of successes in three trials. Describe the probability distribution 
of X and show that 

    
3

0
P( ) 1

x
X x

=

= =∑ . 

 
17. In a multiple choice test with 5 questions, there is a choice of 4 answers for 

each question, only one of which is correct, and a student guesses each 
answer. Tabulate the probability distribution of the random variable X 
which represents the number of correct answers given by this student. 
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*18. For a discrete random variable X, P(X = x) = 
2.5e (2.5)

!

x

x

−

 for x = 0, 1, 2, ..  . 

 (a) Find: (i) P(X = 3) ; (ii) P(X > 2) ; 
  (iii) P(X = 3⏐X > 2) ; (iv) {x ⏐ P(X = x) > P(X = x + 1)}. 
 
 (b) Calculate that value of x for which P(X = x) is a maximum. 
 

 (c) Prove that 
0
P( ) 1

x
X x

∞

=

= =∑ . 

 [Hint:  You may find the result 
0

e
!

x
a

x

a
x

∞

=

=∑  useful.] 

 
 
 
14.2 The Mean (or Expected Value) of a Distribution 
 
For a discrete random variable X which can assume the values 1 2 3, , , , nx x x x� , the 
mean or expected value of X is denoted and defined by 

  
1

E( ) P( )
n

i i
i

X x X x
=

μ = = =∑ . 

Just like the mean of a population, it is denoted by the Greek letter μ (mu). 
 
The expected value represents the long-term average of the variable X. In effect, 
multiplying each value of x by its probability gives it a "weight" which depends on 
the likelihood of its occurrence. Summing these weighted values gives an overall 
expectation for X. 
 
Example Consider the probability distribution of the number of heads that 

appear in 3 tosses of a coin. 
 
   x P(X = x) xP(X = x) 
   0   0.125     0.000 
   1   0.375     0.375 
   2   0.375     0.750 
   3   0.125     0.375 

              
3

0
P( ) 1.5

x
x X x

=

= =∑  

 
 The expected number of heads obtained when 3 coins are tossed is 1.5.  
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Example The probability distribution of a random variable X is as follows: 
 
         x   1  2  3 
   P(X = x) 0.2 0.5 0.3 
 
  (a) Find the expected value of X, E(X). 
  (b) Find the expected value of X + a, E(X + a). 
  (c) Find the expected value of aX, E(aX). 
  (d) Find the expected value of 2X , 2E( )X . 
 
 
   x P(X = x) xP(x = x) (x + a)P(x = x) axP(X = x) x2P(X = x) 
   1     0.2     0.2     0.2(1 + a)     0.2a       0.2 
   2     0.5     1.0     0.5(2 + a)     1.0a       2.0 
   3     0.3     0.9     0.3(3 + a)     0.9a       2.7 
 Sum     1.0     2.1     2.1 + a     2.1a       4.9 
 
 
 (a) E(X) = 2.1  (b) E(X + a) = 2.1 + a 
 (c) E(aX) = 2.1a  (d) E( 2X ) = 4.9 
 
Note: E( 2X ) ≠ [ ]2E( )X   2(2.1 4.41 4.9)= ≠ . 
 However the above example does illustrate the following theorem. 
 
Theorem If X is a discrete random variable and a, k are constants, then 
  (a) E(X + a) = E(X) + a ; 
  (b) E(kX) = kE(X) ; 
  (c) E(kX + a) = kE(X) + a. 
 

Proof (a) E(X + a) =  
1

( )P( )
n

i i
i

x a X x
=

+ =∑  

  =  
1 1

P( ) P( )
n n

i i i
i i

x X x a X x
= =

= + =∑ ∑  

  =  E(X) + a. 
 

   (b) E(kX) =  
1

P( )
n

i i
i

kx X x
=

=∑  

    =  
1

P( )
n

i i
i

k x X x
=

=∑  

    =  kE(X). 
 



Chapter 14 

396 

 (c) E(kX + a) =  
1

( )P( )
n

i i
i

kx a X x
=

+ =∑  

  =   
1 1

P( ) P( )
n n

i i i
i i

k x X x a X x
= =

= + =∑ ∑  

  =   kE(X) + a. 
 
Exercise 14.2 
 
1. Find the mean of each of the following discrete probability distributions: 
 (a)     (b) 
  x P(X = x)   x P(X = x) 
  0     0.1    1     0.1 
  1     0.2    2     0.4 
  2     0.4    3     0.5 
  3     0.3 
 
 
 (c)     (d) 
    x P(X = x)     x P(X = x) 
  –1     0.2      4   0.002 
    0     0.3      6   0.040 
    1     0.4      8   0.299 
    2     0.1    10   0.659 
 
2. Find the expected value of X, E(X), for each of the following probability 

distributions: 

 (a) P(X = x) = 
44 2 1

3 3

x x

x

−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
,  x = 0, 1, 2, 3, 4 ; 

 (b) P(X = x) = 

4 3
3
7
3

x x
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ,  x = 0, 1, 2, 3 ; 

 (c) P(X = x) = (1 )x xp p− ,  x = 0, 1 ; 

 *(d) P(X = x) = 1
2

x
⎛ ⎞
⎜ ⎟
⎝ ⎠

,  x = 1, 2, 3, 4, …  . 

 
3. A committee of 3 people is to be selected from 4 men and 2 women. Let X 

represent the number of women chosen. Find the expected value of X. 
 
4. Among 12 transistors, 4 are defective. If 6 transistors are randomly selected, 

how many of them can be expected to be defective? 
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5. Two people, A and B, play a game in which A tosses 3 coins and B tosses 
2 coins. If A obtains more heads than B, B pays A $5; if B obtains more heads 
than A, A pays B $10; if they obtain the same number of heads, A pays B $2. 
Let X represent A's profit from any one game. Find the expected value of X.  

 
6. A manufacturer makes TV sets to order. The cost of manufacture depends on 

the number of sets made. If X sets are ordered in any week, the cost of 
manufacture, $C, is given by C = 400X + 850. From past experience it has 
been determined that the probability distribution for X is given by 

 
    x P(X = x) 
    0     0.02   
    1     0.12   
    2     0.29   
    3     0.39   
    4     0.15 
    5     0.03 
 
 Calculate the expected number of orders to be filled in any one week and the 

expected weekly cost of manufacture. 

7. Two events, A and B are independent with P(A) = 0.4, P(B) = 0.6, and X is a 
discrete random variable for which X = 0 when both events A and B occur, 
X = 1 when only one of the events A and B occurs, and X = 2 when neither 
event A nor event B occurs. Calculate the expected value of X. 

 
8. A company manufactures metal washers of 4 differing diameters. The cost of 

manufacturing each washer is directly proportional to the square of its 
diameter. The unit cost is 6 cents when the diameter is 2 cm, and the 
proportion of the output for each size is given in the following table: 

 
  Diameter (cm)  Proportion of Output 
           2    0.2 
           3    0.4 
           4    0.3 
           6    0.1 
 
 Calculate the average manufacturing cost per washer. 
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Higher Level 

 
14.3 Variance and Standard Deviation 
 
For a discrete random variable X which can assume the values 1 2 3, , , , nx x x x� , 
the variance and standard deviation of X are denoted and defined by 

 2σ  = Var(X) = ( )2E ( )X − μ  = 2

1
( ) P( )

n

i i
i

x X x
=

− μ =∑ ,    and 

 σ   = SD(X) = Var( )X  =  2

1
( ) P( )

n

i i
i

x X x
=

− μ =∑   where μ = E(X). 

 

Just like the variance and standard deviation of a population, we use 2σ  and σ. 
 
The standard deviation gives a measure of the way in which the values are 
spread about the mean. 
 
Example Consider the following the probability distribution.  
 
    x P(X = x) 
   2     0.3 
   3     0.5 
    4     0.2 
 
 Find: (a) Var(X) ; (b) SD(X). 
 
 
 x P(X = x)  xP(X = x) x – μ (x – μ)2 (x – μ)2P(X = x) 
 2     0.3      0.6   –0.9   0.81         0.243 
 3     0.5      1.5     0.1   0.01         0.005 
 4     0.2      0.8     1.1   1.21         0.242 
     μ = Σ = 2.9    Σ = 0.490 
 
 Var(X) =  E 2( )x − μ  =  0.490 ;  SD(X)  =  0.49  =  0.7 
 
An alternative formula for the variance, involving less arithmetic, can be found 
by manipulation of the basic definition. [Compare with the alternative formula 
for the variance of a sample distribution.] 
 

Var(X) =  E 2( )x − μ  

 =  2

1
( ) P( )

n

i i
i

x X x
=

− μ =∑  
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 =  2 2

1
( 2 )P( )

n

i i i
i

x x X x
=

− μ + μ =∑  

 =  2 2

1 1 1
P( ) 2 P( ) P( )

n n n

i i i i i
i i i

x X x x X x X x
= = =

= − μ = + μ =∑ ∑ ∑  

 =  2 2E( ) 2 1X − μ × μ + μ ×  
 =  2 2E( )X − μ  

 =  [ ]22E( ) E( )X X− . 
 
Let us see how the alternative formula works for the variable X in the previous 
example. 
 
 
  x x2 P(X = x) xP(X = x) x2P(X = x) 
  2   4     0.3      0.6       1.2 
  3   9     0.5      1.5       4.5 
  4 16     0.2      0.8       3.2 
       Σ = 2.9    Σ = 8.9 
 
 Var(X) = [ ]22E( ) E( )X X−  

  =  8.9 – 2(2.9)  
  =  0.49. 
 
Theorem If X is a discrete random variable and a, k are constants, then 
  (a) SD(X + a) = SD(X) ; (b) SD(kX) = kSD(X) ; 
  (c) SD(kX + a) = kSD(X). 
 
Proof (a) Var(X + a) 

 =  [ ]22

1
( ) P( ) E( )

n

i i
i

x a X x X a
=

+ = − +∑  

 =  2 2

1 1 1
P( ) 2 P( ) P( )

n n n

i i i i i
i i i

x X x a x X x a X x
= = =

= + = + = −∑ ∑ ∑  

      [ ]2 2E( ) 2 E( )X a X a− −  

 =  [ ]22 2 2E( ) E( ) 2 E( ) 2 E( )X X a X a X a a− + − + −  
 =  Var(X) 
 
  ⇒ SD(X + a) = SD(X). 
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 (b) Var(kX) 

 =  [ ]222

1
P( ) E( )

n

i i
i

k x X x kX
=

= −∑  

 =  [ ]222 2

1
P( ) E( )

n

i i
i

k x X x k X
=

= −∑  

 =  [ ]( )22 2E( ) E( )k X X−  

 =  2k Var(X)  
 
  ⇒ SD(kX) = kSD(X). 
 
 (c) Var(kX + a) 

 =  [ ]22

1
( ) P( ) E( )

n

i i
i

kx a X x kX a
=

+ = − +∑  

 =  22 2

1 1 1
P( ) 2 P( ) P( )

n n n

i i i i i
i i i

k x X x ka x X x a X x
= = =

= + = + =∑ ∑ ∑  

         – [ ]2E( )k X a+  

 =  2 2 2 2 2 2E( ) 2 E( ) [E( )] 2 E( )k X ka X a k X ka X a+ + − − −  

 =  [ ]( )22 2E( ) E( )k X X−  

 =  2k Var(X) 
 
 ⇒ SD(kX + a) = kSD(X). 
 
 
Theorem For independent random variables X and Y, 
  (a) E(X ± Y) = E(X) ± E(Y) ; 
  (b) Var(X ± Y) = Var(X) + Var(Y). 
 
The proof is left as an exercise for the reader. 
 
 
 
 
 
 
 
 
 



 Statistics 2  

 401 

 
Exercise 14.3 
 
1. Find the mean and standard deviation of each of the following random 

variables X with the given probability distributions: 
 
 (a)    (b) 
  x P(X = x)  x P(X = x) 
  0      1

16    0   0.264 
  1      1

4    1   0.494 
  2      3

8    2   0.220 
  3      1

4    3   0.022 
  4      1

16  
 
2. The random variable X has the following probability distribution: 
 
   x  P(X = x) 
   2        a 
   4   2a2 – a 
   6 a2 + a – 1 
 
 Find: 
 (a) the value of a ; (b) E(X) ; (c) Var(X) ; (d) SD(X). 
 
3. Find the mean and standard deviation of the random variable X whose 

probability distribution is defined by: 

 (a) P(X = x) = 44
(0.2) (0.8)x x

x
−⎛ ⎞

⎜ ⎟
⎝ ⎠

,  for x = 0, 1, 2, 3, 4 ; 

 

 (b) P(X = x) = 

6 4
4

10
4

x x
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

,  for x = 0, 1, 2, 3, 4. 

 
4. A debating team of 4 is to be chosen from 6 girls and 3 boys. Let X be the 

number of boys chosen. Find: 
 (a) E(X) ; (b) Var(X) ; (c) SD(X). 
 
5. An urn contains 5 red and 3 blue marbles. Three marbles are drawn at 

random from the urn. Find the mean and standard deviation of the number 
of red marbles chosen. 
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6. From an urn containing 4 red and 6 blue marbles, marbles are drawn 

(without replacement) until a blue marble is drawn. If X represents the 
number of marbles drawn, including the final blue one, find the mean and 
standard deviation of X. 

 
7. Three men and three women enter a room one at a time. Let X represent the 

number of women who enter before the first man enters. Find E(X) and 
Var(X).   [The probability distribution of X has already been found in 
Question 15 of Exercise 14.1.] 

 
8. Given that the mean and variance of 1 2 3, , , , nx x x x�  are 2 and μ σ  

respectively, state the mean and variance of 
 (a) 1 2 33 , 3 , 3 , , 3 nx x x x�  ; 
 (b) 1 2 32 3 , 2 3 , 2 3 , , 2 3 nx x x x− − − −� . 
 
9. If X and Y are independent random single digit numbers from 1 to 9 

inclusive, calculate the variance of 
 (a) X ; (b) 3X ; (c) X + Y ; (d) 3X – Y. 
 
10. Four different letters are to be put one each into four differently addressed 

envelopes. Only one envelope is the correct one for any given letter. Let X 
represent the number of letters which are placed in the correct envelope. 
Find the mean and standard deviation of X.   [It can be shown that as the 
number of letters increases, the probability that not one single letter is 
placed in its correct envelope, i.e., P(X = 0), approaches 1e−  ≈ 0.36788!] 

 
 

Higher Level 
 

14.4 The Bernoulli and Binomial Distributions 
 
The Bernoulli Distribution 
 

A discrete random variable X for which 1P( ) (1 )x xX x p p −= = −  where 
0 1p≤ ≤  and x = 0 or 1 is said to have a Bernoulli distribution. 
 
We write X ∼ B(1, p). 
 
If X ∼ B(1, p) then P(X = x) gives the probability of x "successes" in a single 
Bernoulli trial with parameter p representing the probability of a success in that 
trial. 
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The probability distribution table for X is 
 

x    0 1 
P(X = x) 1 – p p 

 
The mean of X ∼ B(1, p) is 0(1 – p) + 1(p) = p 
and the variance is 2 2 20 (1 ) 1 ( )p p p− + −  = p(1 – p). 
 
Thus if X ∼ B(1, p) then E(X) = p     and     Var(X) =  p(1 – p). 
 
The Binomial Distribution 
 
A discrete random variable X for which 

  P(X = x) = (1 )x n xn
p p

x
−⎛ ⎞

−⎜ ⎟
⎝ ⎠

,  where 0 1p≤ ≤ , for x = 0, 1, 2, 3,  …  , n 

is said to have a binomial distribution. 
 
We write X ∼ B(n, p). 
 
If X ∼ B(n, p) then P(X = x) gives the probability of exactly x successes in n 
independent Bernoulli trials where the parameter p represents the probability of 
success in any one trial. 
 
In order to establish the formula for the mean of a binomial random variable, we 
need the following theorem: 

Theorem 
1
1

n n
r n

r r
−⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
,  for 1 r n≤ ≤ . 

 

Proof 
1
1

n
n

r
−⎛ ⎞

⎜ ⎟−⎝ ⎠
 =  ( 1)!

( 1)!( )!
n n

r n r
−

− −
 

  =  !
!( )!

rn
r n r−

 

  =  
n

r
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Theorem The mean of a binomial random variable X in which n independent 

trials are performed and the probability of success in any trial is p 
is given by 

    E(X) = np. 
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*Proof    E(X) =  
0

P( )
n

x
x X x

=

=∑  

  =  
0

(1 )
n

x n x

x

n
x p p

x
−

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑  

  =  
1

(1 )
n

x n x

x

n
x p p

x
−

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑    (since the first term is zero) 

  =  
1

1
(1 )

1

n
x n x

x

n
n p p

x
−

=

−⎛ ⎞
−⎜ ⎟−⎝ ⎠

∑    (from the previous theorem) 

  =  1

1

1
(1 )

1

n
x n x

x

n
np p p

x
− −

=

−⎛ ⎞
−⎜ ⎟−⎝ ⎠

∑  

  =  1 ( 1) ( 1)

1

1
(1 )

1

n
x n x

x

n
np p p

x
− − − −

=

−⎛ ⎞
−⎜ ⎟−⎝ ⎠

∑  

  =  
1

( 1)

0

1
(1 )

n
x n x

x

n
np p p

x

−
− −

=

−⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑  

  =  ( ) 1[1 ] nnp p p −+ −     (binomial theorem) 
  =  np. 
 
The variance of a binomial distribution B(n, p) is Var(X) = np(1 – p). 
 
Note: The proof of this result is beyond the scope of this text. 
 
Thus if X ∼ B(n, p) then E(X) = np and Var(X) = np(1 – p). 
 
 
Example A die is tossed 180 times. Find the mean and standard deviation of 

the random variable representing the total number of sixes 
obtained. 

 
 Let X represent the number of sixes obtained. Here n = 180 and  

p = 1
6 . 

 Therefore  E(X) = 180 × 1
6  = 30, and SD(X) = 51

6 6180× ×  = 5. 
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Exercise 14.4 
 
1. A binomial experiment consists of n = 5 independent trials, each with a 

probability of success of p = 0.2. If X represents the number of successes in 
the experiment, show that 

 (a) 
5

0
P( )

x
x X x np

=

= =∑  ; (b) 
5

2

0
( ) P( ) (1 )

x
x X x np p

=

− μ = = −∑ . 

 
2. An urn contains 6 red and 4 blue balls. Three balls are taken from the urn 

one at a time with replacement. Let X represent the number of red balls 
chosen. Find 
(a) the probability all three balls are red ; 
(b) the probability at least one ball is blue ; 
(c) E(X) ; 
(d) Var(X). 

 
3. A card is selected from an ordinary deck of 52 cards then replaced before a 

second card is selected. This procedure is carried out 10 times. If X 
represents the number of spades selected, find 

 (a) P(X = 4) ; (b) P(X < 4) ; (c) P(X = 4 ⏐ X ≥ 1) ; 
 (d) E(X) ;  (e) Var(X) . 
 
4. Calculate the mean and variance of the number of successes resulting from 

a binomial experiment in which 
 (a) the number of trials is 10 and the probability of success is 0.5 ; 
 (b) the number of trials is 100 and the probability of success is 0.2 ; 
 (c) the number of trials is 48 and the probability of success is 0.25 ; 
 (d) the number of trials is 150 and the probability of success is 0.6. 
 
5. If in a binomial experiment of n trials, the probability of success is p and 

the mean and variance are 3 and 2 respectively, find the probability of 
  (a) exactly 1 success ; 
 (b) at least 1 success. 
 
6. If an unbiased die is tossed 12 times and X represents the number of sixes 

obtained, find the probability that the value of X lies within one standard 
deviation of the mean, i.e., find P(μ – σ < X < μ + σ). 
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14.5 The Poisson Distribution 
 

A discrete random variable X for which P( ) e
!

x

X x
x

−λ λ
= =  for x = 0, 1, 2,  …. 

where λ > 0, is said to have a Poisson distribution with parameter λ. 
 
We write Po( )X λ∼ . 
 
Typical events which could have a Poisson distribution: 
(1) the number of customers arriving at a supermarket checkout per minute ; 
(2) the number of telephone calls per minute to the front office of a school ; 
(3) the number of cars per minute passing a given point on a road ; 
(4) the number of α-particles emitted per second by a radioactive source ; 
(5) the number of times a teacher is late for class in a given week. 
 
Example Given that Po(3)X ∼ , find 
  (a) P(X = x) for x = 0, 1, 2 and 3 ; 
  (b) P(X ≤ 2) ; 
  (c) P(X ≥ 1). 
 

 (a) P(X = 0) = 
0

3 3e
0!

−  = 0.0498. 

  P(X = 1) = 
1

3 3e
1!

−  = 0.149. 

  P(X = 2) = 
2

3 3e
2!

−  = 0.224. 

  P(X = 3) = 
3

3 3e
3!

−  = 0.224. 

 
 (b) P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.423. 
 
 (c) P(X ≥ 1) = 1 – P(X = 0) = 0.950. 
 
 
Example Telephone calls arriving at the front office of a school follow a 

Poisson distribution at an average of 2 calls per minute. Find the 
probability that in a given minute 

  (a) 4 calls arrive ; 
  (b) more than 4 calls arrive. 
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 (a) P(4 calls arrive) = 
4

2 2e
4!

−  = 0.0902. 

 (b) P(more than 4 calls arrive) 
  = 1 – P(less than or equal to 4 calls arrive) 

  = 1 – 
0 1 2 3 4

2 2 2 2 2 2e
0! 1! 2! 3! 4!

− ⎛ ⎞
+ + + +⎜ ⎟

⎝ ⎠
 

  = 1 – ( )2 4 2
3 3e 1 2 2− + + + +  

  = 1 – 27e−  
  = 0.0527. 
 
This last example illustrates the fact that the probability that X takes relatively 
large values is quite small. 
 
Example If X = Po(1.5), find 
  (a) P(X = 2) ; 
  (b) P(X ≥ 1) ; 
  (c) P((X = 2)⏐ (X ≥ 1)). 
 

 (a) P(X = 2) = 
2

1.5 1.5e
2!

−  = 0.251. 

 (b) P(X ≥ 1) = 1 – P(X = 0) = 0.777. 

 (c) P((X = 2)⏐ (X ≥ 1)) = P( 2)
P( 1)

X
X

=
≥

 = 0.323. 

 
The Mean and Variance of a Poisson Variable 
 
If X ∼ Po(λ), then E(X) = λ and Var(X) = λ. 
 
 
Example The random variable X follows a Poisson distribution with standard 

deviation 2. Find 
  (a) the mean of X, E(X) ; 
  (b) P(X > 2). 
 
 Var(X) = 22 = 4 and so the parameter λ = 4. 
 (a) E(X) = 4. 
 (b) P(X > 2) = 1 – (P(0) + P(1) + P(2)) 

     = 1 – 
0 1 2

4 4 4 4e
0! 1! 2!

− ⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
 

     = 0.762. 
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Example A school office receives 5 calls on average between 9.00 and 10.00 

on each weekday. Find the probability that 
  (a) the office receives 6 calls between 9.00 and 10.00 on this 

Wednesday ; 
 (b) the office will receive exactly 3 calls between 9.15 and 

9.30 ; 
 (c) the office will receive 3 calls between 9.15 and 9.30 on 

exactly 2 days during a given week. 
 
 (a) Let X represent the random variable: "the number of calls between 

9.00 and 10.00 on a weekday". Then X ∼ Po(5). 
  The probability that the office receives 6 calls between 9.00 and 

10.00 on Wednesday = P(X = 6) = 
6

5 5e
6!

−  = 0.146. 

 
 (b) The average number of calls between 9.15 and 9.30 on Weekdays 

is 1.25. Let Y represent the random variable: "the number of calls 
in the given 15 minutes". The Y ∼ Po(1.25). 

  The probability that the office will receive exactly 3 calls between 

9.15 and 9.30 = P(Y = 3) = 
3

1.25 1.25e
3!

−  = 0.0933. 

 

 (c) The required probability = 2 35
(0.09326) (0.90674)

2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.0648. 

 
The Poisson Distribution as an Approximation to the Binomial Distribution 
 
If X is a random variable and the probability of success p in n independent trials 
of X is very small, then calculations of the binomial distributions can be very 
difficult to perform if n is large. However, the corresponding calculations of 
Poisson distributions with parameter λ are much simpler. 
 
Example The probability that a piece of fruit is bruised on delivery to a 

supermarket is 0.005. What is the probability that in a box 
containing 200 pieces of fruit, at least three pieces of fruit are 
bruised? 

 
 1. Using a binomial distribution B(200, 0.005) 
 
  P(at least 3 pieces of fruit are bruised) 
  = 1 – P(0, 1 or 2 pieces of fruit are bruised) 
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 = 1 – 200 199 2 198200 200
0.995 (0.005)(0.995) (0.005) (0.995)

1 2
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪+ +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 

  = 0.0798 . 
 
 2. Using a Poisson distribution ∼ Po(1)   [np = 200 × 0.005 = 1] 
 
  P(at least 3 pieces of fruit are bruised) 
  = 1 – P(0, 1 or 2 pieces of fruit are bruised) 

  = 1 – 
1 1

1 e ee
1! 2!

− −
−⎧ ⎫⎪ ⎪+ +⎨ ⎬

⎪ ⎪⎩ ⎭
 

  = 0.0803 . 
 
The results are very close but the calculations required by the Poisson model are 
much easier to perform. 
 
 It can be shown that if n is large ( ≥ 50 ), p is very small and np ≤ 5, then 

the binomial distribution can be approximated by the Poisson distribution 
with parameter λ = np. 

 
 
Example Suppose that 1% of people in a large population are over 2 metres 

tall.  What is the probability that from a group of 200 people 
selected at random from this population, at least four people will be 
over 2 metres tall? 

 
 n = 200, p = 0.01 and so np = 2 
 
 We use a Poisson distribution with parameter λ = 2. 
  Let X represent the number of people over 2 metres tall. 
 We require P(X ≥ 4) =   1 – P(X ≤ 3) 

  =   
2 3

2 2 2 21 e 1
1 2 6

− ⎛ ⎞
− + + +⎜ ⎟

⎝ ⎠
 

  =   0.143 . 
 
 
The Distribution of two Independent Poisson Variables 
 
 If X1 is a random variable following a Poisson distribution with parameter 

λ1 and X2 is a random variable independent of X1 and following a Poisson 
distribution with parameter λ2, then X1 + X2 also follows a Poisson 
distribution with parameter λ1 + λ2 . 
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Note: This result may be extended to any number of independent Poisson 

variables. 
 
Example Coffee and tea are sold in a given cafeteria. The number of cups of 

coffee sold per minute is a Poisson variable with mean 1.5 and the 
number of cups of tea sold per minute may be assumed to be an 
independent Poisson variable with mean 0.5. 

 
 (a) Calculate the probability that in a given one-minute period 

exactly one cup of tea and one cup of coffee are sold. 
 
 (b) Calculate the probability that in a given three-minute period 

fewer than 5 drinks altogether are sold. 
 
 (c) In a given one-minute period exactly 2 drinks are sold. 

Calculate the probability that both were drinks of coffee. 
 
 Let X represent the number of cups of coffee sold per minute and Y the 

number of cups of tea sold per minute. 
 
 Then X = ∼ Po(1.5) and Y ∼ Po(0.5). 
 
 (a) The required probability =  P(X = 1) × P(Y = 1) 
   =  1.5 0.5e (1.5) e (0.5)− −×  
   =  0.102 . 
 
 (b) Let 1X  ∼ Po(4.5) and 1Y  ∼ Po(1.5) . 
  Let Z = 1 1X Y+ , then Z is a Poisson variable with a mean of 6. 
 

  We require P(Z < 5) = 
2 3 4

6 6 6 6e 1 6
2! 3! 4!

− ⎛ ⎞
+ + + +⎜ ⎟

⎝ ⎠
 = 0.285 . 

 (c) Here Z = X + Y and so Z ∼ Po(2). 
  We require P((X = 2) ⏐ (Z = 2))   

  =  P( 2  and  0)
( 2)

X Y
P Z

= =
=

  =  
1.5 2 0.51

2
2 21

2

e (1.5) e
e (2)

− −

−

× ×

×
  =  0.5625 . 

 
Exercise 14.5 
 
1. If X ∼ Po(2), find 
 (a) P(X = 0) ; (b) P(X = 1) ; (c) P(X = 2) ; 
 (d) P(X < 3) ; (e) P(X ≥ 3) . 
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2. If X ∼ Po(1.5), find 
 (a) P(X = 4) ; (b) P(X ≤ 5) ; (c) P((X = 4) ⏐ (X ≤ 5)) . 
 
3. If X is a Poisson variable with mean λ and P(X = 0) = 0.150, find 
 (a) λ ; (b) P(X ≥ 5) . 
 
4. If X is a Poisson variable with mean λ and P(X ≤ 1) = 0.2873, find 
 (a) λ ; (b) P((X = 2) ⏐ (X ≤ 4)) . 
 
5. If X ∼ Po(λ) and E( 2X ) = 12, find 
 (a) E(X) ; (b) P(X = 3) . 

 
6. A piece of radioactive material emits α-particles at an average rate of 3.2 

per second. Find the probability that in a given second 
 (a) exactly 4 particles are detected ; 
 (b) less than 3 particles are detected ; 
 (c) at least 2 particles are detected. 
 
7. On average, I receive 4 e-mails per day via my home computer. Find the 

probability that on a given day, I receive 
 (a) exactly 2 e-mails ; 
 (b) no e-mails ; 
 (c) at least 3 e-mails. 
 
8. Cars arrive at a given intersection at an average rate of 2.5 per minute. Find 

the probability that 
 (a) exactly 4 cars arrive in a given minute ; 
 (b) exactly 4 cars arrive in a given 2 minutes. 
 
9. Telephone calls arriving at the school office follow a Poisson distribution 

with an average rate of 0.6 per minute. Find the probability that 
 (a) the office receives at least 2 calls in a given minute ; 
 (b) the office receives 7 calls in a space of 10 minutes ; 
 (c) the office receives only 3 calls in a given 5 minutes ; 
  (d) no calls arrived while the Secretary was out of the office for 6 

minutes. 
 

10. Goals scored by a given team in any football match follow a Poisson 
distribution with parameter 1.5. Find the probability that in the next match 
played by this team, the team scored 

 (a) no goals ; 
 (b) 2 goals in the first half ; 
 (c) 3 goals in the first 30 minutes of a 90-minute game. 
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11. A typist makes an average of 3 errors per page. What is the probability that 

the typist makes 
 (a) exactly 2 errors on the first page ; 
 (b) no errors on the second page ; 
 (c) exactly 5 errors on the first two pages? 
 
12. Telephone calls arriving at the school office follow a Poisson distribution 

with an average rate of 1.5 every 2 minutes. Find the probability that 
 (a) at least 1 call arrives in the first minute ; 
 (b) exactly 5 calls arrive in the first 6 minutes ; 
 (c) exactly 6 calls arrive between 11.30 and 11.40 on exactly 2 days of 

a 5-day week. 
 
13. A factory packs small electrical components into boxes of 500. The 

probability that a given component is defective is 0.004. Find the 
probability that a given box contains 5 defective components using a 
Poisson approximation. 

 
14. Two dice are tossed 54 times. Calculate the probability that at least two 

"double sixes" were obtained. 
 
15. Electrical components are packed into boxes of 100. It has been found that 

on average 1.5% of these components are in fact faulty. Find the 
probability that in a given box there are at least 5 faulty components. 

 
16. In a large consignment of packets of flour, 4% of the packets are under-

weight. Random samples of 10 packets are examined. If 100 such samples 
are examined, how many samples of 10 packets would be expected to 
contain not more than one underweight packet? 

 
17. Two independent variables X and Y have Poisson distributions with means 

λ and 2λ respectively. Show that for every non-negative integer r, 
   P(X = r and Y = r + 2) = 4P(X = r + 2 and Y = r) . 

 
18. The Poisson random variable X has a mean of 2.7 and the independent 

Poisson variable Y has a mean of 2.5 . 
 (a) Calculate 
  (i) P(X = 2) ; 
 (ii) P(Y = 3) ; 
  (iii) P(X = 2  and  Y = 3) . 
 
 (b) Given  X + Y = 5, find P(X < Y) . 
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19. Let X be a random variable with a Poisson distribution such that 

Var(X) = 2(E(X))2 – 1. 
 (a) Find E(X) . 
 (b) Find P(X ≤ 2) . 
 
 Let Y be another random variable independent of X with a Poisson 

distribution such that E(Y) = 1.5 . 
 (c) Find P(X + Y < 3) . 
 (d) Let Z = 2X + Y . 
  (i) Find the mean and variance of Z. 
  (ii) Does Z have a Poisson distribution? Give a reason for your 

answer. 
 
 
14.6 The Normal Probability Distribution 
 
One of the most common continuous probability distributions is the normal 
distribution. Measured quantities such as age, height, mass and life-times of batteries 
etc., have a normal distribution. 
 
These distributions begin with low frequencies, rising to a maximum near the centre 
and falling away to low frequencies again. The shape of the probability density 
function of such a random variable is 'bell-shaped'. 
 
 

    
 
 

The equation of this probability density function is 
21 1exp

22
xy

⎛ ⎞− μ⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟σσ π ⎝ ⎠⎝ ⎠
, 

[exp( ) e ]xx = . How this equation is derived is beyond the scope of this book. 
However, the following properties should be known: 
(1) The function is completely defined by the mean μ and the variance σ2 of the 

distribution. For a normal variable X we write 2N( , )X μ σ∼ . 
(2) The values of the function are positive for all values of x. 
(3) The total area under the curve is 1. 
(4) The curve is symmetrical about the line x = μ and so the mean, mode and 

median of the distribution all coincide. 

 y 

 x 

Probability Density Function of 
a Normal Random Variable 
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(5) Almost all of the population, 99.7%, lies in the interval [ 3 , 3 ]μ − σ μ + σ ; 
about 95% lies in the interval [ 2 , 2 ]μ − σ μ + σ ; about 67% lies in the interval 
[ , ]μ − σ μ + σ . 

(6) The probability that X takes a value between a and b is the area between the 
curve and the x-axis between the lines x = a and x = b. 

 
 

   
 
 
 
 Thus P(a < X < b) is equal to the shaded area. 
 
Normal distribution curves will differ in location and degree of spread according to 
the values of the parameters μ and σ respectively. 
 
 (a)     (b) 
 

             
 
 
 
In diagram (a), the curves differ in location but have the same degree of spread. That 
is, σ is the same for both but μ is different. In diagram (b), the curves have the same 
location but different degrees of spread. That is, μ is the same for both but σ is 
different. 
To calculate a given area under this curve is outside the scope of this course. Added 
to this, there are an infinite number of normal distributions each with its own 
probability density function. Fortunately a set of tables from which any area can be 
found is readily available. But in order to use these tables, the normal variable X must 
be transformed into what we call the standard normal variable denoted by 

N[0,1]Z ∼ . That is Z is a normal variable with mean 0 and variance 1. It is areas 
under this curve which are given in the tables. 

  x 

μ 
μ + 2σ μ – 2σ a b 

 y 

x 

 y  y 

  1μ    2μ  μ 
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To transform X to the standard normal Z, we use the transformation formula 
 

     xz − μ
=

σ
. 

 

Thus  
21 1( ) exp

22
xy f x

⎛ ⎞− μ⎛ ⎞= = −⎜ ⎟⎜ ⎟⎜ ⎟σσ π ⎝ ⎠⎝ ⎠
 

 

becomes  21 1( ) exp
22

f z y z⎛ ⎞= σ = −⎜ ⎟π ⎝ ⎠
 . 

 
The tables provide us with values of the probability P(Z < z) for positive values of z. 
 
 
 

     
 
 
This cumulative probability is denoted by ( )zΦ , i.e., ( ) P( )z Z zΦ = < . 
 
Note: Many GDCs can be used to find the value of ( )zΦ  for any value of z. 
 
In using standard normal tables (or a GDC), it is sensible to draw a diagram 
indicating the area to be found. 
 
Example If N(0,1)Z ∼ , find 
  (a) P( 0.6)Z <  ;  (b) P( 1.5)Z >  ; 
  (c) P( 0.3)Z > −  ;  (d) P( 1.2 0.2)Z− < < . 
 
 (a) P( 0.6) (0.6)Z < = Φ  which is the shaded area in the following 

diagram. 
 
 

     
 
 
   P( 0.6) (0.6) 0.726Z < = Φ =  (tables or GDC) 

–3 3 

 y 

z 

( )y f z=  

z 

0.6 
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 (b) P( 1.5)Z >  is the area shaded in the following diagram. 
 

     
 
 
  P( 1.5) 1 P( 1.5) 1 (1.5) 1 0.9332 0.0668Z Z> = − < = − Φ = − = . 
 
 (c) P( 0.3)Z > −  is the shaded area in the following diagram. 
 

    
 
 
  P( 0.3) P( 0.3) (0.3) 0.618Z Z> − = < = Φ =  (by symmetry). 
 
 (d) P( 1.2 0.2)Z− < <  is the shaded area in the following diagram. 
 

    
 
 
  P( 1.2 0.2) ( 0.2) [1 ( 1.2)]Z P Z P Z− < < = < − − <  
       0.5793 [1 0.8849]= − −  
       0.464= . 
 
Example If X is a normal variable with mean 100 and standard deviation 5, 

find P( 108)X >  and P(97 102)X< < . 
 

 108P( 108) P P( 1.6)X Z Z− μ⎛ ⎞> = > = >⎜ ⎟σ⎝ ⎠
 which is the shaded area in the 

diagram at the top of the next page. 
 
 

1.5 

–0.3

–1.2 0.2 
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 The required probability = 1 – (1.6)Φ  = 0.0548. 
 

 97 100 102 100P(97 102) P P( 0.6 0.4)
5 5

X Z Z− −⎛ ⎞< < = < < = − < <⎜ ⎟
⎝ ⎠

 which is 

the shaded area in the following diagram. 
 

     
 
 
 That is P(97 102) (0.4) [1 (0.6)] 0.6554 0.2743 0.381X< < = Φ − − Φ = − = . 
      
Example Five percent of the values of a normal variable X are greater than 

32.3 and three percent of the values are less than 27.1. Find the mean 
and standard deviation of X. 

 

    
 
 
 
 From tables, or a GDC, we find P(Z < 1.645) = 0.95 and P(Z < 1.881) = 0.97. 
 
 Thus z1 = –1.881  and  z2 = 1.645. 

 This gives 27.1 32.31.881  and  1.645− μ − μ
= − =

σ σ
. 

 Hence 27.1 – μ = –1.881σ 
 and 32.3 – μ = 1.645σ. 
 Subtracting these equations gives 5.2 = 3.526σ and so σ = 1.47. 

1.6 

–0.6 0.4 

0.05 0.03 

27.1 32.3 x 
z1 z2 z 
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 Finally we find μ = 29.9. 
 
 Therefore X has mean 29.9 and standard deviation 1.47. 
 
Example A lathe turns out cylinders with a mean diameter of 2.16 cm and a 

standard deviation of 0.08 cm. Assuming that the distribution of 
diameters is normal, find the limits to the acceptable diameters if it is 
found that 5% in the long run are rejected because they are oversize 
and 5% are rejected because they are undersize. 

 
 Each of the shaded areas in the following figure is 5% of the total area. Using 

the given tables for the standard normal distribution, we find that the required 
values of z are z = ± 1.645. 

 Now z = 2.16
0.08

x −   which gives x = 2.16 ± 0.08 × 1.645 = 2.29  or  2.03 

which are the acceptable limits. 
 
 

     
 
 
 
 
 
 
Exercise 14.6 
 
1. For the standard normal variable Z, find 
 (a) P(Z < 1.8) ; (b) P(Z > 0.568) ; (c) P(0.345 < Z < 1.212). 
 
2. For the normal variable X with mean 50 and standard deviation 2, find 
 (a) P(X > 45) ; (b) P(X < 48) ; (c) P(45 < X < 49). 
 
3. If N(0,1)Z ∼ , find the  value of a if 
 (a) P(Z < a) = 0.8159 ;  (b) P(Z < a) = 0.3446 ; 
 (c) P(Z > a) = 0.409 ;  (d) P(Z > a) = 0.9505. 
 
 
 

z  –2 –1 0 1 2 

z = 1.645 
x = 2.29 

z =  –1.645 
x = 2.03 

 y 
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4. If  N(0,1)Z ∼ , find the value of a if 
 (a) P( ) 0.05Z a> =  ;  (b) P( ) 0.025Z a> =  ; 
 (c) P( ) 0.9Z a< =  ;  (d) P( ) 0.98Z a< = . 
 
5. If N(20, 4)X ∼ , find 
 (a) P(X > 18) ;   (b) P(X < 21) ; 
 (c) P(⏐X – μ⏐< 1.5) ;  (d) P(⏐X – μ⏐ > 2σ). 
 
6. A normal variable X has a mean of 38.6 and a variance of 10. Find the 

probability that a value of X selected at random  
 (a)  is less than 35.3 ;  (b) differs from 40 by at least 3. 
 
7. The masses of flour packed by a machine are normally distributed with a 

mean of 1 kilogram and a standard deviation of 8 gram. Find the probability 
that a packet of flour from the machine has a mass which is 

 (a) less than 990 gram ;   (b) more than 1015 gram. 
 
8. The random variable X is normally distributed with a standard deviation of 3. 

If P(X < 25) = 0.06, find the mean of X. 
 
9. Steel rods are manufactured and their diameters have a mean of 5 cm. 

However, the rods are only considered acceptable if their diameters are 
between 4.98 cm and 5.02 cm. In the long run, 5% of the diameters are found 
to be too large and 5% are found to be too small. If the diameters are 
normally distributed, find the distribution's standard deviation. 

 
10. For a normally distributed random variable X, 5% of the values are less than 

65.4 and 10% of the values are greater than 69.8. Find the mean and standard 
deviation of X. 

 
11. If X is a normally distributed random variable with mean 15, and the 

probability that X is greater than 17 is 0.245, find 
 (a) the standard deviation of X ; 
 (b) P(X < 14) ; 
 (c) P(X < 14 ⏐ X < 17) ; 
 (d) the value of x for which P(X > x) = 0.75. 
 
12. The continuous random variable X is normally distributed. If P(X < 65) = 0.02 

and P(X < 85) = 0.98, find the interquartile range of the distribution. 
 
13. A manufacturer of light bulbs finds that the life-times of his products are 

normally distributed with a mean of 1500 burning hours and a standard 
deviation of 250 hours. 
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 (a) What is the probability that a bulb selected at random has a life-time of 
between 1300 hours and 1600 hours? 

 (b) In a batch of 100 bulbs, how many would be expected to last for more 
than 1800 hours? 

 (c) Find the probability that in a randomly selected batch of 5 globes, none 
of them will last longer than 1350 hours. 

 
 

Required Outcomes 
 
 After completing this chapter, a student should be able to: 

• draw up a probability table for a number of discrete distributions. 
• find the mean of a discrete distribution. 
• find the variance and standard deviation of a discrete distribution whose 

probability table is known.  (HL) 
• find the mean (SL) and standard deviation of a given binomial probability 

distribution. 
• use the Poisson distribution in a variety of situations. (HL) 
• convert a given normal probability to standard normal and use tables or a 

GDC to calculate probabilities of a normal distribution. 
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15.1 Antiderivatives and the Integral Notation 
 
In our work in the differential calculus chapters we considered methods for finding 
the derivative ( )f x′  corresponding to a given function ( )f x . We now consider the 
reverse problem of finding ( )f x  when ( )f x′  is known. This process is known as 
integration. 
 
If ( ) ( )F x f x′ = , then ( )f x  is the derivative of ( )F x , but ( )F x  is called an anti-
derivative or primitive of ( )f x . 
 
We say an antiderivative since a given function can have infinitely many anti-

derivatives. For example, ( ) ( ) ( )3 2 3 2 3 2d d d3 , 5 3 , 3
d d d

x x x x x x
x x x

= − = + π =  and so 

3 3, 5x x −  and 3x + π  are all antiderivatives of 23x . 
 
Theorem Any two antiderivatives of ( )f x  differ by a constant. 
 
Proof Let 1 2( ) and ( )F x F x  be any two antiderivatives of ( )f x . 

 Then ( )1 2
d ( ) ( )
d

F x F x
x

−  =  ( ) ( )1 2
d d( ) ( )
d d

F x F x
x x

−  

  =  ( ) ( )f x f x−  
  =  0. 
 But only the derivative of a constant is zero. 
 Therefore 1 2( ) ( )F x F x−  = constant. 
 Thus any two antiderivatives of ( )f x  differ by a constant. 
 

Since any two antiderivatives of 23x  differ by a constant, we denote all 
antiderivatives of 23x  by 3x c+  where c is an arbitrary constant. 
 

We write  2 33 dx x x c= +∫  where the symbol " d "x∫  means "the integral with 
respect to x". We call this an indefinite integral. 
The function between " ∫ " and "dx" is called the integrand. [The function to be 
integrated.] 
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For example 3 45
45 dx x x c= +∫   and  1 d 2x x c

x
= +∫ . 

 

The rule is: 11d
1

n nx x x c
n

+= +
+∫ , provided n ≠ –1. 

 
 
Example Write down three differing antiderivatives of 23 6 2x x− + . 
 
 One antiderivative is 3 23 2x x x− + . 
 Two others are 3 23 2 1x x x− + +  and 3 23 2x x x− + − π . 
 
Example Integrate each of the following functions with respect to x: 

  (a) 2(3 1)x −  ; (b) 
22 3 4x x

x
− + . 

 
 (a) 2 2 3 2(3 1) d (9 6 1) d 3 3x x x x x x x x c− = − + = − + +∫ ∫  

 (b) 
22 3 4  dx x x

x
− +

∫  =  ( )3 2 1 2 1 22 3 4  dx x x x−− +∫  

   =  5 2 3 2 1 24
5 2 8x x x c− + + . 

 
Example Find an antiderivative of (3x + 1)(x + 3) which is zero when x = –1. 
 

 All antiderivatives of (3x + 1)(x + 3) = 23 10 3x x+ +  are of the form 
3 2( ) 5 3F x x x x c= + + +  where c is an arbitrary constant. 

 Now F (–1) = –1 + 5 – 3 + c = 0 when c  = –1. 
 The required antiderivative is 3 25 3 1x x x+ + − . 
 

Example A car travelling at 130 m s−  has its brakes applied and comes to rest 
after 2 s . Assuming that the acceleration was constant, find the 
acceleration and the distance travelled by the car as it came to rest. 

 

 a = d
d
v
t

 = –k  where k is a positive constant 

 Therefore 1v kt c= − +  [v is the integral of a with respect to time]. 
 When t = 0, v = 30 and so 1 30c = ; when t = 2, v = 0 and so 2k = 30 which 

gives k = 15. 
 The acceleration is 215 m s−− . 
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 Now 30 15v t= −  and the distance travelled is given by  215
2230s t t c= − +  

[where s is the integral of v with respect to time]. 
 
 At t = 0, 2s c=  and when t = 2, 230s c= + . 
 The distance travelled is 30 m. 
 
Example A train starts from rest and for the first minute its acceleration after 

t s is given by ( ) 21
18  m sa c t −= −  where c is a constant. At the end of 

the first minute the speed is 120 m s− . Find the distance travelled in 
the first minute. 

 
 21 1

118 36a c t v ct t c= − ⇒ = − +  
 But v = 0 when t = 0 and so 1 0c = . 
 Also v = 20 when t = 60 and so ( )1

3660 3600 20 2c c− = ⇒ = . 

 Thus 2 2 31 1
236 1082v t t s t t c= − ⇒ = − + . 

 Since ( )1
36 72v t t= − , v does not change sign in the first minute (in the first 

72 s in fact). 
 When  t = 0, 2s c= : when t = 60, ( ) ( )2 31

2 210860 60 1600s c c= − + = + . 
Therefore the distance travelled in that first minute is 1600 m. 
 

Exercise 15.1 
 
1. Find an antiderivative of each of the following functions: 
 (a) 4x – 5 ; (b) 26 4 3x x+ +  ; (c) 3 2x x x+ +  ; 
 (d) 2(3 4)x −  ; (e) 5 ; (f) (2 3)(3 4 )x x− −  ; 
 (g) 2 2( 1)(2 5)x x+ −  (h) 2 2(2 1)x −  ; (i) 3( 2)x − . 
 
2. Integrate each of the following functions with respect to x: 

 (a) 3 2
4 3
x x

−  ; (b) 2
6 3 4x
x

− +  ; (c) 
3

3
4 4 8x x

x
− +  ; 

 (d) 
2 2

2
( 2)x

x
−  ; (e) 

24x
x

⎛ ⎞−⎜ ⎟
⎝ ⎠

 ; (f) 35
x

−  ; 

 (g) 
22 3 2x x

x
− −  ; (h) 

2

3
(4 3)x

x
−  ; (i) 5

x
. 
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3. The curve for which 2d 6 6 2
d
y x x
x

= − −  passes through the point (–1, 0). Find 

the equation of the curve and the equation of the tangent at the point x = 1. 
 
4. A body moving along a straight line with constant acceleration 2 m sa −  

begins at the origin (s = 0) with an initial velocity 1msu − . Derive the 
equation 21

2s ut at= +  which gives the distance travelled in t seconds. 
 
5. Express y in terms of x if 

 (a) d 4 1
d
y x
x

= −  and y = 4 when x = 1 ; 

 (b) 
2

2
d 3 2
d
y x
x x

−
=  and y = 1 when x = –2 ; 

 (c) 2d (3 2)
d
y x
x

= −  and y = 4 when x = 4 ; 

 (d) ( )33d 1
d
y x
x

= −  and y = 4 when x = 8. 

 
6. Find each of the following integrals: 

 (a) 2(1 3 ) dx x−∫  ;  (b) 2
2
32 4  dt t
t

⎛ ⎞− −⎜ ⎟
⎝ ⎠∫  ; 

 (c) ( )2
2 1  dt t−∫  ; (d) ( )2 3  dx x x x− +∫ . 

 
7. (a) The gradient of a curve at any point P(x, y) is given by 26 2 1x x− + . 

Find the equation of the curve if it passes through the point (2, 10). 
 (b) The gradient of a curve at any point P(x, y) is given by 23 2 2x x+ − . 

If the curve cuts the x-axis at the point (1, 0), find the equation of the 
curve and the coordinates of the other points where it cuts the x-axis. 

 
8. Find the distance travelled in the first 2 seconds by a particle moving in a 

straight line such that 
 (a) its velocity at time t seconds is given by 2 13

4 (2 ) m sv t t −= + ; 
 (b) it starts from rest and its acceleration at time t seconds is given by 

( )2 23
41  m sa t −= − . 

9. The curve for which 
2

2
d 6 2
d

y x
x

= −  has a turning point at (1, 1). Find the 

equation of the curve and the position and nature of the other turning point. 
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10. The line 3x – 2y = 8 is a tangent to the curve for which d
d
y ax
x x

= −  at the 

point (4, 2). Find the value of a and the equation of the curve. 
 

 
Higher Level 

 
11. A particle moves along the x-axis so that at time t s its acceleration is given 

by 23( ) 15  m sa t t
t

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (t > 0). If the particle is at the origin with 

velocity 14 m s−  when t = 1, find when and where the particle is stationary. 
 
*12. What constant acceleration is required to bring a car travelling at 

172 km h−  to a complete stop in a distance of 40 m? 
 

 
15.2 The Use of the Chain Rule to Find nax b x n( )  d ( 1)++ ≠ −∫  
 

We know that the derivative of the composite function ( )( )f g x  is ( )( ) ( )f g x g x′ ′ . 
When g(x) is a linear function of x, g(x) = ax + b, then ( )g x a′ =  which is a constant. 

Thus ( )d ( ) ( )
d

f ax b af ax b
x

′+ = + . 

For example ( )2d 3 2 3 2(3 2) 6(3 2)
d

x x x
x

+ = × + = + . 

Hence an antiderivative of 1( ) is ( )f ax b f ax b
a

′ + + . 

 

The rule is: 11( )  d ( )
( 1)

n nax b x ax b c
a n

++ = + +
+∫ , provided n ≠ –1. 

 
 
Example Find the following integrals in their most general form: 

  (a) 4(2 3)  dx x−∫  ;  (b) 1
2

1  d ( )
2 1

t t
t

>
−∫ . 

 

 (a) ( ) ( )5 54 1 1(2 3)  d 2 3 2 3
(2)(5) 10

x x x c x c− = − + = − +∫  

 (b) 1 2 1 2
1
2

1 1 d (2 1)  d (2 1) 2 1
(2)( )2 1

t t t t c t c
t

−= − = − + = − +
−∫ ∫  
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Example A curve for which 3d (3 1) 8
d
y x
x

= + +  has a turning point with a 

y-coordinate of 10
3 . Find the position and nature of this turning point 

and the equation of the curve. 
 

 The turning point occurs when d 0
d
y
x

= , i.e., when 

3(3 1) 8 3 1 2 1x x x+ = − ⇒ + = − ⇒ = − . 
 
             –       + 
     –1 

 Therefore the point ( )10
31,−  is a local minimum. 

 

Now 3 41
12

d (3 1) 8 (3 1) 8
d
y x y x x c
x

= + + ⇒ = + + +  and y = 10
3  when x = –1 

giving 410 1
3 12 ( 2) 8 c= − − +  or c = 10. 

Therefore 41
12 (3 1) 8 10y x x= + + + . 

 
Example A body moves in a straight line with velocity ( ) 13 1 4  m sv t −= + −  

at time t seconds. Find the acceleration when it comes to rest and the 
distance travelled before it comes to rest. 

 
 Body comes to rest when v = 0 or 3 1 4 3 1 16 5t t t+ = ⇒ + = ⇒ = . 

 ( ) 1 23
2

d 3 1 4 (3 1)
d

a t t
t

−= + − = +  which gives 23
8  m sa −= . 

 Also, the position at time t is given by 3 22
9 d (3 1) 4s v t t t c= = + − +∫ . 

 Since the body does not change direction until t = 5, the distance travelled 
before coming to rest =  ⏐position at t = 5  –  position at t = 0⏐ 

            =  3 22 2
9 9(16) 20 ( )c c− + − +  

            =  6 m . 
 
Exercise 15.2 
 
1. Integrate each of the following with respect to x: 
 (a) 2(2 1)x +  ;  (b) 3(3 5 )x−  ; 
 (c) 3(5 2) 2x + −  ;  (d) 46 (1 3 )x x− −  ;  

sign of d
d
y
x
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(e) 2 33 2(5 2 )x x− −  ; (f) 2 2(2 3)x −  ; 
(g) 34 1 12(2 3 )x x+ − −  ; (h) 2 2 2(2 3) (3 2)x x+ + + . 
 

2. Integrate each of the following with respect to x: 
 (a) 24(2 3)x −−  ;  (b) 46(5 2 )x −−  ; 

(c) 2
3

(2 3)x +
 ;  (d) 3

4
(2 3 )x−

 ; 

 (e) 3
86

(2 3)x
−

+
 ;  (f) 3

3
1(2 3)

(2 3)
x

x
+ −

+
. 

 
3. Find an antiderivative of each of the following functions: 
 (a) ( )1 26 3x +  ;  (b) 3 2(5 2)x −  ; 

(c) 1 3(8 1)x −+  ;  (d) 3 2(2 3 )x −−  ; 
(e) 2 5x +  ;  (f) 3 3 8x −  ; 

(g) 4
2 3x +

 ;  (h) 3 2
2

(1 3 )x−
. 

 

4. A curve for which 2d 2(2 1)
d
y x
x

= +  meets the x-axis at (1, 0). 

Find: 
 (a) the equation of the curve ; 
 (b) the equation of the tangent to the curve at x = –2 ; 
 (c) the coordinates of the point where the tangent in part (b) meets the 

curve again. 
 

5. A curve for which d
d 2 1
y a b
x x

= −
+

, where a, b are constants, passes through 

the points P(4, 7) and Q(0, 7). The equation of the tangent to the curve at P is 
x + y = 11. 

 (a) Find the values of a and b, and the equation of the curve. 
 (b) Find the equation of the tangent to the curve at Q. 
 

6. A body moves along the x-axis with velocity 16 4  m s
5 4 9

v
t

−⎛ ⎞= +⎜ ⎟+⎝ ⎠
 at time 

t seconds after it passes through the origin. 
 Find: 
 (a) the position of the body at t = 18 seconds ; 
 (b) the average speed of the body during the first 4 seconds of motion ; 
 (c) the acceleration of the body at time t = 4 seconds. 
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Higher Level 

 
15.3 Integration by Substitution 
 
Sometimes a change of variable helps to turn an unfamiliar integral into one that 
is easily recognisable. The method of integration by substitution can often 
accomplish this task. We will see why and how this method works in the 
following pages, but a thorough study of the subject will not be made until 
Chapter 23 dealing with more advanced integration techniques. 
 
Let ( )F x  be an antiderivative of ( )f x  so that 
  ( ) ( ) and ( ) ( ) dF x f x F x f x x′ = = ∫ . 
If u is a differentiable function of x then by the chain rule 

  ( )d d d( ) ( ) ( )
d d d

u uF u F u f u
x x x

′= = . 

Thus ( )F u  is an antiderivative of d( )
d
uf u
x

. 

Then d( )  d ( )
d
uf u x F u c
x

⎛ ⎞ = +⎜ ⎟
⎝ ⎠∫ . 

But ( ) d ( )f u u F u c= +∫ . 
 

Hence d( )  d ( ) d
d
uf u x f u u
x

⎛ ⎞ =⎜ ⎟
⎝ ⎠∫ ∫ . 

 
 
This rule is called integration by substitution. 
 

Example Find 22 ( 1) dx x x+∫ . 
 

 Let 2 1u x= +  and so d 2
d
u x
x

= . 

 Then 2 2 2 21 1
2 2

d2 ( 1) d  d  d ( 1)
d
ux x x u x u u u c x c
x

⎛ ⎞+ = = = + = + +⎜ ⎟
⎝ ⎠∫ ∫ ∫ . 

 

Example Integrate 2 2
1

( 2 3)
x

x x
+

+ +
 with respect to x. 

 

 The fact that 2 2 3x x+ +  has derivative 2x + 2 = 2(x + 1) suggests that we 

try putting 2 2 3u x x= + +  which gives d 2 2 2( 1)
d
u x x
x

= + = + . 
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 Therefore  2 2
1  d

( 2 3)
x x

x x
+

+ +∫  =  21
2

d  d
d
uu x
x

−⎛ ⎞
⎜ ⎟
⎝ ⎠∫  

 =  21
2  du u−∫  

 =  11
2 u c−− +  

 =  2
1

2( 2 3)
c

x x
−

+ +
. 

 
Note: In a large number of integrals, the substitution method is easy to apply 

by writing the integrand in the form ( )( ) ( )nk f x f x′  for some constant 

k to be determined. Then ( ) ( ) 1( )
( ) ( ) d

1

n
n k f x

k f x f x x c
n

+

′ = +
+∫  

provided n ≠ –1. 
 

Example Find 2 2  d
(1 )

x x
x−∫ . 

 

 2 2  d
(1 )

x x
x−∫  =  2 21

2 (1 ) ( 2 ) dx x x−− − −∫  

  =  ( ) 21
2 ( ) ( ) df x f x x− ′−∫   where 2( ) 1f x x= −  

  =  
2 11

2 (1 )
1
x

c
−− −

+
−

 

  =  2
1

2(1 )
c

x
+

−
. 

 

Example Find 
2

4 3  d
4 6 3

x x
x x

−

− +
∫ . 

 

 
2

4 3  d
4 6 3

x x
x x

−

− +
∫  =  2 1 21

2 (4 6 3) (8 6) dx x x x−− + −∫  

  =  
2 1 21

2
1
2

(4 6 3)x x
c

− +
+  

  =  24 6 3x x c− + + . 
 
Note: For some integrals the method just outlined will not be applicable. 
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The following example illustrates an integration using substitution which cannot 
be solved by the method just outlined. However problems of this type will be 
not be presented until a later chapter. 
 

Example Find  d
3

x x
x −∫    (x > 3). 

 

 Put u = x – 3 which gives d 1
d
u
x

=  and x = u + 3. 

 Then    d
3

x x
x −∫  =  3 d  d

d
u u x

xu
+⎛ ⎞

⎜ ⎟
⎝ ⎠∫  

  =  3 du u
u

+
∫  

  =  1 2 1 2( 3 ) du u u−+∫  

  =  3 2 1 22
3 6u u c+ +  

  =  3 2 1 22
3 ( 3) 6( 3)x x c− + − + . 

 
Exercise 15.3 
 
1. Integrate each of the following with respect to x: 
 (a) 2 36 (3 1)x x −  ; (b) 2 42 (1 )x x−  ; (c) 2 3 2( 2)x x +  ; 
 (d) 3 4 3( 3)x x −  ; (e) 4 5 33 (2 3)x x +  ; (f) 2 58 (1 3 )x x−  ; 
 (g) 6 7 23 (2 3 )x x−  ; (h) 3 4 59 (4 2)x x −  ; (i) 2 3 35 (3 )x x−  ; 
 (j) 2 1 2(2 3)x x− − −  ; (k) 3 4 2(3 1)x x −+  ; (l) 3 2 2( 1)x x− − −+  ; 
 (m) 3 2( 2)x x +  ; (n) 2 3 2( 2)x x +  ; (o) 3 3 2( 2)x x + . 
 
2. Find the following indefinite integrals: 

 (a) 2 3 dx x x+∫  ;  (b) 
2

3 2  d
(2 5)

x x
x +∫  ; 

 (c) 
2

3
 d

1

x x
x +

∫  ;  (d) 2 3
1  d

( 2 5)
x x

x x
+

+ +∫  ; 

 (e) 
3(1 )  dx x

x
+

∫  ;  (f) 
2(2 3)  dx x

x
−

∫  ; 

 (g) 
2

3
(2 3)  dx x

x
−

∫  ; (h) 
2

3 6  d
4 11

x x
x x

−

− +
∫  ; 
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 (i) 2 3 2
2  d

( 4 7)
x x

x x
−

− +∫  ; (j) 1 2 2(2 3)  dx x x− −−∫ . 

 
3. Find the numbers a, b and c such that 

 
5 4 3 2

2 2 2 2
2 2 4 4 2

( 1) ( 1)
x x x x x cxax b

x x
− + − + −

= + +
+ +

 for all x, and hence find 

5 4 3 2

2 2
2 2 4 4 2  d

( 1)
x x x x x x

x
− + − + −

+∫ . 

 
4. A particle moves in a straight line such that its velocity at time t s is given 

by 1
2 3
100  m s

( 1)
tv

t
−=

+
. Find the distance travelled by the particle in the first 

2 seconds of motion. 
 

 
 
15.4 The Definite Integral and Area 
 

The definite integral ( ) d
b

a
f x x∫  

 
(read as "the integral from a to b of f (x) with respect to x"), where a and b are 
numbers, is defined by the rule: 

    ( ) d ( ) ( )
b

a
f x x F b F a= −∫  

 
where F(x) is any antiderivative of f (x) defined on the interval [a, b]. 
 
For example, suppose that f (x) = 2x. Then 2( )F x x=  is an antiderivative of f (x). 

Thus  
2 2 2

1
2  d 2 1 3x x = − =∫     and    

5 2 2
1

2  d 5 ( 1) 24x x
−

= − − =∫ . 

 
Note: It does not matter which antiderivative we choose since G(x) = F(x) + c is an 

antiderivative of f (x) whenever F(x) is, and 
 G(b) – G(a) = [F(b) + c] – [F(a) + c] = F(b) – F(a) as before. 
 
A convenient and commonly used notation for F(b) – F(a) is [ ]( )   or  ( )b b

aaF x F x . 

Thus ( ) ( )5 32 2 2 3 2 3 2 3 2
1 1

5 ( 1) 24  and  2 3 (2)3 1 (2)1 10x x x
−

⎡ ⎤ ⎡ ⎤= − − = − = − − − =⎣ ⎦ ⎣ ⎦ . 
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With this notation we may express our definition of the definite integral as: 
 

   [ ]( ) d ( )
b b

aa
f x x F x=∫  

 
where F(x) is any antiderivative of f (x) which is defined on [a, b]. 
 
Note: We require that ( ) ( )F x f x′ =  for all x ∈ [a, b]. 

For example, it is incorrect to write 
1

1

21
1

d 1 1 1 2x
xx−

−

⎡ ⎤= − = − − = −⎢ ⎥⎣ ⎦∫  since the relation 

2
d 1 1
dx x x

⎛ ⎞− =⎜ ⎟
⎝ ⎠

 does not hold when x = 0 which is in the domain [–1, 1]. 

 
Example Evaluate the following definite integrals: 

 (a) 
4 2

1

23 1  dx x
x

⎛ ⎞− +⎜ ⎟
⎝ ⎠∫  ; (b) 

3

2 2

2 1  d
2 2 3

x x
x x

−

− −
∫ . 

 

 (a) 
4 2

1

23 1  dx x
x

⎛ ⎞− +⎜ ⎟
⎝ ⎠∫  =  

43

1
4x x x⎡ ⎤− +⎣ ⎦  

   =  (64 – 8 + 4) – (1 – 4 + 1) 
   =  62. 
 

 (b) 
3

2 2

2 1  d
2 2 3

x x
x x

−

− −
∫  =  

3
2

2
2 2 3x x⎡ ⎤− −⎢ ⎥⎣ ⎦

 

   =  18 6 3 8 4 3− − − − −  
   =  2. 
 
Areas 
 
One of the most important uses for the definite integral is in the calculation of areas 
whose boundaries may not be straight lines. 
 
Consider the function ( )y f x=  which is continuous, positive and strictly increasing 
for all x in the interval [a, b]. Our aim is to find the area between the curve, the x-axis 
and the lines x = a and x = b. The required area is shaded in the diagram at the top of 
the next page. 
 
Denote by ( )A c , the area bounded by the graph of f, the x-axis and the lines x = a and 
x = c, where a ≤ c ≤ b. 
 
Then A(a) = 0 and the required area is A(b). 
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This defines a function A(x) which is continuous for a ≤ x ≤ b. 
 

Consider the ratio  ( ) ( )A c h A c
h

+ − . 

 
Now A(c) is the area between x = a and x = c, and A(c + h) is the area between x = a 
and x = c + h. If h > 0, then A(c + h) – A(c) is the area between x = c and x = c + h. 
This area is shaded in the following diagram. 
 
 
 
 
 
 
 
 
 
 
It can be clearly seen that this area lies between the areas of two rectangles with base 
h and with heights equal to f (c) and f (c + h). These rectangles are CDE'E (which has 
the smaller area) and CDFF' (which has the larger area). 
 
If h is sufficiently small these rectangles have areas which are as close as we please to 
A(c + h) – A(c) . In fact, for all positive h and for all a ≤ c ≤ b, 
  ( ) ( ) ( ) ( )hf c A c h A c hf c h< + − < + . 

Thus ( ) ( )( ) ( )A c h A cf c f c h
h

+ −
< < + . 

Hence 
0

( ) ( )lim ( )
h

A c h A c f c
h→

+ −
=   or  ( ) ( )A c f c′ = . 

This result means that A(x) is an antiderivative of ( )f x . 

Hence A(b) = A(b) – A(a) = ( ) d
b

a
f x x∫ . 

x 

 y 

a b c c+h 

( )y f x=

C D x c c + h 

F 

E' E 

F' 

( )y f x=

O 
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Thus the area between the graph of ( )y f x= , the x-axis and the lines x = a and x = b, 
is given by 

   d
b

a
A y x= ∫ . 

 
 
Since ( )f x  is continuous and strictly increasing over the interval [a, b], then the 
inverse function 1( )x f y−=  is strictly increasing over the interval [ ]( ), ( )f a f b . 
Hence the area between the curve ( )y f x= , the y-axis and the lines ( )y f a=  and 

( )y f b=  [the area shaded in the following diagram], is given by 
 

  
( )

( )
 d

f b

f a
A x y= ∫ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although we have confined the above discussion to that of a function ( )y f x=  which 
is positive and strictly increasing over the interval [a, b], these restrictions are not 
essential. If for example ( )y f x=  is positive and decreasing over [a, b], the argument 

is similar but with ( ) ( )( ) ( )A c h A cf c h f c
h

+ −
+ < < . 

 
For ( )f x  negative and decreasing on [a, b], we observe that the reflection of ( )f x  in 
the x-axis, ( )f x− , which is positive and increasing, produces the same area. 
Thus the area under the x-axis but above the curve ( )y f x=  and between the lines 
x = a and x = b is given by 

      d
b

a
A y x= −∫ . 

(See graph at the top of the next page.) 

x 

 y 

 f (a) 

 f (b) 

 O  a  b 

1( )x f y−=
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If over the interval [a, b], ( )f x  is not monotonic (i.e., strictly increasing or strictly 
decreasing) and takes opposite signs, we partition the interval into sub-intervals such 
that in each sub-interval ( )f x  is monotonic and of the same sign. To each of these 
sub-intervals we apply the arguments given previously. 
 

Example Find the area of the region between the curve 2y x= , the x-axis and 
the lines x = 0 and x = 2. 

                  
 
Example Find the area enclosed by curve 2 4 3y x x= − +  and the x-axis. 
 
 We must first draw a neat sketch and shade the area to be found. The x-

intercepts are calculated first of all. 
 2 4 3 ( 1)( 3)y x x x x= − + = − −  giving x-intercepts 1 and 3. 

 The required area =  ( )3 2
1

4 3 dx x x− − +∫   [the area is below the x-axis] 

  =  
33 21

3 1
2 3x x x⎡ ⎤− − +⎣ ⎦  

  =  ( ) ( )3 2 3 21 1
3 3(3 ) 2(3 ) 3(3) (1 ) 2(1 ) 3(1)− − + + − +  

  =  1
39 18 9 2 3− + − + − +  

  =  4 3 . 
 

x 

 y 

O a b 

( )y f x= −

( )y f x=

 The required area =  
2 2

0
 dx x∫    

  =  
231

3 0
x⎡ ⎤⎣ ⎦  

  =  3 31 1
3 3(2 ) (0 )−  

  =  8
3 . 

x 

 y 
2y x=

2 O 
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Example Find the area enclosed by the curve 4y x=  and the line y x= . 
 
 The required area is shaded in the diagram which follows. This area is clearly 

the difference between 1A , the area of the triangle OCD and 2A , the area 
between the curve and the x-axis. 

 

   
 
 
 To find the coordinates of the points of intersection of 4  and y x y x= = , we 

solve the equation 4 3( 1) 0 0,1x x x x x= ⇒ − = ⇒ = . The graphs meet at 
(0, 0) and (1, 1). 

 Thus 1A  = area of triangle OCD = 1
2  and 

11 4 51 1
2 5 50 0

 dA x x x⎡ ⎤= = =⎣ ⎦∫ . 

 Hence the required area 31 1
1 2 2 5 10A A= − = − = . 

 
Note:  The area 1A  could have been found by integration: 

  
11 21 1

1 2 20 0
 dA x x x⎡ ⎤= = =⎣ ⎦∫ ,  

x 

 y 
2 4 3y x x= − +

 y = x 

  y 

x 

4y x=

C 

D 

O 
1 3 

3 

–1 

 O 
 1 

 1 
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and indeed the required area could have been found by integrating the 
difference between the functions: 

  ( ) 11 4 2 5 31 1 1 1
2 5 2 5 100 0

 dA x x x x x⎡ ⎤= − = − = − =⎣ ⎦∫ . 

 
If 1 1 2 2( ) and ( )y f x y f x= =  are any two curves continuous for a ≤ x ≤ b and such that 

1 2( ) ( )f c f c≥  for all c ∈ [a, b], then the area enclosed by the curves and the lines 
x = a and x = b is given by 
 

  ( )1 2  d
b

a
A y y x= −∫ . 

 
 
Example Find in terms of the positive constant p, the area enclosed by the 

curves 2y px=  and 2x py= . 
 
 The curves meet when 4 2 2 3 3 3( ) 0 0,x p y p x x x p x p= = ⇒ − = ⇒ = . 
 
  

      
 
 
 
The following property of the definite integral allows us to split integrals into parts 
and treat each separately: 

 ( ) d ( ) d ( ) d
b c b

a a c
f x x f x x f x x= +∫ ∫ ∫ . 

 
 

Example Evaluate 
2

2
1  dx x

−
−∫ . 

 
 Since ⏐x – 1⏐ = x – 1 for x ≥ 1 and ⏐x – 1⏐ = 1 – x for x ≤ 1, then 

 
2

2
1  dx x

−
−∫  =  

1 2

2 1
(1 ) d ( 1) dx x x x

−
− + −∫ ∫  

x 

 y 

 p 

 p 

y px=

2y x p= The required area =  
2

0
 d

p xpx x
p

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∫  

  =  
3

3 22
3

03

p
xpx
p

⎡ ⎤
−⎢ ⎥

⎣ ⎦
 

  =  2 22 1
3 3p p−  

  =  21
3 p . 

 O 
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  =  
1 22 21 1

2 22 1
x x x x

−
⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦  

  =  ( ) ( ) ( ) ( )1 1
2 21 2 2 2 2 1− − − − + − − −  

  =  5. 
 
Exercise 15.4 
 
1. Evaluate each of the following: 

 (a) 
2

0
(2 1) dx x+∫  ;   (b) 

4 2
0

( 4 ) dx x x−∫  ; 

 (c) ( )1 3
0

2  dx x x+∫  ;  (d) ( )1 2
1

3 4  dx x x
−

+ +∫  ; 

 (e) ( )
2 2

2
2  dx x

−
+∫  ;  (f) 

3

3 2
2 3 dx x

−
+∫  ; 

 (g) 
4

1

12 1  dx x
x

⎛ ⎞+ −⎜ ⎟
⎝ ⎠∫  ; (h) 

1
2 3

0
(2 1)  dx x−∫  ; 

 (i) 
2

21

4  d
(2 1)

x
x −∫  ;  (j) 

5

1

d
3 1

x
x +∫  ; 

 (k) ( )21 2
1

1  dx x
−

+∫  ;  (l) 
1
2

30

4  d
(2 1)

x
x +∫ . 

 
2. Calculate the area between the x-axis and the curve 
 (a) 3y x=  from x = 1 to x = 2 ; 

 (b) 1y
x

=  from x = 1 to x = 4 ; 

 (c) 2( 1)y x= +  from x = –1 to x = 2 ; 

 (d) 2
1y
x

=  from x = 1
4  to x = 3

4 . 

 
3. Calculate the area enclosed by the curve and the coordinate axes in each of 

the following: 
 (a) 3 8y x= +  ;   (b) 4y x= −  ; 
 (c) 2( 3)y x= −  ;   (d) 3 22 3 5y x x= − + . 
 
4. Find the total area enclosed by the x-axis and the curve 
 (a) ( 1)(2 )y x x= + −  ;  (b) ( 1)( 3)y x x x= − −  ; 
 (c) 26 5y x x= − −  ;  (d) 3 22 8y x x x= − − . 
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5. Find the area enclosed by the curve and the straight line in each of the 
following: 

 (a) 24 , 2y x y x= =  ;  (b) 3, 3 2y x y x= = +  ; 
 (c) 32 , 8y x y x= =  ;  (d) 2 1

2,y x y x= =  ; 

 (e) 3 , 3y x x y x= − =  ;  (f) 2 4 , 2 4y x y x= = − . 
 
6. Use your graphic display calculator to find the area between the x-axis and 

the curve 

 (a) 2
4

1
y

x
=

+
 from x = 0 to x = 1 ; 

 (b) 1y
x

=  from x = –3 to x = 1−  ; 

 (c) 
2

8

4
y

x
=

−
 from x = –1 to x = 2  ; 

 (d) 22 7 2y x x= − + −  from x = –1 to x = 3. 
 

 
Higher Level 

 
7. Evaluate each of the following: 

 (a) 
1 2 3
0

( +1)  dx x x∫  ;  (b) 
2

2 21
 d

( 1)
x x

x− +∫  ; 

 (c) 
3 2
0

16  dt t t+∫  ;  (d) 
3

2 2

6 1  d
3 5

y y
y y

+

+ −
∫  ; 

 (e) 
4

0 2
 d

9

P P
P+

∫  ;  (f) 
1
2

1

2 2
1  d

( 2 2)
x x

x x
+

+ +∫ . 

 
8. Find the area enclosed by the graphs of 27  and 3 1y x y x= − = − . 
 
9. Find the area between the curve 2 2 42y a x x= − , a > 0, and the line joining 

its local maxima. 
 
10. Find, in terms of the positive number a, the total area between the x-axis 

and the curve: 
 (a) 2 24y a x= −  ;  (b) ( )( 2 )y x a x a= − −  ; 
 (c) 3 24y x a x= −  ;  (d) 2 2 4y a x x= − . 
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11. Find, in terms of the positive number a, the area enclosed by 
 (a) 2 24  and 3y a x y ax= − =  ; 
 (b) 2 2 2 and y a x y x ax= − = −  ; 
 (c) 3 2 , 2 ( )y x ax y ax x a= − = − . 
 

12. Prove that the area of the region enclosed between the parabolas 2y mx=  
and 2x ny=  is 1

3 mn  where m, n are positive numbers. 
 

*13. Find the area bounded by 1
82

1 , 27   and  y y x y x
x

= = − = − . 

 
*14. Find, in terms of the positive number a, the area enclosed by the coordinate 

axes and the curve 1y x a= + − . 
 
*15. Find in terms of the number a > 1, the area enclosed by the curves 

2 2 2(1 ) and ( )y a x y a a x= − = − . 
 

 
15.5 Volumes of Solids of Revolution 
 
Consider the function ( )y f x=  which is continuous, positive and strictly increasing 
over the interval [a, b]. The region R (see diagram) which is bounded by the curve 

( )y f x= , the x-axis and the ordinates x = a and x = b is revolved about the x-axis to 
form a solid of revolution S. Each section normal to the x-axis of the solid so 
generated is circular in shape; the section, for example, at x = c has an area of 

{ }2( )f cπ . 
 
 

 
 
 

R 
x 

 y 

O 

x = a 
x = c 

x = b 

 ( )y f x=  

( )y f x= −

S 

radius = ( )f c  
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We denote by ( )V c  the volume of the solid of revolution calculated from x = a to 
x = c where a c b≤ ≤ . Thus ( )V x  is a continuous function defined on [a, b]. Here 

( ) 0V a =  and the volume of the solid of revolution S is ( ) ( ) ( )V b V a V b− = . Also the 
volume of the cylindrical solid bounded by the ordinates x = c and x = c + h (h > 0) 
and generated by revolving the curvilinear region EFHG about the x-axis is given by 

( ) ( )V c h V c+ − . 
 

 
 
 
 
 
If h is small we can calculate approximate values for ( ) ( )V c h V c+ −  by revolving 
about the x-axis the rectangles EFG'G and EFHH'. Further, by taking h sufficiently 
small we can find rectangles whose volumes of revolution are as close as we please to 

( ) ( )V c h V c+ − . In fact, for all positive h and for all c such that a c b≤ ≤ , 
    2 2{ ( )} ( ) ( ) { ( )}f c h V c h V c f c h hπ < + − < π + . 
 

2{ ( )}f c hπ  is the volume of the smaller solid cylinder with radius ( )f c  and height h, 
and 2{ ( )}f c h hπ +  is the volume of the larger solid cylinder with radius ( )f c h+  and 
height h. 
 

Thus  2 2( ) ( ){ ( )} { ( )}V c h V cf c f c h
h

+ −
π < < π + . 

 

Now 2

0

( ) ( )lim { ( )}
h

V c h V c f c
h→

+ −
= π      or     2( ) { ( )}V c f c′ = π . 

 

This result means that V(x) is a primitive of 2yπ . 
 

Thus 2( ) ( ) ( )  d
b

a
V b V b V a y x= − = π∫ . 

 
Therefore the volume of the solid of revolution about the x-axis calculated from x = a 
to x = b, is given by 

   2  d
b

a
V y x= π∫ , where ( )y f x= . 

 
Since ( )f x  is continuous and strictly increasing over the interval [a, b], then the 
inverse function 1( )x f y−=  is strictly increasing over the interval [ ( ), ( )]f a f b . 

E F 

G 
H' 

G' 
H 

x c + h c 

( )y f x=
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Hence the volume generated by rotating the region R in the next diagram about the y-
axis is 

   
( ) 2
( )

 d
f b

f a
V x y= π∫ . 

 
 
 
 

 
 
 
 
 
Although we have confined the above discussion to that of a function ( )y f x=  which 
is positive and strictly increasing over the interval [a, b], these restrictions are not 
essential. If, for example, ( )y f x=  is positive and decreasing over [a, b], the 
argument is similar but with 
 

   2 2( ) ( ){ ( )} { ( )}V c h V cf c h f c
h

+ −
π + < < π . 

 
For ( )y f x= , say, negative and increasing on [a, b], we observe that the reflection of 

( )f x  in the x-axis, namely ( )f x− , which is positive and decreasing, generates the 
same solid of revolution about the x-axis. 
 
If, over the interval [a, b], ( )y f x=  is not monotonic (ie., strictly increasing or 
strictly decreasing) and takes opposite signs, we partition the interval into sub-
intervals such that in each sub-interval ( )f x  is monotonic and of the same sign. To 
each of these sub-intervals we apply the arguments given above. 
 
Example The region bounded by the curve 1y x= , the x-axis and the ordinates 

x = 1, x = 10 is revolved about the x-axis. Calculate the volume of the 
solid of revolution. 

 
 
 

x 

 y 

O 

( )f a

( )f b

a b 

1( )x f y−=

R 
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 The volume of the solid =   
2

10

1

1  dx
x

⎛ ⎞π⎜ ⎟
⎝ ⎠∫  

     =   
10

1x
π⎡ ⎤−⎢ ⎥⎣ ⎦

 

     =   9
10

π . 

 
 
Example An open bowl has a flat circular base and a horizontal rim. The diameter 

of the rim is twice that of the base, and the curved surface of the bowl 
can be traced out by revolving a portion of the curve 21

4y x=  about the 

y-axis. If the volume of the bowl is 3120 cmπ , calculate its height in 
centimetres. 

 
 

 
 
 
 
 
 When y = a, x2 = 4a and so x = 2 a . Similarly when y = b, x = 2 b . 

 y 

x O 1 10 

 y 

 x O 

21
4y x=

 b 

 a 
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 The diameter of the rim is twice that of the base and so 2 b  = 4 a  or b = 4a. 

 If the volume of the bowl is 3 cmV , V  =  
4 2  d

a

a
x yπ∫  

   =  
4

4  d
a

a
y yπ∫  

   =  
422

a

a
y⎡ ⎤π⎣ ⎦  

   =  230 aπ . 
 
 Then 120π = 230 aπ  which gives 2a  = 4 or a = 2 and b = 4a = 8, and so the 

height of the bowl is 6 cm. 
 
Exercise 15.5 
 
1. Calculate the volume of the solid of revolution generated by rotating the region 

R about the x-axis through 360°, given that R is bounded by the x-axis and 
 (a) , 0, 4y x x x= = =  ;  (b) 2 , 0, 2y x x x= = =  ; 
 (c) , 1, 4y x x x= = =  ;  (d) 3, 1, 1y x x x= = − =  ; 
 (e) 1 , 2, 6y x x x= = =  ;  (f) 2 3 , 1, 2y x x x= = =  ; 

 (g) 2y x x= −  ;   (h) 29y x= − ; 
 (i) 2 2, 0x y x+ = =  ;  (j) 2 , 4y x x= =  ; 
 (k) ( 2)y x x= −  ;   (l) 3 , 1y x x x= + = . 
 
2. Show, by rotating the region between the line y rx h=  and the x-axis from 

x = 0 to x = h, that the volume of a cone of base-radius r and perpendicular 
height h is given by 21

3V r h= π . 
 
3. By rotating a portion of a suitable curve about the x-axis, prove that the volume 

of a sphere of radius r is given by 34
3V r= π . 

 
4. Calculate the volume of the solid of revolution generated by rotating about the 

x-axis the region bounded by the curve 2 4y x= − , x ≥ 2, the x-axis and the 
line  x = 4. 

 
5. Calculate the volume of the solid of revolution which is formed when the 

region bounded by the curve 2 1y x= +  and the line y = 2 is revolved about 
 (a) the x-axis ;   (b) the line y = 2. 
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Higher Level 

 
6. Calculate the volume of the solid of revolution generated by rotating the 

region R about the y-axis, given that R is bounded by the y-axis and 
 (a) 2, 2y x y= − =  ;  (b) 2 1, 5y x y= + =  ; 
 (c) 1, 1y x y= − =  ;  (d) 2 3 , 2y x y= =  ; 
 (e) 3 1, 2y x y= + =  ;  (f) 2( 2) , 0y x y= − = . 
 
7. The region bounded by the curve 2 2y x x= −  and the x-axis is rotated 

through 360° about the y-axis. Calculate the volume of the solid generated. 
 
8. The region bounded by the curve 2y x=  and the straight line y = 1 is 

rotated about 
 (a) y = 1 ;  (b) y = –1 ;  (c) x = 1. 
 
 Calculate in each case the volume of the solid generated. 
 
9. The region bounded by the curve 1y x= , the x-axis and the straight lines 

x = 1 and x = 4 is rotated about 
 (a) the x axis ;  (b) the y-axis. 
 
 Calculate the volume of the solid generated. 
 
10. In each of the following, the curves bounding the region are given first and 

the axis of revolution is given second. Calculate the volume of the solid of 
revolution. 

 (a) Region: , 0, 1y x x x= = =  ; Axis: y = 1. 
 (b) Region: 2( 1) , 1y x y= − =  ; Axis: y = 1. 
 

11. The region bounded by the curve 3y x= − , the x-axis and the y-axis is 
rotated about 

 (a) the x-axis ; (b) the y-axis ; (c) the straight line x = 3. 
 
 Calculate in each case the volume of the solid generated. 
 

12. Sketch the curve 2 3y x= . The region bounded by this curve and the 
straight line x = 1 is rotated about the y-axis. Calculate the volume of the 
solid generated. 
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Required Outcomes 

 
 After completing this chapter, a student should be able to: 

• find a primitive of any function of the form ( ) , 1nax b n+ ≠ − . 
• solve first or second order differential equations of the forms 

( ) ( )f x P x′ =  and ( ) ( )f x P x′′ =  where ( )P x  can be expressed as a sum 
of terms of the form ( ) , 1nax b n+ ≠ − . 

• use the method of substitution to find primitives of suitable functions.  
(HL) 

• evaluate the definite integral ( ) d
b

a
f x x∫  whenever ( )f x  can be 

expressed as a sum of terms of the form ( ) , 1nax b n+ ≠ − . 
• use a definite integral to find the area between a curve and the x-axis or 

between two curves. 
• calculate the volume of the solid generated when a region is rotated 

through 360° about the x-axis. 
• calculate the volume of the solid generated when a region is rotated 

through 360° about the y-axis (HL). 
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16.1 Limits 
 
As we have already seen in Chapter 10, a study of limits is important to the 
understanding of the calculus. 
 
In the work of this chapter we need a result which students of Mathematics SL should 
commit to memory. The method used to prove this result is well beyond the scope of 
the Mathematics SL course. Naturally, students of Mathematics HL need to know 
both the theorem and its proof. 
 

 
Higher Level 

 

Theorem 
0

sinlim 1
θ→

θ
=

θ
.  [θ must be in radians] 

 

Proof In the diagram we see that if 1
20 < θ < π , 

 
 the area of ΔOAB < the area of sector OAB < the area of ΔOBT, 
 
 and so 2 2 21 1 1

2 2 2sin tan      or     sin tanr r rθ < θ < θ θ < θ < θ . 
 
 Now since sin 0θ >  we have 
 

 sin tan 1   or   1
sin sin sin sin cos

θ θ θ θ
< < < <

θ θ θ θ θ
. 

 

 Every term here is positive and so we can invert to give  sincos 1θ
θ < <

θ
. 

 Since every term in this expression is unaltered by replacing θ with –θ, the 

result sincos 1θ
θ < <

θ
 holds for all non-zero θ for which 1 1

2 2− π < θ < π . 

 

 Therefore as θ → 0, cos θ → 1 and so 
0

sinlim 1
θ→

θ
=

θ
 as required. 

 

O 

A 

B 

T 

θ 
r 

r 
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Example Evaluate each of the following limits: 

  (a) 
0

sin5lim
θ→

θ
θ

 ;  (b) 20

1 coslim
θ→

− θ
θ

. 

 

 (a) 
0

sin5lim
θ→

θ
θ

 =  
0

5sin5lim
5θ→

θ
θ

 

  =  
5 0

sin55 lim
5θ→

θ
θ

 

  =  5. 

 (b) 20

1 coslim
θ→

− θ
θ

 =  
( )2 1

2
20

1 1 2sin
lim
θ→

− − θ

θ
 

  =  
2 1

2
20

2sin
lim
θ→

θ

θ
 

  =  
21

21
2 10

2

sin
lim
θ→

⎛ ⎞θ
⎜ ⎟⎜ ⎟θ⎝ ⎠

 

  =  1
2 . 

 

Example Evaluate 2lim sin
n

n
n→∞

. 

 

 2lim sin
n

n
n→∞

 =  
0

1lim sin 2
m

m
m→

  where m = 1
n

 

 =  
0

sin 22 lim
2m

m
m→

 

 =  2. 
 
Exercise 16.1 
 
1. Discuss the behaviour of the following functions as θ → 0: 

 (a) sin 3θ
θ

 ;  (b) cos3θ
θ

 ; (c) tan3θ
θ

 ; 

  (d) 
2

2
sin
3

θ
θ

 ;  (e) 2
sin 3θ

θ
 ;  (f) 

2

2
sin 3θ

θ
. 

 
2. Find the limit as θ → 0 of each of the following: 

 (a) sin 5θ
θ

 ;  (b) 
sin 5

θ
θ

 ;  (c) sin 2
sin 4

θ
θ

 ; 
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 (d) 
2sin

sin 2 sin5
θ

θ θ
 ; (e) 2

sin sin3θ θ
θ

 ; (f) 2
sin sin5

sin 4
θ θ

θ
. 

 
3. Find the limit as θ → 0 of each of the following: 
[Note: You may find the identities 1 1

2 2sin sin 2sin ( )cos ( )A B A B A B+ = + −  
and 1 1

2 2cos cos 2sin ( )sin ( )A B A B A B− = − + −  useful in parts (e) and (f).] 

 (a) 2
1 cos2− θ

θ
 ; (b) 1 cos2

sin5
− θ

θ
 ; (c) 2

cos2 1
tan 2

θ −
θ

 ; 

 (d) 
2 1

2sin
1 cos4

θ
− θ

 ; (e) sin 4
sin 7 sin3

θ
θ + θ

 ; (f) 
2

cos3 cos7
θ

θ − θ
. 

 
4. Find the limit as n → ∞ of each of the following: 

 (a) sin
2

n
n

π  ; (b) 2sinn
n
π  ; (c) 2 2 2sinn

n
π  ; 

 (d) 2sin cot
n n
π π  ; (e) 2 21 cosn

n
π⎛ ⎞−⎜ ⎟

⎝ ⎠
 ; (f) 2 2 3sin sinn

n n
. 

 
5. Find expressions for the circumference and area of both the regular 

inscribed and circumscribed n-gons of the circle of radius r. Hence show 
that 

 (a) the circumference of the circle is 2πr ; 
 (b) the area of the circle is 2rπ . 
 

 
16.2 The Derivatives of sin x, cos x and tan x 
 
Students of Mathematics SL must be familiar with the derivatives of the functions 
sin x , cos x  and tan x , but not with their proofs. The three derivatives are to be 
found in a table at the end of this section. 

 
 

Higher Level 
 
Along with the theorem from the beginning of this section, you may find the 
following result quite useful when seeking the derivatives of the trigonometric 
functions from first principles: 
 

     
0

1 cos lim 0
h

h
h→

−
= . 
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Proof 
0

1 cos lim
h

h
h→

−  =  
2 1

2
0

1 (1 2sin )
lim
h

h
h→

− −
 

  =  
2 1

2
0

2sin
lim
h

h
h→

 

  =  ( )
1
21

2 10
2

sin
lim sin
h

h
h

h→

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

  =  (0)(1) 
  =  0. 
 
1. The derivative of ( ) sinf x x=  is denoted and defined by 

 ( )f x′  =   
0

( ) ( )lim
h

f x h f x
h→

+ −  

  =   
0

sin( ) sinlim
h

x h x
h→

+ −  

  =   
0

sin cos cos sin sinlim
h

x h x h x
h→

+ −  

  =   ( ) ( )
0 0

cos 1 sinsin lim cos lim
h h

h hx x
h h→ →

−⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

  =   ( )( ) ( )sin 0 cos (1)x x+  
  =   cos x . 
 
2. The derivative of ( ) cosf x x=  is denoted and defined by 

 ( )f x′  =   
0

( ) ( )lim
h

f x h f x
h→

+ −  

  =   
0

cos( ) coslim
h

x h x
h→

+ −  

  =   
0

cos cos sin sin coslim
h

x h x h x
h→

− −  

  =   ( ) ( )
0 0

cos 1 sincos lim sin lim
h h

h hx x
h h→ →

−⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

  =   ( )( ) ( )( )cos 0 sin 1x x−  
  =   sin x− . 
 

3. Let sin( ) tan
cos

xf x x
x

= = . 

 Then by the quotient rule  ( )f x′  =   ( )
2

cos cos sin sin
cos

x x x x
x

− −
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  =   
2 2

2
cos sin

cos
x x

x
+  

  =   2
1

cos x
. 

 
 
The work so far can be summarised in the following table. 
 
These results must be memorised by students of Mathematics SL as well as by 
students of Mathematics HL. 
 

( )f x    ( )f x′  
sin x    cos x  
cos x  sin x−  
tan x    21 cos x  

 
The correct application of the chain rule is crucial in the differentiation of 
trigonometric functions. For example, consider sin3y x= . If we let u = 3x, then 

siny u=  and d d d
d d d
y y u
x u x

= ×  = cos 3u ×  = 3cos3x . 

 
The method used to establish the derivative of ( )sin ( )f x  is as follows: 
 1. The derivative of ( )sin ( ) sinf x u=  (with respect to u) is cosu  or  

( )cos ( )f x . 
 2. This is then multiplied by the derivative of ( )f x  (with respect to x), 

i.e., ( )f x′ . 

 3. The final result is ( )( )d sin ( )
d

f x
x

  =  ( )cos ( ) ( )f x f x′× . 

 
To differentiate a more complicated trigonometric function such as 3sin 2x , we 
proceed as follows: 
 1. Differentiate 3 3(sin 2 )u x=  with respect to u giving 2 23 3(sin 2 )u x= . 
 2. Multiply by the derivative of sin sin 2v x=  with respect to v. This 

gives ( ) ( )2 23 sin 2 cos 3 sin 2 cos2x v x x× = . 
 3. Finally, multiply by the derivative of v = 2x with respect to x giving 

( )( )( )2 2d d d d 3sin 2 cos2 2 6sin 2 cos2
d d d d
y y u v x x x x
x u v x

= × × = = . 
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With practice this procedure should become automatic. 
 
Example Differentiate each of the following functions with respect to x: 
  (a) ( ) cos2f x x=  ;  (b) 1

4( ) sin( )f x x= + π  ; 
  (c) ( ) tan3f x x=  ;  (d) 1

2( ) sin( 2 )f x x= π −  ; 

  (e) 2( ) cosf x x=  ;  (f) 2( ) tan 3f x x= . 
 

 (a) ( ) cos2f x x=  and so ( )( ) ( sin 2 ) 2 2sin 2f x x x′ = − = − . 
 

 (b) 1
4( ) sin( )f x x= + π   ⇒   ( )( ) ( )1 1

4 4( ) cos 1 cosf x x x′ = + π = + π . 
 

 (c) ( ) tan3f x x=   ⇒  2 2
1 3( ) 3

cos 3 cos 3
f x

x x
′ = × = . 

 

 (d) ( )1
2( ) sin 2f x x= π −  ⇒  ( )( ) ( )1 1

2 2( ) cos 2 2 2cos 2f x x x′ = π − − = − π − . 
 

 (e) 2( ) cosf x x=   ⇒  ( ) 2cos ( sin ) 2cos sin sin 2f x x x x x x′ = − = − = − . 
 

 (f) 2( ) tan 3f x x=   ⇒  ( )( )2
2

6 tan 3( ) 2 tan 3 1 cos 3 (3)
cos 3

xf x x x
x

′ = = . 

 
Example Differentiate each of the following with respect to x: 

  (a) 
2sin 3( ) xf x
x

=  ; (b) 3 1
2( ) sinf x x x= . 

 

 (a) 
2sin 3( ) xf x
x

=      ⇒  ( )f x′  =  { } 2

2

2sin 3 cos3 (3) sin 3 (1)x x x x
x

−
. 

 

 (b) 3 1
2( ) sinf x x x=   ⇒  ( )f x′  =  ( ) ( )2 31 1 1

2 2 2sin 3 cosx x x x+  

   =  ( )21 1 1
2 2 26sin cosx x x x+ . 

 

Example Find the equation of the tangent to the curve tan 2y x=  at 1
8x = π . 

 

 tan 2y x=    ⇒   
( )2 2

d 2 2 4
d cos 2 1 2

y
x x

= = =  at 1
8x = π . 

 Also 1
4tan 1y = π =  at 1

8x = π . 
 Therefore the equation of the tangent at 1

8x = π  is 4x – y = 1
2 1π − . 
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Example Find the maximum value of 3sin 4cosx x+  and the corresponding 
value of x for 0 2x≤ ≤ π . 

 
 Let ( ) 3sin 4cosf x x x= + . 
 Then ( ) 3cos 4sin 0f x x x′ = − =  when 3

4tan x = . 
 Thus 0.6435, 3.785 (0 2 )x x= ≤ ≤ π . 
 Now ( ) 3sin 4cosf x x x′′ = − −  which is negative at x = 0.6435  and positive at 

x = 3.785. 
 Thus ( )f x  is a maximum when x = 3

4arctan  = 0.644 and the maximum value 

of ( )f x  is ( ) ( )3 4
5 53 4 5+ = . 

 
 

Higher Level 
 
Example Triangle ABC is right-angled at A and AB = 6 cm long. If the 

length of BC is increasing at the rate of 10.5 cm s− , find the rate of 
change of 

  (a) the length of AC ; 
  (b) the angle ACB, 
  when AC = 8 cm. 
 
  (a) Units: cm, rad, s 

 Given: 1d 0.5 cm s
d
x
t

−=  

 To Find: (a) d
d
y
t

 (b) d
dt
θ  

  when y = 8. 
 Calculation: (a) 2 2 36x y= +  

    d d2 2
d d
x yx y
t t

=  

    d
d 2
y x
t y

=  

 

 When y = 8, x = 10 and 1d 10 0.625 cm s
d 16
y
t

−= = . 

 
 Therefore the length of AC is increasing at the rate of 10.625 cm s−  when 

AC is 8 cm long. 
 
 

A 

B 

C 

6 cm 
x 

 y 
θ 
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  (b) 6sin
x

θ =  

  2
d 6 dcos
d d

x
t tx
θ −

θ =  

  2
d 3
d cost x
θ −

=
θ

 

  When y = 8, x = 10 and cos 0.8θ = . 

   Then d 3 0.0375
d 80t
θ −

= = − . 

  Therefore the angle ACB is decreasing at the rate of 
1 10.0375 rad s 2.15  s− −= °  when AC = 8 cm. 

 
 
Exercise 16.2 
 
1. Differentiate each of the following functions with respect to x: 
 (a) sin 2 cos2x x+  ; (b) 2cos 3cos2x x−  ; 
 (c) 1

4tan tanx − π  ;  (d) cos3x x  ; 
 (e) ( )cos2 2 sin 2x x+  ; (f) tan 2 3cos2x x−  ; 

 (g) 2 cos3x x  ;  (h) sin
1 cos

x
x+

 ; 

 (i) cos2
1 sin 2

x
x−

 ;  (j) 
2

3 tan 2
x

x−
. 

 
2. Differentiate each of the following functions with respect to x: 
 (a) 22sin x  ;  (b) 2cos 4x  ; 
 (c) 2 2sin sin 2x x+  ; (d) 23tanx x−  ; 

 (e) 2 3cos 2 sin 3x x+  ; (f) 2
4

sin 5x
 ; 

 (g) 2 2cos tan 2x x−  ; (h) ( ) ( )2 31 1
4 2sin tanx x− π + − π . 

 
3. (a) Find the equation of the tangent to the curve 3sin 2 4cos2y x x= +  at 

the point where x = 0. 
 (b) Find the equation of the normal to the curve siny x x=  at the point 

where 1
2x = π . 

 (c) Find the values of the real numbers a and b if the line 2 2x y− =  is a 
tangent to the curve sin 3 cosy a x b x= +  at x = 0. 
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4.  A particle moves along the x-axis such that at time t seconds its position is x 

metres from O where 1 1
2 2 cos4x t t= + + . Find: 

 (a) the number of times the particle comes to rest in the first 6 seconds ; 
 (b) the distance travelled between the first two positions of rest ; 
 (c) the position of the particle at the first instant of zero acceleration. 
 
5. Find the position and nature of the stationary points of each of the following 

functions and sketch their graphs: 
 (a) ( ) 5sin 12cos , 0 2f x x x x= + ≤ < π  ; 
 (b) ( ) sin 2 2cos , 0 2f x x x x= + ≤ < π  ; 
 (c) ( ) 2 3sin 2 4cos2 ,f x x x x= + − − π < ≤ π  ; 
 (d) ( ) sin 2 , 0f x x x x= − ≤ < π  ; 
 (e) ( ) cos sin , 0 2f x x x x x= − ≤ < π  ; 

 (f) 2 sin( ) , 0 2
cos

xf x x
x

−
= ≤ < π  ; 

 (g) 1 1
2 2( ) 8sin tan ,f x x x x= − − π < < π . 

 
 

Higher Level 
 
6. Find the derivative of each of the following functions from first principles: 
 (a) sin 2x  ;  (b) cos3x  ;  (c) tan x ; 
 (d) 1

2cos x  ; (e) tan3x  ;  (f) sin 4x . 
 
7. Find, from first principles, the differential coefficient at x = a of each of the 

following functions: 
 (a) 1

2sin x  ;  (b) cos2x  ; (c) tan3x  ; 
 (d) 1

3tan x  ; (e) sin 2x  ;  (f) cos xπ . 
 
8. Find the position and nature of the stationary points of the graph of 

cos4 cos2y x x= +  for 0 x≤ ≤ π , and sketch the graph. Find the values of 
the real number k for which the equation cos 4 cos2x x k+ =  has four 
distinct roots in the interval [0, π]. 

 
9. A triangle ABC is right-angled at B and side BC has a fixed length of 

15 cm. If the length of AC is decreasing at the rate of 12 cm s− , find the 
rate of change of 

 (a) the angle BAC (in degrees per second) when AC = 25 cm ; 
 (b) the area of the triangle when AC = 17 cm. 
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10. The angle ABC of the triangle ABC is increasing at the rate of 20° per 

minute. If the lengths of AB and BC are 6 cm and 10 cm respectively, find 
the rate of change of 

  (a) the length of AC when AC = 14 cm ; 
  (b) the area of the triangle ABC when AC = 12 cm. 
 
11. A ladder 6 m long rests in a vertical plane with one end A on a horizontal 

floor and the other end B against a vertical wall. The end A is pulled away 
from the wall at a constant rate of 150 cm s− . If θ is the inclination of the 
ladder to the horizontal, find the rate at which θ is changing when A is 4 m 
from the wall, and determine the rate at which B is descending at that time. 

 
12. A circle with centre O and radius 8 cm has AB as a diameter. A point P 

moves around the circumference of the circle at the rate of 1 revolution per 
minute. Find the rate of change of the area of the triangle ABP and the rate 
of change of the area of the minor segment cut off by BP when the angle 
PAB is 30°. 

 
 
16.3 Integration of sin x, cos x and x21 cos  
 
From the derivatives of the trigonometric functions sin , cos  and tanx x x , the follow- 
ing integrals follow automatically: 
 

 sin  d cosx x x c= − +∫  

 cos  d sinx x x c= +∫  

 21 cos  d tanx x x c= +∫  

 cossin d axax x c
a

−
= +∫  

 sincos d axax x c
a

= +∫  

 2
d tan

cos
x ax c

aax
= +∫  

 
Example Integrate each of the following functions with respect to x: 
  (a) sin 2x  ;  (b) 1

3cos x  ; (c) 21 cos 2x . 
 

 (a) 1
2

cos2sin 2 d cos2
2

xx x c x c−
= + = − +∫  
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 (b) 
1
31 1

3 31
3

sin
cos d 3sin

x
x x c x c= + = +∫  

 (c) 1
22

d tan 2 tan 2
2cos 2

x x c x c
x

= + = +∫  

 
Example Find the area enclosed by the curves siny x=  and sin 2y x=  

between x = 3π  and x = π. 
 
 The graphs of siny x=  and sin 2y x=  between x = 0 and x = π are: 
  

     
 

 The required area =  ( )
3

sin sin 2 dx x x
π

π
−∫  

  = 1
2 3

cos cos2x x
π

π
⎡ ⎤− +⎣ ⎦  

  = 1 1
2 2cos cos2 cos 3 cos2 3− π + π + π − π  

  = 1 1 1
2 2 41+ + +  

  = 2.25. 
   
Example (a) Show that 2cos2 1 2sinx x= −  and that 2 1 1

2 2sin cos2x x= − . 
 (b) Hence calculate the area enclosed by the x-axis and one arch 

of the curve 2siny x= . 
 
 (a) cos2x  =  2 2cos sinx x−  
   =  2 2(1 sin ) sinx x− −  
   =  21 2sin x− . 
 
  Therefore   22sin x  =  1 cos 2x−  
  and so 2sin x  =  1 1

2 2 cos 2x− . 
 

x 

 y 

π π/3 

siny x=

sin 2y x=  

O 
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 (b) The graph of the curve 2siny x=  for 0 x≤ ≤ π  follows and the 

required area is given by  2
0

sin  dx x
π

∫  =  ( )1 1
2 20

cos2  dx x
π

−∫  

   =  1 1
2 4 0

sin 2x x
π

⎡ ⎤−⎣ ⎦  

   =  1
2 π . 

 
 

     
 
 

Example The velocity, 1( ) m sv t − , of a particle moving in a straight line is 
given by ( ) 2sin 2 2sinv t t t= + . Find the distance travelled in the first 
π seconds of motion. 

 

 ( ) 4sin cos 2sin 2sin (2cos 1)v t t t t t t= + = +  which is zero when t = 0, 2
3 π , π. 

 For 0 < t < 2
3 π , v > 0 and for 2

3 π  < t < π, v < 0. 
 Therefore the distance travelled in the first π seconds 

 =  
2 3

0 2 3
( ) d ( ) dv t t v t t

π π

π
−∫ ∫  

 =  ( ) ( )
2 3

0 2 3
2sin 2 2sin  d 2sin 2 2sin  dt t t t t t

π π

π
+ − +∫ ∫  

 =  [ ] [ ]2 3
0 2 3cos2 2cos cos2 2cost t t tπ π

π
− − − − −  

 =  ( ) ( ){ }1 1
2 21 1 2 1 2 1+ − − − − − + − +  

 =  5 m. 
 
[Note: If a graphic display calculator is used, the distance travelled in the first π 

seconds is given by 
0

2sin 2 2sin  dx x x
π

+∫ .] 
 
Exercise 16.3 
 
1. Integrate each of the following with respect to x: 
 (a) sin3x ; (b) ( )1 1

2 4sin xπ −  ; (c) 1
2cos x  ; 

 (d) 2cos5x  ; (e) ( )2 2
31 cos x  ; (f) 2 1

21 cos ( 2)x −  ; 

 (g) 2sin3x x−  ; (h) 23cos2( 1) 3x x− −  ; (i) 23 cos (2 3)x − . 

 x 

 y 

 π  O 

2siny x=
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2. Integrate each of the following functions with respect to x: 
 (a) 1

2cos2 sinx x+  ;  (b) 1 2sin3 cos 2x x− +  ; 
 (c) 1

2cos2 4cosx x−  ;  (d) 2sin(3 1) 3cos(2 1)x x− − + . 
 

3. (a) Show that 2 2cos2 2cos 1 1 2sinx x x= − = − . 
 (b) Use the results from part (a) to show that 2 1 1

2 2cos cos2x x= +  and 

that 2 1 1
2 2sin cos2x x= − . 

 (c) Integrate each of the following with respect to x: 
  (i) 2cos 3x  ;  (ii) 2sin 2x  ; 
  (iii) 2 2 1

2cosx x−  ;  (iv) 2sin 5 2 3x x− + . 
  

4. (a) Differentiate 2sin 2x  with respect to x. 
 (b) Use the result of part (a) to integrate sin 2 cos2x x  with respect to x. 
 

5. (a) Differentiate 2cos 3x  with respect to x. 
 (b) Use the result of part (a) to integrate sin3 cos3x x  with respect to x. 
 

6. (a) Differentiate 3sin x  with respect to x. 
 (b) Use the result of part (a) to integrate 2sin cosx x  with respect to x. 
 
7. Solve the following differential equations: 

 (a) d 2sin 2 cos
d
y x x
x

= −  where y = 1 when x = 0 ; 

 (b) 
2

2
d 2sin 4
d

y x
x

=  where d 2
d
y
x

=  and y = 4 when x = 0 ; 

 (c) 
2

2
d 2cos 2 sin
d

y x x
x

= +  where 1
2

d 3 and 2
d
y y
x

= =  when x = 0. 

 
Higher Level 

 
16.4 The Derivatives of csc x, sec x and cot x 
 

1. Let ( ) 11( ) csc sin
sin

f x x x
x

−= = = . 

 Then   ( )f x′  =   ( ) ( )2sin cosx x−−  

  =   1 cos
sin sin

x
x x

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

  =   csc cotx x− . 
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2. Let ( ) 11( ) sec cos
cos

f x x x
x

−= = = . 

 Then   ( )f x′  =   ( ) ( )2cos sinx x−− −  

  =   1 sin
cos cos

x
x x

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

  =   sec tanx x . 
 

3. Let cos( ) cot
sin

xf x x
x

= = . 

 Then   ( )f x′  =   ( )
2

sin sin cos cos
sin

x x x x
x

− −
 

  =   
( )2 2

2

sin cos

sin

x x

x

− +
 

  =   2
1

sin x
−  

  =   2csc x− . 
 
The complete table of derivatives of the six trigonometric functions is as 
follows: 
    ( )f x   ( )f x′  
    sin x   cos x  
    cos x   sin x−  
    tan x   2 21 cos secx x=  
    csc x   csc cotx x−  
    sec x   sec tanx x  
    cot x   2csc x−  
 
Exercise 16.4 
 
1. Find, from first principles, the derivative of each of the following 

functions: 
 (a) csc2x  ;  (b) 1

2sec x  ; (c) cot 4x . 
 
2. Find, from first principles, the differential coefficient at x = a of each of the 

following functions: 
 (a) csc x  ;  (b) sec4x  ;  (c) 1

2cot x . 
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3. Differentiate each of the following functions with respect to x: 
 (a) tan 2 sec2x x+  ; (b) 2 2tan sec 2x x−  ; 
 (c) 2csc2 csc 3x x−  ; (d) 2 2cot cot 2x x−  ; 
 (e) sec tan 2x x  ;  (f) 2 31 1

4 2sec ( ) tan ( )x x− π + − π . 
 
4. Find the position and nature of any stationary point that the following 

functions may have and sketch their graphs: 
 (a) 1

2( ) 27csc 8sec , 0f x x x x= + < < π  ; 
 (b) 1

2( ) tan cot , 0 ,f x x x x x= + < < π ≠ π . 
 
16.5 Further Integration of Trigonometric Functions 
 
From the derivatives of the six trigonometric functions sin x, cos x, tan x, csc x, 
sec x  and cot x , the following integrals follow automatically: 
 

 sin  d cosx x x c= − +∫  

 cos  d sinx x x c= +∫  

 2sec  d tanx x x c= +∫  

 2csc  d cotx x x c= − +∫  

 sec tan  d secx x x x c= +∫  

 csc cot  d cscx x x x c= − +∫ . 
 
For other functions, identities are used to express the integrand in a form which 
can be readily integrated using any of the above "standard" integrals. 
 

Example Integrate 2 2 2 2tan , sin , cos  and cotx x x x  with respect to x. 
 

 From the identity 2 21 tan secx x+ =  we obtain 2 2tan sec 1x x= − . 
 Thus ( )2 2tan  d sec 1  d tanx x x x x x c= − = − +∫ ∫ . 
 

 Rearranging the identities 2 2cos2 1 2sin  and cos2 2cos 1x x x x= − = −  
gives 2 21 1 1 1

2 2 2 2sin cos2  and cos cos2x x x x= − = + . 
 

 Thus ( )2 1 1 1 1
2 2 2 4sin  d cos2  d sin 2x x x x x x c= − = − +∫ ∫ , 

 
 and  ( )2 1 1 1 1

2 2 2 4cos  d cos2  d sin 2x x x x x x c= + = + +∫ ∫ . 
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 From the identity 2 21 cot cscx x+ =  we obtain 2 2cot csc 1x x= − . 
 Thus ( )2 2cot  d csc 1  d cotx x x x x x c= − = − − +∫ ∫ . 
 
Note: The above-mentioned identities should be known in the forms 

required for integration, 2 2tan sec 1x x= − , 2 2cot csc 1x x= − , 
2 1 1

2 2sin cos2x x= −  and 2 1 1
2 2cos cos2x x= + , as well as in their 

standard forms. 
 
The "inverse chain rule" may be used for any integral of the form 
 cos sin  d or sin cos  dn nx x x x x x∫ ∫  
as follows: 

 11cos sin  d cos , 1
1

n nx x x x c n
n

+−
= + ≠ −

+∫ , 

and 11sin cos  d sin , 1
1

n nx x x x c n
n

+= + ≠ −
+∫ . 

 
Integrals of the form cos  d or sin  dn nx x x x∫ ∫  are in general a little more 
difficult, and there is no general rule which covers all cases. 
 

Example Find 3cos  dx x∫ . 
 

 3cos  dx x∫  =  2cos cos  dx x x∫  

  =  ( )21 sin cos  dx x x−∫  

  =  ( )2cos sin cos  dx x x x−∫  

  =  31
3sin sinx x c− + . 

 
Example Find 4sin  dx x∫ . 
 

 4sin  dx x∫  =  2 2sin sin  dx x x∫  

  =  ( )2 21 cos sin  dx x x−∫  

  =  ( )2 2 2sin sin cos  dx x x x−∫  

  =  ( )21 1 1
2 2 4cos2 sin 2  dx x x− −∫  

  2 2 21
4sin 2 2sin cos  and so sin cos sin 2x x x x x x⎡ ⎤= =⎣ ⎦  
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 =  ( )1 1 1 1 1
2 2 4 2 2cos2 cos4  dx x x⎡ ⎤− − −⎣ ⎦∫  

 =  ( )3 1 1
8 2 8cos2 cos 4  dx x x− +∫  

 =  3 1 1
8 4 32sin 2 sin 4x x x c− + + . 

 
Exercise 16.5 
 
1. Integrate each of the following with respect to x: 
 (a) 2 2

3sec x  ; (b) ( )2 1
2csc 2x −  ; (c) 2 1

2sin x ;

 (d) 2sin (1 3 )x−  ; (e) 2 3
4cos x  ; (f) 2 1

2cos xπ  ; 

 (g) 2tan 3x  ; (h) 2 2
3tan x  ; (i) 2cot 5x  ; 

 (j) ( )2 2
3cot 4xπ −  ; (k) 2cos sinx x  ; (l) 2sin3 cos 3x x  ; 

 (m) cos
sin

x
x

 ; (n) 
( )2

cos2
sin cos

x
x x

. 

 
2. Integrate sin cosx x  in three different ways: 
 (1) by considering sin cosx x  in the form sin cosn x x  ; 
 (2) by considering sin cosx x  in the form sin cosnx x  ; 
 (3) by expressing sin cosx x  as a trigonometric function of 2x. 
 
 Explain how it is possible to obtain three apparently differing answers here. 
 
3. Integrate each of the following with respect to x: [Do part (a) in two ways.] 
 (a) ( )cos 1 2sinx x−  ;   (b) ( )sin 2 cos2 1x x +  ; 

 (c) ( )22 sin3x−  ;  (d) ( )2sin 2 cos2x x−  ; 

 (e) 22cos cscx x  ;  (f) 
3

2
cos 3 1

cos 3
x

x
−  ; 

 (g) cos
3 2sin

x
x−

 ;  (h) 3
sin3

(1 2cos3 )
x

x+
 ; 

 (i) 1 cos2
1 cos2

x
x

−
+

 ;  (j) 4
1 cos4x+

 ; 

 (k) ( )2sinx x  ;  (l) ( )2 2 3tanx x . 
 

4. A curve for which ( )d cos 1 cos
d
y x x
x

= +  passes through the origin. Find the 

equation of the curve and the equation of the tangent at the origin. 
 



Chapter 16 

464   

 

5. (a) Show that 48cos 3 4cos2 cos4x x x= + + , and deduce 4cos  dx x∫ . 

 (b) Differentiate sinx x  with respect to x and deduce cos  dx x x∫ . 

 (c) Find sin  dx x x∫ . 
 
6. A particle P is moving along the x-axis and at time t seconds its 

acceleration is given by 2( ) 2sin 2  m sa t t −= . The particle is initially at the 
origin and moving with velocity 11 m s− . Show that P does not return to the 
origin. A second particle Q is moving with a constant velocity of 12 m s− . 
If Q meets P when 1

4t = π , show that Q does not pass P and find the 
greatest distance between P and Q. 

 

7. Sketch the curve ( )sin 1 2cosy x x= −  for 0 ≤ x ≤ π. Find the area enclosed 
by the x-axis and the curve. 

 

8. Find, in terms of the positive integer a, the value of 
2

0
sin 2  d

a
x x

π

∫ . 
 
9. Calculate the area enclosed by the line y = 1 and one arch the curve 

1
22 2siny x= +  lying above the line. 

10. Find the area of the region bounded by the curve 2
1 cos2

y
x

=
+

, the x-axis, 

the y-axis and the line 1
4x = π . 

 

11. Find the area between the curve 2sin cosy x x=  and the x-axis from 
x = 0 to the first positive zero. 

 
Required Outcomes 

 
 After completing this chapter, a student should be able to: 

• use the results 
0 0

sin 1 coslim 1  and/or  lim 0
θ→ θ→

θ − θ
= =

θ θ
 to differentiate 

trigonometric functions from first principles.  (HL) 
• find the derivative of any trigonometric function involving sin x, cos x 

and tan x and integrate any of the functions sin x, cos x and 21 cos x . 
• find the derivative of any of the six trigonometric functions.  (HL) 
• integrate simple trigonometric functions using appropriate identities. 
• integrate more complicated trigonometric functions by first expressing 

them in a suitable form.  (HL) 
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17.1 The Exponential Function xa

Exponential functions, ( ) , 0, 1xf x a a a= > ≠ , and their inverse functions,
1( ) logaf x x− = , have already been introduced briefly in Chapter 1. In the current 

section we will learn how to differentiate and integrate such functions. This will 
enable us to solve many problems which occur quite naturally in "growth and decay" 
situations such as money invested at compound interest, the decay of radio-active
material, and the growth of bacteria cultures in medicine. Along the way we will learn 
what is meant by ua  when u is an irrational number for up to now we have defined it 
for rational u only.

The derivative of the function ( ) xf x a=  with respect to x is denoted and defined by

( )f x′ =
0

( ) ( )lim
h

f x h f x
h→

+ −

=
0

lim
x h x

h

a a
h

+

→

−

=
( )

0

1
lim

x h

h

a a

h→

−

=
0

1lim
h

x

h

aa
h→

⎛ ⎞−
⎜ ⎟
⎝ ⎠

= xma  where m = 
0

1lim
h

h

a
h→

−  (a fixed number).

Note: It can be proved that m does exist for any positive value of a.

Exercise Use your graphic display calculator to sketch the graph of 1ha
h
−  for

a = 2, 2.2, 2.5, 2.8 and 3, and use your graph to estimate the intercept 
on the vertical axis in each case.

The y-intercepts are respectively 0.69, 0.79, 0.92, 1.03 and 1.10 (see graphs at 
the top of the next page).
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This enables us to estimate the derivatives of such functions, but is not very practical 
especially when we need higher order derivatives. For example,

( ) ( ) ( )
2

2
2

d 3 1.10 3
d

x x

x
≈ , ( ) ( ) ( )

3
3

3
d 3 1.10 3
d

x x

x
≈ ,  … , ( ) ( ) ( )d 3 1.10 3

d

n
nx x

nx
≈ .

The Exponential Function xe

It may have already occurred to you that there is a value of a between 2.5 and 2.8 for 

which
0

1lim 1
h

h

am
h→

−
= = . In this case ( )d

d
x xa a

x
=  and all higher order derivatives are 

also given by ( )d
d

n
x x

n a a
x

= .

Definition We denote by e that value of a for which 
0

1lim 1
h

h

a
h→

−
=

so that ( )d e e
d

x x

x
= .

The value of e is 2.718 282 ….. correct to 7 significant figures.
The fact that the function ex  is its own derivative makes it the most useful
exponential function in calculus situations, in particular the "growth and decay"
problems that often occur in nature.

The chain rule must be applied when we differentiate ( )e f x  where ( )f x  is
differentiable.

The results should show that

( ) ( )d 2 0.69 2
d

x x

x
≈  ,

( ) ( )d 2.2 0.79 2.2
d

x x

x
≈  ,

( ) ( )d 2.5 0.92 2.5
d

x x

x
≈  ,

( ) ( )d 2.8 1.03 2.8
d

x x

x
≈  and

( ) ( )d 3 1.10 3
d

x x

x
≈ . x

 y

1xay
x
−

=

a = 3 2.8 2.5 2.2 2

O
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This gives:

( )( ) ( )d e e ( )
d

f x f x f x
x

′= .

Note: The notation exp(x) for ex  is sometimes used particularly when the
expression for ( )f x  in ( )e f x  has exponents in it, or is a quotient or product 

of other functions. For example 
2

exp
2

x
x

+⎛ ⎞
⎜ ⎟−⎝ ⎠

 seems preferable to 
2
2e

x
x

+⎛ ⎞
⎜ ⎟−⎝ ⎠ .

Example Differentiate each of the following with respect to x:
(a) 2e x  ; (b) 1 3e x−  ;

(c) ( )2exp 1x +  ; (d)
1

exp
x

x
−⎛ ⎞

⎜ ⎟⎝ ⎠
.

(a) ( ) ( )2 2 2d e e (2) 2e
d

x x x

x
= =

(b) ( ) ( )1 3 1 3 1 3d e e ( 3) 3e
d

x x x

x
− − −= − = −

(c) ( ) ( )2 2 2d exp( 1) exp( 1) (2 ) 2 exp( 1)
d

x x x x x
x

+ = + = +

(d) 2 2
d 1 1 ( 1) 1 1

exp exp exp
d

x x x x x
x x x xx x

⎛ ⎞− − − − −⎛ ⎞ ⎛ ⎞ ⎧ ⎫ ⎛ ⎞
= =⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎩ ⎭ ⎝ ⎠⎝ ⎠

Higher Level

The General Exponential Function , 0, 1xa a a>> ≠

If the base of the exponential function is not e, we must first change the base to 

e and then use the rule ( )( ) ( )d e e ( )
d

f x f x f x
x

′= .

Firstly, we denote elog x  by ln x  (the 'natural' logarithm of x).
Now if xy a= , we may write ln lny x a=  and so lne x ay =  (See Chapter 1).
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Thus lnex x aa =      (a > 0, a ≠ 1), and so ( ) ( )lnd (ln )e ln
d

x x a xa a a a
x

= =   .

When we first attempted to differentiate xa  we found ( ) ( )d
d

x xa m a
x

=  where 

0

1lim
h

h

am
h→

−
= . We are now able to find the value of m for each value of a, and 

in fact
0

1lim ln
h

h

am a
h→

−
= = .

Also, we are now able to give meaning to na  for irrational values of n, since 
lnen n aa =  for all real values of n.

Example Differentiate 2x  with respect to x.

( ) ( ) ( )ln2 ln2d d2 e e (ln2) (ln2)2
d d

x x x x

x x
= = =

Example For what positive value of x is the function 2( ) 10 xf x x −=  a 
relative maximum? Find this maximum value.

2( ) 10 xf x x −= ⇒ ( )f x′ = 210 (2 ) 10 ( ln10)x xx x− −+ −

= 10 (2 ln10)xx x− −

= 0 when x = 2
ln10

   ( 0x > ).

+ –

Therefore ( )f x  is a maximum when x = 2 0.869
ln10

≈ , and the maximum 

value of ( )f x  is ( )
2

2ln102 10 0.102
ln10

−⎛ ⎞ ≈⎜ ⎟
⎝ ⎠

.

Exercise 17.1

1. It is known that 
0

1e
!n n

∞

=

= ∑ . By summing sufficient terms of this series, find 

the value of e correct to six decimal places.

sign of ( )f x′
0.869
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2. Write down the derivative with respect to x of each of the following:
(a) 3 1 2e ex x+ −+  ; (b) 23 2e x−−  ; (c) e e x−−  ;

(d) ( )2
e ex x−−  ; (e) 2e s in2x x  ; (f) s in2e x  ;

(g)
2

3e x
x  ; (h)

3 3

3 3
e e
e e

x x

x x

−

−

−
+

 ; (i) 2 exp(cos2 )x x .

3. Find the position and nature of any stationary points that the graphs of the 
following functions may have:
(a) ( ) e xf x x=  ; (b) ( )2( ) 1 exf x x x= − −  ;

(c) 2 2( ) e ex xf x −= +  ; (d) 2( ) 2e 4ex xf x −= +  ;
(e) 3( ) e xf x x −=  ; (f) ( ) e sin , 0 2xf x x x= ≤ ≤ π .

4. (a) If 2 3e ex xy −= + , show that 
2

2
d d 6 0

dd
y y y

xx
+ − = .

(b) If 2(2 1)e xy x −= − , show that 
2

2
d d4 4 0

dd
y y y

xx
+ + = .

5. (a) If A and B are constants and 2 4e ex xy A B= + , show that
2

2
d d6 8 0

dd
y y y

xx
− + = .

(b) If A and B are constants and 3( )e xy A Bx −= + , show that
2

2
d d6 9 0

dd
y y y

xx
+ + = .

(c) If emxy =  and 
2

2
d d7 12 0

dd
y y y

xx
− + = , find the possible values of m.

6. (a) Show that the tangent to the curve 2e xy x −=  at x = 1 passes through 
the origin.

(b) Find the values of A and B if the tangent to the curve
2 2e ex xy A B −= +  at x = 0 has the equation y = 8x + 2.

Higher Level

7. (a) Find the angle between the curves e xy −=  and 22e xy −=  at their 
point of intersection.



Chapter 17

470

(b) The tangent at P(h, k) on the curve ( )1
2 e ex xy −= + , x ≠ 0, makes 

an angle θ with the positive x-axis. Prove that seck = θ .

8. (a) The position of a particle moving along the x-axis at time t seconds 
is given by ( )232 e 2e mt tx − −= − . Find the acceleration of P when 
it is stationary and find its maximum speed in the subsequent
motion.

(b) A particle moves along the x-axis so that at time t seconds its 
position, x metres from O, is given by 1020 10e tx −= − .
(i) Find the velocity and acceleration of the particle  at the end 

of the tenth second.
(ii) Find the average velocity of the particle during the first ten 

seconds.
(iii) Find the acceleration of the particle when

(1) x = 17.5m ;
(2) its velocity is half its initial velocity.

9. (a) Find the coordinates of the turning point and the points of inflexion 
of the graph of 2exp( )y x= − . Sketch the graph.

(b) A rectangle has two vertices on the x-axis and two on the curve 
2exp( )y x= − . If the point ( )( )2P ,expx x− , where x > 0, is one of 

the vertices on the curve, show that the area of the rectangle is 
given by 22 exp( )A x x= − . Show that the maximum area of this 
rectangle occurs when P is one of the points of inflexion found in 
part (a).

17.2 Differentiation of Logarithmic Functions

Since the function :f +→� �  such that ( ) exf x =  is differentiable and its derivative 
is never zero, its inverse function 1 :f − + →� �  for which 1( ) lnf x x− =  is also 
differentiable.

Let lny x= , then e y x= .

When we differentiate each side of this last expression with respect to x we obtain
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de
d

y y
x

=  1

d
d

y
x

= 1
e y

d
d

y
x

= 1
x

.

Thus ( )d 1ln
d

x
x x

=      (x > 0).

In the more general form, if ( )f x  is any differentiable function such that ( ) 0f x > ,

then ( )d 1 ( )ln ( ) ( )
d ( ) ( )

f xf x f x
x f x f x

′′= × = .

Example Differentiate each of the following functions with respect to x:
(a) 2ln( 1)x +  ; (b) 2 lnx x  ;
(c) ( )ln kx , where k is a constant.

(a) ( )( )2
2 2

d 1 2ln 1 2
d 1 1

xx x
x x x

+ = × =
+ +

(b) ( )2 2d 1ln ln 2 2 ln
d

x x x x x x x x
x x

= × + × = +

(c) ( )( )d 1 1ln
d

kx k
x kx x

= × =

Note: The derivative of ( )ln kx  is the same as that of ln x . This is easily explained 
by the fact that ( )ln kx  = ln lnk x+  and the derivative of the constant ln k  is 
zero.

Higher Level

The Derivative of a xlog

To differentiate a logarithmic function where the base is not e, we use the
change of base rule we first met in Chapter 1 to convert the logarithm in base a
to one in base e.
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Let lnlog
lna

xy x
a

= =   (change of base).

Then ( ) ( )d d ln 1 d 1
log ln

d d ln ln d lna
x

x x
x x a a x x a

⎛ ⎞= = =⎜ ⎟⎝ ⎠
.

Therefore ( )d 1log
d lna x

x x a
= .

In the more general form, if ( )f x  is differentiable, then

( )d ( )log ( )
d ( )lna

f xf x
x f x a

′
= .

A number of scientific formulae are expressed in terms of base 10 logarithms. 
The Richter scale  for measuring the intensity of an earthquake, the decibel
scale  for measuring the loudness of sound and the pH-scale for measuring the 
acidity of a solution are all constructed using base 10 logarithms.

Example If the intensity I of a sound is measured in watts per square metre, 
the sound level is ( )1210log 10I × decibels.
(a) What change in the sound level is created by a doubling of 

the intensity?
(b) By what factor must the intensity be multiplied to increase 

the sound level by 5 decibels?

(a) Let the original sound level be ( )12
010log 10I ×  decibels.

If we double the intensity, the sound level becomes

( )12
010log 2 10I × = ( )12

010log2 10log 10I+ ×

=  3.01 + original sound level.
Therefore the sound level is increased by approximately 3 decibels.

(b) Let the original sound level be ( )12
0 010log 10L I= ×  decibels.

If this is increased by 5 decibels, we have
L = ( )12

010log 10 5I × +

= ( )12
010log 10 10log3.162I × +

= ( )12
010log 3.162 10I × .

Therefore, the intensity is multiplied by a factor of 3.16.
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Example Differentiate the function ( )log 2 , 0x x >  with respect to x:

( )d d ln(2 ) 2 1
log(2 )

d d ln10 2 ln10 ln10
x

x
x x x x

⎛ ⎞= = =⎜ ⎟⎝ ⎠

The rules of logarithms can often be used to simplify working.

Example Differentiate 1ln
1

xy
x

+=
−

 with respect to x.

Here 1 1
2 2ln 1 ln 1 ln(1 ) ln(1 )y x x x x= + − − = + − − .

Therefore 2
d 1 1 1 1
d 2 1 1 1
y
x x x x

⎛ ⎞= + =⎜ ⎟+ − −⎝ ⎠
.

Example Differentiate
3 1

2
e sin

1

x x
x

−

+
 with respect to x.

Let y =
3 1

2
e sin

1

x x
x

−

+
. Then

( ) ( ) ( )3 1 2 21
2ln ln e ln sin ln 1 3 1 lnsin ln 1xy x x x x x−= + − + = − + − + .

Differentiating with respect to x gives:
3 1

1
22 2 2

1 d cos 2 d e sin 2
3 3 cot

d 2sin d1 1 1

xy x x y x x
x

y x x xx x x

− ⎛ ⎞
= + − ⇒ = + −⎜ ⎟

+ + +⎝ ⎠
.

At this point we have proved that ( ) 1d
d

n nx nx
x

−=  for 

(a) all positive integer values of n (Section 10.4);
(b) all negative integer values of n (Section 12.3) ;
(c) all rational values of n (Section 12.4).

We will now prove that the rule holds when n is any real number.

Theorem If ny x=  where n is any real number, then 1d
d

ny nx
x

−= .

Proof ( )d
d

nx
x

= ( )lnd e
d

n x

x
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= ( )ln de ln
d

n x n x
x

= n n
x

x
⎛ ⎞
⎜ ⎟⎝ ⎠

= 1nnx − .

Exercise 17.2

1. Differentiate each of the following functions with respect to x:
(a) ln3x  ; (b) ln( 2)x +  ; (c) ln(3 5)x +  ;

(d) ( )3ln 2 3x +  ; (e) ( )ln sin3x  ; (f) ( )ln tan x  ;

(g) 3 l n 2x x  ; (h) ( )ln ln x  ; (i) ln 4 3x +  ;

(j) 2
ln x
x

 ; (k)
1

lnx
x

⎛ ⎞
⎜ ⎟⎝ ⎠

 ; (l) ( )2ln cos x .

2. Find the equation of the tangent to the curve ln(4 11)y x= −  at the point 
where x = 3.

3. The tangent to the curve 2ln(2 )y x=  at x = e meets the x-axis at P and the y-
axis at Q. Find the area of the triangle OPQ where O is the origin.

4. Given that ln2 and ln3p q= = , express each of the following in terms of p
and/or q:
(a) ln18  ; (b) ln24e  ; (c) 2log 3  ;
(d) 6log e  ; (e) 6 ; (f) 2.25.

5. Solve each of the following equations:
(a) 2e 5e 6 0x x− + =  ; (b) 3 2e 7e 6e 0x x x− + =  ;
(c) 3e 2e 5x x− − =  ; (d) 2 2e e 4x x−+ = .

6. Find the position and nature of any turning point and sketch the graph of each 
of the following curves:

(a)
ln

xy
x

= ; (b) ( )2lny x=  ; (c) ( )2 2lny x x= −  ;

(d) lny x x= −  ; (e) 2 lny x x=  ; (f) lny x x= .
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Higher Level

7. Find the derivatives of each of the following functions with respect to x:
(a) 6logy x=  ; (b) 2 logy x x=  ; (c) ( )2

2 2log 2 logy x x= − .

8. Find the change in the sound level created by an increase in the intensity by 
a factor of 5.

9. By what factor must the intensity by multiplied to increase the sound level 
by 8 decibels?

10. Find d
d

y
x

 in each of the following by differentiating ln y :

(a)
2

2
1

e (2 1)x
x

y
x
+

=
+

 ; (b)
2

2

exp( )
2 1

xy
x

=
+

 ; (c)
4 2e sin 3

5 1

x x
y

x
=

+
.

11. (a) Prove that ln ln   for  0, 0a xx a x a= > > .
(b) Differentiate ln2x  and ln2 x  with respect to x and show that the 

derivatives are identical.

12. (a) Show that 1 logay x
x

=  has its maximum value at x = e for each 

choice of a, provided a > 1.

(b) Sketch the graph of 1 logay x
x

=  for a > 1 and show that the point 

of inflexion is at 3 2ex = .

17.3 Integration of Exponential Functions

Since the function ex  is its own derivative, we have e d ex xx c= +∫ .

In a more general form we have 1e d eax b ax bx c
a

+ += +∫ .

Example Integrate each of the following functions with respect to x:

(a) 26e 2ex x−  ; (b) ( )2
e 1x− −  ; (c) 1 22 6e x−− .
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(a) ( )26e 2e dx x x−∫ = 22
26e ex x c− +   = 26e ex x c− +

(b) ( )2
e 1 dx x− −∫ = ( )2e 2e 1 dx x x− −− +∫   = 21

2 e 2ex x x c− −− + + + .

(c) ( )1 22 6e dx x−−∫ = 1 22 3e xx c−+ + .

Example The gradient of a curve at the point (x, y) on it is 1 28 2e xx −− , and the 
curve passes through the point ( 1

2 , 5). Find the equation of the curve 
and the equation of the tangent at the point ( 1

2 , 5).

1 2 2 1 2d 8 2e 4 e
d

x xy x y x c
x

− −= − ⇒ = + +

Point ( 1
2 , 5) lies on the curve and so 5 = 1 + 0e  + c which gives c = 3.

The equation of the curve is 2 1 24 e 3xy x −= + + .

The gradient of the tangent at x = 1
2  is ( ) 01

28 2e−  = 2 and so the equation of 
this tangent is 2x – y = –4.

Example The velocity at time t seconds of a particle moving in a straight line is 
given by 1( ) (6 3e ) m stv t −= − . Find the distance travelled by the 
particle in the first two seconds.

The particle comes to rest when v(t) = 0 or e 2t = , i.e., when t = ln 2 ≈ 0.693.
The sign of v(t) is:

Therefore the distance travelled in the first second is given by
ln2 2ln2 2

0 ln2 0 ln2
(6 3e ) d (6 3e ) d 6 3e 6 3et t t tt t t t⎡ ⎤ ⎡ ⎤− − − = − − −⎣ ⎦ ⎣ ⎦∫ ∫

26ln2 6 0 3 12 3e 6ln2 6= − − + − + + −
23e 12ln2 21= + −

9.48 m= .
Exercise 17.3

1. Integrate each of the following with respect to x:
(a) 2e 3ex x−+  ; (b) 2 24e 6ex x−−  ;
(c) 0.2 0.24e ex −  ; (d) 1 2 1 32e 3ex x− −−  ;

ln 2
+ –
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(e)
2

2
2e 1

e

x

x
−  ; (f) ( )2

e 1x− + .

2. The gradient of the curve at the point (x, y) on it is 2 2e 2ex x−− . Find the 
equation of the curve given that it passes through the point (0, 2).

3. The function ( )y f x=  has a minimum value of 2.25. If the gradient of the 
curve at any point P(x, y) on it is 22e ex x− , find the equation of the curve.

4. A particle moving along the x-axis has velocity 1( ) cm sv t −  at time t seconds. 
Find the distance travelled by the particle in the first two seconds of motion 
for each of the following:
(a) 2( ) 5e tv t −=  ; (b) ( )20( ) 3 1 e tv t −= −  ; (c) 2( ) 4 2e 3etv t = − − .

5. Find the area enclosed by the curves 2e , ex xy y −= =  and the line 1x = .

6. Find the area between the curve e xy −=  and the x-axis from x = –2 to x = 0.

7. A raindrop falls from rest and its acceleration at time t seconds is given by 
2 2( ) e cm sta t k − −=  where k is a positive constant.

(a) Find the limiting velocity of the raindrop.
(b) Calculate the time taken for the raindrop to reach half its limiting 

velocity.
(c) Show that for the first 10 seconds the average velocity of the raindrop 

is approximately 11.6 cm sk − .

Higher Level

17.4 Further Integration of Exponential Functions

We have seen in the previous section that 1e d eax b ax bx c
a

+ += +∫ .

In the more general form we have ( ) ( )e ( ) d ef x f xf x x c′ = +∫ .

Also, if the base of the exponential function is not e, we must change the base to 
e and use the rules just stated.
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This gives ln ln1 d e d e
ln ln

x
x x a x a aa x x c c

a a
= = + = +∫ ∫ ,

or in the more general form

( )
( ) ( )ln ( )ln1( ) d e ( ) d e

ln ln

f x
f x f x a f x a aa f x x f x x c c

a a
′ ′= = + = +∫ ∫ .

Example Integrate each of the following functions with respect to x:

(a)
2

6 exx  ; (b) 1 210 x−  ; (c) 2
e e

(e e )

x x

x x

−

−

−
+

.

(a)
2 2

6 e d 3 (2 )e dx xx x x x=∫ ∫  which is of the form ( )3 ( )e df xf x x′∫ .

Therefore
2 2

6 e d 3ex xx x c= +∫ .

(b) 1 210 dx x−∫ = 10 0.01 dx x∫
= ln0.0110 e dx x∫
=

1 2
ln0.0110 10e or

ln0.01 ln0.01

x
x c c

−

+ + .

(c) ( ) 2
2

e e
d ( ) ( ) d

(e e )

x x

x x x f x f x x
−

−
−

−
′=

+∫ ∫  where ( ) e ex xf x −= + .

Therefore 2
e e 1

d
(e e ) e e

x x

x x x xx c
−

− −

−
= −

+ +∫ .

Exercise 17.4

1. Integrate each of the following with respect to x:
(a) 3e (e 2)x x +  ; (b) (cos )exp(sin )x x  ;

(c) 23 exp( 1)x x +  ; (d) 2
exp(tan )

cos
x

x
;

(e) 25 3x x+  ; (f)
2

10xx  ;
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(g) e
e 1

x

x +
 ; (h) (e e )(e e )x x x x− −− + .

2. The gradient of the curve ( )y f x=  at any point (x, y) on the curve is given 
by 0.42 x . Find the equation of the curve if it passes through the origin.

3. Calculate the area enclosed by the y-axis and the curves 2 2xy = −  and 

( )3 2 xy −= .

4. Evaluate each of the following definite integrals:

(a) ( )ln3

ln2
e cos e 2 dx x x−∫  ; (b)

( )
ln4

20

2e d
1 2e

x

x
x

+
∫  ;

(c)
2

0
sin exp(cos ) dx x x

π

∫  ; (d)
1 2 3
0

( 1)exp( 3 1) dx x x x+ + +∫ .

17.5 Integration of Functions of the Form 
ax b

1
++

If ln , 0y x x= > , we have d 1
d
y
x x

= , and if ln( ), 0y x x= − < , we have d 1 1
d
y
x x x

−= =
−

.

Therefore
ln , 01

 d ln
ln( ) , 0

x c x
x x c

x c xx
+ >⎧

= = +⎨
− + <⎩

∫ , x ≠ 0.

Example Integrate each of the following with respect to x:

(a) 1
5x −

 for x > 5 ; (b) 2
3 2x−

 for 3
2x > .

(a) 1 d
5

x
x −∫ = ln( 5)x c− +  since x > 5.

(b) 2 d
3 2

x
x−∫ = 3

2

1 dx
x

−
−∫ = ( )3

2ln x c− − +  since 3
2x > .

or 2 d
3 2

x
x−∫ = 2 ln 3 2

2
x c− +

−
  = ln(2 3)x c− − +  since 3

2x > .
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In a more general form we have dk x
ax b+∫   = lnk ax b c

a
+ + , bx

a
≠ − .

Example Integrate each of the following with respect to x:

(a) 3
2 3x +

 ; (b) 4
2 3x−

 ; (c) 2 1
1

x
x

+
−

.

(a) 3  d
2 3

x
x +∫  = 3 ln 2 3

2
x c+ +

(b) 4  d
2 3

x
x−∫  = 4 ln 2 3

3
x c− − +

(c) We must first express 2 1
1

x
x

+
−

 in the form 
1

ba
x

+
−

 as follows:

2 1 2( 1) 3 32
1 1 1

x x
x x x

+ − += = +
− − −

.

Therefore 2 1 d
1

x x
x

+
−∫  = 

3
2 d

1
x

x
⎛ ⎞+⎜ ⎟−⎝ ⎠∫  = 2 3ln 1x x c+ − + .

Example Evaluate each of the following:

(a)
2

1

3 d
2 3

x
x+∫  ; (b)

1

2

2 1  d
2 1

x x
x

−

−

−
+∫ .

(a)
2

1

3 d
2 3

x
x+∫  = 

2

1
ln 2 3x⎡ ⎤+⎣ ⎦  = ln8 ln5−  = ( )8

5ln  = ln 1.6 = 0.470.

(b)
1

2

2 1  d
2 1

x x
x

−

−

−
+∫  = 

1

2

2
1 d

2 1
x

x
−

−

⎛ ⎞−⎜ ⎟+⎝ ⎠∫ =
1

2
ln 2 1x x

−

−
⎡ ⎤− +⎣ ⎦

= 1 ln1 ( 2 ln3)− − − − −
= ln3 1+   (2.10).

Exercise 17.5

1. Integrate each of the following with respect to x:

(a) 1  for 3
3

x
x

> −
+

 ; (b) 2
3

1  for 
3 2

x
x

>
−

 ;

(c) 2  for 1
1

x
x

>
−

 ; (d) 2
3

2  for 
3 2

x
x

<
−

.
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2. Integrate each of the following with respect to x:

(a) 2
4x +

 ; (b) 4
1 2x−

 ; (c) 2
4 3x +

 ;

(d) 2
1

x
x −

 ; (e) 2
1

x
x +

 ; (f)
2 2 3

2
x x

x
+ +

+
.

3. Evaluate each of the following:

(a)
4

2

2  dx
x∫  ; (b)

5

2

1  d
2 1

x
x −∫  ; (c)

1

5

1  d
1 3

x
x

−

− −∫  ;

(d)
3

1

1  d
5

x
x −∫  ; (e)

5

3
 d

1
x x

x +∫  ; (f)
1

1

3 2  d
2

x x
x−

−
+∫ .

4. Find the area enclosed by the curve 1
2

y
x

=
−

 and the line 7 2y x= − .

5. Express 1 2
2 1 3x x

−
− −

 as a single fraction and hence evaluate

2

1

1 d
(2 1)(3 )

x x
x x

−
− −∫ .

Higher Level

17.6 Integration of Functions which can be Written in the Form f x
f x

( )
( )
′′

In the general form we have:
( ) d ln ( )
( )

f x x f x c
f x
′

= +∫ .

Example Integrate each of the following functions with respect to x:

(a) 2
2

1
x

x +
 ; (b) cos

sin 3
x

x −
 ; (c)

2

2
e

e 1

x

x +
.

(a) ( )2 2
2
2  d ln 1 ln 1

1
x x x c x c

x
= + + = + +

+∫  (as 2 1 0x + >  for all x).

(b) cos  d ln sin 3 ln(3 sin )
sin 3

x x x c x c
x

= − + = − +
−∫ .

(c)
2

2 2
2
e 1 d ln e 1 ln e 1

2e 1

x
x x

x x c c= + + = + +
+∫ .
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Example Evaluate each of the following:

(a)
2

21

2 1  d
2

x x
x x

+
+ +∫  ; (b)

2

3

sin  d
cos 2

x x
x

π

π +∫  ;

(c)
ln3

ln2

e e  d
e e

x x

x x x
−

−

−
+∫ .

(a)
4

21

2 1  d
2

x x
x x

+
+ +∫ =

22

1
ln 2x x⎡ ⎤+ +⎣ ⎦

= ln8 ln4−
= ln2.

(b)
2

3

sin  d
cos 2

x x
x

π

π +∫ =
2

3
ln cos 2x

π

π
⎡ ⎤− +⎣ ⎦

= 1
2ln2 ln2− +

= 5
4ln .

(c)
ln3

ln2

e e  d
e e

x x

x x x
−

−

−
+∫ = ( ) ln3

ln2
ln e ex x−⎡ ⎤+⎣ ⎦

( )d e e e e
d
and e e 0

x x x x

x x
x

− −

−

⎧ ⎫+ = −⎪ ⎪
⎨ ⎬
⎪ ⎪+ >⎩ ⎭

= 10 5
3 2ln ln−

= 4
3ln ( ) ( ){ }10 5 10 2

3 2 3 5ln ln÷ = × .

We are now in a position to integrate the functions tan and cotx x .

Example Integrate tan x  with respect to x.

tan dx x∫ = sin  d
cos

x x
x∫

sin ( )
 where ( ) cos

cos ( )
x f x

f x x
x f x

′⎧ ⎫
− = =⎨ ⎬

⎩ ⎭
= ln cos x c− + .

[The integral of cot x  is found in a similar fashion with ( ) sinf x x=  and 

( ) cosf x x′ = giving coscot d d ln sin
sin

xx x x x c
x

= = +∫ ∫ .]
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Exercise 17.6

1. Integrate each of the following with respect to x:

(a) 2
1

2 4 1
x

x x
+

+ +
 ; (b) cos

2 sin
x

x+
 ; (c) cot3x  ;

(d) e
1 e

x

x+
 ; (e) 1

lnx x
 ;            *(f) 1

x x+
.

2. Evaluate each of the following:

(a)
2 3 1

20
tan dx x

π

∫  ; (b)
23

6

sec d
tan

x x
x

π

π∫  ;

(c)
ln2

0

e d
e 1

x

x x
−

− +∫  ; (d)
4

22

2  d
4 7

x x
x x

+
+ −∫  ;

(e)
3

0

sin  d
3 cos

x x
x

π

−∫  ; (f)
3

22

1  d
2 5

x x
x x−

+
+ +∫ .

3. Differentiate ln(sec tan )y x x= +  and hence find sec dx x∫ .

4. Find the area between the graph of coty x=  and the x-axis from x = 1
6 π  to 

1
3x = π .

5. Evaluate
2e

e

d
log

x
x x∫ .

6. A function ( )y f x=  for which 2
d 2
d 3
y x
x x

=
+

 is such that (1) ln2f = . Find 

( )f x .

7. Solve the differential equation d tan2
d
y x
x

= ( )1
40 x< < π  given that 0y =

when 1
6x = π .

8. A particle moving in a straight line starts from rest and has an acceleration 
at time t seconds which is given by ( )2 2( ) tan 3 2 m sa t t t t −= + + . Find the 
total distance travelled by the particle in the first second.
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Required Outcomes

After completing this chapter, a student should be able to:
• differentiate exponential functions expressed with base e.
• differentiate exponential functions of any positive base. (HL)
• integrate exponential functions expressed with base e.
• integrate exponential functions of any positive base. (HL)
• differentiate logarithmic functions expressed in base e.
• differentiate logarithmic functions of any positive base other than base 1.

(HL)

• integrate any function of the form k
ax b+

.

• integrate any function of the form ( )
( )

f x
f x
′

. (HL)
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18.1 The Principle of Mathematical Induction 
 
We will be introducing several new or perhaps unfamiliar words in this chapter 
which are worthwhile defining, namely: proposition, deduction, induction, 
hypothesis and conjecture. 
 
Proposition A formal statement which may or may not be true. 
 
Deduction A statement arrived at after logical reasoning. 
 
Induction The inference of a general law from particular instances. 
 
  Thus after the results of several cases are known, we may induce a 

general law which holds in all cases. 
 
Hypothesis A supposition or proposed explanation made on the basis of limited 

evidence as a starting point for further investigation. 
 
Conjecture The formation of an opinion on incomplete information – a guess. 
 
 
We are often required to formulate a general rule concerning a number n after 
having established that the rule holds for several specific values of n. The 
process we employ to arrive at such a rule is called 'induction'. However, no 
matter how many times we check this rule, we cannot be absolutely certain that 
the rule holds for all values of n. 
 
For example, if we count the maximum number of regions inside a circle 
formed by joining each of n points on the circumference of the circle to each of 
the other n–1 points on the circumference [see diagrams at the top of the next 
page], we find that for n = 1, 2, 3, 4 and 5, the maximum number of regions is 1, 
2, 4, 8 and 16 respectively. It seems that with the addition of a further point, the 
number of regions doubles and we may be led to induce that with n points this 
number is 12n− . However, if we take the trouble to check our result for 6 points 
we find that the number of regions is not 52 32=  but only 31! Thus our induced 
'rule' is not a rule at all. 
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   2 points – 2 regions              3 points – 4 regions               4 points – 8 regions 
 
As a further more striking example, we may calculate terms of the sequence 
{ (0.999 999) }nn  and find that for the first 999 999 terms, the sequence is 
increasing and then induce that the sequence is indeed an increasing sequence. 
But careful analysis shows that the 999 999th term is equal to the one-millionth 
term and after this the terms decrease in size, eventually approaching zero. 
 
Consider a set of three pegs and n discs to be placed on these pegs. The discs 
are of differing sizes and in the starting position (see diagram below), all n discs 
are on one peg in increasing order of size with the largest disc on the bottom 
and the smallest disc at the top. The object of our exercise is to move the discs 
one at a time from one peg to another without placing a large disc on top of a 
smaller one and ending with all the discs on a different peg arranged as at the 
start from the largest at the bottom to the smallest at the top. How many moves 
are required? 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we try to induce a rule by establishing the number of moves for n = 1, 2, 3, 4, 
etc., discs, we find that in these cases the number required is 1, 3, 7, 15, …. and 
we might be led to induce that the number of moves required is 2 1n − . But we 
have seen that this may not be true for all values of n. 
 
Obviously it requires 1 move to move a single disc from one peg to another. 
 
Say we start with 2 discs on the peg 1. We can move the top disc to peg 2, move 
the bottom disc to peg 3, and then move the small disc on peg 2 to peg 3 and we 
have accomplished our task in 3 moves. 

Peg 1 Peg 2 Peg 3 

1

1 1
2 

2 
3 

3 

2 

4 
4 

5 6 

7 8 
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Instead of starting from the beginning with 3 discs, consider the following 
approach to our counting procedure. We know that we can move the two top 
discs to peg 2 in 3 moves. We now move the largest disc to peg 3 in 1 move and 
move the two discs on peg 2 to peg 3 in 3 moves. Our total number of moves is 
then 3 + 1 + 3 = 7. For four discs we know we can move the top three discs to 
peg 2 in 7 moves. We then move the largest disc to peg 3 in 1 move. Finally we 
move the three discs on peg 2 to peg 3 in 7 moves giving a total of 7+1+7 = 15 
moves. All is well at this point. 
 
By the method above we 'know' that with five discs we would need 
15+1+15 = 31 moves. Again it is what we need. 
 
Now if we could move n discs in 2 1n −  moves, how many moves will it require 
to move n + 1 discs? By the method described above we could move the top n 
discs from peg 1 to peg 2 in 2 1n −  moves, the largest disc from peg 1 to peg 3 
in 1 move, and then move the n discs on peg 2 to peg 3 in 2 1n −  moves. 
The total number of moves is then 12 1 1 2 1 2(2 ) 1 2 1n n n n+− + + − = − = −  moves.  
 
Thus, if our 'rule' holds for n discs, it also holds for n + 1 discs. 
 
But we know the rule holds for 1 disc and so it holds for 2 discs. We know it 
holds for 2 discs, so it holds for 3 discs. It holds for 3 discs, so it holds for 4 
discs, etc. 
 
We have thus established that the rule holds for as many discs as we care to use. 
We have gone further than simply inducing a rule, we have 'deduced' one that 
holds for all values of n. 
 
This is the essence of a proof by mathematical induction. Despite its name, the 
technique of mathematical induction is a deductive method, not an inductive 
one. 
 
  The Principle of Mathematical Induction 
 
  If a proposition, P(n), concerning integers n is true when n = m, and if the 

proposition P(k+1) is true whenever P(k) is true where k is an integer which 
is greater than or equal to m, then the proposition P(n) is true for all integers 
n ≥ m. 
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Example Prove that 2 2 2 2 1
61 2 3 ( 1)(2 1)n n n n+ + + + = + +� . 

 

  Step1: Let P(n) be the proposition: 2 2 2 2 1
61 2 3 ( 1)(2 1)n n n n+ + + + = + +� . 

 

 Step 2: P(1) is true since 2 1 1
6 61 (1)(1 1)(2 1 1) (1)(2)(3) 1= + × + = =  

 
 Step 3: Assume that P(k) is true for some integer k ≥ 1. 
 i.e. 2 2 2 2 1

61 2 3 ( 1)(2 1)k k k k+ + + + = + +� . 
 

 Step 4: Now, 2 2 2 2 21 2 3 ( 1)k k+ + + + + +�  
 =  21

6 ( 1)(2 1) ( 1)k k k k+ + + +    [by hypothesis, step 3] 
 =  { }1

6 ( 1) (2 1) 6( 1)k k k k+ + + +  

 =  { }21
6 ( 1) 2 7 6k k k+ + +  

 =  1
6 ( 1)( 2)(2 3)k k k+ + +  

 =  1
6 ( 1)([ 1] 1)(2[ 1] 1)k k k+ + + + + . 

 
  Thus P(k + 1) is true whenever P(k) is true or P(k)  ⇒  P(k + 1). 
 
 Step 5: Therefore by the principle of mathematical induction P(n) is true for 

all integers n ≥ 1. 
 
Example Prove that 33 1n +  is divisible by 7 for all positive odd integers n. 
 
 Let P(n) be the proposition: 33 1n +  is divisible by 7. 
 P(1) is true since 33 1 28+ =  is divisible by 7. 
 Assume P(k) is true for some integer k ≥ 1. 
 i.e. 33 1k +  is divisible by 7  or  33 1 7k p+ = , p ∈ Z. 
 Then  3( 2)3 1k + +  =  6 33 3 1k +  
  =  729(7 1) 1p − +    [by hypothesis] 
  =  729(7p) – 728 
  =  7(729p – 104) 
 which is divisible by 7 since (729p – 104) ∈ Z. 
 
 Thus P(k)  ⇒  P(k + 2) and so P(n) is true for n = 1, 3, 5, 7, … i.e., for all 

positive odd integers n . 
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Example Prove that ! 2nn >  for all integers n ≥ 4. 
 
 Let P(n) be the proposition: ! 2nn > . 
 Then P(4) is true since 4! = 24, 42 16=  and 24 > 16. 
 
 Assume that P(k) is true for some integer k ≥ 4. 
 i.e. ! 2kk > . 
 Then ( 1)!k +  =  (k + 1)k! 
 >  (k + 1) 2k  
 >  2 2k×   since k + 1 > 2 when k ≥ 4 
 =  12k + . 
 
 Thus P(k)  ⇒  P(k + 1) and so P(n) is true for all integers n ≥ 4. 
 
Exercise 18.1 
 
1. Use the principle of mathematical induction to prove that for all integers 

n ≥  1,  1
21 2 3 ( 1)n n n+ + + + = +� . 

 

2. The sequence { }na  is defined recursively by 1 21, 1a a= = and for all n ≥ 1, 

2 1n n na a a+ += + . Use the principle of mathematical induction to prove that 
 (a)  1 2 3 2 1n na a a a a ++ + + + = −�  ; (b)  1 3 5 2 1 2n na a a a a−+ + + + =� . 
 

3. If 
cos sin
sin cos

α − α⎛ ⎞
= ⎜ ⎟α α⎝ ⎠

A , prove by mathematical induction that for all 

integers n ≥ 1, 
cos sin
sin cos

n n n
n n

α − α⎛ ⎞
= ⎜ ⎟α α⎝ ⎠

A . 

 
4. Use the principle of mathematical induction to prove that each of the 

following statements is true for all integers n ≥ 1: 
 (a) 21 3 5 (2 1)n n+ + + + − =�  ; 
 (b) 2 3 11 2 2 2 2 2 1n n−+ + + + + = −�  ; 
 (c) 1

21 4 7 (3 2) (3 1)n n n+ + + + − = −�  ; 

 (d) 2 2 2 2 21
31 3 5 (2 1) (4 1)n n n+ + + + − = −�  ; 

 (e) 1 1 1 1
(1)(2) (2)(3) (3)(4) ( 1) 1

n
n n n

+ + + + =
+ +

�  ; 
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 (f) 1 1
1 1 1 11 2
2 4 2 2n n− −+ + + + = −�  ; 

 (g) 1
2( ) ( 2 ) ( [ 1] ) (2 [ 1] )a a d a d a n d n a n d+ + + + + + + − = + −�  ; 

 (h) 2 1 ( 1) , 1
1

n
n a ra ar ar ar r

r
− −

+ + + + = ≠
−

�  ; 

 (i) 
23 3 3 3 1

21 2 3 ( 1)n n n⎡ ⎤+ + + + = +⎣ ⎦�  ; 

 (j) 1 1 1 1
(1)(3) (3)(5) (5)(7) (2 1)(2 1) 2 1

n
n n n

+ + + + =
− + +

�  ; 

 (k) 
2 2 2 21 2 3 ( 1)

(1)(3) (3)(5) (5)(7) (2 1)(2 1) 2(2 1)
n n n

n n n
+

+ + + + =
− + +

�  ; 

 (l) 2 2 2 2 3 2 2 1(1 )(2) (2 )(2 ) (3 )(2 ) ( )(2 ) ( 2 3)(2 ) 6n nn n n ++ + + + = − + −�  ; 
 (m) 1

46 24 60 ( 1)( 2) ( 1)( 2)( 3)n n n n n n n+ + + + + + = + + +�  ; 

 (n) 5 5 5 5 2 2 21
121 2 3 ( 1) (2 2 1)n n n n n+ + + + = + + −� . 

 

5. Use the principle of mathematical induction to prove that 1d ( )
d

n nx nx
x

−=  

for all positive integers n.  [You may assume that d ( ) 1
d

x
x

= .] 

 
6. Use the principle of mathematical induction to prove that 

 ( )d e ( )e
d

n
x x

n x x n
x

= +  for all n ∈ +Z . 

 
7. Use the principle of mathematical induction to prove that 

 ( ) ( )d ( 1)!ln 1
d

n
n

n n
nx

x x
−

= −  for all n ∈ +Z . 

 
8. Use the principle of mathematical induction to prove that each of the 

following propositions is true for all integers n ≥ 1: 
 (a) 2n n+  is divisible by 2 ; 
 (b) n(n + 1)(n + 2) is divisible by 3 ; 
 (c) 4 1n −  is divisible by 3 ; 
 (d) 27 1n −  is divisible by 48 ; 
 (e) 33 1n −  is divisible by 13 ; 
 (f) 14 ( 1)n n−+ −  is divisible by 5 ; 
 (g) 3 23 2n n++  is divisible by 5 ; 
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 (h) 4 2 6 33 2n n+ ++  is divisible by 17 ; 
 (i) 4 3 3 12 3n n+ ++  is divisible by 11. 
 
9. (a) Simplify ( ) ( )n n na a b b a b− + − . 
 (b) Prove that if a and b are distinct integers, then n na b−  is divisible 

by a – b  for all positive integers n. 
 
10. (a) Simplify 2 2 2( ) ( )n n na a b b a b+ − − . 
 (b) Prove that if a and b are distinct integers, then n na b+  is divisible 

by a + b for all odd positive integers n. 
 
11. Use the principle of mathematical induction to prove that the following 

propositions are true for all positive integers n: 
 (a) 2 1n n≥ +  ; 
 (b) 3 2 1n n≥ +  ; 
 (c) 3 22 3 1 0n n n− + + >  ; 
 (d) 3 22 4 5 3 0n n n− + − ≥ . 
 
12. (a) Prove that 2 24 ( 1)x x≥ +  for x ≥ 1. 
 (b) Use the principle of mathematical induction to prove that 24 3n n≥  

for all positive integers n. 
 
13. (a) Find the positive values of x for which 2 22 ( 1)x x> + . 
 (b) Use the principle of mathematical induction to prove that 44n n>  

for all positive integers n ≥ 5. 
 
14. Prove that (1 ) 1na na+ ≥ +  given that a > –1, for all positive integers n. 
 (Bernoulli's inequality). 
 

15. Prove that for all integers n ≥ 2, 1 1 1 1 13
1 2 3 2 24n n n n

+ + + + >
+ + +

� . 

 

16. Prove that ( ) ( )1

1

2 4 2 2

1 2 4 2 1 2
1 11 1 1 1

n k

n n

x xx x x x
+

+

+ + + + = +
+ −+ + + −

�  for all 

x ≠ ± 1. 
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17. The sequence { }na  is defined by 1 2 1 11, 1  and  n n na a a a a+ −= = = +  for all 

integers n ≥ 2. Let Q be the matrix 
0 1
1 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 Prove that 1

1

n nn

n n

a a
a a

−

+

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
Q  for all integers n ≥ 2. 

 

18. (a) If a and b are positive numbers, prove that 
2

a b ab+
≥ . 

 (b) If 1 2 and a a  are positive numbers, prove that 1 2

2 1
2a a

a a
+ ≥ . 

 (c) If 1 2 3, , , , na a a a�  are positive numbers, prove that 

    ( ) 2
1 2 3

1 2 3

1 1 1 1
n

n
a a a a n

a a a a
⎛ ⎞

+ + + + + + + + ≥⎜ ⎟
⎝ ⎠

� � . 

 

19. Prove that { }1
2

1
( 1) 1

(1 )

n
k n n

k

aka na n a
a

+

=

= − + +
−∑  for a ≠ 1. 

 What is the correct formula when a = 1? 
 
20. Consider the sequence { }na  where 1 5a =  and 1 1 2n na a+ = +  for n ≥1. Use 

the principle of mathematical induction to prove that 3(2 ) 1n
na = − . 

 
*21. Prove by mathematical induction that 
 1

62( 1) 3( 2) ( 1)( 2)n n n n n n n+ − + − + + = + +� . 
 
*22. For any n distinct points on a circle, prove that the straight lines joining all 

pairs of points divide the region inside the circle into a maximum of 
21

241 ( 1)( 5 18)n n n n+ − − +  regions. 
 
*23. (a) If the proposition P(n) concerning positive integers n is such that 

P(n + 2) is true whenever both P(n + 1) and P(n) are true, what 
must also be done to prove that P(n) is true for all n? 

 
 (b) Consider the sequence { }na  defined by 1 21, 1a a= =  and  

1 1n n na a a+ −= +  for all integers n ≥ 2. Prove that { }1
5

n n
na = α − β  

where α and β are the roots of the equation 2 1 0x x− − = , α > β. 
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18.2 Making and Proving Conjectures 
 
Example In the series 
   (1)(2)(3) (2)(3)(4) (3)(4)(5) ( 1)( 2)nS n n n= + + + + + +�  
   the partial sums 1 2 3, ,S S S  have the following forms: 

 1 (1)(2)(3)S =     (1)(2)(3)(4)
4

=  

 2 (1)(2)(3) (2)(3)(4)S = +   (2)(3)(4)(5)
4

=  

 3 (1)(2)(3) (2)(3)(4) (3)(4)(5)S = + +  (3)(4)(5)(6)
4

= . 

 Guess a formula for nS  and prove your guess. 
 

 Guess: 1
4 ( 1)( 2)( 3)nS n n n n= + + + . 

 

 Let P(n) be the proposition:  1
4 ( 1)( 2)( 3)nS n n n n= + + + . 

 
 P(1) is true by conjecture. 
 Assume P(k) is true for some integer k ≥ 1.  That is 
  1

4(1)(2)(3) (2)(3)(4) ( 1)( 2) ( 1)( 2)( 3)k k k k k k k+ + + + + = + + +� . 
 Then (1)(2)(3) (2)(3)(4) ( 1)( 2) ( 1)( 2)( 3)k k k k k k+ + + + + + + + +�  
 =  1

4 ( 1)( 2)( 3) ( 1)( 2)( 3)k k k k k k k+ + + + + + +  
 =  1

4 ( 1)( 2)( 3)( 4)k k k k+ + + + . 
 Therefore P(k)  ⇒  P(k + 1) and so P(n) is true for all integers n ≥ 1. 
 
Exercise 18.2 
 
1. What is the greatest positive integer divisor of 23 1n −  if n is a positive 

integer? Use the principle of mathematical induction to prove your answer. 
 

2. Let 1 2 3
2! 3! 4! ( 1)!n

nS
n

= + + + +
+

� . 

 (a) Find 1 2 3 4, ,  and S S S S . 
 (b) Guess a formula for nS . 
 (c) Prove your guess is correct. 
 
3. How many diagonals has a convex n-gon? Prove your conjecture. 
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4. Consider the matrix 
0 1
1 2

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

A . 

 (a) Find the matrices 2 3 4,   and A A A . 
 (b) Guess a formula for nA  where n is a positive integer. 
 (c) Prove your conjecture using the principle of mathematical 

induction. 
 

5. We define nS  for all positive integers n ≥ 1 as the sum 
1

( !)
n

n
r

S r r
=

= ∑ . 

  (a) Find 1 2 3 4 5, , ,  and S S S S S . 
  (b) Guess a formula for nS . 
  (c)  Prove your guess is correct for all integers n ≥ 1. 
 
6. If (2 3) 3n

n na b− = −  for all positive integers n, where  and n na b  are 
integers, show that 1 12 3   and  2n n n n n na a b b a b+ += + = + . 

 Calculate 2 23n na b−  for n = 1, 2 and 3. 
 Hence guess a formula for 2 23n na b−  and prove your guess is true for all 

positive integers n. 
 

7. The sum of n terms of the sequence 1 1 1, , ,
(1)(3)(5) (3)(5)(7) (5)(7)(9)

⎧ ⎫
⎨ ⎬
⎩ ⎭

�  

is denoted by nS . Find the values of 1 2 3 4, , ,x x x x  for which 
1 1

12 4n nS x= − . Hence guess a formula for nS  and prove this formula is 
correct using the principle of mathematical induction. 

 
 

 
 

Required Outcomes 
 
 After completing this chapter, a student should be able to: 
• define the terms 'proposition', 'deduction', 'induction', 'hypothesis' and 

'conjecture'. 
• formulate a conjecture on the basis of the results of a few substitution 

instances. 
• prove your conjecture using the principle of mathematical induction. 
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19.1 Addition, Multiplication and the Division Process 
 
Definition A polynomial is a sum of a finite number of terms of the form 

nkx where k is any number, and n is a non-negative integer. 
 
Some examples of polynomials are: 2 2 4x x+ − , 3x – 1, 5 (= 05x ) and 

5 32 3x xπ − . 

Some examples of non-polynomials are:  1x− , x , sin x  and 3
2 1x +

. 

 

If we write 1 2
1 2 1 0( ) n n

n nP x a x a x a x a x a−
−= + + + + +� , where 

0 1 2, , , , na a a a�  are all constants, then P(x) is a polynomial. 
 
If 0na ≠ , n is called the degree of P(x) (n = deg P); each expression of the form 

k
ka x  is called a term; ka  is called the coefficient of the term in kx ; the 

coefficient na  of the highest power of x is called the leading coefficient; 0a  is 
called the constant term. 
 

Example 2 3( ) 6 2 5P x x x= − +  is a polynomial of degree 3. The leading 
coefficient is –2; the coefficient of the term in x is 0; the constant 
term is 5. 

 
The Zero Polynomial 
 
If P(x) is a polynomial for which P(x) = 0 for all x, then P(x) is called the zero 
polynomial. 
 
The zero polynomial has no degree. 
 
Equality 
 

The polynomials 1 2
1 2 1 0( ) n n

n nP x a x a x a x a x a−
−= + + + + +� ,  0na ≠ , 

and   1 2
1 2 1 0( ) m m

m mQ x b x b x b x b x b−
−= + + + + +� , 0mb ≠ , 

are equal iff m = n and i ia b=  for i = 0, 1, 2, … , n. 
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Thus two polynomials are equal iff they have the same degree and all 
corresponding coefficients are equal. 
 
If two polynomials P(x) , Q(x) are equal we write P(x) ≡ Q(x). We use the 
symbol '≡' to distinguish equality of two polynomials from a simple equation 
connecting the polynomials. In the first case, P(x) and Q(x) take the same values 
for all values of x . In the second case, P(x) and Q(x) take the same values for a 
finite number of values of x. 
 
The polynomials 3( )P x x=  and 3( )Q x x=  are equal polynomials, ( ) ( )P x Q x≡ , 
but the polynomials 3( )P x x=  and 2( )Q x x=  are not equal but ( ) ( )P x Q x=  for 
x = 0 and x = 1 only. 
 
 
Addition 
 
Addition of polynomials simply involves "collecting like terms",  i.e., terms of 
the same degree. 
 
Example Find the sum of the polynomials 2 3( ) 3 5P x x x= + +  and 

2( ) 3 3 2Q x x x= − + . 
 
 3 2 3( ) ( ) (3 3) 3 (5 2) 3 7P x Q x x x x x x+ = + − + + + = + + . 
 
Multiplication 
 
Polynomials are multiplied in the usual way – each term of the first polynomial 
is multiplied by each term of the second polynomial and like terms are added. 
 
Example Find the product of the polynomials given in the previous example. 
 
 ( ) ( )P x Q x  =  2 3 2(3 5)(3 3 2)x x x x+ + − +  
 =  3 4 2 4 5 3 29 9 6 3 3 2 15 15 10x x x x x x x x− + + − + + − +  
 =  5 4 3 23 6 11 9 15 10x x x x x− − + − + + . 
 
Example Find the values of the real numbers a and b if 
   ( 2) ( 1) 5 8a x b x x− + − ≡ − . 
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 Method 1 
 
 Polynomials ( 2) ( 1) ( ) (2 )a x b x a b x a b− + − ≡ + − +  and 5 8x −  are equal 

iff their respective coefficients are equal. 
 Thus,   a + b = 5, 
 and 2a + b = 8. 
 Solving these equations gives a = 3, b = 2. 
 
 Method 2 
 
 Since the polynomials ( 2) ( 1)  and  5 8a x b x x− + − −  are equal for all 

values of x, they are equal for any two particular values of x. 
 Putting x = 1 in each gives: –a =   5 – 8   or   a = 3. 
 Putting x = 2 in each gives:   b = 10 – 8   or   b = 2. 
 
Division 
 
We can divide one polynomial by another in a fashion similar to our method for 
long division of decimal numbers. 
 
Example Divide 4 2 22 3 2  by  2 1x x x x x− + + − − . 
 
 22x  +     4x  +  7 
       2 2 1x x− −  42x               –  23x  +     x  +  2 
 42x   –  34x  –  22x  
  34x  –    2x  +      x 
  34x  –  28x  –     4x 
   27x  +   5x  +  2 
   27x  – 14x  –  7 
    19x  +  9 
 

Thus 
4 2

2
2 2

2 3 2 19 92 4 7
2 1 2 1

x x x xx x
x x x x
− + + +

≡ + + +
− − − −

 

or 4 2 2 22 3 2 (2 4 7)( 2 1) 19 9x x x x x x x x− + + ≡ + + − − + + . 
 
Since all terms in the same power of x fall into the same column, we can present 
the work in the example above in the following way: 
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        2     4   7 
   1   –2   –1   2   0 –3     1   2 
      2 –4 –2 
       4 –1     1  
       4 –8   –4 
        7     5   2 
         7 –14 –7 
         19   9    
 
 This is known as the method of detached coefficients. 
 
The Division Process 
 
Consider the polynomials P(x) and D(x) with deg D ≤ deg P. When P(x) is 
divided by D(x) there exists a unique quotient Q(x) and a unique remainder R(x) 
such that 
 
     P(x) ≡ Q(x)D(x) + R(x) 
 
provided deg R(x) < deg D(x). 
 

Example Find the quotient and remainder when 5 3 2( ) 3 4 4 1P x x x x= − − +  is 
divided by 3 2( ) 2 3D x x x= − + . 

           3     6     8 
 1 –2 0 3 3   0   –4   –4     0     1 
     3         –6     0     9 
       6   –4 –13     0 
         6 –12     0   18 
          8 –13 –18     1 
          8 –16     0   24 
           3 –18 –23 
 
The quotient is 2( ) 3 6 8Q x x x= + + ;  the remainder is 2( ) 3 18 23R x x x= − − . 
 
Exercise 19.1 
 

1. If 2 3( ) 3 2 1P x x x= − +  and 2( ) 3 2 2Q x x x= − −  find P(x) + Q(x) and 
P(x)Q(x). 

 
2. Give an example of two polynomials P(x) and Q(x) such that deg P = m, 

deg Q = n where m ≥ n and 
 (a) deg(P + Q) = m ; (b) deg(P + Q) < m. 
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3. Polynomials P(x) and Q(x) have degrees m and n respectively. What can 

you say about the degree of 
 (a) P(x)Q(x) ; (b) P(x) + Q(x) ? 
 
4. Write down the degree, leading coefficient and constant term in each of the 

following polynomials: 
 (a) 2 35 3 4x x− −  ;  (b) 46 2x x−  ; 
 (c) 46 3 5x x− −  ;  (d) 3 2(3 2 5)(2 4 3)x x x x− − + − . 
 
5. Multiply out each of the following: 
 (a) 3(2 3 4)(3 5)x x x+ − +  ; (b) 3 2 2(2 3 2 1)(4 6 3)x x x x x− − + + −  ; 
 (c) 2 2(2 3 1)x x− +  ; (d) 2 3( 2)x x− − . 
 

6. Find the coefficients of the terms in 2 3  and  x x  in the expansion of 
3 2 2( 2 3)x x x− + − . 

 
7. (a) Find the coefficient of x in the expansion of 
   (1 + x)(1 + 2x)(1 + 3x)(1 + 4x). 
 
 (b) Find the coefficient of x in the expansion of 
  (1 + x)(1 + 2x)(1 + 3x) … (1 + nx). 
 
8. In each of the following find the quotient and remainder when the first 

polynomial is divided by the second polynomial: 
 (a) 2 5x − ,  3x +  ; (b) 22 4 3x x+ − ,  2 1x −  ; 
 (c) 3 22 2 2 1x x x− + − ,  x – 2 ; (d) 4 23 4 5x x x− + + ,  2 2 1x x− +  ; 
 (e) 4 23 2 3x x− − ,  3 2x x+  ; (f) 5 3 23 2x x x− +   ,  ( 1)( 2)x x− +  ; 
 (g) 5 1x − ,  ( 1)( 1)x x− +  ; (h) 4 32 3 2x x− + ,  21 2x x− − . 
 
9. Given that the following equalities are true for all values of x, find the 

values of the real numbers a and b in each case: 
 (a) 3 2 22 3 1 ( 2)(2 )x x x x x x a b+ − − = + − + +  ; 
 (b) 4 3 2 2 22 3 ( 2 5)( 9)x x x x x x x ax b− + + = − − + + + +  ; 
 (c) 3 2 23 2 1 ( 2)( ) 5 6x x x ax b x− + = + + + −  ; 
 (d) 4 2 2 22 9 12 5 (2 4 3)( 2 2)x x x x x x x ax b− + + = − + + − + + . 
 
10. Find the values of the real numbers a and b if, for all real x, 
 (a) 7 1 ( 1) (2 1)x a x b x+ = + + −  ; 
 (b) 8 6 (2 1) (2 1)x a x b x+ = + + −  ; 
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 (c) (2 3) (3 1) 11a x b x− + + =  ; 
 (d) 2 6 ( 1)( 2) ( 2)( 3)x x a x x b x x+ − = − − + − − . 
 
11. Find, if possible, real numbers a and b for which the following pairs of 

polynomials are equal for all x: 
 (a) 2 4x x+ + ,  ( 1)( 1) ( 2)( 3)a x x b x x− + + + −  ; 
 (b) 2 14 4x x+ − ,  ( 2) ( 1)( 3)ax x b x x+ + − −  ; 
 (c) 24 6 8x x− + ,  ( 1)( 2) ( 1)( 2)a x x b x x− − + + +  ; 
 (d) 2 3 8x x− − ,  2( 1) ( 1)( 2)a x b x x+ + + − . 
 
12. Find the values of the real numbers a, b and c such that the following pairs 

of polynomials are equal for all x: 
 (a) 10 14x − ,  ( 1) ( 1)( 2) ( 2)( 3)ax x b x x c x x− + − − + − −  ; 
 (b) 25 2x− ,  ( 1)( 2) ( 2)( 3) ( 3)( 4)a x x b x x c x x+ + + + + + + +  ; 
 (c) 16,  ( 3) ( )( 1)ax x bx c x− + + +  ; 
 (d) 23 3 7x x+ + ,  ( 1)( 1) ( 2)( 2) ( 3)a x x b x x cx x− + + + − + + . 
 
19.2 The Remainder and Factor Theorems 
 
The Remainder Theorem 
 
  When a polynomial P(x) is divided by x – a until 
   the remainder R is independent of x, then R = P(a). 
 
 
Proof Let Q(x) be the quotient when P(x) is divided by x – a. 
  Then by the division process 
 
   P(x) ≡ (x – a)Q(x)  +  R 
 
  Putting x = a gives P(a) = (a – a)Q(a) + R. 
  Thus  R = P(a). 
 
The Factor Theorem 
 
   The polynomial P(x) has x– a as a factor iff P(a) = 0. 
 
 
Proof (1) If P(a) = 0 then when P(x) is divided by x – a, the 

remainder is zero (remainder theorem). 
  Therefore x – a is a factor of P(x). 
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(2) If x – a is a factor of P(x) then there exists a polynomial Q(x) such that P(x) 

= (x – a)Q(x)  for all x. 
  Putting x = a gives P(a) = 0. 
 
Corollary If P(x) is a polynomial, P(x) – P(a) is divisible by x – a. 
 
Proof Let Q(x) be the quotient when P(x) is divided by x – a. 
 Then by the division process and the remainder theorem, 
  P(x) = (x – a)Q(x) + P(a)  for all x. 
 Thus P(x) – P(a) = (x – a)Q(x)  for all x. 
 Hence P(x) – P(a) is divisible by x – a. 
 
Note: The following statements concerning a polynomial P(x) are equivalent: 
 (1) P(a) = 0 ; 
 (2) x – a is a factor of P(x) ; 
 (3) x = a is a root of the equation P(x) = 0 ; 
 (4) a is a zero of P(x). 
 

Example Find the value of the real number a if 3 2( ) 3 1P x x ax x= + + −  
leaves a remainder of 1 when divided by x – 2. 

 
 When P(x) is divided by x – 2 the remainder is P(2). 
 Therefore P(2) = 1. 
 Thus 8 + 4a + 6 – 1 = 1 giving a = –3. 
 
Example When a polynomial P(x) is divided by (x – 1)(x – 2) the remainder 

is 2x + 1. Find the remainders when P(x) is divided separately by 
1x − and x – 2. 

 
 Let Q(x) be the quotient when P(x) is divided by (x – 1)(x – 2). 
 Then P(x) ≡ (x – 1)(x – 2)Q(x) + 2x + 1. 
 Now P(1) = (1 – 1)(1 – 2)Q(1) + 2 + 1 = 3  and 
          P(2) = (2 – 1)(2 – 2)Q(2) + 4 + 1 = 5. 
 Therefore the required remainders are 3, 5 respectively. 
 
Example When a polynomial P(x) is divided by x + 1 the remainder is 4. 

When P(x) is divided by x – 2 the remainder is 1. Find the 
remainder when P(x) is divided by (x + 1)(x – 2). 

 
 Let Q(x) be the quotient and ax + b the remainder when P(x) is divided by 

(x + 1)(x – 2). 
 Then P(x) ≡ (x + 1)(x – 2)Q(x) + ax + b. 
 But P(–1) = 4 and P(2) = 1 giving –a + b = 4 and 2a + b = 1. 
 Solving these equations gives a = –1, b = 3. 
 Hence the required remainder is 3 – x. 
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Example Prove that 34 1n −  is divisible by 7 for all positive integers n. 
 
 Let f (x) = nx  where n is a positive integer. 
 Then f (x) is a polynomial. 
  Therefore f (x) – f (a) is divisible by x – a  (corollary). 
 i.e. f (64) – f (1) is divisible by 64 – 1 = 63. 
 i.e. 64 1n −  is divisible by 63. 
 Thus 34 1n −  is divisible by 63 and therefore by 7. 
 
Example When a polynomial P(x) is divided by 22 3 1x x− +  the quotient is 

Q(x) and the remainder is 5x – 4. When Q(x) is divided by x – 2 the 
remainder is –2. Prove that x – 2 is a factor of P(x). 

 
 By the division process  2( ) (2 3 1) ( ) 5 4P x x x Q x x≡ − + + −  and Q(2) = –2. 
 Thus P(2) = (8 – 6 + 1)Q(2) + 10 – 4 = 3 × (–2) + 6 = 0. 
 Therefore x – 2 is a factor of P(x). 
 
Exercise 19.2 
 

1. Find the value of k if 3 2( ) 2 5 4f x x kx x= + − +  
 (a) leaves a remainder of 3 when divided by x – 1 ; 
 (b) leaves a remainder of –2 when divided by x + 2 ; 
 (c) leaves a remainder of 1 when divided by 2x + 1 ; 
 (d) leaves a remainder of 7 when divided by 2x – 3. 
 
2. Find the value of k in each of the following if x – 2 is a factor of the given 

polynomial: 
 (a) 3 22 3 6x x kx− + +  ;  (b) 4 32 20x x kx+ + −  ; 
 (c) 3 24 2kx x kx− − −  ;  (d) 4 3 23 7 10x kx kx x+ + − − . 
 
3. Find k in each of the following if x – k is a factor of the given polynomial: 
 (a) 3 2 4x kx kx− + −  ;  (b) 3 2 4 6x kx x k+ + − . 
 
4. Show that the linear expression is a factor of the polynomial ( )f x  in each 

of the following: 
 (a) x + 1, 3 2( ) 4 5 7 2f x x x x= − − +  ; 
 (b) 2x – 1, 3 2( ) 2 3 7 3f x x x x= − + −  ; 
 (c) 3x + 2, 3 2( ) 6 7 5 2f x x x x= + + +  ; 
 (d) 2x + k, 3 2 2( ) 2 (4 ) 2f x x kx k x k= − + − + . 
 



 Polynomials  

 505 

 
5. If the polynomial ( )f x  leaves a remainder of 5x + 1 when divided by 

( 2)( 3)x x− + , find the remainders when ( )f x  is divided by 
 (a) x – 2 ;  (b) x + 3. 
 
6. The polynomial ( )f x  leaves a remainder of 3x – 2 when divided by 

2 2x x− − . Find the remainder when ( )f x  is divided by x + 1. 
 
7. The polynomial ( )f x  leaves a remainder of –4 when divided by x + 1 and 

a remainder of 8 when divided by x – 3. Find the remainder when ( )f x  is 
divided by (x + 1)(x – 3). 

 
8. When the polynomial P(x) is divided by 22 3x x+ + , Q(x) is the quotient 

and 4x – 1 is the remainder. If Q(x) leaves a remainder of 1 when divided 
by x + 2, prove that x + 2 is a factor of P(x). 

 
9. Prove that for all positive integers n, 
  (a) 4 1n −  is divisible by 3 ;  (b) 32 1n −  is divisible by 7 ; 
 (c) 25 1n −  is divisible by 3 and 8 ; (d) 33 1n −  is divisible by 13. 
 
10. Prove that for all odd positive integers n, 
 (a) 5 1n +  is divisible by 6 ; (b) 24 1n +  is divisible by 17. 
 
11. Prove that for all even positive integers n, 
  (a) 7 1n −  is divisible by 8 ; (b) 25 1n −  is divisible by 13. 
 

12. Find the value of a if the polynomial 3 2( ) 6f x x ax x= − + −  is divisible by 
x – a – 1. 

 

13. Show that x + 1 is a factor of the polynomial 3 2( )P x ax bx bx a= + + +  for 
all non-zero a and b, and find the ratio a : b if 2( 1)x +  is a factor of P(x). 

 
14. (a) If α is a zero of both polynomials P(x) and Q(x), prove that α is 

also a zero of the polynomial P(x) – Q(x). 
 (b) Find the real number m if the polynomials 3 22 12 8mx x x− − +  and 

3 214 32mx x+ −  have a common zero. 
 
15. Find the values of a and b for which the zeros of the polynomial 

2 2x x a− +  are also two of the zeros of the polynomial 3 22 6 2x bx x+ + − . 
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16. Find the values of a and b for which 
   4 3 2 2 2 29 24 7 12 4 (3 ) ( 2)x x x x x ax bx+ + − − ≡ + − + . 
  Hence solve the equation 4 3 29 24 7 12 4 0x x x x+ + − − = . 
 
*17. When polynomial ( )f x  is divided by x – a the quotient is ( )q x . Show that 
 (a) when ( )q x  is divided by x – b where b ≠ a, the remainder is  

( ) ( )f b f a
b a

−
−

 ; 

 
 (b) when ( )f x  is divided by (x – a)(x – b) where b ≠ a, the remainder 

is ( ) ( )( ) ( )f b f ax a f a
b a

−⎛ ⎞− +⎜ ⎟−⎝ ⎠
 ; 

 

 (c) when ( )f x  is divided by 2( )x a−  the remainder is 
( ) ( ) ( )x a f a f a′− + . 

 
*18. Prove that 2( )x a−  is a factor of the polynomial ( )f x  iff ( ) 0f a =  and 

( ) 0f a′ = . 
 
*19. Prove that real and unequal values of a and b may be found to satisfy the 

identity 3 3 3 33 ( ) 3 12x abx a b x px− − + ≡ − −  provided 3 36p < . By 
considering the turning points of the graph of 3( ) 3 12f x x px= − −  prove 
that the inequality 3 36p <  is also the condition that the equation 

3 3 12 0x px− − =  shall have only one real root and show that x = a + b is 
the root. Reduce the expression 3 26 3 2y y y− + −  to the form 

3 3 12x px− −  by the substitution y = x + k and find the real root of the 
equation 3 26 3 2 0y y y− + − = . 

 
19.3 Contracted (Synthetic) Division 
 
The following is a method which may be used to determine the quotient when a 
polynomial is divided by a linear polynomial x – k. 
 

Let 1 2
1 2 1 0( ) n n

n nP x a x a x a x a x a−
−= + + + + +�  be any polynomial and let 

 1 2 2
1 2 2 1 0( ) n n

n nQ x b x b x b x b x b− −
− −= + + + + +�  be the quotient when P(x) is 

divided by x – k. 
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Then P(x) ≡  ( ) ( ) ( )x k Q x P k− +     (remainder theorem), 
  ≡  1 2 2

1 2 2 1 0( )( ) ( )n n
n nx k b x b x b x b x b P k− −

− −− + + + + + +�  
  ≡  1

1 2 1 0 1 0( ) ( ) ( )n n
n n nb x b kb x b kb x P k kb−

− − −+ − + + − + −� . 
 
Equating coefficients gives: na  =  1nb −  
 1na −  =  2 1n nb kb− −−  
 2na −  =  3 2n nb kb− −−  
   	         	         	  
 2a  =  1 2b kb−  
 1a  =  0 1b kb−  
 0a  =  0( )P k kb− . 
 
Thus the coefficients of Q(x) can be found as follows: 
 1nb −  =  na  
 2nb −  =  1 1n na kb− −+  
 3nb −  =  2 2n na kb− −+  
    	         	         	  
 1b  =  2 2a kb+  
 0b  =  1 1a kb+ . 
 
Finally, the remainder when P(x) is divided by x – k, P(k), can be found from  
 P(k) =  0 0a kb+ . 
 
We set this work out in the following manner: 
 
 k na  1na −  2na −  ��  2a  1a  0a  
  0 1nkb −  2nkb −  ��  2kb  1kb  0kb  
  1nb −  2nb −  3nb −  ��  1b  0b  P(k) 
 
The procedure is to follow the arrows from left to right. Each element of the 
second row (except the first) is found by multiplying each element in the third 
row (in the column on the immediate left) by k. Each element of the third row is 
found by adding the corresponding elements of the first and second rows. The 
remainder is the last element in the third row. 
 
Example Find the quotient and remainder when 3 22 3 2x x x− + +  is divided 

by x – 2. 
 

+ + + + + + 

× × × × × 
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  2           2        –3          1          2 
               0          4          2          6 
               2          1          3          8 
 
 Therefore the quotient is 22 3x x+ +  and the remainder is 8. 
 
Example Find the quotient and remainder when 3 26 4 4x x x− − +  is divided 

by 2x + 1. 
 
  1

2−         6        –1        –4          4 
 0        –3          2          1 
 6        –4        –2          5 
 
 Here  3 26 4 4x x x− − +  ≡  21

2( )(6 4 2) 5x x x+ − − +  

 ≡  2(2 1)(3 2 1) 5x x x+ − − + . 
 
 Therefore the quotient is 23 2 1x x− −  and the remainder is 5. 
 
 Note: The coefficients of the quotient are found by dividing the 

coefficients in the table by 2 (the coefficient of x in the divisor) and 
the remainder is found as in the first example. 

 
Example Find the quotient and remainder when 4 3 24 14x x x+ − −  is 

divided by (x – 2)(x + 3). 
 
      2           1          1        –4          0      –14 
                    0          2          6          4          8 
  –3           1          3          2          4        –6 
                   0        –3          0        –6 
                    1          0          2        –2 
 
 Therefore  4 3 24 14x x x+ − −  ≡  3 2( 2)( 3 2 4) 6x x x x− + + + −  

  ≡  { }2( 2) ( 3)( 2) 2 6x x x− + + − −  

  ≡  2( 2)( 3)( 2) 2( 2) 6x x x x− + + − − −  
  ≡  2( 2)( 3)( 2) 2 2x x x x− + + − − . 
 
 Thus the quotient is 2 2x +  and the remainder is –2x – 2. 
 
 



 Polynomials  

 509 

 
 Note: The quotient can be read directly from the last line in the table but 

the remainder is found by multiplying the "second remainder" by the 
first divisor and then adding the "first remainder". The remainder in 
the previous example is –2(x – 2) – 6 = –2x – 2. 

 
   Also note that if the order of the divisors is changed, the quotient is 

obviously the same and the remainder is –2(x + 3) + 4 = –2x  – 2, 
again the same as before. 

 

Example Express 3 24 6 2x x x− + +  as a polynomial in powers of x – 1. 
 
  1            1        –4          6          2 
                 0          1        –3          3 
                1        –3          3          5 
                0          1        –2 
                1        –2          1 
                0          1 
                1        –1 
 

 Therefore       3 24 6 2x x x− + +  ≡  2( 1)( 3 3) 5x x x− − + +  
  ≡  { }( 1) ( 1)( 2) 1 5x x x− − − + +  

  ≡  2( 1) ( 2) ( 1) 5x x x− − + − +  
  ≡  { }2( 1) ( 1) 1 ( 1) 5x x x− − − + − +  

  ≡  3 2( 1) ( 1) ( 1) 5x x x− − − + − + . 
 
 Note: The coefficients are read directly from the table beginning from the 

bottom left and moving up diagonally to the top right. 
 
Exercise 19.3 
 
1. Find the quotient and remainder when 
 (a) 3 22 3 3x x x− + +  is divided by x – 1 ; 
 (b) 32 2 1x x− −  is divided by x – 2 ; 
 (c) 3 23 24 1x x x+ − −  is divided by x + 3 ; 
 (d) 4 3 2 4 6x x x x+ + + −  is divided by x + 2. 
 
2. Find the quotient and remainder when 
 (a) 3 24 4 6x x x+ − −  is divided by 2x – 1 ; 
 (b) 3 23 8 9x x x+ − +  is divided by 3x – 2 ; 
 (c) 4 3 22 7 4 11 2x x x x+ + − −  is divided by 2x + 3 ; 
 (d) 4 29 11 1x x x− + −  is divided by 3x + 2. 
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3. Find the quotient and remainder when 
 (a) 3 22 5 9x x x− + +  is divided by (x + 1)(x – 2) ; 
 (b) 4 215 8x x− +  is divided by (x + 2)(x + 3) ; 
 (c) 5 4 3 25 7 1x x x x− + − −  is divided by x(x – 3) ; 
 (d) 4 3 22 5 2 2 5x x x x− + − +  is divided by 2( 2)x − . 
 
4. Find the quotient and remainder when 4 3 25 4 2x x x x− + + +  is divided by 
 (a) 2 2x x− −  ;  (b) 2 1x x+ + . 
 
5. Express 
 (a) 3 22 1x x x− + +  as a polynomial in powers of x – 2 ; 
 (b) 43 1x x+ +  as a polynomial in powers of x + 1 ; 
 (c) 5 3 1x x− −  as a polynomial in powers of x – 1 ; 
 (d) 42 3 2x x− +  as a polynomial in powers of x + 3. 
 
6. If 2( )x k−  is a factor of 3( ) 3f x x px q= + + , show that 2p k= −  and find a 

similar expression for q in terms of k. Hence show that 3 24 0p q+ =  and 
find the other factor of ( )f x . 

 
7. Find the values of p if the polynomial 3 2( ) 2 5 4f x x x x p= − − +  has a 

factor of the form 2( )x k− . For each of these values of p factorise ( )f x  as 
a product of linear factors. 

 
8. Find the largest positive integer value of n for which ( 2)nx −  is a factor of 

5 4 3 26 8 16 48 32x x x x x− + + − + . 
 
9. Show that the line y = 2kx + 1 meets the curve 3 2 6 5y x kx x= + − +  at 

x = 2 for all values of k, and find the value of k for which the line is a 
tangent to the curve. 

 
10. Find the value of k for which 2( )x k−  is a factor of 5 40 128x kx+ − . 
 
11. (a) Express 3 28 4 4 7x x x+ + +  in powers of 2x + 1. 
 (b) Find the quotient and remainder when 5 4 3 22 3 2 1x x x x− + + +  is 

divided by (x – 1)(x + 1)(x + 2). 
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19.4 Polynomial Equations with Integer Coefficients 
 
Consider the polynomial 1 2

1 2 1 0( ) n n
n nP x a x a x a x a x a−

−= + + + + +�  where the 
numbers 0 1 2 3, , , , , na a a a a�  are all integers and 0na ≠ . 
 
(1) If x = k is a root of the equation ( ) 0P x =  then (x – k) is a factor of P(x) and 

so k must be a factor of 0a . 
 
(2) If x = p/q (p and q are integers) is a rational root of the equation ( ) 0P x =  

then (qx – p) is a factor of P(x) and so p must be a factor of 0a  and q must 
be a factor of na . 

 
Example Find the real roots of the equation 3 22 5 6 0x x x+ − − = . 
 
 If 3 2( ) 2 5 6f x x x x= + − −  then the possible (integral) roots of ( ) 0f x =  

are 1, 2, 3, 6x = ± ± ± ± . 
 Now ( 1) 1 2 5 6 0f − = − + + − =  and so x + 1 is a factor of ( )f x . 
 Thus 2( ) ( 1)( 6) ( 1)( 2)( 3)f x x x x x x x≡ + + − ≡ + − + . 
 Therefore the real roots of ( ) 0f x =  are x = –1, 2, –3. 
 
Example Find the real roots of the equation 3 23 5 14 8 0x x x+ + + = . 
 
 If 3 2( ) 3 5 14 8f x x x x= + + +  then the possible (real) linear factors of ( )f x  

are 1, 2, 4, 8, 3 1, 3 2, 3 4, 3 8x x x x x x x x± ± ± ± ± ± ± ± . 
 Now (perhaps after a long search) 8 20 282

3 9 9 3( ) 8 0f − = − + − + =  and 3x + 2 
is a factor of ( )f x . 

 Thus 2( ) (3 2)( 4)f x x x x≡ + + + . 
 But the roots of 2 4 0x x+ + =  are both non-real since Δ < 0. 
 Therefore the only real root of ( ) 0f x =  is 2

3x = − . 
 
Exercise 19.4 
 
1. Find all the real roots of the following equations: 
 (a) 3 22 2 0x x x− − + =  ; (b) 3 23 4 12 0x x x+ − − =  ; 
 (c) 3 23 4 0x x− + =  ; (d) 3 22 9 7 6 0x x x+ + − =  ; 
 (e) 3 22 7 6 0x x x+ − − =  ; (f) 3 22 2 3 0x x x− − − = . 
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2. Find all the real zeros of the following polynomials: 
 (a) 3 24 12 3x x x+ − −  ; (b) 3 26 5 8 3x x x+ − −  ; 
 (c) 3 218 15 2x x x+ − −  ; (d) 4 3 22 3 12 22 60x x x x+ + − − . 
 
3. Solve the following equations: 
 (a) 3 24 3 2 0x x x− + + =  ; (b) 3 23 3 1 0x x x− − + =  ; 
 (c) 3 22 3 23 12 0x x x+ − − =  ; (d) 4 3 22 11 7 6 0x x x x− − + + = . 
 
4. Find all the real roots of the following equations: 
 (a) 2 ( 1) 5 2x x x+ = +  ; (b) 2( 2)( 1) 3 5x x x+ + = +  ; 
 (c) 3 24 6 4 11x x x+ = +  ; (d) 34 ( 1)x x= − +  ; 
 (e) 2 24 ( 2)x x x− = +  ; (f) 2 2 2( 2) 2 ( 1) 4 13x x x x+ = + + +  ; 
 (g) 4 6 5x x= −  ; (h) 2 24 9 ( 6)(2 3)x x x− = − +  ; 
 (i) 4 213 36 0x x− + =  ; (j) 4 3 24 6 4 15x x x x+ + + = . 
 
5. If the polynomial ( )f x  is divided by 2 6x x− − , the remainder is 7 8x − . 
 (a) Find the remainder when ( )f x  is divided by x + 2. 
 (b) If 4 3 2( ) 2 20 27f x x ax x x b= + − − + , 
  (i) find the values of a and b and so check your answer to 

part (a)  for this polynomial ; 
  (ii) solve the equation ( ) 7 8f x x= − . 
 
6. Let 6 5 4 3 2( ) 2 4 6 4 2 1f x x x x x x x= + − − + + −  and 3 2( ) 2 2g x x x x= + − − . 
 (a) Find the zeros of g(x). 
 (b) Show that ( )3 1 ( )x g x x f x− ≡  and find the zeros of f(x). 
 
19.5 Relations between the Zeros and Coefficients of a Quadratic 

Polynomial (Optional) 
 
Let α and β be the zeros of the quadratic polynomial 2 ( 0)ax bx c a+ + ≠ . 

Then  2 2( )( ) ( )ax bx c a x x a x x⎡ ⎤+ + ≡ − α − β ≡ − α + β + αβ⎣ ⎦ . 

Thus  andb c
a a

α + β = − αβ = . 

That is the sum of the zeros is b
a

−  and the product of the zeros is c
a

. 
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Conversely, a quadratic polynomial which has zeros whose sum is S and whose 
product is P is 2x Sx P− + . 
 

Example Find the sum and product of the zeros of 22 4 3x x− + . 
 

 The sum of the zeros is 4 2
2

b
a

−
− = − =  and the product is 3

2
c
a

= . 

 
Example Find a quadratic polynomial with integer coefficients which has as 

its zeros    (a)  3 and –2 ;     (b)  1 1
2 4 and  ;     (c)  3 2 2± . 

 
 (a) The sum of the zeros is 1 and the product is –6. 
  A suitable quadratic is 2 6x x− − . 
 

  Or a suitable quadratic is 2( 3)( 2) 6x x x x− + ≡ − − . 
 

 (b) The sum of the zeros is 3
4  and the product is 1

8 . 

  A suitable quadratic is 2 23 1
4 88( ) 8 6 1x x x x− + ≡ − + . 

 

  Or a suitable quadratic is 2(2 1)(4 1) 8 6 1x x x x− − ≡ − + . 
 

 (c) The sum of the zeros is (3 2 2) (3 2 2) 6+ + − =  and the product 
is 2 2(3 2 2)(3 2 2) 3 (2 2) 9 8 1+ − = − = − = . 

   A suitable quadratic is 2 6 1x x− + . 
 

  Or a suitable quadratic is ( )( )3 2 2 3 2 2x x⎡ ⎤ ⎡ ⎤− + − −⎣ ⎦ ⎣ ⎦  which 

can be simplified to 2 6 1x x− +  after a considerable amount of 
algebra. 

 

Example If α and β are the zeros of 22 4 3x x− − , find a quadratic which has 
zeros     (a)  2 and 2α − β −  ;     (b)  2 2 and α β . 

 

 The sum of the zeros is 2 and the product of the zeros is 3
2− . 

 Therefore 3
22 and α + β = αβ = − . 

 
 (a) Let S = (α – 2) + (β – 2) = α + β – 4 = –2. 
  Let P = (α – 2)(β – 2) = αβ – 2(α + β) + 4 = 3

2−  – 2(2) + 4 = 3
2− . 

  A suitable quadratic is 2 23
22( 2 ) 2 4 3x x x x+ − ≡ + − . 
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 (b) Let S = 2 2 2 = ( ) 2  = 4 3 = 7α + β α + β − αβ + . 
    Let 2 2 2 9

4 =  = ( )  = P α β αβ . 

   A suitable quadratic is 2 29
44( 7 ) 4 28 9x x x x− + ≡ − + . 

 
Example If α and β are zeros of 22 5x x− − , find the values of 

   (a) 2 2α + β  ; (b) 1 1
+

α β
 ;  (c) 3 3α + β . 

 
 Here 51

2 2 and α + β = αβ = − . 
 
 (a) ( )22 2 2 51 1 21

2 2 4 4( ) 2 2( ) 5α + β = α + β − αβ = − − = + =  

 (b) 1 1 1 2 1
5 2 5

α + β
+ = = = −

α β αβ −
 

 (c) 3 3 3 3 5 15 311 1 1
2 2 2 8 4 8( ) 3 ( ) ( ) 3( )( )α + β = α + β − αβ α + β = − − = + =  

 
Exercise 19.5 
 
1. Find a quadratic polynomial which has as its zeros 
 (a) 4 and –1 ; (b) 3 and 2

3−  ; (c) 5±  ; 

 (d) 1 3±  ; (e) 2 5− ±  ; (f) 1
2 ( 2 3 3)− ± . 

 
2. If α and β are the zeros of the polynomial 2 2 5x x+ − , find a polynomial 

which has as its zeros 
 (a) α + 1 and β + 1 ;  (b) 2α + 3 and 2β + 3 ; 

 (c) 1 1 and 
α β

 ;   (d) 2 2 and α β  ; 

 (e) 1 1 and α + β +
β α

 ;  (f) 1 1 and α + β +
α β

 ; 

 (g) 3 3 and α β  ;   (h) 2 2 and α + β β + α . 
 
3. If α and β are the roots of the equation 22 4 0x x− − = , find an equation 

whose roots are 
 (a) α – 2 and β – 2 ;  (b) 3α – 1 and 3β – 1 ; 

 (c)  and α β
β α

 ;   (d) 1 1 and α + β +
β α

 ; 
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 (e) 2 2 and α − β −
α β

 ;  (f) 2 21 and 1α + β +  ; 

 (g) 3 3 and α β  ;   (h) 2 21 1 and α + β +
α β

. 

 
4. Find the values of p if the polynomial 2 2x px+ +  
 (a) has 2 as one of its zeros ; 
 (b) has zeros whose sum is twice their product ; 
 (c) has zeros whose squares have a sum of 21 ; 
 (d) has zeros whose difference is 3

2 . 
 
5. Find the values of m if one of the zeros of 2 ( 1)x m x+ +  is three times the 

other. 
 
6. Find the values of c if the polynomial 22 ( 2)x c x+ −  
 (a) has 4 as one of its zeros ; 
 (b) has zeros whose sum is half their product ; 
 (c) has zeros whose squares have a sum of 5 ; 
 (d) has zeros whose cubes have a sum of –32. 
 
7. Consider the polynomial 2 (2 1) 1x p x− − + . 
 (a) If 3 is a zero, what is the other zero? 
 (b) If the zeros are equal, what are they? 
 (c) If the sum of the squares of the zeros is 10, what is the sum of their 

reciprocals? 
 
8. Find the relationship between p and q such that the zeros of the polynomial 

2x px q+ +  are in the ratio 3 : 1? 
 
9. Given that the equation 2 (1 ) 3 2 0cx c x c− + + + =  has roots such that their 

sum is equal to twice their product, find c and the two roots. 
 
10. The zeros α and β of the quadratic polynomial 2 23x kx k− +  satisfy the 

condition 2 2 7
4α + β = . Find the possible values of k. 
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Required Outcomes 

 
 After completing this chapter, a student should be able to: 
• distinguish a polynomial from other functions. 
• divide one polynomial by another using 'long' division or 'contracted' 

division. 
• use the division process to express a polynomial in terms of the quotient, 

divisor and remainder. 
• state and prove the remainder theorem. 
• use the corollary to the remainder theorem in certain 'divisibility' problems. 
• solve polynomial equations up to degree four using the remainder theorem. 
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20.1 Addition, Multiplication and Division 
 
It has been known for centuries that the solution of the quadratic equation 

2 0ax bx c+ + =  is 
2 4

2
b b acx

a
− ± −

=  and that this solution is meaningless 

whenever 2 4 0b ac− <  since the square root of a negative real number does not 
exist (in the domain of real numbers). While searching for a general solution of 
the cubic equation 3 2 0ax bx cx d+ + + =  at the beginning of the sixteenth 
century, the Italian mathematician dal Ferro found that the solution of the 
simpler cubic equation 3x Ax B+ =  can be expressed in the form 

1 3 1 3
2 3 2 3

2 4 27 2 4 27
B B A B B Ax

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= + + + − +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

. However, when applying this 

formula it was sometimes found that real solutions existed even when 
2 3

0
4 27

B A
+ < . For example, the equation 3 0x x− =  has the real solutions x = 0, 

± 1. But for A = –1 and B = 0, 
2 3 1

4 27 27
B A

+ = −  and dal Ferro's formula 

appeared to be unusable. 
 
Mathematicians were then forced into the invention of an 'imaginary' number 
i = 1−  and so began the development of the invaluable branch of mathematics 
known as complex numbers. 
 

Definition A complex number is a number of the form z = a + ib where a 
and b are real numbers and 2i 1= − . 

 
  a is called the real part of z and we write a = Re z. 
  b is called the imaginary part of z and we write b = Im z. 
 
  [Note that the imaginary part of z is real.] 
 
  If b = 0, then z = a is real. Thus every real number is also a 

complex number. 
 If a = 0 and b ≠ 0, then z = ib is called pure imaginary. 
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From the definition of i we find that 2 3 4 5i 1, i i, i 1, i i= − = − = = , etc. 
In fact, if n is an integer, 4 4 1 4 2 4 1i 1, i i, i 1, i in n n n+ ± −= = = − = − . 
 
Equality 
 

Two complex numbers 1 1 1 2 2 2i  and iz a b z a b= + = +  are equal, 1 2z z= , 
iff 1 2a a=  and 1 2b b= . 

 
That is two complex numbers are equal iff their real parts are equal and their 
imaginary parts are equal. 
 
Example Find the real numbers a and b if a + ib = 3 – 2i. 
 
 Since the complex numbers a + ib and 3 – 2i are equal, their real parts are 

equal, i.e. a = 3, and their imaginary parts are equal, i.e. b = –2. 
 
Addition 
 

If 1 1 1 2 2 2i  and iz a b z a b= + = +  are two complex numbers, then the sum 
of 1 2 and z z  is given by 1 2 1 2 1 2( ) i( )z z a a b b+ = + + + . 

 
That is when two complex numbers are added, the sum is a complex number 
whose real part is the sum of the real parts of the given complex numbers and 
whose imaginary part is the sum of the imaginary parts of the given complex 
numbers. 
 
Example Find the sum of the complex numbers 5 + 4i, –1 + 2i and 7. 
 
 Adding real parts gives 5 – 1 + 7 = 11. Adding imaginary parts gives 

4 + 2 + 0 = 6. Therefore the required sum is 11 + 6i. 
 
Note: Addition is simply a matter of collecting like terms. 
 
Multiplication 
 

If 1 1 1 2 2 2i  and iz a b z a b= + = +  are two complex numbers, then the 
product of 1 2 and z z  is given by 1 2 1 2 1 2 1 2 2 1( ) i( )z z a a b b a b a b= − + + . 

 
This may appear to be a complicated operation, but in fact we carry out 
multiplication of complex numbers in exactly the same way we multiply two 
binomial expressions. 
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Thus  1 1 2 2( i )( i )a b a b+ +  = 2
1 2 1 2 2 1 1 2i i ia a a b a b b b+ + +  

 = 1 2 1 2 2 1 1 2i ia a a b a b b b+ + −    since 2i 1= −  
 = 1 2 1 2 1 2 2 1( ) i( )a a b b a b a b− + +  
which is our definition. 
 
Example Evaluate the product (3 – 4i)(5 + 2i). 
 

 Here (3 – 4i)(5 + 2i) = 15 + 6i – 20i – 28i  = 23 – 14i. 
 
Example Write each of the following in the form a + ib where a and b are 

real: 
  (a) 2(4 3i)−  ;   (b) (6 + i)(6 – i) ; 
  (c) (3 + 2i)(5 – 4i) + 2(2 3i)−  + 8. 
 

 (a) 2(4 3i)−  = 16 – 24i + 29i  = 7 – 24i 
 (b) (6 + i)(6 – i) = 36 – 2i  = 37 + 0i 
 (c) (3 + 2i)(5 – 4i) + 2(2 3i)−  + 8 
  =  15 – 12i + 10i – 28i  + 4 – 12i + 29i  + 8 
  =  26 – 14i 
 

Complex Conjugate The complex conjugate of the complex number 
z = a + ib is denoted and defined by z* = a – ib. 

 
That is the complex conjugate of any complex number is found by changing the 
sign of the imaginary part. 
 
Note: If a complex number and its conjugate are equal, z = z*, then z is real. 
 
Example Prove that the sum and product of any complex number and its 

conjugate are both real. 
 
 Let z = a + ib where a and b are real numbers. Then z* = a – ib. 
 Thus z + z* = (a + a) + i(b – b) = 2a which is real, and 
 zz* = (a + ib)(a – ib) = 2 2(i )a b−  = 2 2a b+  which is real (and ≥ 0). 
 

Summarising gives:    z + z* = 2 Re z  and   zz* = ( ) ( )2 2Re Imz z+  ≥ 0. 
 
Division of Complex Numbers 
 
We make use of the fact that the product of two complex conjugates is real 
when we wish to express the quotient of two complex numbers in the form 
a + ib. 
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Example Write 3 2i
4 i
+
−

 in the form a + ib where a and b are real numbers. 

 

 3 2i 3 2i 4 i 10 11i 10 11 i
4 i 4 i 4 i 17 17 17
+ + + +

= × = = +
− − +

 

 
Example Find the real numbers x, y such that (x + iy)(3 – 2i) = 6 – 17i. 
 
 Method 1 (x + iy)(3 – 2i) = (3x + 2y) +i(–2x + 3y) = 6 – 17i if and 

only if 3x + 2y = 6 and –2x + 3y = –17. 
    Solving these equations gives x = 4, y = –3. 
 
 Method 2 (x + iy)(3 – 2i) = 6 – 17i 

    ⇒   6 17i (6 17i)(3 2i) 52 39ii 4 3i
3 2i (3 2i)(3 2i) 13

x y − − + −
+ = = = = −

− − +
 

    Thus x = 4 and y = –3. 
 
Example Find a quadratic whose zeros are 3 ± 2i. 
 
 The sum of the zeros is 6 and the product is 13. 
 Therefore a suitable quadratic is 2 6 13z z− + . [See Section 19.5.] 
 

Example Solve the equation 2 10 26 0z z− + = . 
 

 From the quadratic formula 10 100 104 10 2i 5 i
2 2

z ± − ±
= = = ± . 

 

Example Find the real numbers x and y such that 2( i ) 5 12ix y+ = − . 
 

  2 2 2( i ) 2 i 5 12ix y x y xy+ = − + = −  iff  2 2 5x y− =   ……… (i) 
            and   2xy = –12   ………(ii). 

 From (ii) we find 6y
x

= −    ………. (iii). 

 Substitute (iii) into (i): 2
2

36 5x
x

− =  

    4 25 36 0x x− − =  
    2 2( 9)( 4) 0x x− + =  
    2 29  or  4x x= = − . 
 But x is real and so x = ±3, and from (iii) y = 2∓ . 
 Thus x = 3, y = –2   or   x = –3, y = 2. 
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Note: The following problems are essentially the same: 
(1) Find the values of the real numbers x, y if 2( i ) 5 12ix y+ = − . 
(2) Solve the equation 2 5 12iz = − . 
(3) Find the square roots of 5 – 12i. 
 
The answers are: 
(1) x = 3, y = –2   or   x = –3, y = 2 
(2) z = ±(3 – 2i) 
(3) The square roots of 5 – 12i are ±(3 – 2i). 
 
[Note: These answers can be obtained most easily by using a graphic display 

calculator. However students should be aware of the algebraic 
techniques required.] 

 

Example Solve the equation 2 i 4 2iz z− = + . 
 

 Rearranging the equation gives 2 i (4 2i) 0z z− − + = . 

 Therefore 
i 1 4( 4 2i) i 15 8i

2 2
z

± − − − − ± +
= = . 

 Using the method outlined in the previous example, or using a graphic 
display calculator, we find that the square roots of 15 + 8i are ±(4 + i). 

 Thus i (4 i) 4 2i 4, 2 i, 2
2 2 2

z ± + + −
= = = + − . 

 
Example Express each of the following quadratics as a product of two linear 

factors: 
 (a) 2 25z +  ; (b) 2 4 5z z+ +  ; (c) 2 1z z+ + . 
 

 (a) 2 2 225 (5i) ( 5i)( 5i)z z z z+ = − = − +  
 

 (b) 2 2 2 24 5 4 4 1 ( 2) i ( 2 i)( 2 i)z z z z z z z+ + = + + + = + − = + − + +  
 
  Alternative Method: 

  The zeros of 2 4 16 204 5 are 2 i
2

z z − ± −
+ + = − ± . 

  Thus ( )( )2 4 5 [ 2 i] [ 2 i] ( 2 i)( 2 i)z z z z z z+ + = − − + − − − = + − + + . 
 

 (c) 2 2 31
4 41z z z z+ + = + + +  ( )221 1

2 2( ) i 3z= + −  

   1 1 1 1
2 2 2 2( i 3)( i 3)z z= + − + +  
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Example Solve the equation i 2 3i
i

z
z

+
= +

−
. 

 i 2 3i
i

z
z

+
= +

−
  ⇒   z + i = (z – i)(2 + 3i) = (2 + 3i)z + 3 – 2i 

 That is (1 + 3i)z = –3 + 3i and so z  =  3 3i
1 3i
− +

+
 

  =  ( 3 3i)(1 3i)
(1 3i)(1 3i)
− + −

+ −
 

  =  6 12i
10
+  

  =  3 6 i
5 5

+ . 

 
Example Solve: (a) 4 213 36 0z z+ + =  ; (b) 4 28 36 0z z+ + = . 
 

 (a) 4 213 36 0z z+ + =    ⇒   2 2( 4)( 9) 0z z+ + =    ⇒   z = ±2i,  ± 3i 
 

 (b) 4 28 36 0z z+ + =     ⇒   4 2 212 36 4 0z z z+ + − =  
           ⇒   2 2 2( 6) (2 ) 0z z+ − =  
           ⇒   2 2( 2 6)( 2 6) 0z z z z− + + + =  
           ⇒   1 i 5, 1 i 5z = ± − ± . 
 
Exercise 20.1 
 
1. Write each of the following in the form a + ib where a, b ∈ R: 
 (a) 12 5i i+  ;  (b) 32i (3i 1)−  ; 
 (c) (3 + 2i)(2 – i) ;  (d) (5 – i)(–2 + 3i) ; 
 (e) (4 + 3i)(4 – 3i) ;  (f) (7 – i)(3 – 2i) ; 
 (g) 2(3 5i)−  ;  (h) 3(2 i)− . 
 
2. Write each of the following in the form a + ib where a, b ∈ R: 

 (a) 10
3 i+

 ;  (b) 26
3 2i−

 ;  (c) 1
2 i+

 ; 

 (d) 5 i
1 i

−
−

 ;  (e) 7 i
2 i

+
+

 ;  (f) 3 4i
4 3i

+
−

 ; 

 (g) 2
3 i

(2 i)
+
−

 ; (h) 2
4i(1 2i)
(1 i)

−
−

 ; (i) 
22 i

2 i
+⎛ ⎞

⎜ ⎟−⎝ ⎠
 ; 
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  (j) 1 i 3 i
3 i 1 i

− +
+

+ −
 ; (k) 2 i i

1 2i 3 i
+

−
+ −

 ; (l) 
23 i 5i

2 i 1 3i
−⎛ ⎞ −⎜ ⎟− +⎝ ⎠

. 

 
3. If z = 5 – 2i and w = 3 + i, express each of the following in the form a + ib 

where a, b ∈ R: 
 (a) 2z  ;  (b) zw* ;  (c) z*w ; 

 (d) z
w

 ;  (e) ( *)*z w+  ; (f) 10 *z
w

. 

 
4. Find the real numbers x and y if: 

 (a) 17i
4 i

x y+ =
− +

 ; (b) 2 3ii
2 3i

x y +
+ =

−
 ; 

 (c) ( i )(2 3i) 21 ix y+ − = +  ; (d) (2 3i) (4 5i) 2 14ix y− + + = −  ; 
 (e) 2( i ) 3 4ix y+ = +  ; (f) 2( i ) 7 24ix y+ = − −  ; 

 (g) 2 50( i )
4 3i

x y+ =
+

 ; (h) 2( i ) 4 3ix y+ = + . 

 
5. In each of the following find a quadratic which has zeros: 
 (a) ±3i ;  (b) ±6i ;  (c) 1 ± 2i ; 

 (d) –2 ± 3i ; (e) 5 ± 4i ;  (f) 1
2 i±

 . 

 
6. Solve each of the following equations: 
 (a) 2 2 5 0z z+ + =  ;  (b) 2 6 10 0z z− + =  ; 
 (c) 2 12 37 0z z− + =  ;  (d) 2 1 0z z+ + =  ; 
 (e) 2 3 1 0z z+ + =  ;  (f) 24 4 5 0z z− + =  ; 
 (g) 23 18 28 0z z− + =  ;  (h) 22 4 3 0z z+ + = . 
 
7. Solve each of the following equations: 

 (a) i 3
i

z
z

−
=

+
 ; (b) 2i 5

2i
z
z

+
=

−
 ; (c) 2 1 1 i

2 1
z
z

+
= +

−
 ; 

 (d) 2i 1 i
2i

z
z

−
= −

+
 ; (e) 2 i 2 3i

2 i
z
z

+
= +

−
 ; (f) 3 1 12 i

3 i 10
z
z

+ −
=

+
. 

 
8. Express each of the following quadratics as a product of two linear factors: 
 (a) 2 1z +  ;  (b) 2 10z +  ; (c) 2 2 5z z+ +  ; 
 (d) 2 6 13z z− +  ; (e) 2 3z z− +  ; (f) 2 3i 2z z− − . 
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9. Solve the following equations given that at least one root of each is pure 

imaginary: 
 (a) 3 22 2 0z z z− + − =  ; (b) 4 3 22 9 8 20 0z z z z+ + + + = . 
 
10. Find all complex numbers z for which 
 (a) ( )2*z z=  ; (b) 2 iz z=  ; (c) i *z z= . 
 
11. Prove that for all complex numbers z and w 
 (a) (z + w)* = z* + w* ;  (b) (zw)* = z*w*. 
 
12. Prove that if the sum and product of two complex numbers are both real, 

then either 
 (a) the two complex numbers are both real ;        or 
 (b) the two complex numbers are conjugates. 
 
20.2 Zeros of a Polynomial with Real Coefficients 
 

Definition A polynomial whose coefficients are all real is called a real 
polynomial. 

 
Theorem The non-real zeros of a real polynomial must occur in 

conjugate pairs. [Proof not required.] 
 
 [The material in Chapter 19 Section 19.5 should prove to be very helpful 
for an understanding of the techniques used in the following section.] 

 
Example Find the values of the real numbers a and b if 2 + 3i is a zero of the 

polynomial 3z az b+ + . 
 

 Since the polynomial 3z az b+ +  is real, 2 ±3i are both zeros. 
 Now 2 ± 3i are zeros of 2 4 13z z− +  which is a factor of 3z az b+ + . 
 Hence 3z az b+ +  = 2( 4 13)( 4)z z z− + +  = 3 3 52z z− + . 
 Thus a = –3 and b = 52. 
 
Example Find the values of the real numbers a and b if 1 – i is a zero of the 

polynomial 4 2( ) 10f z z z az b= − + +  and find all the zeros of  f (z). 
 
 Since ( )f z  is real 1 ± i are both zeros of ( )f z . 
 Now 1 ± i are zeros of 2 2 2z z− +  which is a factor of ( )f z . 
 Let ( )f z  =  2 2( 2 2)( )z z z pz q− + + + , where p, q ∈ R  
  =  4 3 2( 2) ( 2 2) (2 2 ) 2z p z p q z p q z q+ − + − + + + − + . 
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 Equating coefficients gives: 
            p – 2 =      0     ……….(i) 
 –2p + q + 2 =  –10     ……….(ii) 
        2p – 2q =      a     ……….(iii) 
                2q =      b     ……….(iv). 
 From (i): p = 2. 
 From (ii): q = –8. 
 From (iii): a = 20. 
 From (iv): b = –16. 
 

Thus 2 2 2( ) ( 2 2)( 2 8) ( 2 2)( 4)( 2)f z z z z z z z z z= − + + − = − + + −  and all the 
zeros are 1 ± i, –4 and 2. 
 
[Note: This technique is known as the method of undetermined coefficients.] 
 
Exercise 20.2 
 
1. In each of the following, show that the given complex number is a zero of 

the given polynomial: 
  (a) 2 + i, 3 2( ) 6 13 10f z z z z= − + −  ; 
 (b) 1 – 3i, 3( ) 6 20f z z z= + +  ; 
 (c) –1 + 2i, 3 2( ) 2 25f z z z= − −  ; 
 (d) 3 i 3− , 3 2( ) 3 17 30 12f z z z z= − + +  ; 
 (e) 2 + 3i, 4 2( ) 44 26f z z z z= − + +  ; 

 (f) ( )1
2 1 i 3− + , 4 3( ) 2 2 1f z z z z= + − − . 

 
2. Find all the zeros of each polynomial in Question 1. 
 
3. Find the values of the real numbers a and b if the given complex number is 

a zero of the given polynomial: 
 (a) 1 + i, 3( )f z z az b= + +  ; 
 (b) 3 – i, 3 2( ) 16f z z az z b= + + +  ; 
 (c) –2 + i, 3 2( ) 15f z z az bz= + + −  ; 
 (d) i – 4, 3 2( ) 2 26f z z az z b= + + +  ; 
 (e) 2 + i, 4 2( ) 15f z z az bz= + + +  ; 
 (f) 5 – 2i, 4 3 2( ) 2 22 68f z z z az z b= − + − + . 
 
4. Solve the equation ( ) 0f z =  for each polynomial in Question 3. 
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5. Find a polynomial with integer coefficients and least possible degree which 

has amongst its zeros 
 (a) 2 and 1 + 2i ;   (b) 1

2−  and 2 – i ; 
 (c) 1 + i and 3 + 2i ;  (d) 2 – 3i and 4 + i ; 
 (e) ( )1

2 1 i 3−  and ( )1
2 1 i 2+  ; (f) –1, 3 + i and 5 – 2i. 

 
6. In each of the following solve the equation ( ) 0f z =  given that z = 2 – i is 

one solution: 
 (a) 3 2( ) 2 5 2 15f z z z z= − − +  ; 
 (b) 3 2( ) 6 (12 i) 3(3 i)f z z z z= − + + − +  ; 
 (c) 3 2( ) 2 (7 2i) 6(2 i)f z z z z= − + + − −  ; 
 (d)* 3( ) 2 11if z z= − + . 
 
7. The real polynomial ( )p z  has degree 3. Given that p(1 + 2i) = 0, p(2) = 0 

and p(0)= 20, write ( )p z  in the form 3 2az bz cz d+ + + . 
 
8. The real polynomial ( )p z  has degree 4. Given that p(3 – i) = 0, p(2i) = 0 

and p(0) = 20, write ( )p z  in the form 4 3 2az bz cz dz e+ + + + . 
 
9. Find a polynomial with least possible degree which has –2 and 1 + 3i as 

two of its zeros. 
 
*10. Show that z = i – 3 is one root of the equation 3 18 26iz = − +  and find the 

other two roots. 
 
20.3 Geometrical Representation of a Complex Number – Modulus 
 
Corresponding to each complex number z = x + iy there is a point P(x, y) in a 
rectangular coordinate plane. Thus P(2, –3) corresponds to the complex number 
2 3i− , Q(0, 2) corresponds to the complex number 2i and R(–3, 0) corresponds 
to the complex number –3. 
 
Every point corresponding to a real number lies on the x-axis which is called the 
real axis; every point corresponding to a pure imaginary number lies on the y-
axis which is called the imaginary axis. 
 
Diagrams which display complex numbers in this way are called Argand 
diagrams. 
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Example Plot the points corresponding to each of the following complex 

numbers on an Argand diagram: 3 + 4i, –1 + 3i, –4 – 2i, 3, –5i. 
 
 
 
 
 
 
 
 
 
 
 
 
Addition of Complex Numbers in the Argand Plane 
 
Let P and Q represent the complex numbers 1 1 1 2 2 2i  and iz x y z x y= + = +  
respectively. Complete the parallelogram OPRQ where O is the origin. Then R 
represents the complex number 1 2z z+ . 
 
 
 
 
 
 
 
 
 
 
Example If P, Q represent the complex numbers z, w respectively, explain 

with the aid of a diagram how to find the points R, S, T and U 
which represent the complex numbers z*, z + w, –w and z – w 
respectively. 

 
 
 
 
 
 
 
 
 
 
 

Im z 

Re z 5 

5 

–5 

–5 3 

–5i 

–4–2i 

–1+3i 
3+4i 

O 

Re z O 

P(x1 , y1) 
Q(x2 , y2) 

R(x1+x2 , y1+y2) 

x1 

 

x2 x1+x2 

 y1 

 y2 

 y1+y2 

Re z O 
P(z) 

Q(w) 
S(z+w) 

R(z*) 

T(–w) 
U(z–w) 

Im z 

Im z 
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 If R is the image of P under a reflection in the x-axis, then R represents the 

complex number z*. Complete the parallelogram OPSQ. Then S represents 
the complex number z + w. If T is the image of Q under a rotation about O 
through an angle of 180°, then T represents the complex number –w. 
Complete the parallelogram OPUT. Then U represents the complex 
number z – w. 

 
The Modulus of a Complex Number 
 

Definition The modulus of the complex number z = x + iy is denoted 
and defined by 2 2z x y= + . 

 

Note: (1) z  is a real  number. 
 (2) 0z ≥  for all z with 0z =  iff z = 0. 
  (3) The definition is consistent with the definition of the modulus 

of a real number: if y = 0, z = x is real and 2z x x= = . 
 

Geometrically z  measures the distance from the origin to the point P which 
represents z in the Argand plane. 
 
Some Properties of ⏐⏐z⏐ 
 

(1) 2 *z zz=   (2) zw z w=   (3) 
zz

w w
=  

(4) z w z w+ ≤ +   (5) z w z w− ≥ −  
 
Proof (1) Let z = x + iy then z* = x – iy. 
   Thus zz* = 2 2x y+  = 2z . 
 
  (2) Let w = u + iv and let z be as in part (1). 
   Then zw = (xu – yv) + i(xv + yu). 
 Thus zw  =  2 2( ) ( )xu yv xv yu− + +  

 =  2 2 2 2 2 2 2 22 2x u xyuv y v x v xyuv y u− + + + +  

 =  2 2 2 2 2 2( ) ( )x u v y u v+ + +  

 =  2 2 2 2( )( )x y u v+ +  

 =  2 2 2 2x y u v+ +  
 =  z w . 
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  (3) 2
1 * *

*
w w

w ww w
= =   {from (1)} 

  Thus  2 2

*1 1w w
w ww w

= = =     and so     1 1 zz z z
w w w w

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

. 

 

  (4) 2z w+  =  (z + w)(z + w)*    {from (1)} 
  =  (z + w)(z* + w*) 
  =  zz* + ww* + zw* + z*w 
  =  { }2 2 2 2 * *z w z w z w zw z w+ + − − −  

  =  ( ) ( ){ }2
2 * * *z w z w zw zw+ − − ⎡ + ⎤⎣ ⎦  

  =  ( ) { }2
2 * 2Re( *)z w z w zw+ − −  

  =  ( ) { }2
2 * Re( *)z w zw zw+ − − . 

 

 Now Reα ≥ α  for all complex numbers α and so Re 0α − α ≥ . Therefore 

* Re( *) 0zw zw− ≥ . This gives ( )22z w z w+ ≤ + , and since both 

 and z w z w+ +  are positive, z w z w+ ≤ + . 
 
 (5) Put z = z – w in (4). 
   This gives z w w z w w− + ≤ − +  and then z w z w− ≥ −  as 

required. 
 
Example Find the modulus of each of the following complex numbers: 
  (a) 2 + i ;  (b) –4 + 3i ; (c) 4i ; 
  (d) ( )1

2 1 i 3+  ; (e) –2 ;  (f) 6(1 + i) ; 

  (g) 2(3 2i)−  ; (h) 5
3 4i−

 ;  (i) 2 i
1 3i

+
−

. 

 

 (a) 2 22 i 2 1 5+ = + =  

 (b) 2 24 3i ( 4) 3 5− + = − + =  

 (c) 2 24i 0 4 4= + =  

 (d) ( ) 2 21 1 1
2 2 21 i 3 1 i 3 1 ( 3) 1− = − = + − =  

 (e) 2 2− =  
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 (f) 2 26(1 i) 6 1 i 6 1 1 6 2+ = + = + =  

 (g) 22 2 2(3 2i) 3 2i 3 ( 2) 13− = − = + − =  

 (h) 
2 2

55 5 5 1
3 4i 3 4i 53 ( 4)

= = = =
− − + −

 

 (i) 
2 2

2 2

2 i2 i 2 1 5 1
1 3i 1 3i 10 21 ( 3)

++ +
= = = =

− − + −
 

 

Example If 2 2z
z
+

=  and P represents z in the Argand plane, show that P 

lies on a circle and find the centre and radius of this circle. 
 
 Let z = x + iy where x, y ∈ R. 

 Then  2 2z
z
+

=  

 ⇒ 
2

2
z

z
+

=  

 ⇒ 2 2z z+ =  

 ⇒ 2 22 4z z+ =  

 ⇒ 2 2 2 2( 2) 4( )x y x y+ + = +  
 ⇒ 2 2 2 24 4 4 4x x y x y+ + + = +  
 ⇒ 2 23 3 4 4x y x+ − =  which is the equation of a circle with centre at 

( )2
3 ,0  and with radius of length ( )2 24 2 4

3 3 30+ + = . 
 
Square Roots of a Complex Number using Modulus 
 
Earlier in this text we were required to find the square roots of any complex 
number, for example –40 – 42i, by setting x + iy = 40 42i− −  for real x, y, 
squaring and equating both real and imaginary parts to provide two 
simultaneous equations: 2 2 40 and 2 42x y xy− = − = − . These equations were 
solved via a quadratic equation in 2 2 or x y . 
 
An alternative method equates real parts and the squares of the moduli and 
avoids solving a quadratic equation as follows: 
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Equating real parts gives 2 2 40x y− = −    as before. 

Equating the squares of the moduli gives  2 2 2 2( 40) ( 42) 58x y+ = − + − = . 

Adding gives 22 18 so 3x x= = ± . Subtracting gives 22 98 so 7y y= = ± . 
All we need to do now is to consider imaginary parts, 2xy = –42 which gives 

 = 7y −  when x = 3 and y = 7 when x = –3. 
 
Therefore the square roots of –40 – 42i are ±(3 – 7i). 
 
[A GDC can be used to find the square roots without knowing any algebraic 
method but an understanding of the algebraic techniques is quite useful.] 
 
It is not immediately clear that every complex number has square roots. The 
method described earlier would fail if the quadratic in 2x  has two negative roots 
or had complex roots. In fact this cannot happen since finding the square roots 
of a + ib leads to the equation 4 2 24 4x ax b− − . Here Δ = 2 216 16 0a b+ ≥  for all 
a, b, and the product of the roots is 21

4 0b− <  so there are two real roots one of 
which is positive (and the other negative). 
 
Exercise 20.3 
 
1. Find the modulus of each of the following complex numbers: 
 (a) 2 + 2i ; (b) 1 – 2i ; (c) 3 i 3− +  ; 
 (d) –3i ; (e) 0 ; (f) 5 ; 
 (g) –5 – 12i ; (h) ( )1

2 3 i+  ; (i) 3 3 9i−  ; 

 (j) 1
1 i+

 ; (k) 13
3 2i−

 ; (l) 28 + 21i ; 

 (m) 39 – 52i ; (n) 2 5i
3 4i

+
−

 ; (o) (3 4i)( 2 i 2)+ − . 
 
2. If z = 3 – i and w = 1 + 2i, calculate: 
 (a) z  ;  (b) w  ;  (c) 2 * iz +  ; 

 (d) * *z w+  ; (e) 2w  ;  (f) 33z  ; 

 (g) zw  ;  (h) z
w

 ;  (i) 
* *
z w

z w
+
−

. 

 
3. Find the modulus of the complex number 1 – i tan θ in simplest form. 
 

4. Show that the relation z w z w+ < +  is satisfied if z = 3 + i and w = 2 – i. 
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5. Give an example of two complex numbers z, w for which z w z w+ = + . 
If P represents z and Q represents w in the Argand plane, what are the 
relative positions of P and Q when z w z w+ = + ? 

 

6. If 1 1
1

z
z

−
=

+
, prove that the real part of z is zero. 

 

7. If i 1
i

z
z

+
=

−
, prove that z is real. 

 

8. Given that 2 1 1z
z
+

= , show that the point P which represents z in the 

Argand plane lies on a circle, and find the centre and radius of this circle. 
 

9. If 1z = , prove that 

 (a) 1*z
z

=  ; 

 (b) * 1z w z w− = −  for any complex number w. 
 

10. Prove that 
2

2Re
z

z z
z

+ = . 

 

11. Prove that 2 2 2 2Re( *)z w z w zw+ = + + for all complex numbers z, w.  
 

12. Prove that 2 2 2 22 2z w z w z w+ + − = +  for all complex numbers z, w. 
 

13. Let P represent the complex number cos isinz = θ + θ  for 1
20 < θ < π . 

Show that 2 cos 2 isin 2z = θ + θ . Let Q represent 2z . Show that P and Q 
each lie on the unit circle. On a diagram, plot the relative positions of z, 

2z , 2z−  and 21 z− . Hence show that 21 2sinz− = θ . 
 
14. Use the alternative method described in Section 12.3 to find the square 

roots of each of the following complex numbers: 
 (a) i ; (b) –i ; (c) –5 + 12i ; (d) 7 – 24i. 
 

15. Solve the equation 2(1 i) (3 2i) (21 7i) 0z z+ + − − − = . 
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20.4 Argument 
 

Definition Let z = x + iy be any complex number. If there is a real 

number θ such that cos  and sinx y
r r

θ = θ =  where r z= , 

then θ is called an argument of z. We write arg zθ = . 
 
Geometrically, if P represents z, θ is the radian measure of the angle between 
the vector OP

����
 and the positive x-axis. 

 
 
 
 
 
 
 
Since cos( 2 ) cos  and sin( 2 ) sinn nθ + π = θ θ + π = θ  for all integers n, each 
complex number has an infinite number of arguments any two of which differ 
by an integral multiple of 2π. 
 
Note:  The complex number 0 (zero) does not have an argument. 
 
Principal Argument 
 

Definition If θ is an argument of z and −π < θ ≤ π , then θ is called the 
principal argument of z. We denote the principal argument 
of z by Arg z. 

 
When we refer to 'the' argument of z we shall always mean the principal 
argument. 
 
Example Find the argument of each of the following complex numbers: 
 1 + i ,    2i ,     –1 ,     1 i 3− +  ,     9 3 9i−  ,     –3 – 4i. 
 
 
 
 
 
 
 
 
 From the diagram,        From the diagram,            From the diagram, 
 Arg(1 + i) = 1

4 π .        Arg(2i) = 1
2 π .            Arg(–1) = π. 

 x  O 
 θ 

 r 

 P(z) 

 y 

 cos θ = x/r 
 
 sin θ = y/r 

 Re z 

Re z 

Im z 

O 

P(1, 1) 

Re z 

Im z 

O 

P(0, 2) 

Re z 

Im z 

O 
P(–1, 0) π/4 π/2 π 

 Im z 
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 From the diagram,   From the diagram,       From the diagram, 
 Arg(–1 + i 3 ) = 2

3 π .   Arg(9 3  – 9i) = 1
6− π .     Arg(–3 – 4i) 

 = –π + α 
 = –2.21. 
  
Exercise 20.4 
 
1. Find the argument of the following complex numbers: 
 (a) 2 + 2i ;  (b) 1 i 3+  ; (c) 3 3 9i−  ; 
 (d) –i ;  (e) 4 ;  (f) 3 i− +  ; 
 (g) 6 2i 3−  ; (h) –3 – 3i ; (i) 1 1

4 4 i 3+  .  
 
2. Find the argument of each of the following complex numbers: 
 (a) 4 + 3i ;  (b) –1 + 2i ; (c) 3 – 2i ; 
 (d) –4 – 5i ; (e) 3 + i ;  (f) 1 – 4i ; 
 (g) –2 – 5i ; (h) –3 + 7i ; (i) 2 2i− − . 
 

3. Let z be the complex number 1 + 2i and let Arg z = θ. If Arg 2( )z  = α, 
prove that α = 2θ. 

 
4. Show that θ is an argument of the complex number cos isinz = θ + θ . 
 

5. Let cos isinz = θ + θ  where 1
20 < θ < π . Show that 2 cos2 isin 2z = θ + θ  

and that 2 1z z= = . 

 Plot the points representing the complex numbers z, 2z−  and 21 z−  on an 
Argand diagram and use the diagram to show that Arg (1– 2z ) = θ – 1

2 π . 
 
*6. If P represents the non-zero complex number z and P lies on the circle 

centre (1, 0) with radius 1, show that Arg(z – 1) = Arg( 2z ). What is the 
complete set of points in the Argand plane for which Arg(z – 1) = Arg( 2z )? 

 
 

Re z 

Im z 

O 

P(–1, 3 ) 

Re z 

Im z 

O 

P(9 3 , –9) 

Re z 

Im z 
O 

P(–3, –4) 
2π/3 

–π/6 α 
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20.5 The Polar Form of a Complex Number 
 

If iz x y= +  is any complex number such that  and argz r z= = θ , then 
(cos isin )z r= θ + θ . 

 
The form (cos isin )z r= θ + θ  is called the polar or modulus-argument form of 
z while z = x + iy is called the Cartesian form. 
 
Note: cis θ  ("sis theta") is a common abbreviation for cos θ + i sin θ. 
 

Example Express 3
42 cisz = π  in Cartesian form. 

 

 ( ) ( )3 3 3 1 1
4 4 4 2 22 cis 2 cos isin 2 2 i 2 2 i 2z = π = π + π = − + = − + . 

 

Example Express 2 2i 3z = −  in polar form. 
 
  
 
 
 
 
 
 
 
 From the diagram, 1

34 and Argz z= = − π . 

 Hence, ( )1 1
3 34 cos( ) isin( )z = − π + − π . 

 
Note: The following should be memorised: 
 cis 0 = 1,  1

2cis( )π  = i,  cis π = –1,  1
2cis( )− π  = –i. 

 
Multiplication and Division of Complex Numbers in Polar Form 
 

1 1 1 2 2 2cis  and cisz r z r= θ = θ ⇒ 1 2 1 2 1 2cis ( )z z r r= θ + θ  and 1 1
1 2

2 2
cis ( )z r

z r
= θ − θ . 

 
Proof     1 2z z  
   =  1 1 1 2 2 2(cos isin ) (cos isin )r rθ + θ × θ + θ  
  =  1 2 1 2 1 2 1 2 1 2([cos cos sin sin ] i[sin cos cos sin ])r r θ θ − θ θ + θ θ + θ θ  
  =  1 2 1 2 1 2(cos[ ] isin[ ])r r θ + θ + θ + θ  
  =  1 2 1 2cis ( )r r θ + θ . 

Re z 

Im z 

O –π/3 

P(2, 2 3)−

2 

2 3
4 
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     1

2

z
z

 =  1 1 1

2 2 2

(cos isin )
(cos isin )

r
r

θ + θ
θ + θ

 

 =  1 1 1 2 2

2 2 2 2 2

(cos isin )(cos isin )
(cos isin )(cos isin )

r
r

⎛ ⎞θ + θ θ − θ
⎜ ⎟θ + θ θ − θ⎝ ⎠

 

 =  1 1 2 1 2 1 2 1 2
2 2

2 2 2

(cos cos sin sin ) i(sin cos cos sin )
cos sin

r
r

⎛ ⎞θ θ + θ θ + θ θ − θ θ
⎜ ⎟

θ + θ⎝ ⎠
 

 =  ( )1
1 2 1 2

2
cos[ ] isin[ ]r

r
θ − θ + θ − θ  

 =  1
1 2

2
cis( )r

r
θ − θ . 

 
Thus the modulus of a product of two complex numbers is equal to the product 
of the moduli of the numbers (as we have already seen), and an argument of the 
product is equal to the sum of the arguments of the numbers. 
 
Also the modulus of a quotient of two complex numbers is equal to the quotient 
of the moduli of the numbers (as we have already seen), and an argument of the 
quotient is equal to the difference between the arguments of the numbers. 
[Argument of numerator minus argument of denominator.] 
 
Example Multiply the complex numbers z = 1 + i and w = 3  + i in both 

Cartesian and polar forms and hence find surd expressions for 
5

12sin π  and 5
12cos π . 

 

 1 1
4 61 i 2 cis  and 3 i 2cisz w= + = π = + = π  

 Therefore  51 1
4 6 122 2 cis( ) 2 2 ciszw = π + π = π   and 

   (1 i)( 3 i) ( 3 1) i( 3 1)zw = + + = − + + . 
 
 Equating real and imaginary parts gives: 
 5 5

12 122 2 cos 3 1 and 2 2 sin 3 1π = − π = + . 

 Thus ( ) ( )5 51 1
12 4 12 4

3 1 3 1sin 6 2  and cos 6 2
2 2 2 2

+ −
π = = + π = = − . 

 

Example Write ( 1 i)( 3 3i)
3 i 3

− + −
− +

 in polar form. 
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 ( 1 i)( 3 3i)
3 i 3

− + −
− +

 =  
3 1
4 3

5
6

( 2 cis )(2 3 cis )
2 3 cis

π − π

π
 

 =  ( )3 51
4 3 62 cis π − π − π  

 =  5
122 cis− π . 

 
Example If P represents the complex number z in the Argand plane, explain 

how to find the points representing the complex numbers iz and –iz. 
 
 If cisz r= θ  then iz = 1

2(cis )( cis )rπ θ  = 1
2cis ( )r θ + π . 

 Thus iz has a modulus equal to the modulus of z and an argument which is 
1
2 π  more than the argument of z. 

 Thus the point representing iz is found by rotating P anticlockwise about 
the origin through an angle 1

2 π  or 90°. 
 
 Similarly –iz = 1

2(cis )( cis )r− π θ  = 1
2cis ( )r θ − π . 

 Thus the point representing –iz is found by rotating P clockwise about the 
origin through an angle 1

2 π  or 90°. 
 
Exercise 20.5 
 
1. Express each of the following complex numbers in Cartesian form: 
 (a) ( )1 1

3 32 cos isinπ + π  ; (b) ( )1 1
4 42 cos isin− π + − π  ; 

 (c) ( )1 1
2 23 cos isinπ + π  ; (d) ( )4 cos isinπ + π  ; 

 (e) 5 5
6 6cos isin− π + − π  ; (f) ( )1 1

6 62 cos isinπ − π  ; 

 (g) 3
44cis π  ; (h) 2

33cis − π  ; 
 (i) 1

3cis− π  ; (j) 1
66cis π . 

 
2. Express each of the following complex numbers in polar form: 
 (a) 4 ;  (b) 2i ;  (c) –2 ; 
 (d) –5i ;  (e) 3 i+  ;  (f) 2 – 2i ; 
 (g) 2 2i 3− +  ; (h) –4 – 4i ; (i) 3 3i− + . 
 
3. Express each of the following complex numbers in polar form: 
 (a) 3 + 4i ;  (b) 5 + 2i ;  (c) –2 + i ; 
 (d) –4 – 3i ; (e) 2 – 3i ;  (f) –15 – 8i. 
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4. In each of the following express zw and z
w

 in both Cartesian and polar 

forms: 
 (a) 1 i , 3 iz w= + = − +  ; (b) 2

32 2i 3, cisz w= − = π  ; 

 (c) 51
6 66cis , 2cisz w= π = − π  ; (d) 1 1

6 6cos isin , 1 i 3z w= π − π = − + . 
 
5. Multiply the complex numbers 1 1

4 3cis  and cisz w= π = π  in both polar and 
Cartesian forms and hence obtain surd expressions for 7 7

12 12sin  and cosπ π . 
 
6. If z = cis θ, prove that (a) z* = cis (–θ) ; (b) 1/z = z*. 
 
7. A square OABC in the complex plane is lettered anticlockwise with O the 

origin and A representing the complex number z. What complex numbers 
are represented by B and C? 

 
8. The points P and Q represent the complex numbers z and w in the Argand 

plane and O is the origin. What can you say about the relative positions of 
P and Q if 

 (a) z w=  ; (b) z = iw ; (c) Arg z = Arg w ; 

 (d) z + w = 0 ; (e) w = ( 1 – i)z ; (f) w = 
1 i

z
+

? 

 
9. In the diagram, triangles OAP and OQR are similar. The point P represents 

z, the point Q represents w, and point A represents 1. 
 
 
 
 
 
 
 
 
 
 Show that R represents zw. 
 
*10. Points A, B, C and D represent the complex numbers 1 2 3 4, ,  and z z z z  

respectively. If ABCD is a square lettered anticlockwise, show that 
3 2 1(1 i) iz z z= + − , and find a similar expression for 4z  in terms of 

1 2 and z z . 
 

 Im z 

 Re z  O  A(1, 0) 

 P(z) 

 Q(w) 

 R 



 Complex Numbers  

 539 

 
20.6 De Moivre's Theorem 
 

Theorem For all integers n, (cos isin ) cos isinn n nθ + θ = θ + θ . 
 
Proof Let P(n) be the proposition: (cos isin ) cos isinn n nθ + θ = θ + θ . 
  Then P(1) is true since 1(cos isin ) cos isinθ + θ = θ + θ . 
  Assume P(k) is true for some integer k ≥ 1. 
  i.e.  (cos isin ) cos isink k kθ + θ = θ + θ . 
  Then     1(cos isin )k +θ + θ  
  =  (cos isin ) (cos isin )kθ + θ θ + θ  
  =  (cos isin )(cos isin )k kθ + θ θ + θ  
  =  (cos cos sin sin ) i(sin cos cos sin )k k k kθ θ − θ θ + θ θ + θ θ  
  =  cos( ) isin( )k kθ + θ + θ + θ  
  =  cos( 1) isin( 1)k k+ θ + + θ . 
  Thus P(k) ⇒ P(k + 1) and so P(n) is true for all positive integers n. 
 
   Let m = –n where n is a positive integer. Then m is a negative 

integer. 
  Now (cos isin )mθ + θ  =  (cos isin ) n−θ + θ  

 =  1
(cos isin )nθ + θ

 

 =  1
cos isinn nθ + θ

  (from first part of proof) 

 =  1 cos isin
cos isin cos isin

n n
n n n n

θ − θ
×

θ + θ θ − θ
 

 =  2 2
cos isin

cos sin
n n
n n
θ − θ
θ + θ

 

 =  cos isinn nθ − θ  
 =  cos( ) isin( )n n− θ + − θ  
 =  cos isinm mθ + θ . 
 Thus P(n) is true for all negative integers n. 
 

 Finally P(0) is true since 0(cos isin ) 1 cos0 isin 0θ + θ = = +  and so  
P(n) is true for all integers n. 

 
Note: De Moivre's theorem makes raising complex numbers to powers and 

solving equations of the form nz = α  quite simple. 
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Example Express ( )10
1 1
2 2 i 3+  in the form a + ib where a and b are real. 

 

 ( ) ( )
10 10 10 101 1 1 1 1 1

2 2 3 3 3 3 2 2i 3 cos isin cos isin i 3+ = π + π = π + π = − − . 
 

Example Expand 3(cos isin )θ + θ  in two ways: 
 (1) using de Moivre's theorem ; (2) using the binomial theorem. 
 Hence prove: (a) 3cos3 4cos 3cosθ = θ − θ  ; 
    (b) 3sin3 3sin 4sinθ = θ − θ  ; 

    (c) 
3

2
3tan tantan 3

1 3tan
θ − θ

θ =
− θ

 . 

 

 (1) 3(cos isin ) cos3 isin3θ + θ = θ + θ . 
 

 (2) 3(cos isin )θ + θ  
  =  3 2 2 3cos 3cos (isin ) 3cos (isin ) (isin )θ + θ θ + θ θ + θ  
  =  3 2 2 3cos 3icos sin 3cos sin isinθ + θ θ − θ θ − θ  
  =  3 2 2 3(cos 3cos sin ) i(3cos sin sin )θ − θ θ + θ θ − θ . 
 
  (a) Equating real parts gives: 
    cos3θ  =  3 2cos 3cos sinθ − θ θ  
    =  3 2cos 3cos (1 cos )θ − θ − θ  
    =  34cos 3cosθ − θ . 
 
  (b) Equating imaginary parts: 
     sin3θ  =  2 33cos sin sinθ θ − θ  
    =  2 33(1 sin )sin sin− θ θ − θ  
    =  33sin 4sinθ − θ . 
 
  (c) From parts (a) and (b): 

    tan3θ  =  sin3
cos3

θ
θ

 

     =  
3

3
3sin 4sin
4cos 3cos

θ − θ
θ − θ

 

    =  

3

3 3

3

3 3

3sin 4sin
cos cos
4cos 3cos
cos cos

θ θ
−

θ θ
θ θ

−
θ θ
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    =  
2 3

2
3tan sec 4 tan

4 3sec
θ θ − θ

− θ
 

    =  
2 3

2
3tan (1 tan ) 4 tan

4 3(1 tan )
θ + θ − θ

− + θ
 

    =  
3

2
3tan tan

1 3tan
θ − θ

− θ
. 

 

The General Solution of the Equation nz == α  
 

Consider the equation nz = α  where α is a complex number and n is a positive 
integer. Let cis  and let ciss z rα = φ = θ . 
Then cis cis  and so cos cos  and sin sinn n nr n s r n s r n sθ = φ θ = φ θ = φ . 

Squaring and adding gives: ( ) ( )2 2 2 2 2 2cos sin cos sinnr n n sθ + θ = φ + φ  which 

simplifies to 2 2 1 or n nr s r s= =   (r > 0). 
Therefore cos cos  and sin sinn nθ = φ θ = φ  
⇒ ( 2 , )n k kθ = φ + π ∈Z  

⇒   2 2 4, , ,k
n n n n n n n
φ π φ φ π φ π⎛ ⎞θ = + = ± ±⎜ ⎟

⎝ ⎠
� . 

 

Thus all n solutions of nz = α  have modulus 1 nα  and successive arguments 
differ by 2 nπ . Therefore on an Argand diagram, the n solutions are equally 

spaced around the circle with centre at the origin and radius 1 nα . 
 
 
 
 
 
 
 
 
 
 
 
 

 
The diagram illustrates some of the solutions equally spaced around the circle 
with radius 11 nns = α . 

Im(z) 

Re(z) 
1 ns  

2
n
π

n
φ

2
n n
φ π−  

2
n
π  

1 cisn
ns φ  

1 2
ncis( )n

ns φ π+1 4cis( )n
n ns φ π+

1 2cis( )n
n ns φ π−

O 
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Example Solve the equation 4 iz = . 
 

 4 1
2i cisz = = π  and so 
2cis ( ) cis

8 4
kz kπ π⎛ ⎞= + ∈ = θ⎜ ⎟

⎝ ⎠
Z  where 7 3 51

8 8 8 8, , ,θ = − π − π π π . 

 
Example Find the five fifth roots of 32. 
 

  We need to solve the equation 5 32 32 cis 0z = = . 

  Then 1 5 0 232  cis ( ) 2 cis
5 5

kz kπ⎛ ⎞= + ∈ = θ⎜ ⎟
⎝ ⎠

Z  where 2 4
5 50, ,θ = ± π ± π . 

 
Note: The non-real solutions in the previous example occur in conjugate pairs. 

We should expect this since the polynomial 5 32z − is real. But in the 
example before this, the non-real solutions do not occur in conjugate 
pairs since the polynomial 4 iz −  is not real. 

 
Quadratic Polynomials with Conjugate Zeros 
 
Given a pair of conjugate complex numbers, a real quadratic polynomial can 
always be found with these conjugates as its zeros. 
 
Let r cis θ and r cis (–θ) be two complex conjugate zeros of a quadratic 
polynomial. The sum of these zeros is 2 cosr θ  and the product is 2r . Therefore 
a suitable quadratic is 
     2 2(2 cos )z r z r− θ + . 
 

Example Write down a real quadratic which has 1
32cis ± π  as its zeros. 

 

 Here r = 2 and 1
3=θ π  and so a suitable quadratic is 

 2 2 2 21
3(2 cos ) (4cos ) 4 2 4z r z r z z z z− θ + = − π + = − + . 

 

Example Solve the equation 6 1 0z + =  and by grouping the solutions into 
three pairs of conjugates, express 6 1z +  as a product of 3 real 
quadratics. 

 

 6 1 0z + =  and so 6 1 cisz = − = π . 

 The solutions are 51 1 1
6 6 2 6

2cis ( ) cis , cis , cis
6
kz kπ⎛ ⎞= π ± ∈ = ± π ± π ± π⎜ ⎟

⎝ ⎠
Z . 
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Now  1
6cis± π  are the zeros of 2 21

6(2cos ) 1 3 1z z z z− π + = − +  , 

  1
2cis± π  are the zeros of 2 21

2(2cos ) 1 1z z z− π + = +  , 

  5
6cis± π  are the zeros of 2 25

6(2cos ) 1 3 1z z z z− π + = + + . 

  Therefore 6 2 2 21 ( 3 1)( 1)( 3 1)z z z z z z+ = − + + + + . 
 

Example If cisz = θ , show that (a) 2cosn nz z n−+ = θ  ; 
     (b) 2isinn nz z n−− = θ . 
  Hence prove that 
   5 5 51

16 16 8cos cos5 cos3 cosθ = θ + θ + θ , and 

   5 5 51
16 16 8sin sin5 sin3 sinθ = θ − θ + θ . 

 

 (a) Since cisz = θ , cis  and cis ( )n nz n z n−= θ = − θ . 
  Thus cos isin cos isin 2cosn nz z n n n n n−+ = θ + θ + θ − θ = θ . 
 

 (b) Also cos isin cos isin 2isinn nz z n n n n n−− = θ + θ − θ + θ = θ . 
 

  Consider   
51z

z
⎛ ⎞+⎜ ⎟
⎝ ⎠

 =  5 4 3 2
2 3 4 5

1 1 1 1 15 10 10 5z z z z z
z z z z z

+ + + + +  

 =  5 3
5 3

1 1 15 10z z z
zz z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

  Using the result in part (a) gives: 
 ( )52cosθ  =  2cos5 5(2cos3 ) 10(2cos )θ + θ + θ  

  ⇒ 532cos θ  =  2cos5 10cos3 20cosθ + θ + θ  
 ⇒     5cos θ  =  5 51

16 16 8cos5 cos3 cosθ + θ + θ . 
 

 Consider 
51z

z
⎛ ⎞−⎜ ⎟
⎝ ⎠

 =  5 3
5 3

1 1 15 10z z z
zz z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

 Using the result of part (b) gives: 
  5(2isin )θ  =  2isin5 5(2isin3 ) 10(2isin )θ − θ + θ  
 ⇒ 532isin θ  =  2isin5 10isin3 20isinθ − θ + θ  
 ⇒      5sin θ  =  5 51

16 16 8sin 5 sin3 sinθ − θ + θ . 
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Exercise 20.6 
 
1. Write each of the following in the form a + ib where a and b are real: 

 (a) ( )6
3 i+  ; (b) 10(1 i)−  ; (c) 

8
1 i 3

2
⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

 ; 

 (d) 
121 i

2
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 ; (e) ( )9
1 i 3+  ; (f) 5(2 2i)+ . 

 
2. Solve each of the following equations: 
 (a) 3 iz =  ;  (b) 4 1z =  ;  (c) 5 1z =  ; 
 (d) 5 iz =  ;  (e) 4 4z = −  ; (f) 3 8iz =  ; 
 (g) 6 iz =  ;  (h) 5 32z = −  ; (i) 4 8 8i 3z = + . 
 

3. Find all the zeros of 10 1z +  which have negative imaginary parts. 
 
4. In each of the following find the zeros of the given polynomial and express 

this polynomial as a product of real quadratics: 
 (a) 4 1z +  ;  (b) 8 1z +  ;  (c) 4 16z +  ; 
 (d) 6 64z +  ; (e) 4 8z +  ;  (f) 10 1z + . 
 
5. Find: 
 (a) the square roots of 2i ;  (b) the square roots of 3 + 4i ; 
 (c) the 3 cube roots of –1 ;  (d) the 4 fourth roots of i ; 
 (e) the 5 fifth roots of –1 ;  (f) the 6 sixth roots of –i. 
 
6. Use de Moivre's theorem and the binomial theorem to express cos4θ  in 

terms of cosθ . 
 

7. Let 2 2
5 5cos isinw = π + π . 

 (a) Show that 2 3 41, , , ,w w w w  are the 5 zeros of 5 1z −  where z ∈ C. 
 (b) By factorising 5 1z − , or otherwise, prove that 
    2 3 41 0w w w w+ + + + = . 
 (c) Find a real quadratic polynomial whose zeros are 
    4 2 3 and w w w w+ + . 
 (d) Hence show that ( )2 1

5 4cos 5 1π = − . 
 

8. Find the positive integers m for which ( ) ( )3 i 3 i 0
m m

+ − − = . 
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9. If 1 2 11, , , , nz w w w −= �  are the n roots of 1nz = , find the equation which 
has 1 2 1, , , nz w w w −= �  as its roots. 

 

10. (a) Prove that 1 cis ( 1)1 cis cis 2 cis3 cis
1 cis

nn − + θ
+ θ + θ + θ + + θ =

− θ
�  for 

all positive integers n. 
 
 (b) Evaluate 6 8 102 4 12

7 7 7 7 7 71 cis cis cis cis cis cis+ π + π + π + π + π + π . 
 

11. (a) If 1w z z−= +  prove that 
  (i)  2 2 2 2z z w−+ = −  ; 
   (ii) 4 3 2 1z z z z+ + + +  
    =  ( )2 2 1z w w+ +  

     =  ( )( )2 21 1
2 2[1 5] 1 [1 5] 1z z z z+ + + + − + . 

 

 (b) Show that the roots of 4 3 2 1 0z z z z+ + + + =  are the four non-real 
roots of 5 1z = . 

 
 (c) Deduce that ( ) ( )1 1

4 4cos72 5 1  and cos36 5 1° = − ° = + . 

 
12. (a) Find the solutions of the equation sin5 sin 4  for θ = θ − π < θ ≤ π . 

 (b) By considering ( )5cos isinθ + θ , or otherwise, express sin 5
sin

θ
θ

 in 

terms of cosθ  (sin 0)θ ≠ . 

 (c) Assuming, without proof, that 3sin 4 8cos 4cos
sin

θ
= θ − θ

θ
, show that 

when sin 0θ ≠ , 
 

   4 3 2sin 5 sin 4 16cos 8cos 12cos 4cos 1
sin
θ − θ

= θ − θ − θ + θ +
θ

. 
 
 (d) By writing 2cosx = θ , show that the roots of the equation 
 

    4 3 23 2 1 0x x x x− − + + =  
 

  are 5 71
9 9 91, 2cos , 2cos  and 2cosπ π π . 
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*13. (a) Find the 5 fifth roots of 1. 

 (b) Show that if a non-zero complex number satisfies 1 1
1

z
z

+
=

−
 then z 

is pure imaginary. 

 (c) If 1 cos isin
1

z
z

+
= θ + θ

−
 where θ ≠ 0, show that 1

2icotz = − θ . 

 (d) Use the above results to solve the equation 
51 1

1
z
z

+⎛ ⎞ =⎜ ⎟−⎝ ⎠
. 

 (e) If z is a root of the equation in part (d), show that 
4 22 0.2 0z z+ + = . 

 (f) Using the results in parts (d) and (e), write 4 22 0.2z z+ +  as a 
product of two real quadratics. 

 (g) Hence show that 2 2 2 21 2 1 2
5 5 5 5tan tan 5 and tan tan 10π π = π + π = . 

 

20.7 The Form z r ie θθ=  
 

The complex number (cos isin )z r= θ + θ  can be written in the form iez r θ=  
where r z=  and arg zθ = . 
 
Given that sin x , cos x  and ex  have infinite series expansions 

2 1

0

( 1)sin
(2 1)!

n
n

n
x x

n

∞
+

=

−
=

+∑ , 2

0

( 1)cos
(2 )!

n
n

n
x x

n

∞

=

−
= ∑  and 

0
e

!

n
x

n

x
n

∞

=

= ∑ , all of which 

converge for all values of x, then 
 

 ie θ  =  
2 3 4 5 6 7(i ) (i ) (i ) (i ) (i ) (i )1 i

2! 3! 4! 5! 6! 7!
θ θ θ θ θ θ

+ θ + + + + + + �  

  =  
2 4 6 3 5 7

1 i
2! 4! 6! 3! 5! 7!

⎛ ⎞θ θ θ θ θ θ
− + − + + θ − + − +⎜ ⎟

⎝ ⎠
� �  

  =  cos isinθ + θ . 
 
This makes a proof of de Moivre's theorem quite simple: 
 

 i i(cos isin ) (e ) e cos isinn n n n nθ θθ + θ = = = θ + θ . 
 

Since cos( 2 ) coskθ + π = θ  and sin( 2 ) sinkθ + π = θ  for all integers k, 
i i( 2 )e e kθ θ+ π= , k ∈Z . 
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m nz  has exactly n values and so ( ) ( )i 2ie e

m n m n nθ + πθ =  for all integers m, n. 
 

Note the following: icis e 1ππ = = −  (!!). 
 

When this is written in the form ie 1 0π + = , we have a single identity which 
includes (arguably) the five most important numbers in mathematics, viz., e, i, 
π, 1 and 0. 
 

Example Express the complex number 1 + i in the form ier θ . 
 

 Here 1 i 2+ =  and 1
4arg(1 i)+ = π , so i 41 i 2e π+ = . 

 

Example Show that ii  is real. 
 

 i 2i e π=  and so ( ) 2ii i 2 i 2 2i e e eπ π −π= = =  which is real. 
 

Example Find all the possible values of 3 4i . 
 

 ( )3 43 4 i( 2 2 ) i(3 8 2) ii e e ek kπ + π π + π θ= = =  ( k ∈Z ), where 3 7 1511
8 8 8 8, , ,θ = π π π π . 

 [ ≈ ± (0.383 + 0.924i)  or  ± (–0.924 + 0.383i).]  
 
Exercise 20.7 
 
1. Write each of the following complex numbers in the form ier θ : 
 (a) i ; (b) 1 i 3− +  ; (c) 2 – 2i ; (d) 3 i 3−  ;  
 (e) –5 ; (f) 3 + 3i ; (g) 3 + 4i ; (h) –5 – 12i . 
 
2. Write each of the following complex numbers in the form a + ib where a 

and b are real; 
  (a) ez  where z = 1

6 iπ  ; 

  (b) ez  where z =  1
2 i− π  ; 

  (c) ez  where z =   3
4 iπ  ; 

  (d) ez  where z =   2
3 iπ . 
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3. In each of the following, find the product z1z2 in the form ier θ : 
(a) z1 = 1 + i ,  z2 = 3 i+  ; 
(b) z1 = 2 2i− ,  z2 = 3 3i− + ; 
(c) z1 = 1 1

2 2 i 3− − , z2 = –1 + i ; 
(d) z1 = i – 1, z2 = i + 1 . 

 
4. Find all the possible values of 5 6i  in the form a + bi where a and b are 

real. 
 
5. Find all the possible values of 2 3i−  in the form a + bi where a and b are 

real. 
 

6. Find the values of  (a) 2i( 1)−  ;  (b) i5  , 
 in the form a + bi where a and b are real. 

 
 

Required Outcomes 
 

 After completing this chapter, a student should be able to: 
• add, subtract, multiply and divide complex numbers in Cartesian form. 
• find a real quadratic factor of a real polynomial given one non-real zero. 
• convert a complex number to polar form from Cartesian form, and vice 

versa. 
• multiply and divide complex numbers in polar form. 
• describe the geometry of the complex plane corresponding to conjugate, 

addition and subtraction of complex numbers. 
• state that a rotation of a complex number in the complex plane about the 

origin through 90° is equivalent to multiplication of that complex number 
by ±i. 

• state and prove de Moivre's theorem for positive integers n. 
• use de Moivre's theorem to solve equations of the form nz = α . 
• express any complex number in the form iez r θ= . 
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21.1 Mean and Variance 
 
If X is a continuous random variable, it is not a simple task to give meaning to 
the probability that X assumes a single value. If X can take any value between a 
and b and P(X = c) is non-zero for all c ∈ [a, b], then the sum of the infinite 
number of such probabilities would itself be infinite. Therefore we must assume 
that P(X = c) = 0. Clearly we need to define a more practical model. 
 
Let X be a continuous random variable. Consider a function ( )f x  which takes 
only non-negative values such that the area between the graph of ( )f x  and the 
x-axis from x = a to x = b is equal to the probability that X takes a value which 
lies between a and b. 
 

   
 
 
Then ( )f x  is defined by 

   P( ) ( ) d
b

a
a X b f x x≤ ≤ = ∫ . 

 
Now as the sum of all possible probabilities must be 1, the total area under the 
curve must be 1. That is 

   ( ) d 1f x x
∞

−∞
=∫ . 

 
For a discrete random variable X, 
 

 E(X) =   μ =  ( )xf x∑  

 Var(X) =  2σ  =  2( ) ( )x f x− μ∑   =  2 2( )x f x − μ∑ . 

 f(x) 

 x  a  b  O 

 ( )y f x=  
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To obtain similar formulae for the mean and variance of a continuous random 
variable X, let us consider the probability that the value of X lies between x and 
x + δx. Provided that δx is small, this probability is given approximately by 

( )f x xδ . Thus we let 

 E(X) =  μ =  
0

lim ( )
x

x f x x
δ →

δ∑  =  ( ) dx f x x
∞

−∞∫ ,  and 

 Var(X) = 2σ  =  2( ) ( ) dx f x x
∞

−∞
− μ∫  =  2 2( ) dx f x x

∞

−∞
− μ∫ . 

 
Example A continuous random variable X takes values between 0 and 1 and 

has a probability density function ( ) (1 )f x kx x= − . 
  (a) Find the value of k. 
  (b) Calculate the mean and standard deviation of X. 
 

 (a) 
1

0
(1 ) d 1kx x x− =∫  

  ⇒ 
1 2
0

( ) d 1k x x x− =∫  

  ⇒ 
12 31 1

2 3 0
1k x x⎡ ⎤− =⎣ ⎦  

  ⇒ 1 1
2 3 1k ⎡ ⎤− =⎣ ⎦  

  ⇒ k = 6. 
 

 (b) E(X) =  
1

0
( ) dxf x x∫  

   =  
1 2
0

6 (1 ) dx x x−∫  

   =  
1 2 3
0

6 ( ) dx x x−∫  

   =  
13 41 1

3 4 0
6 x x⎡ ⎤−⎣ ⎦  

   =  1 1
3 46 ⎡ ⎤−⎣ ⎦  

   =  0.5. 
 
 Note: This should not be surprising since the probability density function 

is symmetrical about x = 1
2 . 

 

  2E( )X  =  
1 2
0

( ) dx f x x∫  
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   =  
1 3 4
0

6 ( ) dx x x−∫  

   =  
14 51 1

4 5 0
6 x x⎡ ⎤−⎣ ⎦  

   =  1 1
4 56 ⎡ ⎤−⎣ ⎦  

   =  0.3. 
 

  Var(X) =  [ ]22E( ) E( )X X−   =  0.3 – 0.25  =  0.05. 

  SD(X) =  0.05  =  0.224. 
 
Uniform Distributions 
 
One of the simplest types of continuous probability distribution is the 
rectangular or uniform distribution. A continuous random variable X is said to 
be uniformly distributed over the interval [a, b] if its probability density 
function ( )f x  has a constant non-zero value for a x b≤ ≤  and is zero 
elsewhere. 
 
Example Find the mean and variance of the continuous random variable X 

which is uniformly distributed over the interval [0, 3]. 
 
 
 
 
 
 
 
 Since the total area under the graph of ( )f x  must be 1, 

   
1
3 for 0 3,

( )
0 elsewhere.   

x
f x

⎧ ≤ ≤
= ⎨

⎩
 

 Thus  E(X) = 
3 1

30
 dx x×∫  = 

321
6 0

x⎡ ⎤⎣ ⎦  = 1.5, 

 and    Var(X) = 
3 2 21

30
 d 1.5x x× −∫  = 

33 21
9 0

1.5x⎡ ⎤ −⎣ ⎦  = 3 – 2.25 = 0.75. 

 
Exercise 21.1 
 
1. Find the mean and variance of the continuous random variable X  which is 

uniformly distributed over the interval 
 (a) [0, 1] ;  (b) [2, 6] ; 
 (c) [0, b] ;  (d) [a, b]. 
 

( )f x

x 
O 3 

1/3 
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2. The radius of a circle is a random variable which is uniformly distributed 

between 10 cm and 15 cm. 
  (a) Find the probability that the circumference lies between 50 cm and 

60 cm. 
 (b) Find the probability that the area of the circle exceeds 2500 cm . 
 
3. Triangle ABC is right-angled at B and AC = 10 cm . If BC  cmX=  and X 

is a random variable uniformly distributed between 6 cm  and 8 cm , find 
the probability that the length of AB exceeds 7.5 cm . 

 
4. A continuous random variable X takes values between 0 and 2 with a 

probability density function ( ) (2 1)f x k x= + . 
 Find: (a) the value of k ;   (b) the mean of X ; 
  (c) the standard deviation of X. 
 
5. The continuous random variable X has a probability density function of the 

form 

  
1
4 (3 2) 1 2

( )
0 otherwise.

x x x
f x

⎧ − ≤ ≤
= ⎨

⎩
 

 Find ( )P X − μ < σ . 
 
6. A random variable X has a probability density function 

  0 1( )
0 otherwise.

nmx xf x
⎧ ≤ ≤⎪= ⎨
⎪⎩

 

 If the mean of the distribution is 4
5 , find m and n. 

 
7. A continuous random variable X has a probability density function defined 

by 

  
0 1

( ) 1
0 elsewhere.

k x
f x x

⎧ ≤ ≤⎪= +⎨
⎪⎩

 

 
 (a) Find the value of k. 
 
 (b) Find E(X) and Var(X). 
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21.2 Median and Mode 
 
Mode 
 
The mode or modal value of a continuous random variable X with probability 
density function ( )f x  is the value of x for which ( )f x  takes a maximum value. 
Thus the mode of a distribution is the x-coordinate of the maximum point on the 
graph of ( )y f x= . 
 
Example The continuous random variable X has a probability density 

function given by 23
4( ) (2 ), 0 2f x x x x= − ≤ ≤ . Find the mode of 

the distribution. 
 

 2 2 33 3
4 4( ) (2 ) (2 )f x x x x x= − = −  

 23 3
4 4( ) (4 3 ) (4 3 )f x x x x x′ = − = −  

 ( ) 0f x′ =  when x = 0, x = 4
3  with the maximum turning point at x = 4

3 . 
  Therefore the mode is 4

3 . 
 
Median 
 
The median of a continuous random variable X with probability density function 

( )f x  is the value of m such that 

   ( ) d ( ) d 0.5
m

m
f x x f x x

∞

−∞
= =∫ ∫ . 

 
Thus the line x = m divides the area under the graph of ( )f x  into two equal 
areas. 
 
Example A continuous random variable X has a probability density function 

23
26( ) ( 1) , 0 2f x x x= + ≤ ≤ . Find the median of the distribution. 

 
  Let the median be m. 

 Then 1
20

( ) d
m

f x x =∫  

 ⇒ 23 1
26 20

( 1)  d
m

x x+ =∫  

 ⇒ 3 131
3 30
( 1)

m
x⎡ ⎤+ =⎣ ⎦  

 ⇒ 3( 1) 1 13m + − =  
 ⇒ 3 14 1 1.41m = − ≈ . 
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Exercise 21.2 
 
1. For each of the following probability density functions of the random 

variable X, find the mode. 
 (a) 3

4( ) (2 ), 0 2f x x x x= − ≤ ≤  ; 

 (b) 2 215
64( ) (4 ), 0 2f x x x x= − ≤ ≤ . 

 
2. A random variable X has a probability density function 

    
2(4 ) 0 4( )

0 otherwise.
kx x xf x

⎧ − ≤ ≤⎪= ⎨
⎪⎩

 

 Find the value of k and calculate the mean and mode of X. 
 
3. A random variable X has a probability density function 

    
23

4
3
4

( 1) 1 0
( )

0 1.
x x

f x
x

⎧ + − ≤ ≤⎪= ⎨
< ≤⎪⎩

 

 Calculate the median of X. 
 
4. A random variable X has a probability density function 2( )f x kx= , 

1 2x≤ ≤ . 
  Find (a) the value of the constant k ; 
   (b) the mean, μ ; 
  (c) the median, m ; 
  (d) P(1.2 < X < 1.5). 
 
5. A continuous random variable X is distributed at random between the 

values 2 and 3 and has a probability density function 2( ) 6f x x= . Find 
the median value of X. 

 
6. A continuous random variable X has a probability density function 

   
2 0 2( )

0 elsewhere.
ax bx xf x

⎧ + ≤ ≤⎪= ⎨
⎪⎩

 

 The mean of the distribution is 11
8 . Find: 

 (a) the values of a and b ; 
 (b) the variance of X ; 
 (c) the median value of X. 
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7. (a) Use your GDC to evaluate 
0

cos  dx x x
π

∫ . 

 (b) A continuous random variable X has a probability density function 
 

   
(1 cos ) 0

( )
0 otherwise.
k x x

f x
+ ≤ ≤ π⎧

= ⎨
⎩

 

 
 Find the exact value of k and calculate the mean, μ, and median, m, 

of the distribution. 
 
8. The probability density function of the random variable X is defined by 

 1( )
1

f x
x

=
+

  for 0 ≤ x ≤ k and ( ) 0f x =  elsewhere. 

 
 Find: (a) the value of k ; 
  (b) the mean of X ; 
  (c) the standard deviation of X ; 
  (d) the median of X. 
 
9. A continuous random variable X has probability density function 
 

    
2(9 ) for 0 3( )

0 elsewhere.
kx x xf x

⎧ − ≤ ≤⎪= ⎨
⎪⎩

 

 
 Find: (a) the value of k ;  (b) the mean ; 
  (c) the mode ;  (d) the median. 
 
10. A random variable X has a probability density function ( ) e xf x k −= , 

2 3x≤ ≤ . 

 (a) Show that 
3e

e 1
k =

−
. 

 (b) Calculate the mean, μ. 
 (c) Calculate the standard deviation, σ. 
 (d) Calculate the median, m, of the distribution. 
 (e) Evaluate P(X >2.5). 
 (f) Evaluate P( )Xμ − σ < < μ + σ . 
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Required Outcomes 

 
 After completing this chapter, a student should be able to: 
• calculate the mean, median and mode of a continuous random variable 

whose probability density function is known. 
• calculate the variance and standard deviation of a continuous random 

variable. 
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22.1 The Inverse Sine, Inverse Cosine and Inverse Tangent Functions 
 
The Inverse Sine Function 
 

The function : sinf x x�  with domain 1 1
2 2,⎡ ⎤− π π⎣ ⎦  and range [ ]1,1−  is one-to-

one and so its inverse function exists. 
We write 1 1 1: arcsin or  : sinf x x f x x− − −� � . 
 

Note: Do not confuse 1sin x−  with ( ) 1sin cscx x− = ; the inverse and reciprocal 
functions are clearly different. 

 

The domain of arcsin x  is [ ]1,1−  and the range is 1 1
2 2,⎡ ⎤− π π⎣ ⎦ . 

 

Example 1 1
2 6arcsin = π ,  1

2arcsin( 1)− = − π , but arcsin 2  does not exist since 
2 does not belong to the domain of arcsin x . 

 
The graph of arcsiny x=  is the reflection of the graph of siny x=  in the line 
y x= . 

 

                      
 
 
The Inverse Cosine Function 
 
The function : cosf x x�  with domain [0, π] and range [–1, 1] is one-to-one 
and so its inverse function exists. 
We write 1 1 1: arccos   or  : cosf x x f x x− − −� � . 

arcsiny x=

siny x=

 y 

 x O 

 y = x 

–π/2 

π/2 

–1 1 

1 

–1 

–π/2 π/2 
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As with the inverse sine function, we must not confuse the inverse cosine 
function 1cos x−  with the reciprocal cosine function ( ) 1sec cosx x −= . 
The domain of arccos x  is [–1, 1] and the range is [0, π]. 
 
Example ( ) 51

2 6arccos1 0, arccos 3= − = π , but arccos 2  does not exist 

since 2  does not belong to the domain of arccos x . 
 
The graph of arccosy x= is the reflection of the graph of cosy x=  in the line 
y x= . 

 
 

    
 
 
The Inverse Tangent Function 
 

The function : tanf x x�  with domain 1 1
2 2,⎤ ⎡− π π⎦ ⎣  and range �  is one-to-one 

and so its inverse function exists. 
We write 1 1 1: arctan   or  : tanf x x f x x− − −� � . 
 

The domain of arctan x  is �  and the range is 1 1
2 2,⎤ ⎡− π π⎦ ⎣ . 

Once again we must not confuse the inverse tangent function 1tan x−  with the 
reciprocal tangent function ( ) 1cot tanx x −= . 
 

Example ( )1 1
3 4arctan 3 , arctan 1= π − = − π , and indeed arctan x  exists for 

all real values of x since the domain of arctan x  is � . 
 
The graph of arctany x=  is the reflection of the graph of tany x=  in the line 
y x= . 

 

x 

 y 

1 π 

1 

π  y = x arccosy x=

cosy x=

O –1 
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Example (a) For which numbers a is it true that ( )tan arctan a a= ? 
  (b) For which numbers b is it true that ( )arctan tanb b= ? 
 

 (a) ( )tan arctan a a=  is true for all a since arctan a  is defined to be 
the number whose tangent is a. 

 

 (b) ( )arctan tanb b=  is only true for 1 1
2 2b− π < < π  since all values of 

arctan x  lie in the interval 1 1
2 2,⎤ ⎡− π π⎦ ⎣ . 

 
Example Evaluate each of the following where possible: 
    (a) ( )1

2sin arcsin  ;  (b) ( )sin arccos0.6  ; 

   (c) ( )1
4tan arctan π  ; (d) ( )1

4arctan tan π  ; 

   (e) ( )( )cos arctan 3−  ; (f) ( )3
4arctan tan π . 

 

 (a) ( )1 1 1
2 6 2sin arcsin sin= π = . 

 (b) ( )sin arccos0.6 sin  where cos 0.6= θ θ = , 0 ≤ θ ≤ π. 
    sin 0.8, 0θ = ≤ θ ≤ π , and so ( )sin arccos0.6 0.8= . 

 (c) ( )1 1
4 4tan arctan π = π  since ( )tan arctan x x=  for all x. 

 (d) ( )1 1
4 4arctan tan arctan1π = = π . 

 (e) ( )( ) ( )1 1
3 2cos arctan 3 cos− = − π = . 

 (f) ( ) ( )3 1
4 4arctan tan arctan 1π = − = − π . 

 

Example Prove that 1 1 1
5 239 44arctan arctan− = π . 

 

x 

 y 

1
2 π

1
2 π  

1
2− π

1
2− π  

O 

 y = x 

tany x=

arctany x=
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 Let 1
5arctanx =  then 1

5tan x = . 

 ⇒ 
2
5 5

122 1
25

2 tantan 2
11 tan

xx
x

= = =
−−

 

 ⇒ 
5
6 120

1192 25
144

2 tan 2tan 4
11 tan 2

xx
x

= = =
−−

 

 Let 1
239arctany =  then 1

239tan y =  and 1 1
5 2394arctan arctan 4x y− = − . 

 Now  tan(4 )x y−  =  tan 4 tan
1 tan 4 tan

x y
x y

−
+

 

  =  ( )( )
120 1
119 239

120 1
119 2391

−
+

 

  =  ( )( )
( )( )
120 239 119
119 239 120

−
+

 

  =  ( )( )
( )( )

119 239 239 119
119 239 120

+ −
+

 

  =  1. 
 

 Therefore 1 1 1
5 239 44arctan arctan− = π . 

 

Note: Both x and y , x > y, are positive and less than 1
4 π  and so 4x – y  is 

positive and less than π. Thus even though 5 5
4 4tan 1, 4x yπ = − ≠ π . 

 
Exercise 22.1 
 
1. Evaluate where possible: 
 (a) 1

2arcsin  ; (b) arccos0  ; (c) ( )arctan 1−  ; 

 (d) ( )1
2arcsin 3−  ; (e) ( )1

2arccos −  ; (f) ( )arctan 3−  ; 

 (g) ( )1
4arccos cos π  ; (h) ( )3

4arcsin sin π  ; (i) ( )3
4arctan tan π  ; 

 (j) ( )arcsin sin 0.2  ; (k) ( )( )arctan tan −π  ; (l) ( )( )arccos cos −π  ; 

 (m) ( )1
4arcsin cos π  ; (n) ( )1

3arccos sin π  ; (o) ( )1
3arccos tan π  ; 

 (p) ( )3
5cos arcsin  ; (q) ( )( )1

2sin arccos −  ; (r) ( )( )1
2cos arcsin −  ; 

 (s) ( )3
5sin 2arccos  ; (t) ( )3

4cos 2arctan  ; (u) ( )1
3cos 2arcsin  ; 

 (v) ( )tan 2arctan 2  ; (w) ( )5
13tan 2arcsin  ; (x) ( )1

5sin 2arccos . 
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2. (a) For which numbers a is it true that ( )arcsin sin a a= ? 
 (b) For which numbers b is it true that ( )sin arcsinb b= ? 
 
3. (a) For which numbers a is it true that ( )arccos cos a a= ? 
 (b) For which numbers b is it true that ( )cos arccosb b= ? 
 
4. Using the identity ( )1

2cos sinπ − θ = θ , show that 1
2arcsin arccosx x+ = π  

for all x ∈ [–1, 1]. 
 

5. Use 2
2 tantan 2

1 tan
θ

θ =
− θ

 to show that 2
22arctan arctan

1
aa
a

⎛ ⎞= ⎜ ⎟−⎝ ⎠
 for 

suitable a. Specify the allowable values of a, and indicate the necessary 
modifications in the formula for other values of a. 

 
6. Prove that 
  (a) 1 1 1

2 3 4arctan arctan+ = π  ;  (b) 1 1 1
3 7 42arctan arctan+ = π . 

 
22.2 The Derivatives of the Inverse Trigonometric Functions 
 

Consider the function 1 1
2 2arcsin , 1 1,y x x y= − < < − π < < π , then sin y x= . 

Differentiating this with respect to x gives 

     dcos
d
yy
x

 =  1 

  ⇒          d
d
y
x

 =  1
cos y

 

  =  ( )1 1
2 22

1 since cos 0 for 
1 sin

y y
y

> − π < < π
−

 

  =  ( )
2

1 1 1
1

x
x

− < <
−

. 

 

Therefore ( ) ( )
2

d 1arcsin 1
d 1

x x
x x

= <
−

. 

 
 
Consider the function arccos , 1 1, 0y x x y= − < < < < π , then cos y x= .  
 
Differentiating this with respect to x gives 
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         dsin
d
yy
x

−  =  1 

  ⇒               d
d
y
x

 =  1
sin y
−  

  =  ( )
2

1 since sin 0 for 0
1 cos

y y
y

−
> < < π

−
 

  =  ( )
2

1 1 1
1

x
x

−
− < <

−
. 

 

Therefore ( ) ( )
2

d 1arccos 1
d 1

x x
x x

−
= <

−
. 

 

Consider the function arctany x= , x∈� , 1 1
2 2y− π < < π , then tan y x= . 

Differentiating this with respect to x gives 

          2 dsec
d
yy
x

 =  1 

  ⇒               d
d
y
x

 =  2
1

sec y
 

  =  2
1

1 tan y+
 

  =  ( )2
1

1
x

x
∈

+
� . 

 

Therefore ( ) ( )2
d 1arctan
d 1

x x
x x

= ∈
+

� . 

 
Example Differentiate each of the following with respect to x: 
 (a) ( )2arctan 1x +  ; (b) arcsin 2x x  ;  (c) ( )sin arccos4x . 
 

 (a) ( )( )2
2 2

d 2arctan 1
d 1 ( 1)

xx
x x

+ =
+ +

 

 (b) ( )
2 2

d 2 2arcsin 2 arcsin 2 arcsin 2
d 1 (2 ) 1 4

xx x x x x
x x x

⎛ ⎞
⎜ ⎟= + = +
⎜ ⎟− −⎝ ⎠

 

 (c) ( )( ) ( )
2 2

d 4 16sin arccos4 cos arccos4
d 1 (4 ) 1 16

xx x
x x x

− −
= =

− −
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Note: Since ( )0 arccos4 , sin arccos4 0x x≤ ≤ π ≥  and 

 ( ) 2sin arccos4 1 16x x= − . Differentiating this expression gives the 
same result: 

   ( ) ( )
1 22 21

2 2

d 161 16 1 16 32
d 1 16

xx x x
x x

− −
− = − − =

−
. 

 
Exercise 22.2 
 
1. Differentiate each of the following with respect to x: 
 (a) arcsin 3x  ; (b) arccos( 1)x +  ; (c) arctan 2x  ; 

 (d) arcsin 2 1x +  ; (e) 2arccos( 1)x −  ; (f) ( )2arctan x . 
 
2. Differentiate each of the following with respect to x: 
 (a) ( )sin arctan x  ; (b) ( )ln arcsin x  ; (c) ( )2arctanx x . 
 
3. For the function ( ) arctan 2f x x= , 
 (a) sketch the graph of ( )y f x=  ; 

 (b) evaluate ( )1
2f  ; 

 (c) solve the equation ( ) 1f x =  ; 
 (d) calculate the gradient of the curve at  x = 3 ; 
  (e) find the equation of the tangent to the curve at 1

2x = − . 
 

4. For the function ( )1
2( ) arcsinf x x= , 

 (a) sketch the graph of ( )y f x=  ; 
 (b) evaluate ( 1)f −  ; 
 (c) solve the equation 1

2( )f x = −  ; 

 (d) calculate the gradient of the curve at 3x = ; 
 (e) find the equation of the tangent to the curve at the origin. 
 
5. (a) Find the coordinates of the points on the curve arctany x=  where 

the tangent is parallel to x = 2y. 
 (b) Find the coordinates of the points on the curve arcsiny x=  where 

the tangent is parallel to y = 2x. 
 

*6. (a) Given that ( )21 1 1 1, 0y x x x
x

= − − < < ≠ , prove that d
d
y
x

 is 

always negative and sketch the graph of y. 
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 (b) Given that 21 arcsin ( 1 1)z x x x= − − < < , find d
d

z
x

. Using your 

sketch in part (a), or otherwise, determine the number of turning 
points on the graph of z, and sketch this graph. 

 

*7. Let ( )arcsiny x=  where 0 ≤ x ≤ 1. 

 (a) Show that d 1 for 0 1
d
y x
x

≥ < < , and sketch the graph of y. 

 (b) By considering your sketch in part (a), show that 

   
1 2 2
0 0

1arcsin d sin  d
2

x x y y
π

+ = π∫ ∫ . 

  Hence evaluate 
1

0
arcsin  dx x∫ . 

 
22.3 Integrals Involving Inverse Trigonometric Functions 
 

From ( )
2

d 1arcsin
d 1

x
x x

=
−

, we have ( )
2

1 d arcsin 1
1

x x c x
x

= + <
−

∫ . 

 

Also, from ( ) 2
d 1arctan
d 1

x
x x

=
+

, we have ( )2
1 d arctan

1
x x c x

x
= + ∈

+∫ � . 

 

If arcsin xy
a

= , a > 0, then ( )
2 2 2

d 1 1 1
d

1

y x a
x a a xx

a

⎛ ⎞= = <⎜ ⎟
⎝ ⎠ −⎛ ⎞− ⎜ ⎟

⎝ ⎠

. 

 

Therefore ( )
2 2

1 d arcsin , 0xx c a x a a
aa x

⎛ ⎞= + − < < >⎜ ⎟
⎝ ⎠−

∫ . 

 
 

If 1 arctan xy
a a

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, a > 0, then ( )2 2 2 2
d 1 1 1
d

1

y x
x a a xx

a

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟= = ∈⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

� . 

 

Therefore ( )2 2
1 1 d arctan , 0xx c x a

a aa x
⎛ ⎞= + ∈ >⎜ ⎟+ ⎝ ⎠∫ � . 
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Example Integrate 2
1

4 9x+
 with respect to x. 

 

 
( )2 2 22

3

d 1 d 1 3 3 1 3arctan arctan
9 9 2 2 6 24 9

x x x xc c
x x

⎛ ⎞= = + = +⎜ ⎟+ ⎝ ⎠+
∫ ∫  

 

Example Evaluate 
3

1 2

d

4

x

x−
∫ . 

 

 
3

3 1 1 1
3 6 61 2

1

d 3 1arcsin arcsin arcsin
2 2 24

x x

x
⎡ ⎤= = − = π − π = π⎢ ⎥⎣ ⎦−

∫ . 

 

Example Integrate 
2

1

7 6x x− −
 with respect to x. 

 

 ( )
2 2

d d 3arcsin 7 1
47 6 16 ( 3)

x x x c x
x x x

+⎛ ⎞= = + − < <⎜ ⎟
⎝ ⎠− − − +

∫ ∫  

 
Exercise 22.3 
 
1. Integrate each of the following with respect to x: 

 (a) 
2

3

9 x−
 ; (b) 

2

2

16 x−
 ; (c) 

2

10

25 x−
 ; 

 (d) 
2

1

1 4x−
 ; (e) 

2

6

4 9x−
 ; (f) 

2

4

2 3x−
. 

 
2. Integrate each of the following with respect to x: 

 (a) 2
2

4 x+
 ; (b) 2

6
9 x+

 ; (c) 2
4

16 x+
 ; 

 (d) 2
3

9 4x+
 ; (e) 2

1
1 9x+

 ; (f) 2
2

3 4x+
. 

 
3. Find an antiderivative of each of the following: 

 (a) 
2

1

4 ( 1)x− +
 ; (b) 

2

2

1 ( 3)x− −
 ; (c) 

2

1

3 2x x− −
 ; 

 (d) 2
1

4 ( 3)x+ −
 ; (e) 2

4
10 2x x− +

 ; (f) 2
2

4 16 25x x+ +
. 

 



Chapter 22 

566   

 
4. Evaluate: 

 (a) 
3 2

0 2

d

9

x

x−
∫  ;  (b) 

1

5 2

d

7 6

x

x x

−

− − −
∫  ; 

 (c) 
2

20

2 d
4

x
x+∫  ;  (d) 

3 2

21 2

2 d
4 1

x
x +∫ . 

 
5. Find an antiderivative of each of the following: 

 (a) 3
3 1x +

 ;  (b) 2
3

3 1x +
 ; (c) 2

3
3 1

x
x +

. 

 
6. Find an antiderivative of each of the following: 

 (a) 2
1 4x−

 ;  (b) 
2

2

1 4x−
 ; (c) 

2

2

1 4

x

x−
. 

 
7. Find an antiderivative of each of the following: 

 (a) 
2

4 1

1

x

x

−

−
 ;  (b) 2

3 4
4

x
x

+
+

 ; 

 (c) 2
2 3

4 9
x

x
−
+

 ;  (d) 
2

3 2

2 3

x

x

+

−
 ; 

 (e) 
2

2

14
1

x
x

⎛ ⎞
−⎜ ⎟⎜ ⎟+⎝ ⎠

 ; (f) 
2

2

23
4

x

x

⎛ ⎞
+⎜ ⎟⎜ ⎟+⎝ ⎠

. 

 
8. Evaluate: 

 (a) 
2

20

1 d
4 3

x x
x

+
+∫  ;  (b) 

22 3

22

(1 ) d
4

x x
x

+
+∫ . 

 
 

Required Outcomes 
 
 After completing this chapter, a student should be able to: 
• differentiate the inverse trigonometric functions arcsin x, arccos x and 

arctan x. 
• sketch graphs of the inverse trigonometric functions. 
• integrate functions of the forms 

  
[ ]22

( ) , ( )
( )

f x a f x a
a f x

′
− < <

−
,  and 

[ ]2 2

( )
( )

f x
f x a

′

+
. 
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23.1 Integration by Substitution 
 
If ( )F x  is an antiderivative of ( )f x , then ( ) ( ) and ( ) ( ) dF x f x F x f x x′ = = ∫ . 

If u is a function of x, then by the chain rule, d d d( ) ( ) ( )
d d d

u uF u F u f u
x x x

′= = . 

Hence ( )F u  is an antiderivative of d( )
d
uf u
x

  (with respect to x). 

Thus d( ) ( ) d
d
uF u f u x
x

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ . 

But   ( ) ( ) dF u f u u= ∫ . 
 

Therefore d( )  d ( ) d
d
uf u x f u u
x

⎛ ⎞ =⎜ ⎟
⎝ ⎠∫ ∫ . 

 
 
This is referred to as the substitution formula. 
 
Example Integrate 22 1x x +  with respect to x. 
 

 22 1 dx x x+∫  =  d d
d
uu x
x∫      ( 2 1u x= + ) 

  =  1 2  du u∫  (substitution formula) 

  =  3 22
3

u c+  

  =  ( )3 222 1
3

x c+ + . 

 
The substitution formula can also be used to integrate certain functions where 
the type of substitution is not at first evident. 
 

Example Find  d
3

x x
x −∫   (x > 3). 
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  d
3

x x
x −∫  =  3 d d

d
u x u

uu
+

∫    (u = x – 3, x = u + 3 and d
d

x
u

 = 1) 

  =  ( )1 2 1 23 du u u−+∫  

  =  3 2 1 22 6
3

u u c+ +  

  =  ( ) ( )3 2 1 22 3 6 3
3

x x c− + − + . 

 
Definite Integrals by Substitution 
 
 

The rule is 
( )

( )

d( ) d ( )  d
d

b u b

a u a

uf x x f u x
x

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ∫ . 

 
 
Mathematicians often use "differentials" when evaluating integrals by 
substitution. Thus if we use the substitution 2 1u x= +  we write d 2 du x x=  

using the differentials "du" and "dx", instead of writing d 2
d
u x
x

= . 

 

Example Evaluate 
4

1

dx
x x+∫  using the substitution u x= . 

 
 If u x= , 2x u=  and dx = 2u du. 
 When x = 1, u = 1 and when x = 4, u = 2. 

 Therefore  
4

1

dx
x x+∫  =  

2

21

2  du u
u u+∫  

  =  
2

1

2  d
1

u
u +∫     (u ≠ 0) 

  =  
2

1
2 ln 1u⎡ ⎤+⎣ ⎦  

  =  2(ln 3 ln 2)−  
  =  9

4ln . 
 

Example Calculate the area bounded by the curve 4
1

y
x

=
+

, the x-axis and 

the lines x = 1 and x = 4. 
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 The required area is given by 
4

1

4 d
1

A x
x

=
+∫ . 

 Put 2 so that  giving d 2 du x x u x u u= = = . 
 When x = 1, u = 1 and when x = 4, u = 2. 

 Therefore      A =  
2

1

4 (2 ) d
1

u u
u+∫  

  =  
2

1

88  d
1

u
u

⎛ ⎞−⎜ ⎟+⎝ ⎠∫  

  =  
2

1
8 8ln 1u u⎡ ⎤− +⎣ ⎦  

  =  16 8ln 3 8 8ln 2− − +  
  = 8 8ln1.5−   (≈ 4.76). 
 
Exercise 23.1 
 
1. Integrate each of the following functions using the suggested substitution: 

 (a) , 1
1
x u x

x
= −

−
 ; (b) ( 2) 2 1 , 2 1x x u x− − = −  ; 

 (c) 2
2 3 , 2 1

(2 1)
x u x
x

+
= −

−
 ; (d) 21 , sinx x

x
−

= θ  ; 

 (e) 1 , e
e 4e

x
x x u− =

+
 ; (f) 2 3 2

1 , 2 tan
( 4)

x u
x

=
+

 ; 

 (g) e , e
e +e

x
x

x x u− =  ; (h) 
2

2

sec , tan
4 tan

x u x
x

=
−

. 

 
2. Evaluate each of the following integrals using the suggested substitution: 

 (a) 
2

1

e d , e
e 1

x
x

x x u =
−∫  ; (b) 

2 2
2

4 d , 2sinx x x
−

− = θ∫  ; 

 (c) 
5

24

 d , 3
( 3)

x x u x
x

= −
−∫  ; (d) 

( )
1

20 2

d , tan
1

x x
x

= θ
+

∫  ; 

 (e) 
2

21

1 d , 2 1
(2 1)

x x u x
x

+
= −

−∫  ; (f) 
8

4

4  d , 4x x u x
x
−

= −∫ . 

 

3. By means of the substitution secx a= θ , find 
2

2 3 2 2

da

a

x

x x a−
∫ . 
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4. By means of the substitution 2 22cos 3sinx = θ + θ , evaluate 

   
1
2

1
4

2

2

d
(3 )( 2)

x
x x− −∫ . 

 

5. Evaluate 
( )

4

1

d
2 2
x

x x x+ +∫  by means of the substitution 2x u= . 

 
23.2 Integration by Parts. 
 

From the product rule we have ( )d ( ) ( ) ( ) ( ) ( ) ( )
d

u x v x u x v x u x v x
x

′ ′= + . 

By rewriting this in a different form we have  

( )d( ) ( ) ( ) ( ) ( ) ( )
d

u x v x u x v x u x v x
x

′ ′= − . 

 
Integrating each side with respect to x gives: 
 
 
  ( ) ( ) d ( ) ( ) ( ) ( ) du x v x x u x v x u x v x x′ ′= −∫ ∫ . Integration by Parts 
 
 
This formula expresses one integral in terms of another. The idea is to arrange 
the integrand in the form of a product ( ) ( )u x v x′  such that the second integrand 

( ) ( )u x v x′  can be integrated by the standard procedures already outlined in this 
book. 
 
Example Integrate sinx x  with respect to x. 
 
  We choose ( )  and ( ) sinu x x v x x′= =  giving ( ) 1 and ( ) cosu x v x x′ = = − . 
  The  integrand sinx x  is not one of the standard ones, but the second 

integrand is now ( ) ( ) cosu x v x x′ = −  which is a standard one and can easily 
be integrated. 

 

 sin  dx x x∫  =  ( cos ) ( cos ) dx x x x− − −∫  

  =  cos sinx x x c− + + . 
 
Note: If we choose ( ) sin  and ( )u x x v x x′= = , then the second integrand 

becomes 21
2 cosx x  which is one step further removed from a standard 

form than the original integrand. 
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Example Find ln  dx x∫ . 
 
 Choose ( ) ln  and ( ) 1u x x v x′= = . 

 Then 1( )  and ( )u x v x x
x

′ = = . 

 Thus ln  dx x∫  =  ( )1ln dx x x x
x

− ∫  

  =  lnx x x c− + . 
 
Example Find 2e sin3 dx x x∫ . 
 
 At first sight it does not appear that integration by parts could possibly 

simplify the integrand here since both derivatives and integrals of 2e x  are 
multiples of 2e x , and both derivatives and integrals of sin3x are multiples 
of either cos3x  or sin3x . This ensures that the second integrand is no 
closer to a standard form than the original. 

 
 It turns out, however, that if we integrate by parts twice, the original 

integral can be expressed in terms of itself and can then be determined 
without actually arriving at an integrand in standard form. 

 
 Let I = 2e sin3 dx x x∫ . 

 Choose 2( ) e  and ( ) sin 3xu x v x x′= = , so 2 1
3( ) 2e  and ( ) cos3xu x v x x′ = = − . 

 Then I = 2 21 2
3 3e cos3 e cos3 dx xx x x− + ∫ . 

 Now we use integration by parts again, this time with the second integrand. 
Choose 2( ) e and ( ) cos3xu x v x x′= = , so 2 1

3( ) 2e and ( ) sin 3xu x v x x′ = = . 

 Now I  =  { }2 2 21 2 1 2
3 3 3 3e cos3 e sin 3 e sin3 dx x xx x x x− + − ∫  

  =  2 21 2 4
3 9 9e cos3 e sin3 Ix xx x− + −  + c 

     13
9 I  =  2 21 2

3 9e cos3 e sin3x xx x c− + +  

         I =  { }21
113 e 2sin3 3cos3x x x c− + . 

 

*[The following method is not required by this course but illustrates the use of 
complex numbers in the solution of certain types of real problems. 
 

We also need Euler's formula for complex numbers namely ie cos isinθ = θ + θ . 
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Firstly 2 2 3i (2 3i)e (cos3 isin3 ) e e = ex x x xx x ++ =  and the imaginary part of the 
integral of (2 3i)e x+  is the imaginary part of the integral of 2e (cos3 isin 3 )x x x+ . 
 

Now (2 3i)e dx x+∫  =  (2 3i)1 e
2 3i

x c+ +
+

 

  =  { }2 21
13 (2 3i) e cos3 ie sin3x xx x c− + + . 

 

Thus 2e sin3 dx x x∫  =  { }( )2 21
13Im (2 3i) e cos3 ie sin3x xx x c− + +  

 =  { }21
13 e 2sin3 3cos3x x x c− + . 

 
In addition, we may take the integrals of both real parts to obtain 

{ }2 21
13e cos3 d e 2cos3 3sin3x xx x x x c= + +∫  – 'two for one' in a shorter time!] 

 
Exercise 23.2 
 
1. Find an antiderivative of each of the following using integration by parts: 
 (a) cos2x x  ; (b) 3e xx  ;  (c) sin 4x x  ; 
 (d) 2 lnx x  ; (e) 2(2 3)e xx +  ; (f) 2e xx − . 
 
2. Integrate each of the following using integration by parts: 
 (a) ln(3 )x  ;  (b) arcsin x  ; (c) arctan x . 
 
3. Evaluate each of the following: 

 (a) 
2

0
sin 2  dx x x

π

∫  ;  (b) 
2

0
( 1)cos3  dx x x

π
−∫  ; 

 (c) 
2

1
ln  dx x x∫  ;   (d) 

22

23

4  dx x
x
−

∫ . 

 
4. Integrate each of the following using integration by parts: 
 (a) 2 sin 2x x  ; (b) 2 3e xx −  ;  (c) 2ln( 1)x x +  ; 
 (d) e cosx x  ; (e) 2e sin 2x x  ; (f) 3e cos2x x− . 
 

5. The integral In  is defined by 
1
2

0
I cos  dn

n
π

= θ θ∫ , n ≥ 2. By writing cosn θ  

as 1cos cosn− θ θ  and using integration by parts, show that 2
1I In n

n
n −
−

= . 

 Hence evaluate (a) 
1
2 8

0
cos  d

π
θ θ∫  ; (b) 

1
2 6 2

0
cos sin  d

π
θ θ θ∫ . 
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6. (a) Derive the formula 11e d e e d , 1n ax n ax n axnx x x x x n
a a

−= − ≥∫ ∫ . 

 (b) Find 4 3e dxx x∫ . 
 
7. (a) Using integration by parts, show that 

   (i) 1e sin  d e cos e cos  dax ax axabx x bx bx x
b b

= − +∫ ∫  ; 

   (ii) 1e cos  d e sin e sin  dax ax axabx x bx bx x
b b

= −∫ ∫ . 

 (b) Using the results in part (a), show that 

   ( )2 2
ee sin  d sin cos

ax
ax bx x a bx b bx c

a b
= − +

+∫  

   and find a similar expression for e cos  dax bx x∫ . 
 
23.3 Partial Fractions 
 
Definition A rational function R(x) is one which can be expressed in the form 

( )( )
( )

P xR x
Q x

=  where P(x) and Q(x) are polynomials. 

 
If, in addition, the degree of P is less than the degree of Q, then R is called 
proper. All other rational functions are said to be improper. 
 
It is always possible to express the indefinite integral of a proper rational 
function in terms of elementary functions. Thus, if R(x) is a proper rational 
function, ( ) dR x x∫   can be expressed in terms of other rational functions, 
logarithms of linear and/or quadratic polynomials, and functions of the form 
arctan( )ax b+ . 
 

Example (a) 
( ) ( )

2

2 33

1 d
3 11

x x c
xx

= −
++

∫  

   [a rational function] 
 

  (b) d ln 3
3

x x c
x

= + +
+∫  

  [a logarithm of a linear polynomial function] 
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  (c) ( )2
2

1d ln 1
21

x x x c
x

= + +
+∫  

 [a logarithm of a quadratic polynomial function] 
 

  (d) ( )2
d arctan 2

1 ( 2)
x x c

x
= + +

+ +∫  

  [a function of the form arctan( )ax b+ ] 
 
Expressing a Rational Function in Partial Fraction Format 
 
A proper rational function is said to be resolved into its partial fractions if it is 
expressed as a sum of rational functions of the form 

 
( )n

A
x a−

 and/or         2( )n
Ax B

ax bx c
+

+ +
 ( )n +∈� , 

where the quadratic 2ax bx c+ +  is positive definite (i.e., its discriminant is 
negative). 
 
In our work we will be concerned only with the first form for n = 1, 2 and only 
with the second form for n = 1. Thus we will consider only proper rational 
functions which can be expressed as a sum of rational functions of the forms 

 2 2,   and  
( )

A A Ax B
x a x a ax bx c

+
− − + +

. 

 
If the rational function is improper, we must first divide out until the remainder 
has degree less than that of the denominator. 
 

Example Integrate 
3

2
2
1

x
x

−
+

 with respect to x. 

 

 By long division we find 
3

2 2
2 2
1 1

x xx
x x

− +
= −

+ +
. 

 Therefore 
3

2
2  d
1

x x
x

−
+∫  =  2

2  d
1

xx x
x

+⎛ ⎞−⎜ ⎟+⎝ ⎠∫  

  =  2 2
2  d

1 1
xx x

x x
⎛ ⎞− −⎜ ⎟+ +⎝ ⎠∫  

  =  ( )2 21 1
2 2 ln 1 2arctanx x x c− + − + . 
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Only three situations may occur in this course: 
 
1. If the denominator contains a linear factor (x – a), it produces a term of the 

form A
x a−

 in the partial fraction format. 
 

2. If the denominator contains a repeated linear factor 2( )x a− , it produces a 

sum of terms of the form 
( )2

A B
x a x a

+
− −

 in the partial fraction format. 

 
3. If the denominator contains a positive definite quadratic factor 

2ax bx c+ + , it produces a term of the form 2
Ax B

ax bx c
+

+ +
 in the partial 

fraction format. 
 

Example Decompose 2
( 2)
x

x x
−
+

 into its partial fractions. 

 
  The denominator contains two linear factors x and x + 2 and so the partial 

fraction format must contain the terms  and 
2

A B
x x +

. 

  Let 2
( 2)
x

x x
−
+

 =  
2

A B
x x

+
+

  =  ( 2)
( 2)

A x Bx
x x

+ +
+

. 

  Thus x – 2 = A(x + 2) + Bx for all x. 
  Put x = 0:   –2 = 2A ⇒   A = –1. 
  Put x = –2: –4 = –2B ⇒   B = 2. 
 

  Therefore  2 2 1
( 2) 2
x

x x x x
−

= −
+ +

. 

 

Example Decompose 2
1

( 1)
x
x

+
−

 into its partial fractions. 

 

 Since the denominator contains a repeated linear factor 2( 1)x − , the partial 

fraction format must contain the terms 2 and 
1 ( 1)

A B
x x− −

. 

 

 Let  2
1

( 1)
x
x

+
−

 =  21 ( 1)
A B

x x
+

− −
  =  2

( 1)
( 1)

A x B
x
− +
−

. 
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 Then x + 1 = A(x – 1) + B for all x. 
 Clearly A = 1 and B – A = 1 giving B = 2. 
 

 Therefore 2 2
1 1 2

1( 1) ( 1)
x

xx x
+

= +
−− −

. 

 

Example Decompose 2
1

( 1)x x +
 into its partial fractions. 

 
 Since the denominator contains a linear factor x and a positive definite 

quadratic factor 2 1x + , the partial fraction format must contain the terms 

2 and 
1

A Bx C
x x

+
+

. 

 

 Let  2
1

( 1)x x +
 =  2 1

A Bx C
x x

+
+

+
  =  

2

2
( 1) ( )

( 1)
A x x Bx C

x x
+ + +

+
. 

 Then  1 = 2( 1) ( )A x x Bx C+ + +  for all x. 
 Put x = 0: 1  =  A. 
 Put x = i: 1  =  i(Bi + C)  = –B + C i  giving B = –1 and C = 0. 
 

 Therefore 2 2
1 1

( 1) 1
x

xx x x
= −

+ +
. 

 
Note: The method used in the previous example substituting x = i to find both 

B and C at the same time can be quite useful, as here, but should not be 
overdone. However, this is simply another way in which complex 
numbers may be used to solve real problems with less work. 

 
Exercise 23.3 
 
1. Decompose each of the following into partial fractions: 

 (a) 2
( 1)( 1)x x− +

 ; (b) 
( 2)( 1)

x
x x+ +

 ; (c) 3
(2 )
x

x x
−
−

 ; 

 (d) 2 3
( 1)( 2)

x
x x

−
+ −

 ; (e) 7
(2 1)( 3)x x− +

 ; (f) 7
(2 3)(1 4 )x x+ −

. 

 
2. Decompose each of the following into partial fractions: 

 (a) 2
4

2x x+
 ; (b) 2

10
4

x
x

+
−

 ; (c) 2
4( 4)

6 5
x

x x
+

+ +
 ; 
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 (d) 2
5 2

2
x

x x
−

− −
 ; (e) 2

6
2 1x x+ −

 ; (f) 2
1

6 5 1x x− +
. 

 
3. Decompose each of the following into partial fractions: 

 (a) 2( 1)
x

x +
 ; (b) 2

3
( 2)

x
x −

 ; (c) 2
3 2
( 1)

x
x x

+
+

 ; (d) 
2

2
8 19

( 2) ( 1)
x x

x x
−

− +
. 

 
4. Decompose each of the following into partial fractions: 

 (a) 2
2
( 1)

x
x x

−
+

 ;  (b) 2
4

(2 1)( 2)
x

x x
−

+ +
 ; 

 (c) 
2

2
6 5

( 2)(2 1)
x x

x x
− +

− +
 ; (d) 

2

2
4 13

(2 3)(2 3 2)
x

x x x
+

+ − +
. 

 
5. Integrate each of the following functions with respect to x: 

 (a) 2
10

4
x
x

−
−

 ; (b) 2
2

( 3)
x

x −
 ; (c) 2

3( 6)
( 9)

x
x x

−
+

 ; 

 (d) 
2

2
2 3

( 2)( 3)
x x

x x
−

+ +
 ; (e) 1

( 3)( 2)x x− −
 ; (f) 2

5
3 14 8

x
x x− +

. 

 
6. Evaluate each of the following: 

 (a) 
0

2

d
(3 )(2 )

x
x x− − −∫  ;  (b) 

1
2

0 d
(4 2 )(1 )

x
x x− − +∫  ; 

 (c) 
2

20

 d
4 3

x x
x x+ +∫  ;  (d) 

2

21

d
( 1)( 1)

x
x x+ +∫ . 

 

7. Find the area bounded by the curve 2
3

4
y

x
=

−
 and the line y = 1. 

 
8. Integrate each of the following with respect to x: 

 (a) 2
3

( 2)
x

x −
 ; (b) 2

7 2
(2 4)

x
x

−
−

 ; (c) 
21

2
x

x
⎛ ⎞−⎜ ⎟−⎝ ⎠

. 

 
9. Integrate each of the following functions with respect to x: 

 (a) 2
4 7

2 3 2
x

x x
+

− −
 ;  (b) 2

3 2
2 11 12

x
x x

−
− +

 ; 

 (c) 2
4( 1)
4 1

x
x

+
−

 ;  (d) 2
4 5

6 2
x

x x
+

+ −
. 
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10. Evaluate each of the following: 

 (a) 
1
2

20

1 3  d
1

x x
x

+
−∫  ;  (b) 

3

22

4 1  d
2 1

x x
x x

−
− −∫  ; 

 (c) 
1
2

20

12 1  d
2 6

x x
x x

−
+ −∫  ; (d) 

2

31

dx
x x+∫ . 

 

11. Find the area enclosed by the curve 2
13

6 5 6
xy

x x
=

− −
, the x-axis and the 

lines x = –1 and x = 1
2 . 

 

12. For the function 
3

2
28 32( )

5 6
x xf x
x x

− −
=

+ +
, find 

 (a) ( )f x′′  ;  
  (b) ( ) df x x∫ . 
 
23.4 Differential Equations 
 
A differential equation is a relation which involves one or more derivatives of 
an unspecified function y of x. The relation may involve y itself, given functions 
of x, and constants. 
 

The equations  
2

2
d sin 2
d

y x
x

= ,  d 3
d
y y
x

= ,  and  2 d( 1) 3
d
yx y
x

+ =  are examples of 

differential equations which could be encountered in this course. 
 

Differential Equations of the Form y f x
x

d ( )
d

==  

The problem of finding a function y of x when we know its derivative 
d ( )
d
y f x
x

=  and its value 0y  at a particular point 0x  is called an initial value 

problem. 
 
This problem is solved by first finding a general antiderivative of f,  
y = F(x) + c, and then using the initial condition that 0 0 when y y x x= =  to find 
the constant of integration c. 
 
The general antiderivative y = F(x) + c is called the general solution of the 
differential equation. A particular solution is found by using the initial 
condition to find the value of c. 
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Example The acceleration due to gravity near the earth's surface is 

29.8 m s− . If an object is dropped from rest at a height of 1000 m , 
find the time taken for the object to reach the ground. (Ignore air 
resistance.) 

 

 d9.8 9.8
d
va
t

= ⇒ =   

 Integrating gives  19.8v t c= +  and the initial condition that the object is 
dropped from rest (v = 0 when t = 0) gives 1 0c = . 

 Therefore  d9.8 9.8
d
sv t t
t

= ⇒ =  where s is the displacement from the 

initial position. 
 Integrating once more gives 2

24.9s t c= +  and the second initial condition 
(s = 0 when t = 0) gives 2 0c = . 

 Therefore  24.9s t= . 

 The object reaches the ground when s = 1000 and then 1000 14.3
4.9

t = ≈ . 

 Therefore the required time is 14.3 s. 
 
Since the techniques required to solve such differential equations have already 
been discussed in previous chapters, we will not be concerned with them here. 
 
The remainder of this current chapter will be concerned with differential 
equations with separable variables. 
 
Separable Differential Equations 
 
Definition A (first order) separable differential equation is one which can be 

written in the form 

     d( ) ( )
d
yg y f x
x

= . 

 
 
It is convenient to write this equation in the form 
 
   ( ) d ( ) dg y y f x x=  
 
where the variables x and y are separated so that x appears only on the right and 
y appears only on the left. By integrating both sides of this relation we obtain 
 
  ( ) d ( ) dg y y f x x c= +∫ ∫ . 
 



Chapter 23 

580   

 

Example Find the general solution of the differential equation d 0
d
yy x
x

+ = . 

 
 By separating variables we have d dy y x x= − . 
 By integrating both sides we find 2 21 1

12 2y x c= − +   or  2 2x y c+ = . 
 
Note: The solution represents a family of concentric circles. 
 
A special type of separable differential equation has the form 
 

   d
d
A kA
t

=     (k is a constant), 

 
that is, the time rate of change of the quantity A at any given time t is 
proportional to the amount present at that time. 
 
To solve this we separate variables 

     d dA k t
A

=  

and then integrate 
     ln A kt c= + . 
 
From this equation we obtain ( )e e ekt c c ktA += =  and with the initial condition 
that 0  when 0A A t= =  we find that 0 ecA =  or 0ektA A= . 
 
This type of separable equation arises naturally in problems dealing with money 
invested at compound interest, the decay of radioactive materials and the growth 
of populations, to mention a few. In each of these situations we assume that the 
rate of change of the amount is proportional to the current amount, i.e., 
d
d
A kA
t

= . When it is known that A decreases with time, it is convenient to 

choose the constant of proportionality as –k where k > 0. 
 
Note: In the case of the decay of radioactive substances, the term half-life is 

used to mean the time taken for half the original amount to disappear. 
 
Example Find the half-life of a radioactive substance if 50 g decays to 49 g 

in 10 years. 
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 Let d ( 0)
d
A kA k
t

= − > . 

 Then  d dA k t
A

= −∫ ∫  

 ⇒ ln A kt c= − +  
 ⇒ 0e ktA A −= . 
 
 Now 0 50 and 49 when 10A A t= = =  
 ⇒ 1049 50e k−=  
 ⇒ 10 49

50e 0.98k− = =  

 ⇒ 1 10e (0.98)k− = .    (The value of k itself is not always required.) 

 ⇒ ( ) 1050 0.98 tA = . 
 
 For the half-life, 25 gA =  
 ⇒ 1025 50(0.98)t=  
 ⇒ 101

2 (0.98)t=  

 ⇒ 1
2log(0.98) log

10
t

=     (Any logarithm base may be used here.) 

  ⇒ 
1
210log

343
log(0.98)

t = ≈ . 

 
  Therefore the half-life is 343 years. 
 
There are other examples where the rate of change of some amount is 
proportional to the difference between the amount present and a fixed amount. 
An example of this is the rate of cooling of the contents of a cup of coffee is 
proportional to the difference between the temperature of the coffee and the 
"ambient" (constant) temperature of the surroundings. This is known as 
Newton's Law of Cooling. 
 
Example A cup of coffee at an initial temperature of 100°C is placed in a 

room whose constant temperature is 20°C. If the temperature of the 
coffee after 5 minutes is 84°C, find 

 (a) the temperature of the coffee after 10 minutes ; 
 (b) the time taken for the coffee to cool to a temperature of 21°C. 
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  From Newton's law of cooling we know that if T °C is the temperature of 

the coffee after t minutes, then ( )d 20
d
T k T
t

= − −     k > 0. 

 Separating variables gives d d
20

T k t
T

= −
−

. 

 Integrating gives ( )ln 20T kt c− = − +  

   ⇒ 120 e ktT c −− =    (Here 1c  is not the initial temperature!) 
   ⇒ 120 e ktT c −= + . 
 
 When t = 0, T = 100 and so 1 80c = . 
 This gives 20 80e ktT −= + . 
 When t = 5, T = 84 and so ( )1 55 1 564

8084 20 80e e (0.8)k k− −= + ⇒ = = . 

 Thus ( ) 520 80 0.8 tT = + . 
 
 (a) When t = 10, ( )2 = 20 80 0.8  = 71.2T + . 
   So after 10 minutes, the temperature of the coffee would be 

71.2°C. 
 
 (b) When T = 21, ( ) 580 0.8 1t =  

   ⇒ ( ) 5 1
800.8 t =  

  ⇒ log0.8 log80
5
t

= −  

  ⇒ 5log80 98.2
log0.8

t −
= ≈ . 

  Therefore the time taken is 98.2 minutes. 
 
Exercise 23.4 
 
1. Find the general solution of each of the following differential equations: 

 (a) d 2
d
y xy
x

=  ; (b) 2d 1
d
y y
x

= +  ; 

 (c) d 2
d
y y
x

=  ; (d) d 2
d
yx y
x

=  ; 

 (e) d(2 9) ( 4)
d

yy x y
x

+ = +  ; (f) ( )2 2d1 1 0
d
yx y
x

+ + + =  ; 
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 (g) 
2d

d
yy

x x
=  ; (h) ( )d 2 10

d
y y
x

= −  ; 

 (i) d2 tan
d
y y x
x

=  ; (j) 2d sin
d
yy x
x

= . 

 
2. Solve each of the following initial value problems: 

 (a) 2 2d
d
yy x
x

=  ,  y = 2 when x = 3 ; 

 (b) d
d
y y
x x

=  ,  y = 6 when x = 2 ; 

 (c) 2d 1
d
yxy y
x

= +  ,  y = 0 when x = 2 ; 

 (d) de 1
d

x yy
x

=  ,  y = 0 when x = 0. 

 
3. Find all the curves in the xy-plane such that 
 (a) the tangent at each point (x, y) passes through the origin ; 
 (b) the normal at each point (x, y) passes through the origin ; 
 (c) the tangent at each point (x, y) intersects the x-axis at (x – 1, 0) ; 
 (d) the normal at each point (x, y) intersects the x-axis at (x + 1, 0). 
 
4. A particle is moving along the x-axis such that its velocity and acceleration 

at any time t s are given by 1( ) m sv t −  and 2( ) m sa t − . If ( ) 0.2 ( )a t v t= −  
and the initial velocity is 110 m s− , find the velocity after 2 seconds and the 
distance travelled in that time. 

 
5. A projectile is slowed in a resisting medium so that the time rate of change 

of its velocity is proportional to its instantaneous velocity. That is, 
d
d
v kv
t

= −  where k is a positive constant. If the initial velocity of 1100 m s−  

is reduced to 110 m s−  in 2 seconds, find the value of k and the distance 
penetrated by the projectile in this time. 

 
6. (a) If the number of radioactive nuclei, A, in a given sample decays at 

a rate which is proportional to the number of radioactive nuclei 

present, we know that d
d
A kA
t

= −  where k is a positive constant. 

Show that the half-life of the sample is equal to ln 2
k

. 
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 (b) Radioactive carbon-14 with a half-life of 5700 years is used in the 

determination of the age of material which contains carbon-14 
nuclei. Find the age of a sample if 80% of the original radioactive 
carbon-14 nuclei still remain. 

 
7. A bowl of soup at an initial temperature of 90°C is brought into a room 

whose temperature is 25°C. Two minutes later the temperature of the soup 
is 80°C. How long will it take for the temperature of the soup to reach 
70°C? 

 
8. When $A is invested at r % per annum and interest is paid continuously, 

then d
d 100
A rA
t

= . Find r if $1000 amounts to $1648.72 in 10 years with 

interest paid continuously. 
 
9. A thermometer which reads 16°C is brought into a room whose 

temperature is 25°C. One minute later the reading is 20°C. How long will it 
take for the reading to reach 24°C? 

 
10. Calculate the annual interest rate if an amount of money doubles in value 

in 5 years when interest is paid continuously. 
 
11. Radon-222 gas has a half-life of 3.85 days. How long will it take the radon 

to fall to 80% of its original value? 
 
*12. A bowl of water at a temperature of 60°C was placed in a refrigerator. 

After 10 minutes the temperature of the water had dropped to 52°C and 
after a further 10 minutes, to 45°C. What was the temperature of the 
refrigerator? 

 
 

 
Required Outcomes 

 
 After completing this chapter, a student should be able to: 
• integrate by substitution and by parts. 
• express rational functions in terms of their partial fractions. 
• solve first-order separable differential equations. 
• solve problems involving growth and decay. 
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24.1 The Mean and Variance of a Single Random Variable 
 
It has already been established that if X is any random variable, E(X) is the 
mean or expected value of X , and if a, b are constants then 
 
        E(aX + b) = aE(X) + b 
  and  Var(aX + b) = a2Var(X) . 
 
 
Example The random variable X has a probability distribution shown in the 

following table: 
x P(X = x) 
0     1

6  
1     1

3  
2     1

3  
3     1

6  
 
  Find, using the probability distribution of each variable 
 (a)  E(X) ; (b)  Var(X) ; (c)  E(2X + 3) ; (d)  Var(2X + 3). 
 
  Show that E(2X + 3) = 2E(X) = 3 and Var(2X + 3) = 4Var(X) . 
 
 (a) E(X) = 1 1 1 1

6 3 3 60 1 2 3× + × + × + ×  = 1.5. 
 
 (b) Var(X) = E(X2) – 1.52 = ( )9 91 4

3 3 6 4+ + −  = 11
12  . 

 
 (c) E(2X + 3) = 1 1 1 1

6 3 3 63 5 7 9× + × + × + ×  = 6 . 
 
 (d) Var(2X + 3) = 2 2 2 21 1 1 1

6 3 3 63 5 7 9× + × + × + ×  – 36 = 11
3  . 

 
 Now  2E(X ) + 3 = 2 × 1.5 + 3 = 6 = E(2X + 3)    and 
  4Var(X) = 11

124×  = 11
3  = Var(2X + 3),        as required. 
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The Mean & Variance of the Sum of Two Independent Random Variables 
 
If X and Y are any two independent random variables, then 
 
       E(X + Y) = E(X) + E(Y) 
  and Var(X + Y) = Var(X) + Var(Y) . 
 
Note: E(X + Y) = E(X) + E(Y) is true for any random variables X and Y. 
 
Example Independent random variables X and Y have the following 

probability distributions: 
 

      x 0 1 2 
P(X = x) 0.3 0.4 0.3 

 
      y 0 1 2 3 
P(Y = y) 0.1 0.2 0.3 0.4 

 
 (a) Find E(X), E(Y), Var(X) and Var(Y). 
 (b) Construct the probability distribution table for the random 

variable X + Y . 
 (c) Verify that E(X + Y) = E(X) + E(Y)     and that 
  Var(X + Y) = Var(X) + Var(Y) . 
 
 (a) E(X) = 0 + 0.4 + 0.6 = 1 . 
  E(Y) = 0 + 0.2 + 0.6 + 1.2 = 2 . 
  Var(X) = 0 + 0.4 + 1.2 – 12 = 0.6 . 
  Var(Y) = 0 + 0.2 + 1.2 + 3.6 – 22  = 1 . 
 
 (b) P(X + Y  = 0) = P(X = 0) × P(Y = 0) = 0.03 . 
  P(X + Y  = 1) = P(X = 0) × P(Y = 1) + P(X = 1) × P(Y = 0) 
   = 0.06 + 0.04 
   = 0.10 . 
  P(X + Y  = 2) = 0.3 × 0.3 + 0.4 × 0.2 + 0.3 × 0.1 = 0.20 . 
  P(X + Y  = 3) = 0.3 × 0.4 + 0.4 × 0.3 + 0.3 × 0.2 = 0.30 . 
  P(X + Y  = 4) = 0.4 × 0.4 + 0.3 × 0.3 = 0.25 . 
  P(X + Y  = 5) = 0.3 × 0.4 = 0.12. 
 
  Thus the required probability distribution table is as follows: 
  

x + y 0 1 2 3 4 5 
P(X+Y = x+y) 0.03 0.10 0.20 0.30 0.25 0.12 
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 (c) E(X + Y) = 0.10 + 0.40 + 0.90 + 1.00 + 0.60 = 3 = E(X) + E(Y) . 
  Var(X + Y) = 0.10 + 0.80 + 2.70 + 4.00 + 3.00 – 32 
   = 1.6 
   = Var(X) + Var(Y) . 
 
In general, if X1 and X2 are discrete independent random variables and a1 and a2 
are constants, then 
   E(a1X1 + a2X2) = a1E(X1) + a2E(X2)    and 
        Var(a1X1 + a2X2) = a1

2Var(X1) + a2
2Var(X2) . 

 
 
Example If X1 and X2 are independent discrete random variables with means 

6 and 8 and variances 2 and 3 respectively, find 
  (a) E(4X1 + 3X2) ;  (b) Var(4X1 + 3X2) ; 
  (c) E(2X1 – X2) ;  (d) Var(2X1 – X2) . 
 
 (a) E(4X1 + 3X2) = 4E(X1) + 3E(X2) = 4 × 6 + 3 × 8 = 48 . 
 (b) Var(4X1 + 3X2) = 16Var(X1) + 9Var(X2) = 16 × 2 + 9 × 3 = 59 . 
 (c) E(2X1 – X2) = 2E(X1) – E(X2) = 2 × 6 – 8 = 4 . 
 (d) Var(2X1 – X2) = 22 Var(X1) + (–1)2 Var(X2) = 4 × 2 + 3 = 11 . 
 
Note that the above results may be extended to any linear combination of n 
independent random variables. Thus if X1 , X2 , … , Xn are n independent 
random variables then 
 
 E(a1X1 + a2X2 + … + anXn) = a1E(X1) + a2E(X2) + … + anE(Xn) 
                     
      and 
 
 Var(a1X1 + a2X2 + … + anXn) = a1

2Var(X1) + a2
2Var(X2) + … + an

2Var(Xn) . 
 
 
The Distribution of  the Sum of Observations X1, X2, X3, … , Xn from the 
same Distribution X 
 
If X1 , X2 , … , Xn are n independent observations from the same distribution X, 
then 
 
      E(X1 + X2 + … + Xn) = nE(X)                and 
  Var(X1 + X2 + … + Xn) = nVar(X) . 
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Example A die has the numbers 1, 1, 2, 2, 3, 3 on its six faces. Let X 

represent the number obtained when the die is thrown. Let X1 and 
X2 represent the numbers obtained when the die is thrown twice. 

 (a) Show that E(X1 + X2) = 2E(X) and Var(X1 + X2) = 2Var(X) . 
 (b) Find E(2X) and Var(2X) and compare the results with those 

from part (a). 
 
 (a) The probability distribution of X is: 
     

x 1 2 3 
P(X = x) 1

3  1
3  1

3  
 
   Therefore E(X) = 2 by symmetry and Var(X) = 91 4

3 3 3+ +  – 22 = 2
3  . 

   Now 
  P(X1 + X2 = 2) = P(X1 = 1) × P(X2 = 1) = 1 1

3 3×  = 1
9  . 

  P(X1 + X2 = 3) = 2P(X1 = 1) × P(X2 = 2) = 2
9  . 

  P(X1 + X2 = 4) = P(X1 = 2)×P(X2 = 2) + 2P(X1 = 1)×P(X2 = 3) = 3
9  . 

  P(X1 + X2 = 5) = 2P(X1 = 2) × P(X2 = 3) = 2
9  . 

  P(X1 + X2 = 6) = P(X1 = 3) × P(X2 = 3) = 1
9  . 

  Thus 
  E(X1 + X2) = 31 2 2 1

9 9 9 9 92 3 4 5 6× + × + × + × + ×  = 4 = 2E(X), 
  and 
  Var(X1 + X2) = 31 2 2 1

9 9 9 9 94 9 16 25 36 16× + × + × + × + × −  
           = 4

3  
           = 2Var(X) . 
 
 (b) E(2X) = 1 1 1

3 3 32 4 6× + × + ×  = 4 . 
  Var(2X) = 1 1 1

3 3 34 16 36× + × + ×  – 16 = 8
3  . 

 
  Thus  E(2X) = E(X1 + X2) = 2E(X) 
   but Var(2X) = 4Var(X) ≠ Var(X1 + X2) . 

 
Example Find the mean and variance of the number of heads obtained when 

three coins are tossed. 
 
 Let X represent the number of heads obtained when a single coin is tossed 

and let X1, X2, X3 represent the number of heads obtained when the 
individual coins are tossed. 
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 Now E(X) = 1 1
2 20 1× + ×  = 0.5 and Var(X) = 2 2 21 1 1

2 2 20 1 ( )× + × −  = 0.25 . 
  E(X1 + X2 + X3) = 3E(X) = 1.5 and Var(X1 + X2 + X3) = 3Var(X) = 0.75 . 
 
 [Note: E(3X) = 3E(X) = 1.5 but Var(3X) = 9Var(X) = 2.25.] 
 
Exercise 24.1 
 
1. Independent random variables X and Y have the following probability 

distributions: 
 

x 1 2 3 
P(X = x) 0.3 0.4 0.3 

 
y 0 1 2 
P(Y = y) 0.2 0.4 0.4 

 
 (a) Find E(X), E(Y), Var(X) and Var(Y) . 
 (b) Construct the probability distribution tables for the random 

variables W = X + Y and Z = X – Y . 
 (c) Verify that (i) E(X + Y) = E(X) +E(Y) ; 
   (ii) E(X – Y) = E(X) – E(Y) ; 
   (iii) Var(X + Y) = Var(X – Y) = Var(X) + Var(Y) . 
 
2. (a) Let the random variable X represent the number showing when a 

single cubic die is thrown. Find the mean and variance of X . 
 (b) Let S be the random variable which gives the sum of the three 

numbers showing when three cubic dice are thrown. Find the mean 
and variance of S . 

 
3. Two cubic dice are thrown. Find the mean and variance of the difference 

between the two numbers showing on the dice. 
 
4. Two cubic dice labelled d1 and d2 are thrown. Let the random variable X 

represent the sum of twice the number on d1 and three times the number on 
d2. Find the mean and variance of X . 

 
5. In the manufacture of a certain car component, time must be spent in three 

areas of the factory. The mean time (in minutes) needed in each area and 
the standard deviations of these times are given in the following table: 

 
Area Mean Time Standard Deviation 
X        5             2 
Y        2             1 
Z      20             5 
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 To manufacture the component the process in area X must be carried out 

twice, the process in area Y must be carried out three times and the process 
in area Z carried out once only. If the times spent in each area are 
independent, calculate the mean and standard deviation of the total time 
required in areas X, Y and Z in order to complete the manufacture of the 
component . 

 
6. Find the mean and standard deviation of the number of heads obtained 

when 6 coins are tossed. 
 
7. Find the mean and standard deviation of the sum of the numbers appearing 

when 6 dice are tossed . 
 
8. A discrete random variable X takes integer values from 1 to 5 inclusive 

with probabilities given by 
1 3

P( )
11

x
X x

+ −
= =  and a second discrete 

random variable Y, independent of X, takes integer values from 1 to 6 
inclusive with probabilities P(Y = y) = ky . 

 Find: (a)  the value of k ;  (b)  the expected value of X + Y ; 
   (c)  the variance of X – Y . 
 
9. A six-sided die and a four-sided die are tossed. Find the mean and standard 

deviation of the sum of double the number on the six-sided die and the 
number on the four-sided die . 

 
10. A discrete random variable X has the following probability distribution: 

 
x 2 3 4 5 
P(X = x) 0.2 0.3 0.4 0.1 

 
 (a) Find the mean and variance of X . 
 (b) If two independent random variables X1 and X2 have the same 

distribution as X, find the mean and standard deviation of 2X1 + X2 . 
 
24.2  The Cumulative Distribution Function of a Discrete Random Variable 
 
From any given frequency distribution of a discrete random variable X we can 
find the corresponding cumulative frequencies simply by adding all the given 
frequencies up to a particular value of X. 
 
Thus if X is a discrete random variable with probability density function 
P(X = x) where { }1 2 3, , , , nx x x x x∈ �  then the corresponding cumulative 
distribution function is given by 
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F(y) = P(X ≤ y) = { }
1

1 2 3P( ) , , , , ,
y

n
x x

X x y x x x x
=

= ∈∑ � . 

 
Example Find the cumulative distribution function F(x) of the random 

variable X representing the number obtained when a single cubic 
die is tossed. 

 
 The required probability distribution table for X is as follows: 

 
x 1 2 3 4 5 6 
P(X = x) 1

6  1
6  1

6  1
6  1

6  1
6  

 
 F(1) = P(X ≤ 1) = 1

6  ,  F(2) = P(X ≤ 2) = 2
6  ,  F(3) = P(X ≤ 3) = 3

6  ,  ….  , 
 F(6) = P(X ≤ 6) = 6

6 . 
 
 Thus F(x) = 1

6 x  for x = 1, 2, 3, 4, 5, 6 . 
 
Example The probability distribution for the random variable X is given in 

the following table. Write down the corresponding cumulative 
frequency table. 

 
x 2 3 4 5 6 
P(X = x) 1

9  2
9  1

3  2
9  1

9  
 
 The required cumulative frequency table is: 
 

x 2 3 4 5 6 
F(x) = P(X ≤ x) 1

9  1
3  2

3  8
9  1 

 
Note: It is not always easy, nor in fact possible, to find a formula for the 

cumulative frequency distribution. 
 
Example A discrete random variable X has the following cumulative 

frequency distribution: 
 

x 2 3 4 5 6 
P(X ≤ x) 0.1 0.25 0.56 0.79 1 

 
 Find: (a)   P(X ≥ 4) ;      (b)   P(X = 4) ;      (c)   P(X < 5) . 
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 (a) P(X ≥ 4) = 1 – P(X ≤ 3) = 0.75 
 (b) P(X = 4) = P(X ≤ 4) – P(X ≤ 3) = 0.56 – 0.25 = 0.31 
 (c) P(X < 5) = P(X ≤ 4) = 0.56 
 
Exercise 24.2 
 
1. Construct a cumulative distribution table for the number of heads obtained 

when 3 coins are tossed. 
 
2. Construct a cumulative frequency distribution table for the number of red 

marbles obtained when two marbles are withdrawn (without replacement) 
from an urn containing 2 red marbles and 3 blue marbles. 

 
3. Construct a cumulative distribution table for the number of 'sixes' obtained 

when two dice are tossed. 
 
4. The following table gives the probability distribution for a discrete random 

variable X. Construct the cumulative distribution table. 
 

x 1 2 3 4 
P(X = x) 0.1 0.3 0.4 0.2 

 
5. The following table gives the cumulative distribution table for a discrete 

random variable X. 
 

x 0.1 0.2 0.3 0.4 0.5 
F(X) 0.16 0.31 0.53 0.76 1 

 
 Find (a)   P(X = 0.3) ;      (b)   P(X ≥ 0.3) ;      (c)  P(X < 0.2) . 
 
6. For a discrete random variable X, the cumulative distribution function is 

given by F(x) = kx2 for x = 1, 2, 3, 4. 
 
 Find (a)   the value of k ;     (b)   P(X ≤ 2) ;     (c)   E(X) ;     (d)   Var(X) . 
 
7. For a discrete random variable X, the cumulative distribution function is 

given by ( ) exF x k=  for x = 0, 1, 2. 
 
 Find (a)   the value of k ; (b)   the probability distribution of X ; 
   (c)   E(X) ;  (d)   Var(X) . 
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8. The discrete random variable X has cumulative distribution function F(x) 

where 
    ( )1

4( ) 1 1
x

F x x= − − ,  x = 1, 2, 3, 4 . 
 
 (a) Show that F(3) = 63

64  and F(2) = 3
4 . 

 (b) Find E(X) and Var(X). 
 (c) Find P(X  > E(X)) . 
 
24.3 Cumulative Distribution Function of a Continuous Random Variable 
 
If X is a continuous random variable with probability density function ( )f x  
which is defined for a x b≤ ≤ , then the cumulative distribution function is 
given by 
 

    F(x) = P(X ≤ x) = ( ) d
x

a
f t t∫ . 

 
Geometrically the cumulative distribution function gives the total area between 
the curve ( )y f t=  and the t-axis from t = a to t = x for a x b≤ ≤ . 

 

 
 
 
 

 
Since the total area from t = a to t = b is 1, we have F(b) = 1. 
 
Example For the continuous random variable X with probability density 

function ( )f x  defined on a x b≤ ≤ , use the cumulative 
distribution function ( )F x  to find 1 2P( )x X x< < . 

 
 Since 1( )F x  gives the total area between ( )y f x=  and the x-axis from 

x = a to x = x1 and 2( )F x  gives the total area between ( )y f x=  and the x-
axis from x = a to x = x2 , then 

 

   2

1
1 2 2 1P( ) ( ) d ( ) ( )

x

x
x X x f t t F x F x< < = = −∫ . 

 

t 

 y 

O a x b 

Shaded area = F(x) 

y = f (t) 
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Finding the median, m, of a continuous random variable X 
 
We know from previous work in Chapter 21 that if m is the median of the 
random variable X defined for a x b≤ ≤ with probability density function ( )f x , 
then 

   ( ) d
m

a
f x x∫  = 0.5 . 

 

Since ( ) d ( )
m

a
f x x F m=∫ , the median can also be found by solving the 

equation ( ) 0.5F m =  where ( )F x  is the cumulative distribution function. 
 
Example Let X be a continuous random variable with probability density 

function ( )f x  defined by 

      
1
8 (4 ), 0 4

( )
0, elsewhere.

x x
f x

⎧ − ≤ ≤
= ⎨

⎩
 

  Find the cumulative distribution function ( )F x . 
 
  Using this cumulative distribution function, find 
  (a) P(2 < X < 3) ;  (b) the median, m. 
 

 For 0 4x≤ ≤ ,    ( )F x  =  
0

( ) d
x

f t t∫  

    =  1
80
(4 ) d

x
t t−∫  

    =  21 1
2 16 0

x
t t⎡ ⎤−⎣ ⎦  

    =  21 1
2 16x x− . 

 

 Therefore 21 1
2 16

0, 0

( ) , 0 4
1, 4.

x

F x x x x
x

≤⎧
⎪

= − ≤ ≤⎨
⎪ ≥⎩

 

 

 (a) P(2 < X < 3) = F(3) – F(2) = 3 9 1
2 16 41− − +  = 3

16 . 

 (b) F(m) = 0.5 ⇒ 21 1
2 16m m−  = 0.5 

  ⇒ 2 8 8 0m m− + =  

  ⇒ 8 32 4 2
2

m ±
= = ±  

   ⇒ 4 2 2m = −   since 0 ≤ m ≤ 4. 
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Example The continuous random variable X has probability density function 

( )f x  where 

    
, 0 2

( ) (3 ), 2 3
0, elsewhere.

k x
f x k x x

≤ ≤⎧
⎪= − ≤ ≤⎨
⎪
⎩

 

 (a) Find the value of k. 
 (b) Find the cumulative distribution function F(x) and sketch 

its graph. 
 (c) Find P(0.5 ≤ X ≤ 2.5). 
 
 (a) The graph of y = ( )f x  is: 
 
 
 
 
  The total area between ( )y f x=  and the x-axis is 1. 
   
   Therefore 2k + 1

2 k  = 1 giving k = 2
5 . 

 

 (b) For 0 2x≤ ≤ , [ ] 2
500

( )  d
x xF x k t k t kx x= = = =∫ . 

  For 2 3x≤ ≤ , 
2

( ) (2) (3 ) d
x

F x F k t t= + −∫  

          24 1
5 2 2

3
x

k t t⎡ ⎤= + −⎣ ⎦  

          24 2 1
5 5 23 4x x⎡ ⎤= + − −⎣ ⎦  

          2 61 4
5 5 5x x= − + −  . 

  For x ≤ 0, F(x) = 0 and for x ≥ 3, F(x) = 1. 
 
  The graph of F(x) is as follows : 
 
 
 
 
 
 
 (c) P(0.5 2.5)X≤ ≤  =  (2.5) (0.5)F F−   =  7

4 1−   =  3
4 . 

 
 

x 

 y 
k 

O 2 3 

x 

F(x) 
0.8 

2 3 O 

 y = 2
5 x 2 61 4

5 5 5y x x= − + −
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Exercise 24.3 
 
1. In each of the following the probability density function of a continuous 

random variable X is given. Find each cumulative distribution function 
F(x). 

 (a) 1
4( ) , 0 4f x x= ≤ ≤  ; (b) 2

3( ) , 1 2f x x x= ≤ ≤  ; 

 (c) 2( ) 3 , 0 1f x x x= ≤ ≤  ; (d) 23
16( ) (4 ), 0 2f x x x= − ≤ ≤  ; 

 (e) 
1
2

1
4

, 1 2
( )

1 , 2 4
x

f x
x x

⎧ ≤ ≤⎪= ⎨ − ≤ ≤⎪⎩
 ;  (f) 

1, 1 2
( )

3 , 2 3
x x

f x
x x

− ≤ ≤⎧
= ⎨ − ≤ ≤⎩

 . 

 
2. A continuous random variable X has a probability density function given 

by 
23

4
3
4

( 1) , 1 0
( )

, 0 1
x x

f x
x

⎧ + − ≤ ≤⎪= ⎨
≤ ≤⎪⎩

 . 

 Find: (a)  E(X) ; (b) the cumulative distribution function F(x) ; 
  (c)  P(– 1

2  ≤ X ≤ 1
2 ) ; (d) the median, m. 

 
3. The continuous random variable X has probability density function 
   2( ) ( 1)f x x= + ,     1 ≤ x ≤ 2 . 
 Find: 
 (a) the value of  k ; (b)  the cumulative distribution function F(x) ; 
 (c) P(1.2 ≤ X ≤ 1.6) ; (d) the median, m . 
 
4. A continuous random variable X has probability distribution function 

      2
3

, 0 2
( )

(5 ), 2 5.
kx x

f x
k x x

≤ ≤⎧
= ⎨ − ≤ ≤⎩

 

 (a) Show that 1
5k = . 

 (b) Find E(X) and Var(X). 
 (c) Find the cumulative distribution function F(x) and sketch its graph. 
 (d) Find the median, m. 
 (e) Find P(1 ≤ X ≤ 4). 
 
5. A continuous random variable X has probability density function 

( ) e xf x k −=  where 1 ≤ x ≤ 2. 

 (a) Show that 
2e

e 1
k =

−
. 

 (b) Find the cumulative distribution F(x) and sketch its graph. 
 (c) Calculate the median of the distribution. 
 (d) Find P(X > 1.5) . 
 



  Statistics and Probability 

  599 

 
6. A continuous random variable X has probability density function 
  2( ) (4 )f x kx x= − ,   0 2x≤ ≤  . 
 (a) Find the value of k. 
 (b) Find the cumulative distribution function. 
 (c) Calculate the mean, μ, and the standard deviation, σ. 
 (d) Find P(0.5 < X < 1.5). 
 (e) Find P(μ – σ < X < μ + σ). 
 (f) Find the median. 
 
24.4 Discrete Probability Distributions – Uniform and Hypergeometric 
 
Discrete Uniform Distributions 
 
If the discrete random variable X can assume each of the values 1, 2, 3, … , n 
with equal probability then X has a uniform distribution. 

Thus P(X = x) = 1
n

 for x = 1, 2, 3, … , n and we write X ∼ DU(n). 

 
The Mean and Variance of a Discrete Uniform Distribution 
 
The following results are needed to find the expected value and variance of a 
discrete uniform distribution. 
 

1. 
1

( 1)
2

n

x

nx n
=

= +∑    [the sum of n terms of an AP]. 

 

2. 2

1
( 1)(2 1)

6

n

x

nx n n
=

= + +∑ . 

 

Now E(X) = 
1

P( )
n

x
x X x

=

=∑  = 
1

1 n

x
x

n =
∑  = 1 ( 1)

2
n n

n
× +  = 1

2
n +  . 

E(X2) = 
n

2

x=1
P( )x X x=∑  = 2

1

1 n

x
x

n =
∑  = 1 ( 1)(2 1)

6
n n n

n
× + +  = 1 ( 1)(2 1)

6
n n+ +  . 

Var(X) = E(X2) – [E(X)]2 

 = 21 1( 1)(2 1) ( 1)
6 4

n n n+ + − +  

 = 1 ( 1)(4 2 3 3)
12

n n n+ + − −  
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 = 1 ( 1)( 1)
12

n n+ −  

 = 21 ( 1)
12

n −  . 

 
Thus if X ∼ DU(n), 

         E(X) = 1 ( 1)
2

n +  

   and  Var(X) = 21 ( 1)
12

n −  . 

 
Example Let X represent the number obtained when a die is tossed. Find the 

mean and standard deviation of X. 
 

Here P(X = x) = 1
6 ,  x = 1, 2, 3, 4, 5, 6,  i.e., X ∼ DU(6). 

 Therefore E(X) = 1
2 ( 1)n +  = 3.5   and   SD(X) = 21

12 ( 1)n −  = 1.71 . 
 
Hypergeometric Distributions 
 
Suppose a population of size N contains M "good" elements and (N – M) "bad" 
elements. If a sample of size n, selected at random without replacement, 
contains x "good" elements and therefore (n – x) "bad" elements, we can select 

the "good" elements in 
M
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ways, the "bad" elements in 
N M
n x

−⎛ ⎞
⎜ ⎟−⎝ ⎠

 ways and 

the sample itself in 
N
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

 different ways giving a probability = 

M N M
x n x

N
n

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
If X represents the number of "good" elements in our sample, then X is a 
hypergeometric random variable with probability mass function 
 

  ( ) P( )

M N M
x n x

f x X x
N
n

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

,     x = 1, 2, 3, … , n . 

 
If X is a hypergeometric random variable with this probability mass function, 
we write X ∼ Hyp(n, M, N) . 
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Example From a box containing 15 items of which 5 are defective and 10 

are non-defective, a random sample of 4 items is chosen without 
replacement. Find the probability that the selection contains 
exactly 3 non-defective items. 

 
 Here N = 15, M = 10, n = 4, x = 3. 

 The required probability = 

10 5
3 1
15
4

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 40
91

 . 

 
Example Find the mean and variance of X ∼ Hyp(3, 10, 15) . 
 

 P(X = 0) = 
10 5 15
0 3 3

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 = 2
91

 

 P(X = 1) = 
10 5 15
1 2 3

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 = 20
91

 

 P(X = 2) = 
10 5 15
2 1 3

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 = 45
91

 

 P(X = 3) = 
10 5 15
3 0 3

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 = 24
91

 

 E(X) = 0 × P(X = 0) + 1 × P(X = 1) + 2 × P(X = 3) + 4 × P(X = 4) = 2. 
 
 E(X2) = 12 × P(X = 1) + 22 × P(X = 2) + 32 × P(X = 3) + 42 × P(X = 4) = 416

91 . 

 Var(X) = 2416
91 2−  = 4

7 . 
 

Mean and Variance of a Hypergeometric Random Variable X ∼∼ Hyp(n,M,N) 
 

Let p = proportion of "good" elements = M
N

, then the mean and variance of X 

are given by 
       E(X) = np 
 

   Var(X) = (1 )
1

N nnp p
N

−⎛ ⎞− ⎜ ⎟−⎝ ⎠
 . 

     
 
Note: The proofs of these are beyond the scope of this text. 
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Example Calculate the mean and variance of X ∼ Hyp(3, 10, 15) using the 

formulae. 
 
  Here p = 10

15  = 2
3 , n = 3, N = 15 and so E(X) = 2

33×  = 2    and  
  Var(X) = 15 32 1

3 3 15 13 −
−× × ×  = 4

7   (as found in the previous example) . 
 
Exercise 24.4 
 
1. Let X be a discrete uniform distribution with probability mass function 

( )f x  given by ( ) 0.1f x = ,   x = 1, 2, 3, … , 10. 
 (a) Find the mean m and standard deviation s of X. 
 (b) Find P(m – s < X < m + s). 
 
2. (a) Produce the probability distribution table for the random variable 

X ∼ Hyp(4, 10, 20). 

 (b) Find the sum 
4

0
P( )

x
x X x

=

=∑  and write down the value of E(X). 

 (c) Find the sum 
4

2

x=0
P( )x X x=∑  and calculate the value of Var(X). 

 (d) Compare your calculated values of E(X) and Var(X) with those 
found using the given formulae. 

 
3. From a pack of 52 cards, a poker hand of 5 cards is dealt. Let the random 

variable X represent the number of aces in this hand. 
 (a) Find the probability mass function, ( )f x , of X. 
 (b) Use the values of ( )f x  for x = 0, 1, 2, 3, 4 to calculate the 

expected value and variance of X. 
 
4. A box contains ten discs of which three are red. A random sample of 4 

discs is taken without replacement. Find the probability that exactly x of 
the selected discs are red. 

 
5. From a deck of 52 cards, five cards are selected without replacement. Find 

the probability that 
 (a) the fifth card is a King ; 
 (b) exactly one card is a King ; 
 (c) at least one card is a King. 
 
6. A box of 50 items contains 5 defectives. Ten items are chosen one at a time 

without replacement from the box. Find 
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 (a) the expected number of defective items chosen ; 
 (b) the probability that at most two defective items are chosen ; 
 (c) the probability that the number of defective items chosen is more 

than expected. 
 
7. A box contains 20 red marbles and 10 black marbles. Six marbles are 

drawn at random from the box. Let X represent the number of red marbles 
drawn. Find (a)  P(X = 4) ; (b)  P(X ≤ 1) ; (c)  E(X) ; (d)  Var(X). 

 
24.5  Discrete Probability Distributions – Geometric and Negative Binomial 
 
Geometric Distributions 
 
Let X represent the number of Bernoulli trials with probability p needed to 
obtain the first success. 
 
Then P(X = x) = P(the first x – 1 trials were unsuccessful and the xth trial was a 
success). 
 
We can multiply the probabilities of these two events since the trials are 
independent. 
 

Thus  P(X = x) = 1xq p− ×  = 1(1 )xp p −−  ,  x = 1, 2, 3, 4, …   
 
and we write X ∼ Geo(p) . 
 
Example A coin which lands heads with probability p is tossed repeatedly. 

Find formulae for 
 (a) P(exactly 5 heads appear in the first 9 tosses). 
 (b) P(the first head appears on the 7th toss). 

 (a) P(exactly 5 heads appear in the first 9 tosses) = 5 49
(1 )

5
p p

⎛ ⎞
−⎜ ⎟

⎝ ⎠
. 

 (b) P(the first head appears on the 7th toss) = 6(1 )p p− ×  = 6(1 )p p− . 
 

Example If X ∼ Geo(p) prove that P(X > x) = (1 )xp− . 
 

  P(X = x) = 1(1 )xp p −− . 
 Now  P(X ≤ x) =  P(success in first x trials) 
    =  1 – P(no success in the first x trials) 
    =  1 – (1 )xp− ,   and 
           P(X > x) =  1 – P(X ≤ x) = 1 (1 [1 ] )xp− − −  = (1 )xp− . 
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Example If X ∼ Geo(p) prove that ( )P ( ) ( )X a b X a> + >  = P(X > b) . 
 

 ( )P ( ) ( )X a b X a> + >  =  ( )P ( ) ( )
P( )

X a b X a
X a

> + ∩ >
>

 

     =  P( )
P( )
X a b

X a
> +

>
 

     =  (1 )
(1 )

a b

a
p
p

+−
−

 

     =  (1 )bp−  
     =  P(X > b) . 
 
Note: The results of the last examples should be known. 
 
Example A cubic die is tossed until a 'six' appears. If X represents the 

number of tosses needed, find 
  (a) P(X = 6) ; (b) P(X ≤ 6) ; 
  (c) P(X > 6) ; (d) ( )P ( 10) ( 6)X X> > . 
 

 (a) P(X = 6) = 5(1 )p p−  = ( )551
6 6×  = 0.0670 

 (b) P(X ≤ 6) = ( )65
61−  = 0.665 

 (c) P(X > 6) = 1 – 0.665 = 0.335   or   ( )65
6  

 (d) ( )P ( 10) ( 6)X X> >  = P(X > 4) = ( )41
61−  = 0.482 . 

 
Mean and Variance of a Geometric Distribution 
 
In order to find simple formulae for the mean and variance of a geometric 
distribution we note the following results. 
 

1. 1

1

x

x
xq

∞
−

=
∑  = 2

1
(1 )q−

. 

 

 Proof    Let 1S  =  1

1

x

x
xq

∞
−

=
∑   

   = 2 31 2 3 4q q q+ + + +�  
         1qS  =       2 32 3q q q+ + +�  
  1 1S qS−  =  2 31 q q q+ + + +�  
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    1(1 )q S−  =  1
1 q−

   (sum to infinity of a GP) 

  therefore  1S  = 1

1

x

x
xq

∞
−

=
∑  = 2

1
(1 )q−

 . 

 

2. 2 1

1
(1 ) x

x
q x q

∞
−

=

− ∑  = 2
2 1

1(1 ) qq
−

−−
. 

 

 Proof    Let 2S  =  2 1

1

x

x
x q

∞
−

=
∑  

   =  2 31 4 9 16q q q+ + + +�  
         2qS  =        2 34 9q q q+ + +�  
    2(1 )q S−  =  2 31 3 5 7q q q+ + + +�  
   =  2 3 2 32(1 2 3 4 ) (1 )q q q q q q+ + + + − + + + +� �  

   =  1
12

1
S

q
−

−
 

   =  2
2 1

1(1 ) qq
−

−−
 

    
Now if X ∼ Geo(p) then P(X = x) = 1(1 )xp p −−  = 1xpq − ,  x = 1, 2, 3, 4, …  ,  
q = 1 p−  . 
 

E(X) = 
1

P( )
x

x X x
∞

=

=∑  = 1

1

x

x
p xq

∞
−

=
∑  = 1pS  = 2

1
(1 )

p
q

×
−

 = 2
1p
p

×  = 1
p

 

 

E(X2)  =  2

1
P( )

x
x X x

∞

=

=∑  = 2 1

1

x

x
p x q

∞
−

=
∑  = 2pS  = 2(1 )q S−  = 2

2 1
pp

−  

Var(X) = E(X2) – [E(X)]2  =  2 2
2 1 1

pp p
− −  = 2

1 1
pp

−  =  2
1 p

p
−  =  2

q
p

 . 

 

 Thus     1E( )X
p

=  

 and  2Var( ) qX
p

=  . 
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Example What is the least number of tosses of an unbiased 4-sided die 

needed to give at least a 95% chance of obtaining the first 'four' on 
or before the nth attempt? 

 
 Here 1

4p =  and X represents the number of tosses required to produce the 
first 'four'. 

 
 We require the least n for which P(X ≤ n) ≥ 0.95. 
 Then ( )3

41 0.95
n

− ≥  

 ⇒ ( )3
4 0.05

n
≤  

 ⇒ log0.75 log0.05n ≤  

 ⇒ log0.05 10.4
log0.75

n ≥ = , (since log0.75 0< ) and the least n is 11. 

 
Example If X is the random variable described in the previous example, find 

E(X) and Var(X). 
 

 E(X) = 1
p

 = 4  and  Var(X) = 2
1 p

p
−  = 2

0.75
0.25

 = 12. 

 
Negative Binomial Distributions 
 
Let Xr represent the number of Bernoulli trials, with probability of success p, 
needed to obtain the rth success. Suppose we perform the experiment a number 
of times and let 1 represent a success and 0 a failure. The following could 
represent the succession of outcomes: 
   001010000010001 . 
 
In this example we find that X1 = 3, X2 = 5, X3 = 11 and X4  = 15. 
What is P(Xr = n)? 
 
In order to obtain the rth success in exactly n trials, we must obtain exactly 
( 1)r −  successes in the first (n – 1) trials and the nth trial must be a success. 
We multiply these probabilities since the two events are independent. 
 

∴  P(Xr = x) = 11
(1 )

1
r x rx

p p p
r

− −−⎛ ⎞
− ×⎜ ⎟−⎝ ⎠

 = 
1

(1 )
1

r x rx
p p

r
−−⎛ ⎞

−⎜ ⎟−⎝ ⎠
, x = r, r + 1,  … . 

 
If X represents to number of trials needed in order to obtain the rth success, then 
X is a negative binomial distribution and we write X ∼ NB(r, p). 
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Example When A and B play table tennis, A wins on average 3 points out of 

every 5 points played. A 'set' is complete when one player reaches 
11 points. What is the probability that A wins a given set 11 points 
to 7? 

 

 Here 3
5p = , and A must win exactly 10 points of the first 17 and then win 

the 18th point. 

 The required probability = 10 717
(0.6) (0.4) 0.6

10
⎛ ⎞

×⎜ ⎟
⎝ ⎠

 = 0.116 . 

 
Mean and Variance of a Negative Binomial Distribution 
 
If X ∼ NB(r, p) then 

        E(X) = r
p

 

  and  Var(X) = 2
(1 )r p

p
−  = 2

rq
p

 . 

 
Note: The proofs of these results are beyond the scope of this course. 
 
Exercise 24.5 
 
1. If X ∼ Geo(0.2), find 
 (a) P(X = 5) ; (b) P(X < 5) ; (c) P(X > 5) . 
 
2. A marble is taken from an urn which contains 10 red marbles and 5 blue 

marbles and replaced before a second marble is withdrawn. The procedure 
is continued until a red marble appears. Let X represent the number of 
marbles withdrawn. find 

 (a) P(X = 4) ; (b) P(X ≤ 4) ; (c) P(X > 4). 
 
3. A coin which shows heads with probability p is tossed repeatedly. Find 

formulae for 
 (a) P(the first head appears on the 3rd toss) ; 
 (b) P(the first head appears on the 7th toss) ; 
 (c) P(the first head appears on the nth toss). 
 
4. A person is selected at random and asked the month of their birth. Let X be 

the number of people asked until you find one born in December. On 
average, how many people will you need to ask? 
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5. What is the least number of tosses of a standard unbiased die needed to 

give at least a 90% chance of obtaining the first 'six' on or before the nth 
attempt? 

 
6. A fair coin is tossed repeatedly. Find the probability that 
 (a) exactly 3 heads appear in the first 8 tosses ; 
 (b) the 3rd head appears on the 8th toss ; 
 (c) the 1st head appeared on the 8th toss ; 
 (d) there were 5 tails before the 3rd head appeared. 
 
7. An urn contains 8 black discs and 2 white discs. A disc is chosen at random 

and replaced, and this process is continued indefinitely. If X represents the 
number of black discs selected before the first white disc is selected, find 

 (a) P(X = 6) ; (b) P(X > 6) ; (c) E(X). 
 
8. The probability of rain on any day of a week, Sunday to Saturday, is 0.2. 
 (a) What is the probability that it first rains on Wednesday? 
 (b) What is the probability that the 3rd rainy day was Saturday? 
 (c) What is the probability that if it does not rain on the first three days 

of the week, Friday is the first rainy day? 
 
9. The probability that a marksman hits the target at any given attempt is 0.8. 
 (a) Find the probability he first hits the target on the 5th attempt. 
 (b) Find the probability he hits the target for the first time on or before 

the 5th attempt. 
 (c) Find the probability that he hits the target for the third time at his 

8th attempt. 
 
10. Suppose that A and B take it in turns to toss a die with A starting first. 
 (a) Find the probability that A obtains the first '6' on his 6th attempt. 
 (b) Find the probability that B obtains the first '6' on his 6th attempt. 
 (c) Find the probability that A is the first to obtain a '6'. 
 
11. Three people A, B and C play a game by taking it in turns to toss a coin. 

The throwing order is A, B, C, A, B, C, …  and the game continues until a 
head is thrown. Find the probability that C is the first to throw a head. 

 
12. Three people, A, B and C, take it in turns to throw a cubic die which is 

biased in such a way that the probability of obtaining a '6' is p. Person A is 
the first to throw, then B and then C. The process continues until a '6' is 
thrown. If pA , pB and pC are the probabilities that A, B and C respectively 
throw the first '6', find formulae for pA , pB and pC , and show that pA + pB + 
pC = 1 for all p. Find also the value of p if pA = 4pC . 
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13. Two people, A and B, have coins with probabilities pA and pB of obtaining a 

head. They toss their coins independently and at the same times. 
 (a) What is the probability that it takes A more than n tosses to obtain a 

head? 
 (b) What is the probability that the first person to obtain a head has to 

toss more than n times? 
 (c) What is the probability that the first person to obtain a head has to 

toss exactly n times? 
 
24.6 Exponential Distributions 
 
There are many examples of continuous random variables which are best 
represented by some exponential distribution of a random time. 
 
Some examples are: 
1. The lifetime of an individual picked at random from a biological 

population. 
2. The decay time of a radioactive nucleus. 
3. The length of time a patient survives after an operation. 

 
Such random variables are considered to have values in the interval [ 0, ∞ [. We 
assume the distribution of a random time T is defined by a probability density 
function ( )f t , 0 t≤ < ∞ , such that 

      P( ) ( ) d
b

a
a T b f t t< < = ∫  . 

 
A random time T has an exponential distribution with rate λ > 0 if T has 
probability density 
    ( ) e tf t −λ= λ  ,   t ≥ 0 . 
 
We write T ∼ Exp(λ) . 
 

Thus P( )a T b< <   =  e  d
b t
a

t−λλ∫   =  e
bt
a

−λ⎡ ⎤− ⎣ ⎦   =  e ea b−λ −λ−  . 

 
Before we derive E(T) and Var(T) we show using integration by parts that 
 

 
0

e  dtt t
∞ −λ∫   =  2

1
λ

   and   2
0

e  dtt t
∞ −λ∫   =  3

2
λ

 

 
as follows: 
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0
e  dtt t

∞ −λ∫  =  
0

0

1 1e e  dt tt t
∞

∞−λ −λ⎡ ⎤− +⎢ ⎥λ λ⎣ ⎦ ∫  

 =  ( ) ( )2
1 1lim e 0 lim e 1b b

b b
b − λ − λ

→∞ →∞
− − − −

λ λ
 

 =  2
1 1(0) (1)− −
λ λ

 

 =  2
1

λ
. 

 

2
0

e  dtt t
∞ −λ∫  =  2

0
0

1 2e e  dt tt t t
∞

∞−λ −λ⎡ ⎤− +⎢ ⎥λ λ⎣ ⎦ ∫  

 =  0  +  2
2 1⎛ ⎞

⎜ ⎟λ λ⎝ ⎠
 

 =  3
2

λ
 . 

 

Now E(X) =  
0

e  dtt t
∞ −λλ∫   =  2

1
λ ×

λ
  =  1

λ
 , 

       E(X2) = 2
0

e  dtt t
∞ −λλ∫  = 3

2
λ ×

λ
 = 2

2
λ

 , 

     Var(X) =  E(X2) – [E(X)]2  =  2 2
2 1

−
λ λ

  =  2
1

λ
 . 

 
Thus if X ∼ Exp(λ), then 

       E(X) = 1
λ

 

   and Var(X) = 2
1

λ
 . 

 

Example Suppose that X ∼ Exp(λ).  Prove that P(X > x) = e x−λ . 
 

P(X > x) =  e  dt
x

t
∞ −λλ∫   =  e t

x

∞−λ⎡ ⎤− ⎣ ⎦  =  ( )e lim ex b

b

−λ −λ

→∞
−  = e x−λ . 

 
Example Suppose the average lifetime of a particular kind of transistor is 

100 hours and that the lifetime distribution is approximately 
exponential. Estimate the probability that a given transistor will 
work for at least 50 hours. 
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Let X ∼ Exp(λ) where λ = 1
100

 = 0.01. 

 We require  P(X > 50) =  50e− λ    =  0.5e−   =  0.606 . 
 
Example A continuous random variable T ∼ Exp(λ). 
 Prove that P(T > t1 + t2 ⏐ T > t1) = P(T > t2). 
 

 P(T > t1 + t2 ⏐ T > t1) =  1 2

1

P( )
P( )
T t t

T t
> +

>
  =  

1 2

1

( )e
e

t t

t

−λ +

−λ   =  2e t−λ   =  P(T > t2). 

 
Example The decay time T of a radioactive nucleus is T ∼ Exp(λ). 

 Show that the half-life of the material is ln 2
λ

 . 

 
The half-life is the time taken for half of the original amount of material to 
decay. 
 
Thus the half-life, 1 2t , is such that 1 2P( )T t≤  =  1 2P( )T t>  

 ⇒   1 21 e t−λ−  =  1 2e t−λ  

 ⇒       1 2e t−λ  =  1
2

 

 ⇒      1 2t−λ  =  ln 2−  

 ⇒           1 2t  =  ln 2
λ

 . 

 
Exercise 24.6 
 
1.  The random variable T ∼ Exp(0.02).  Find: 

(a) P(T < 30) ; (b) P(T ≥ 55) ; (c) P(30 < T < 50). 
 

2. The random variable T ∼ Exp(0.01).  Find: 
  (a) E(T) ;  (b) P(T < E(T)) ; (c) P(T > 3E(T)). 
 
3. The random variable T ∼ Exp(0.1).  Find the value of t given that 
  (a) P(T > t) = 0.4 ;  (b) P(T < t) = 0.85 . 
 
4. The random variable T ∼ Exp(λ).  Find the value of λ given that 
  (a) P(T > 10) = 0.449 ; (b) P(T < 100) = 0.3935 . 
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5. The random variable T has an exponential distribution with parameter λ. 

Find the value of λ if 
  (a) P(T > 150) = 0.12 ;  (b) P(T < 65) = 0.45 . 

 
6. The average lifetime, T, of a certain type of battery is 200 hours and the 

lifetime distribution is approximately exponential. 
  Find: 
  (a) P(T > 300) ; (b) P(T < 100) ; (c) P(180 < T < 240). 
 
7. The average survival period after a given surgical procedure is 20 years. If 

the distribution of the survival period is approximately exponential, find 
the probability that a patient who has undergone this procedure lives a 
further 25 years or more. 

 
8. The decay time, T years, of a certain radioactive material is approximately 

exponential. Find E(T) given that the half-life of the material is 100 years. 
 
9. The decay time, T years, of a radioactive nucleus is T ∼ Exp(0.001). 
  Find: 

(a) the half-life, 1 2t , of the material ; 
  (b) P(T > 1 2t ) ; 

(c) P( 1 2t  – 100 < T < 1 2t  + 100) . 
 
10. A continuous random variable T ∼ Exp(0.06). 
  Calculate: 
  (a) P(T > 20) ;   (b) P(T > 15) ; 
  (c) P((T > 20) ⏐ (T > 15)) . 
 
24.7 An Introduction to Sampling 
 
In the lead-up to the election of politicians to sit in the next parliament, the main 
parties try to keep track of their 'popularities'. They need to know just how 
likely they are to win the forthcoming election so that beneficial strategies can 
be put in place. Since it is not viable, on economic grounds, to ask every elector 
in the population just how they intend to vote, a smaller sample of the 
population is approached and the results obtained used to estimate the 
population's overall intention. 
 
Providing that the sample is fully representative of the population as a whole, 
the parties can draw conclusions regarding the voting trends of the entire 
population. From the data collected in a sample, we can calculate sample 
parameters such as the mean and standard deviation. These can then be used to 
estimate the population parameters. 
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Such sampling procedures should avoid the introduction of bias. Also, it is 
important that care is taken with the method of selection of the sample – the 
sample should be taken at random. 
 
The size of the sample is also important. Information gained by selecting a 
single member of the population is not of much use. The more samples 
collected, the more reliable are the parameter estimates. 
 
From sample data we can calculate the sample mean and the sample standard 
deviation known as point estimates of the corresponding population parameters. 
But what about the mean and standard deviation of the population as a whole? 
How can these be estimated without introducing a bias? 
 
Definition A statistic is a function of a random sample 1 2 3, , , , nX X X X�  

taken from a population. 
 

The sample mean is 
1

1 n

i
i

X X
n =

= ∑  and the sample variance is 

( )22

1

1 n

i
i

S X X
n =

= −∑ .   These are estimators of the population mean, μ, and the 

population variance, 2σ . 
 
Unbiased Estimators 
 
The standard deviation of a sampling distribution of a statistic is called the 
standard error. 
 
Consider the following proofs which give the mean and variance of the 

distribution 
1

1 n

i
i

X X
n =

= ∑  where each sample is taken from a population with 

mean μ and variance 2σ . 
 

   ( )E X  =  
1

1E
n

i
i

X
n =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

 =  ( )1 2 3
1 E nX X X X
n

+ + + +�  

 =  ( ) ( ) ( ) ( ){ }1 2 3
1 E E E E nX X X X
n

+ + + +�  

 =  { }1 n
n

μ  =  μ . 
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( )Var X  =  
1

1Var
n

i
i

X
n =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

 =  ( )1 2 32
1 Var nX X X X
n

+ + + +�  

 =  ( ) ( ) ( ) ( ){ }1 2 32
1 Var Var Var Var nX X X X
n

+ + + +�  

 =  { }2
2

1 n
n

σ  

 =  
2

n
σ . 

 
Therefore the mean of the sampling distribution is equal to the population mean 
and the standard error of the mean is equal to nσ . 
 
Clearly, the standard error decreases as the number of samples taken increases. 
Also, the smaller the standard error, the more reliable is the sample mean as an 
estimate of the population mean. 
 
An estimator is said to be unbiased if the mean of the estimator is equal to the 
corresponding population parameter. 
 

We have shown that ( )E X = μ  and so X  is an unbiased estimator of μ.  
 

Now ( )2 2E S ≠ σ  and so 2S  is not an unbiased estimator of 2σ . 
 
Consider the following: 

 

  ( )2E S  =  ( )2

1

1E
n

i
i

X X
n =

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑  

 =  ( )22

1

1 E 2
n

i i
i

X X X X
n =

⎧ ⎫
− +⎨ ⎬

⎩ ⎭
∑  

 =  
22

1 1

1 E 2
n n

i i
i i

X X X nX
n = =

⎛ ⎞
− +⎜ ⎟

⎝ ⎠
∑ ∑  

 =  
2 22

1

1 E 2
n

i
i

X nX nX
n =

⎛ ⎞
− +⎜ ⎟

⎝ ⎠
∑  

 =  
22

1

1 E
n

i
i

X nX
n =

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑  
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 =  ( ) ( )22

1

1 E E
n

i
i

X n X
n =

⎧ ⎫
−⎨ ⎬

⎩ ⎭
∑  

 =  
2

2 2 21 ( )n n
n n

⎧ ⎫⎛ ⎞σ⎪ ⎪σ + μ − + μ⎨ ⎜ ⎟⎬
⎪ ⎪⎝ ⎠⎩ ⎭

 ( ) { }22E( ) Var E( )Y Y Y⎡ ⎤= +⎣ ⎦  

 =  
2

2 2 2

n
σ

σ + μ − − μ  

 =  21n
n
−

σ . 

If we let 2 2 2 2
1 E E( )

1 1n
n ns S S

n n−
⎛ ⎞= = = σ⎜ ⎟− −⎝ ⎠

, then 1 1 1n n
n ns S s

n n− = =
− −

 

is an unbiased estimate of σ and nS s=  is the standard deviation of the sample. 
 
The most efficient estimator of a population parameter is one which is unbiased 
and has the smallest possible variance. 

 

Example A distribution has a known mean, μ, and variance, 2σ . 1X  and 

2X  is a random sample of two independent observations taken 

from the population. Given that 1 2
1 2

X XY +
=  and 1 2

2
2

3
X XY +

=  

are two estimators for μ, show that both 1Y  and 2Y  are unbiased 
and determine which of them is the more efficient. 

 

     1E( )Y  =  1 2E
2

X X+⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  =  { }1 2
1 E( ) E( )
2

X X+  

  =  1 (2 )
2

μ  

  =  μ. 
 

     2E( )Y  =  1 22E
3

X X+⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  =  1 2
1 2E( ) E( )
3 3

X X+  

  =  1 2
3 3

μ + μ  

  =  μ. 
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  Therefore both 1Y  and 2Y  are unbiased estimators for μ. 

  1Var( )Y  =  1 2Var
2

X X+⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  =  1 2
1 Var( )
4

X X+  

  =  { }1 2
1 Var( ) Var( )
4

X X+  

  =  21 (2 )
4

σ  

  =  21
2

σ . 

 

 2Var( )Y  =  1 22Var
3

X X+⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  =  1 2
1 Var( 2 )
9

X X+  

  =  { }1 2
1 Var( ) 4Var( )
9

X X+  

  =  2 21 ( 4 )
9

σ + σ  

  =  25
9

σ . 

 Clearly 1Var( )Y  < 2Var( )Y  and so 1Y  is the more efficient. 
 
Exercise 24.7 
 
1. In each of the following, find the best unbiased estimates of the mean and 

variance of the population from which the sample was taken. 
 (a) 18, 20, 21, 18, 22, 19, 19, 23 ; (b) 49, 59, 54, 57, 50, 55 ; 
 (c) 110, 105, 98, 112, 102, 104, 99, 96, 109, 101. 
 
2. In each of the following, find the best unbiased estimates of the mean and 

variance of the population from which the sample was taken. 
 (a) 

X 5 6 7 8 9 10 
F 6 16 20 27 19 12 

 
  (b)  

X 51 52 53 54 55 56 57 58 
F   3   9 16 28 29 24 17   7 
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3. The following grouped frequency tables are samples from larger 

populations. Find unbiased estimates of the mean and standard deviation of 
each population from which the sample was taken. 

 
 (a)     (b) 
  Interval  Frequency  Interval           Frequency 
    1 – 10           5       0 –          43 
  11 – 20           8     10 –          58 
  21 – 30         12     20 –        129 
  31 – 40         16     30 –        218 
  41 – 50         15     40 –        325 
  51 – 60           4     50 –        528 
         60 –        456 
         70 –        235 
         80 –        102 
         90 –          38 
 
4. Bags of sugar are filled by machine. A sample of 10 bags selected at 

random have masses (in kilograms) of 
  1.02 0.99 1.03 1.01 1.02 
  0.98 1.01 1.04 0.98 1.01 
 Calculate unbiased estimates of the mean and variance of the population 

from which this sample was taken. 
 
5. A distribution has a known mean, μ, and variance, 2σ . 1X , 2X , 3X  is a 

random sample of three independent observations taken from the 

population. Given that 1 2 3
1 3

X X XY + +
=  , 1 2 3

2
2 3

6
X X XY + +

= , 

1 2 3
3

2
3

X X XY + +
=  are three estimators for μ, determine which of them 

are unbiased and which of any unbiased estimators is the most efficient. 
 
 
24.8 Interval Estimates and Confidence 
 
Point estimates give only a single numerical approximation to a population 
parameter. Interval estimates give a much more useful estimate of the accuracy 
of any such approximation. 
 
An interval estimate of an unknown population parameter is an interval which 
has a given probability of including the parameter. 
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If we can find an interval (a, b) such that P(a < λ < b) = 0.95 for an unknown 
parameter λ, we can say that (a, b) is a 95% confidence interval for the 
parameter λ. Here we have the probability that the interval includes λ is 0.95, 
which is not the probability that λ lies in the interval. 
 
The Central Limit Theorem 
 
If X is a random variable with mean μ and standard deviation σ which is not 

normally distributed, then 
2

N ,X
n

⎛ ⎞σ
μ⎜ ⎟

⎝ ⎠
∼  for large values of n (n ≥ 30). 

 
If X is normally distributed with mean μ and standard deviation σ, i.e., 

2N( , )X μ σ∼ , then 
2

N ,X
n

⎛ ⎞σ
μ⎜ ⎟

⎝ ⎠
∼  for any n. 

 
[The proof of this theorem is beyond the scope of this text.] 

 

Standardising X  we have XZ
n

− μ
=

σ
 where Z ∼ N(0, 1). 

From tables (or a GDC) we know that P(–1.96 ≤ Z ≤ 1.96) = 0.95. 
 

 
 

 

Thus P 1.96 1.96 0.95X
n

⎛ ⎞− μ
− ≤ ≤ =⎜ ⎟⎜ ⎟σ⎝ ⎠

. 

⇒ P 1.96 1.96 0.95X
n n

σ σ⎛ ⎞− ≤ − μ ≤ =⎜ ⎟
⎝ ⎠

 

⇒   P 1.96 1.96 0.95X X
n n

σ σ⎛ ⎞− − ≤ −μ ≤ − + =⎜ ⎟
⎝ ⎠

 

⇒   P 1.96 1.96 0.95X X
n n

σ σ⎛ ⎞− ≤ μ ≤ + =⎜ ⎟
⎝ ⎠

. 

 
 

2.5% 2.5% 

–1.96 –1.96 
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Thus the 95% confidence interval for μ is 1.96 , 1.96X X
n n

σ σ⎛ ⎞− +⎜ ⎟
⎝ ⎠

 which 

is often written as 1.96X
n

σ
± . 

 
If x  is the mean of a random sample of size n taken from either 
(a) a normal population with known standard deviation σ,  or 
(b) any population with known standard deviation σ where 30n ≥ ,  

then a 95% confidence interval for μ is given by 

   1.96 1.96 , 1.96x x x
n n n

σ σ σ⎛ ⎞± = − +⎜ ⎟
⎝ ⎠

. 

 
Example A sample of 16 values of a normal random variable with standard 

deviation 2 is: 
      8.6   10.2     9.5     9.8   10.0     8.8     9.2   10.8 
    10.5     9.9   10.2     8.6   10.4     9.2     9.7     9.5 
 Calculate a 95% confidence interval for the mean value μ of the 

variable. 
 
 Let X represent the variable. 
 n = 16, x  = 9.68 (from a GDC) and X ∼ N(μ, 4). 
 A 95% confidence interval for the mean value μ of the variable is 

1.96x
n

σ
±  = 29.68 1.96

16
±  = 9.68 0.98±  = (8.70, 10.66). 

 
Example The lengths of a random sample of 100 steel rods produced in a 

manufacturing process are measured and the mean length is found 
to be 1.24 metres. If the lengths of the rods are normally distributed 
with a standard deviation of 0.04 metres, find a 99% confidence 
interval for the population mean. 

 
 Note that if P(Z > 1z ) = P(Z < – 1z ) = 0.005, then z1 = 2.5758. 
 Let X represent the lengths of the rods, then X ∼ N(μ, 20.04 ). 
 
 For a random variable with n = 100 and x  = 1.24, a 99% confidence 

interval for the population mean μ is 

    2.5758x
n

σ
±  = 0.041.24 2.5758

10
± ×  = (1.23, 1.25). 
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Example The 95% confidence interval for the mean of a normally distributed 

random variable X on the basis of a random sample of 64 
measurements was found to be (146.54, 149.48). Find the mean x  
of the sample and the standard deviation σ of the population from 
which this sample was taken. 

 

 The 95% confidence interval is 1.96x
n

σ
±  = (146.54, 149.48). 

 Thus 1.96 149.48
8

x σ
+ =    ………………….(i) 

 and 1.96 146.54
8

x σ
− =    ………………….(ii). 

 Adding (i) and (ii) gives 2 296.02x =  and so 148.0x = . 

 Subtracting (ii) from (i) gives 2(1.96) 2.94
8
σ

=  and so 4 2.94 6
1.96
×

σ = = . 

 
Choosing the Sample Size 
 
When collecting data, a user of statistics should also plan the inference. It is 
possible to have both high confidence and a small margin of error. The margin 

of error of the confidence interval x z
n

σ
±  for a normal mean is z

n
σ  . For a 

margin of error equal to m we have 
2zz m n

mn
σ σ⎛ ⎞= ⇒ = ⎜ ⎟

⎝ ⎠
. 

 
Example The random variable X is normally distributed with mean μ and 

standard deviation 4.0. A symmetrical 95% confidence interval for 
μ with a width which is less than 1 is required. Find the size of the 
smallest sample needed to achieve this. 

 

 X ∼ N(μ, 24.0 ) 
 The desired margin of error is m = 0.5. 

  The sample size required is n = 
21.96 4

0.5
×⎛ ⎞

⎜ ⎟
⎝ ⎠

 =  245.9. 

 The size of the smallest sample is 246. 
 
 
Confidence Intervals for the Proportion of Successes in a Population 
 
Let p be the proportion of "successes" in a random sample of size n from a 
population where the proportion of successes in the population is π. 
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Then the distribution of P, the proportion of successes in the sample, has a 

mean of π and a variance of (1 )
n

π − π . 
 

In order to calculate a confidence interval for the population parameter π, we 
estimate the standard error using the point estimate p. Thus if π is unknown, the 

standard error of a proportion is (1 )p p
n
−  where p is the point estimate of π. 

Thus the 95% confidence interval for the population proportion is given by 

 (1 ) (1 )1.96 , 1.96p p p pp p
n n

⎛ ⎞− −
− +⎜ ⎟⎜ ⎟

⎝ ⎠
 . 

 
Example A random sample of 100 items from a large number contained 15 

defective ones. Find: 
(a) a 95% confidence interval ; 
(b) a 99% confidence interval 
for the proportion of defective items in the complete batch. 
 

 p = 0.15,  n = 100 
(a) The 95% confidence interval for the proportion π is given by 

   (0.15)(0.85) (0.15)(0.85)0.15 1.96 , 0.15 1.96
100 100

⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎝ ⎠
 

= (0.0800, 0.220) . 
 

(b) The 99% confidence interval for the proportion π is given by 

   (0.15)(0.85) (0.15)(0.85)0.15 2.576 , 0.15 2.576
100 100

⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎝ ⎠
 

=  (0.0580, 0.242) . 
 

Example Of a random sample of 80 train commuters of their way to work, 
28 said they bought a newspaper to read on the train. A similar 
survey of a random sample of 100 commuters on their way home 
from work, 45 said they bought a newspaper to read on the train. 
Find 95% approximate confidence limits for the true proportion of 
all train commuters who buy a newspaper to read on the train. 

 
 On the basis of these surveys, is there any evidence that more 

commuters bought a newspaper to read on the way home from 
work than on the way to work? 
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 Let π1 be the true proportion of commuters who buy a newspaper on the 

way to work. In the sample of 80, p1 = 28
80  = 0.35. 

 

 The 95% confidence interval for π1 is p1 ± 1.96 (0.35)(0.65)
80

 

           = (0.245, 0.455). 
 
 Let π2 be the true proportion of commuters who buy a newspaper on the 

way home from work. In the sample of 100, p2 = 45
100  = 0.45. 

 

 The 95% confidence interval for π2 is p2 ± 1.96 (0.45)(0.55)
100

 

           = (0.352, 0.548). 
 
 These confidence intervals overlap so it is possible that π1 > π2, e.g., 

π1 = 0.44 and π2 = 0.38. 
 
 There is not sufficient evidence to suggest that more commuters bought a 

newspaper on the way home than on the way to work. 
 

Exercise 24.8 
 
1. A sample of size 16 is drawn from a normal population with standard 

deviation 5. The sample mean is 30. Calculate 90%, 95% and 98% 
confidence intervals for the population mean. 

 
2. A sample of size 36 is drawn from the population given in Question 1. Do 

you expect the confidence intervals found to be larger or smaller? 
Calculate the new confidence intervals for the population mean to verify 
your answer. 

 
3. Find a 95% confidence interval for a population mean μ given a population 

standard deviation σ, sample size n and sample mean x  in each of the 
following: 

 (a) n = 25, x  = 25.2, σ = 1.85 ; 
 (b) n = 64, x  = 3.42, σ = 0.214 ; 
 (c) n = 120, x  = 155, σ = 70.2. 
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4. Find a 99% confidence interval for a population mean μ given a population 

variance of 2σ , a sample of size n and a sample mean x  in each of the 
following: (a) n = 35, x  = 0.23, 2σ  = 0.052 ; 

    (b) n = 50, x  = 35.2, 2σ  = 20.4 ; 
    (c) n = 120, x  = 345, 2σ  = 210. 
  
5. The mean waiting time for 100 people at a bus stop is 16 minutes. If the 

population standard deviation is 3 minutes, find a 95% confidence interval 
for the population mean waiting time. 

 
6. The masses of a sample of 200 packets of cereal are measured and the 

mean mass is found to be 502 g with a standard deviation of 2.4 g. Find a 
98% confidence interval for the mean mass of packets of cereal. 

 
7. A random sample of n measurements is taken from a Normal population 

with unknown mean μ and standard deviation σ = 20. Find the size of the 
sample required to give 

 (a) a 90% ;  (b) a 95% ;  (c) a 99% 
 confidence interval of width 2. 
 
8. The following is a random sample of 30 measurements taken from a 

normal population. 
   22   25   19   21   24   27   20   19   22   22 
   24   26   21   18   23   23   21   27   21   25 
   18   23   24   21   19   22   28   23   21   26 

Find 
(a) a 90% confidence interval ; 
(b) a 95% confidence interval ; 
(c) a 99% confidence interval 
for the population mean μ. 

 
9. A manufacturer wants to estimate the proportion of defective items 

produced by a given machine. In a random sample of 400 items, 32 were 
found to be defective.  Calculate: 
(a) a 95% confidence interval ; 
(b) a 99% confidence interval 

  for the proportion of defective items in the complete batch. 
 
10. A marketing survey was designed to test whether or not people can tell the 

difference between the taste of butter and margarine. Of the 200 who were 
given the test, 152 could not tell the difference. Calculate a 99% 
confidence interval for the proportion of people who could taste the 
difference. 

 



Chapter 24 

624 

 
11. In an opinion poll, 540 out of 1200 people interviewed stated that they 

support the current government. Calculate a 95% confidence interval for 
the proportion of the population supporting the government. 

 
12. You are planning a survey of the starting salaries for recent science 

graduates from university. From a pilot study you estimate that the 
standard deviation is about $8000. What sample size do you need to have a 
margin of error of $500 with 95% confidence? If the margin of error is 
$1000, will the required sample size be larger or smaller? What is the 
required new sample size? 

 
13. The random variable X is normally distributed with mean μ and standard 

deviation 10. A symmetrical 98% confidence interval for μ with a width 
which is less than 2 is required. Find the size of the smallest sample needed 
to achieve this. 

 
*14. The point (x, y) is chosen at random on or in the unit square. [The square 

with vertices (0, 0), (1, 0), (1, 1), (0, 1).] 
(a) Find the proportion, p, of points which also lie in the unit circle. 

  (b) If 1000 points are chosen and 784 lie in the unit circle, find an 
unbiased estimate for p. 

  (c) Calculate the standard error of your estimate. 
  (d) Find a 90% confidence interval for p. 
  (e) Find a 90% confidence interval for the value of π estimated  from 

the data given in part (b). 
  (f) Show that approximately 290 000 points need to be selected in 

order to be 90% certain of obtaining a value for π with an error of 
less than 0.005. 

 
24.9 Significance Testing 
 
Any point estimate of a population parameter almost always differs from its 
expected value. If the difference is too large it may be that the true value of the 
population parameter differs from its expected value. We use significance 
testing to decide whether or not an assumption about a population parameter is 
true or not. 
 
The first step requires that we make a statistical hypothesis about the population 
parameter or parameters. This may take the form of : "The mean of the 
population is 20", or "Two population means are equal", etc. This hypothesis is 
called the null hypothesis and is denoted by 0H . 
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In order to test this hypothesis, we perform a statistical test based on 
observations made from random samples taken from a population. The results 
of this test may suggest that we should reject 0H  in favour of an alternative 
hypothesis denoted by 1H . This may take the form of : "The mean of the 
population is not 20", or "The two population means are not equal", etc. 
 
Suppose we wish to test whether an observed sample mean taken from a normal 
population of known standard deviation is significantly different from the 
assumed population mean. We must first decide upon the level of significance 
of our test. Suppose we choose a 5% level of significance. If 0H  is true, 95% of 
sample means will lie in the interval 

 1.96 , 1.96
n n

σ σ⎛ ⎞μ − μ +⎜ ⎟
⎝ ⎠

. 

The interval for the corresponding standard normal distribution is (–1.96, 1.96). 
 
This leaves a 5% chance that a sample mean lies outside this interval, in which 
case we should reject 0H  in favour of 1H . 
 
 

 
 

To reject 0H  at the 5% level of significance, the sample mean lies in one of the 
two tails of the normal distribution curve called the critical region. (See 
diagram above.) The values at the boundaries of the critical region are called the 
critical values. This test is called a two-tailed test. 
 
A one-tailed test is required if 1H  suggests a definite increase or a definite 
decrease in the population mean. For example, we could test 
 (a) 0H : μ = 20 
  1H  : μ < 20 
for a definite decrease in μ,  or 
 (b) 0H : μ = 20 
  1H  : μ > 20 
for a definite increase in μ. 

–1.96 1.96 

0.025 0.025 

critical 
region 

critical 
values 
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For a 5% level of significance, the rejected region is a 5% tail on one side only. 
For test (a) we have: 

 

     
 

and for test (b) we have: 
 

     
 
 

 
The Test Statistic 
 
For a population with known variance σ2, the test statistic for the difference 

between the sample mean x  and the population mean μ is xz
n

− μ
=

σ
. 

 
If p is the proportion of "successes" in a random sample of size n from a 
population where the proportion of successes in that population is π, the 
distribution of the proportions of successes has a standard error (1 )p p n−  

and the test statistic is 
(1 )
pz

p p n
− π

=
−

. 

 
Example A normal distribution with known standard deviation 3 is thought 

to have a mean of 20. A random sample of 16 items from this 
distribution gives a sample mean of 18.5. At the 5% level of 
significance, does this support the view that the population mean is 
20? 

 
  H0 :  μ = 20 
 H1 :  μ ≠ 20 
 The critical values of the test statistic are ± 1.96. 
 
 

0.05 

critical 
region 

–1.645 

0.05 

critical 
region 

1.645 
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 The test statistic is  z =  x
n

− μ
σ

 

  =  18.5 20
0.75

−  

  =  –2 . 
  
  Clearly z lies in the critical region so the evidence does not support the 

view that the population mean is 20. 
 
Example A die is thrown 300 times and 64 'sixes' were observed. Test at the 

1% level of significance whether this result provides evidence that 
the die is biased towards a 'six'. 

 
 Let π be the proportion of 'sixes' in the whole population. 
 H0 :  π = 1

6  
 H1 :  π > 1

6  
 

 The proportion of 'sixes' on the sample is p = 64
300  = 0.2133. 

 The standard error is (1 )
n

π − π  =  (1)(5)
(36)(300)

 = 0.02152 . 

 For a 1%  level of significance the critical value is 2.326. The test statistic 

is 0.2133 0.1667 2.165
0.02152(1 )

pz
n

− π −
= = =

π − π
. 

 As z is less than the critical value there is no evidence that the die is biased 
towards a 'six'. 

 
The most common levels of significance are 5% which is deemed to be 
significant,  1% which is deemed to be very significant and 0.1% which is 
deemed to be highly significant. The test statistic Z is from a standard normal 
distribution. For these levels of significance, the critical values are as follows: 

 
Level of significance Two-tailed Test One-tailed Test 
Significant (5%)      ±1.960 1.645  or  –1.645 
Very Significant (1%)      ±2.576 2.326  or  –2.326 
Highly Significant (0.1%)      ±3.291 3.090  or  –3.090 

 
Example Consider a normal distribution N( , 25)X μ∼ . A value is selected at 

random from the population and is found to be 55. Test at the 5% 
level of significance whether the population mean μ could be 64. 
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 We must first state the null and alternative hypotheses. 

  0H  : μ = 64 
  1H  : μ ≠ 64. 

 We test at the 5% level using the test statistic xz − μ
=

σ
 and 0H  is rejected 

if 1.96z > . 

 Now 55 64 1.8
5

xz − μ −
= = = −

σ
 and since 1.96z < , we do not reject 0H  

and conclude that at the 5% level of significance, the population mean 
could be 64. 

 
Example A normal distribution has a standard deviation of 5 but an 

unknown mean, μ. A random sample of 16 items from this 
distribution gives a sample mean of 32.8. Test at the 5% level of 
significance whether the population mean could be 30. 

 
 0H  : μ = 30 
 1H  : μ ≠ 30 

 The test statistic is xz
n

− μ
=

σ
 and we reject 0H  if 1.96z > . 

 Now 32.8 30 2.24
5 4

xz
n

− μ −
= = =

σ
 and so 1.96z > . 

 Hence we reject 0H  and conclude that there is significant evidence at the 
5% level to suggest that the population mean is not 30. 

 
Example A gardener knows from experience that the masses of cabbages 

grown under standard conditions are normally distributed with 
mean 0.78 kg and standard deviation 0.2 kg. He decides to try a 
new fertiliser, and when he weighs a random sample of 90 
cabbages from the treated crop, he finds that their mean mass is 
0.83 kg. Is there sufficient evidence at the 1% level that the 
fertiliser did provide a general increase in the masses of the 
cabbages? 

 
 0H  : μ = 0.78 
 1H  : 0.78μ >   (a one-tailed test). 
 
 Let X be the random variable representing the masses of cabbages. Then 

( )2N 0.78, 0.2X ∼ . 
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The test statistic is xz
n

− μ
=

σ
 and so 0.83 0.78 2.372

0.2 90
z −

= =  which lies in 

the critical region since z > 2.326. 
  

Therefore we reject 0H  and conclude that at the 1% level of significance, 
the fertiliser did seem to increase the masses of the cabbages. 

 
Type I and Type II Errors 
 
When conducting a significance test we may encounter two possible errors. 
 
Type I A Type I error is made if we reject H0 when it is true. The 

probability of this error is the same as the level of significance. 
 
Type II A Type II error is made if we accept H0 when it is false. This error 

is not constant as with a Type I error but is dependent on which 
alternative hypothesis is actually true. 

 
The following diagram represents these errors. 
 

 
 
 

 C1 and C2 are the critical values for H0. 
 
Example A box is known to contain either H0 : 10 white counters and 90 

black counters or H1 : 50 white counters and 50 black counters. In 
order to test hypothesis H0 against hypothesis H1, four counters are 
drawn at random from the box without replacement. If all four 
counters are black, H0 is accepted. Otherwise it is rejected. Find the 
probability of a Type I error and the probability of a Type II error. 

 
  H0 is accepted if all four counters are black. 
 
  P(Type I error) =  P(H0 is rejected ⏐ H0 is true) 
  =  P(at least one white ⏐ there are10 white and 90 black) 
  =  1 – ( )( )( )( )90 89 88 87

100 99 98 97  
  =  0.348 . 
 

C1 H0 H1 C2 

Type I 
error 

Type II 
error 
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  P(Type II error) =  P(H0 is accepted ⏐ H1 is true) 
  =  P(all four are black ⏐ there are 50 white and 50 black) 
  =  ( )( )( )( )50 49 48 47

100 99 98 97  
  =  0.0587. 
 
Exercise 24.9 
 
1. A random variable X is normally distributed with unknown mean and 

known standard deviation 4. A random sample of 36 values of X had a 
mean of 22.5. Test at the 5% level of significance whether the population 
mean μ could be 25. 

 
2. A machine produces washers whose internal diameters are normally 

distributed with mean 8.0 mm  and standard deviation 0.05 mm . A random 
sample of 100 washers is found to have a mean internal diameter of 
7.9 mm . Does the machine need adjusting? (Test at the 5% level of 
significance.) 

 
3. Experience has shown that a standardised test administered to all Year 12 

students produces results which are normally distributed with a mean of 60 
and a standard deviation of 6. When the test was administered to a random 
group of 100 students in Year 12, the mean score was 58.5. Is there 
sufficient evidence, at the 1% level, that these students did not perform as 
well as expected? 

 
4. A variable, X, with known variance of 28 is thought to have a mean of 65. 

A random sample of 64 independent observations of X has a mean of 63.8. 
Is there evidence that the mean is not 65 at 

 
 (a) the 10% level of significance ; 
 (b) the 5% level of significance ; 
 (c) the 1% level of significance? 
 
5. The masses of mass-produced components in a manufacturing process are 

normally distributed with variance 24.5 g . In order to check on the 
accuracy of this process, a random sample of 36 components is weighed 
and the mean mass is calculated. Find the interval in which the value of the 
sample mean must lie so that the hypothesis 0H  :  "The production mean is 
20.5 g ", will not be rejected at the 

 (a) 5% level ; (b) 1% level ; (c) 0.1% level. 
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6. The proportion of defective items produced by a machine is thought to be 

0.05. In a random sample of 200 items 15 were found to be defective. Does 
this provide evidence at the 5% level of significance that the machine is 
producing more defective items than expected? 

 
7. The recovery rate from a particular disease is 60%. When a new drug was 

tried out on 100 patients who suffered from this disease, 65 of the patients 
recovered. Test at the 5% level of significance whether this new drug is 
effective. 

 
8. A bag is known to contain either 3 red balls and 7 black balls or 6 red balls 

and 4 black balls. 
Let  H0 : bag contains 3 red and 7 black balls,  and 
      H1 : bag contains 6 red and 4 black balls. 
To test these hypotheses, 2 balls are selected from the bag. If at least one 
ball is black, H0 is accepted, otherwise it is rejected. Find the probabilities 
of the Type I and Type II  errors.  

 
24.10 p-Values and Levels of Significance 
 
Significance Levels 
 
We are sometimes required to test whether a sample taken from a normal 
population with known standard deviation, has a mean which is different from 
the assumed population mean. 
 
This test requires a level of significance denoted by α. Thus if our test is 
designed to provide evidence against H0 at the 5% level of significance, α = .05; 
at the 1% level of significance, α = .01, etc,. 
 
p–Values 
 
Assuming that H0 is true and that the test statistic has value z, we define the p–
value to be the probability that z is as extreme or more extreme than that 
observed. 
 
The smaller the p–value, the more convincing is the evidence against H0 . 
 
If the p–value is such that p ≤ α , we reject H0 ;  if p > α , we accept H0 . 

1. The p–value for a test of  H0: 0μ = μ  against H1: 0μ ≠ μ  is p = 2P(Z ≥ z ). 

 The p–value is equal to the shaded area under the standard normal curve. 
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2. The p–value for a test of  H0: 0μ = μ  against H1: 0μ > μ  is p = P(Z ≥ z). 
 
 

 
 
 
3. The p–value for a test of H0: 0μ = μ  against H1: 0μ < μ  is p = P(Z ≤ z). 
 

 
 
 
Example A test of the null hypothesis H0 : 0μ = μ  gives a test statistic 

z = 1.5. What is the p–value if the alternative hypothesis is 
(a) H1: 0μ ≠ μ  ; (b) H1 : 0μ > μ  ; (c) 0μ < μ . 

 
(a) p = 2P(Z ≥ 1.5) = 0.134 . 
(b) p = P(Z ≥ 1.5) = 0.0668 . 
(c) p = P(Z ≤ 1.5) = 0.933 . 

 
Example The four measurements 38.1, 37.8, 39.1, 37.4 are a sample from a 

population with standard deviation 0.6. Find the p-value associated 
with the hypotheses H0 : μ = 37.4   versus   H1 : μ > 37.4. 

 

 x  = 38.1 37.8 39.1 37.4
4

+ + +  = 38.1 

 The required test statistic is z = 37.4
0.6 4
x −  = 38.1 37.4

0.3
−  = 2.333. 

 The p-value is P(Z ≥ 2.333) = 0.00982 . 

zz−

z 

area = p 

z 

area = p 
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Example A normal distribution has a standard deviation of 4 but an 

unknown mean, μ. A random sample of 36 items from this 
distribution gives a sample mean of 26.6. Test at the 5% level of 
significance whether the population mean could be 25. 

 
 H0 : μ = 25 
 H1 : μ ≠ 25 
 

 The test statistic is z = x
n

− μ
σ

 = 26.6 25
4 6

−  = 2.4. 

 Since the alternative is two-sided, the p-value is p = 2P(Z ≥ 2.4) = 0.0164 
which is less than 5% and so we reject H0 . 

 
Example Bottles of a given soft-drink are meant to contain 300 ml of liquid. 

The distribution of the contents is normal with standard deviation 
σ = 3 ml. A random sample of six bottles contained the following 
amounts:  299.4, 297.7, 301.0, 298.9, 300.2, 297.0 ml. Is this 
convincing evidence that the mean contents of the bottles is less 
than 300 ml? 

 
 H0 : μ = 300 
 H1 : μ < 300 
 
 The sample mean of the six bottles measured is x  = 299.03 ml. 

 The z test statistic is 299.03 300 0.7920
3 6

xz
n

− μ −
= = = −

σ
. 

 The p-value is p = P(Z ≤ –0.7920) = 0.2142 . 
 Therefore we can reject H0 at α = 0.25 but not at α = 0.20. 
 
 This is not convincing evidence that the mean is below 300 ml since a 

sample mean at least as small as that observed will occur in between 20% 
and 25% of all samples if the population mean is μ = 300 ml. 

 
Exercise 24.10 
 
1. A test of the null hypothesis H0 : μ = μ0 gives test statistic z = 2.0. What is 

the p-value if the alternative is 
(a) H1 : μ > μ0 ; (b) H1 : μ < μ0 ; (c) H1 : μ ≠ μ0 ? 

 
 
 



Chapter 24 

634 

 
2. A 95% confidence interval for a population mean is (28, 35). 
  (a) Can the null hypothesis that μ = 34 at the 5% level of significance 

be rejected? 
  (b) Can the null hypothesis that μ = 36 at the 5% level of significance 

be rejected? 
 
3. To determine whether the mean value of a given normal population is 

greater than the advertised value of μ = 1.4, we test 
     H0 : μ = 1.4 
   H1 : μ > 1.4. 
 The calculated value of the test statistic is z = 2.0. Is the result significant at

 (a) the 5% level ;  (b) the 1% level? 
 
4. Consider a significance test for a null hypothesis versus a two-sided 

alternative with a z–test statistic. Find the values of z that will give a result 
which is significant at the 1% level but not at the 0.5% level. 

 
5. In a significance test of H0 : μ = 0 versus H1 : μ > 0, what values of z would 

lead you to reject H0 at the 5% level?   
 
6. Answer question 6 given the alternative H1 : μ ≠ 0. 
  
7. Consider a significance test for a null hypothesis versus a two-sided 

alternative. Calculate the p-value for the outcome z = 1.12. 
 
8. From experience the scores obtained in a particular test are normally 

distributed with a mean score of 60 and a standard deviation of 5. Twenty 
five students take the test and their mean score is 58.6. Calculate the p-
value associated with a test for H0 : μ = 60 versus H1 : μ < 60.  Is there 
sufficient evidence at the 5% level that these students have not performed 
as well as expected? 

  
24.11 Student's t –Distribution 
 
The techniques already used to find confidence intervals and to test hypotheses 
are applicable to those distributions for which the standard deviation of the 
population is known. This is not always the case. Whenever the population 
standard deviation is unknown, the student's t distribution is used. 
 

The t test statistic is defined by 
ˆ
xt
s n

− μ
=  where ŝ  is the unbiased estimate of 

the population standard deviation. 
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When calculating the value of a statistic, it may be necessary to use data from a 
sample, or certain population parameters. If these parameters are not known 
they must be estimated from the sample. If k is the number of population 
parameters to be estimated, then the number of degrees of freedom ν for a 
sample of size n is given by ν = n – k. To find the value of the statistic t, 

ˆ and x s  can be calculated from the data but μ has to be estimated. Thus k = 1 
and the number of degrees of freedom is ν = n – 1. 
 
The t distribution table provided is for one-tailed tests. Thus if ν = 10 and the 
95% significance level for a two-tailed test is required, look under the column 
headed 0.975 giving a value of 2.228. Thus P(–2.228 ≤ t ≤ 2.228) = 0.95. 
 
The Confidence Interval for the Mean of a Population 
 
For this problem we use the unbiased estimates of the population mean and 
population standard deviation. 
 

The confidence interval for the population mean μ is given by ŝx t
nν±  where 

tν is the critical value for ν degrees of freedom. 
 
Example A sample of 12 measurements of the weights, x kg , of babies born 

in a given hospital provided the following information: 44.4x =∑  

and 2 172.5x =∑ . 
 Assuming that the weights of babies are normally distributed, 

calculate a 95% confidence interval for the mean weight of babies 
born in this hospital. 

 
The unbiased estimates of the mean and variance of the weights of babies are 

 44.4 3.7
12

x = =   and  
2

2 172.5 44.4ˆ 0.74727
11 11 12

σ = − =
×

. 

The 95% confidence limits are 0.747273.7 2.201
12

±  = 3.7 ± 0.549. 

The required confidence interval is (3.15, 4.25) . 
 
Example A random sample of size 6 is taken from a normal distribution with 

mean μ and variance 2σ . The sample mean is x  = 98 and the 
sample standard deviation is 13.4. Test the hypothesis H0: μ = 100 
against H1 : μ ≠ 100 at the 5% level of significance. 
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 Here  2 26ˆ ˆ13.4 215.5 14.68
5

s s= × = ⇒ =  . 

 98 100 0.3337
ˆ 14.68 6
xt
s n

− μ −
= = = −  . 

 Since –2.571 ≤ t ≤ 2.571, we can accept H0 . 
 
Matched Pairs 
 
If two samples can be paired exactly, the differences between the values can be 
tested to see if they form a normal distribution with zero mean. 
 
Example Five runners are timed over a distance of 100 metres on two tracks 

with different surfaces. Their times (in seconds) are given in the 
following table: 

 
Runner 1 2 3 4 5 
Time on track 1 10.8 10.9 10.7 10.6 10.3 
Time on track 2 10.6 10.8 10.9 10.7 10.3 

 
 Test the hypothesis H0 : the times are independent of the surface, at 

the 5% level of significance. 
 
 The differences in times are: 
 

Runner 1 2 3 4 5 
Time difference 0.2 0.1 –0.2 –0.1 –0.1 

 
 Let D represent these differences. 
 Then  ˆ0.02  and  0.1643d s= − = . 

 The required t statistic is calc
0.02 0 0.2722

0.1643 5
t − −

= = −  . 

 Now 4,0.975 2.776t = , and since calc 4,0.975t t< , we conclude that the runners' 
performances are independent of the track surface. 

  
Exercise 24.11 
 
1. A sample of 10 values selected from a normal population is 
 26.8,  31.2,  30.5,  28.7,  29.3,  29.5,  30.6,  27.1,  31.8,  29.5 . 
 (a) Calculate unbiased estimates of the mean and standard deviation of 

this population. 
 (b) Find a 95% confidence interval for the mean. 
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2. A random sample of size 12 is taken from a normal distribution X with 

mean μ and variance 2σ . Given that the sample mean is 28.2x =  and the 
sample variance is 2 5.2s = , test the hypothesis H0 : 30μ =  against 
H1 : 30μ ≠  at the 5% level of significance. 

 
3. A random sample of size 8 is taken from a normal distribution X with mean 

μ and variance 2σ . Given that 2448  and  25100x x= =∑ ∑ , calculate a 
99% confidence interval for μ. 

 
4. A random variable X is normally distributed with mean μ. A random sample 

of 16 observations is taken on X and it is found that 

     
16

2

1
( ) 135i

i
x x

=

− =∑  . 

 (a) Determine a 95% confidence interval for μ . 
 (b) Another confidence interval (8.13, 12.03) is calculated for this 

sample. Find the confidence level for this interval. 
 
5. An automatic machine is used to fill bottles with liquid. Each bottle is to 

contain 100 ml, but it is found that there are slight variations from bottle to 
bottle. The amount of liquid in each bottle is distributed normally with a 
mean of 100 ml. A sample of ten bottles were found to contain the 
following amounts (in ml): 
 113,  128,  112,   98,  127,  108,  105,  120,  118,  115 . 

 (a) Calculate an unbiased estimate of the mean content of liquid in a 
bottle and an unbiased estimate of the variance. 

 (b) What is meant by the term "unbiased"? 
 (c) Find a 95% confidence interval for the mean content of liquid in a 

bottle. 
 
6. A new fertiliser is being used to increase the yield of apples. Ten plots are 

fed this fertiliser and ten adjacent plots are fed the old fertiliser. [Each 
adjacent pair of plots has equal numbers of trees.] 

  The yields per plot are given in the following table: 
 
 Plot 1 2 3 4 5 6 7 8 9 10 
 New 8.0 8.4 8.0 6.4 8.6 7.7 7.7 5.6 5.6 6.2 
 Old 5.6 7.4 7.3 6.4 7.5 6.1 6.6 6.0 5.5 5.5 
 
 Test the hypothesis at the 5% level, that the new fertiliser increases the 

apple yield. 
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24.12 χχ2  Distribution 
 
Results obtained from samples taken from a population do not always agree 
exactly with theoretical results calculated using the rules of probability. Often 
we wish to know whether observed frequencies differ significantly from those 
expected. 
A measure of the discrepancy existing between observed and expected 
frequencies is supplied by the statistic χ2 (chi-square) given by 
 

  χ2 = 
2( )O E

E
−∑  

 
where O is the observed frequency and E is the corresponding expected 
frequency of a given event. 
 

If the total frequency is n, an equivalent expression for χ2 is χ2 = 
2O n

E
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑ . 

 
If χ2 = 0, observed and theoretical frequencies agree exactly, but if χ2 > 0, they 
do not agree exactly. The larger the value of χ2, the greater the discrepancy 
between observed and expected frequencies. 
 
Goodness of Fit 
 
The χ2 test can be used to determine just how well theoretical distributions fit 
those obtained from sample data. 
 
Example In 200 tosses of a coin, 115 heads and 85 tails were observed. Test 

the hypothesis that the coin is fair using a level of significance of 
 (a) 5% ;  (b) 1% . 
 
   The observed frequencies are 115, 85 and the expected frequencies are 

100, 100. 

   2
calcχ = 

2 2(115 100) (85 100)
100 100
− −

+  = 4.5 

  The number of degrees of freedom is ν = 1. 
 
 (a) The critical value 2

1,0.95χ  = 3.841 and since 2
calcχ  > 2

1,0.95χ  we reject 
the hypothesis that the coin is fair at a 5% level of significance. 
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 (b) The critical value 2

1,0.99χ  = 6.635 and since 2
calcχ  < 2

1,0.99χ , we 
cannot reject the hypothesis that the coin is fair at a 1% level of 
significance. 

 
Example Five coins were tossed 1024 times and at each toss the number of 

heads, n, was observed. The number of tosses, f, during which 0, 1, 
2, 3, 4, 5 heads were observed is shown in the following table. 

   
n 0 1 2 3 4 5 
f 42 148 346 291 168 29 

 
 Test the hypothesis, H0 : The data fits a binomial distribution with 

p = 0.5, at the 5% level of significance. 
 
 Assuming a binomial distribution with parameter p = 0.5, the expected 

frequencies are 55
1024 (0.5)

n
⎛ ⎞

× ⎜ ⎟
⎝ ⎠

 = 32, 160, 320, 320, 160, 32. 

 
2 2 2 2

2
calc

(42 32) (148 160) (346 320) (291 320)
32 160 320 320
− − − −

χ = + + + +  

       
2 2(168 160) (29 32)

320 32
− −

+

 9.447= . 
 The number of degrees of freedom is 5 and so 2

5,0.95χ  = 11.070. 

 Since 2 2
calc 5,0.95χ ≤ χ  we must accept hypothesis H0 . 

 

Since 
2

2 ( )O E
E
−

χ = ∑ , very small values of E give large values of χ2. 

Therefore expected frequencies less than 5 should not be used. Instead, classes 
with low expected frequencies are combined to form a suitably large class. 
 
Example An urn contains a very large number of marbles of four different 

colours: red, orange, yellow, green. A sample of 12 marbles drawn 
at random from the urn revealed 2 red, 5 orange, 4 yellow and 1 
green marble. Test the hypothesis H0 : The urn contains equal 
proportions of the differently coloured marbles. 

 
  Under the hypothesis, we would expect 3 of each kind of marble in a 

sample of 12 marbles. 
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  Since these expected numbers are less than 5, we must combine categories 

so that the expected number in each category is at least 5. 
  We therefore consider the categories "red or green" and "orange or yellow" 

with sample frequencies 3 and 9 respectively. 
  Since the expected number in each category under the hypothesis is 6, we 

have 
2 2

2
calc

(3 6) (9 6) 3
6 6

− −
χ = + = . 

 For 1 degree of freedom, 2
1,0.95 3.841χ = . 

 Since 2 2
calc 1,0.95χ ≤ χ  we cannot reject the hypothesis at the 5% level of 

significance. 
 
Contingency Tables 
 
It is sometimes desirable to classify individuals into two or more mutually 
exclusive categories. For example: 
 (1) IB grades achieved by students in two different schools. 
 (2) Voting intentions of males and females. 
 
We would like to investigate whether there is any significant difference between 
the observed frequencies and the expected frequencies of the distribution. Are 
the categories independent or is there some evidence of a link between them. 

The test statistic used is 
2( )O E

E
−∑  where O is the observed frequency and E 

the corresponding expected frequency of a particular event. The 2χ  (chi-
squared) distribution can often be used in such cases. 
 

The 2χ  distribution has a complicated probability density function with one 
parameter, ν (nu), known as the number of degrees of freedom. It is equal to the 
number of independent variables used to calculate 2χ . 
 
The example which follows illustrates the method required to determine 
whether or not two attributes are independent of each other. 
 
Example A survey of results in an examination administered in two different 

schools is given in the following table: 
 

         Grade   
      7      6      5      4 
School A    12    20    18    10 
School B    10    12    10      8 
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  Test at the 5% level whether or not there is a significant difference 

between the two schools in the proportions of candidates awarded 
the four grades. 

 
 The results of the examination are presented in a 2 × 4 contingency table 

as follows: 
 

   7   6   5   4 Total 
School A 12 20 18 10   60 
School B 10 12 10   8   40 
Total 22 32 28 18  100 

 
 We must state the null and alternative hypotheses. 
 
 0H  : There is no difference between the two schools in the proportions 

of candidates awarded the four grades. 
 1H  : There is a difference and the proportions are not independent of the 

school. 
 
 We now calculate the expected frequencies: 

   P(candidate is from school A) = 60
100

, and 

   P(candidate receives a grade 7) = 22
100

. 

 These two events are independent if 0H  is true and so 

   P(candidate is from school A and receives a grade 7) = 60 22
100 100

× . 

 Therefore, of the total of 100 candidates, the expected number from school 

A receiving a grade 7 is 60 22100
100 100

× ×  = 13.2. 

 Although this seems to be a somewhat lengthy calculation, it can be 
shortened by using the formula: 

 

   expected frequency = (row total) (column total)
grand total

× . 

 
 
  All other expected frequencies can be calculated and then presented in 

tabular form: 
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          7           6           5    4 Total 
School A 60 22 13.2

100
×

=

 

60 32 19.2
100

×
=

 

60 28 16.8
100

×
=

 

 
 10.8 

 
  60 

School B   8.8 12.8 11.2    7.2   40 
Total 22 32 28   18 100 

 
  Only three expected frequencies have been calculated using the formula. 

The rest are automatic since the row and column totals must agree with 
those in the table of observed frequencies. 

 
  Since all the entries are known once three are known, the number of 

degrees of freedom is given by ν  = 3. 
 
  [The number of degrees of freedom for an r c×  contingency table is given 

by ( 1)( 1)v r c= − − .] 
 
  From 2χ  tables we find 2

3,0.95 7.815χ =  and we reject 0H  at the 5% level 

of significance if 2
calc 7.815χ > . 

The values of 
2( )O E

E
−  are calculated and presented in tabular form: 

 
O E 2( )O E E−  
12 13.2      0.109 
20 19.2      0.033 
18 16.8      0.086 
10 10.8      0.059 
10   8.8      0.163 
12 12.8      0.050 
10 11.2      0.129 
  8   7.2      0.089 
100 100      0.718 

 

Since 2
calcχ  = 0.718 is much smaller than the critical value 2

3,0.95χ  = 7.815, 
we do not reject 0H  and conclude that there is not a significant difference 
between the results of the two schools at the 5% level. 
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Example Trials are conducted to determine the effectiveness of a new drug 

in the treatment of a certain disease. Three hundred patients with 
the disease were selected with 150 of them given doses of the drug 
and the rest given a completely non-active placebo. After the trial, 
patients were asked whether or not their condition had improved. 
The results are given in the following table: 

 
 Drug Placebo 
Improved   91     64 
Not Improved   59     86 

 
  Use a chi-squared test at the 1% level of significance to determine 

whether or not there is evidence that the drug is an effective aid in 
the treatment of the disease. 

 
 The 2 × 2 contingency table is: 

 
 Drug Placebo Total 
Improved   91     64  155 
Not Improved   59     86  145 
Total 150   150  300 

 
  The expected frequencies are: 
 

 Drug Placebo Total 
Improved   77.5   77.5 155 
Not Improved   72.5   72.5 145 
Total 150 150 300 

 
 0H  : The drug is not effective. 
 1H  : The drug is effective. 
 The number of degrees of freedom is 1 and at the 1% level 2

1,0.99 6.635χ = . 

We will reject 0H  if 2χ  > 6.635. 
 

  O   E 2( )O E E−  
  91   77.5        2.3516 
  64   77.5        2.3516 
  59   72.5        2.5138 
  86   72.5        2.5138 
300 300        9.7308 
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  Since 2 6.635χ > , there is sufficient evidence at the 1% level to disprove 
the assumption that the drug is not effective and conclude that the drug is 
effective in the treatment of the disease. 

 
Exercise 24.12 
 
1. A die is tossed 120 times and the observed frequencies were 
    

Score 1 2 3 4 5 6 
Frequency 25 17 15 23 24 16 

 
 Test the hypothesis that the die is fair using a significance level of 5%. 
 
2. A population contains objects with four distinct characteristics, A, B, C, D. 

In a random sample 315 had characteristic A, 108 had characteristic B, 101 
had characteristic C and 32 had characteristic D. It is thought that these 
frequencies in the population as a whole were in the ratio 9 : 3 : 3 : 1. Is 
there any reason to doubt this at the   (a)  1%,   (b)  5% level of 
significance? 

 
3. In 360 tosses of a pair of dice, 74 'sevens' and 24 'elevens' were observed. 

Are these dice fair? Test the hypothesis at the 5% level of significance. 
 
4. A survey of 320 families with 4 children revealed that the frequency of the 

number n of girls in each family is shown in the following table: 
 

n 0 1 2 3 4 
f 27 76 134 72 11 

 
 Is this consistent with the hypothesis that half the births are females? 
 
5. An urn contains a very large number of red and blue marbles. It is claimed 

that 60% of the marbles are red. To check this claim, four marbles are 
selected at random (without replacement) from the urn and the number of 
red marbles is counted. This procedure is repeated 125 times and the results 
are as follows: 

 
Number of red marbles 0 1 2 3 4 
Number of occurrences 5 16 48 42 14 

 
 Test the claim at the 1% level of significance. 
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6. The following table shows the number of students passed and failed by 

three instructors: X, Y and Z. 
 

 X Y Z Total 
Passed 50 47 56 153 
Failed   5 14   8   27 
Total 55 61 64 180 

 
 Test the hypothesis H0 : the proportions of students failed by the three 

instructors are equal. 
 
7. The following table shows the number of days f during a 120-day period on 

which x car accidents occurred. 
 

Number of accidents (x) Number of days ( f ) 
 0  56 
 1  37 
 2  21 
 3    3 
 4    3 

 
 Calculate the expected number of accidents if the distribution is Po(0.9). 

Do the observed values fit the expected ones at the 5% level of 
significance? 

 
8. The average lifetime, T hours, of a certain type of battery is 200 hours. A 

sample of 100 batteries is tested and the numbers lasting t hours are given 
in the following table. 

 
      t   f 
0 100t≤ ≤  35 
100 200t< ≤  19 
200 300t< ≤  19 
300 400t< ≤  12 

400t >  15 
 
 Test at the 10% level of significance that the distribution of T is 

exponential with parameter 1
200  = 0.005. 

 
 
 

 



Chapter 24 

646 

 
Required Outcomes 

 
 After completing this chapter, a student should be able to: 
• find the mean and standard deviation of any linear combination of n 

independent random variables given their individual means and 
standard deviations. 

• calculate the mean and variance of any random variable given its 
cumulative distribution function. 

• find probability mass functions of the following discrete distributions:– 
uniform, Bernoulli, binomial, negative binomial, Poisson, geometric and 
hypergeometric. 

• solve problems in probabilities involving these discrete distributions. 
• find the mean, variance and standard deviation of any discrete distribution 

whose probability table is known. 
• find a probability density functions for each of the following continuous 

distributions :– uniform, exponential and normal. 
• solve problems in probabilities involving these continuous distributions. 
• calculate the mean, variance and standard deviation of a sample taken from 

a large population. 
• calculate unbiased estimates of population parameters. 
• calculate confidence intervals for the mean of a population with known 

standard deviation using the normal distribution. 
• calculate confidence intervals for the mean of a population with unknown 

standard deviation using the t–distribution. 
• calculate confidence intervals for the proportion of successes in a 

population. 
• perform a significance test for the mean of a population where the standard 

deviation is known using a normal  distribution. 
• perform a significance test for the mean of a population where the standard 

deviation is unknown using the t–distribution. 
• calculate Type I and Type II errors in tests of significance. 
• calculate p–values. 
• determine whether there is sufficient evidence that two attributes of a 

distribution are independent using a contingency table and the 2χ  statistic. 
• test for the goodness of fit for all distributions. 
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25.1 Sets

The concept of a set is basic to all of mathematics and mathematical
applications. The first section of this chapter deals with the language of sets and 
the binary operations defined on sets.

The concepts and notation of sets, elements of sets, subsets, the universal set 
and the null set have all been defined in Chapter 13 covering the core material 
and need not be repeated here. The set operations, however, are so critical to 
this work that they are reproduced below.

Union The union of two sets, A and B, is denoted by A ∪ B and 
consists of all the elements which are members of either A or B
or both A and B. i.e. A ∪ B = {x ⏐ x ∈ A or x ∈ B}.

Intersection The intersection of sets A and B is denoted by A ∩ B and 
consists of all those elements which belong to both A and B.
i.e. A ∩ B = { x ⏐ x ∈ A and x ∈ B}.

Difference The difference of A and B is denoted by A – B and consists of 
those elements which belong to A but not to B, i.e. belong to A
only.
i.e. A – B = { x ⏐ x ∈ A, x ∉ B}.

Complement The complement of A is denoted by A' and consists of all those 
elements in the universe which do not belong to A.
i.e. A' = { x ⏐ x ∈ U, x ∉ A}.

Note that A – B = A ∩ B '.

Definition Two sets, A and B, are said to be disjoint if they do not have 
any common elements. Thus A and B are disjoint if A ∩ B = ∅.

Venn diagrams are used to illustrate the relationships between sets. We use a 
rectangle to represent the universal set and often circles within this rectangle to 
represent other sets.
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Laws of the Algebra of Sets

Associative Laws (A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Commutative Laws A ∪ B = B ∪ A
A ∩ B = B ∩ A

Distributive Laws A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

De Morgan's Laws (A ∪ B)' = A' ∩ B '
(A ∩ B)' = A' ∪ B '

These laws can be verified using Venn diagrams, but such verifications are not 
considered to be rigorous proofs.

Example Illustrate the first of de Morgan's laws using a Venn diagram.

From the above diagrams, it can be seen that (A ∪ B)' = A' ∩ B '.

A ∪ B is shaded

A B

U
A ∩ B is shaded

A B

U

A – B is shaded A' is shaded

A AB B

U U

(A ∪ B)' is shaded
A' is shaded ; B' is shadedA' ∩ B' is shaded

AB BA

U U
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A rigorous proof of the previous law could be something like:

Let a ∈ (A ∪ B)'. Let a ∈ A' ∩ B '.
Then a ∉ A ∪ B and so a ∉ A and a ∉ B. Then a ∈ A' and a ∈ B '.
Therefore a ∈ A' and a ∈ B ' Therefore a ∉ A and a ∉ B
⇒ a ∈ A' ∩ B '. ⇒ a ∉ A ∪ B  and so a ∈ (A ∪ B)'.
Hence (A ∪ B)' ⊆ A' ∩ B '. Hence A' ∩ B ' ⊆ (A ∪ B)'.

Therefore (A ∪ B)' = A' ∩ B '  which is the required result.

The Order of  a Set

The order of a finite set A is denoted by ⏐A⏐ and is equal to the number of 
elements in it.

We can see from the diagram on the left 
that the sum ⏐A⏐ + ⏐B⏐ includes the
number of elements in A ∩ B twice.
Thus⏐A ∪ B⏐ = ⏐A⏐ + ⏐B⏐ – ⏐A ∩ B⏐.

Note that union and intersection may be interchanged in this equation. Thus we 
also have ⏐A ∩ B⏐ = ⏐A⏐ + ⏐B⏐ – ⏐A ∪ B⏐.

Example In a class of 25 students, 19 study geography and 14 study history 
and all students study at least one of these subjects. How many 
students study both geography and history?

Let G and H represent the set of all students who study geography and 
history respectively. Then ⏐G⏐ = 19, ⏐H⏐ = 14, ⏐G ∪ H⏐ = 25.

Then ⏐G ∩ H⏐ = ⏐G⏐ + ⏐H⏐ – ⏐G ∪ H⏐
=   19   +   14 –      25

  =   8.
Thus 8 students study both geography and history.

Example In a survey of 100 households, 59 read newspaper X and 71 read 
newspaper Y. What can be said about the number of households 
who read both papers?

Let X and Y represent the sets of households reading those newspapers.
Then ⏐X ∩ Y⏐ = ⏐X⏐ + ⏐Y⏐ – ⏐X ∪ Y⏐

=    59 +   71 – ⏐X ∪ Y⏐
=  130 – ⏐X ∪ Y⏐.

U

A B



Chapter 25

650

But ⏐X ∪ Y⏐ cannot exceed 100, i.e., ⏐X ∪ Y⏐ ≤ 100, so ⏐X ∩ Y ⏐ ≥ 30.

Also, the number of elements in X ∩ Y cannot exceed the number of 
elements in X (or the number of elements in Y). Thus ⏐X ∩ Y⏐ ≤ 59.

Thus at least 30, but no more than 59, households read both newspaper X
and newspaper Y.

Partitions of a Set

A partition of a set X divides X into non-overlapping subsets.
A collection S of non-empty subsets of X is said to be a partition of X if every 
element of X belongs to exactly one member of S.

Example The set S = { {1, 3, 5}, {2, 4}, {6} } is a partition of the set 
X = {1, 2, 3, 4, 5, 6} since each element of X belongs to exactly 
one set in S.

Exercise 25.1

1. What relation must hold between sets A and B if
(a) A ∩ B = A ; (b) A ∪ B = A ;
(c) (A ∩ B)' = B ' (d) (A ∪ B)'  = B ' ?

2. List the subsets of each of the following sets:
(a) {1} ; (b) {a, b} ;
(c) {a, b, c} ; (d) {2, 3, 4, 5}.

3. (a) Using the results of Question 2, conjecture the total number of
subsets of a set X with n elements.

*(b) Prove your conjecture using mathematical induction, or otherwise.

4. For the sets given in Question 2, list all the partitions of each.

5. (a) Use Venn diagrams to verify the associative law for union:
(A ∪ B) ∪ C = A ∪ (B ∪ C).

(b) Give a rigorous proof of this law.

6. (a) Use Venn diagrams to verify the associative law for intersection:
(A ∩ B) ∩ C  = A ∩ (B ∩ C).

(b) Give a rigorous proof of this law.
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7. (a) Use Venn diagrams to verify the distributive laws:
(i) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) ;
(ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

(b) Give rigorous proofs of these laws.

8. (a) Use Venn diagrams to verify the second of de Morgan's laws:
(A ∩ B)' = A' ∪ B '.

*(b) Give a rigorous proof of this law.

9. (a) Use Venn diagrams to verify that
(A – B)∪(B – A) = (A ∪ B) – (A ∩ B).

*(b) Use de Morgan's laws to prove the result in part (a).

25.2 Cartesian Products and Binary Relations

The concept of an ordered pair (x, y) where x is a member of one set, A, and y is 
a member of another set, B, is very common in mathematics. For the
coordinates (x, y) of a point in the plane, x ∈ R and y ∈ R. For the ordered 
pairs (x, y) for which y = sin x, x could be any member of the set of all angles, 
and y any real number between –1 and 1 inclusive. The rational number qp
could be represented by the ordered pair (p, q) where p is any integer and q is 
any non-zero integer.

Definition The Cartesian product of two sets, A and B, is the set of all
ordered pairs (x, y) such that x ∈ A and y ∈ B. We denote the 
Cartesian product of A and B by A × B.

Thus A × B = { (x, y) ⏐ x ∈ A, y ∈ B }.

Because the Cartesian plane consists of the set of points (x, y) where x ∈ R and 
y ∈ R, we may denote it by R × R, or 2R .

Example Let A = {1, 2, 4} and B = {2, 3}. List the members of the Cartesian 
product A × B.

A × B = { (1, 2), (1, 3), (2, 2), (2, 3), (4, 2), (4, 3) }.

Example If X = {1, 2, 3} and Y = {a, b}, then
X × Y = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}
Y × X = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}



Chapter 25

652

X × X = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}
Y × Y = {(a, a), (a, b), (b, a), (b, b)}

This example shows that, in general, X × Y ≠ Y × X.

But note that ⏐X × Y⏐ = ⏐X⏐ × ⏐Y⏐.

Binary Relations

A binary relation R from a set X to a set Y is a subset of the Cartesian product 
X × Y. If (x, y) ∈ R, we write xRy and say that x is related to y. When X = Y, we
call R a binary relation on X.

The set {x ∈ X ⏐ (x, y) ∈ R for some y ∈ Y} is called the domain of R.

The set {y ∈ Y ⏐ (x, y) ∈ R for some x ∈ X } is called the range of R.

Example Let X = {2, 3, 4, 5} and Y = {5, 6, 7, 8, 9, 10}. Define a relation R
from X to Y by (x, y) ∈ R if x divides y. Find the domain and range 
of R.

R = {(2, 6), (2, 8), (2, 10), (3, 6), (3, 9), (4, 8), (5, 5), (5, 10)}

The domain of R = {2, 3, 4, 5} and the range of R = {5, 6, 8, 9, 10}.

Example Let R be a relation on a set X = {1, 2, 3, 4} defined by (x, y) ∈ R
provided x < y and x, y ∈ X. Find the domain and range of R.

R = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

The domain of R = {1, 2, 3} and the range of R = {2, 3, 4}.

Definition A relation R on a set X is said to be reflexive if (x, x) ∈ R for all 
x ∈ X.

Example Show that the relation R defined on set X = {1, 2, 3, 4} by
(x, y) ∈ R provided x ≤ y for all x, y ∈ X is reflexive.

Since x ≤ x, (x, x) ∈ R for all x ∈ X and so R is reflexive on X.

Example Is the relation R defined on X = {a, b, c, d} given by
R = {(a, a), (b, b), (b, c), (c, c), (c, d)}

reflexive?

Since d ∈ X but (d, d) ∉ R, then R is not reflexive on X.
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Definition A relation R on a set X is said to be symmetric if whenever
(x, y) ∈ R, then (y, x) ∈ R for all x, y ∈ X.

Example The relation R = {(a, a), (a, b), (b, a), (b, c), (c, b), (d, d)} defined on 
X = {a, b, c, d} is symmetric since whenever (x, y) ∈ R, (y, x) ∈ R.

Example The relation R defined on X = {1, 2, 3} by (x, y) ∈ R provided x ≥ y
whenever x, y ∈ X, is not symmetric since (2, 1) ∈ R but (1, 2) ∉ R.

Definition A relation R defined on a set X is said to be transitive if whenever 
both (x, y) and (y, z) ∈ R, then (x, z) ∈ R for all x, y, z ∈ X.

Example Show that the relation R defined on X = {1, 2, 3} by (x, y) ∈ R
provided x ≤ y for all x, y ∈ X, is transitive.

To verify that R is transitive on X, we must list all pairs of the form (x, y)
and (y, z) ∈ R and then show that in every case, (x, z) ∈ R.

Pairs of the Form (x, y), (y, z) (x, z)
(1, 1), (1, 1) (1, 1)
(1, 1), (1, 2) (1, 2)
(1, 1), (1, 3) (1, 3)
(1, 2), (2, 2) (1, 2)
(1, 2), (2, 3) (1, 3)
(1, 3), (3, 3) (1, 3)
(2, 2), (2, 2) (2, 2)
(2, 2), (2, 3) (2, 3)
(2, 3), (3, 3) (2, 3)
(3, 3), (3, 3) (3, 3)

Since each element in the right-hand column is a member of R, then R is 
transitive.

Note: If x = y, then (x, y) and (y, z) belong to R implies that (x, x) and (x, z)
belong to R and so (x, z) automatically belongs to R.

If y = z, then (x, y) and (y, z) belong to R implies that (x, y) and (y, y)
belong to R and so (x, z) = (x, y) automatically belongs to R.

Thus we do not need to verify the transitive property for pairs of 
elements (x, y) and (y, z) of R whenever x = y or y = z.

In the previous example we can eliminate the cases x = y and y = z leaving only 
the pair (1, 2), (2, 3) ∈ R and (1, 3) ∈ R to establish that R is transitive on X.
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Exercise 25.2

1. Consider the relation R defined on X = {1, 2, 3, 4, 5, 6} by (x, y) ∈ R if 3 
divides x – y.
(a) List the elements of R.
(b) Find the domain and range of R.
(c) Is R reflexive, symmetric and/or transitive?

2. Consider the relation R defined on X = {1, 2, 3, 4, 5, 6} by (x, y) ∈ R if 
1y x− = .

(a) List the elements of R.
(b) Find the domain and range of R.
(c) Is R reflexive, symmetric and/or transitive?

3. Consider the relation R defined on X = {1, 2, 3, 4, 5, 6} by (x, y) ∈ R if 
6x y+ ≤ .

(a) List the elements of R.
(b) Find the domain and range of R.
(c) Is R reflexive, symmetric and/or transitive?

4. Consider the relation R defined on +�  by (x, y) ∈ R if x = y. Determine 
whether R is reflexive, symmetric and/or transitive.

5. Consider the relation R defined on +�  by (x, y) ∈ R if x > y. Determine 
whether R is reflexive, symmetric and/or transitive.

6. Consider the relation R defined on +�  by (x, y) ∈ R if 2y x= . Determine 
whether R is reflexive, symmetric and/or transitive.

7. Consider the relation R defined on +�  by (x, y) ∈ R if x ≥ y. Determine 
whether R is reflexive, symmetric and/or transitive.

8. Consider the relation R defined on +�  by (x, y) ∈ R if the greatest common 
divisor of x and y is 1. Determine whether R is reflexive, symmetric and/or 
transitive.

9. Consider the relation R defined on +�  by (x, y) ∈ R if 2 divides y – x.
Determine whether R is reflexive, symmetric and/or transitive.

10. Find a relation R defined on X = {1, 2, 3, 4, 5} which is
(a) reflexive but neither symmetric nor transitive ;
(b) neither reflexive nor symmetric but transitive.
(c) reflexive and symmetric but not transitive.
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25.3 Equivalence Relations

Theorem Let S be a partition of set X. Define xRy to mean that for some set
Y ∈ S, both x and y belong to Y. Then R is reflexive, symmetric and 
transitive.

Proof Let x ∈ X. Since S is a partition of X, then x belongs to some 
member Y of S and so xRx  and R is reflexive.

Suppose that xRy . Then both x and y belong to some set Y ∈ S. Since both x
and y belong to Y, yRx and so R is symmetric.

Suppose xRy and yRz. Then both x and y belong to some set Y ∈ S and both 
y and z belong to some set Z ∈ S. But y belongs to just one set in S and so 
Y = Z and so both x and z belong to Y giving xRz which proves that R is 
transitive.

Example Consider the partition S = { {1, 2}, {3, 4}, {5} } of the set X = {1, 2, 
3, 4, 5}. Let xRy mean that x and y belong to the same set in S. Then 
R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5)}.

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5) all belong to R and so R is reflexive.

(1, 2), (2, 1), (3, 4), (4, 3) are the only elements of R with differing 
components and so R is symmetric.

Since no pairs of elements (x, y) and (y, z) where x ≠ y and y ≠ z exist in R,
we do not need to check for transitivity.

Note: For set S and relation R from the theorem above, if Y ∈ S, then members 
of Y can be considered to be equivalent as far as the relation R is 
concerned. Thus relations which are reflexive, symmetric and transitive 
are called equivalence relations.

Definition A relation that is reflexive, symmetric and transitive on a set X is 
called an equivalence relation on X.

Example Let X = {1, 2, 3, 4, 5, 6}. Define xRy to mean that x – y is even. 
Show that R is an equivalence relation on X.

Firstly, x – x = 0 which is even and so (x, x) ∈ R for all x ∈ X.
Therefore R is reflexive.
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Secondly, if x – y is even, so is y – x and so R is symmetric.

Thirdly, if x – y  and y – z are both even, then their sum is even. Thus x – z
is even and R is transitive

Therefore R is an equivalence relation on X.

Example Let X = {1, 2, 3, 4, 5, 6}. Define R to mean that (x, y) ∈ R provided 
x ≤ y whenever x, y ∈ X. Explain why R is not an equivalence
relation on X.

If xRy then x ≤ y and so y ≥ x. Thus y is not related to x (y ≤ x is not true). 
Therefore R is not symmetric and R is not an equivalence relation on X.

[Note: x ≤ x so R is reflexive; if x ≤ y and y ≤ z then x ≤ z and so R is 
transitive.]

Equivalence Classes

Given an equivalence relation on a set X, we can partition X by grouping related 
members of X together. Elements related to one another may be thought of as 
equivalent.

Theorem Let R be an equivalence relation on a set X. For each a ∈ X let

[a] = { x ∈ X ⏐ xRa }.

Then S = { [a] ⏐ a ∈ X }  is a partition of X.

Note: The sets [a] defined by this theorem are called equivalence classes of X 
given by the relation R.

Example Consider the equivalence relation R = {(1, 1), (1, 2), (2, 1), (2, 2), 
(3, 3), (3, 4), (4, 3), (4, 4), (5, 5)} on the set X = {1, 2, 3, 4, 5}. 
Find all the equivalence classes.

The equivalence class [1] contains all the elements x ∈ X for which
(x, 1) ∈ R. Thus [1] = {1, 2}. Continuing in this way we obtain the
following equivalence classes:  [1] = [2] = {1, 2}, [3] = [4] = {3, 4} and 
[5] = {5}.

Example Let R be a relation defined on +�  by xRy if x – y is divisible by 3. 
Show that R is an equivalence relation on +�  and find the
equivalence classes.
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x – x = 0 which is divisible by 3 and so R is reflexive.
If x – y is divisible by 3 then y – x is divisible by 3 and so R is symmetric.
If x – y and y – z are both divisible by 3 then their sum, x – z, is divisible by 
3 and so R is transitive.

Therefore R is an equivalence relation on +� .

The equivalence classes are: [1] = {1, 4, 7, 10, … }, [2] = {2, 5, 8, 11, … } 
and [3] = {3, 6, 9, 12, … }.

{These equivalence classes contain the positive integers which leave
remainders of 1, 2, 0 respectively when divided by 3.}

Exercise 25.3

1. Consider the set X = {1, 2, 3, 4, 5, 6}. For each of the following relations, 
determine which are equivalence relations on X. If the relation is an
equivalence relation, list the equivalence classes:
(a) R = {(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5),

 (2, 2), (2, 4), (4, 2), (4, 4), (6, 6) } ;
(b) R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) } ;
(c) R = {(x, y) ⏐ x – y is divisible by 3 } ;
(d) R = {(x, y) ⏐ x + y is divisible by 4 }.

2. Define a relation R on + +×� �  by (a, b)R(c, d) if a + d = b + c. Prove that 
R is an equivalence relation on + +×� � .

3. Define a relation R on + +×� �  by (a, b)R(c, d) if ad = bc. Prove that R is 
an equivalence relation on + +×� � .

4. Define a relation R on +×� �  by (a, b)R(c, d) if and only if ad = bc.
(a) Prove that R is an equivalence relation on +×� � .
(b) Show how R partitions +×� �  and describe the equivalence

classes.

5. Define the relation R on the set Z by xRy if and only if xy ≥ 0. Determine 
whether or not R is an equivalence relation on Z.

6. Determine which of the following relations is an equivalence relation. 
Describe the partition arising from each equivalence relation.
(a) xRy on R if x ≥ y ;
(b) xRy on R if ⏐x – y⏐ ≤ 2 ;
(c) xRy on +�  if x and y have the same number of decimal digits.
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25.4 Matrices of Relations

A matrix is a very convenient way to represent a relation from set X to set Y (if 
X and Y contain just a few members each). We label the rows of the matrix with 
the elements of X and the columns with elements of Y. Then the ijth entry in the 
matrix is a '1' if iRj and a zero otherwise.

Example Write down the matrix of the relation R from {a, b, c} to {d, e, f, g}
given that R = {(a, e), (a, f), (a, g), (b, f ), (b, g), (c, f ), (c, g)}.

The matrix is:

0 1 1 1
0 0 1 1
0 0 1 1

d e f g
a
b
c

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

.

Example Find the matrix of the relation from {2, 3, 4} to {5, 6, 7, 8} defined 
by xRy provided x is a factor of y.

2 is a factor of 6 and 8; 3 is a factor of 6; 4 is a factor of 8.

Therefore the matrix is
5 6 7 8

2 0 1 0 1
3 0 1 0 0
4 0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 .

Example Find the matrix of the relation R defined on {1, 2, 3, 4} by xRy if 
x y−  is even.

The matrix is
1 2 3 4

1 1 0 1 0
2 0 1 0 1
3 1 0 1 0
4 0 1 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 .

Note: The matrix of a relation R on a set X is always square.
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The matrix A of a relation R on a set X can be used to determine whether or not 
R is an equivalence relation on X.

1. Since R is reflexive if xRx for all x ∈ X, then the elements on the leading 
diagonal of A must all be '1s' if R is reflexive on X.

2. Since R is symmetric if yRx whenever xRy , then ij jia a= . That is, the 
matrix must be symmetrical about the leading diagonal.

3. The condition on the matrix A under which R is transitive on X is not 
obvious. It can be shown, however, that if the matrix 2A  has zeros in 
exactly the same positions as does the matrix A, then R is transitive on X.

Example Let X = {a, b, c, d, e, f} and let R be a relation on X defined by the 
matrix

1 0 1 0 1 0
0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 1 0 0
1 0 1 0 1 0
0 0 0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

A  .

(a) Prove that R is an equivalence relation on X.
(b) Give the partition of X corresponding to R.

(a) Since A has only '1s' on the leading diagonal, R is reflexive.
Since A is symmetric about the leading diagonal, R is symmetric.
Since the matrix

2

3 0 3 0 3 0
0 2 0 2 0 0
3 0 3 0 3 0
0 2 0 2 0 0
3 0 3 0 3 0
0 0 0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

A

has zeros in the same positions as the zeros in A, R is transitive.
Therefore, R is an equivalence relation on X.

(b) The partition of X corresponding to R can be read from the matrix 
2A . This partition is S = { {a, c, e}, {b, d}, {f } }.
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Example Let R be a relation defined on X = {1, 2, 3, 4} by the following 

matrix

1 1 0 0
1 1 1 0
0 1 1 0
0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

A . Is R is an equivalence relation on X?

A has all '1s' on its leading diagonal and is symmetrical about that
diagonal. Thus R is both reflexive and symmetric on X. However

2

2 2 1 0
2 3 2 0
1 2 2 0
0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

A

which has non-zero entries in the first row-third column and the third row-
first column where A has zero entries. Thus R is not transitive on X and 
therefore not an equivalence relation on X. [(1, 2), (2, 3) ∈ R, but (1,3) R∉ ]

Exercise 25.4

1. In each of the following, find the matrix of the relation R from X to Y:
(a) R = { (1, a), (1, b), (2, b), (3, a), (3, c), (4, b), (4, c) }, X = {1, 2, 3, 4}, 

Y = {a, b, c} ;
(b) R = { (1, 1), (1, 2), (2, 2), (3, 1), (4, 1), (4, 2) }, X = {1, 2, 3, 4, 5}, 

Y = {1, 2} ;
(c) R = { (a, 2), (a, 4), (b, 1), (b, 3), (c, 1), (c, 2), (c, 3) }, X = {a, b, c},

Y = {1, 2, 3, 4} ;
(d) R = { (p, a), (p, b), (q, a), (q, c) }, X = {p, q}, Y = {a, b, c}.

2. In each of the following, find the matrix of the relation R on X:
(a) R = { (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 2) }, X = {1, 2, 3} ;
(b) R = { (x, y) ⏐ x + y = 4 }, X = {1, 2, 3, 4} ;
(c) R = { (x, y) ⏐ x ≥ y }, X = {1, 2, 3, 4, 5} ;
(d) R = { (x, y) ⏐ x – y = 1 }, X = {1, 2, 3, 4, 5, 6}.

3. A relation R on X = {a, b, c, d}  has matrix

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 1

a b c d
a
b
c
d

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

.

Determine whether R is reflexive, symmetric and/or transitive.
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4. Explain why the relation R on X = {1, 2, 3, 4, 5, 6} with matrix
1 2 3 4 5 6

1 1 1 0 0 0 1
2 1 1 0 0 0 1
3 0 0 1 1 0 0
4 0 0 1 1 0 0
5 0 0 0 0 1 0
6 1 1 0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

is an equivalence relation and give a partition of X corresponding to R.

5. Determine whether or not the relation R on X = {a, b, c , d, e} given by the 
matrix

1 1 0 0 0
1 1 1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

A

is an equivalence relation.

25.5 Functions – Injections, Surjections and Bijections

Definition A function is a relation in which no two different ordered pairs 
have the same first member.

More formally, a function f, with domain A and codomain B is a subset of the 
Cartesian product A × B such that
(a) for every x ∈ A, there exists at least one y ∈ B such that (x, y ) ∈ f ;
(b) if (x, 1y ) ∈ f and (x, 2y ) ∈ f, then 21 yy = .

Example Show that the relation f = { (x, 3x – 2) ⏐ x ∈ R} ⊂ 2R  is a 
function.

Consider any x ∈ R. There exists (exactly) one value of (3x – 2) ∈ R, and 
if (x, 1y ) ∈ f and (x, 2y ) ∈ f, then 231 −= xy  and 232 −= xy  giving 

1y = 2y .  Therefore f is a function.

Note: For subsets of the Cartesian plane, no vertical line (parallel to the y-
axis) may cross the graph of a function at more than one point.
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Definition Two functions 111 : BAf →  and 222 : BAf →  are said to be equal, 

21 ff = , if 21 AA = , 21 BB = , and if x ∈ 1A , )()( 21 xfxf = .

Thus equal functions have the same domain and codomain, and have equal 
values for each element of the domain.

Injections

Definition A function f is said to be injective (or one-to-one) if f ( 1x ) = f ( 2x )
implies that 1x  = 2x . (We also say that f is an injection.)

The graph of an injection cannot be cut more than once by a horizontal line 
(parallel to the x-axis).

Example The function f : 2xxa  with domain R and codomain R, is not 
an injection since f (–2) = f (2) but –2 ≠ 2. However, the function 
f : 2xxa  with domain [0, ∞ [ and codomain R is an injection 
since if f (x) = f (y), x = y.

Surjections

Definition A function f : A → B is said to be surjective (or onto) if any
element b ∈ B is the image of some element a ∈ A. (We also say 
that f is a surjection.)

For a general function f : A → B we say that f maps A into B, but for a surjection 
we say that f maps A onto B.

Note: Given that f : A → B is an injection, then if the equation f (x) = k , k ∈ B,
has a solution, x ∈ A, then this solution is unique, but it need not have a 
solution at all. However, if f is a surjection, then the equation f (x) = k
has a solution, x ∈ A, for all k ∈ B, but this solution need not be unique.

1x 2x

)()( 21 xfxf =

y

x
O

2xy = 2xy =

x
O

y
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Theorem The function f with domain A and codomain B is a surjection if and
only if  (written iff) the range is equal to the codomain. [The range 
of a function should already be familiar to the reader.]

Proof (i) If the range, R, is equal to the codomain, B, then for any 
b ∈ B, b ∈ R. Thus there exists an element a ∈ A for which 
f (a) = b. Hence f is a surjection.

(ii) If f is a surjection, then for any element b ∈ B (the
codomain), there exists at least one element a ∈ A for which 
f (a) = b. Hence b ∈ R, the range of f, and so R = B.

This proves the theorem.

Example Prove that the function f : R → R, defined by 23)( −= xxf , is 
both an injection and a surjection.

Let b be any real number, then the equation f (x) = b has a unique solution 
)2(3

1 += bx  which is real.
Therefore f is both an injection and a surjection.

Example Prove that f : R → R, defined by 2)( xxf =  is neither an injection 
nor a surjection.

(i) Consider the element 4 ∈ R, the codomain. Then the equation 
4)( =xf  has two solutions x = –2, 2 ∈ R, the domain.

Therefore f is not an injection.

(ii) Consider an element –4 ∈ R, the codomain. Then the equation 
4)( −=xf  has no solution x ∈ R, the domain.

Therefore f is not a surjection.

Example Show that the function f : R → R, defined by 23 3)( xxxf += , is 
a surjection but not an injection.

(i) Consider the element 0 ∈ R, the codomain. Then, the equation 
0)( =xf  has two solutions x = 0, –3 ∈ R, the domain.

Therefore f is not an injection.

(ii) The function f is a surjection since for any b ∈ R (the codomain),
the equation bxx =+ 23 3  has at least one real solution. A graph of 
the function can be used to confirm this.
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Example Show that the function f : R → R, defined by xxf 2)( = , is an 
injection, but not a surjection.

Let b be any real number. Then the equation bx =2  has a unique solution 
bx 2log=  if b is positive, and no solution at all if b is not positive.

Therefore f is an injection but not a surjection.

Note: The function f : R → +R , defined by xxf 2)( =  is both an injection 
and a surjection. Once again, a graph of the function will confirm this.

Bijections

Definition A function f : A → B is said to be bijective if and only if it is both
injective and surjective. (We also say that f is a bijection.)

Example Show that the function 3: xxf a  is a bijection from R onto R.

(i) If b is any real number, then the equation bx =3  has at most one 
real solution 3 bx = , and so f is an injection.

(ii) If b is any real number, then the equation bx =3  has exactly one 
real solution 3 bx = , and so f is a surjection.

Therefore f is a bijection from R onto R.

Definition A set A is said to be countable if there exists a bijection f : N → A,
where N is the set of natural numbers {0, 1, 2, 3,  …. }.

Example Show that the set of even numbers is countable.

Let A be the set of even numbers { …. , –4, –2, 0, 2, 4, …. }.

Consider a function f : N → A, defined by 
⎩
⎨
⎧

+−
=

odd.isif),1(
even,isif,

)(
xx
xx

xf

The function f is a bijection since the equation bxf =)( , where b is any 
even number, has exactly one solution bx =  if b is non-negative or 

)1( +−= bx  if b is negative.

Therefore the set of even numbers is countable.
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Exercise 25.5

1. Decide whether the following functions are injections and/or surjections:
(a) f : R → R, defined by xxf −= 2)(  ;
(b) f : R → R, defined by xxf sin)( =  ;

(c) f : R → R, defined by 3)( xxf =  ;
(d) f : +R → R, defined by xxf log)( =  ;
(e) f  with domain [0, 2π], and codomain R, defined by xxf cos)( =  ;
(f) f with domain R, codomain ]0, 2] and defined by )1(2)( 2xxf +=  ; 
(g) f with domain [0, ∞ [, codomain R and defined by xxf =)(  ;
(h) f : R → R, defined by )2()( −= xxxf  ;

(i) f with domain [–2, 2], codomain [0, 2], defined by 24)( xxf −= ;
(j) f with domain [0, π], codomain [0, 1] and defined by xxf sin)( =  ;

(k) f : R →→ +R , defined by xxf 21)( +=  ;
(l) f : R → ] [ππ− 2

1
2
1 , , defined by xxf arctan)( = .

2. Find the largest domain for which the function defined by 21)( xxf −=  is 
an injection. For the domain chosen, give the codomain required to ensure 
that f is also a surjection.

3. Define a function f, which is both an injection and a surjection, for which
(a) the domain is +�  and the codomain is +R ;
(b) the domain is [0, ∞ [ and the codomain is [0, ∞ [  ;
(c) the domain is ]–1, 1[ and the codomain is R.

4. Which of the following functions are bijections? If a function is not a 
bijection, explain why this is so.
(a) f : R → R, defined by 45)( += xxf  ;
(b) f : R → R, defined by 1)( 2 += xxf  ;
(c) f : R → R, defined by 1)( 3 += xxf  ;
(d) f : R → R, defined by xxxf −= 3)(  ;
(e) f with domain and codomain [,[ 2

1 ∞ , defined by 122)( 2 +−= xxxf  ;
(f) f with domain [0, 2π], codomain [–1, 1], defined by xxf 2

1cos)( =  ;

(g) f : R → R, defined by xxf −= 2)(  ;
(h) f : +R → R, defined by xxf 2log)( =  ;
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(i) f : +R → +R , defined by xxf 4)( =  ;
(j) f with domain and codomain ]1, ∞ [, defined by )1()( −= xxxf .

5. Prove that the following functions are bijections:
(a) f : R → R , defined by 3)( xxf =  ;
(b) f : R → +R , defined by xxf 10)( =  ;
(c) f with domain ],[ 2

1
2
1 ππ− , codomain [–1, 1], defined by xxf sin)( =  ;

(d) f with domain [,0[ ∞ , codomain ]0, 1], defined by )1(1)( 2xxf += .

6. Show that each of the following sets is countable:
(a) {1, 2, 3, 4, 5, … } ; (b) {1, 3, 5, 7, 9, … } ;
(c) {1, 2, 4, 8, 16, 32, … } ; (d) Z.

25.6 Binary Operators and Closure

Definition A binary operator combines two 'elements' together to give a
unique third 'element'.

Examples of binary operators on real numbers inc lude addition and
multiplication. In the case of transformations of the plane, the normal binary 
operator is 'follows' in the sense that one transformation follows another to give 
a single third transformation. For example, if A is a reflection in the x-axis, B is 
a reflection in the y-axis and C is a rotation of 180° about the origin, then A
'follows' B is equal to C in the sense that a reflection in the x-axis following a 
reflection in the y-axis is equivalent to a single rotation of 180° about the 
origin..

Closure of a Set with Respect to an Operation

Definition A set S is closed under a binary operator ∗ if, whenever a and b are 
in S, a ∗ b is also in S.

The set of non-zero real numbers is closed under multiplication but not under 
addition since the product of any two non-zero real numbers is another (unique) 
non-zero real number, but the sum of any two non-zero real numbers is not 
necessarily another non-zero real number. For example, the sum of the two non-
zero real numbers 6 and 6−  is 0 which is not a non-zero real number.

The set of numbers of the form a.bc, where a is a natural number, . is a decimal 
point and b and c are natural numbers between 0 and 9 inclusive, is closed under 
addition but not under multiplication.
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Exercise 25.6

1. Which of the following sets are closed under addition? The set of all
(a) even integers ; (b) odd integers ;
(c) positive integers ; (d) negative integers ;
(e) non-zero integers ; (f) prime numbers ;
(g) rational numbers ; (h) positive rational numbers ;
(i) negative rational numbers ; (j) non-zero rational numbers ;
(k) irrational numbers ; (l) real numbers ;
(m) positive real numbers ; (n) negative real numbers ;
(o) multiples of 3 ; (p) numbers of the form

2a b+ , a, b ∈ Q.

2. Which of the sets in Question 1 are closed under multiplication?

3. Which of the following subsets of N are closed under addition?
(a) Z +  ; (b) {3, 4, 5, 6, … } ;
(c) {1, 3, 4, 5, 6, … } ; (d) {4, 7, 8, 9, 10, … } ;
(e) {0} ; (f) {1} ;
(g) {0, 2, 4, 6, 8, … } ; (h) {1, 3, 5, 7, 9, … } ;
(i) {2m ⏐ m ∈ N} ; (j) {6m ⏐ m ∈ N}.

4. Which of the sets in Question 3 are closed under multiplication?

5. Which of the following subsets of R are closed under multiplication?
(a) {1, 2} ;
(b) {0, 1, 4, 9, 16, … } ;
(c) { 6m ± 1 ⏐ m ∈ Z + } ;
(d) {4, 6, 8, 9, 10, 12, … } – the set of all composite numbers ;
(e) { n ⏐ n ∈ N, 101 is not a divisor of n } ;
(f) { n ⏐ n ∈ N, 91 is not a divisor of n }.

6. Show that there is only one subset of N which is closed under subtraction.

7. Show that there is only one subset of N which is closed under division.

8. Find three finite subsets of N which are closed under multiplication.

9. Find the smallest subset of Z which is closed under subtraction and 
contains the number 2.

10. Find the smallest subset of Z which is closed under multiplication and 
contains the number –1.
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11. Find two subsets of Z which are closed under division.

12. Which of the following subsets of Q are closed under addition?
(a) { q ⏐ q ∈ Q, q < –2 } ; (b) { q ⏐ q ∈ Q, q < 0 } ;
(c) { q ⏐ q ∈ Q, q < 2 } ; (d) { q ⏐ q ∈ Q, q ≠ 0 } ;
(e) { q ⏐ q ∈ Q, 2q  > 1 } ; (f) { q ⏐ q ∈ Q, 2q  < 1 } ;
(g) { q ⏐ q ∈ Q, 0 < q < 2q  } ; (h) { (2 ) ,kn n k− ∈Z + }.

13. Let ( )2 { 2 , , }Q a b a b= + ∈� . Show that ( )2Q  is closed under 

three of the four operations +, –, ×, ÷. Discuss the closure of the set of all 
non-zero members of ( )2Q  under these four operations.

14. Prove that if A is a subset of R which is closed under addition, then 
{ }B a a A= − ∈  is also closed under addition. Is B closed under

subtraction?

25.7 The Associative Law

Definition The set S is associative under the binary operation ∗  if, for all a, b
and c in S, ( ) ( )a b c a b c∗ ∗ = ∗ ∗ .

Example The set R is associative under both addition and multiplication, 
and so is any subset of R, but R is not associative under either 
subtraction or division since

a + (b + c) = (a + b) + c for all real a, b and c ;
a × (b × c) = (a × b) × c for all real a, b and c ;
a – (b – c) ≠ (a – b) – c, in general, and
a ÷ (b ÷ c) ≠ (a ÷ b) ÷ c, in general.

Example Show that R is associative under the binary operator ∗  where 
2a b ab a b∗ = + +  for all real a, b.

If a, b and c are real, ( )a b c∗ ∗ = (2 )a bc b c∗ + +
= 2 (2 ) (2 )a bc b c a bc b c+ + + + + +
=  4abc + 2ab + 2ac + 2bc + a + b + c.

Also, ( )a b c∗ ∗ = (2 )ab a b c+ + ∗
=  2(2ab + a + b)c + (2ab + a + b) + c
=  4abc + 2ab + 2ac + 2bc + a + b + c.

Therefore ( ) ( )a b c a b c∗ ∗ = ∗ ∗  and so R is associative under ∗.
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Exercise 25.7

1. Under which of the following operations is R associative?
(a) 4a b a b∗ = + −  ; (b) 4a b a b ab∗ = + −  ;
(c) 2a b a b∗ = +  ; (d) a b ab a b∗ = + +  ;

(e) 2 2a b a b∗ = +  ; (f) a b a b∗ = + .

2. Consider the set S = { (x, y) ⏐ x, y ∈ R } under the operation ∗  where
1 1 2 2 1 2 1 2 1 2 2 1( , ) ( , ) ( , )x y x y x x y y x y x y∗ = − + .

Is S associative under ∗ ?

3. Let A = {a, b, c} and let ∗  be defined on A by means of the following 
'multiplication table'.

* a b c
a a b c
b b c a
c c a b

[The table is constructed so that the value of a ∗ b is shown in the same
row as a and the same column as b.]

(a) Verify that ( ) ( )a b c a b c∗ ∗ = ∗ ∗ .
(b) How many separate checks are needed to test the associative law 

for ∗  on A?
(c) Can you see any property of the operation that will enable you to 

reduce the labour required to check the associative law? How many 
checks are now required?

25.8 The Identity Element

Definition A set A under a binary operation ∗  is said to contain an identity 
element e if, for all a in A, a ∗ e = e ∗ a = a.

Example R, Q, N and Z all have zero as the identity element with respect 
to addition and 1 as the identity element with respect to
multiplication.

Example The set of non-negative even numbers {0, 2, 4, 6, … } has 0 as the 
identity under addition but no identity under multiplication. The set 
of positive odd numbers {1, 3, 5, 7, … } has 1 as the identity under 
multiplication but no identity under addition.
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Example Find the identity element of R with respect to the operation ∗
defined on �  by a ∗ b = a + b – 2ab for all a, b in R.

Let e be the identity, if it exists.
Then a ∗ e = a
     a + e – 2ae = a

                e(1 – 2a) =  0
⇒ e = 0   or a = 1

2  .
       Hence, if a ∗ e = a for all a in R, it follows that e = 0.

      We must now check that e = 0 is in fact the identity element.
a ∗ 0 = a + 0 – 2a(0) = a   and   0∗ a = 0 + a – 2(0)a = a.

      Therefore 0 is the identity element.

Theorem The identity element is unique.

Proof Let e and e' both be identity elements for the operation ∗  defined on a 
set A. Then e ∗ e' = e'   since e is an identity element, and

e ∗ e' = e    since e' is an identity element.
Hence e' = e and so the identity element is unique.

Exercise 25.8

1. Determine the identity element (if it exists) for the operation ∗  defined on R,
if for a, b in R
(a) a ∗ b = a + b + 3 ; (b) a ∗ b = 3ab ;
(c) a ∗ b = ab – a – b ; (d) a ∗ b = a + b – ab.

2. Find the identity element, if it exists, for the following structures:
    (a) Real numbers under ∗  where a ∗ b = 2a + ab + 2b.
    (b) Set S = { (x, y) ⏐ x, y ∈ R } under ∗ where

1 1 2 2 1 2 1 2 1 2 2 1( , ) ( , ) ( , )x y x y x x y y x y x y∗ = − +
for all 1 1 2 2( , ) , ( , )x y x y  in S.

(c) The set of all subsets of a given universal set U under union.
(d) The set of all subsets of a given universal set U under intersection.
(e) Set S = {2, 4, 6, 8} under ∗  where a ∗ b is the least positive remainder 

when ab is divided by 10.

3. Consider the set S = {2, 4, 6, 8, 10, 12} under ∗  where a ∗ b is the least 
positive remainder when ab is divided by 14. Draw up a multiplication table 
for S under ∗ and hence determine the identity element.
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4. Consider the set S = , , ,
a b

a b c d
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

�  under the operator ∗ where

 for all ,
a b e f ae bg af bh a b e f
c d g h ce dg cf dh c d g h

+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
∗ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 in S.

Find the identity element for ∗  on S.

5. In each of the following, a set S and an operation ∗ on S are defined by a 
'multiplication' table. Find the identity element in each, if it exists.

(a) * a    b    c (b) * a    b    c    d
a    b    c    a a    b    d    a    c
b    c    a    b b    c    a    d    b
c    a    b    c c    a    b    c    d

d    d    c    b    a

What property of a multiplication table determines the existence of an
identity element?

25.9 Inverse Elements

Definition Let A be a set with binary operation ∗  and with an identity element e.
The element a' in A is said to be an inverse of the element a in A if 

a ∗ a' = a' ∗ a = e.

                  Also, if a' is an inverse of a then a is an inverse of a'.

Example The inverse of a real number a under addition is its negative –a since 
a + (–a) = (–a) + a = 0 where 0 is the identity element under 
addition.

The inverse of the non-zero number a under multiplication is its 
reciprocal 1a−  since 1 1 1a a a a− −× = × =  where 1 is the identity
element under multiplication.
[0 has no inverse under multiplication.]

Notation: In all that follows, we will generally use the symbol 1a−  to represent 
the inverse of the element a under all operations defined on a set S.
In most cases this must not be confused with the reciprocal of the 
real number a.

Example Find the inverse of the real number a with respect to the operation ∗
defined on R by a ∗ b = ab + a + b for all a, b in R.
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First we must find the identity element.
Let e be the identity element, if it exists.
Then a ∗ e = a and so ae + a + e = a.
Thus e(a + 1) = 0   which gives e = 0   or a = –1.
But a ∗ e = a for all a in R and so e = 0.
We must now check that 0 is the identity: a ∗ 0 = a(0) + a + 0 = a

0 ∗ a = (0)a + 0 + a = a.
Therefore 0 is indeed the identity.

Now let 1a−  be the inverse of a if it exists.
Then 1a a−∗ = e
⇒ 1 1aa a a− −+ + =  0
⇒ 1( 1)a a− + = –a

⇒ 1a− =
1

a
a
−
+

  provided a ≠ –1.

Finally we must check that this is indeed the inverse of a (≠ –1).
2 2

0
1 1 1 1

a a a a a a a
a a a

a a a a
− − − − + + −⎛ ⎞ ⎛ ⎞∗ = + + = =⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠

.

Therefore the inverse of a is 
1

a
a
−
+

 provided a ≠ –1.

If a = –1, there is no inverse.

Exercise 25.9

1. Find the inverse of the real number c with respect to the operation ∗
defined on R by each of the following:
(a) a ∗ b = a + b + 4 ; (b) a ∗ b = 2ab ;
(c) a ∗ b = 2ab + a + b ; (d) a ∗ b = ab + 2a + 2b ;
(e) a ∗ b = a + b – 3ab ; (f) a ∗ b = 2ab + 10 – 4a – 4b.

2. For the set S = { (x, y) ⏐ x, y ∈ R } under the operation ∗  defined by
1 1 2 2 1 2 1 2 1 2 2 1( , ) ( , ) ( , )x y x y x x y y x y x y∗ = − +

for all 1 1 2 2( , ) , ( , )x y x y  in S, we have shown that (1, 0) is the identity 
element. What is the inverse of the element (p, q)? Which elements in S, if 
any, do not have inverses?

3. Prove that for every set with a binary operator defined on it, the identity 
element (if it exists) has a unique inverse.
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4. Consider the set S = {1, 2, 3, 4} under the binary operation ∗  where a ∗ b is 
the smallest positive remainder when ab is divided by 5. Find the inverse 
of each member of S with respect to ∗.

5. Each of the following tables defines an operation ∗  on a set. Find the 
identity element and the inverse of each element.

(a) * a    b    c    d (b) *    a    b    c    d
a    b    a    d    c a    b    c    a    c
b    a    b    c    d b    c    d    b    c
c    d    c    a    b c    a    b    c    d
d    c    d    b    a d    d    c    d    a

6. (a) Find the inverse of each member of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} if 
a ∗ b means the least positive remainder when ab is divided by 11.

(b) As for part (a) but using {2, 4, 6, 8} and division by 10.
(c) As for part (a) but using {3, 6, 9, 12, 15, 18} and division by 21.
(d) Which members of the set of all natural numbers less than or equal 

to 14 have inverses under the operation ∗  defined on the set by 
taking a ∗ b to be the least non-negative remainder when the
product is divided by 15? What are their inverses?

*7. (a) Simplify (i) 2 2( )( )x d x dx d+ − +  ;
(ii) 3 3 3( 2 1)( 4 2 1)+ − + .

(b) Prove that the set 3 3{ 4 2 , , }a b c a b c+ + ∈�  is closed under 

multiplication. Find the inverse of 3 2 1+  and also that of 3 2 1− .

25.10 Residue Classes

The set of integers { … , –4, –1, 2, 5, 8, 11, … } each member of which has the 
same remainder (2) when divided by 3, is called a residue class, modulo 3. 
There are three different residue classes, modulo 3, corresponding to the three 
possible remainders 0, 1, 2 on division by 3. These classes are:

{ … , –6, –3, 0, 3, 6, 9, … } ;
{ … , –5, –2, 1, 4, 7, 10, … } ;
{ … , –4, –1, 2, 5, 8, 11, … }.

Similarly there are two residue classes, modulo 2. They are the set of all odd 
numbers and the set of all even numbers. Thus for each positive integer m, there 
are m different residue classes, modulo m, and every integer is a member of one 
and only one of these classes.
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Definition Two integers, a and b, which are in the same residue class, modulo 
m, are said to be congruent, modulo m. This relation is written

a ≡ b   (mod m),
and means that

a – b is a multiple of m ;
or a – b = mq where q is an integer ;
or a = b + mq.

Theorem Suppose a ≡ b (mod m) and c ≡ d (mod m).
Then (i) a + c ≡ b + d (mod m) ;

(ii) ac ≡ bd (mod m).

Proof (i) For some integers 1q  and 2q  we have
a = b + 1mq    and c = d + 2mq .
Therefore a + c = b + 1mq  + d + 2mq

= b + d + m( 1q  + 2q )
= b + d + m 3q   ( 3q  is an integer)
≡ b + d  (mod m).

(ii) Also ac =  (b + 1mq )(d + 2mq )
= bd + m( 1q d + 2q b + 1 2mq q )
= bd + m 4q    ( 4q  is an integer)
≡ bd  (mod m).

This theorem means that, as far as the congruence relation is concerned, one 
member of a residue class is as good as another. Thus we speak of

(a) the residue class 4 (mod 7), meaning the solution set of the congruence 
x ≡ 4 (mod 7) ;

(b) the sum of the residue classes 4 and 2 (mod 7), meaning the solution set of
the congruence x ≡ 4 + 2 (mod 7)  [i.e.,  { … , –1, 6, 13, 20, … } ] ;

(c) the product of the residue classes 4 and 2 (mod 7), meaning the solution set 
of the congruence x ≡ 4 × 2 (mod 7)  [i.e.,  { … , –6, 1, 8, 15, … } ].

In naming a residue class, we can use any member of it, but generally we 
choose to use its smallest non-negative member.

Example Find the remainder when 54 × 69 × 137 is divided by 7.
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54 ≡ 5,  69 ≡ 6  and  137 ≡ 4  (mod 7)
Therefore  54 × 69 × 137 ≡ 5 × 6 × 4 ≡ 2 × 4 ≡ 1  (mod 7).
Thus the required remainder is 1.

Example { }nt  is a sequence of integers such that 1 6t =  and for every 1n ≥ ,
2

1 4n nt t+ = + . Find the least n for which nt  is a multiple of 13.

n nt
1 6
2 62 + 4 ≡ 1  (mod 13)
3 12 + 4 ≡ 5  (mod 13)
4 52 + 4 ≡ 3  (mod 13)
5 32 + 4 ≡ 0  (modulo 13)

Therefore the least value of n is 5.

[Check? 1 2 3 46, 40, 1604, 2572820,t t t t= = = =

5 6619402752404 13 509184827108t = = × ]

Exercise 25.10

1. Prove that for all integers a, b and c,
(a) 100a + 10b + c ≡ a + b + c  (mod 9) ;
(b) 100a + 10b + c ≡ a – b + c  (mod 11).
State and prove similar results for 2 3

0 1 2 310 10 10 10n
na a a a a+ + + + +L .

2. Find the digit x if 538x 239 is divisible by   (a)  9 ;    (b)  11.

3. Let 1 4t =  and 2
1 2n n nt t t+ = + +  for all n ≥ 1. Show that for every n, either 

1nt ≡  (mod 7)  or 1 4t ≡  (mod 7).

4. Let 1 3t =  and 3
1 2n nt t+ = +  for all n ≥ 1. Show that for every n, the 

smallest positive remainder when nt  is divided by 9 is either 1, 2, or 3.

5. Let 1 22, 3t t= =  and 2 1n n nt t t+ += +  for all n ≥ 1. Find the smallest value 
of n for which nt  is a multiple of 19.

6. Find the smallest positive integer x that is a solution of the congruence 
ax ≡ 1 (mod 11) for each integer value of a from 1 to 10 inclusive.
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7. Repeat Question 6 using the congruence ax ≡ 1 (mod 10) and all the 
numbers a such that 1 9a≤ ≤  for which a solution x exists.

*8. Let p be a prime number and q a positive integer, not a multiple of p. Show 
that no two of the numbers q, 2q, 3q, … , (p–1)q are congruent, modulo p.
Deduce that the congruence ax ≡ 1 (mod p) must have a solution x.

25.11 Permutations

Definition Let A = {1, 2, 3, … , n}. A permutation p of A is a function whose 
domain and range are both A, i.e., the set of values of p is the 
whole of A.

Like any numerical function with finite domain, p may be defined by means of 
a table of values:

k p(k)
1 p(1)
2 p(2)
3 p(3)
• •
• •
n p(n)

It is customary to write this table horizontally rather than vertically for obvious 
reasons:

1 2 3
(1) (2) (3) ( ) ( )

k n
p

p p p p k p n
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

L L
L L

 ,

where the numbers on the second row are precisely those of the first, possibly in 
a different order.

Example If A = {1, 2, 3, 4}, some permutations of set A might be
1 2 3 4 1 2 3 4 1 2 3 4

, , ,
2 3 4 1 2 3 1 4 2 1 3 4

a b c
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 2 3 4 1 2 3 4
,

2 1 4 3 1 2 3 4
d e

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.
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Note: The symbol 
1 2 3 4
1 4 1 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

 does not represent a permutation as 2 is 

not in the range of values given by this table. Also,
2 3 4 1 4 2 3 1
3 4 1 2 1 3 4 2

a
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, etc. Thus the information is 

read vertically, not horizontally.

The symbol a here denotes a function for which the usual notation can be used, 
e.g., a(2) = 3, a(4) = 1, just as we write sin(π/6) = 0.5.

Definition We denote by nS  the set of all permutations of {1, 2, 3, … , n}.

Example The set of all permutations of {1, 2, 3} is
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

, , , , ,
1 2 3 1 3 2 3 2 1 2 1 3 2 3 1 3 1 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.

Theorem nS  has n! members.

Proof Let p be one of the permutations. Then p(1) may have any one of n
possible values. To each such value, there are n – 1 possible values for 
p(2) since p(1) may not be used twice. Thus there are n(n – 1) possible 
pairs ( )(1), (2)p p . To each of these there are n – 2 choices for p(3).
Having assigned values to p(1), p(2), p(3), there remains 3n −  choices 
for p(4), and so on. Thus the total number of possible ways of defining 
p is the product n(n – 1)(n – 2) … (3)(2)(1) = n!, as required.

Composition of Permutations

The composition of permutations is their composition as functions, but for 
notational convenience we write pq instead of p ∗ q or p qo . To compute pq,
where p and q are permutations on the set {1, 2, 3, 4} given by

1 2 3 4 1 2 3 4
and

2 3 4 1 2 1 3 4
p q

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

we argue as follows: pq(1) = p(q(1)) = p(2) = 3 ; pq(2) = p(q(2)) = p(1) = 2 ;
pq(3) = p(q(3)) = p(3) = 4 ; pq(4) = p(q(4)) = p(4) = 1.

Thus
1 2 3 4
3 2 4 1

pq
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.
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Definition The permutation 
1 2
1 2

k n
e

k n
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

K K
K K

 of A = {1, 2, …, n} is 

called the identity permutation of A.

Thus pe = ep = p for all permutations p of A.

Exercise 25.11

1. Label the six permutations of the set {1, 2, 3} as 1
1 2 3
1 2 3

p
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,

2 3 4 5
1 2 3 1 2 3 1 2 3 1 2 3

, , ,
1 3 2 3 2 1 2 1 3 2 3 1

p p p p
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 , 

6
1 2 3
3 1 2

p
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 and construct a 'multiplication' table under the

composition of permutations. [The entry in the ith row and jth column will 
be the composition i jp p  or ip  'follows' jp .]
(a) State the identity and give the inverse of each permutation.
(b) Simplify each of the following:

(i) 3
5p  ; (ii) 2 3 4p p p  ; (iii) 4 3 2p p p  ;

(iv) 1
3 5 4p p p−  ; (v) 1

6 5 4( )p p p −  ; (vi) 2 3
4 5p p .

2. With the six permutations given in Question 1, find the permutations x
which satisfy each of the following equations:
(a) 2 1p x p=  ; (b) 5 6xp p=  ; (c) 2 3 4p xp p=  ;

(d) 1
5 5 6p xp p− =  ; (e) 2

1x p=  ; (f) 3
1x p= .

3. In 5S  let 
1 2 3 4 5
1 2 3 4 5

e
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 and find

(a) a permutation x such that 2 3 4, , ,x x x x  are all distinct and 5x e=  ;
(b) a permutation y such that y e≠  but 2y e= .

4. A shuffle of 6 cards is described by the permutation 
1 2 3 4 5 6
3 6 5 1 2 4

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

Find the number of times this shuffle has to be carried out consecutively in 
order to replace the cards in their original order.
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25.12 Cyclic Notation (Optional)

The tabular format for writing down permutations is quite 'clumsy'. A much 
more economical notation is the 'cyclic notation'.

As an example consider the permutation
1 2 3 4
4 2 1 3

p
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 in 4S . Since p

maps 1 to 4, 4 to 3, 3 to 1 and 2 to itself, p may be represented cyclically as 
follows:

We denote this by (143), i.e., 1 → 4 → 3 → 1, and since 2 is not mentioned,
2 → 2. This is the most economical way of writing p that is possible since each 
element is written once and the fixed element 2 is not written down at all. We 
have to write 3 numbers instead of 8.

Definition Let 1 2, , , rk k kL  be distinct members of the set A={1, 2, … , n}
in the given order. The cycle c = ( 1 2 rk k kL ) is the permutation of 
A such that

(a) 1( )i ic k k +=  for i = 1, 2, … , r – 1 and 1( )rc k k=  ; and
(b) ( )c j j=  for any j ∈ A distinct from 1 2, , , rk k kL .

Note: The number r is known as the length of the cycle.

Each member of the cycle is taken to the next on the right and the last is taken 
to the first thereby 'closing' the cycle.

The cycle (143) may equally well be written (431) or (314), but (413) represents 
a different permutation. A peculiarity of this notation is that the symbol (143) 
could represent permutations of 4 5 6, , ,S S S  etc. Thus to avoid ambiguity, the set 
A should be specified. A cycle of length 1, written (1) in general, represents the 
identity permutation of A.

Example For the set A = {1, 2, 3, 4}, let p = (132) and q = (234). Find the 
permutation pq.

1

43
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q maps 1 to 1 and p maps 1 to 3 ;
q maps 2 to 3 and p maps 3 to 2 ;
q maps 3 to 4 and p maps 4 to 4 ;
q maps 4 to 2 and p maps 2 to 1.

Therefore the required permutation is (134) or 
1 2 3 4
3 2 4 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

Exercise 25.12

1. The following cycles are permutations of the set {1, 2, 3, 4, 5}. Write these 
cycles in tabular form.
(a) (23) ; (b) (123) ; (c) (1524) ;
(d) (54321) ; (e) (1) ; (f) (45) ;
(g) (124) ; (h) (1523) ; (i) (15423).

2. Express the following permutations of {1, 2, 3, 4, 5} in tabular form:
(a) (12)(45) ; (b) (23)(23) ; (c) (12)(13) ;
(d) (12)(13)(14) ; (e) (123)(453) ; (f) (123)(45).

3. For each of the following, find the least positive power to which it must be 
raised in order to obtain the identity permutation:
(a) (1) ; (b) (24) ; (c) (153) ;
(d) (1432) ; (e) (12345) ; (f) (12)(34) ;
(g) (123)(234) ; (h) (23)(145) ; (i) (1234)(345).

*4. (a) Let p = (123 … m) and q = (m+1 m+2 … n) be two cycles with 
common domain A. If a ∈ A show that pq(a) = qp(a).

(b) Two cycles (abc … i) and (jkl … r) are said to be disjoint if no 
number appears in both cycles. Show that if p and q represent 
disjoint cycles, then they commute, i.e., pq = qp. By considering 
the example p = (1234) and q = (1432), show that the converse is 
not true, i.e., it is possible for two cycles to have numbers in
common and yet still commute.

*5. Show that if 1, a, b, c are 4 different numbers, then (1a)(1b)(1c) = (1cba).
Extend this to the product (12)(13)(14) … (1n).

*6. A cycle of length 2 is called a transposition. Prove that any cycle of length 
r can be expressed as a product of r – 1 transpositions.
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25.13 Groups

Definition A group is a set of elements G together with a binary operator ∗
which satisfies the following axioms:
(a) G is closed under ∗.

Whenever a, b are in G, a ∗ b is in G.
(b) G is associative under ∗.

For all a, b, c in G, a ∗ (b ∗ c) = (a ∗ b) ∗ c.
(c) There exists an identity element e in G such that for all a in G,

a ∗ e = e ∗ a = a.
(d) Every element a in G has a corresponding inverse element 

1a−  in G such that 1 1a a a a e− −∗ = ∗ = .

Note: In general, the most difficult axiom to prove is the associative axiom. 
To simplify the procedure, you may assume that the following sets are 
associative under the given operation.

• any subset of the real numbers under addition and multiplication ;
• any subset of the complex numbers under addition and multiplication of 

complex numbers ;
• any set of square matrices under matrix addition and multiplication ;
• any set of residue classes (mod m) under addition or multiplication (modm) ;
• any set of permutations under composition of permutations ;
• any set of transformations of the plane under 'follows' ;
• any set of symmetries (of the square etc.) under 'follows' ;
• any set of functions under composition of functions.

Example Show that the set Z of integers is a group under addition.

(a) Z is closed under addition since the sum of any two integers is also 
an integer.

(b) Z is a subset of R and so must be associative under addition.
(c) 0 is the identity.
(d) If a is an integer, then so is (–a) and a + (–a) = (–a) + a = 0. 

Therefore (–a) is the inverse of a for all integers a.

Hence the set Z is a group under addition.

Example Show that the set S = {2, 4, 6, 8} of residue classes, modulo 10, is a 
group under multiplication.
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The 'multiplication table' is as follows:

*     2     4     6     8
2     4     8     2     6
4     8     6     4     2
6     2     4     6     8
8     6     2     8     4

(a) Each entry in the table is a member of S. Therefore S is closed 
under multiplication.

(b) The associative rule can be assumed for residue classes under
multiplication.

(c) The third row is the same as the row at the top and the third 
column is the same as the column on the left. Therefore 6 is the 
identity element.

(d) Since the identity (6) appears once in every row and every column, 
every element has an inverse. The inverses of 2, 4, 6, 8 are
respectively 8, 4, 6, 2.

Thus S is a group under multiplication of residue classes (mod 10).

Exercise 25.13

1. Decide which of the following are groups:
(a) N under addition ; (b) N under multiplication ;
(c) Z under addition ; (d) Z under multiplication ;
(e) Q under addition ; (f) Q under multiplication ;
(g) R under addition ; (h) R under multiplication.

2. Decide which of the following are groups:
(a) {1, –1} under multiplication ;
(b) { 2 , }a b a b+ ∈�  under addition ;

(c) { 2 , ; , not both zero}a b a b a b+ ∈�  under multiplication ;

(d) {2 }m m∈�  under multiplication ;
(e) {5m + 1 ⏐ m ∈ Z} under multiplication ;
(f) 1 2 3 4{ ( ), ( ), ( ), ( )}f x f x f x f x  under composition of functions where 

1 2 3 4( ) , ( ) , ( ) 1 , ( ) 1f x x f x x f x x f x x= = − = = −  ;
(g) Z under ∗ where a ∗ b = a + b + 4 for all a, b in Z ;
(h) the set G of all real numbers except 1 under ∗ where

for all a, b in G, a ∗ b = 2(a – 1)(b – 1) + 1
(i) the set of all complex numbers with modulus 1 under

multiplication.
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3. Which of the following are groups under addition? For each reject, state 
which of the group axioms do not hold.
(a) The set of all even integers.
(b) The set of all odd integers.
(c) The set of all multiples of three.
(d) The set of all rational numbers.

4. Find the smallest multiplicative group of complex numbers which contains
(a) 1

2 (1 i 3)+  ; (b) 1
2 2(1 i)− .

5. Find the identity element e and the inverse 1a−  of a for an operation ∗
defined on R by a ∗ b = a + b + 2. Is R a group under this operation?

6. Which of the group axioms are satisfied by the operation ∗  defined on R
by a ∗ b = a(b + 2)?

7. Show that the following sets of residue classes, modulo m, are groups 
under multiplication:
(a) {1, 2, 3, 4}, m = 5 ; (b) {1, 5, 7, 11}, m = 12 ;
(c) {1, 3, 7, 9}, m = 10 ; (d) {1, 7, 9, 15}, m = 16.

8. Let e = (1), a = (12)(34), b = (13)(24) and c = (14)(23) be four 
permutations with domain {1, 2, 3, 4}. Show that they form a group under 
composition.

9. Under what condition does the set of all non-zero residue classes, modulo 
m, form a group under multiplication, modulo m?

10. Consider the set G of non-zero residue classes, modulo 11. Which of the 
following subsets of G forms a group under multiplication, modulo 11?
(a) {1, 3, 4, 5, 9} ; (b) {1, 3, 5, 7, 8}.

11. Let { ( , ) , , , not both zero}A x y x y x y= ∈� , and let

1 1 2 2 1 2 1 2 1 2 2 1( , ) ( , ) ( , )x y x y x x y y x y x y∗ = − +
for all 1 1 2 2( , ), ( , )x y x y  in A. Prove that (A, ∗) is a group.

12. Let G be the set of all real numbers excluding –1 under ∗  where
a ∗ b = ab + a + b

for all a, b in G. Prove that (G, ∗) is a group.
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25.14 Properties of a Group

Theorem (Cancellation) Let G be a group under ∗ . Let a, b, x be in G. If 
a ∗ x = b ∗ x then a = b.

Proof a ∗ x = b ∗ x
⇒ (a ∗ x) ∗ 1x − =  (b ∗ x) ∗ 1x − [closure and inverse axioms]
⇒ a ∗ (x ∗ 1x − ) = b ∗ (x ∗ 1x − ) [associative axiom]
⇒ a ∗ e = b ∗ e [inverse axiom]
⇒ a = b [identity axiom].

Theorem The inverse of an element of a group is unique.

Proof Suppose  and a a′ ′′  are two elements of the group, both inverses of 
the element a.
Then a′ ∗ a = e [inverse axiom]
and a′′ ∗ a = e [inverse axiom]
⇒ a′ = a′′ [cancellation].
Therefore the inverse of a is unique.

Theorem Let a, b, x be elements of a group G under ∗. If a ∗ x = b, then 
x = 1a− ∗ b.

Proof a ∗ x = b
1a− ∗  (a ∗ x) = 1a− ∗ b [closure and inverse axioms]

  ( 1a− ∗ a) ∗ x = 1a− ∗ b [associative axiom]
e ∗ x = 1a− ∗ b [inverse axiom]

                     x = 1a− ∗ b [identity axiom].

Theorem If (G, ∗) is a group, then for any x, y in G, 1( )x y −∗  = 1 1y x− −∗ .

Proof (x ∗ y) ∗ ( 1 1y x− −∗ )
=  {x ∗ ( y ∗ 1y− )} ∗ 1x − [associative axiom]
=  {x ∗ e} ∗ 1x − [inverse axiom]
= x ∗ 1x − [identity axiom]
= e [inverse axiom].

Similarly, ( 1 1y x− −∗ ) ∗ (x ∗ y) = e.
Therefore 1( )x y −∗  = 1 1y x− −∗       [inverse axiom].
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Definition The order of an element x of a group (G, ∗ ) is the smallest positive 
integer n such that nx  = e (the identity).

Note: We write x ∗ x ∗ x ∗ … ∗ x (to n factors) as nx .

Example Find the order of the element 3 in the group of residue classes {0, 
1, 2, 3, 4} modulo 5 under addition of residue classes modulo 5.

0 is the identity and 23  = 1 (3 + 3 = 1, mod 5), 33  = 4, 43  = 2, 
53 = 0. Therefore 3 has order 5.

Exercise 25.14

1. Let e be the identity element of a group (G, ∗ ).
Prove that (a) 1e e− =  ; (b) 1 1( )x x− − =  for any x in G.

2. If x, y, z are elements of a group (G, ∗ ), write 1( )x y z −∗ ∗  without brackets.

3. In conventional algebra, if 2x x=  then x = 0 or x = 1. How many solutions 
has the equation 2x x=  in the algebra of groups? Find a group which has 
more than one element x such that 3x x= .

4. Find the smallest group of transformations of the plane under 'follows' 
which contains
(a) 1T  : (x, y) a (–x, y) and 2T  : (x, y) a (x, –y) ;
(b) R  : (x, y) a  (–y, x).

5. Let (G, ∗ ) be a group with three members e, a, b. Which member of G is 
a ∗ b ?  Show that a ∗ b = b ∗ a.

6. Let (G, ∗) be a group with four members e, a, b, c. Which members of G
could be a ∗ b ? (Give examples.) Show that a ∗ b = b ∗ a.

7. Use the properties of a group to simplify each of the following:
(a) 1 2( )xyx−  ; (b) 1 3( )xyx−  ; (c) 1 4( )xyx−  ;
(d) 1 1( )xyx− −  ; (e) 1 2( )xyx− −  ; (f) 1 3( )xyx− − .

8. Given that a, b, c are elements of a group, simplify each of the following:
(a) 1 1( )a− −  ; (b) 1 2( )ab a−  ; (c) 1 1 1( )a b− − −  ;
(d) 2( )a ba ba−  ; (e) 2 1( ) ( )abc bc −  ; (f) 1( )c abc ab−  ;
(g) 1( )bc abc a−  ; (h) 1 2 1( ) ( ) ( )ab abc bc− − .
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9. Find the orders of
(a) the elements of the group G of non-zero residue classes modulo 7 

under multiplication ;
(b) the function ( ) 1 (1 )f x x= −  as an element of a group under

function composition ;
(c) the transformation in the plane T: (x, y) a (x–y, x) under 'follows'.

10. (a) Consider the group of residue classes mod 5 under addition. Show 
that every element of the group except for 0 has the same order.

(b) Consider the group of residue classes modulo n under addition. For 
what n is it true that all the elements of the group except for 0 have 
the same order?

11. Let x be an element of order 3 in a group. Express each of the following in 
the form nx  where n is the smallest possible positive integer:
(a) 7x  ; (b) 11x  ; (c) 1x −  ; (d) 2x − .

12. Let x with order 3 and y with order 2 be two members of a group.
(a) Find the order of xy if xy = yx. (b) Find the order of xy if xy = 2yx .
(c) Simplify 2( )xy −  if xy = yx. (d) Simplify 2( )xy − if xy = 2yx .
(e) If xy = 2yx , prove that yx = 2x y .

13. Let a be an element of order 3 and b be any other element of the same 
group. What is the order of 1bab− ?

14. Suppose a and b are two elements of a group with orders 4 and 2 
respectively.
(a) If the order of ab is 2, prove that (i) 3ab ba=  ;

(ii) 3ba a b= .
(b) If ab = ba, prove that the order of ab is 4.

15. If a, b are elements of a group such that ab has order 2, show that ba has 
order 2.

16. If a, b and ab, all with order 2, are elements of a group, show that ab = ba.

25.15 Subgroups, Cyclic Groups and Isomorphism

Definition The order of a group is the number of elements in it. If the group 
has an infinite number of elements its order is said to be infinite. 
We denote the order of a group G by ⏐G⏐.
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Definition A group (G, ∗ ) is said to be Abelian (commutative) if x ∗ y = y ∗ x
for all x, y in G.

Example A group G is such that 2x e=  for all elements x in G where e is the 
identity element in G. Show that every element of G is its own 
inverse. Hence, by considering the inverse of xy, where x and y are 
in G, show that G is Abelian.

Since 2x xx e= = , then 1x x− = .
As 1 1 1( )xy y x yx− − −= =  and 1( )xy xy− = , then xy yx=  and G is Abelian.

Definition Let (G, ∗) be a group. If H is a subset of G and (H, ∗ ) is a group,
then (H, ∗ ) is said to be a subgroup of (G, ∗ ).

Note: Every subgroup of G must contain the identity element of G. Thus any 
group G contains at least 2 subgroups, viz., {e} and G. Since these 
subgroups are obvious, we distinguish all other subgroups as proper.

Theorem A subset H of a group (G, ∗ ) is a subgroup of G iff
(a) H is closed under ∗  ;
(b) the identity e of G is in H ;
(c) for all a ∈ H, 1a− ∈ H.
[There is no need to check the associative axiom since any subset
of (G, ∗ ) must be associative under the operation ∗ .]

Cyclic Groups

Definition A group G is said to be cyclic  if there exists an element g ∈ G such 
that the sequence 2 3, , , ,e g g g L  contains all the members of G.
The element g is called a generator of the group.

Example Show that the group of residue classes {1, 2, 3, 4, 5, 6} under 
multiplication modulo 7 is cyclic and find all its generators.

2 3 4 5 63 2,3 6,3 4,3 5,3 1= = = = =  and so powers of 3 produce all the 
elements of the group. Therefore the group is cyclic and 3 is a generator.

2 3 42 4,2 1, 2 2,= = = L  and so powers of 2 produce the elements 1, 2 and 
4 only. Therefore 2 is not a generator.



Chapter 25

688

Similarly 2 3 44 2,4 1, 4 4,= = = L    so 4 is not a generator but
2 35 4,5 6,= = 4 5 65 2,5 3,5 1= = =  and so 5 is a second generator. [This 

should not be surprising since 5 is the inverse of 3 under the operation.]

Theorem If G is any finite group, not necessarily cyclic, and g ∈ G, then the 
first member of the sequence 2 3, , , ,e g g g L  to be repeated will 
be e.

Proof Assume that the first power of g to be repeated is mg  and that this 
is a repeat of an earlier member ng e≠ .
Then m ng g=   where m > n.

Now ( ) ( )1 1n nm ng g g g− −= ⇒ m ng e− =  and so e has already 
appeared in the list which contradicts our assumption.
Therefore the first member of the sequence 2 3, , , ,e g g g L  to be 
repeated will be e.

Note: The order of e is always 1, and a group G is cyclic if and only if it 
contains an element whose order is ⏐G⏐.

Definition If a is an element of a group G, then the set of all elements of G of 
the form ka  where k ∈ Z, is a subgroup of G.

This subgroup is called the cyclic subgroup of G generated by a.

The order of the element a is the same as the order of the cyclic subgroup of G
which it generates.

We denote the cyclic subgroup of G generated by a by a .

Example Consider the group of non-zero residue classes (mod 7) under
multiplication. The group 2  = 4  = {1, 2, 4} = { 3 2( ), ,e g g g= }
for g = 2 (or 4) is a cyclic subgroup of the origina l group generated 
by 2 (or 4).

Theorem Every subgroup of a cyclic group of order n is also cyclic; and 
furthermore, its order is a divisor of n.

Example Make a list of all the proper cyclic subgroups of a cyclic group of 
order 8 generated by g.
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Since the order of a subgroup of any cyclic group divides the order of the 
group, the order of any subgroup of the cyclic group of order 8 is 1, 2, 4 or 8. 

Therefore the order of the generator of any proper cyclic subgroup is 2 or 4. 
Now 4g  has order 2 and both 2g  and 6g  have order 4.

The proper subgroups are { }4 8, ( )g g e=  and { }2 4 6 8, , , ( )g g g g e= .

The result of the previous theorem is simply an example of a more general 
result given by a theorem due to Lagrange.

Theorem (Lagrange)
If H is a subgroup of a finite group G, then  divides H G .

The proof of this theorem is beyond the scope of this book.

Example Prove that if a is a member of a group G, then the order of a
divides the order of G.

The order of a is equal to the order of the cyclic subgroup of G generated 
by a. By the theorem of Lagrange, the order of a divides the order of G.

Example If the order of the group G is n, then each element a of G satisfies 
the relation na e= .

If the order of a is m, then by the result of the previous example, m divides n,
i.e., n = km for some k +∈� .

Therefore ma e= ⇒ ( )kma e=

⇒ mka e=
⇒ na e= .

Example Prove that if the order of a group is prime, then the group is cyclic.

Consider a group G whose order is p, a prime number.
Let g be any member of G, g ≠ e (e is the identity).
Now since the order of any element of a group must divide the order of the 
group (Lagrange), g must be a divisor of p (other than 1). That is, g = p and 
so g generates the whole group. Therefore G is cyclic.

Example If e (the identity), a and b are 3 members of a non-cyclic group of 
order 4, find the fourth member of the group given that this group 
is known to exist.
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Since the group is non-cyclic, there is no element of order 4.
But since the order of each element must divide the order of the group, a
and b each have order 2. Thus 2 2a b e= = .
Now ab must belong to the group since the group is closed, but ab is not e,
a or b since

ab = e ⇒ a = 1b−  = b (contradiction since b = 1b− ) ;
ab = a ⇒ b = e (contradiction) ;
ab = b ⇒ a = e (contradiction).

Therefore the fourth member of the group is ab.

From the result of the previous example, it is clear that there can be only 2 
different groups of order 4:

1. The cyclic group generated by g – 2 3{ , , , }e g g g .
2. The non-cyclic group, called a Klein 4-group – {e, a, b, ab}.

The group tables have the following forms:

  Cyclic group of order 4 Klein 4-group
* e     a     b     c *     e     a b     c
e     e     a     b     c e     e     a     b     c
a     a     b     c     e a     a     e     c     b
b     b     c     e     a b     b     c     e     a
c     c     e     a     b c     c     b     a     e

2 3 4[ , , ]b a c a e a= = =

Isomorphism

Definition
Let (G, ∗ ) and (H, o ) be groups. If there exists a bijection :G Hφ →
such that 1 1( )g hφ = , 2 2( )g hφ =  and 1 2 1 2( )g g h hφ ∗ = o , then the
groups (G, ∗ ) and (H, o ) are said to be isomorphic.

Note: Two finite groups are clearly isomorphic if their 'group tables' have
exactly the same structure.

Example Show that the group {1, 5, 7, 11} of residue classes, modulo 12, 
under ∗  (multiplication (mod 12)) is isomorphic to the group of 
four congruence transformations (or symmetries) of a rhombus
under o , (composition of transformations).
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Let the symmetries of ABCD be:
I = Rotation about O through 0°
R = Rotation about O through 180°
M1 = Reflection in line 1l
M2 = Reflection in line 2l
[ o  is equivalent to 'follows']

For example, M1 o  R (ABCD) = M1 (CDAB) = CBAD = M2 (ABCD), and so 
M1 o R = M2. [Here the vertices are labelled clockwise from the top left.]

The group table is:
o I R M1 M2

I I R M1 M2

R R I M2 M1

M1 M1 M2 I R
M2 M2 M1 R I

The group table for the residue classes is:
  *   1   5   7 11
  1   1   5   7 11
  5   5   1 11   7
  7   7 11   1   5
11 11   7   5   1

These groups are isomorphic since the tables are identical in structure under the 
mapping I → 1, R → 5, M1 → 7 and M2 → 11.

Example Let C* be the set of non-zero complex numbers under
multiplication of complex numbers and G the set of non-zero

matrices of real numbers of the form
a b
b a

⎛ ⎞
⎜ ⎟−⎝ ⎠

 under mult-

iplication of matrices. Show that C* and G form groups under the 
given operations and prove that these groups are isomorphic.

1.1 Since the product of 2 non-zero complex numbers is another non-zero
complex number, C* is closed under multiplication.

1.2 Any subset of the set of complex numbers is associative under
multiplication and so C* is associative under multiplication.

1.3 The non-zero complex number 1 + 0i is the identity element.

O

1l2l

A B

CD
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1.4 The inverse of the non-zero complex number a + bi is

2 2 2 2 ia b
a b a b

−
+

+ +
 which is a non-zero complex number.

Hence C* is a group under multiplication of complex numbers.

2.1 Since the matrix 
a b
b a

⎛ ⎞
⎜ ⎟−⎝ ⎠

 cannot be zero, 2 2 0
a b

a b
b a

⎛ ⎞
= + ≠⎜ ⎟−⎝ ⎠

.

Let 1 1 2 2, , ,a b a b ∈ R such that 1 1 2 2

1 1 2 2
 and 

a b a b
b a b a

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 are non-

zero matrices. Then their determinants are non-zero and so their 
product is a matrix with non-zero determinant.

Also 1 1 2 2

1 1 2 2

a b a b
b a b a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

= 1 2 1 2 1 2 1 2

1 2 2 1 1 2 1 2[ ]
a a b b a b b a
a b a b a a b b

− +⎛ ⎞
⎜ ⎟− + −⎝ ⎠

 which is 

of the form 3 3

3 3

a b
b a

⎛ ⎞
⎜ ⎟−⎝ ⎠

 where 3 1 2 1 2a a a b b= −  and 3 1 2 1 2b a b b a= + .

Hence G is closed under matrix multiplication.
2.2 Any subset of the set of 2 × 2 matrices is associative under matrix 

multiplication and so G is associative under matrix multiplication.

2.3
1 0
0 1

G
⎛ ⎞

∈⎜ ⎟
⎝ ⎠

 is the identity.

2.4 Each element of G has an inverse (since its determinant cannot be 

zero) = 
2 2 2 2

2 2 2 2

( ) ( )
( ) ( )

a a b b a b
b a b a a b

⎛ ⎞+ − +
⎜ ⎟⎜ ⎟+ +⎝ ⎠

 which is of the form 
c d
d c

⎛ ⎞
⎜ ⎟−⎝ ⎠

where 2 2 2 2( ) and ( )a a b c b a b d+ = − + =  and so every element of 
G has an inverse in G.

Therefore G is a group under matrix multiplication.

Consider the mapping : * Gφ →�  defined by ( i)
a b

a b
b a

⎛ ⎞
φ + = ⎜ ⎟−⎝ ⎠

.

φ is a bijection and
( )1 1 2 2( i)( i)a b a bφ + + = ( )1 2 1 2 1 2 2 1( ) i( )a a b b a b a bφ − + +

= 1 2 1 2 1 2 2 1

1 2 2 1 1 2 1 2[ ]
a a b b a b a b
a b a b a a b b

− +⎛ ⎞
⎜ ⎟− + −⎝ ⎠

= 1 1 2 2

1 1 2 2

a b a b
b a b a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

= 1 1 2 2( i) ( i)a b a bφ + φ + .
Therefore the groups are isomorphic.
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Exercise 25.15

1. Make a list of all the proper subgroups of a cyclic group of order 12 and 
generator g.

2. If g is a generator of a cyclic group of order n, state which powers of g are 
also generators of G when
(a) n = 4 ; (b) n = 5 ;
(c) n = 6 ; (d) n = 12.

3. Consider the group pM  = {1, 2, 3, 4, … , p–1} under the operation of 
multiplication, modulo p, where p is a prime number. Taking in turns the 
values p = 3, 5, 7, 11, 13, 17, show that each group is cyclic and verify (for 
these cases) that either 2 or 3 is a generator.

4. Find all the proper subgroups of the group with the following
multiplication table:

∗      a     b     c     d     e     f
a     b     e     d     f     a     c
b     e     a     f     c     b     d
c     f     d     e     b     c     a
d     c     f     a     e     d     b
e     a     b     c     d     e     f
f     d     c     b     a     f     e

5. Show that the group nC  of rotations of the plane about a point C through 
angles which are integer multiples of 2 nπ , under 'follows', is isomorphic 
to the group n�  of integers under addition modulo n.

6. Let 1G  be the group of symmetries of an equilateral triangle under
'follows' ;

2G  be the group 3S  of permutations under composition ;

3G  be the group of rotations of a regular hexagon under 'follows'.
State with reasons which two of the above groups are isomorphic to each 
other, and which group is isomorphic to neither of the others.

7. Let S be the set of all matrices of real numbers of the form 
a b
b a

−⎛ ⎞
⎜ ⎟
⎝ ⎠

 with 

not both a and b equal to zero.
(a) Show that S is closed under matrix multiplication.
(b) Assuming that S is associative under matrix multiplication, show 

that S forms an Abelian group under matrix multiplication.
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(c) Show that 
0

0
0
a

T a
a

⎧ ⎫⎛ ⎞⎪ ⎪= ≠⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 is a subgroup of S.

(d) Show that T is isomorphic to the group of non-zero real numbers 
under multiplication.

8. Consider the three points (0, 2), ( 3 , 1) and ( 3 , –1) in the plane. Let S
be the set of rotations of the plane which send any one of these points to 
any other (including the possibility of sending a point to itself).

(a) Show that S contains exactly 5 elements and that S does not form a 
group under the operation of composition of rotations.

(b) Find a rotation such that, if it is added to S, the resultant set does 
form a group under composition of rotations. Show that this
resultant group is cyclic and find a generator for it.

9. Write out the 'multiplication' table for the set of all non-zero residue classes 
(mod 7) under multiplication (mod 7) and hence show that this set and 
operator form a group. Consider the set of rotations by angles of 3nπ
( )n∈Z  of a regular hexagon about its centre. Show that this set forms a 
group under composition of rotations which is isomorphic to the
multiplicative group of non-zero residue classes modulo 7.

10. State the axioms for a group G with binary operator ∗ . Prove from the 
axioms:
(a) every element a of G has a unique inverse 1a−  ;
(b) if a, b are any two elements of G, then 1 1 1( )a b b a− − −∗ = ∗ .

Prove that if G = {a, b, c, d}, a c d∗ =  and d c a∗ = , then b is the identity 
of G. Hence construct the two multiplication tables for G.

11. What is meant by a "cyclic group"? Give an example of an infinite cyclic
group. Consider each of the following statements. If it is true, prove it; if it 
is false, give a counter example:
(a) Every group of order three is cyclic.
(b) A cyclic group has no proper subgroup.

12. (a) Let n�  be the set of integers modulo n under addition (mod n).
Show that n�  is cyclic.

(b) How many distinct elements are generators of n�  when
(i) n = 3 ; (ii) n = 4 ; (iii) n = 5 ;
(iv) n = 6 ; (v) n = 7 ; (vi) n = 20?
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13. Let (G, ∗ ) and (H, o ) be two groups. Consider the Cartesian product G × H
under the binary operation Δ defined by

1 1 2 2 1 2 1 2( , ) ( , ) ( , )g h g h g g h hΔ = ∗ o .
(a) Show that (G × H, Δ) is a group.
(b) Taking the group n�  defined in Question 12, state the order of 

3 4×� �  and evaluate (2, 3) Δ (1, 3).
(c) Show that 2 3×� �  is cyclic and list all possible generators.
(d) Determine whether the following are cyclic:

(i) 2 2×� �  ; (ii) 2 4×� �  ; (iii) 3 4×� � .
(e) How many elements of 2 4×� �  have order  (i)  2 ;    (ii)  4?

14. Establish an explicit isomorphism between the six roots of 6 1z =  under 
multiplication and the set {1, 2, 4, 5, 7, 8} under multiplication (mod 9).

15. Let 3{ and 1}A z z z= ∈ =�  and define 2( )f z z=  for all z A∈ .
(a) Prove that A forms a group under multiplication of complex

numbers.
(b) Prove that f is an isomorphism from ( , )A ×  onto ( , )A × .

16. Let { }2 22 ; , , 2 0S x x a b a b a b= = + ∈ − ≠� .

(a) Prove that (S, ×) is a group where × is real number multiplication.
(b) For 2x a b= + , define ( ) 2f x a b= − . Prove that f is an

isomorphism from (S, ×) onto (S, ×).

17. Prove that the groups ( , )+�  and ( , )+ ×�  are isomorphic.

18. Let φ  : G → H be an isomorphism from ( , )G ∗  to ( , )H o . Let e be the 
identity element of G and e' that of H. Let ( ) 'a aφ = .
Prove:
(a) φ (e) = e' ;
(b) 1 1( ) ( ')a a− −φ = .
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Required Outcomes

After completing this chapter, a student should be able to:
• prove various set relations using de Morgan's laws or justify them using a 

Venn diagram.
• determine whether or not a given binary relation is an equivalence relation.
• determine the equivalence classes of a given equivalence relation.
• use the matrix of a relation to determine whether it is an equivalence 

relation.
• determine whether or not a function is an injection, surjection or bijection.
• determine whether a given set together with a binary operator forms a 

group.
• determine whether or not a given group is a subgroup of another.
• decide whether or not a given group is cyclic.
• use Lagrange's theorem in a variety of situations.
• determine whether or not two given groups are isomorphic.
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26.1 Infinite Sequences 
 
We have already met at least two types of sequences, arithmetic and 
geometric, in Chapter 6. Geometric sequences are convergent if 1r < , while 
arithmetic sequences which are not constant are divergent. This current 
Chapter provides a study of more general sequences and discusses some 
methods for deciding whether or not a given sequence is convergent. 
 
Definition A sequence is a function whose domain is the set of positive 

integers. 
 
In practice we denote the nth term of a given sequence by , ,n n na t u , etc., and 

we denote the sequence by { } { } { }1 1 1, ,n n na t u∞ ∞ ∞  respectively. 
 

Example Consider the sequence defined by 
1n

nu
n

=
+

. 

 

 Then 1 2 3 4
1 2 3 4, , ,
2 3 4 5

u u u u= = = = . 

 A sketch of the graph of this sequence is shown in the following diagram. 
It appears that terms of the sequence appear to get arbitrarily close to 1 as n 
increases. We say that the sequence converges to 1. 

 
 We shall soon be able to produce a precise proof of this result. 
 
 
 
 
 
 
 
 
 
 
 
 
 

nu

n 
O 

1 

0.5 

1 2 3 4 5 

• 
• 

• • • 

(1, 1
2 ) 

(2, 2
3 ) 

(3, 3
4 ) (4, 4

5 ) (5, 5
6 ) 
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Example Consider the sequence defined by 1 ( 1)n
nu = + − . 

 
 The first few terms are 1 2 3 40, 2, 0, 2u u u u= = = =  and a sketch of the 

graph of the sequence in the following diagram shows that the sequence 
does not approach any single value as n increases indicating that the 
sequence is not convergent. Again a precise proof of this will follow. 

 
 
 
 
 
 
 
 
 
 
 
 

Example Consider the sequence ( 1)1
n

nu
n

−
= + . 

 
 A sketch of the graph of the sequence is in the following diagram. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 It is clear that successive terms of the sequence get closer and closer to 1 as 

the value of n increases. Intuitively we can see that the terms will 
eventually be as close to 1 as we please by taking a sufficiently large value 
of n. 

 

nu

n 

2 

1 

O 1 2 3 4 5 
• 

• • 

• • 

un 

n 

L 
1 + ε 

1 – ε 

1 

1.5 

O 1 2 3 
• 

• 

• 

• 

• 

• 

• 

• 

• 

N 7 8 9 
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  That is the value of 1nu −  can be made as small as we please by choosing 
a sufficiently large value of n. 

 
 In general, if ε is any positive number we can make nu L− < ε  for all 

n > N. The integer N has a smallest value of 5 in our example. 
 

Definition A sequence { }1nu ∞  converges to a limit L if for every ε > 0 there 

exists an integer N such that for all n > N, nu L− < ε . 
 
 If for any ε an integer N cannot be found, we say that the sequence 

diverges. 
 

Example Prove that the sequence 
1

n
n

⎧ ⎫
⎨ ⎬+⎩ ⎭

 converges to 1. 

 

 1nu −  =  1
1

n
n

−
+

  =  1
1n

−
+

  =  1
1n +

 and this is less than any positive 

number ε provided 11n + >
ε

 or 1 1n > −
ε

. [Any integer N greater than 

1 1−
ε

 will satisfy the conditions for convergence.] 
 
 Therefore the given sequence converges to 1. 
 
Example Prove that the sequence { }2 2 n−−  converges to 2 and find a value 

of N corresponding to ε = 0.01. 
 

 2nu −  = 1
2n−  = 1

2n  

 Now 1
2n < ε   ⇒  12n >

ε
  ⇒  log 2 logn > − ε   ⇒  log

log 2
n ε

> − . 

 Therefore the given sequence converges to 2. 
 

 Now log0.01 2 6.64
log 2 log 2

− = =  and so N = 7 will do. 

 

 Note:  7 7
1 12 0.01

1282
u − = = < . 
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Limit Theorems Consider sequences { }1na ∞  and { }1nb ∞ . 
  If lim nn

a
→∞

= �  and  lim nn
b m

→∞
= , then 

 (1) lim ( )nn
k a k

→∞
= �  

 (2) lim( )n nn
a b m

→∞
+ = +�  

  (3) lim( )n nn
a b m

→∞
− = −�  

  (4) lim( )n nn
a b m

→∞
× = �  

  (5) lim n
n n

a
b m→∞

=
�  provided m ≠ 0. 

 
The Squeeze Theorem 
 

If n n na b c≤ ≤  for all n > N, and if { }1na ∞  and { }1nc ∞  both converge to limit L, 

then { }1nb ∞  also converges to limit L. 
 
Theorem If ( )nu f n=  for every positive integer n and lim ( )

x
f x L

→∞
= , then 

lim nn
u L

→∞
= . 

 

Example Given that 1sinn
n

⎧ ⎫
⎨ ⎬
⎩ ⎭

 converges to 1, find the limits of the 

following sequences:  

  (a) 13 sinn
n

⎧ ⎫
⎨ ⎬
⎩ ⎭

 ; (b) 15 4 sinn
n

⎧ ⎫−⎨ ⎬
⎩ ⎭

 ; (c) 1sin
n

⎧ ⎫
⎨ ⎬
⎩ ⎭

. 

 

 (a) 1 1lim 3 sin 3 lim sin 3 1 3
n n

n n
n n→∞ →∞

⎛ ⎞ ⎛ ⎞= × = × =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 

 (b) 1 1lim 5 4 sin lim 5 4 lim sin 5 4 1
n n n

n n
n n→∞ →∞ →∞

⎛ ⎞ ⎛ ⎞− = − × = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 

 (c) 1 1 1 1 1lim sin lim sin lim lim sin 0 1 0
n n n n

n n
n n n n n→∞ →∞ →∞ →∞

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = × = × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 
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Example Given sequences { }1nb ∞  and { }1nc ∞  with n nb c≤  and lim 0nn
c

→∞
= , 

use the squeeze theorem to prove that lim 0nn
b

→∞
= . 

 

 Use this result to show that the sequence 
1

cosn
n

∞
⎧ ⎫
⎨ ⎬
⎩ ⎭

 converges to 0. 

 
 n n n n nb c c b c≤ ⇒ − ≤ ≤ . 
 Now ( )lim lim 0n nn n

c c
→∞ →∞

− = − =  and so from the squeeze theorem with 

n na c= − , we find that lim 0nn
b

→∞
= . 

 

 
coscos 1nn

n n n
= ≤  and since 1lim 0

n n→∞
= , the sequence 

1

cosn
n

∞
⎧ ⎫
⎨ ⎬
⎩ ⎭

 

converges to 0. 
 

Example Prove that  the sequence 
1

sinn
n

∞π⎧ ⎫
⎨ ⎬
⎩ ⎭

 converges to π. 

 

 Let ( ) sinf x x
x
π

= . 

  Then lim ( )
x

f x
→∞

 = sin( )lim
(1 )x

x
x→∞

⎛ ⎞π
⎜ ⎟
⎝ ⎠

 

 = 
2

2

cos
lim 1x

xx

x
→∞

π π⎛ ⎞−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

   [l'Hôpital's rule – see page 746] 

  = lim cos
x x→∞

π
π  

  =  π. 
 

Example Find ( )2lim
n

n n n
→∞

+ − . 

 

 ( )2lim
n

n n n
→∞

+ −  =  
{ }{ }2 2

2
lim
n

n n n n n n

n n n→∞

⎛ ⎞+ − + +⎜ ⎟
⎜ ⎟

+ +⎜ ⎟
⎝ ⎠
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  =  
2

lim
n

n

n n n→∞

⎛ ⎞
⎜ ⎟⎜ ⎟+ +⎝ ⎠

 

  =  1lim
1 (1/ ) 1n n→∞

⎛ ⎞
⎜ ⎟⎜ ⎟+ +⎝ ⎠

 

  =  1
2

. 

 
Exercise 26.1 
 
1. Determine whether or not each of the following sequences converges. If 

the sequence converges, find the limit. 

 (a) 
1

2n
n

∞+⎧ ⎫
⎨ ⎬
⎩ ⎭

 ; (b) 
2

1

3
2

n
n

∞
⎧ ⎫+⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 ; (c) 
2

2
1

3 1
2

n
n n

∞
⎧ ⎫+⎪ ⎪
⎨ ⎬

+⎪ ⎪⎩ ⎭
 ; 

 (d) 
1

n n
n

∞
⎧ ⎫−⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 ; (e) 
2

2
1

2 3 5
3 1

n n
n

∞
⎧ ⎫+ +⎪ ⎪
⎨ ⎬

+⎪ ⎪⎩ ⎭
; (f) 2

1

e n

n

∞−⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 ; 

 (g) 2
1

( 2)!
!

n
n n

∞+⎧ ⎫
⎨ ⎬
⎩ ⎭

 ; (h) 
1

ln n
n

∞
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ; (i) 
1

en

n

∞
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 ; 

 (j) 
1

2sinn
n

∞
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ; (k) 
12n

n ∞
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ; (l) { }
1

1n n
∞

+ −  ; 

 (m) 
1

2 1 12
2

n
n n

∞
⎧ ⎫+⎛ ⎞⎛ ⎞−⎨ ⎬⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎩ ⎭

 ; (n) 
1

sin n
n

∞
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ; (o) 
2

1

sin
2n

n
∞

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

. 

 
2. In each of the following, use the definition for convergence of a sequence 

to prove that the sequence has limit L. 

 (a) 
1

3
2 1n

∞
⎧ ⎫
⎨ ⎬+⎩ ⎭

 , L = 0 ;  (b) { }
1

2 n ∞−  , L = 0 ; 

 (c) 
1

4 3
3 2

n
n

∞−⎧ ⎫
⎨ ⎬+⎩ ⎭

 , L = 4
3  ;  (d) 

2

2
1

3
2 3

n
n

∞
⎧ ⎫⎪ ⎪
⎨ ⎬

+⎪ ⎪⎩ ⎭
 , L = 3

2  ; 

 (e) 
2

3
1n

∞
⎧ ⎫
⎨ ⎬

−⎩ ⎭
 , L = 0 ;  (f) 

1

4
5 1

n
n

∞−⎧ ⎫
⎨ ⎬+⎩ ⎭

 , L = 1
5− . 

 
3. Using the definition for convergence of a sequence, find the least integer N 

for which ε  = 0.01 in each of the sequences in Question 2. 
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4. Use your calculator to find a value of N which ensures that each of the 

following inequalities holds for all n > N. 

 (a) ( )1 32
3 1 10

n −− <  ;  (b) 3(0.99) 10n −<  ; 

 (c) 1 31 10nn −− <  ;   (d) 
10

610
2n
n −< . 

 
26.2 Improper Integrals 
 
An improper integral is one which corresponds to an unbounded area. An 
unbounded area can occur in two different ways: 
 
 1. the interval over which the area ranges is infinite ; 
 
 2. the function is undefined at some asymptote. 
 

An example of the first type is 21

1  dx
x

∞

∫ , and an example of the second type is 

1

0

1  dx
x∫ . (See the following diagrams.) 

 
 

 
 
 
  The range of integration is infinite. 
 
 

  
 
 
  The function is undefined at x = 0. 

x 1 O 

 y 
2

1y
x

=

x 

 y 

O 

1y
x

=

1 
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In the first example above 21

1  dx
x

∞

∫  =  21

1lim  d
a

a
x

x→∞ ∫  

  =  
1

1lim
a

a x→∞

⎡ ⎤−⎢ ⎥⎣ ⎦
 

  =  1lim 1
a a→∞

⎧ ⎫− +⎨ ⎬
⎩ ⎭

 

  =  1. 
 

In the second example above 
1

0

1  dx
x∫  =  

1

0

1lim  d
aa

x
x+→ ∫  

  =  
1

0
lim 2

aa
x

+→
⎡ ⎤
⎣ ⎦  

  =  { }
0

lim 2 2
a

a
+→

−  

  =  2. 
 
In this text we will consider improper integrals of the first type only. 
 
Exercise 26.2 
 
1. Evaluate the following integrals where possible. 

 (a) 
0

e  dx x
∞ −∫  ;  (b) 

1

1  dx
x

∞

∫  ; 

 (c) 31

1  dx
x

∞

∫  ;  (d) 
2 2

d
1

x x
x

∞

−
∫  ; 

 (e) 20

d
1

x
x

∞

+∫  ;  (f) ( )
21

cos 1
 d

x
x

x
∞

∫  ; 

 (g) 
2

0
e  dxx x

∞ −∫  ;  (h) 2
0

sin  dx x x
∞

∫  ; 

 (i) 2 20

2  d
( 1)

x x
x

∞

+∫  ;  (j) 20

arctan  d
1

x x
x

∞

+∫  ; 

 (k) 2 3 2
 d

( 4)
x x

x
∞

−∞ +∫  ; (l) e  dxx x
∞ −

−∞∫ . 

 

2. (a) Find the constants A and B such that 2
1

1
A B
x xx x

= +
−−

 for all x ≥ 2. 

 (b) If possible, evaluate 22

1  dx
x x

∞

−∫ . 
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3. (a) Find the constants A and B such that 2
2

1 11
A B

x xx
= +

− +−
 for all 

x ≥ 2. 

 (b) If possible, evaluate 22

2  d
1

x
x

∞

−∫ . 

 

4. Express 
(2 )

a
x x a+

 in the form 
2

A B
x x a

+
+

 and find the value of a for 

which the integral 
1

d
(2 )

a x
x x a

∞

+∫  converges to the value 1. 

 
5. Show that if x > 1, 21 1x x+ > + , and verify that the integral 

1 2

1  d
1

x
x

∞

+
∫  is not convergent. 

 
26.3 The Definite Integral as a Limit of a Sum 
 
The following results will be useful in the following section: 
 

(1) 
1

( 1)
2

n

i

ni n
=

= +∑  

 
 

(2) 2

1
( 1)(2 1)

6

n

i

ni n n
=

= + +∑  

 

(3) 
2

3

1
( 1)

2

n

i

ni n
=

⎡ ⎤= +⎢ ⎥⎣ ⎦
∑  

 
Each can be proved by mathematical induction, but this is left as an exercise for 
the reader. 
 
Consider the function ( )y f x=  which is continuous and non-negative on the 
interval [a, b]. Let this interval be divided into n sub-intervals of equal length h. 

Thus b ah
n
−

= . Denote the end-points of these intervals by 

 0 1 1, , , , , ( 1) ,i n nx a x a h x a ih x a n h x a nh−= = + = + = + − = +� � . 
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The ith sub-interval is denoted by [ ]1,i ix x− . Since ( )f x  is continuous on [a, b] 
it is continuous on each closed sub-interval. 
 
 

  
 
 
 
 

Let [ ]1,i i ic x x−∈  be such that ( )if c  is the minimum value of f on [ ]1,i ix x− . 
Consider n rectangles each of width h and altitude ( )if c  (see diagram above). 

Let the sum of the areas of these rectangles be nL , then 
1

( )
n

n i
i

L hf c
=

= ∑ . 

 
Let [ ]1,i i id x x−∈  be such that ( )if d  is the maximum value of f on [ ]1,i ix x− . 
 
Consider n rectangles each of width h and altitude ( )if d . 
 
 

  
 
 
 
 

Let the sum of the areas of these rectangles be nU , then 
1

( )
n

n i
i

U hf d
=

= ∑ . 

 

x 

 y 

O 2x 3x 1ix − ix1x0a x= 1nx − nb x=

( )y f x=

x 

 y 

 O 0a x= 1x  2x   3x   1ix −  ix  1nx −  nb x=

( )y f x=

- - - - - - - - - - - -  

- - - - -  - - - - -  
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Clearly the area A between the curve ( )y f x=  and the x-axis from x = a to 
x = b is such that n nL A U≤ ≤ . 
 
As the number of sub-intervals increases, we assert (without proof) that both nL  
and nU  approach A. 

Thus 
1 1

lim ( ) lim ( )
n n

i in ni i
A hf c hf d

→∞ →∞= =

= =∑ ∑       or 

     
1 1

( ) d ( ) ( )
b

i ia
i i

f x x hf c hf d
∞ ∞

= =

= =∑ ∑∫ . 

Example Evaluate 
2 2

1
 dx x∫  by calculating the value of lim nn

U
→∞

. 

  

  
 
 

 Here 2( )f x x= , 0 1a x= = , 2nb x= = , 1 1i i
id x ih
n

= = + = +  and so 

 nU  =  
2

1

1 1
n

i

i
n n=

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑  

  =  ( )
2 2 2 2

21 1 1 2 1 3 1 1 11 1 1 1 2n
n n n n n n n n n

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�  

  =  ( )2 2 2 2 2
3

1 ( 1) ( 2) ( 3) ( [ 1]) ( )n n n n n n n
n

+ + + + + + + + − + +�  

  =  3
1 2 (2 1)(4 1) ( 1)(2 1)

6 6
n nn n n n

n
⎛ ⎞+ + − + +⎜ ⎟
⎝ ⎠

  [result (2) on page 705] 

  =  ( )2
2 1 8 2 1
6
n n n
n
+

+ − −  

  =  2
(2 1)(7 1)

6
n n

n
+ +  

  =  2
7 3 1
3 2 6n n

+ + . 

x 
O 1 1+h 1+2h 2 1+(n–1)h 

 y 
2( )f x x=

- - - - - 



Chapter 26 

708 

 

 Now  7lim
3nn

U
→∞

=   and so 
2 2

1

7 d
3

x x =∫ . 

 
Exercise 26.3 
 
1. Find the area of the region enclosed by the curve ( ) 4f x x= −  and the 

coordinate axes by finding lim nn
L

→∞
. 

 
2. Find the area enclosed by the curve 2( ) 4f x x= −  and the x-axis by finding 

lim nn
U

→∞
. 

 
3. Find the area enclosed by the curve 3( )f x x=  and the x-axis from x = –1 

to x = 2 by using lim nn
L

→∞
 twice, once between x = –1 and x = 0 and then 

between x = 0 and x = 2. 
 
4. Find the area enclosed by the curve ( )f x mx=  (m > 0), the x-axis and the 

lines x = a, x = b (0 < a < b) using lim nn
U

→∞
. 

 
26.4 Infinite Series – Tests for Convergence 
 
The sum of terms of a sequence is an infinite series. That is, if { }1nu ∞  is a 

sequence, the expression 1 2 3
1

n
n

u u u u
∞

=

= + + +∑ �   is an infinite series. 

How can we assign meaning to this definition? We certainly cannot add 
infinitely many numbers. 
 

Consider the series 1
1

1 1 1 11
2 4 82k

k

∞

−
=

= + + + +∑ �  . Let nS  be the sum of the first 

n terms. Then from our work in geometric series we have 

( )1
2

11
2

1 12
1 2

n

n nS −

−
= = −

−
. The sequence { } { }1

31 1
2 4 2

1,1 ,1 , , 2 ,nnS −= −� � , called 

the sequence of partial sums, clearly converges to 2. Thus lim 2nn
S

→∞
=  and we 

say that the sum of the infinite series 1
1

1 1 1 11
2 4 82k

k

∞

−
=

= + + + +∑ �  is 2. 
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Definition Let 
1

k
k

u
∞

=
∑  be a given series and let 

1

n

n k
k

S u
=

= ∑  be the n-th partial 

sum. If lim nn
S S

→∞
=  exists, then we say that S is the sum of the 

infinite series. Thus 
1 1

lim
n

k kn k k
S u u

∞

→∞ = =

= =∑ ∑ . 

 
If the sum S exists, the series is called convergent. If the sum S does not exist, 
the series is called divergent. 
 
Formulae like the one for the sum of a convergent geometric series are not 
common. Indeed, in the following work we will mostly be concerned with the 
convergence or divergence of a series rather than with the limit itself (if it 
exists) which can be very difficult to find. 
 
Another series for which the sum can be found exactly is the following 
"telescoping series". 
 

Example Find the sum of the series 
1

1
( 1)n n n

∞

= +∑ . 

 

  
1

1
( 1)k k k

∞

= +∑  

 = 
1

1 1
1k k k

∞

=

⎛ ⎞−⎜ ⎟+⎝ ⎠
∑  

 = 
1

1 1lim
1

n

n k k k→∞ =

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
∑  

 = 1 1 1 1 1 1 1 1 1lim 1
2 2 3 3 4 1 1n n n n n→∞

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + − + + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
�  

 = 1lim 1
1n n→∞

⎛ ⎞−⎜ ⎟+⎝ ⎠
 since the sum of all the interior pairs is zero, 

 = 1. 
 

 Therefore  
1

1
( 1)n n n

∞

= +∑  = 1. 

 

Theorem For any convergent series 
1

n
n

u
∞

=
∑ , lim nn

u
→∞

 must be zero. 
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Proof Let   nS  =  
1

n

k
k

u
=

∑  and since the series is convergent there exists a 

number S such that lim nn
S S

→∞
= . 

 But 1n n nu S S −= −  and so 1lim lim lim 0n n nn n n
u S S S S−→∞ →∞ →∞

= − = − = . 
 

Note however that it is not true that if lim 0nn
u

→∞
= , then 

1
n

n
u

∞

=
∑  is convergent. 

The condition for convergence of the infinite series 
1

n
n

u
∞

=
∑ , namely lim 0nn

u
→∞

= , 

is necessary but not sufficient. 
 
To illustrate this we consider the following theorem. 
 

Theorem The harmonic series 
1

1

n n

∞

=
∑  is divergent. 

 

Proof Let 
1

1n

n
k

S
k=

= ∑ . 

 Then 

 2n nS S−  =  1 1 1 1 11
2 3 1 2n n n

⎛ ⎞+ + + + + + +⎜ ⎟+⎝ ⎠
� �  – 1 1 11

2 3 n
⎛ ⎞+ + + +⎜ ⎟
⎝ ⎠

�  

  =  1 1 1 1
1 2 3 2n n n n

+ + + +
+ + +

�  

  ≥  1 1 1 1
2 2 2 2n n n n

+ + + +�  

  =  1
2

n
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  =  1
2

. 

 
  Now if lim nn

S S
→∞

= , then 2lim nn
S S

→∞
=  and so ( )2lim 0n nn

S S
→∞

− =  which is 

impossible since 2
1
2n nS S− ≥  for all n. 

 Therefore the harmonic series is divergent. 
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Condition for Convergence of a Series of Non-negative Terms 
 
Definition A sequence { }nS  such that 1n nS S +≤  for all n is said to be non-

decreasing. 
 
Definition A sequence { }nS  is bounded above if there exists a number N 

such that nS N≤  for all n. (In this case, N is called an "upper 
bound" of the sequence.) 

 

If 0nu ≥  for all n, the series 
1

n
n

u
∞

=
∑  converges if and only if the sequence of its 

partial sums is bounded above. 
 

Example Prove that the series 2
1

1

n n

∞

=
∑  is convergent. 

 

  Let 2 2 2
1 1 11
2 3nS

n
= + + + +� . 

  Then for all n, 1 1 11
(1)(2) (2)(3) ( 1)nS

n n
< + + + +

−
�  and so 12nS

n
< −  

from the example on page 709. 
 
 Therefore { }nS  is bounded above by 2 and so the series is convergent. 
 

 (In fact, 
2

2
1

1
6n n

∞

=

π
=∑  although the proof is beyond the scope of this book.) 

 

Example Prove that the series 
0

1
!n n

∞

=
∑  is convergent. 

 

 Let 1 1 1 11
1! 2! 3! !nS

n
= + + + + +� . 

 Then 2 1
0 2

1 1 1 1 11 1 1 1 3
2 12 2 2n n n

n
S

∞

=

≤ + + + + + < + = + =
−∑� . 

 Therefore the sequence of partial sums is bounded above by 3 and so the 
series converges. 
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Note: The series does not converge to 3 even though the sequence of partial 

sums is bounded above by 3. We will find in a later section that the 
series converges to e. 

 
Comparison Test for Series of Non-negative Terms 
 
Let na∑  be an infinite series of non-negative terms. 
 
(1) na∑  converges if there exists a convergent series nb∑  such that n na b≤  

for all n > N, where N is some positive integer. 
 
(2) na∑  diverges if there exists a divergent series nc∑  such that n na c≥  for 

all n > N, where N is some positive integer. 
 

Example Use the comparison test to show that the series 
1

2 1 1
2

n

n

n
n

∞

=

+ ⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  is 

convergent. 
 

 2 1 1 13
2 2

n nn
n
+ ⎛ ⎞ ⎛ ⎞≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 and 

1

13
2

n

n

∞

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  is a convergent geometric series 

converging to 3. 

 Therefore the series 
1

2 1 1
2

n

n

n
n

∞

=

+ ⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  converges by comparison. 

 

Example Use the comparison test to show that the series 
1

1
2 1n n

∞

= −∑  is 

divergent. 
 

 1 1 1 1
2 1 2 2n n n

⎛ ⎞> = ⎜ ⎟− ⎝ ⎠
 and 

1

1

n n

∞

=
∑  is divergent (the harmonic series). 

 Therefore the series 
1

1
2 1n n

∞

= −∑  is divergent by comparison. 

 
The Limit Comparison Test 
 

If the series na∑  and nb∑  are two series of non-negative terms, and lim n
n n

a
b→∞

 

is finite, then both series converge or both diverge. 
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Example Decide whether the series 3
1

1
1n

n
n

∞

=

+
+∑  converges or diverges. 

 

 Let 3
1
1n

na
n

+
=

+
 and 2

1
nb

n
= , then 

3

3 2 1

3 1

1
lim lim lim 1

11
n n

n n nn n

a n n
b n→∞ →∞ →∞

++
= = =

++
. 

 Since 2
1

1

n n

∞

=
∑  converges, 3

1

1
1n

n
n

∞

=

+
+∑  converges by the limit comparison test. 

Example Decide whether the series 2
1

1
2 1n

n
n

∞

=

+
+∑  converges or diverges. 

 Let 2
1

2 1n
na
n

+
=

+
 and 1

nb
n

= , then 
2

2 1

2 1

1 1lim lim lim
2 22 1

n n
n n nn n

a n n
b n→∞ →∞ →∞

++
= = =

++
. 

 Since 
1

1

n n

∞

=
∑  diverges, then so does 2

1

1
2 1n

n
n

∞

=

+
+∑  by the limit comparison test. 

 
For comparison, we know the following: 

(1) 1
n∑  diverges. 

(2) nar∑  converges for 1r <  and diverges for 1r ≥ . 

(3) 2
1
n∑  converges. 

(4) 1
!n∑  converges. 

 
Exercise 26.4 

1. (a) Find the numbers A, B and C for which 2
2

1 1( 1)
A B C

n n nn n
= + +

− +−
. 

 (b) Find 2
2

2
( 1)n n n

∞

= −∑ . 

 

2. Consider the series 
1

n

n
nr

∞

=
∑ . Show that if nS  is the sum of the first n terms, 

then 1

1

n
i n

n n
i

S rS r nr +

=

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
∑  and hence prove that the series converges 

to 2(1 )
r
r−

 provided 1r < . 
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3. Decide which of the following series converge and which diverge: 

 (a) 
1

1
3n

n

∞

=
∑  ;  (b) 

1

2
2n

n
n

∞

= +∑  ; (c) 
1

1

n n

∞

=
∑  ; 

 (d) 2
1

3
1n

n
n

∞

= +∑  ; (e) 2
1

4
1n n

∞

= +∑  ; (f) 
1

2

n n n

∞

= +
∑  ; 

 (g) 2
1

2
1n

n
n n

∞

= − +∑  ; (h) 
2

1

cos
3n

n

n∞

=
∑  ; (i) 

2

3
1

(ln )

n

n
n

∞

=
∑  ; 

 (j) 
1

5
4n n

∞

= +∑  ; (k) 
1

2n

n n

∞

=
∑  ;  (l) 

1

3
5n

n

∞

=
∑  ; 

 (m) 2
1

2
2n

n
n n

∞

=

+
+∑  ; (n) 2

1

1
e 1n

n

∞

= +∑  ; (o) 
2 lnn

n
n

∞

=
∑  ; 

 (p) 2
1

1
(2 )n

n n

∞

=
∑  ; (q) 3

1

3 10
2n

n
n

∞

=

+
+∑  ; (r) 

1

1
2

n

n
n

∞

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ . 

 
26.5 The Ratio and nth–Root Tests 
 

Let nu∑  be a series with positive terms and let 1lim n
n n

u L
u

+

→∞
= , then 

(1) the series converges if L < 1 ; 
(2) the series diverges if L > 1 ; 
(3) the series may or may not converge if L= 1 (i.e., the test is inconclusive). 
 
To illustrate the fact that the ratio test is inconclusive when L = 1, consider the 

series 
1

1

n n

∞

=
∑  and 2

1

1

n n

∞

=
∑ . The first (harmonic) series is known to diverge and the 

second is known to converge. 
 

For the first series  1lim lim 1
1

n
n nn

u n
u n

+

→∞ →∞
= =

+
, 

and for the second series 
2

1lim lim 1
1

n
n nn

u n
u n

+

→∞ →∞

⎛ ⎞= =⎜ ⎟+⎝ ⎠
. 

 

Example Decide, if possible, whether or not the series 
1

3 1
5

n

n
n

∞

=

+∑  converges 

or diverges by using the ratio test. 
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 Let 3 1
5

n

n nu +
=  then 

1 1
1

1
3 1 5 1 3 1 1 3 3

5 55 3 1 3 1 1 3

n n n n
n

n n n n
n

u
u

+ + −
+

+ −

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

+ + +⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. 

 Therefore 1 3lim 1
5

n
n n

u
u

+

→∞
= <  and so the series is convergent. 

 

Example Decide whether or not the series 
2

1

( !)
(2 )!n

n
n

∞

=
∑  converges or diverges 

by using the ratio test. 
 

 Let 
2( !)

(2 )!n
nu

n
= . 

  Then ( )
( )

2 1
1

2 1

( 1)! 1(2 )! ( 1)( 1) 1
2( 1) ! (2 2)(2 1) 2(2 1) 2(2 )( !)

n n

n n

nu n n n n
u n n n nn

+ + ++ + +
= × = = =

+ + + + +
. 

  Thus 1 1lim 1
4

n
n n

u
u

+

→∞
= <  and so the series converges. 

 
Example Show that the ratio test cannot be used to determine whether or not 

the series 
1

1

n n

∞

=
∑  is convergent. 

 Let 1
nu

n
= . 

 Then 
1 2

1lim lim 1
1

n
n nn

u n
u n

+

→∞ →∞

⎛ ⎞= =⎜ ⎟+⎝ ⎠
. 

 
 Therefore the ratio test is inconclusive. 
 
The nth–Root Test 
 

Let 
1

n
n

u
∞

=
∑  be a series of positive terms and let lim n

nn
u L

→∞
= . Then 

(1) the series converges if L < 1 ; 
(2) the series diverges if L > 1 ; 
(3) the test is inconclusive if L = 1. 
 
A result which is quite useful when applying the nth-root test to many series is 
 

   lim 1n
n

n
→∞

= . 
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As before, we can illustrate the fact that the test is inconclusive when L = 1 by 

considering the series 
1

1

n n

∞

=
∑  and 2

1

1

n n

∞

=
∑ . 

In the first case   1lim lim 1n
n nn n

u
n→∞ →∞

= = , 

and in the second case 
( )2

1lim lim 1n
nn n n

u
n→∞ →∞

= = . 

 

Example Determine whether or not the series 
1 3n

n

n∞

=
∑  converges. 

 

 1lim lim 1
3 33

n
n

nn n

n n
→∞ →∞

= = <  and so the given series is convergent. 

 

Example Determine whether or not the series 2
1

3
2

n

n
n n

∞

=
∑  is convergent. 

 

 
( )2 2

3 3 3lim lim 1
22 2

n
n

nn n nn n→∞ →∞
= = >  and so the series does not converge. 

 
Exercise 26.5 
 
1. Use either the ratio test or the nth-root test to determine which of the 

following series converge and which diverge: 

 (a) 
4

1 3n
n

n∞

=
∑  ;  (b) 

5

1 5n
n

n∞

=
∑  ;  (c) 

3

2
1

2
3

n

n
n

∞

=
∑  ; 

 (d) 
1

!
2n

n

n∞

=
∑  ;  (e) 

1

!
(2 1)!n

n
n

∞

= +∑  ; (f) 
1

( 1)( 2)
!n

n n
n

∞

=

+ +∑ . 

 
2. What can be deduced from the ratio test about the following series? 

 (a) 
2

3
1 1n

n
n

∞

= +∑  ; (b) 
3

1 2n
n

n∞

=
∑  ;  (c) 

1 2 1n

n
n

∞

= +∑ . 

 
3. Use either the ratio test or the nth-root test to determine which of the 

following series converge and which diverge: 
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 (a) 
1

1
2

n

n

n
n

∞

=

+⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ; (b) 
1

10
!

n

n n

∞

=
∑ ; (c) 2

1

( !)n

n
n

n
n

∞

=
∑  ; 

 (d) 
1

!e n

n
n

∞
−

=
∑ ; (e) 2

1

(2 )!
6 ( !)n

n

n
n

∞

=
∑ ; (f) 

3

1

2
3

n

n
n

n∞

=
∑  ; 

 (g) 3
1

2
1

n

n n

∞

= +∑  ; (h) 
1

( 1)( 2)
3n

n

n n∞

=

+ +∑  ; (i) 
1 (ln )n

n

n
n

∞

=
∑ . 

 
4. Show that the ratio test cannot be used to determine whether or not the 

series 
2

1

4 ( !)
(2 )!

n

n

n
n

∞

=
∑  converges or diverges and use an alternative method to 

show that it in fact diverges. 
 
5. Show that neither the ratio test nor the nth-root test can be used to 

determine whether or not the series 
1

1
p

n n

∞

=
∑  converges or diverges. 

 
26.6 Improper Integrals and the Integral Test 
 
Consider the function ( )f x  which is continuous for all x ≥ 0. Then the integral 

0
( ) df x x

∞

∫  is called an improper integral. 

Now consider 
0

( ) ( ) d
a

F a f x x= ∫ . 

If lim ( )
a

F a
→∞

 exists and is equal to L, then the integral 
0

( ) df x x
∞

∫  is said to 

converge to L. 
 

If lim ( )
a

F a
→∞

 does not exist, then the integral 
0

( ) df x x
∞

∫  is said to be divergent. 

 
Note: The lower limit of the integral need not be zero. If it is k, then ( )f x  

must be continuous for all x ≥ k. 
 

Example Show that the integral 21

1 dx
x

∞

∫  converges and that the integral 

1

1 dx
x

∞

∫  diverges. 
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 21
1

1 1 1lim d lim lim 1 1
a

a

a a a
x

x ax→∞ →∞ →∞

⎡ ⎤ ⎛ ⎞= − = − =⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠∫  and so 21

1 dx
x

∞

∫  converges 

(to 1). 
 

 [ ] ( )11

1lim d lim ln lim ln
a a

a a a
x x a

x→∞ →∞ →∞
= =∫  which does not exist and so 

1

1 dx
x

∞

∫  diverges. 

 
The Integral Test 
 
If ( )f x  is a continuous, positive, decreasing function of x  for all x ≥ 1, and 

( )nu f n=  for all positive integers n, then the series 
1

n
n

u
∞

=
∑  and the integral 

0
( ) df x x

∞

∫  both converge or both diverge. 

 
Example Use the integral test to show that the harmonic series is divergent 

and the series 2
1

1

n n

∞

=
∑  is convergent. 

 

  Let 1( )nu f n
n

= = . Then 1( )f x
x

=  is clearly continuous, positive and 

decreasing for all x ≥ 1. 

  Now from the previous example, 
1

1 dx
x

∞

∫  diverges and so the harmonic 

series, 
1

1

n n

∞

=
∑ , also diverges. 

 

  Let 2
1( )nu f n
n

= = . Then 2
1( )f x
x

=  is clearly continuous, positive and 

decreasing for all x ≥ 1. 
 

  Now from the previous example, 21

1 dx
x

∞

∫  converges and so the series 

2
1

1

n n

∞

=
∑  also converges. 
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The p–Series 

If p is a real constant, then the series 
1

1
p

n n

∞

=
∑  is called the p-series. 

 
Theorem The p-series converges if p > 1 and diverges if p ≤ 1. 
 

Proof Let 1( ) pf x
x

= . 

 
 (1) p > 1 
 
 Clearly ( )f x  is continuous, positive and decreasing for all x ≥ 1. 

 Now 
1

1 dp x
x

∞

∫  =  
1

lim d
a p

a
x x−

→∞ ∫  

  =  1

1

1lim
1

a
p

a
x

p
−

→∞

⎡ ⎤
⎢ ⎥−⎣ ⎦

 

  =  ( )11 lim 1
1

p

a
a

p
−

→∞
−

−
 

  =  1
1 1lim 1

1 pap a −→∞

⎛ ⎞−⎜ ⎟− ⎝ ⎠
 

  =  ( )1 0 1
1 p

−
−

 

  =  1
1p −

. 

  Since 
1

1 dp x
x

∞

∫  converges then so does the series 
1

1
p

n n

∞

=
∑ . 

 
 (2) p = 1 
 

   The series 
1

1

n n

∞

=
∑  (the harmonic series) is known to diverge and so does 

the p-series. 
 
 (3) p < 1 
 

  
1

1 1 1 1 1 1 1
1 2 31 2 3p p p p

n n

∞

=

= + + + > + + +∑ �� ��   . 
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  Thus 
1

1
p

n n

∞

=
∑  diverges by comparison with the harmonic series. 

 
  Therefore the p-series converges for p > 1 and diverges for p ≤ 1. 
 

Example Determine whether or not the series 
1

2

n n

∞

=
∑  converges. 

 

 The p-series with p = 1
2 , 1 2

1

1

n n

∞

=
∑ , diverges and so 

1

2

n n

∞

=
∑  diverges. 

 
Exercise 26.6 
 
1. Use the integral test to determine which of the following series converge 

and which diverge: 

 (a) 
1

1
2 1n n

∞

= −∑  ; (b) 
2

1
lnn n n

∞

=
∑  ; (c) 

21 25n

n

n

∞

= +
∑  ; 

 (d) 2
1

1
1n n

∞

= +∑  ; (e) 
1

1
( 1)n n n

∞

= +∑  ; (f) 2
1

arctan
1n

n
n

∞

= +∑  ; 

 (g) 
2

1
e n

n
n

∞
−

=
∑  ; (h) 

( )3
2

1
lnn n n

∞

=
∑  ; (i) 

( )2

1
ln p

n n n

∞

=
∑ , p > 1. 

 

2. (a) If 2
2

2n
nu

n
=

+
, show that 1n nu u+ <  for all positive integers n. 

 (b) Show that the conditions needed to apply the integral test to 

establish whether or not the series 2
1

2
1n

n
n

∞

= +∑  is convergent, are 

satisfied. 
 (c) Determine whether or not the series in part (b) is convergent. 
 
3. Use the p-series test to decide which of the following series are convergent 

and which are divergent: 

 (a) 2
1 1n

n
n

∞

= +∑  ; (b) 
1

1

n n n

∞

=
∑  ; (c) 

3 2

2 1n

n
n

∞

= −∑  ; 

 (d) 
2 3

2
1 1n

n
n

∞

= +∑  ; (e) 4
1 1n

n
n

∞

= +∑  ; (f) 
1

1
n

n n n

∞

=
∑ . 
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26.7 Alternating Series and Absolute Convergence 
 
Definition A series in which the terms are alternately positive and negative is 

called an alternating series. 
 
Leibniz's Theorem 

 The alternating series 1
1 2 3 4

1
( 1)n

n
n

u u u u u
∞

+

=

− = − + − +∑ �   converges if all 

three of the following conditions hold: 
  (1) iu  is positive for all i = 1, 2, 3,  …  ; 
 (2) 1n nu u+ ≤  for all n ; 
 (3) 0nu →  as n → ∞ . 
 

Example Show that the alternating series 
1

1

( 1) 1 1 1 1
1 2 3 4

n

n n

+∞

=

−
= − + − +∑ �   

(the alternating harmonic series), converges. 
 

 Let 1
nu

n
= .  

 Then (1) iu  is positive for all i = 1, 2, 3, 4, …  . 

  (2) 1 1
1n n

≤
+

 for all n and so 1n nu u+ ≤  for all n. 

  (3) 0nu →  as n → ∞ . 
 
 Therefore by Leibniz's theorem, the alternating harmonic series converges. 
 
The Alternating Series Estimation Theorem 
 

If the alternating series 1

1
( 1)n

n
n

u
∞

+

=

−∑  converges to L and 

   1
1 2 3 ( 1)n

n nS u u u u+= − + − + −� , 
then nS  approximates the sum L with an error n nL Sε = −  such that 1n nu +ε < , 
the numerical value of the first unused term. Also the difference nL S−  has the 
same sign as the first unused term. 
 
Example Estimate the magnitude of the error involved in using the sum of 

the first seven terms to approximate the sum L of the geometric 

series 1

1

1( 1)
2

n
n

n

∞
+

=

−∑ , and confirm that 7L S−  has the same sign as 

the eighth term of the series. 
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 Firstly we have 
1

1 2
1

1 2

1 1( 1)
1 ( ) 32

n
n

n
L

∞
+

=

− = = =
− −∑ . 

 The eighth term of the series is 1
256

−  so 7
1

256
ε < . 

 Also 
( )71

1 2
7 7 71

2

1 ( )1 1 1 1 11 0
3 1 ( ) 3 3 2 3 2

u
L S

− − ⎛ ⎞− = − = − + = − <⎜ ⎟− − ×⎝ ⎠
 and so 

7L S−     has the same sign as the eighth term. 
 

 Note:  7 7
1 1 1

384 2563 2
ε = = <

×
, the numerical value of the eighth term. 

 
Absolute Convergence 
 

A series 
1

n
n

u
∞

=
∑  is absolutely convergent if the corresponding series of absolute 

values, 
1

n
n

u
∞

=
∑ , converges. 

 

Example Show that the geometric series ( )2
3

0

n

n

∞

=

−∑  is absolutely convergent. 

 

 If ( )2
3

n
nu = −  then ( )2

3
n

nu =  and the series 
0

n
n

u
∞

=
∑  is geometric with 

2
3 1r = <  and so converges. 

 

 Therefore ( )2
3

0

n

n

∞

=

−∑  is absolutely convergent. 

 
Definition A series which converges but does not converge absolutely is said 

to converge conditionally or is said to be conditionally 
convergent. 

 

Example Show that the alternating harmonic series, 
1

1

( 1)n

n n

+∞

=

−∑ , is 

conditionally convergent. 
 
 We have already seen that the alternating harmonic series is convergent 

and that the harmonic series is divergent. Therefore the alternating 
harmonic series is conditionally convergent. 
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The Absolute Convergence Theorem 
 

If 
1

n
n

u
∞

=
∑  converges, then 

1
n

n
u

∞

=
∑  also converges. 

 
That is every absolutely convergent series converges. 
 

Example Show that 
1

2
1

( 1)n

n n

+∞

=

−∑  converges. 

 
 

 The given series is absolutely convergent since 2
1

1

n n

∞

=
∑  converges. 

 Therefore the series 
1

2
1

( 1)n

n n

+∞

=

−∑  converges. 

 

Example Determine whether or not the series 1
2

1

cos( 1)n

n

n
n

∞
+

=

−∑  converges. 

 

 2
1

cos

n

n
n

∞

=
∑  =  2 2 2 2 2 2

1

cos1 cos2 cos3 1 1 11
1 2 3 2 3 n n

∞

=

+ + + ≤ + + + = ∑�� ��  

  since cos 1n ≤  for all n. 

 Since 2
1

1

n n

∞

=
∑  converges then 1

2
1

cos( 1)n

n

n
n

∞
+

=

−∑  converges absolutely and is 

therefore convergent. 
 
Exercise 26.7 
 
1. Determine which of the following alternating series converge: 

 (a) 
1

1

( 1)
2

n

n
n

+∞

=

−∑  ;  (b) 1 3 2

1
( 1)n

n
n

∞
+ −

=

−∑  ; 

 (c) 2
1

3( 1)
1

n

n n

∞

=

−
+∑  ; (d) 1

1

2( 1)
1

n

n

n
n

∞
+

=

+
−

+∑  ; 

 (e) 
1

2

( 1)
ln

n

n n

+∞

=

−∑  ;  (f) 1
2

1

2 1( 1)n

n

n
n

∞
+

=

+
−∑  ; 

 (g) 
2

1
3

1
( 1)

1
n

n

n
n

∞
+

=

−
+∑  ; (h) 1

1
( 1) en n

n
n

∞
+ −

=

−∑ . 
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2. Show that the series 
1

1

( 1)n

p
n n

+∞

=

−∑  converges for p > 0, converges absolutely 

for p > 1 and converges conditionally for 0 1p< ≤ . 
 
3. For each of the following series, find an upper bound for the error if the 

sum of the first 5 terms is used as an approximation to the sum of the 
series: 

 (a) 1

1

2( 1)n

n n

∞
+

=

−∑  ;  (b) 1

1

1( 1)
( 1)( 2)

n

n n n

∞
+

=

−
+ +∑  ; 

 

 (c) 2

1
( 1) 3n

n
n

∞
−

=

−∑  ;  (d) 3
1

6( 1)n

n n

∞

=

−∑  ; 

 (e) 1

1

3( 1)
2

n
n

n

∞
+

=

−∑  ;  (f) 1
3

1

1( 1)
( 2)

n

n n

∞
+

=

−
+∑ . 

 
4. Find the sum of each of the following series correct to three decimal 

places: 

 (a) 1

1

2( 1)
3

n
n

n

∞
+

=

⎛ ⎞− ⎜ ⎟
⎝ ⎠

∑  ; (b) 1

1

3( 1)
2

n
n

n

∞
+

=

−∑  ; 

 (c) 1
3

1

1( 1)
(3 2)

n

n n

∞
+

=

−
+∑  ; (d) 1

1

1( 1)
!

n

n n

∞
+

=

−∑  ; 

 (e) 1

1

1( 1)
2

n
n

n n

∞
+

=

−∑  ; (f) 1
4

1

1( 1)
3

n

n n

∞
+

=

−∑ . 

 
5. Which of the following series converge absolutely, which converge 

conditionally and which diverge? 

 (a) 1

1

1( 1)n

n n n

∞
+

=

−∑  ; (b) 1

1
( 1) (0.99)n n

n

∞
+

=

−∑  ; 

 (c) 3
1

2( 1)
2

n

n

n
n

∞

=

−
+∑  ; (d) 

1

( 1)n

n n

∞

=

−∑  ; 

 (e) 
1

( 1)
3 2

n

n n

∞

=

−
+∑  ;  (f) 1

1

2 1( 1)
2 3

n

n

n
n

∞
+

=

+
−

+∑  ; 

 (g) ( )2 2
3

1
( 1)

nn

n
n

∞

=

−∑  ; (h) 2
1

arctan( 1)
1

n

n

n
n

∞

=

−
+∑  ; 

 (i) 1

1

2( 1)
2

n
n

n

n
n

∞
+

=

+⎛ ⎞− ⎜ ⎟
⎝ ⎠

∑  ; (j) 
1

2
1

( 1)
1

n

n n

+∞

=

−
+∑  ; 
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 (k) 
1
2

1.2
1

sin (2 1)

n

n
n

∞

=

− π
∑  ; (l) ( )

1
( 1) 2n

n
n n

∞

=

− + −∑ . 

 
26.8 Power Series 
 
Definition A series of the form 

    2
0 1 2

0
( ) ( ) ( )n

n
n

c x a c c x a c x a
∞

=

− = + − + − +∑ ��  

  where a and the coefficients 0 1 2, , ,c c c ��  are constants, is called 
a power series in (x – a) or a power series centred on a. 

 
With a power series, one of three possibilities must occur. 
 
(1) The power series may converge for all values of x. 
(2) The power series may diverge for all x except x = a. 
(3) There exists a number r > 0 such that the series converges absolutely for 

x a r− <  and diverges if x a r− > . In this case there are several 
possibilities when x = a – r or x = a + r. 

 
In the third case, the set of possible values of x for which the series converges is 
called the interval of convergence. This interval may be open, ]a–r, a+r[, half-
open, ]a–r, a+r] or [a–r, a+r[, or closed, [a–r, a+r]. In all of these cases, the 
number r is called the radius of convergence. 
 
In the first case, the radius of convergence is r = ∞ ; in the second case, the 
radius of convergence is r = 0. 
 

Example Consider the power series 2 3

0
1n

n
x x x x

∞

=

= + + + +∑ ��   . 

  Find the values of x for which this series converges. 
 

 The series is geometric series with r = x and so is convergent for 1r <  or 
1 1x− < < , and divergent for 1x >  and for 1x < − . 

 
 When x = 1, the series is 1 + 1 + 1 + 1 + …  which is clearly divergent. 
 
 When x = –1, the series is 1 – 1 + 1 – 1 + …  which is also divergent. 
 

 Note: When the series converges, it converges to 1
1 x−

. 

 That is 2 31 1
1

x x x
x

= + + + +
−

��   for 1 1x− < < . 
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Example For which values of x does the power series 1

1
( 1)

n
n

n

x
n

∞
+

=

−∑  converge? 

 1( 1)
n

n
n

xu
n

+= −  and 
1

1lim lim lim
1 1

n
n

nn n nn

u x n n x x
u n nx

+
+

→∞ →∞ →∞
= × = =

+ +
 (ratio 

test),  or  lim lim
n

n
nn n

xx x
n n→∞ →∞

= =  (nth-root test). 

 Therefore the series is absolutely convergent for 1x <  (and divergent for 
1x > ). 

 

 When x = 1 the series is 1 1 1
2 3 41− + − +��   which is the alternating 

harmonic series which converges. 
 
 When x = –1 the series is 1 1 1

2 3 41− − − − −��   which is the negative of the 
harmonic series which diverges. 

 
 Therefore the given power series converges for 1 1x− < ≤ . 
 
Example Find the interval of convergence and the radius of convergence of 

the power series 1

1

2 3( 1)
5

n
n

n

x∞
+

=

+⎛ ⎞− ⎜ ⎟
⎝ ⎠

∑ . 

 The series is geometric with common ratio 2 3
5

xr +⎛ ⎞= −⎜ ⎟
⎝ ⎠

. 

 Therefore the series is convergent for 2 3 1
5

x +
<  or 3 5

2 2x + < ,  i.e., for 

5 2 3 5x− < + <   ⇒   –4 < x < 1. 
 
 Therefore the interval of convergence is ]–4, 1[ and the radius of 

convergence is 5
2 . 

 

Example Find the radius of convergence of the power series 
0 !

n

n

x
n

∞

=
∑ . 

 
!

n

n
xu
n

=  and 
1

1 !lim lim lim 0
( 1)! 1

n
n

nn n nn

xu x n
u n nx

+
+

→∞ →∞ →∞
= × = =

+ +
 for all x. 

 
 Therefore the radius of convergence is r = ∞ . 
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Example Find the radius of convergence of the power series 
0

!( 1)n

n
n x

∞

=

−∑ . 

 !( 1)n
nu n x= −  and 

1
1 ( 1)!( 1)lim lim lim( 1) 1 0

!( 1)

n
n

nn n nn

u n x n x
u n x

+
+

→∞ →∞ →∞

+ −
= = + − =

−
 

for x = 1 only. 
 
 Therefore the radius of convergence is r = 0. 
 
Exercise 26.8 
 
1. For each of the following power series, determine the values of x for which 

the series converges absolutely and the radius of convergence: 

 (a) 
0
( 2)n

n
x

∞

=

+∑  ;  (b) 
0

(3 1)n

n
n x

∞

=

+∑  ; 

 (c) 
0
( 1) (2 3)n n

n
x

∞

=

− +∑  ; (d) 
0

( 1)
2

n

n
n

x∞

=

−∑  ; 

 (e) 
0
( 1)

!

n
n

n

x
n

∞

=

−∑  ;  (f) 
20 1

n

n

x

n

∞

= +
∑  ; 

 (g) 
2 1

0
( 1)

(2 1)!

n
n

n

x
n

+∞

=

−
+∑  ; (h) 

0

( 1)( 5)
3

n

n
n

n x∞

=

+ +∑  ; 

 (i) 
0

!( 3)n

n
n x

∞

=

−∑  ;  (j) 1

1

( 1)( 1)
!

n
n

n

n x
n

∞
+

=

+
−∑ . 

 
2. If a and b are positive integers, find the radius of convergence of the power 

series 
1

( )!
!( )!

n

n

n a x
n n b

∞

=

+
+∑ . 

 
3. Determine both the radius of convergence and the interval of convergence 

for each of the following power series: 

 (a) 
0

(2 3)
4

n

n
n

x∞

=

+∑  ;  (b) 3

1

n

n
n x

∞

=
∑  ; 

 (c) 2
0 2

n

n

x
n

∞

= +∑  ;  (d) 
2

0 2

n

n
n

n x∞

=
∑  ; 

 (e) 
1 2

n

n
n

x
n

∞

=
∑  ;  (f) 1

1

(2 )( 1)
3

n
n

n
n

x
n

∞
+

=

−∑ . 
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4. If 
1

n
n

u
∞

=
∑  is an absolutely convergent series, prove that the power series 

1

n
n

n
u x

∞

=
∑  is absolutely convergent for 1x ≤ . 

5. Prove that if the radius of convergence of the power series 
1

n
n

n
u x

∞

=
∑  is r, 

then the radius of convergence of 2

1

n
n

n
u x

∞

=
∑  is r . 

 
26.9 Taylor and Maclaurin Series 
 
A Taylor series is a special case of a power series. 
 
Definition The power series 

   
( )

0

( ) ( )
!

k
k

k

f a x a
k

∞

=

−∑  

  
( )

2( ) ( )( ) ( )( ) ( ) ( )
2! !

n
nf a f af a f a x a x a x a

n
′′

′= + − + − + + − +� �  

where ( )f x  has derivatives of all orders on some open interval containing a, is 
called the Taylor series of f at a. 
 
The special case when a = 0: 
 

( ) ( )
2

0

(0) (0) (0)(0) (0)
! 2! !

k n
k n

k

f f fx f xf x x
k n

∞

=

′′
′= + + + + +∑ � ��  

 
is called the Maclaurin series of f. 
 
Example Find the Maclaurin series for ( ) ln(1 )f x x= + , and find the radius 

and interval of convergence of this series. 
 

 2 3
1 1 2!( ) ln(1 ), ( ) , ( ) , ( )

1 (1 ) (1 )
f x x f x f x f x

x x x
−′ ′′ ′′′= + = = =

+ + +
, … , 

1
( ) ( 1) ( 1)!( )

(1 )

n
n

n
nf x
x

+− −
=

+
. 

 Therefore (4)(0) 0, (0) 1, (0) 1, (0) 2!, (0) 3!,f f f f f′ ′′ ′′′= = = − = = −  … , 
( ) 1(0) ( 1) ( 1)!n nf n+= − −  . 
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 The required series is    1

0

( 1)!( 1)
!

n n

n

nx
n

∞
+

=

−
−∑  

  =  
2 3 4

1( 1)
2 3 4

n
nx x x xx

n
+− + − + + − +� �  . 

 

  Let 1( 1)
n

n
n

xu
n

+= −  which gives 1lim lim
1

n
n nn

u nx x
u n

+

→∞ →∞

⎛ ⎞= =⎜ ⎟+⎝ ⎠
, so the 

radius of convergence is 1. 
 

 When x = 1, ( 1)n

nu
n

−
=  and the series converges. 

 When x = –1, 1
nu

n
= −  and the series diverges. 

 Therefore the interval of convergence is ]–1, 1]. 
 

Example Find the Taylor series generated by 1( )f x
x

=  at x = 1 and find the 

values of x for which this series converges to 1
x

. 

 ( )
2 3 4 1

1 2! 3! !( ) , ( ) , ( ) , , ( ) ( 1)n n
n
nf x f x f x f x

x x x x +
′ ′′ ′′′= − = = − = −� . 

 Thus ( )(1) 1, (1) 1, (1) 2, (1) 3!, , (1) ( 1) !n nf f f f f n′ ′′ ′′′= = − = = − = −� . 
 
 Therefore the required Taylor series is 

 2 3

0
( 1) ( 1) 1 ( 1) ( 1) ( 1) ( 1) ( 1)n n n n

n
x x x x x

∞

=

− − = − − + − − − + + − − +∑ � �  . 

 
 This series is geometric with r = 1 – x and it converges for –1 < 1 – x < 1 or 

0 < x < 2. The sum of the series is 1 1 1
1 1 (1 )

u
r x x

= =
− − −

. 

 Thus the Taylor series generated by 1( )f x
x

=  at x = 1 converges to 1
x

 

whenever 0 < x < 2. 
 
Taylor Polynomials 
 
Any power series representation of a function is unique. Therefore any power 
series representation of a function ( )f x  at x = a must be the function's Taylor 
series at x = a. 
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Let 2 3
0 1 2 3( ) ( ) ( ) ( )f x c c x a c x a c x a= + − + − + − + �   be a power series 

representation of function ( )f x . 
Then ( )f x′  =  2 3

1 2 3 42 ( ) 3 ( ) 4 ( )c c x a c x a c x a+ − + − + − + �  
 ( )f x′′  =  2

2 32! (3)(2) ( ) (4)(3)( )c c x a x a+ − + − + �  
 ( )f x′′′  =  2

3 4 53! (4)(3)(2) ( ) (5)(4)(3) ( )c c x a c x a+ − + − + �  
 (4) ( )f x  =  4 54! (5)(4)(3)(2) ( )c c x a+ − + �     etc,. 
 
Hence ( )

0 1 2 3( ) , ( ) , ( ) 2! , ( ) 3! , , ( ) !n
nf a c f a c f a c f a c f a n c′ ′′ ′′′= = = = =�  

and so 
( )

0

( )( ) ( )
!

n
n

n

f af x x a
n

∞

=

= −∑  which is the Taylor series for the function 

( )f x  at x = a. 
 
Definition If ( )f x  has derivatives of all orders on an open interval ]a–r, a+r[, 

then for all n ≥ 0, the Taylor polynomial of order n generated by f at 
x = a is the polynomial 

  
( )

2( ) ( )( ) ( ) ( )( ) ( ) ( )
2! !

n
n

n
f a f aP x f a f a x a x a x a

n
′′

′= + − + − + + −� . 

 
Example Find the Taylor polynomials of orders 2n+1 and 2n+2 generated by 

the function ( ) sinf x x=  at x = 0. 
 
 (4)( ) cos , ( ) sin , ( ) cos , ( ) sinf x x f x x f x x f x x′ ′′ ′′′= = − = − = , etc,. 
 Thus (4) (5)(0) 0, (0) 1, (0) 0, (0) 1, (0) 0, (0) 1f f f f f f′ ′′ ′′′= = = = − = = , etc,. 
 Therefore the Taylor polynomial of order 2n+1 generated by ( ) sinf x x=  at 

x = 0 is 
3 5 2 1

2 4 1
2 1( ) 0 0 0 ( 1)

3! 5! (2 1)!

n
n

n
x x xP x x x x

n

+
+

+ = + + − + + + + −
+

� , and 

the Taylor polynomial of order 2n+2 generated by ( ) sinf x x=  at x = 0 

is
3 5 2 1

2 4 1 2 2
2 2 ( ) 0 0 0 ( 1) 0

3! 5! (2 1)!

n
n n

n
x x xP x x x x x

n

+
+ +

+ = + + − + + + + − +
+

� . 

 [Note: These polynomials are identical.] 
 
Example Find the Taylor polynomials of orders 1, 2, 3 generated by 

( ) exf x =  at x = 0. Sketch graphs of ( )f x  and the three Taylor 
polynomials on the same set of coordinate axes for –1.2 ≤ x ≤ 1.2. 
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 ( ) ( ) en xf x =  and ( ) (0) 1nf =  for n = 0, 1, 2, 3 ( (0) ( )f x  denotes the 
function). 

 
 Therefore the Taylor polynomials of orders 1, 2, 3 are: 
 

           2 2 31 1 1
1 2 32 2 6( ) 1 , ( ) 1  and ( ) 1P x x P x x x P x x x x= + = + + = + + + . 

 
 The graphs of these functions follow. 
 
 
 

     
 
 
Taylor's Formula 
 

If we replace x with x + a in the Taylor series 
( )

0

( )( ) ( )
!

k
k

k

f af x x a
k

∞

=

= −∑ , we 

obtain 
( ) 2 3

0

( )( ) ( ) ( ) ( ) ( )
! 2! 3!

k
k

k

f a x xf x a x f a xf a f a f a
k

∞

=

′ ′′ ′′′+ = = + + + +∑ �   . 

 
If ( )f x  has derivatives of all orders defined on some open interval containing 
a, then for each positive integer n and for each x in the interval, 
 

2
( )( ) ( ) ( ) ( ) ( ) ( )

2! !

n
n

n
x xf x a f a xf a f a f a R x

n
′ ′′+ = + + + + +�  

 

where 
1

( 1)( ) ( )
( 1)!

n
n

n
xR x f c
n

+
+=

+
 for some c between a and a + x (excluding the 

end-points). 
 
The function ( )nR x  is called the remainder of order n or simply the error 
term. 
 
 

x 

 y 

1( )P x
2 ( )P x

3 ( )P x

( )f x
O 1 –1 

1 



Chapter 26 

732 

 
( )nR x  gives the error involved when we use the Taylor polynomial of order n 

as an approximation for the function ( )f x a+  in a given open interval. If 
( ) 0nR x →  as n → ∞  for all x in the given interval, we say that the Taylor 

series converges to ( )f x a+  on the interval. 
 

Example Show that the Maclaurin series for ( ) exf x =  represents the 
function for all values of x. 

 
 From the previous example we find that the required Maclaurin series is 

0
( ) e

!

n
x

n

xf x
n

∞

=

= = ∑ . 

 

 If we truncate this series after the term in nx  the error term is 

    
( 1)

1 1( ) e( )
( 1)! ( 1)!

n c
n n

n
f cR x x x

n n

+
+ += =

+ +
 

 where c is between 0 and x. 
 

 If x > 0, 0 < c < x and so e ec x< . 

  Therefore multiplying both sides by the positive number 
1

( 1)!

nx
n

+

+
 gives 

1 1e e0
( 1)! ( 1)!

c x
n nx x

n n
+ +< <

+ +
 or 1e0 ( )

( 1)!

x
n

nR x x
n

+< <
+

   …………… (*). 

 

  From the third example on page 726 we found that the series 
0 !

n

n

x
n

∞

=
∑  is 

convergent for all values of x and so 
1

lim 0
( 1)!

n

n

x
n

+

→∞
=

+
 and 

1

lim e 0
( 1)!

n
x

n

x
n

+

→∞
=

+
.  Therefore lim ( ) 0nn

R x
→∞

=  from (*). 

 

 If x < 0, x < c < 0 and so 00 e e ex c< < <  or 0 e 1c< <  ……. (**) 

(i) If 1 0nx + >  and we multiply (**) throughout by 
1

( 0)
( 1)!

nx
n

+

>
+

 we 

obtain 
1 1

0 e
( 1)! ( 1)!

n n
c x x

n n

+ +

< <
+ +

 or 
1

0 ( )
( 1)!

n

n
xR x

n

+

< <
+

 and we find 

lim ( ) 0nn
R x

→∞
= . 
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 (ii) If 1 0nx + <  and we multiply (**) throughout by 
1

( 0)
( 1)!

nx
n

+

<
+

, we 

obtain 
1 1

e 0
( 1)! ( 1)!

n n
cx x

n n

+ +

< <
+ +

 and once again we find lim ( ) 0nn
R x

→∞
= . 

 

 If x = 0, 
2 3

0

0
1 1 e

! 2! 3!

n

n

x x xx
n

∞

=

= + + + + = =∑ � . 

 

 Therefore 
0

e
!

n
x

n

x
n

∞

=

=∑  for all values of x. 

 
Example Show that the Taylor series for ( ) cosf x x=  at x = a represents the 

function for all values of x. 
 
 The required Taylor series is 

 
2 3

cos( ) cos (sin ) (cos ) (sin )
2! 3!
x xx a a a x a a+ = − − + + �   . 

 We must show that 
( 1)

1( )lim ( ) lim 0
( 1)!

n
n

nn n

f cR x x
n

+
+

→∞ →∞
= =

+
. 

 Now ( 1) ( ) 1nf c+ ≤  since ( 1) ( )nf c+  is one of sin c , sin c− , cosc  or 

cosc− . 

 Thus 
1

0 ( )
( 1)!

n

n
x

R x
n

+

< ≤
+

. 

 Since 
1

lim 0
( 1)!

n

n

x
n

+

→∞
=

+
 for all x, then lim ( ) 0nn

R x
→∞

= . 

 Therefore the Taylor series represents the function for all values of x. 
 
Example Find a Maclaurin series for 2e x . 
 

 The Maclaurin series for ex  is 
0 !

n

n

x
n

∞

=
∑  and so the Maclaurin series for 2e x  

is 
0

(2 )
!

n

n

x
n

∞

=
∑ . 
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Example Find a Maclaurin series for cosx x . 
 

 The Maclaurin series for cos x  is 
2

0
( 1)

(2 )!

n
n

n

x
n

∞

=

−∑ . 

 Thus the Maclaurin series for cosx x  is 
2 2 1

0 0
( 1) ( 1)

(2 )! (2 )!

n n
n n

n n

x xx
n n

+∞ ∞

= =

− = −∑ ∑ . 

 
The Remainder Estimation Theorem 
 

If we can find positive numbers M and r such that 
1

( 1) 1( )
( 1)!

n
n n x

f c Mr
n

+
+ +≤

+
 for 

all c between a and a + x, then the remainder term ( )nR x  in Taylor's theorem 
satisfies 
   

 
1

1( )
( 1)!

n
n

n
x

R x Mr
n

+
+≤

+
 

and so the series converges to ( )f a x+ . 
 

Example Calculate cos 1 with an error less than 610− . 
 

 The Maclaurin series for cos x  is 
2

0
( 1)

(2 )!

n
n

n

x
n

∞

=

−∑ . 

 Therefore 1 1 1 ( 1)cos1 1 (1)
2! 4! 6! (2 )!

n

nR
n

−
= − + − + + +�  

 and ( 1) 1 1(1) ( )
(2 )! (2 )!

n
nR f c

n n
+= ≤  for some c between 0 and 1. 

 By trial-and-error we find that 61 110
10! 8!

−< < . 

 Therefore the value of cos 1 with an error less than 610−  is 

  1 1 1 1 11 0.540 302
2! 4! 6! 8! 10!

− + − + − ≈ . 
 
 [A calculator gives cos1 0.540 302 3...=  which confirms our answer .] 
 
Example Calculate the value of e  correct to 4 decimal places using the 

Maclaurin series for ( ) exf x = . 
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 The Maclaurin series for  ( ) exf x =  is 
0 !

n

n

x
n

∞

=
∑ . 

 We require the error term to have a numerical value which is less than 
55 10−×  to ensure a value correct to 4 decimal places. 

 

 Now 1e( )
( 1)!

c
n

nR x x
n

+=
+

 where c is between 0 and x. 

 
1 2

1
2 1 1

e 2 1( )
2 ( 1)! 2 ( 1)! 2 ( 1)!n n n nR

n n n+ +< < =
+ + +

 since 1 2e 2< . 

 Here 4 5
4 5
1 15.2 10  and 2.2 10

2 5! 2 6!
− −≈ × ≈ ×  and so 1

5 2( )P  will give us a 

value for e  which is correct to four decimal places. 
 Thus 1 1 1 1 1

2 8 48 384 3840e 1 1.648 7≈ + + + + + ≈ . 
 
Example Find the values of x for which the polynomial 21

2 2( ) 1P x x= −  

gives a value for cos x  with an error which is less than 310− . 
 

 The Maclaurin series for cos x  is 
2

0
( 1)

(2 )!

n
n

n

x
n

∞

=

−∑  which is an alternating 

series for all non-zero x. Therefore we can apply the alternating series 
estimation theorem to show that the error is no greater than the numerical 

value of the third term, that is 
4

4
3

1
4! 24
x xε < = . 

 Thus 4 324 10 0.024x −< × =  and so 0.393x < . 
 
[Note: Since the third term of the series is 41

24 x  which is positive ( 0x ≠ ), the 
alternating series estimation theorem provides us with information not 
obtainable from the remainder estimation theorem, i.e. the polynomial 

2 ( )P x  gives an underestimate of the value of cos x .] 
 
Also, if we apply the remainder estimation theorem to the above problem we 
have 21

22cos 1 ( )x x R x= − +  where 31
2 6( )R x x≤  which is nowhere near as 

good as the error found using the alternating series estimation theorem. 
However, the Taylor polynomial of order 3 is the same as that of order 2 since 
   2 31

32cos 1 0 ( )x x x R x= − + +  
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and the remainder estimation theorem then gives 41
3 24( )R x x≤  which is the 

same as that found using the alternating series estimation theorem. 
 

The Maclaurin series 1

0
ln(1 ) ( 1)

n
n

n

xx
n

∞
+

=

+ = −∑  which converges for 1 1x− < ≤ , 

should be memorised. 
 
The following Maclaurin series which represent the given functions for all 
values of x, should also be memorised: 
 

 
0

e
!

n
x

n

x
n

∞

=

= ∑  

 
2 1

0
sin ( 1)

(2 1)!

n
n

n

xx
n

+∞

=

= −
+∑  

 
2

0
cos ( 1)

(2 )!

n
n

n

xx
n

∞

=

= −∑  . 

 
Exercise 26.9 
 
1. Find the Maclaurin series up to the term in 3x  for each of the following: 
 (a) 1 2(1 )x+  ; (b) 2(1 )x −−  ; (c) 3 2(1 )x+ . 
 
2. Find the Taylor series for 
 (a) 3 22 2 1x x x+ − +  in powers of x – 1 ; 
 (b) 4x  in powers of x + 2. 
 Check your results algebraically. 
 
3. Calculate the value of 1e−  correct to 4 decimal places using the Maclaurin 

series for the function ( ) exf x = . 
 
4. Calculate the value of ln1.2  correct to 6 decimal places using the 

Maclaurin series for the function ( ) ln(1 )f x x= + . 
 
5. Find the Taylor series for each function at x = a.  
 (a) ( ) e , 1xf x a= =  ;  (b) 1

2( ) cos ,f x x a= = π  ; 

 (c) ( ) ln(1 ), 2f x x a= + =  ;  (d) 1( ) , 1f x a
x

= = . 
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6. Using the Maclaurin series for sin , cos , e  and ln(1 )xx x x+ , find the 
Maclaurin series for: 

 (a) 2 sinx x  ; (b) cos2x  ; (c) 2cos x  ; 
 (d) 2sin x   (e) e x−  ;  (f) 2ln(1 )x+ . 
 
7. (a) Find the Taylor polynomial of order 3 at x = 9 for the function 

( )f x x= . 
 (b) Estimate the size of 3 ( )R x  for 9 10x< ≤ . 

 (c) Calculate the value of 10  correct to as many decimal places as 
are justified by using the polynomial found in part (a). 

 
8. (a) Find the Taylor series for sin x  at x = 1

4 π . 
 (b) Show that the series found in part (a) represents the function sin x  

for all values of x. 
 (c) Calculate the value of sin 46°  with an error less than 610− . 
 
26.10 The Integral Form of the Error Term in a Taylor Polynomial 
 
Consider the Taylor polynomial for the function ( )f x  at x = a: 
 

 
( )

2( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )
2! !

n
n

n
f a f af x f a f a x a x a x a R x

n
′′

′= + − + − + + − +�  

 
where ( )nR x  is the remainder term when ( )f x  is truncated after the term in 
( )nx a− . 
 
We would like to have an expression for ( )nR x  whose size we could estimate 
without too much difficulty. There is such a form in which ( )nR x  is expressed 
as an integral. 
 
When n = 0 we have 0( ) ( ) ( )f x f a R x= + . 

From our earlier work in calculus, we can write ( ) ( ) ( ) d
x

a
f x f a f t t′= + ∫  so 

that  

  0 ( ) ( ) d
x

a
R x f t t′= ∫ . 

 
Next we integrate 0 ( )R x by parts using a neat 'trick'. 
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Let u = ( )f t′  and 1v′ = . 
Then ( )u f t′ ′′=  and ( )v x t= − −  !!! 

Thus ( )d
x

a
f t t′∫  =  [ ]( ) ( ) ( ) ( ) d

xx
a a

t x f t t x f t t′ ′′− − −∫  

  =  ( ) ( ) ( ) ( ) d
x

a
x a f a x t f t t′ ′′− + −∫ ,   and 

( ) ( ) ( )( ) ( )( ) d
x

a
f x f a f a x a f t x t t′ ′′= + − + −∫  ⇒  1( ) ( )( ) d

x

a
R x f t x t t′′= −∫ . 

 
We can continue in this way with a second integration by parts using ( )u f t′′=  

and v x t′ = −  with ( )u f t′ ′′′=  and 
2( )

2
x tv − −

= . 

This gives 2
2

( )( ) ( )  d
2

x

a

f tR x x t t
′′′

= −∫ . 

 
Using the principle of mathematical induction, we obtain the integral form of 
the remainder 

  
( 1) ( )( ) ( )  d

!

nx n
n a

f tR x x t t
n

+

= −∫  

where ( 1) ( )nf t+  is continuous for t ∈ [a, x]. 
 
Example Use the integral form of the remainder in the Maclaurin formula 

for sin x,  to prove that 
3 5 7

sin
3! 5! 7!
x x xx x= − + − +�  is valid for all 

values of x. 
 
 The Maclaurin formula for sin x with integral form of the remainder is 

 
3 5 2 1 (2 2)

2 1
0

sin ( )sin ( 1) ( )  d
3! 5! (2 1)! (2 1)!

n nxn nx x x tx x x t t
n n

+ +
+= − + − + − + −

+ +∫� . 

 Observe that (2 2)sin ( ) 1n t+ ≤  and so 2 1
2 1 0

1( ) ( )  d
(2 1)!

x n
nR x x t t

n
+

+ ≤ −
+ ∫ . 

 Now 2 1
0

( )  d
x nx t t+−∫  =  

2 2

0

( )
2 2

xnx t
n

+⎡ ⎤− −
⎢ ⎥+⎣ ⎦

  =  
2 2

2 2

nx
n

+

+
. 

 Finally we have 
2 2

2 1( ) 0
(2 2)!

n

n
x

R x
n

+

+ ≤ →
+

 as n → ∞ since 0
!

nx
n

→  as 

n → ∞ for all values of x, and the required result is reached. 
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Example Find the number of (non-zero) terms in the Maclaurin series for 

sin x with x = 1 for which the remainder is less than 410− . 
 

 We require the smallest n for which 41 10
(2 2)!n

−<
+

. (See the previous 

example with x = 1.) 

 A short search with a calculator gives 31 1.39 10
6!

−= ×  and 51 2.48 10
8!

−= × . 

 Thus 2n + 2 = 8 or n = 3 and so 4 terms are needed. 
 
Exercise 26.10 
 
1. Show that the remainder 2 ( )nR x  (in integral form) in the Maclaurin series 

for cos x satisfies 
2 1

2 ( )
(2 1)!

n

n
x

R x
n

+

≤
+

, n = 0, 1, 2, 3,  ……  . 

 

2. Using 
2 3 5

e 1 ( )
2! 3! 5! !

n
x

n
x x x xx R x

n
= + + + + + + +� , where ( )nR x  is the 

integral form of the remainder, prove that e = 1 1 11 1
2! 3! 7!

+ + + + +�  gives 

a value of e with an error less than 52.8 10−× . 
 
3. (a) Find the number of (non-zero) terms in the Maclaurin series for sin 

x needed to give a value of sin 2 with an error less than 410− . 
 (b) If R is the error after the term in 2 1nx + , (n = 0, 1, 2, … ), show that 

22
(2 2)!

n

R
n

+

≤
+

. 

 (c) Solve R < 410−  to show that with this approximation for R we need 
one more term than we did in part (a) to guarantee the required 
accuracy. 

 
4. (a) Find the number of (non-zero) terms in the Maclaurin series for 

cos x needed to give a value for cos 0.8 with an error less than 
510− . 

  (b) How many terms are required to guarantee the accuracy if the 
approximation for 2 (0.8)nR  given in Question 1 is used? 
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5. (a) Prove that for the Maclaurin series for ex , viz., 
0

e
!

n
x

n

x
n

∞

=

= ∑ , the 

remainder term in integral form is 
0

e( ) ( )  d
!

tx n
nR x x t t

n
= −∫ . 

 (b) Using a GDC, (and perhaps a 'trial-and-error' approach), find the 
smallest value of n for which 5(1) 5 10nR −< × . 

 (c) Find the value of e correct to four decimal places by summing the 
first n terms of the series in part (a) where n is the value found in 
part (b). 

 
6. (a) Derive the Maclaurin series for ( ) ln(1 ), 1 1f x x x= − − ≤ < . 
 (b) Find the remainder term, ( )nR x , in integral form. 
 (c) Using your GDC and the remainder term, find the number of terms 

of the series needed to give a value of 1
2ln  which is correct to four 

decimal places. 
 
7. (a) Derive the Maclaurin series for cos x. 
 (b) Write down the remainder term, 2 ( )nR x , in integral form. 

 (c) Show that 
2 1

2 ( )
(2 1)!

n

n
x

R x
n

+

≤
+

 . 

 (d) Using the fact that 0
!

nx
n

→  as n → ∞  for all values of x, prove 

that 2 ( ) 0nR x →  as n → ∞  for all x. 
 (e) How many (non-zero) terms of the Maclaurin series are needed to 

compute the value of cos 1 with an error less than 510− ? [Use the 
result in part (c).] 

 

8. Find the sum 
13

0

2
!

n

n n=
∑  correct to six decimal places without summing the 

individual terms. 
 

9. Use 
2 1 (2 2)

2 1
0

0

sin ( )sin ( 1) ( )  d
(2 1)! (2 1)!

r nn xr n

r

x tx x t t
r n

+ +
+

=

= − + −
+ +∑ ∫  to find 

4

0

( 1)
(2 1)!

n

n n=

−
+∑  correct to six decimal places without summing the individual 

terms. 
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10. The hyperbolic function cosh x is defined by cosh x = 1 (e e )
2

x x−+ . 

 (a) Derive the Maclaurin series for cosh x. 
 (b) Find the remainder 2 ( )nR x  in integral form. 
 (c) Use parts (a) and (b) to compute the value of cosh 1 correct to five 

decimal places. 
 

11. The hyperbolic function sinh x is defined by sinh x = 1 (e e )
2

x x−− . 

 (a) Derive the Maclaurin series for sinh x. 
 (b) Find the remainder 2 1( )nR x+  in integral form. 
 (c) Use parts (a) and (b) to compute sinh 0.3 correct to 8 decimal 

places.  
 
26.11 Differentiation and Integration of Power Series 
 

Theorem Let 
0

n
n

n
c x

∞

=
∑  be a power series whose radius of convergence is 

r > 0. If 
0

( ) n
n

n
f x c x

∞

=

= ∑ , then ( )f x′  exists for all x in the open 

interval ] , [r r−  and 1

1
( ) n

n
n

f x nc x
∞

−

=

′ = ∑ . 

 
[The proof is beyond the scope of this book.] 
 
Example Find the radius and interval of convergence of each of the power 

series 
1

2
0 ( 1)

n

n

x
n

+∞

= +∑  and 
0 1

n

n

x
n

∞

= +∑ . 

 

  Let 
1

2
0 0

( )
( 1)

n

n
n n

xf x u
n

+∞ ∞

= =

= =
+∑ ∑ . 

  Then 
22 2 1

1
2 1 2

1( 1)lim lim lim
1( 2)

n
n n

nn n nn n

u n x x x
u n x

+
+

+→∞ →∞ →∞

⎛ ⎞++
= = =⎜ ⎟⎜ ⎟++ ⎝ ⎠

 and so the radius 

of convergence is 1 1r = . 
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 When x = 1, the series is 2
0

1
( 1)n n

∞

= +∑  which is convergent, and when 

1x = − , the series is 
1

2
0

( 1)
( 1)

n

n n

+∞

=

−
+∑  which is absolutely convergent. 

 
 Therefore the interval of convergence is [–1, 1]. 
 

 Let 
0 0

( )
1

n

n
n n

xg x v
n

∞ ∞

= =

= =
+∑ ∑ . 

 Then 
1 1

1
2

1( 1)lim lim lim
1( 2)

n
n n

nn n nn n

v n x x x
v n x

+
+

→∞ →∞ →∞

⎛ ⎞++
= = =⎜ ⎟⎜ ⎟++ ⎝ ⎠

 and so the radius of 

convergence is 2 1r = . 
 
 

 When x = 1, the series is 
0

1
1n n

∞

= +∑  which is divergent, and when x = –1, the 

series is 
0

( 1)
1

n

n n

∞

=

−
+∑  which is convergent. 

 
 Therefore the interval of convergence is [–1, 1[. 
 
Since ( )g x  is obtained by differentiating ( )f x  term-by-term, this example 
illustrates the fact that even though f  and f ′  have the same radius of 
convergence, they do not necessarily have the same interval of convergence. 
 

Example Find a power series representation of the function 2
1( )

(1 )
f x

x
=

−
. 

 The series 
0

n

n
x

∞

=
∑  is geometric with 1 1u =  and r x= . It therefore converges 

to 1
1 x−

 for 1x < . 

 Thus 2 31 1
1

nx x x x
x

= + + + + + +
−

� �   for 1x < . 

 
 Differentiating term-by-term we get 
 
 



 Series and Differential Equations 

 743 

 

 2 3 1
2

1 1 2 3 4
(1 )

nx x x nx
x

−= + + + + + +
−

� �   for 1x <  which is a 

power series representation of the required function. 
 

Theorem Let 
0

n
n

n
c x

∞

=
∑  be a power series whose radius of convergence is r > 0. 

If 
0

( ) n
n

n
f x c x

∞

=

= ∑ , then f  is integrable on every closed subinterval of 

]–r, r[, and the integral of f  is evaluated by integrating the given 
power series term-by-term. Hence if x ∈ ]–r, r[, 

  1
0

0
( ) d

1
x nn

n

cf t t x
n

∞
+

=

=
+∑∫  

 and the radius of convergence of the resulting series is r. 
 
[The proof is beyond the scope of this book.] 
 

Example Find a power series in x for 
0

sin d
x t t

t∫ . 

 
 We know that 

  
2 1 3 5 2 1

0
sin ( 1) ( 1)

(2 1)! 3! 5! (2 1)!

n n
n n

n

x x x xx x
n n

+ +∞

=

= − = − + − + − +
+ +∑ � �   for all x. 

 Therefore 
2 2 4 2

0

sin ( 1) 1 ( 1)
(2 1)! 3! 5! (2 1)!

n n
n n

n

x x x x x
x n n

∞

=

= − = − + − + − +
+ +∑ � �  

for all x ≠ 0. 

 Thus 
3 5 2 1

0

sin d ( 1)
3(3!) 5(5!) (2 1)(2 1)!

nx nt x x xt x
t n n

+

= − + − + − +
+ +∫ � �   . 

 
Example Find a power series representation for arctan x . 
 
 From a result found previously, that is 

 2 3 11
1

nx x x x
x

+ + + + + + =
−

� �  for 1x < , 

 we obtain 

 2
1

1 x+
 =  2 2 2 21 ( ) ( ) ( )nx x x+ − + − + + − +� �  

  =  2 4 6 21 ( 1)n nx x x x− + − + + − +� �  ,  for 1x < . 
 
 



Chapter 26 

744 

 

 Now 3 5 2 1
20

d 1 1 ( 1)arctan
3 5 2 11

nx nt x x x x x
nt

+−
= = − + − + +

++∫ � �  , 1x < . 

 

Example Evaluate 
20.5

0
e dt t−∫  correct to five decimal places. 

 

 
0

e
!

n
x

n

x
n

∞

=

= ∑  for all x and so 
2

2 2

0 0

( )e ( 1)
! !

n n
x n

n n

x x
n n

∞ ∞
−

= =

−
= = −∑ ∑  for all x. 

 Now 
2

2 1

0
0

e d ( 1)
!(2 1)

nx t n

n

xt
n n

+∞
−

=

= −
+∑∫   and  

2
2 10.5

0
0

0.5e d ( 1)
!(2 1)

k
t k

k
t

k k

+∞
−

=

= −
+∑∫ . 

 This is a convergent alternating series and so the error, nε , created by 
truncating the series after the nth term is such that 

   
2 3

2 3
0.5 1

( 1)!(2 3) 2 ( 1)!(2 3)

n

n nn n n n

+

+ε < =
+ + + +

 . 

 

 Now 6
3 9.04 10−ε ≈ ×  and 7

4 3.7 10−ε ≈ ×  and so to obtain a value of the 
integral correct to five decimal places we need to add the first 5 terms of 
the series. 

 Therefore 
2

3 5 7 90.5

0

0.5 0.5 0.5 0.5e d 0.5 0.46128
3 2!(5) 3!(7) 4!(9)

t t− ≈ − + − + =∫ . 

 
Exercise 26.11 
 
1. Using term-by-term differentiation of the power series for sin x , show that 

we obtain the power series for cos x . 
 
2. Using term-by-term differentiation of the power series for cos x , show that 

we obtain the power series for sin x− . 
 
3. Using term-by-term differentiation of the power series for ( ) exf x = , 

show that ( ) exf x′ = . 
 

4. Use the result 1
2

1

1
(1 )

n

n
nx

x

∞
−

=

=
− ∑  for 1x <  to find a power series 

representation of 3
1

(1 )x−
. 
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5. Use the result 
0

1
1

n

n
x

x

∞

=

=
− ∑  for 1x <  to find a power series 

representation of 2
1

(1 )x+
. 

 
6. (a) Find a power series representation of 

2

ex . 
 (b) Find a power series representation of 

2

exx . 
 
7. Find a power series representation of e sinx x  up to the term in 3x . 
 
8. By multiplication, obtain the first few terms of the Maclaurin series for 

sin cosx x . Show how the whole series may be obtained from the 
Maclaurin series for sin 2x . 

 
9. Obtain the Maclaurin polynomial of degree 4 for 2cos x  by 
 (a) multiplication ; 
  (b) using the identity 2 1

2cos (1 cos2 )x x= + . 
 

10. If 2
0`

( ) ( 1)
2

n
n

n
n

xf x
∞

=

= −∑ , find (0.5)f ′  correct to three decimal places. 

 
11. Find a power series in x for 

 (a) 2
0

sin d
x

t t∫  ;  (b) 
0

1 d
2

x
t

t−∫ ,  0 2x< < . 

 
12. In each of the following, use a power series to estimate the value of the 

integral correct to four decimal places: 

 (a) 
0.2

0
arctan  dx x∫  ;  (b) 

20.2

0
e  dxx x−∫  ; 

 (c) 
0.2

0
ln(1 ) dx x+∫  ;  (d) 

3

2

d
4

x
x−∫ . 

 

13. (a) Find a power series representation of 2
1

1 x−
. 

 (b) Find a power series representation of 1ln
1

x
x

+⎛ ⎞
⎜ ⎟−⎝ ⎠

 using term-by-

term integration of the series in part (a). 
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14. (a) Find a power series of exx . 

 (b) Show that 
1

0
e d 1xx x =∫ . 

 (c) By integrating term-by-term the series found in part (a), show that 

1

1 1
!( 2) 2n n n

∞

=

=
+∑ . 

 

15. Let 
0

( 1)( ) ( 1)
!

n
n

n

xf x
n

∞

=

−′ = −∑ . 

 (a) Find a power series representation of 
1

( ) d
x

f t t′∫ . 

 (b) Evaluate 5
4( )f  to an accuracy of four decimal places. 

 
26.12 L'Hôpital's Rule 
 
During our studies we have met a number of examples where it has been 
necessary to evaluate the limit of a quotient in which the individual limits of 
both the numerator and denominator are zero. 
 
For example our definition of the derivative of a function ( )f x : 

0

( ) ( )lim
h

f x h f x
h→

+ − , and the most important of all limits required for 

trigonometric differential calculus: 
0

sinlim
θ→

θ
θ

. A procedure to evaluate all such 

limits would be quite handy, but this is expecting too much. However there is a 
simple rule which can be used in a large number of situations. This rule, known 
as l'Hôpital's rule, was published in 1696 by Guillaume de l'Hôpital. 
 
Theorem  (l'Hôpital's Rule) 
 
 Given ( ) ( ) 0f a g a= =  (where ( )f a′  and ( )g a′  exist but ( ) 0g a′ ≠ ), then 

( ) '( )lim
( ) '( )x a

f x f a
g x g a→

= . 

 

Proof    ( )lim
( )x a

f x
g x→

 

 = 
2 3

2 3

1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
2! 3!lim 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
2! 3!

x a

f a x a f a x a f a x a f a

g a x a g a x a g a x a g a→

′ ′′ ′′′+ − + − + − +

′ ′′ ′′′+ − + − + − +

�

�
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 =  

2

2

1 1( ) ( ) ( ) ( ) ( ) ( )
2! 3!lim
1 1( ) ( ) ( ) ( ) ( ) ( )
2! 3!

x a

x a f a x a f a x a f a

x a g a x a g a x a g a
→

⎧ ⎫′ ′′ ′′′− + − + − +⎨ ⎬
⎩ ⎭
⎧ ⎫′ ′′ ′′′− + − + − +⎨ ⎬
⎩ ⎭

�

�
 

 =  

1 1( ) ( ) ( ) ( ) ( )
2! 3!lim
1 1( ) ( ) ( ) ( ) ( )
2! 3!

x a

f a x a f a x a f a

g a x a g a x a g a
→

⎧ ⎫′ ′′ ′′′+ − + − +⎨ ⎬
⎩ ⎭
⎧ ⎫′ ′′ ′′′+ − + − +⎨ ⎬
⎩ ⎭

�

�
 

 =  ( )lim
( )x a

f a
g a→

′
′

 

 =  ( )
( )

f a
g a

′
′

  provided ( )f a′ , ( )g a′  exist and ( )g a′  is not zero. 

 
[Note: If ( ) 0f a′ =  and ( ) 0g a′ ≠ , the limit is 0. If ( ) 0f a′ ≠  and ( ) 0g a′ = , 

there is no limit.] 
 

Example Find 
2

3 22

2 3 2lim
3 8 8x

x x
x x→

− −
− +

. 

 

 
2

3 22

2 3 2lim
3 8 8x

x x
x x→

− −
− +

 =  22

4 3lim
9 16x

x
x x→

−
−

  =  2
4 2 3

9 2 16 2
× −

× − ×
  =  5

4
. 

 

Example Find 
2

1
lim

lnx

x x
x→

− . 

 

  
2

1
lim

lnx

x x
x→

−  =  
1 21

2
1

2
lim

1x

x x
x

−

→

−
 

  =  ( )21
21

lim 2
x

x x
→

−  

  =  3
2− . 

 

Example Find 20

1 cos2lim
θ→

− θ
θ

. 

 

 20

1 cos2lim
θ→

− θ
θ

  =  
0

2sin 2lim
2θ→

θ
θ

  =  
0

2cos2lim
1θ→

θ   =  2. 
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Example Find (if it exists) 
0

sec 1lim
tanx

x
x x→

−
−

 . 

 

 
0

sec 1lim
tanx

x
x x→

−
−

  =  20

sec tanlim
sec 1x

x x
x→ −

  =  
2 3

20

sec tan seclim
2sec tanx

x x x
x x→

+  which does not 

exist since 2 3sec tan sec 1x x x+ =  when x = 0 and 22sec tan 0x x =  when 
x = 0. 

 
Although l'Hôpital's rule is elegant, care must be taken in its application. We 
must know when it is applicable and when it is not. 
 

E.g., 20

cos2 1lim
2x

x
x x→

−
+

 = 
0

2sin 2lim
4 1x

x
x→

−
+

 but 
0

2sin 2lim
4 1x

x
x→

−
+

 ≠ 
0

4cos2lim
4x

x
→

−  = –1 

since 
0

lim (4 1) 0
x

x
→

+ ≠ . Thus 20

cos2 1lim
2x

x
x x→

−
+

 = 
0

2sin 2lim
4 1x

x
x→

−
+

 = 0, not –1. 

 

L'Hôpital's rule can be applied to limits such as ( )lim
( )x

f x
g x→∞

 where both the 

numerator and denominator approach large values as x approaches large values. 

Thus ( ) ( )lim lim
( ) ( )x x

f x f x
g x g x→∞ →∞

′
=

′
. 

 

Example Find lim
exx

x
→∞

. 

 

 lim
exx

x
→∞

  =  1lim
exx→∞

 = 0. 

 

Example Show that lim 0
e

a

xx

x
→∞

=  for all positive numbers a. 

 
 The derivatives of ax  are 1 2 3, ( 1) , ( 1)( 2) ,a a aax a a x a a a x− − −− − − �   . 
 Eventually the power of x will become negative, so let us assume that a – n 

is the first negative power. 
 Then the corresponding derivative is 

  ( 1)( 2) ( 1)( 1)( 2) ( 1) a n
n a

a a a a na a a a n x
x

−
−

− − − −
− − − − =

����  

where n ax − → ∞  as x → ∞ . 
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 Therefore lim
e

a

xx

x
→∞

  =  ( 1)( 2) ( 1)lim
en a xx

a a a a n
x −→∞

− − − −��   =  0 since the 

numerator is constant and the denominator → ∞ . 
 
Exercise 26.12 
 
1. Use l'Hôpital's rule to show that 

 (a) 
0

sinlim 1
x

x
x→

=  ;  (b) 
0

1 coslim 0
x

x
x→

−
= . 

 
2. Use l'Hôpital's rule (when applicable) to find the following limits: 

 (a) sinlim
x

x
x→π − π

 ;  (b) 
0

e 1lim
tan

x

x x→

−  ; 

 (c) 
0

2 sinlim
x

x x
x→

−  ;  (d) 
0

2 1lim
x

x x→

−  ; 

 (e) 
3

21

2 1lim
3 2 5x

x x
x x→−

− −
− −

 ; (f) 
1
2

1
2

coslim
x

x
x→ π − π

 ; 

 (g) 
2

21

lnlim
1x

x
x→ −

 ;  (h) 
2

0

e coslim
x

x

x
x→

−  ; 

 (i) 
0

arctan 3lim
arcsinx

x
x→

 ;  (j) 
2

0
lim

sinx

x
x x→ −

 ; 

 (k) 
0

arctanlim
1 cosx

x x
x→

−
−

 ; (l) 
0

e elim
2sin

x x

x x

−

→

−  ; 

 (m) 
2

3 23

9lim
3 2 6x

x
x x x→

−
− + −

 ; (n) 
0

sin tanlim
e e 2x xx

x x
−→

+
+ −

 ; 

 (o) 
0

3 1lim
sin

x

x x→

− . 

 
3. Find each of the following limits: 

  (a) 2
lnlim

x

x
x→∞

 ;   (b) 
100lnlim

x

x
x→∞

 ; 

 (c) 
2(ln )lim

2xx

x
→∞

;   (d) lim
ln(10 e )xx

x
x→∞ +

; 

  (e) lnlim ax

x
x→∞

 where a > 0 ;  (f) cot (1 )lim
x

x
x→∞

. 
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26.13 Differential Equations – Slope Fields 
 
The general solution to any differential equation contains an arbitrary constant. 
Hence there is an infinite number of functions called a family which satisfy the 
given equation. It is often very instructive to sketch some members of the 
family in order to observe the effect of a change in the initial conditions which 
determine the choice of constant. 
 
We could, of course, after solving the differential equation, simply sketch the 
graphs of various solutions. However, the general shape of the family can often 
be determined by an examination of "slope fields". 
 

Consider the equation d
d
y x y
x

= − . At any point P(x, y), we can calculate the 

gradient of the curve (x – y in our example) and indicate this by drawing a short 
line segment representing the tangent at that point. This produces what is known 
as a slope-field. These short lines segments can then be joined to indicate any 
member of the family of solutions. 
 

For the equation d
d
y x y
x

= − , the slope field for points near the origin and some 

of the family of solutions are shown in the following diagram. 
 
    

   

−2 2

−4

−2

2

4

 
The general solution is 1 e xy x c −= − +  and the five values of c shown in the 
above diagram are c = 0, c = ±2 and c = ±3. One of the solutions is clearly 
y = x – 1. 

 
Exercise 26.13 
 
 1. Show that if the normal at any point P(x, y) on a given curve ( )y f x=  in 

the Cartesian plane passes through the origin, then d
d
y x
x y

= − . 

 y 

 x 



 Series and Differential Equations 

 751 

 
2. For the differential equation in Question 1 draw a slope field for the points 

(x, y) for x, y = –3, –2, –1, 1, 2, 3, and sketch 2 or 3 of the family of 
solutions. 

 
3. Solve the differential equation from Question 1 to confirm your results in 

Question 2. 
 
26.14 Approximate Solutions to Differential Equations – Euler's Method 
 
Sometimes we cannot or do not wish to solve a differential equation analytically 
but instead we simply seek to find a numerical value of y for a given value of x. 
Euler's method is quite suitable for first-order equations written in the form 
d ( , )
d
y f x y
x

= . 

 
Let the value yi correspond to xi for i = 0, 1, 2, 3, …..  where the xi are equally 
spaced and 1i ix x h+ − = . The method is used to estimate the value of 1iy +  when 

0 1 2, , , , iy y y y�  have already been estimated. Each step uses the linear 

approximation d
d
yy x
x

δ ≈ δ  which is written as 1 1
d( )
di i i i
yy y x x
x+ +− = −   or  more 

simply 1
d
di i
yy y h
x+ ≈ +  where d

d
y
x

 is evaluated at the point ( , )i ix y . 

 
The following diagram illustrates the difference between the estimated value of 

1y  and the correct value. 
 

   
 
 
 
Example The graph of the function ( )y f x=  passes through the point (2, 1) 

and d 2
d
y x y
x

= + . 

Estimate the values of y when x = 2.1, 2.2, 2.3, 2.4. 

x 

 y 

O x0 

 y0 

tangent gradient = 
0

d
d x

y
x

 

x1 

h  y1 (estimated) 

error 

( )y f x=
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 Firstly,   1y  =   y(2.1) ≈  0
d
d
yy h
x

+  

   =  0 01 0.1(2 )x y+ +  
   =  1.5 . 
 

 Then      2y  =  (2.2)y  ≈  1
d
d
yy h
x

+  

   =  1.5 + 0.1(2 × 2.1 + +1.5) 
   =  2.07 . 
 
 The calculations are best set out in a table. 

  
n    nx    ny  2n n ny x y′ = +  nhy′  1n n ny y hy+ ′= +  
0    2 1        5    0.5        1.5 
1    2.1 1.5        5.7    0.57        2.07 
2    2.2 2.07        6.47    0.647        2.717 
3    2.3 2.717        7.317    0.7317        3.4487 
4    2.4 3.4487        8.2487    0.82487        4.27357 

 
Exercise 26.14 
 
1. A curve passes through the point (3, 3) and satisfies the differential 

equation 1y y x′ + = + . Use the Euler method to estimate the values of y 
when x = 3.1 and x = 3.2. Solve the given differential equation to explain 
your answers. 

 
2. A curve passes through the point (3, 9) and satisfies the differential 

equation 2 2y y x x′ + = + . Use the Euler method to estimate the values of y 
when x = 3.1, 3.2, 3.3, 3.4, 3.5. 

 

3. A curve ( )y f x=  satisfies the differential equation d 2
d
y x y
x

= −  and 

(1) 2f = . Estimate the values of ( )f x  for x = 1.1, 1.2, 1.3, 1.4, 1.5. 
 
4. (a) Use the Euler method to find the values of y for x = 3.1, 3.2, … , 

3.5 given that y(3) = 9 and y′  = 22 (1 )x x y+ − . 
 (b) Given that the general solution to the differential equation is 

22 e xy x C −= + , sketch the solution curves for C = 0, 1, 2, 3, and 
use your graphs to explain why the Euler estimates are relatively 
accurate in this case. 
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26.15 Equations Reducible to Separable Form – Homogeneous Equations 
 
Certain first-order differential equations are not separable but can be made 
separable by a change of variables. 
 
A first order equation is called homogeneous if it can be written in the form 
d
d
y yF
x x

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 for some function F. Such an equation can be made separable by 

putting y v
x

=  or y vx=  as follows: 

 

If y = vx then d d
d d
y vx v
x x

= +  and so d
d

vx v
x

+  = ( )F v . 

Now separating variables and integrating gives d d
( )

v x
F v v x

=
−∫ ∫ . 

We can finally replace v by y x  to find the general solution of the original 
equation. 
 
Example Find the general solution of the following differential equation: 

    2 2d2
d
yxy y x
x

= − . 

 

 Firstly we divide both sides by 2x  giving 
2d2 1

d
y y y
x x x

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 which 

confirms that the equation is homogeneous. 

 Putting y = vx where d d
d d
y vx v
x x

= +  gives 2d2 1
d

vv x v v
x

⎛ ⎞+ = −⎜ ⎟
⎝ ⎠

 which can 

be written in the form 2
2 d d
1

v v x
xv

= −
+

. 

 Now integrating both sides gives 2ln(1 ) ln ln ln kv x k
x

⎛ ⎞+ = − + = ⎜ ⎟
⎝ ⎠

 where k 

is an arbitrary constant. 

 Thus 21 kv
x

+ =  and replacing v with y x  and multiplying both sides by 

2x  gives 2 2x y kx+ =  which is the required general solution. 
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Example Solve the differential equation 2 2d 2 4
d
yxy y x
x

= + , (x ≥ 2 ), given 

that y = 4 when x = 2. 
 

 Dividing by 2x  gives 
2d 2 4

d
y y y
x x x

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and substituting  yv
x

=  gives 

the equation 2d 2 4
d

vv x v v
x

⎛ ⎞+ = +⎜ ⎟
⎝ ⎠

 which can be written 2d 4
d

vxv v
x

= + . 

 Then 2
dd

4
v xv

xv
=

+∫ ∫     ⇒    21
2 ln( 4) ln lnv x k+ = +      (x > 0) 

  ⇒ 2 4v kx+ =  
 

  ⇒ 2 2 24v k x+ =  
 ⇒ 2 2 2 4 44y x k x cx+ = =  where 2c k= . 
 
 Thus 2 2 2( 4)y x cx= −   or  2 4y x cx= − . 
 
 But y = 4 when x = 2 and so 4 2 4 4c= −   ⇒  c = 2. 
 
 Therefore the required solution is 22 4y x x= − . 
 
Sometimes we can reduce equations to separable form with other substitutions 
which may or may not be obvious. Substitutions which are not obvious will be 
given in the question. 
 
Example Use the substitution v = y – x to find the general solution of the 

differential equation d 2
d 1
y y x
x y x

− +
=

− +
. 

 

 v = y – x and so d d 1
d d

v y
x x

= −  which gives d 2 11
d 1 1

v v
x v v

+
= − =

+ +
. 

 Separating variables and integrating gives ( 1) d dv v x+ =∫ ∫  

  ⇒ 21
12 v v x c+ = +  

  ⇒ 2 2 2v v x c+ = +  
  ⇒ 2( ) 2( ) 2y x y x x c− + − = +  
  ⇒ 2 22 4 2x xy y x y c− + − + = . 
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Note: We can make y the subject of this equation as follows: 
  2( ) 2( ) 2y x y x x c− + − = +  
 ⇒ 2

1( ) 2( ) 1 2y x y x x c− + − + = +        1( 1)c c= +  
 ⇒ 2

1( 1) 2y x x c− + = +  
 ⇒ 11 2y x x c= − ± +  where the choice of sign can be determined if 

a value of y is known for a given value of x. 
 

 If y = 5 when x = 5, then 1 2 9y x x= − + −  but if y = 1 when x = 5 then 
we find that 1 2 1y x x= − − − . 

 
Exercise 26.15 
 
1. Find the general solution of each of the following differential equations: 

 (a) d
d
yx x y
x

= +  ;   (b) d 3 2
d
yx x y
x

= +  ; 

 (c) d 2
d
yx x y
x

= +  ;   (d) d 3
d
yx y x
x

= −  ; 

 (e) 2 2d
d
yxy x y
x

= +  ;  (f) 
2d

d
y yy x y
x x

= + +  ; 

 (g) d e
d

y xyx y x
x

−= −  ;  (h) d (1 ln ln )
d
yx y y x
x

= + −  ; 

 (i) d 2
d
yy x y
x

= −  ;   (j) d 2
d 3 2
y x y
x x y

+
=

+
. 

 
2. Solve each of the following differential equations: 

 (a) 2 2d 2
d
yxy x y
x

= + , if y = 3 when x = –1 ; 

 (b) 2 2 d( 2 )
d
yx y xy
x

+ = , if y = 2 when x = 4; 

 (c) 2 2 2d 5 4
d
yx y xy x
x

= + + , if y = 5
2

−  when x = 1; 

 (d) d
d
y y x
x y x

+
=

−
, if y = 3 when x = 1. 

 
*3. Use the given substitution to find the general solution of each of the 

following differential equations: 

 (a) 2d ( )
d
y y x
x

= −  ,   (v = y – x) ; 
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 (b) d tan( ) 1
d
y x y
x

= + −  ,  (v = x + y ) ; 

 (c) d e
d

xyyx y
x

−= −  ,  (v = xy) ; 

 (d) 2 2d( 2 ) 2 (2 )
d
yx y x x y
x

− = + , ( )2v y x= . 
 
*4. Solve each of the following differential equations using the substitution 

given in parentheses: 

 (a) d
d 1
y y x
x y x

−
=

− −
 , where y = 2 when x = 2,  (v = y – x) ; 

 (b) 2d 2
d
y y x xy
x

+ = , where y = 1 when x = 0, ( )1v y=  ; 

 (c) d 1 2 4
d 1 2
y y x
x y x

− −
=

+ +
, where y = 2 when x = 1, (v = y + 2x) ; 

 (d) ( )d e 1 e
d

y yy x
x

−= + − , where y = 1 when x = 0, ( )e yv x= + . 

 
26.16 Linear First-Order Differential Equations – Integrating Factors 
 
A first-order differential equation is said to be linear if it can be written in the 
form 

     d ( ) ( )
d
y f x y r x
x

+ = . 

The characteristic feature of this equation is that it is linear in y and d
d
y
x

, 

whereas f and r may be any given functions of x. 
 
If ( ) 0r x ≡ , the equation is said to be homogeneous otherwise it is said to be 
non-homogeneous. 
 
Finding the general solution in the homogeneous case is quite easy – we 
separate variables as follows: 

 d d( ) 0 ( ) d ln ( ) d
d
y yf x y f x x y f x x
x y

+ = ⇒ = − ⇒ = −∫ ∫ ∫ . 

 

  Thus ( ) de f x xy k −∫= . 
 
We solve the non-homogeneous equation using an integrating (multiplying) 
factor. 
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Let ( ) ( ) dh x f x x= ∫ . Then ( ) ( )h x f x′ = . 
 

Note that ( )( ) ( ) ( )d de e e ( )
d d

h x h x h xyy h x y
x x

′= + . 

 

Then if d ( ) ( )
d
y f x y r x
x

+ = , multiplying by the integrating factor ( )eh x  gives 

 ( ) ( ) ( )de e ( ) e ( )
d

h x h x h xy h x y r x
x

′+ =      or     ( )( ) ( )d e e ( )
d

h x h xy r x
x

= . 

 

Integrating then gives ( ) ( )e e ( ) dh x h xy r x x c= +∫  
 
            or 
 
     ( ) ( )e e ( ) dh x h xy r x x c− ⎡ ⎤= +⎣ ⎦∫  
 
which is the general solution of the given differential equation. 
 

Example Solve the differential equation 2d e
d

xy y
x

− = . 

 
 Here 2( ) 1, ( ) e , ( ) ( ) dxf x r x h x f x x x= − = = = −∫  and so the integrating 

factor is e x− . 
 
 Thus the general solution is 
  2 2e e e  d e e e ex x x x x x xy x c c c−⎡ ⎤ ⎡ ⎤= + = + = +⎣ ⎦⎣ ⎦∫ . 
 

Example Solve the differential equation d 4 0
d
yx y
x

+ + = . 

 

 d 4 0
d
yx y
x

+ + =      ⇒     d 4
d
y y
x x x

+ = −   

  so 1 4 1( ) , ( ) , ( )  d lnf x r x h x x x
x x x

= = − = =∫  and the integrating factor is 

( )eh x x= . 
 

 Therefore the general solution is 1 4  d 4cy x x c
x x x

⎡ ⎤⎛ ⎞= − + = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ . 
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Example Solve the differential equation d sin
d
yx y x
x

+ = . 

 

 The given equation can be written ( )d sin
d

xy x
x

=  and integrating this 

gives 

 cosxy x c= − +   or  1 ( cos )y c x
x

= − . 

 

Example Solve the initial value problem d tan sin 2
d
y y x x
x

+ =  where y(0) = 1. 

 
 ( ) tan , ( ) sin 2  and ( ) tan  d ln cos ln secf x x r x x h x x x x x= = = = − =∫ . 

 The integrating factor is ( )e sech x x=  so cos sec (sin 2 ) dy x x x x c⎡ ⎤= +⎣ ⎦∫ . 

 Now sec sin 2 sec (2sin cos ) 2sinx x x x x x= = . 

 Therefore 2cos 2 sin  d cos 2cosy x x x c c x x⎡ ⎤= + = −⎣ ⎦∫ . 

 
 But y = 1 when x = 0 and so c – 2 = 1  or  c = 3. 
 Thus the required solution is 23cos 2cosy x x= − . 
 
Exercise 26.16 
 
1. Find the general solution to each of the following differential equations: 

 (a) d 2
d
y y
x

− =  ; (b) d 2 0
d
y xy
x

+ =  ; (c) d 2 6e
d

xy y
x

+ =  ; 

 (d) d
d
y xy x
x

+ =  ; (e) d e sin
d

xy y x
x

−+ =  ; (f) d cot csc
d
y y x x
x

+ =  ; 

 (g) d e
d

kxy ky
x

−+ =  ; (h) d ( 1)cot
d
y y x
x

= −  ; (i) 3d 2 e
d

xyx y x
x

− = . 

  
2. Solve each of the following differential equations: 

 (a) d
d
y x y
x

= −  ; (b) 2d
d
y y x
x

= −  ; (c) d 7
d
y y x
x

− =  ; 

 (d) d 2 3
d
yx y x
x

= +  ; (e) d 3 sin
d
y y x
x

+ =  ; (f) 
21

2( )d e
d

x xy xy
x

−+ = ; 

  (g) 2 d(4 ) 4 0
d
yx xy
x

− − + = . 
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3. Solve the following initial value problems: 

 (a) d e
d

xy y
x

− = ,     y(1) = 0 ; (b) d tan 1
d
y y x
x

= + ,     y(0) = 2 ; 

 (c) 3d 3 e
d

xy y
x

= + ,     y(0) = 1 ; (d) 2d ( 1)
d
y y x
x

+ = + ,     y(0) = 0 ; 

 (e) 2d
d
yx y x
x

− = ,     y(1) = 0. 

 
 

Required Outcomes 
 

After completing this chapter, a student should be able to: 
• find the limit of a sequence using limit theorems or the squeeze theorem. 

• evaluate improper integrals of the form ( ) d
a

f x x
∞

∫ . 

• express an integral as a limit of a lower and/or upper sum. 
• determine whether a given series converges using various tests which 

include comparison, limit comparison, the ratio test, the nth–root test, the 
integral test and the p–series test. 

• determine whether an alternating series converges using Leibniz's theorem. 
• use the alternating series estimation theorem to determine the accuracy of a 

given partial sum. 
• determine whether a given series is absolutely convergent or conditionally 

convergent. 
• determine the radius of convergence and the interval of convergence of a 

given power series. 
• find the Taylor and Maclaurin series and polynomials for a variety of 

functions. 
• use the remainder estimation theorem to determine the accuracy of a 

Taylor polynomial. 
• find Taylor and Maclaurin series for compound functions by differentiating 

or integrating other Taylor and Maclaurin series. 
• find approximating polynomials for compound functions by multiplying or 

dividing Taylor and Maclaurin series. 
• calculate the error term of a Taylor polynomial both in terms of the value 

of the (n + 1)th derivative at an intermediate point and in terms of an 
integral of the (n + 1)th derivative. 

• sketch graphs representing solutions of a given first order differential 
equation using slope fields. 

• find numerical solutions of d ( , )
d
y f x y
x

=  using Euler's method. 
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• solve homogeneous differential equations of the form d
d
y xf
x y

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 using 

the substitution y = vx. 
• solve first order linear equations of the form y' + P(x)y = Q(x) using 

integrating factors. 
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ANSWERS

Exercise 1.1

1. (i) –2, 441 , 1.9   (ii) –2, 7
3 , 441 , 1

46 , 0.8, 0.8 ,1.9  , 
4 32

18 3
−

−

(iii) 5 , 1
π

, 1
3 1−

, 2π

3. 1 11 7 23 617 1234 2 1 7342, , , , , , , ,
25 9 2 99 5000 9999 7 1 5555

Exercise 1.2
1. (a) 4x <   (b) 6x ≤ −   (c) 1

6x >   (d) 5x ≥ −   (e) 1.4x > −   (f) 1x > −

(g) 2x >   (h) 3
2x >   (i) 2x <   (j) 1x <   (k) 1

2x > −   (l) 4
3x >

3. (a) 0x >   (b) 13x < −   (c)  No x  (d) 3 1x− < < −

Exercise 1.3

1. (a) 15   (b) 2xy (c) 90   (d) 3 20

3. (a) 3 2   (b) 10 2   (c) 5 3   (d) 6 2   (e) 15 2   (f) 0.7 2
5. (a)  30  (b)  63  (c)  726  (d) 6 15−   (e) 10( 2 5 )−   (f) 6(2 2 )−

7. (a) 3
3

  (b) 2 6
3

  (c) 3
6

  (d) 2 1+   (e) 2( 5 2 )−   (f) 3 2 2 3−

(g) 5 2 6+   (h) 1
8 (5 3 5 )+   (i) 1

5 (7 3 6)−

9. (a) 5 2
13 13,a b= =   (b) 8

34, 2   or  3,a b a b= = = − = −

Exercise 1.4
1. (a)  12  (b)  17  (c)  No x  (d) 7

2−   (e) 3
13   (f) 2

3

3. (a)  7  (b) 3
2   (c)  3, 18  (d) 2

9−   (e) 24
23−   (f)  1

Exercise 1.5

1. (a) 6a   (b) 9b   (c)  1  (d) 2a   (e) 1
a

  (f) x
y

3. (a)  8  (b)  8  (c) 3
1   (d)  0.008  (e)  1000  (f) x

5. (a) ±2  (b)  3  (c)  No a (d)  9  (e) ±8  (f) 8
1±   (g)  1024  (h)  0.2  (i) 1

27±

6. (a)  1, 16  (b)  0, 4  (c)  0, 2  (d) –2, 1
2   (e) 1, 16 2± ±   (f)  4  (g)  9

(h) 27 8
8 27,± ±
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Exercise 1.6
1. (a) 3log 9 2=   (b) 1

2 4log 2= −   (c) log 3q p =   (d) 1
2

log y x=   (e) log 3k =l

(f) 5log q p= −
3. (a)  5  (b)  1.5  (c)  1.09  (d)  1.5  (e) –3  (f)  1.05
5. (a) 32y x=   (b) 5y x=   (c) 3100y x=   (d) 1 45y x≈
7. (a)  10 years  (b)  6.02 years  (c)  10.8 years  (d)  26.0 years
9. 12.9oC
11. (a)  20.8 years  (b)  138 years
13. (a)  3.33 seconds  (b)  4.72 seconds  (c)  13.3 seconds
15. 0.2t = l
17. k = 8, n = 1.2

Exercise 2.1
1. (a) 4

5−   (b) –3   (c) 3
4   (d) 2

3   (e)  2  (f) 5
11−   (g) 7

5   (h) 9
5−   (i) –3  (j) ––

(k)  0  (l) 7
3

3. (a)  2x – 3y = 1  (b) x – y = 3  (c)  3x + 4y = 12  (d) x = –2  (e) y = 1
(f) x + y = a + b

5. (a)  3x – 2y = 5  (b) x + 3y + 10 = 0  (c)  4x + 5y + 15 = 0  (d)  5x + 3y = 41
7. ( )8

39
16
21 ,

9. ( )3
4,1 −−

Exercise 2.2
1. (a)  3  (b)  2  (c)  2  (d) 5   (e) 52   (f) 102

1

3. (a)
34

10   (b)
58
7   (c)  3  (d)

22
27   (e)

2
5   (f)

52
21

5. (a) 2
121   (b)  9  (c)  26  (d) 8

125   (e) 2
122

7. 1359 ±
9. 2, 2

114
11. (a) x + y > 8, x – y > –4,  7x + y < 44    (b) y = 6,  2x + y = 14    (c)  (4, 6)

Exercise 2.3
1. (a)  (–1, –4), x = –1  (b)  (2, –1), x = 2  (c)  (–1, 3), x = –1  (d)  (2, 9), x = 2

(e) ( )1 1 1
2 4 2, 4 , x− − = −   (f) ( )1 1 1

2 4 21 , , 1x− =   (g) ( )1 1 1
2 4 22 ,6 , 2x =

(h) ( )1 1 1
2 4 21 ,5 , 1x− = −  (i) ( )31 1

2 4 2, 4 , x− =   (j) ( )1 1 1
3 3 3, 6 , x− = −

3. 2cm81
5. 2m1250
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Exercise 2.4
1. (a) –2, –3  (b) –3, –4  (c) –5, –4  (d)  2, 5  (e)  1, 5  (f) –2, 1  (g) –7, 2

(h) –7, 3    (i)  5, –2     (j)  2, –1
3. (a)  0, 9  (b) 2

5±   (c) –1, –2  (d) –1, –3  (e) 2
1,1   (f) 55 ±

(g) ( )21110
1 ±   (h) ( )1734

1 ±   (i) 113 ±−   (j) 2
3,6−

4. (a)  4, 9     (b) 1
4

5. (a) 3
21,± ±   (b) 2

32,± ±   (c) 1
21,−   (d)  16    (e)  8, –27  (f) 52

3 31, 2, ,− −

Exercise 2.5
1. (a) Δ = 29; ( )2932

1 ±−     (b) Δ = 33; ( )3314
1 ±     (c) Δ = –20; no solution

(d) Δ = 28; ( )713
1 ±−     (e) Δ = 0; 2

3     (f) Δ = 196; 3,5
1 −−

(g) Δ = 12; ( )333
1 ±−     (h) Δ = 1; 3

2,1 −−     (i) Δ = 0; 2
5

(j) Δ = –23;  no solution
5. P, Q, R are midpoints of AB, AC, BC;  maximum area = 27 cm
7. 18 ha
9. 0, 16
11. 212cm

Exercise 2.6
1. (a) 1  or  2x x> < −    (b) 2  or  3x x> − < −    (c) 1 5x− < <    (d) 3 4x< <

(e) 1
2   or  3x x> < −    (f) 2

32 x− < <    (g) 3
42 x− < < −    (h) 1

2 1x< <
2. (a) 2  or  1x x> <    (b) 4 3x− < < −    (c) 2 4x< <    (d) 3  or  4x x> < −

(e) 3 1x− < <    (f) 1
2   or  3x x> < −

3. (a) 1
3k ≤    (b) 4  or  4k k≥ ≤ −    (c)  all k    (d) 25

8k ≤    (e) 2k ≥ −    (f)  all k

Exercise 2.7
1. (a) 2  or  1x x> < −    (b) 3 1x− < < −    (c) 1

2   or  1x x< − >    (d) 1 1
2 2x− < <

(e) 3
2 1x− ≤ < −    (f) 3 3

4 4  orx x> < −

2. (a) 5 1x− < < −    (b) 1
25 or  3x x> <    (c) 2  or  1x x> <    (d) 5

6 2x< <

(e) 2x <    (f) 1
20 1x≤ <

Exercise 2.8
1. (a) 1

3   or  0x x> <    (b) 5  or  2x x> < −    (c) 5 1
3 2  orx x> < −    (d) 1x ≠

(e) 2 3x< <    (f) 4  or  0x x≥ <
2. (a) 1 0  or  6x x− < < >    (b) 0  or 1 4x x< < <    (c) 0 3  or  4x x< < >
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(d) 0 2  or  3x x< < >    (e) 1
2x ≤    (f) 7

3   or  1x x< − > −    (g) 0  or  6x x≤ ≥

(h) 5 5
6 2x− < <    (i) 3  or 1 2x x< − < <    (j) 1

22 1 or  5x x− < < >

(k) 2 4  or  5x x− < < >    (l) 1  or 1 2  or  3x x x< − < < >    (m) 3
5x > −

(n)  all x (o) 1 0  or 3 4x x− < < < <    (p) 1  or 2 3  or  6x x x< < < >
(q) 8

38  orx x< − > −    (r) 4 1  or 1 4x x− ≤ ≤ − ≤ ≤

Exercise 2.9
1. (a) ( ) sin( 2) 1f x x= − −      (b) ( ) e xf x −=      (c) 2( ) 2logf x x=

(d) 2( ) 2 3f x x x= + −      (e) ( )1
3( ) cosf x x=      (f) 1( ) 3

6
f x

x
= −

+
4. (a) 2 2 1y x x= − + −      (b) 22 3 5y x x= − − +      (c) 2( ) 3 2 2f x x x= + −

(d) 22 3 4y x x= + −      (e) 3 2 3y x x= − + −      (f) 3 23 2 1y x x x= + + −

5. (a) 2 4 1y x x= − +      (b) 23 2 1y x x= + −      (c) 24 3 2y x x= + −

(d) 25 3y x= −      (e) 3 22 3y x x= − − +      (f) 2 33 2 3y x x x= − + +

6. (a) 2 2y x x= −      (b) 23 5 1y x x= + +      (c) 2y x= −

(d) 22 15 25y x x= − + −      (e) 3 23y x x x= + +      (f) 2 310 11 8 2y x x x= − + −

7. (a) 2( ) 3 ( 2)f x x= − −   (b) 2( ) 2( 3)f x x= +   (c)  A right shift of 1, a stretch 
parallel to the y-axis with stretch constant 2 and an upward shift of 3.
(d)  A left shift of 2, a stretch parallel to the x-axis with stretch constant 2, a 
reflection in the x-axis and an upward shift of 1.

Exercise 3.1
1. (a) a = 34.6, c = 20, C = 30°  (b)  A = 25°, b = 38.8, c = 23.7

(c)  A = 88.7°, B = 31.3°, a = 23.1 (d)  B = 130.5°, C = 19.5°, b = 22.8
(e)  B = 101.4°, C = 48.6°, b = 19.6  or  B = 18.6°, C = 131.4°, b = 6.38

3. 1.52 km
5. 343 m
7. 44.0 m
9. 9.78 cm
11. 48.6°

A = 49.9°, C = 95.1°, c = 52.1cm  or  A = 130.1°, C = 14.9°, c = 13.4cm
13. a = b sin A   or a = b tan A
15. 1190 m

Exercise 3.2
1. (a) b = 13.7cm, A = 49.1°, C = 70.9°

(b) b = 5.21 m, A = 35.5°, C = 27.5°
(c)  A = 23.7°, B = 29.7°, C = 126.6°
(d)  A = 38.1°, B = 81.1°, C = 60.8°
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3. (a)  86.4°  (b)  95.5°
5. 2.87 km
7. (a)  21.8°, 38.2°, 120°  (b)  41.4°, 55.8°, 82.8°

9. (b)  28.5°, 65.6°, 85.9°  (c)  7  (d)
)12)(1(2

762

++
−−
xx

xx
 , 2  (e)  6

11. 237 m

Exercise 4.1
1.

θ sin θ cos θ tan θ
(a)    0°   0   1   0
(b)  90°   1   0 –
(c)  45° 1

2 2 1
2 2   1

(d) 120° 1
2 3 2

1− 3−
(e) –210°

2
1 – 1

2 3 1
3 3−

3. (a) cos 0.6, tan 4 3θ = ± θ = ±     (b) 1
2sin 3, tan 3θ = ± θ = ±

(c) sin 2 5 , cos 1 5θ = ± θ = m
5. (a)  sin θ    (b)  cos θ    (c)  2cos θ    (d)  2sin θ    (e)  2cos θ
7. (a)  Any 4 multiples of 180°.    (b)  Any 4 multiples of 90°.

(c)  Any 4 odd multiples of 90°.

Exercise 4.2
1. 23.6°, 156.4°
3. –116.6°,  63.4°,  243.4°

Exercise 4.3
1. (a) 180°  (b)  90°  (c)  120°  (d)  108°  (e)  220°  (f)  75°  (g)  45.8°  (h)  70.5°
3.

θ°  0°   30°   45°  60°  90°  120°   135°   150° 180°
cx c0 c1

6 π c1
4 π c1

3 π c1
2 π c2

3 π c3
4 π c5

6 π cπ
sin x  0

2
1 1

2 2 1
2 3   1 1

2 3 1
2 2 2

1   0

cos x  1 1
2 3 1

2 2 2
1   0 – 2

1 – 1
2 2 – 1

2 3 –1

tan x  0 1
3 3    1 3 –– – 3 –1 – 1

3 3   0

7. (a) sin(2 40 )x + °      (b) cos4x−      (c)  1     (d) ( )1
2cos 2x + π      (e) 2 1

2cos x
(f) 1 sin2x−

9. –1, 7
9
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11. (a) 2cos x      (b) tan x−      (c) cos2x

Exercise 4.5
7. (a) π    (b) π    (c) π    (d)  2π    (e) π    (f)  2π

Exercise 4.8
1. (a) 5

3 cmπ     (b) 10
3 cmπ     (c)  2.58 m    (d)  41.4cm

3. (a) 8.21 cm    (b) 8
3 cmπ

5. (a) 120 cm    (b) 125
9 cm , 25

9 56cm

7. 10.8 2m
9. (a)  12.9cm    (b)  14.0 cm    (c) 220.6cm
13. 11.4 2cm

Exercise 4.9
1. (a) 2 4

3 3,π π     (b) 1 2
3 3,π π     (c)  2.68, 5.82    (d)  2.21, 5.36    (e)  no x

(f) 1.82, 4.46    (g)  0.841, 2.30, 3.98, 5.44    (h) 3 5 71
4 4 4 4, , ,π π π π

(i) 7 11
6 60, , ,π π π    (j)  0.464, 1.11, 3.61, 4.25    (k)  1.23, π, 5.05

(l) 1
4 π , 2.90, 5

4 π ,  6.04 
3. (a) 10°, 50°, 130°, 170°, 250°, 290°    (b)  90°, 270°

(c) 54.2°, 144.2°, 234.2°, 324.2°  (d)  21.1°, 81.1°, 141.1°, 201.1°, 261.1°, 321.1°
(e) 47.5°, 107.5°, 227.5°, 287.5°    (f)  43.4°, 91.6°, 223.4°, 271.6°
(g) 21.1°, 81.1°, 141.1°, 201.1°, 261.1°, 321.1°
(h)  26.2°, 93.8°, 146.2°, 213.8°, 266.2°, 333.8°   (i)  45°, 135°, 225°, 315°
(j)  90°, 270°

Exercise 4.10
1. (a) 1    (b) 2 1

4sec A     (c)  1    (d) 2csc θ     (e)  1    (f)  1    (g)  1    (h)  2

(i) 2cos A     (j) 2sin 2B     (k) 2tan θ     (l) 2cot A−

Exercise 4.11
3. (a) yxyx sin2coscos2sin + (b) °+° 40sin3cos40cos3sin BB

(c) BABA 2sin2cos2cos2sin + (d) yxyx 2sincos2cossin −

(e) θ−θ cossin3 2
1

2
1 (f) yxyx 2

1
2
1 sinsincoscos −

(g) BABA 3sin3sin3cos3cos − (h) AA sincos3 2
1

2
1 +

(i) AA sin3cos 2
1

2
1 − (j) CBCB sinsincoscos +

(k) Bsin      (l) AA 2sin32cos 2
1

2
1 −      (m) xx sincos3 2

1
2
1 +

(n) xx cossin2      (o) xx 22 sincos −
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5. (a) 25
24−       (b) –1      (c)     0

7. (a) ( )624
1 −      (b) ( )264

1 −      (c) ( )264
1 −      (d) ( )264

1 +

Exercise 4.12
3. (a) 1      (b) )cot( BA −       (c) 33

1       (d) ( )A+π4
1tan

(e) ( )A+π4
1tan       (f) A2tan

Exercise 4.13
3. (a) 2

1       (b) 22
1 (c) 22

1       (d) 4
1       (e) 33

1       (f)     2

(g) 1       (h) 4
1       (i) 8

1       (j) 32
1

5. (a) 3,6 3
1

3
1 ±±       (b) 7,,7 3

1
4
3

4
1 ±±±       (e) –1,  0.98

Exercise 4.14
1. (a) 13,)983.0sin(13 ±+x       (b) 10,)322.0sin(10 ±+x

(c) 29,)19.1sin(29 ±+x
3. (a) 0,  4.07      (b)     1.79,  3.42      (c)     0.432,  2.32    (d)     1.08
5. (a) 0,  0.464, π,  3.61      (b)     1.25,  3.00,  4.39,  6.14

(c) 0.519,  2.03,  3.66,  5.18      (d)     0.561,  1.99,  3.70,  5.13

Exercise 5.1
1. (a)  function    (b)  function    (c)  function    (d)  not a function
3. (a) �     (b) [0, [∞     (c) ]1, [∞     (d) �     (e)  [–1,5]    (f)  [0,1]    (g)  [0,3]

(h) +�     (i) ] ,0]− ∞     (j)  ]0,1]    (k)  ]0,1]    (l)  [0,2[
5. (a) { , 1 or 1}x x x x∈ ≥ ≤ −� , { , 0}y y y∈ ≥�

(b) { , 0}x x x∈ ≠� , { , 0}y y y∈ >�
(c) { , 2}x x x∈ ≠� , { , 0}y y y∈ ≠�
(d) { , 1}x x x∈ ≠� , { , 1}y y y∈ ≠�
(e) { , 1, 2}x x x x∈ ≠ ≠� , { , 4, 0}y y y y∈ ≤ − >�
(f) � , { , 0 4}y y y∈ < ≤�
(g) 3

2{ , },x x x∈ >� �
(h) { , 1}, { , 0}x x x y y y∈ ≥ − ∈ ≥� �

(i) ,+� �
(j) 1 1

2 2{ , }, { , 1}x x x y y y∈ − π < < π ∈ ≥� �

Exercise 5.2
1. (a)  364     (b)  4     (c)  76     (d)  31     (e) –5     (f) 1

46
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3. (a)  2  (b)  2  (c)  3  (d)  1  (e)  2  (f)  3
5. : 2 1f g x x −o a  ; Domain = 1

2[ , [∞  ; Range = [0, ∞ [

: 2 1g f x x −o a  ; Domain = [0, ∞ [ ; Range = [–1, ∞ [
7. (a) 1

3 ( 2)x −      (b)  7 – x     (c) 3 1x −      (d) 2e x      (e) 1
3 (5 2)x −

(f) 2 1x −      (g) 1
3 ln x      (h) 1 1

x
−

8. (a) 1
2: ( 1)h x x +a   (b) : 5 2h x x−a   (c) : 3 4h x x +a

(d) 2
3: (1 6 )h x x−a

9. (a)  1   (b) –3
10. 2 :f x xa

11. ( )1 1
3 3( ( , )) [2 2 9], [ ]f g x y x y x y= + + +  , ( ( )) 1g f x x= +

12. { , }x x x d c∈ ≠ −�

Exercise 5.3
1. (a)  1–1    (b)  Not 1–1    (c)  1–1    (d)  1–1    (e)  Not 1–1    (f)  Not 1–1

(g)  1–1    (h)  Not 1–1    (i)  Not 1–1    (j)  1–1    (k)  1–1    (l)  1–1
3. 1( ) 1 1f x x− = − − +

5. 1 1
2( ) ( 3)f x x− = −

7. 1 2 3( )
2

xf x
x

− −=
−

9. 1 1( ) 1
2

xf x− −= +

11. ( ) 1 3: 4f g x x− −o a  , ( ) 1 3: 1 3g f x x− − −o a

Exercise 6.1
1. (a) {3, 6, 9, … , 30, … } (b) {–3, –1, 1, … , 15, … }

(c) {1, 2, 4, … , 512, .. } (d) }...,,...,,,{ 11
21

4
7

3
5

2
3

(e) {0.1, 0.02, 0.003, … , 910 − , … } (f) {3, 1, 3, … , 1, … }
3. (a) {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … } (b)   {1, 1, 2, 3, 5, … }

Exercise 6.2
1. (a) arithmetic, d = 4 (b) arithmetic, d = 3a (c) not arithmetic

(d) arithmetic, d = –6 (e) not arithmetic (f) arithmetic, d = b – a
3. (a) 41,14 10 =+= unun (b) 21,1299 10 −=−= unun

(c) 7.7,7.16.0 10 =+= unun (d) xuxnxun 152,252 10 −=−+=

5. (a) 1u = 5, d = 7   (b) 1u = 17, d = –6   (c) 1u = 24, d = 4   (d) 1u = 29
2 , d = 1

2−
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7. (a) 11, 17, 23    (b)  5, 8, 11, 14    (c) –4, –1, 2, 5, 8

Exercise 6.3
1. (a) 3775 (b) 1800 (c) 420 (d) 243 (e) 34a (f) )913(2

2
3 aa −

3. (a) {–8, –5, –2, … , 25, … } (b) {27, 22, 17, … , –28, … }
(c) }...,2,...,2,3,3{ 2

1
2
1 − (d) {3, 9, 15, … , 69, … }

(e) {11, 5, –1, … , –55, … } (f) {–38, –35, –32, … , –5, … }
7. 765
9. 36 hours,  16.65 kilolitres
11. 37 years
13. {11, 15, 19, 23, … }
15. (a) [ ]2

2
1 )1( +nn (b) )1( 22 nn +

Exercise 6.4
1. (a) geometric, r = 4 (b) geometric, 2

1−=r (c) not geometric

(d) geometric, 1r a= − (e) geometric, 8 9r = (f) geometric, 2 2r =

3. (a) ( )4
5 35=u , ( )11

12 35=u , ( )135 −= n
nu

(b) ( )4
5 32 −=u , ( )11

12 32 −=u , ( ) 132 −−= n
nu

(c) ( )4
3
2

5 27=u , ( )11
3
2

12 27=u , ( ) 1
3
227 −= n

nu

(d) 454
5 )( yxxyxu =−= , 111211

12 )( yxxyxu −=−= ,
nnn

n xyxyxu 11 )()( −− −=−=
5. (a) 119028 ≈u (b) 138012 ≈u

Exercise 6.5
1. (a) 1410 − (b) ( )12.110 12 − (c) ( )20211.0 − (d) ( )154.013 +−

3. ( )15.16 −= n
nS , 18≥n

5. 113
7. $79 600 ;  $49 600
9. (b) 5.1−=r

Exercise 6.6
1. (a) $8954.24 (b) $964.65
3. (a) $1279.32 (b) 8.23 years
5. (a) (i)   $6513.53 (ii)   $6888.06 (b) $2582.48
7. $502.02
9. (a) $263.80 (b) $4096.64

Exercise 6.7
1. (a) 2 (b) 40.5 (c) 51.2 (d) 3

18 (e) 526 (f) 2.89
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3. (a) 11
5 (b) 990

2081 (c) 6660
1577

5. 7.5 ;    10
7. 693
9. (a)  0.998     (b)  1900
11. 1

2k >
15. (a) 0x <      (b)  149,  67

Exercise 7.1
1. Total = 5 + 40 + 30 + 40 = 115
3.

Heights (cm) Frequency
120 125h≤ <        3
125 130h≤ <        4
130 135h≤ <        8
135 140h≤ <        7
140 145h≤ <        9
145 150h≤ <        9

5.
Time (min) Frequency Density
     0–9 1.6  (15/9.5)
   10–14 4.8
   15–19 4.4
   20–24 2.4
   25–29 1.4
   30–39 0.6

7.
    Mass (kg) Frequency Density
39.5 49.5m≤ < 1.6
49.5 54.5m≤ < 3.4
54.5 59.5m≤ < 5.2
59.5 64.5m≤ < 4.6
64.5 75.5m≤ < 1.6   (18/11)

Exercise 7.2
1. (a)  8, 9, 6     (b)  194, 194, 195     (c)  0.725, 0.73, 0.73
2. (a)  3.5,  4   (b)  12,  16   (c)  4.48,  4   (d)  4.54,  4.8
3. (a)  3.925, 4     (b)  19.8, 18.4     (c)  31.0, 30.0
4. 44.8 years,  43.5 years

Exercise 7.3
1. (a)  53     (b)  21     (c)  58     (d)  78
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2. (a)  34 years   (b)  18   (c)  128 000   (d)  46 years
3. (a)  46     (b)  26     (c)  135
4. (a)  1045 hours   (b)  34%   (c)  980 hours   (d)  0.015   (e)  2550
5. (a)  163cm   (b) 1

2
6.

7. (b)  median = 4.7 minutes ;  Q1 = 3.2 minutes ;   Q3 = 6.2 minutes
(c)

8. (a) (i) B  (ii) B     (b) A     (c) B     (d) B

Exercise 7.4
1. 24, 1.19
2. x  = 6.4, s = 2.42

(a) x  = 6.4 + 3 = 9.4, s = 2.42      (b) x  = 3 × 6.4 = 19.2 s = 3 × 2.42 = 7.25
(c) x  = 0.9 × 6.4 = 5.76, s = 0.9× 2.42 = 2.17
x  = 1.05 × 6.4 = 6.72, s = 1.05 × 2.42 = 2.54

3. (a)  775, 120 250    (b)  157 cm,  5.89 cm
5. 2 3x− , 29s
6. 14.4,  1.68
7. 22.9°,  3.27°
8. 25.9,  1.28
9. 11,  14

Exercise 7.5
1. (a)  27.1,  10.9     (b)  54.4,  18.0
2. 36.9,  20.9
3. 170,  10.0
4. 1027,  89.1

Exercise 8.1
1. (a)  144     (b)  72
3. (a)  216     (b)  72     (c)  108

life-time (hrs)
800 900 1000 1100 1200

0 2 4 6 8 10
call length (mins)
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5. (a)  300     (b)  156     (c)  108
7. (a)  9000     (b)  3168
9. (a)  24     (b)  8     (c)  0
11. (a)  81     (b)  54

Exercise 8.2

1. (a)  210     (b) 1
110

     (c)  600     (d) 81

3. (a) n – 1     (b)  (n + 2)(n + 1)     (c) 2( 3 1)n n n+ +

Exercise 8.3
1. 120
3. 5040
5. 168
7. (a)  240     (b)  600
9. (a)  1000     (b)  720     (c)  990
11. (a)  103 680     (b)  34 560

Exercise 8.4
1. (a)  6    (b)  84     (c)  1820
3. 1140
5. 525
7. (a)  462     (b)  56     (c)  20
9. 1260
11. (a)  924     (b)  34 650
15. (a)  729    (b)  28
17. 10
19. 61  (including the given straight line)
21. 56
23. (a)  286    (b)  84

Exercise 8.5
1. (a) 4 3 2 2 3 44 6 4x x y x y xy y+ + + +

(b) 7 6 5 2 4 3 3 4 2 5 6 77 21 35 35 21 7a a b a b a b a b a b ab b− + − + − + −
(c) 2 4 6 8 10 1264 192 240 160 60 12p p p p p p+ + + + + +

(d) 5 4 3 2 2 3 4 532 80 80 40 10h h k h k h k hk k− + − + −
(e) 3 1 33 3x x x x− −+ + +
(f) 8 6 4 2 2 4 6 835 7 7 1 1

8 4 16 16 2564 7 7z z z z z z z z− − − −− + − + − + − +

3. 5 1 764 160 20x x x− −+ +
5. 0, 1 (trivial) and 6
7. 2
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9. 30.43168
11. (a)  560    (b) –590 625    (c) –720   (d) –448    (e)  1 966 080    (f) 7

144−

13. 2
3±

15. (a)  112    (b)  196    (c) –2214    (d)  140
19. (a) –14    (b)  26    (c)  352    (d)  10

Exercise 9.1

1. (a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 55
05

    (b) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 14
31

    (c) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 50
55

    (d) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 50
55

5. (a) CBX 3
7

3
2 +−=     (b) CBAX 7

3
7
2

7
6 −+−=

Exercise 9.2
1. AB is 4 × 4 ; BA is 5 × 5

3. (a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
95
66

    (b) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
01

    (c)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−−
−−−

321
18138
14118

    (d) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
1216
54

(e) ( )0     (f)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−
−−

213
639
426

    (g) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−− 5025

141642
    (h) ( )413−

(i)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−− 1612
123
162

    (j)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−

542334
242516
573222

    (k)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
010
001

    (l) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
30

5. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

105
2010

7. a = 2, b = –2
9. (a) a = 5, b = 1    (b) a = –1, b = 5    (c) a = –1, b = 4    (d) a = –2, b = 0

11.
0.3
2.6
1.2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

– percentages of silver, lead and zinc in the combined samples

15. (a)
1 0
0 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

    (b)
1 0
0 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

17.
3 4

4 5
−⎛ ⎞

⎜ ⎟−⎝ ⎠

19. (a) 1, 1a b= ± = m     (b) 2 , 2a b= ± = m     (c) 1 5 1 5,
2 2

a b±
= =

m
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Exercise 9.3
1. (a)  9    (b)  1    (c)  1    (d) –1    (e) –2    (f) –2    (g)  6    (h)  0
3. –2, –1, 3
5. 3 2 1−λ + λ + λ −
7. 1
9. (a) 2x     (b) mx

Exercise 9.4

1. (a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
57
23

    (b) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
411

38
    (c) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

53
32

    (d) ⎟⎟⎠

⎞
⎜⎜⎝

⎛

−
−

11
22 2

1

(e) ⎟⎟⎠

⎞
⎜⎜⎝

⎛

− 12
03

1

    (f) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
αα−
αα

cossin
sincos

    (g) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α−α

αα
cossin

sincos

(h)
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−−

+

++
−

2

2

2

22

2

1
1

1
2

1
2

1
1

m
m

m
m

m
m

m
m

3.
128

1

5. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
01

, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−
−

13
31

2
1

7. (a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
43
117

    (b) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
1

    (c) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−− 31
42

    (d) ( )13     (e) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−− 12894

3425

9. (a) ( )1 21
7 4− = −A I A     (b) 

5
1

1

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎝ ⎠

11. 2 =A I  , 1− =A A
13. AB = I , BA =−1

15. IA =2  , AA =−1

17.
3
2

4

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

x

Exercise 9.5
1. (a) x = 3, y = 5    (b) x = 2, y = 1    (c) x = 3, y = –2    (d) x = 3, y = 1
3. k ≠ 4  ; 7 3x =  , 2 3y = −  , z = 0

If k  = 4, the solution is x = 3 – 2t, y = –2t, z = 3t – 1  for all real t.
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5. (a) x = 3, y = 0, z = 1    (b) x = 13, y = –12, z = 16
7. x = 1 – 2k , y = 4k – 8, z = –k – 2
9. (a) x = –a – b + c ; y = 10a – b – 2c ; z = –6a + b + c

(b)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−−

116
2110

111

Exercise 9.6
1. (a) x = 3, y = 1 :  The lines meet at (3, 1).

(b) x = 2
11 , y = 2

1  :  The lines meet at ),1( 2
1

2
1 .

(c) No solution exists :  The lines are parallel and distinct.
(d) x = 2

1 (1 + 3t), y = t for all real t :  The lines are coincident.
(e) x = 4 – 5t, y = t – 1, z = t for all real t :  The planes meet in a line.
(f) No solution exists :  The planes are parallel and distinct.
(g) x = 3, y = 1, z = 1 :  The planes meet at (3, 1, 1).
(h) No solution exists :  Two planes are parallel and distinct.
(i) x = t + 6, y = 1 – t, z = t  for all real t :  The planes meet in a line.
(j) No solution exists :  The line of intersection of any two of the planes is 

parallel to and distinct from the third plane.
(k) x = 4 – 3t, y = 1 – 3t, z = t for all real t :  The planes meet in a line – two of 

the planes coincide.
(l) No solution exists :  The line of intersection of any two of the planes is 

parallel to and distinct from the third plane.
(m) x = 1, y = 1

3 , z = 4
3−  :  The planes meet at (1, 1

3 , 4
3− ).

(n) No solution exists :  The line of intersection of any two of the planes is 
parallel to and distinct from the third plane.

3. The line of intersection of any two planes is parallel to and distinct from the third 
plane.

5. k = 3  or k  = –1 :
k

y
k

x
+

=
+

=
1

2,
1

2  , k ≠ 3, k ≠ –1

If k  = 3, an infinite number of solutions exist.  The lines coincide.
If k  = –1, no solution exists. The lines are parallel and distinct.

Exercise 10.1
1. (a) → 0    (b) → 0    (c) → 1

2     (d)  no limit    (e) → –2    (f) → 0
(g)  no limit    (h) → 1    (i)  no limit    (j) → 0    (k) → –6    (l) → 1

3. (a)  8    (b) 35
4−     (c) 3

4     (d)  4    (e) 1
8 2     (f) 1

6

5. (a) 11
5     (b) 2

3     (c) 2
11     (d) 1

2
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Exercise 10.2
1. –4 – 2h ; –4 ;  the gradient of the curve at P is –4
3. (a)  2    (b) –3    (c)  12    (d) –1    (e) –5    (f)  3
4. (a)  6x – y = 3    (b)  4x – y = –5    (c)  2x – y = –2    (d) y = 0    (e) x + y = 3

(f) x + 2y = 5    (g)  3x – 4y = 1    (h) x – 4y = –4

Exercise 10.3
1. –6

3. (a)  4x + 3    (b) 26x     (c) 2
1

( 1)x +
    (d) 3

4
x

−     (e)
2

2
2 2 2

(2 1)
x x

x
− −

−
    (f) 1

2 x
5. (a)  3x – y = 1    (b)  6x + y = 4    (c)  4x + y = 8    (d)  2x – 9y = –1

(e) x + 4y = 11    (f)  7x – 16y = 3

Exercise 10.4
1. (a) 34x     (b) 212x     (c)  16x    (d)  2x – 4    (e) 23 6x− −   (f) 3 212 12 5x x− +

(g) 26 6x x−     (h) 4 210 9x x−     (i) 24 4 15x x− − −
3. (a)  2x + y = –6    (b) y = 4

3−

5. (a) 2 3 4
3 8 15
t t t

− + −     (b) 4
184
5t

− +     (c) 3 4
3 4

2 9t t
− +     (d)  11 – 20t

(e) 26 4 10t tπ − π + π     (f) 3 2
4 25
t t

− +
π

7. (a) ±8    (b) 16
3−

Exercise 10.5

1. (a)  5, 0    (b)  6x – 6, 6    (c) 26 10 4x x− + , 12x – 10    (d) 2
2 3

2 43 , 6x x
x x

+ −

(e) 1 2 3 2 3 2 5 2
3 1 3 3,

2 4 2x x x x
− − +     (f) 2 3 4 3 4 5

6 6 12 12 18 48,
x x x x x x

− + − − +

3. (a)  Body changes direction at t = 2.
(b)  Body does not change direction in the first 3 seconds.

5. 28 m
7. (a) 1(19.6 9.8 ) m st −− , 29.8ms−−     (b)  2s    (c)  19.6 m    (d)  0.586 s,  3.41 s

Exercise 10.6
1. (a) (0, 3) – local maximum (b)  (–3, –27) – local minimum

(2, –1) – local minimum (0, 0) – inflexion
(c) (2, 0) – inflexion (d) (–1, 1) – local maximum

(0, 0) – local minimum
(1, 1) – local maximum
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(e) (0, 0) – inflexion (f) (0, 0) – inflexion
( )9 2187

4 256, − – local minimum (3, 108) – local maximum
(5, 0) – local minimum

3. a = –3, b = –12
5. (a) a = –6, b = 9 ;  (3, 0)    (b) a = –3, b = 0, c = 5 ; y = 9x + 10

(c) a = 2, b = –3, c = –12, d = –20 ; ( )1
2 , 5−

Exercise 10.7
1. (a)  3, –9    (b) 32

27 , 0    (c) 32 49
27 27, −

3. (a)  (i)  0, –3    (ii)  (0, 0), (–2, 4)  (iii)  (–1, 2)
(b)  (i)  2, 1

2 (5 21)− ±   (ii)  (–3, 25), (1, –7)  (iii)  (–1, 9)
(c)  (i)  0, 8

3−   (ii)  (–2, –16)  (iii)  (0, 0), 2564
3 27( , )− −

(d)  (i)  0, 2  (ii)  (0, 0), (1, 1), (2, 0)  (iii) ( )1 4
3 91 3,±

(e)  (i)  0, ±4  (ii) 3( 2, 36 4 )± − , (0, 0)  (iii)  There are no points of inflexion.
(f)  (i)  0, –3  (ii) 3

4( , 2.04)− −   (iii)  (0, 0), 3
2( ,5.15)

Exercise 10.8
1. 2 : 1
3. 38

27 m

5. 20 6.51 cm
3

≈
π

9. 320 m

11. (a) 10
4

π
+ π

    (b)  10

Exercise 11.1
1. (a + b) + c = AC CD AD+ =

uuur uuur uuur

a + (b + c) = AB BD AD+ =
uuur uuur uuur

AC AB BC AD DC= + = +
uuur uuur uuur uuur uuur

a + b = b + a

A

B C

D

a

b

c

a a

b

b
A

B C

D
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3. (a) a + b    (b) a + b + c    (c) a + d    (d) d – b – c
9. (a) 10 5  ,  206.6°   (b) 10 5  , 333.4°   (c)  10 ,  330°   (d)  29.1 ,  189.9°
11. a and b have the same direction

Exercise 11.2
4. b – a , b – 2a ,  2(b – a) ,  2b – 3a , b – 2a
5. (a) 1 2

3 3A B+
ur ur

     (b) 3 4
7 7A B+
ur ur

     (c) 3 2
5 5A B+
ur ur

     (d) 3 1
2 2A B−
ur ur

(e) 52
3 3A B− +
ur ur

     (f) 4A 3B−
ur ur

9. 1
2OM ( )= +b c

uuuur
1
3ON ( )= + +a b c

uuur

Exercise 11.3

1. (a)
2 2 5

, 5 ,
1 1 5

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

     (b)
5 2 513

,6.5,
6 1213

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(c)
5 5 29

, 2 9 ,
2 2 29

⎛ ⎞− −⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

3. (a)
0.6
0.8

⎛ ⎞
⎜ ⎟−⎝ ⎠

    (b)
513

12 13
−⎛ ⎞

⎜ ⎟
⎝ ⎠

    (c)
1 2

1 2

⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠

    (d)
3 13

2 13

⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠

7. (a)  right-angled isosceles     (b)  isosceles     (c)  equilateral
9. (a)  (2, 3)     (b)  (1, 0)     (c)  (3, 7)     (d)  (5, 1

2 )
13. 2

3

Exercise 11.4
1. (a)  1    (b)  2    (c)  31    (d)  10    (e) –16    (f)  0    (g)  5    (h)  24    (i)  47
5. (a) 8

5     (b) 9
13     (c) 1

2 2     (d) 6
25−     (e) 6

82
    (f) 17

10
−

7. (a)  60     (b)  50     (c)  1     (d)  42
9. (–1, –6)
11. (a)  90°, 45°, 45°    (b)  63.4°, 90°, 26.6° (c)  45°, 108.4°, 26.6°

(d)  87.7°, 37.9°, 54.5°
19. 101

77  ort t= − =

Exercise 11.5
1. (a) r = 3i + 2j + t(3i + j)     (b) r = 2i – j + t(i + j)     (c) r = (t – 4)i

(d) r = 2i – 5j + t(–7i + 3j)
3. (a) x – 3y = –3     (b) x – y = 3  (c) y = 0     (d)  3x + 7y = –29
5. (a) i + 2j     (b)  3i – 2j     (c)  2i – j     (d)  4i + 3j     (e) j     (f) i
7. (a)  3x – 2y = –7     (b)  4x + 5y = –23     (c)  2x + y = 3     (d)  3x – y = 12

(e) y = –4     (f) x = 3
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9. (a)  3i – j    (b)  13 m s–1     (c)  10.5 s

Exercise 11.6
1. (a)  2i + 7j – 3k    (b)  2i – j – 9k    (c)  4i – 6j – 21k    (d)  7    (e)  5    (f) 62
3. (a)  (5, –2, 5)    (b) 15 51

4 2 4( , , )     (c) 13 2
3 3( , ,3)−     (d) 36 16 38

7 7 7( , , )−
5. (a)  parallelogram    (b)  rhombus    (c)  rectangle    (d)  rhombus    (e)  rectangle
9. (1, 0, 0)
13. 2

Exercise 11.7
1. 0, k, –j, i,  0,  0
5. (a)  7    (b)  30    (c)  15    (d) 7 3
9. (a)  0    (b) –abc

Exercise 11.8
1. (a)  17     (b)  14     (c)  7     (d) 1

23
3. (b)  (i)  coplanar     (ii)  not coplanar     (iii)  coplanar

Exercise 11.9
1. (a) r = 2i – 3j + k + λ(i + 2j – 3k)    (b) r = i – j + λ(i + j + k)
3. (a) r  = i + k + λ(i – j + 2k)    (b) r = 7j – 7k + μ(i + 2j – k)    (c) –2i + 3j – 5k
5. (AM) : r = a + λ(2a – b – c) ;    (BD) : r = b + μ(– a + 2b – c)

Exercise 11.10
1. (a) r = 2i + 3j + 4k + λ(2i – 3j + 2k) + μ(j + 2k)

(b) r = –2k + λ(3i + 3j – k) + μ(i – j + k)
(c) r = –2i – j – 3k + λ(i + k) + μ(2i + j + k)
(d) r = 5i + j – 4k + λ(i – j + k) + μ(3i – j – k)

3. (a) r = (1 – λ – μ)(i + j) + λ(j + 4k) + μ(i + 5k)    (b) (4 5 ) 9+ + =r i j k�
(c)  4x + 5y + z = 9

5. (a) (3 2 ) 7− − =r i j k�     (b) (2 3 4 ) 9+ − =r i j k�
7. (3 4 ) 7+ − =r i j k�
9. i – j + k ,  5i + k , x – 4y – 5z + 27 = 0
11. (a)  2x + 3y – 4z = 29

(b) r = (1 – λ – μ)(6i) – 3λk + 3μ(i + 2j)  or  2x + y – 4z = 12
(c) r = λ(5i + 2j – 7k) + μ(–2i + 4j – 2k)  or x + y + z = 0
(d) r = i + j – k + λ(2i + j + 2k) + μ(5j + 4k)  or  3x + 4y – 5z = 12
(e)  2x – y = 4    (f)  5y + 2z = –11    (g) x = 3

13. x – 2y – z = 0

Exercise 11.11
1. (a)  80.4°    (b)  72.5°    (c)  38.9°
3. (a)  26.4° (b)  58.9°    (c)  11.1°    (d)  40.2°
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Exercise 11.12
1. (a)  skew    (b)  intersect at (5, 3, –1)    (c)  coincident    (d)  intersect at (–5, 6, 4)

(e)  parallel and distinct
3. x – 5y + 3z = 0
5. 4i – j – 2k
7. (a)  3j    (b) –i + 2j + 3k    (c)  line is parallel to the plane    (d)  5i + 4j – k

(e)  line is in the plane    (f) 5 1
2 2+ +i j k

9. (a) x = t + 1, y = –t, z = t    (b) x = 5 – 9t, y = 1 – 4t, z = t
(c) x = 3 – 7t, y = 3 – t, z = 3t    (d) x = 2 – t, y = t – 1, z = t

11. x = 5t + 8, y = –7t – 7, z = t,  (18, –21, 2)

Exercise 11.13
1. (a) 2     (b)  3    (c) 10     (d) 1

2 138

3. (a)  7,  (1, 2, 3)    (b) 2 6 ,  (2, –1, –1)    (c)  6,  (4, 0, 0)  (d) 1
3 42 , 5 4 11

3 3 3( , , )

5. (a) 14     (b)  4    (c) 2     (d) 10
6

    (e) 18
35

    (f) 15
17

7. (a) 3
2 11     (b)  4

9. (a)  48    (b)  11
11. (a)  skew,  3    (b)  intersect at (2, 1, –7)    (c)  skew, 3 3     (d)  skew, 4

25 5

13. 2x + y – z = 10, 6

Exercise 12.1
1. (a) 29(3 1)x +      (b) 320(5 2)x −      (c) 415(1 3 )x− −      (d) 2 26 ( 2)x x +

(e) 2 45(1 2 )(1 )x x x− + −      (f) 2
2

(2 5)x
−
+

     (g) 2 2
8

(3 )
x
x−

     (h)
2

3 3
12

( 1)
x

x
−

+

(i) 2 4
90

(1 3 )
x
x−

     (j) 5
2 5 4x −

     (k) 2 2 3
4

3(2 5)
x

x +
     (l) 2 3 2

15
(12 5 )

x
x−

3. (a) 20( 2 1)cm+      (b)  5
5. (a)  (–1, 2) – min ;  (–3, –2) – max     (b)  (1, 2) – min

(c)  (0, –2) – max ;  ( 4
3 , 6) – min     (d)  (–1, 128) – max ;  (1, 32) – min

7. (a) 3 1
36 ( 1) 9 3,ax a y a a+ − = − =      (b) a = 8, b = –6

(c) 3 3 512
278(2 1) (2 1) (6 1); 0 and a x y a a y y x+ − = + − = =

Exercise 12.2
1. (a)  3(2x + 3) + 2(3x + 2)     (b) 22 (2 1) 2( 1)x x x− + +

(c) 24 (1 3 ) 3(2 1)x x x− − −      (d) 3 2 26 (2 5) 6 (3 2)x x x x+ + −
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(e)
2

2

2

42 2 3
2 3

xx
x

+ +
+

     (f)
2

2

2

3 (3 1)6 3 1
3 1

x xx x
x

−+ +
+

(g) 3 23(2 1) 6(2 1) (3 1)x x x− + − +

(h) 2 2 3 2 2 2 24 (1 )(1 ) 6 (1 ) (1 )x x x x x x− − + + − +

(i) 3 2 1 23(2 1) 9 (2 1)x x x+ + +      (j) 2 2 36(3 2) (2 3) 6(2 3) (3 2)x x x x− − + − −

(k)
3 2

1 2 1 29
21 2

(3 1)
(2 1) (3 1)

(2 1)
x

x x
x

+
+ − +

−
     (l) 2

2

3 (1 )2 3
2 3
x xx

x
−

− − −
−

3. (a)  (–1, –1) – min     (b)  (–3, –3) – min     (c)  (8.4, 26.5) – max 
5. (a) t = 2, x = 4 ; t = 4, x = 0     (b)  2 < t < 4, 13 m s−

(c)

(d)  (i)  44 m   (ii) 122
3  m s−   (iii) 16 m s−

7. 12 cm  12 3 cm×

Exercise 12.3

1. (a) 2
2

( 2)x +
     (b) 2

9
( 5)x +

     (c) 2
6 ( 5)
(2 5)

x x
x

+
+

     (d) 3
6 7

(2 1)
x

x
− −

−

(e)
2

2 2
3 8 3

( 1)
x x

x
− −

+
     (f) 2 3 2

2
( 2)x +

     (g) 2 2
16

( 4)
x

x +
     (h) 4

6 8
(2 3)

x
x
−
+

(i)
2

2
2 8 7

( 2)
x x

x
− −
−

    (j) 3 2
1

(2 1)
x
x

+
+

   (k) 3 2
2

2 1(2 1)x x
−

+ −
   (l)

3
2

2 3 2

21
(2 7)

x
x x

−

− +
3. (a)  (–1, –1) – min     (b)  (–2, –9) – max ;  (2, 1

9− ) – min
(c)  (3, 2) – max ;  (5, 6) – min

5. First month ;  7.5%
7. (a) a = 9, b = –8     (b) a = 2, b = –5     (c) a = 3, b = 4, y = 3x + 28

x(t) v(t)

t

t

O

O

42 6

2 4 6–16

20

4

–3

24
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9. 251
4 16( 1, ) max ; (5, )  min− − −

11. (c) x = 15.75     (d)  27.3cm

Exercise 12.4

1. (a) 2 4
d d 1 d 1 d 6 d5 ; 6 ; ; ;
d d d d d2
y y y y yy
x x x x xy yy

− −

(b)
2

2 2 3 2 2
2

d2d d d dd; 2 ; 3 6 ; ; 12 18
d d d d

yxy xy y y yxy x xy x y xy xy x y
x x x xy

−
+ + + +

(c) 2
2

d2( ) 2 1
d d d2(5 2 ) 5 2 ; 3(2 3 ) 2 3 ; ;
d d ( )

yx y x
y y xx y x y
x x x y

⎛ ⎞+ − +⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠− − + +⎜ ⎟ ⎜ ⎟ +⎝ ⎠ ⎝ ⎠

22 2

d d( 2 ) 1 2 ( 2 ) 1 2
1 d d d;

d ( 2 )

y yx y x y
y x xx y
x x yx y

⎛ ⎞ ⎛ ⎞− + − + −⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠+⎜ ⎟ −⎝ ⎠+
3. (a)  7x – y = 13, x + 7y = 9     (b)  9x – 8y = 6,  8x + 9y + 43 = 0

(c)  9x + 10y + 8 = 0,  10x – 9y + 29 = 0 (d) x + 3y = 3,  3x – y + 1 = 0
5. (a)  (0, ±2),  (±3, 0)     (b) 3 31 1

2 4 2 4( , ), ( , )− −

9. 3
16−

Exercise 12.5
1. 2 160 cm s−

3. 2 132 cm s−π
5. (a) 11

4  cm s−      (b) 11
9  cm s−

7. 4 11
2 15 m ;  m min−

9. 120
73 73 km h−

Exercise 12.6
1. (a) x = 1, y = 2    (b) x = 0, y = 0    (c) x = 5

2− , y = 3
2−     (d) x = 1, x = 2, y = 0

(e) x = 1, x = 2, y = 0    (f) x = 3, x = –1, y = 1    (g) x = 0, y = x + 5
(h) x = 1, y = 31

2 2x− −
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Exercise 12.7
1. (a) (b)

(c) (d)

(e) (f)

x
x

 y  y

x = –1

 y = 2

O

x = –1

x = 1

O

x

x

 y  y

 y = 1 

1
2( 1, )−

1
2(1,1 )

O

O

x = 8

1
23

x x

 y  y

•

•

•

O O

 y = x + 2

(4, 8)

x = 2
x = –7

y = 2
25
16(5, )1

4( 1, )−

5
2−

x = 1

2
1

xy
x

=
+ 2

2
1

xy
x

=
−

2
7 2

8
xy

x x
−

=
−

2

2
1

1
x xy

x
+ +=

+

2

2
2 5

6 7
x xy

x x
+=

+ −

2

2
xy

x
=

−
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(g) (h)

(i) (j)

(k) (l)

x

x

 y  y

O

O

1
9y =

 y =x + 3
2 2− 2 2

(2, 4)

(4, 8)

x = 3
•

1
8( 2, )−

2
3x = −

–1

x x

 y  y

O Ox = –1
x = –1

•
1
8(3, )−

1
2

x
x

y y

O
O

x = –1x = –3

(–2, 1)
y = 4

5

(0,1)

1
2( 3, )− −

3
2−

2

2(3 2)
x x

y
x

+
=

+

2 8
3

xy
x

−
=

−

2
1

( 1)
xy

x
−=
+ 2

2
( 1)

y
x

=
+

2
2 3

2 3
xy

x x
+

=
+ +

2

2
4 6 15

4 3
x xy
x x

+ +=
+ +
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3.

x = 2.074

5.

Minimum y = 8

Exercise 13.1
1. (a)  {1, 3, 4, 5, 6, 7}    (b)  {3, 5, 7}    (c)  {4, 6}    (d)  {1, 2, 3, 5, 7}    (e)  {1}

(f)  {2}
3. (a)  {3, 4, 5, 6}     (b)  {1, 4, 9, 16, 25}     (c)  {2, 3, 4, 5, 6}

(d)  {1, 11, 13, 143}     (e)  {1}     (f)  {1}
5.

         (a)       (b) (c)

(2, 8)(–2, 8)
O

x

y

2
2

16y x
x

= +

O x

y

x = –2 x = –1

y = 1
y = x2 + 3x – 10

25

–15

2

2
3 4
3 2

x xy
x x

+ −=
+ +

A B A AB B

C C CU U U
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      (d)       (e)         (f)

9. (a)  250    (b)  166    (c)  83    (d)  667

Exercise 13.2
1. (a) 1

2     (b) 1
2     (c) 1

2

3. (a) 1
4     (b) 3

4     (c) 7
24     (d) 11

12

5.

      (a) A ∩ B ∩ C '       (b) A' ∩ B ∩ C '

7. (a)  0.5    (b)  0.14    (c)  0.07    (d)  0.43
9. (a) 1

17     (b) 15
34

11. (a) 1
6     (b) 5

126

Exercise 13.3
1. 13

24
3. (a)  0.2    (b)  0.5  (c)  0.6
5. (a) 5

8     (b) 23
24     (c) 1

8     (d) 3
8

9. (a) 1
9     (b) 5

9

11. (a) 1
216     (b) 5

72     (c) 91
216

13. 3
4

Exercise 13.4
1. 2

5

3. (a) 375
4096     (b) 3

28

A AB B

C CS S

A A AB B B

C C C
U U U
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5. (a) 67
120     (b) 24

53

7. (a) 1
10     (b) 3

10

9. 1
48

11. 3
13

13. 9

Exercise 13.5
1. (a) 3

8     (b) 1
4     (c) 1

16     (d) 11
16

3. 2048
6561 0.312≈

5. (a)  375    (b)  62.5    (c)  625
7. 0.00376
9. 8

896
3

0.137≈

11. (a)  0.2    (b)  0.2
13. (c)  (i)  5  (ii)  7 or 8

Exercise 14.1
1. (a),  (c),  (f)  represent discrete variables
3. 1

14
5. (a)

Number of heads 0 1 2
Probability 1

4
1
2

1
4

(b)
Number of heads 0 1 2 3
Probability 1

8
3
8

3
8

1
8

(c)
Sum 2 3 4 5 6 7 8 9 10 11 12
Prob 1

36
2

36
3

36
4

36
5

36
6

36
5

36
4

36
3

36
2

36
1

36
(d)

Difference 0 1 2 3 4 5
Probability 6

36
10
36

8
36

6
36

4
36

2
36

7.
(a) x P(X = x) (b) x P(X = x)

0   1/27 1   1/5
1   2/9 2   3/5
2   4/9 3  1/5
3   8/27

9. (a)  0.1    (b)  0.8    (c)  0.375
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11.
x P(X = x) x P(X = x)
0 0.6588 3 0.0017
1 0.2995 4 0.0000
2 0.0399

13. P(X = x) = ( ) ( )15 1
6 6

x−
, x = 1, 2, 3,  ….  .

15.
x P(X = x)
0   1/2
1   3/10
2   3/20
3   1/20

17.
x P(X = x)
0 0.2373
1 0.3955
2 0.2637
3 0.0879
4 0.0146
5 0.0010

Exercise 14.2
1 (a)  1.9    (b)  2.4    (c)  0.4    (d)  9.23
3. 1
5. 0
7. 1

Exercise 14.3
1. (a)  2, 1    (b)  1, 0.756
3. (a)  3.2, 0.8    (b)  2.4, 0.8
5. 1.875, 0.709
7. 0.75, 0.887
9. (a)  20/3    (b)  60    (c)  40/3    (d)  200/3

Exercise 14.4
3. (a)  0.146     (b)  0.776     (c)  0.155     (d)  2.5     (e)  1.875
5. (a)  0.117    (b)  0.974
6. 0.763

Exercise 14.5
1. (a)  0.135     (b)  0.271     (c)  0.271     (d)  0.677     (e)  0.323
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3. (a) λ = 1.90     (b)  0.441
5. (a) λ = 3     (b)  0.224
7. (a)  0.147     (b)  0.0183     (c)  0.762
9. (a)  0.122     (b)  0.138     (c)  0.224     (d)  0.0273
11. (a)  0.224     (b)  0.0498     (c)  0.161
13. 0.0361
15. 0.0186
18. (a) (i)  0.245    (ii)  0.214    (iii)  0.0524      (b)  0.464
19. (a)  1     (b)  0.920     (c)  0.544

(d)  (i)  E(Z) = 3.5,  Var(Z) = 5.5    (ii)  No;  E(Z) ≠ Var(Z)

Exercise 14.6
1. (a)  0.964     (b)  0.285     (c)  0.252
2. (a)  0.994    (b)  0.159  (c)  0.302
3. (a)  0.900     (b) –0.400     (c)  0.230     (d) –1.65
5. (a)  0.841     (b)  0.691     (c)  0.547     (d)  0.0455
7. (a)  0.106     (b)  0.0304
9. 0.122
11. (a)  2.90    (b)  0.365    (c)  0.483     (d)  13.0
13. (a)  0.444     (b)  11.5 bulbs     (c)  0.00155

Exercise 15.1
1. (a) 22 5x x−     (b) 3 22 2 3x x x+ +     (c) 4 3 21 1 1

4 3 2x x x+ +

(d) 3 23 12 16x x x− +   (e)  5x    (f) 3 28
3 9 9x x x− + −     (g) 5 32

5 5x x x− −

(h) 5 34 4
5 3x x x− +     (i) 4 3 21

4 2 6 8x x x x− + −

3. 3 22 3 2 3y x x x= − − +  ;  2x + y = 2

5. (a) 22 3y x x= − +     (b) 23 8y x
x

= + +     (c) 2 3 29
2 8 4 20y x x x= − + −

(d) 2 5 3 4 39 9 81
2 5 4 5y x x x x= − + − +

7. (a) 3 22 4y x x x= − + −     (b) 3 2 2y x x x= + − ,  (0, 0),  (–2, 0)

9. 3 2 2y x x x= − − +  ;  local maximum at ( )591
3 27,−

11. t = 0, x = 0 and t = 0.6, x = –0.744

Exercise 15.2
1. (a) 31

6 (2 1)x c+ +      (b) 41
20 (3 5 )x c− − +      (c) 41

20 (5 2) 2x x c+ − +

(d) 2 51
153 (1 3 )x x c+ − +      (e) 3 41

4 (5 2 )x x c+ − +      (f) 5 34
5 4 9x x x c− + +

(g) 2 42 (2 3 )x x x c+ + − +      (h) 3 5 391
6 5(2 3) 4 4x x x x c+ + + + +

3. (a) 3 21
9 (6 3)x +      (b) 5 22

25 (5 2)x −      (c) 2 33
16 (8 1)x +      (d) 1 22

3 (2 3 )x −−
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(e) 3 21
3 (2 5)x +      (f) 4 31

4 (3 8)x −     (g) 1 24(2 3)x +      (h) 1 24
3 (1 3 )x −−

5. (a) a = 6, b = 3 , 6 2 1 3 1y x x= + − +     (b)  3x – y + 7 = 0

Exercise 15.3
1. (a) 2 41

4 (3 1)x c− +      (b) 2 51
5 (1 )x c− − +      (c) 3 31

9 ( 2)x c+ +

(d) 4 41
16 ( 3)x c− +      (e) 5 43

40 (2 3)x c+ +      (f) 2 62
9 (1 3 )x c− − +

(g) 7 31
21 (2 3 )x c− − +      (h) 4 63

32 (4 2)x c− +      (i) 3 45
12 (3 )x c− − +

(j) 1 31
6 (2 3)x c−− − +      (k) 4 11

12 (3 1)x c−− + +      (l) 2 11
2 ( 1)x c− −+ +

(m) 8 5 21 4
8 5 2x x x c+ + +      (n) 3 31

9 ( 2)x c+ +      (o) 10 7 41 4
10 7x x x c+ + +

3. a = 1, b = –2, c = 3 ; 21
2 2

32
2( 1)

x x c
x

− − +
+

Exercise 15.4
1. (a)  6     (b) 32

3−      (c) 5
4      (d)  10     (e) 64

3      (f)  9     (g) 31
3      (h) 1

8−

(i) 4
3      (j) 4

3      (k) 56
15      (l) 3

4

3. (a)  12     (b) 16
3      (c)  9     (d) 1

23
5. (a) 1

12      (b) 27
4      (c)  16     (d) 4

3      (e)  8     (f)  9
7. (a) 15

8      (b) 3
20      (c) 61

3      (d)  4     (e)  2     (f) 7
130

9. 516
15 a

11. (a) 3125
6 a      (b) 39

8 a      (c) 41
2 a

13. 3.75
15. 2

3 ( 1)a a −

Exercise 15.5
1. (a) 64

3 π      (b) 32
5 π      (c) 15

2 π      (d) 2
7 π      (e) 1

3 π      (f) 15
4 π      (g) 1

30 π

(h) 36π      (i) 2
3 π      (j) 32π      (k) 16

15 π      (l) 71
105 π

4. 32
3 π

5. (a) 56
15 π      (b) 1

2 π
7. 9π
9. (a) 3

4 π      (b) 6π

11. (a) 9
2 π      (b) 24

5 3π      (c) 36
5 3π

Exercise 16.1
1. (a) → 3     (b)  no limit     (c) → 3     (d) → 1

3      (e)  no limit     (f) → 9
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3. (a)  2     (b) 1
5 2      (c) 1

2−      (d) 1
32      (e) 2

5      (f) 1
20

Exercise 16.2
1. (a) 2cos2 2sin2x x−      (b) 2sin 6sin2x x− +      (c) 21 cos x

(d) cos3 3 sin3x x x−      (e) 2 24sin2 2sin 2 2cos 2x x x− − +

(f) 22 cos 6sin2x x+      (g) 22 cos3 3 sin3x x x x−    (h) 1
1 cos x+

(i) 2
1 sin2x−

     (j)
2

2
2 (3 tan2 cos 2 )

(3 tan2 )
x x x x

x
− +

−
3. (a)  6x – y + 4 = 0     (b) x + y = π    (c) 2

3 , 2a b= = −
5. (a)  (0.395, 13) – max ;  (3.54, –13) – min

(b) ( )31
6 2, 3 maxπ −  ; ( )5 3

6 2, 3 minπ − −  ; ( )3
2 , 0 inflexionπ −

(c)  (–1.89, 7) – max ;  (1.25, 7) – max ;  (–0.322, –3) – min ;  (2.82, –3) – min
(d) ( ) ( )5 51 1 1 1

6 6 2 6 6 2, 3 min; , 3 maxπ π − − π π + −

(e)  (0, 0) – inflexion ;  (π, –π) – min
(f) ( ) ( )51

6 6, 3 min ;  , 3  maxπ − π − −

(g) ( ) ( )1 1
3 3, 3 3 min ;  , 3 3 max− π − − π −

7. (a) 1 1
2 2cos a      (b) 2sin2a−      (c) 23 cos 3a      (d) 2 1

31 (3cos )a
(e) 2cos2a      (f) sin a−π π

9. (a) 13.44 s−°      (b) 2 1255
8  cm s−−

11. 1 16.41 s ;   0.447 m s− −− °

Exercise 16.3
1. (a) 1

3 cos3x c− +      (b) ( )1 1
2 44cos x cπ− +      (c) 1

22sin x c+

(d) 2
5 sin5x c+      (e) 3 2

2 3tan x c+      (f) 1
22tan ( 2)x c− +

(g) 21 2
2 3 cos3x x c+ +      (h) 33

2 sin2( 1)x x c− − +      (i) 3
2 tan(2 3)x c− +

3. (c)  (i) 1 1
2 12 sin6x x c+ +   (ii) 1 1

2 8 sin4x x c− +   (iii) 31 1 1
3 2 2 sinx x x c− − +

 (iv) 27 1
2 20 sin10x x x c− − +

5. (a) 6cos3 sin3x x−      (b) 21
6 cos 3x c− +

7. (a) cos2 sin 2y x x= − − +      (b) 51
8 2sin4 4y x x= − + +

(c) 1
2 cos2 sin 4 3y x x x= − − + +
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Exercise 16.4
1. (a) 2csc2 cot2x x−      (b) 1 1 1

2 2 2sec tanx x      (c) 24csc 4x−

3. (a) 22sec 2 2sec2 tan2x x x+    (b) 2 22tan sec 4sec 2 tan2x x x x−
(c) 22csc2 cot2 6csc 3 cot3x x x x− +      (d) 2 22cot csc 4csc 2 cot2x x x x− +
(e) 2tan2 sec tan 2sec sec 2x x x x x+
(f) 2 2 231 1 1 1 1

2 4 4 2 2 2sec ( )tan ( ) tan ( )sec ( )x x x x− π − π + − π − π

Exercise 16.5
1. (a) 3 2

2 3tan x c+      (b) 1
22cot ( 2)x c− − +      (c) 1 1

2 2 sin x c− +

(d) 1 1
2 12 sin2(1 3 )x x c+ − +      (e) 31 1

2 3 2sinx x c+ +      (f) 1 1
2 2 sinx x cπ+ π +

(g) 1
3 tan3x x c− +      (h) 3 2

2 3tan x x c− +      (i) 1
5 cot5x x c− − +

(j) ( )1 2
4 3cot 4x x cπ − − +      (k) 31

3 cos x c− +      (l) 31
9 cos 3x c− +

(m) 2 sin x c+      (n) 2csc2x c− +
3. (a) 1

2sin cos2x x c+ +      (b) 1 1
8 2cos4 cos2x x c− − +

(c) 9 4 1
2 3 12cos3 sin6x x x c+ − +      (d) 1

4 cos4x x c+ +      (e) 2csc x c− +

(f) 1 1
3 3sin3 tan3x x c− +      (g) 3 2sinc x− −      (h) 2

1
12(1 2cos3 )

c
x

+
+

(i) tan x x c− +      (j) tan2x c+      (k) 21
2 cos( )c x−      (l) ( )3 31

3 tan( )x x c− +

5. (a) 3 1 1
8 4 32sin2 sin4x x c+ + +

(b) ( )d sin sin cos
d

x x x x x
x

= + cos d sin cosx x x x x x c= + +∫
(c) sin cosx x x c− +

7.

9. 15.3
11. 4

3

Exercise 17.1
1. e = 2.718 282  (12 terms)
2. (a) 3 1 23e 2ex x+ −−      (b) 22e x−      (c) e x−      (d) ( )2 22 e ex x−−

(e) 22e (sin2 cos2 )x x x+      (f) s in2(2cos2 )e xx      (g) 3e (2 3 )xx x− −

O x

y

ππ/3

3

0 3
Area  d  d 2.5y x y x

π π

π
= − + =∫ ∫

sin (1 2cos )y x x= −
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(h) 3 3 2
12

(e e )x x−+
     (i) [ ]2 exp(cos2 ) 1 sin2x x x x−

3. (a)
1

1,
e

⎛ ⎞− −⎜ ⎟⎝ ⎠
– min     (b) 2

5
2,

e
⎛ ⎞−⎜ ⎟⎝ ⎠

– max ;  (1, –e) – min     (c)  (0, 2) – min

(d)  (0, 6) – min     (e)  (0, 0) – inflexion ; 3
27

3,
e

⎛ ⎞
⎜ ⎟⎝ ⎠

– max

(f) ( )3 43 1
4 2, 2e ππ – max ; ( )7 47 1

4 2, 2e ππ − – min
5. (c) m = 3, 4
7. (a)  18.4° 1

3(arctan )

9. (a)  (0, 1) – max ; ( )1 21
2 2 , e−± – inflexions

Exercise 17.2

1. (a) 1
x

     (b) 1
2x +

     (c) 3
3 5x +

     (d)
2

3
6

2 3
x

x +
     (e) 3cot3x    (f) 1

sin cosx x

(g) 2 23 l n 2x x x+      (h) 1
lnx x

     (i) 2
4 3x +

     (j) 3
1 2ln x

x
−      (k) ln 1x− −

(l) 2tan x−
3. 0.327
5. (a) ln2, ln3      (b)  0, ln6      (c) ln2−      (d) 0.658±

7. (a) 1
ln6x

     (b) ( )2ln 1
ln10

x x +      (c) 1
ln2x

−

9. 6.31

Exercise 17.3
1. (a) 2e 3ex x c−− +     (b) 2 22e 12ex x c−+ +      (c) 0.2 0.220e ex x c− +

(d) 1 2 1 3e ex x c− −− + +      (e) 21
22 e xx c−+ +      (f) 21

2 e 2ex x x c− −− − + +

3. 2 5
2( ) e ex xf x = − +

5. 2.56
7. (a) 12 m sk −      (b)  1.39 s

Exercise 17.4
1. (a) 41

4 (e 2)x c+ +      (b) exp(sin )x c+      (c) 23
2 exp( 1)x c+ +

(d) exp(tan )x c+      (e)
25 3

ln25 ln3

x x
c+ +      (f)

2

10
ln100

x

c+

(g) 2 e 1x c+ +      (h) 21
2 (e e )x x c−+ +

3. 3.17
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Exercise 17.5
1. (a) ln( 3)x c+ +      (b) 1

3 ln(3 2)x c− +      (c) 2ln( 1)x c− − +

(d) 2
3 ln(2 3 )x c− − +

3. (a)  ln 4     (b) 1
2 ln3     (c) 1

3 ln4      (d) 1
2ln      (e) 2 ln1.5−      (f) 6 8 ln3−

5. 5(1 )
(2 1)(3 )

x
x x

−
− −

 ; 31
10 16ln

Exercise 17.6
1. (a) 21

4 ln 2 4 1x x c+ + +      (b) ln(2 sin )x c+ +      (c) 1
3 ln sin3x c+

(d) ln(1 e )x c+ +      (e) ln ln x c+      (f) ( )2ln 1x c+ +

3. d ln(sec tan ) sec
d

x x x
x

+ =   ; sec d lnsec tanx x x x c= + +∫
5. 1.60
7. ( ) [ ]( )1 1 1 1

2 2 2 2ln ln cos2 ln 2cos2y x x= − = −

Exercise 18.1
9. (a) 1 1n na b+ +−
10. (a) 2 2n na b+ ++
13. (a) 1 2x > +
23. (a)  Show that P(1) and P(2) are true.

Exercise 18.2
1. 8

2. (a) 5 23 1191
2 6 24 120, , ,      (b) ( 1)! 1

( 1)!n
nS

n
+ −=

+

3. 1
2 ( 3)n n −

5. (a)  1, 5, 23, 119, 719     (b) ( 1)! 1nS n= + −

7. 1 1 1 1
15 35 63 99, , ,  ; 1 1

12 4(2 1)(2 3)nS
n n

= −
+ +

Exercise 19.1
1. 2 36 2 2 1x x x− − − ; 5 4 3 26 13 2 3 2 2x x x x x− + − − − −
3. (a) ( )deg ( ) ( )P x Q x m n= +      (b) ( )deg ( ) ( ) max( , )P x Q x m n+ ≤

5. (a) 4 3 26 10 9 3 20x x x x+ + + −      (b) 5 3 28 32 12 3x x x x− + + −
(c) 4 3 24 12 13 6 1x x x x− + − +       (d) 6 5 4 3 23 3 11 6 12 8x x x x x x− − + + − −

7. (a)  1 + 2 + 3 + 4 = 10     (b)  1 + 2 + 3 +  … + n = 1
2 ( 1)n n +
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9. (a) a = 1, b = –3     (b) a = 23, b = 48     (c) a = 3, b = –2     (d) a = –2, b = 11
11. (a) a = 2, b = –1     (b)  No a, b exist.     (c) a = 3, b = 1     (d) a = –2, b = 3

Exercise 19.2
1. (a)  2     (b)  0     (c) –21     (d) 5

3

3. (a) 2±      (b) 0, 1±
5. (a)  11     (b) –14
7. 3x – 1
13. 1 : 3
15. 2, –5 ;   1, –6
19. k = 2, p = 3, y = 3 33 9 2+ +

Exercise 19.3
1. (a) 2 2, 5x x− +      (b) 22 4 6, 11x x+ +      (c) 23 8 , 1x x− −

(d) 3 2 3 2, 2x x x− + − −

3. (a) 2 3, 2 3x x− +      (b) 2 5 4, 10 16x x x− + −      (c) 3 22 2, 6 1x x x x− + + −

(d) 22 3 6, 10 19x x x+ + −

5. (a) 3 22( 2) 11( 2) 21( 2) 15x x x− + − + − +

(b) 4 3 23( 1) 12( 1) 18( 1) 11( 1) 3x x x x+ − + + + − + +

(c) 5 4 3 2( 1) 5( 1) 9( 1) 7( 1) 2( 1) 1x x x x x− + − + − + − + − −

(d) 4 3 22( 3) 24( 3) 108( 3) 219( 3) 173x x x x+ − + + + − + +

7. 2 219 191
27 3 3, ( ) ( ) (2 ) ; 12, ( ) ( 2) (2 3)p f x x x p f x x x= − = + − = = − +

9. –3
11. (a) 3 2(2 1) 2(2 1) 3(2 1) 5x x x+ − + + + +      (b) 22 7 17x x− +  ; 235 3 35x x+ −

Exercise 19.4
1. (a) ±1, 2     (b) ±2, –3     (c) –1, 2     (d) –2, –3, 1

2      (e) –1, 2, 3
2−      (f)  3

3. (a)  2, 1 2±      (b) –1, 2 3±      (c) 1
2− , –4, 3     (d)  2, 1

2− , ( )1
2 1 13− ±

5. (a) –22     (b)  (i) a = 4, b = 4  (ii) –2, 3, ( )1
2 3 13− ±

Exercise 19.5
1. (a) 2 3 4x x− −      (b) 23 7 6x x− −      (c) 2 5x −      (d) 2 2 2x x− −

(e) 2 4 1x x+ −      (f) 2 2 4x x+ −
3. (a) 22 7 2 0x x+ + =      (b) 22 37 0x x+ − =      (c) 28 17 8 0x x+ + =

(d) 24 2 0x x− − =      (e) 24 4 1 0x x− + =      (f) 24 25 37 0x x− + =
(g) 28 25 64 0x x− − =      (h) 216 64 31 0x x− + =
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5. 0, 16
3

7. (a)  1     (b) ( )1
2 1 5+   or ( )1

2 1 5−    (c)  6 or 4
3

9. 3 1
5 3, , 1c x= − = −

Exercise 20.1
1. (a)   1 + i     (b)  6 + 2i   (c)  8 + i     (d) –7 + 17i     (e)  25 + 0i     (f)  19 – 17i

(g) –16 – 30i     (h)  2 – 11i
3. (a)   21 – 20i     (b)  13 – 11i     (c)  13 + 11i     (d) 13 11

10 10 i−      (e)  8 + 3i
(f)  17 + i

5. (a) 2 9z +    (b) 2 36z +      (c) 2 2 5z z− +      (d) 2 4 13z z+ +
(e) 2 10 41z z− +      (f) 25 4 1z z− +

7. (a) –2i     (b)  3i     (c) 1
2 i−      (d)  4 – 2i     (e) 3 3

10 5 i+      (f)  2 – i
9. (a) ±i, 2     (b) ±2i, –1 ± 2i

Exercise 20.2
3. (a) –2, 4     (b) –7, –10     (c)  1, –7     (d)  15, –17     (e) –8, 8     (f)  79, 29
5. (a) 3 24 9 10z z z− + −    (b) 3 22 7 6 5z z z− + +    (c) 4 3 28 27 38 26z z z z− + − +

(d) 4 3 212 62 172 221z z z z− + − +      (e) 4 3 24 8 11 7 3z z z z− + − +
(f) 5 4 3 215 83 175 16 290z z z z z− + − + +

7. 3 2( ) 2 8 18 20p z z z z= − + − +

9. 2 (1 3i) 2(1 3i)z z+ − − +

Exercise 20.3
1. (a) 2 2      (b) 5      (c) 2 3      (d)  3     (e)  0     (f)  5     (g)  13     (h)  1

(i) 6 3      (j) 1
2 2      (k) 13      (l)  35     (m)  65     (n) 1

5 29      (o)  10
3. ⏐sec θ⏐
5. z = 1 + i, w = 2 + 2i ;  O, P, Q are collinear with P and Q on the same side of O.
15. 3 – i , 7

2 ( 1 i)− +

Exercise 20.4
1. (a) 1

4 π    (b) 1
3 π      (c) 1

3− π      (d) 1
2− π      (e)  0     (f) 5

6 π      (g) 1
6− π

(h) 3
4− π      (i) 1

3 π

Exercise 20.5
1. (a) 1 i 3+      (b)  1 – i     (c)  3i     (d) –4     (e) 1 1

2 23 i− −      (f) 3 i−

(g) 2 2 2i 2− +      (h) 3 3
2 2 i 3− −      (i) 1 1

2 2 i 3−      (j) 3 3 3i+

3. (a)  5cis 0.927     (b) 29cis0.381 (c) 5 cis2.68     (d)  5cis –2.50
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(e) 13cis 0.983−      (f)  17 cis –2.65

5. 7 7
12 12

6 2 2 6sin cos
4 4
+ −

π = π =

7. (1 + i)z, iz

Exercise 20.6
1. (a) –64 + 0i     (b)  0 – 32i     (c) 1 1

2 2 i 3− −      (d) –1 + 0i     (e) –512 + 0i
(f) –128 – 128i

3. 1
10cis (2 1) , ( 0,1,2,3,4)k k− + π =

5. (a) ±(1 + i)     (b) ±(2 + i)     (c) –1, 1 1
2 2 i 3±

(d) 1
8cis (4 3) , ( 0, 1,2 )k k− π = ±      (e) 3 1

5 51, cis , cis− ± π ± π

(f) 1
12cis (4 1) , ( 0, 1, 2,3)k k− π = ± ±

7. (c) 2 1z z+ −
9. 1 2 3 2 1 0n n nz z z z z− − −+ + + + + + =L
13. (a) 2 4

5 51,cis ,cis± π ± π      (d) 1 2
5 5icot , icotz = − ± π − ± π

(f) ( )( )4 2 2 2 2 21 2
5 52 0.2 cot cotz z z z+ + = + π + π  

Exercise 20.7
1. (a) i 2i e π=      (b) 2i 31 i 3 2e π− + =      (c) i 42 2i 2 2e− π− =

(d) i 63 i 3 2 3e− π− =      (e) i5 5e π− =      (f) i 43 3i 3 2e π+ =
(g) 0.927i3 4i 5e+ =      (h) 1.97i5 12i 13e−− − =

2. (a) 1 1
2 23 i+    (b)  0 – i   (c) 1 1

2 22 i 2− +    (d) 1 1
2 2 i 3− +

3. (a) 5i 122 2e π      (b) 5i 124 6e π      (c) i 122e π      (d) i2e π

4. ie θ  where 5 3 13 17 71
12 12 4 12 12 4, , , , ,θ = π π π π π π

[±(0.966 + 0.259i), ±(0.259 + 0.966i), ±(0.707 – 0.707i)]
5. ie θ  where 51

3 3, ,θ = π π π    [ 1 1
2 2 i 3+ , –1, 1 1

2 2 i 3− ]

6. (a) 2i i 2i 2( 1) (e ) e 0.00187π − π− = = =

(b) i iln55 e cos(ln5) isin(ln5) 0.0386 0.999i= = + = − +

Exercise 21.1
1. (a) 1 1

2 12,      (b) 4
34,    (c) 21 1

2 12,b b      (d) 1
2 ( )a b+ , 21

12 ( )b a−
3. 0.693
5. 0.631
7. (a)  1.44     (b)  E(X) = 0.443,  Var(X) = 0.0827
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Exercise 21.2
1. (a)  1     (b) 2
3. 1

3
5. 2.4

7. (a) –2     (b) 1k =
π

 , μ = 0.934, m = 0.832

9. (a) 4
81      (b) 8

5      (c)  1.73     (d)  1.62

Exercise 22.1
1. (a) 1

6 π      (b) 1
2 π      (c) 1

4− π      (d) 1
3− π      (e) 2

3 π      (f) 1
3− π      (g) 1

4 π

(h) 1
4 π      (i) 1

4− π      (j)  0.2     (k)  0     (l) π     (m) 1
4 π      (n) 1

6 π      (o) –

(p)  0.8     (q) 1
2 3      (r) 1

2 3      (s)  0.96     (t)  0.28     (u) 7
9      (v) 4

3−

(w) 120
119      (x) 4

25 6
3. (a) 0 a≤ ≤ π      (b) 1 1b− ≤ ≤

5. 1 1a− < <      Modifications: (i) a < –1 ; 2
22arctan arctan

1
aa
a

= − π
−

(ii) a = –1 ; 1
22arctan a = − π

(iii) a = 1 ; 1
22arctan a = π

(iv) a > 1 ; 2
22arctan arctan

1
aa
a

= + π
−

Exercise 22.2

1. (a) 1 1
3 32

3 ( )
1 9

x
x

− < <
−

     (b)
2

1 ( 2 0)
1 ( 1)

x
x

− − < <
− +

(c) 2
2 (all )

1 4
x

x+
     (d) 1

2
1 ( 0)

2 (2 1)
x

x x
− < <

− +

(e)
2 2

2 (0 2 )
1 ( 1)

x x
x

− < <
− −

     (f) 4
2 (all )

1
x x
x+

3. (b) 1
4 π      (c) 1

2 tan1     (d) 2
37      (e)  4x – 4y = π – 2

5. (a) 1
4(1, )π , 1

4( 1, )− − π      (b) 1 1
2 3( 3, )π , 1 1

2 3( 3, )− − π

7. (b) 1
4 π

Exercise 22.3
1. (a) 1

33arcsin x c+      (b) 1
42arcsin x c+      (c) 1

510arcsin x c+

(d) 1
2 arcsin2x c+      (e) 3

22arcsin x c+      (f) 34
3 23arcsin x c+
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2. (a) 1
2arctan x c+      (b) 1

32arctan x c+     (c) 1
4arctan x c+

(d) 1 2
2 3arctan x c+      (e) 1

3 arctan3x c+      (f) 1 2
3 33arctan 3x c+

3. (a) 1
2arcsin ( 1)x c+ +      (b) 2arcsin( 3)x c− +      (c) 1

2arcsin ( 1)x c+ +

(d) 1 1
2 2arctan ( 3)x c− +      (e) 4 1

3 3arctan ( 1)x c− +      (f) 1 2
3 3arctan ( 2)x c+ +

5. (a) ln 3 1x +      (b) 3arctan 3x      (c) 21
2 ln(3 1)x +

7. (a) 24 1 arcsinx x− − −  (b) 23 1
2 2ln( 4) 2arctanx x+ +

(c) 21 1 2
4 2 3ln(4 9) arctanx x+ −      (d) 2 2 1

3 22 3 3arcsin 6x x− − +

(e) 3 216
3 8 1 arctanx x x− + +      (f) 2 1

213 12 4 8arctanx x x+ + −

Exercise 23.1
1. (a) 3 2 1 22

3 (1 ) 2(1 )x x c− − − +      (b) 5 2 3 21 1
10 2(2 1) (2 1)x x c− − − +

(c) 1
2

2ln 2 1
2 1

x c
x

− − +
−

     (d) 2arcsin x x x c+ − +

(e) ( )1 1
2 2arctan e x c+      (f)

24 4
x c

x
+

+
     (g) 21

2 ln(e 1)x c+ +

(h) ( )1
2arcsin tan x c+

3. ( )3
1 3 3 6

24a
π + −

5. 2(arctan3 arctan2) 0.284− =

Exercise 23.2
1. (a) 1 1

2 4sin2 cos2x x x+      (b) 31
9 (3 1)e xx −      (c) 1 1

16 4sin4 cos4x x x−

(d) 31
9 (3ln 1)x x −      (e) 2( 1)e xx +      (f) 21

4 (2 1)e xx −− +

3. (a) 1
4 π    (b) 1

18 (4 3 ) 0.301− π = −    (c) 3
4ln4 0.636− =   (d) 1 1

3 63 0.0538− π =

5. (a) 35
256 π      (b) 5

256 π

7. (b) ( )2 2
ee cos d sin cos

ax
ax bx x b bx a bx c

a b
= + +

+∫

Exercise 23.3

1. (a) 1 1
1 1x x

−
− +

     (b) 2 1
2 1x x

−
+ +

     (c) 1 3
2( 2) 2x x

−
−

(d) 5 1
3( 1) 3( 2)x x

+
+ −

     (e) 2 1
2 1 3x x

−
− +

     (f) 1 2
2 3 1 4x x

+
+ −
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3. (a) 2
1 1

1 ( 1)x x
−

+ +
     (b) 2

3 6
2 ( 2)x x

+
− −

     (c) 2
2 2 1

1 ( 1)x x x
− +

+ +

(d) 2
5 2 3

2 1( 2)x xx
− +

− +−

5. (a) 3ln 2 2ln 2x x c+ − − +      (b) 62ln 3
3

x c
x

− − +
−

(c) ( )2 1
3ln 9 arctan 2lnx x x c+ + − +      (d) 1

32ln 2 3arctan 3x x c+ − +

(e)
3

ln
2

x
c

x
−

+
−

     (f) 3 1
4 8ln 2 3 ln 4 1x x c− − − +

7. 3
22 ln3 0.352− =

8. (a) 63ln 2
2

x c
x

− − +
−

   (b) 7
4

3ln 2
2

x c
x

− − +
−

(c) 31
3

12 4ln 2
2

x x x c
x

− − − − +
−

9. (a) 3ln 2 ln 2 1x x c− − + +      (b) 1
22ln 4 ln 2 3x x c− − − +

(c) 3 1
2 2ln 2 1 ln 2 1x x c− − + +      (d) 1

22ln 2 ln 2 3x x c− − − + +

11. 2
3ln13.5 ln5 1.53− =

12. (a) 3 2
32 50( )

( 2) ( 3)
f x

x x
′′ = −

+ +

(b) 21
2( ) d 5 16ln 2 25ln 3f x x x x x x c= − + + − + +∫

Exercise 23.4
1. (a)

2

exy c=     (b) tan( )y x c= +      (c) 2
0e xy y=      (d) 2y cx=

(e) 2 24 ln( 4)x y y c− − + =      (f)
1
c xy

cx
−=
+

     (g) 2(ln )y x c= +

(h) 210 e xy c= +  (i) 2 secy c x=      (j) 2 1
2 sin2y x x c= − +

3. (a) y cx=  : Straight lines through the origin.

(b) 2 2x y c+ =  : Concentric circles with the origin as centre.
(c) exy c=  : A family of exponential curves with varying y-intercepts.
(d) 2 2y x c= +  : A family of parabolas symmetrical about the x-axis.

5. 1
2 ln10; 78.2 mk =

7. A further 2.40 minutes (≈ 2 minutes 24 seconds)
9. A further 2.74 minutes (≈ 2 minutes 44 seconds)
11. 1.24 days
12. –4°C
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Exercise 24.1

1. (a)  E(X) = 2,  E(Y) = 1.2,  Var(X) = 0.6,  Var(Y) = 0.56
(b)

x + y 1 2 3 4 5
P(X + Y = x + y) 0.06 0.20 0.34 0.28 0.12

x – y –1 0 1 2 3
P(X – Y = x – y) 0.12 0.28 0.34 0.20 0.06

3. 0,   2.42
5. 36 minutes,   4 minutes
7. 21,   4.18
9. 9.5,    0.84

Exercise 24.2
1.

x 0 1 2 3
F(x) 1

8
1
2

7
8

1
3.

x 0 1 2
F(x) 25

36
35
36

1

5. (a)  0.22     (b)  0.69     (c)  0.16
7. (a) 21 e 0.135k = =

(b)
x   0      1      2
P(X = x) 21 e 2(e 1) e− (e 1) e−

(c)  1.50     (d)  0.521

Exercise 24.3

1. (a) 1
4

0, 0
( ) , 0 4

1, 4

x
F x x x

x

<⎧
⎪= ≤ ≤⎨
⎪ >⎩

(b) 21
3

0, 1

( ) ( 1), 1 2
1, 2

x

F x x x
x

<⎧
⎪

= − ≤ ≤⎨
⎪ >⎩

(c) 3

0, 0

( ) , 0 1
1, 1

x

F x x x
x

<⎧
⎪

= ≤ ≤⎨
⎪ >⎩

(d) 21
16

0, 0

( ) (12 ), 0 2
1, 2

x

F x x x x
x

<⎧
⎪

= − ≤ ≤⎨
⎪ >⎩
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(e)
1
2

21
8

0, 1
( 1), 1 2

( )
1, 2 4

1, 4

x
x x

F x
x x x

x

<⎧
⎪ − ≤ ≤⎪= ⎨
− + − ≤ ≤⎪

⎪ >⎩

(f)
21

2
21

2

0, 1

( 1) , 1 2
( )

( 6 7), 2 3
1, 3

x

x x
F x

x x x
x

<⎧
⎪ − ≤ ≤⎪= ⎨
− − + ≤ ≤⎪

⎪ >⎩
3. (a) 3

19k =

(b) 31
19

0, 1

( ) ([ 1] 8), 1 2
1, 2

x

F x x x
x

<⎧
⎪

= + − ≤ ≤⎨
⎪ >⎩

(c)   0.365
(d) m = 1.60

5. (b) 1

0, 1
e( ) (1 e ), 1 2

e 1
1, 2

x

x

F x x

x

−

<⎧
⎪⎪= − ≤ ≤⎨ −⎪

>⎪⎩

(c) m = 1.38     (d)  P(X > 1.5) = 0.378

Exercise 24.4
1. (a) m = 1

25  , s = 2.87     (b)  0.6

3. (a)

4 48
5

( )
52
5

x x
P X x

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (b)  E(X) = 0.3844,  Var(X) = 0.5715

5. (a) 1
13      (b)  0.299     (c)  0.341

7. (a)  0.367     (b)  0.00884     (c)  4     (d) 32
29

x

 F(x)

O

1

1 2
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Exercise 24.5

1. (a) 40.2(0.8)  = 0.0819     (b) 41 0.8−  = 0.590     (c) 50.8  = 0.328
3. (a) 2(1 )p p−      (b) 6(1 )p p−      (c) 1(1 )np p −−
5. 13

7. (a) ( ) ( )64 1
5 5 0.0524=      (b) ( )64

5 0.262=      (c) E( ) 5X =

9. (a) 4(0.2) (0.8) 0.00128=      (b) 51 0.8 1.00− =

(c) 2 27
(0.8) (0.2) 0.8 0.00344

2
⎛ ⎞

× =⎜ ⎟
⎝ ⎠

11. 1
7

12. (a) 31A
pp
q

=
−

 , 31B
pqp

q
=

−
 ,

2

31C
pq

p
q

=
−

 ,   (q = 1 – p) ; 1
2p =

13. (a) (1 )n
Ap−      (b) (1 ) (1 )n n

A Bp p− −

(c) ( ) ( )1(1 )(1 ) (1 )(1 )n n
A B A Bp p p p−− − − − −

Exercise 24.6
1. (a)  0.451     (b)  0.333     (c)  0.181
3. (a) 9.16     (b)  19.0
5. (a)  0.0141     (b)  0.00920
7. 0.287
9. (a)  693 years     (b)  0.5     (c)  0.100
10. (a)  0.301     (b)  0.407     (c)  0.741

Exercise 24.7
1. (a)  20,   3.43     (b)  54,   15.2     (c)  103.6,   29.2
3. (a)  32.2,   13.9     (b)  54.0,   18.5
5. 1Y  and 2Y  are unbiased ; 1Y  is the more efficient

Exercise 24.8
1. (27.9, 32.1),   (27.6, 32.5),   (27.1, 32.9)
3. (a)  (24.5, 25.9)     (b)  (3.37, 3.47)     (c)  (142, 168)
5. (15.4, 16.6)
7. (a)  1080     (b)  1540     (c)  2650
9. (a)  (0.0534, 0.107)     (b)  (0.0451, 0.115)
11. (0.422, 0.478)
13. 542
14. (a) 1

4 π      (b) p = 0.784     (c)  0.0130     (d)  (0.763, 0.805)     (e)  (3.05, 3.22)



Answers

804

Exercise 24.9
1. No evidence to support "μ = 25".
3. There is no evidence to suggest that the students have underperformed.
5. (a)  (19.81, 21.19)     (b)  (19.59, 21.41)     (c)  (19.30, 21.66)
7. z = 1.0206 ;   no evidence of increase in effectiveness
8. P(Type I error) = 1

45  ;   P(Type II error) = 7
15

Exercise 24.10
1. (a)  0.0228     (b)  0.9772     (c)  0.0455
3. p = 0.0228 ;     (a)  significant     (b)  not significant
4. 2.58 2.81z< <
5. 1.645z >
7. p = 0.2627
8. p = 0.0808 ;   not sufficient evidence

Exercise 24.11
1. (a)  29.5,   1.637     (b)  (28.3, 30.7)
3. (54.5, 57.6)
4. (a)  ( x – 1.60, x  + 1.60)  (b)  98%
5. (a)  114.4,  9.395     (c)  (108, 121)
6. reject H0 ;   new fertiliser is effective

Exercise 24.12
1.

Score 1 2 3 4 5 6
Observed Frequency 25 17 15 23 24 16
Expected Frequency 20 20 20 20 20 20

Accept H0 that the die is fair.
3. There is reason to believe that the dice are not fair.
5.

Number of red marbles 0 1 2 3 4
Observed Frequency 5 16 48 42 4
Expected Frequency 3.2 19.2 43.2 43.2 16.2

Accept the claim.
6. Accept the hypothesis that the proportions of students failed by the three

instructors are equal.
7. The observed values seem to follow a Poisson distribution with parameter 0.9.
8. The distribution appears to be geometric with parameter 0.005.
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Exercise 25.1
1. (a) A B⊆      (b) B A⊆      (c) B A⊆      (d) A B⊆
3. (a) 2n

Exercise 25.2
1. (a) { }(1,1), (1,4),(2,2),(2,5),(3,3),(3,6),(4,1),(4,4),(5,2),(5,5),(6,3),(6,6)

(b) Domain = Range = {1, 2, 3, 4, 5, 6}     (c) R is reflexive, symmetric and
transitive

3. (a) {(1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), 
    (4,1), (4,2), (5,1)}

(b)  Domain = Range = {1, 2, 3, 4, 5}     (c) R is symmetric
5. R is transitive
7. R is reflexive and transitive
9. R is reflexive, symmetric and transitive
10. (a)  (x, y) ∈ R if x – y ≤ 1

(b)  (x, y) ∈ R if x > y
(c)  (x, y) ∈ R if 1x y− ≤

Exercise 25.3
1. (a)  Equivalence relation:  [1] = {1, 3, 5}, [2] = {2, 4}, [6] = {6}

(b)  Equivalence relation:  [a] = {a}, a = 1, 2, 3, 4, 5, 6
(c)  Equivalence relation:  [1] = {1, 4}, [2] = {2, 5}, [3] = {3,6}
(d)  Not an equivalence relation. e.g., (1, 1) ∉ R

4. (b)  (a, b) R (c, d) if a c
b d

= , i.e., if the fractions  and a c
b d

 are equivalent

5. Not an equivalence relation. e.g., (1, 0) ∈ R, (0, –1) ∈ R but (1, –1) ∉ R
6. (a) Not an equivalence relation. e.g., (2, 1) ∈ R but (1, 2) ∉ R

(b) Not an equivalence relation. e.g., (1, 3) ∈ R, (3, 5) ∈ R but (1, 5) ∉ R
(c) An equivalence relation. Positive integers containing the same number of

decimal digits are in the same class. e.g., [1] = [2] = [3] = … = [9] ;
[10] =   [11] = … = [99] ;  [100] = [101] = [102] = … = [999]  etc.

Exercise 25.4
1. (a)    (b)    (c) (d)

1 1 1 0
2 0 1 0
3 1 0 1
4 0 1 1

a b c
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1 2
1 1 1
2 0 1
3 1 0
4 1 1
5 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 2 3 4
0 1 0 1
1 0 1 0
1 1 1 0

a
b
c

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 1 0
1 0 1

a b c
p
q

⎛ ⎞
⎜ ⎟
⎝ ⎠
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3. R is symmetric and transitive  (R is not reflexive since b R b)
4. Matrix has a leading diagonal containing 1s only.

Matrix is symmetrical about the leading diagonal.
The square of the matrix has zeros wherever the matrix has zeros.

5. R is not transitive on X : a R b, b R c but a R c.

Exercise 25.5
1. (a)  both     (b)  neither     (c)  both     (d)  both     (e)  neither     (f)  surjection

(g)  injection     (h)  neither     (i)  surjection     (j)  surjection     (k)  injection
(l)  both

2. 0x ≥   (or 0x ≤ ) ;  codomain = ] –∞, 1 ]

3. (a) 1:f x
x

a      (b) :f x xa      (c) : tan
2
xf x πa

4. (a)  bijection   (b)  not an injection nor a surjection   (c)  bijection
(d)  not an injection   (e)  bijection   (f)  bijection   (g)  not a surjection
(h)  bijection   (i)  bijection   (j)  bijection

Exercise 25.6
1. (a), (c), (d), (g), (h), (i), (l), (m), (n), (o), (p) are closed under addition.
3. (a), (b), (d), (e), (g), (j)
5. (b), (c), (d), (e)
7. {1}
9. {even integers}
11. {1}, {1, –1}

Exercise 25.7
1. (a), (b), (d), (e)
2. Yes
3. (b)  27     (c)  If any of d, e or f is a, then ( ) ( )d e f d e f∗ ∗ = ∗ ∗ . Only 8 checks.

Exercise 25.8
1. (a) –3     (b) 1

3      (c) ––     (d)  0
2. (a)  no identity   (b) e = (1, 0)   (c) e = { }   (d) e = U   (e) e = 6
3. e = 8

4.
1 0
0 1

e
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

5. (a) c     (b)  no identity

Exercise 25.9

1. (a) –8 – c     (b) 1
4c

 (c ≠ 0)     (c)
2 1

c
c
−

+
 (c ≠ 1

2− )     (d)  no inverse exists
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(e)
3 1

c
c −

 (c ≠ 1
3 )     (f) 8 15 ( 2)

4( 2)
c c
c
− ≠
−

4. 1 1 1 11 1, 2 3, 3 2, 4 4− − − −= = = =

5. (a) e = b, 1a− = a, 1b−  = b, 1c−  = d, 1d −  = c
(b) e = c, 1a−  = b, 1b−  = a or d, 1c−  = c, 1d −  = b

7. (a)  (i) 3 3x d+   (ii)  3

(b) ( ) 13 3 31 1 1
3 3 32 1 4 2

−
+ = − + , ( ) 13 3 32 1 4 2 1

−
− = + +

Exercise 25.10
1. 2

0 1 210 10 10n
na a a a+ + + +L ≡ 0 1 2 (mod9)na a a a+ + + +L

≡ 0 1 2 ( 1) (mod11)n
na a a a− + − + −L

3. 2 2
1 2 3 44, 4 4 2 1, 1 1 2 4, 1t t t t≡ ≡ + + ≡ ≡ + + ≡ ≡ , etc.

5. 16 16( 0t ≡ ,  mod 19)
7.

a x
1 1
3 7
7 3
9 9

Exercise 25.11
1. (a) 1 1 1 1 1 1

1 1 1 2 2 3 3 4 4 5 6 6 5, , , , , ,e p p p p p p p p p p p p p− − − − − −= = = = = = =
(b)  (i) 1p   (ii) 3p   (iii) 3p   (iv) 6p   (v) 4p   (vi) 1p

3. (a)
1 2 3 4 5
2 3 4 5 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (b)
1 2 3 4 5
2 1 3 4 5

⎛ ⎞
⎜ ⎟
⎝ ⎠

    [There are other possibilities.]

4. 6 times

Exercise 25.12

1. (a)
1 2 3 4 5
1 3 2 4 5

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (b)
1 2 3 4 5
2 3 1 4 5

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (c)
1 2 3 4 5
5 4 3 1 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

(d)
1 2 3 4 5
5 1 2 3 4

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (e)
1 2 3 4 5
1 2 3 4 5

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (f)
1 2 3 4 5
1 2 3 5 4

⎛ ⎞
⎜ ⎟
⎝ ⎠

(g)
1 2 3 4 5
2 4 3 1 5

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (h)
1 2 3 4 5
5 3 1 4 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (i)
1 2 3 4 5
5 3 1 2 4

⎛ ⎞
⎜ ⎟
⎝ ⎠

3. (a)  1     (b)  2     (c)  3     (d)  4     (e)  5     (f)  2     (g)  2     (h)  6     (i)  6
5. (1 a)(1 b)(1 c)  =  (1 a)(1 c b) = (1 c b a)
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(1 2)(1 3)(1 4) … (1 n) = (1 n (n – 1) … 4 3 2)

Exercise 25.13
1. (c), (e) and (g) are groups
3. (a)  group     (b)  not closed, no identity and no inverses     (c)  group

(d)  group
5. e = –2, 1a−  = –4 – a;  group
9. m must be prime

Exercise 25.14
3. 2x x=  has only one solution: x = e

The set of residue classes {2, 4, 6, 8} under multiplication, modulo 10 has 2 
elements x satisfying 3x x= . They are x = 6 (the identity) and x = 4.

5. a b e∗ =
7. (a) 2 1xy x−    (b) 3 1xy x−      (c) 4 1xy x−      (d) 1 1xy x− −      (e) 2 1xy x− −

(f) 3 1xy x− −

9. (a) (b)  3     (c)  6
Element 1 2 3 4 5 6
Order 1 3 6 3 6 2

11. (a) x     (b) 2x      (c) 2x      (d) x
13. 3

Exercise 25.15
1. {e, 6g },  {e, 4g , 8g },  {e, 3g , 6g , 9g },  {e, 2g , 4g , 6g , 8g , 10g } , 

12( )e g=
4. {e, a, b},  {e, c},  {e, d},  {e, f}
6. 1G  and 2G  are isomorphic ; 3G  is isomorphic to neither 1G  nor 2G

The "group" tables show this clearly.
11. The even integers under addition – 2 is a generator.

(a) True
(b) False – The set of 4 rotations about the origin through 0°, 90°, 180° and 

270° under 'follows' is cyclic and the rotation of 90° generates the group. 
The rotations through 0° and 180° under 'follows' form a proper subgroup.

13. (b) 12,  (0, 2)     (c)  (1, 1), (1, 2)     (d)  (iii) is cyclic
(e) (i)  (0, 2), (1, 0), (1, 2) have order 2     (ii)  (0, 1), (0, 3), (1, 1), (1, 3) have 

order 4
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Exercise 26.1
1. (a)  1   (b)  not convergent (c)  3   (d)  1   (e) 2

3    (f)  0   (g)  1   (h)  0
(i)  not convergent   (j)  2   (k)  0   (l)  0   (m)  4   (n)  1   (o)  0

3. (a)  150   (b)  7   (c)  189   (d)  15   (e)  90 002   (f)  84
4. (a) 406N ≥  (b) 688N ≥    (c) 9124N ≥    (d) 84N ≥

Exercise 26.2
1. (a)  1   (b)  not convergent   (c)  0.5   (d)  not convergent   (e) 1

2 π    (f) sin1

(g)  0.5   (h)  not convergent   (i)  1   (j) 21
8 π    (k)  0   (l)  not convergent

2. (a) A = –1, B = 1   (b) ln2
3. (a) A = 1, B = –1   (b) ln3
4. 2e – 2

Exercise 26.3
1. 8
2. 32

3

3. 1
44

4. 2 21
2 ( )m b a−

Exercise 26.4
1. (a) A = 1, B = –2, C = 1     (b) 1

2
3. (a)  converges     (b)  diverges     (c)  diverges     (d)  diverges     (e)  converges

(f)  diverges     (g)  diverges     (h)  converges     (i)  converges     (j)  diverges
(k)  diverges     (l)  converges     (m)  diverges     (n)  converges     (o)  diverges
(p)  converges     (q)  converges     (r)  converges (by result of Q2) 

Exercise 26.5
1. (a) converges     (b)  converges     (c)  converges     (d)  diverges     (e)  converges

(f)  converges
2. (a)  test is inconclusive   (b)  series is convergent   (c)  test is inconclusive
3. (a)  converges     (b)  converges     (c)  diverges     (d)  diverges     (e)  converges

(f)  converges     (g)  diverges     (h)  converges     (i)  converges

Exercise 26.6
1. (a)  diverges     (b)  diverges     (c)  diverges     (d)   converges     (e)  converges

(f)  converges     (g)  converges (h)  converges     (i)  converges
2. (c)  series is divergent
3. (a)  convergent     (b)  convergent     (c)  divergent     (d)  convergent

(e)  convergent     (f)  convergent
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Exercise 26.7
1. (a)  converges     (b)  converges     (c)  converges     (d)  diverges

(e)  converges     (f)  converges     (g)  converges     (h)  converges
3. (a) 1

3      (b) 1
56      (c) 1

12      (d) 1
36      (e) 3

64      (f) 1
512

4. (a)  0.400   (b)  1.000   (c)  0.007   (d)  0.632   (e)  0.406   (f)  0.316
5. (a)  converges absolutely     (b)  converges absolutely    (c)  converges absolutely

(d)  converges conditionally     (e) converges conditionally     (f)  diverges
(g)  converges absolutely     (h)  converges absolutely     (i)  converges absolutely
(j)  converges absolutely     (k)  converges absolutely     (l)  converges absolutely

Exercise 26.8
1. (a) 3 1x− < < − , r = 1     (b) 2

3 0x− < < , r = 1
3      (c) 2 1x− < < − , r = 1

2

(d) 1 3x− < < , r = 2     (e)  all x, r = ∞      (f) 1 1x− < < , r = 1    (g)  all x, r = ∞
(h) 8 2x− < < − , r = 3     (i) x = 3, r = 0     (j)  all x, r = ∞

2. r = ∞
3. (a) 7 1

2 2x− < < , r = 2     (b) 1 1x− < < , r = 1     (c) 1 1x− ≤ ≤ , r = 1
(d) 2 2x− < < , r = 2     (e) 2 2x− ≤ < , r = 2     (f) 3 3

2 2x− ≤ ≤ , r = 3
2

Exercise 26.9
1. (a) 1 2 2 31 1 1

2 8 16(1 ) 1 , 1x x x x x+ ≈ + − + <

(b) 2 2 3(1 ) 1 2 3 4 , 1x x x x x−− ≈ + + + <

(c) 3 2 2 33 3 1
2 8 16(1 ) 1 , 1x x x x x+ ≈ + + − <

2. (a) 3 2( ) 2( 1) 7( 1) 6( 1) 2f x x x x= − + − + − +

(b) 4 3 2( ) ( 2) 8( 2) 24( 2) 32( 2) 16f x x x x x= + − + + + − + +
 [To check these results, use synthetic division.]

3. 0.3679
4. 0.182 322

5. (a)
0

( 1)
e e

!

n
x

n

x
n

∞

=

−
= ∑      (b)

2 11
2

1

( )
cos ( 1)

(2 1)!

n
n

n

x
x

n

−∞

=

− π
= −

−∑

(c)
1

1

( 1)
ln(1 ) ln3 ( 2)

3

n
n

n
n

x x
n

+∞

=

−
+ = + −∑ (d)

0

1 ( 1) ( 1)n n

n
x

x

∞

=

= − −∑
7. (a) 2 31 1 1

3 6 216 3888( ) 9 3 ( 9) ( 9) ( 9)P x x x x x≈ + = + − − − + −      (b)  0.00002

(c) 10 3.1623≈

8. (a)
2 3 4

1
4

1sin( ) 2 1
2 2! 3! 4!

x x xx x
⎛ ⎞

+ π = + − − + +⎜ ⎟
⎝ ⎠

L

(c) ( ) 2 31 1 1 1 1
180 4 2 2! 3! 180

sin46 sin 2 1 0.719340
x

x x x
=π

⎡ ⎤° ≈ π + π ≈ + − − ≈⎣ ⎦
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Exercise 26.10
3. (a)  5
4. (a)  4   (b)  5
5. (b)  7   (c)  2.7183

6. (a)
1

ln(1 ) , 1 1
n

n

x
x x

n

∞

=
− = − − < <∑    (b) 10

( )
( ) d

(1 )

nx
n n

x t
R x t

t +

−
= −

−∫    (c)  11

7. (a)
2

0
cos ( 1)

(2 )!

n
n

n

x
x

n

∞

=
= −∑    (b)

(2 1)
2

2 0

cos ( )
( ) ( ) d

(2 )!

nx n
n

t
R x x t t

n

+

= −∫    (e)  5

8. 7.389 056
9. 0.841 471

10. (a)
2

0
cosh

(2 )!

n

n

x
x

n

∞

=
= ∑    (b)

(2 1)
2

2 0

cosh ( )
( ) ( ) d

(2 )!

nx n
n

t
R x x t t

n

+

= −∫    (c)  1.543 08

11. (a)
2 1

0
sinh

(2 1)!

n

n

x
x

n

+∞

=
=

+∑    (b) 2 1
2 1 0

sinh( )( ) ( ) d
(2 1)!

x n
n

tR x x t t
n

+
+ = −

+∫
(c)  0.304 520 29

Exercise 26.11

4. 3
0

1 1 ( 1)( 2)
2(1 )

n

n
n n x

x

∞

=

= + +
−

∑

5. 2
0

1 ( 1) ( 1)
(1 )

n n

n
n x

x

∞

=

= − +
+

∑
7. 2 31

3e sinx x x x x= + + + L

9. (a) ( )( )2 2 4 2 4 2 41 1 1 1 1
2 24 2 24 3cos 1 1 1x x x x x x x= − + + − + + = − + +L L L

(b)
2 4

2 41 1 1 1
2 2 2 3

(2 ) (2 )(1 cos2 ) 1 1
2 24
x xx x x

⎛ ⎞
+ = + − + + = − + +⎜ ⎟

⎝ ⎠
L L

11. (a)
4 3

2
0 0

sin d ( 1)
(4 3)(2 1)!

nx n

n

x
t t

n n

+∞

=
= −

+ +∑∫

(b)
0

1

1  d
2 2

nx

n
n

xt
t n

∞

=

=
− ∑∫     (0 2x< < )

13. (a) 2
2

0

1
1

n

n
x

x

∞

=

=
−

∑ , 1x <      (b)
2 1

0

1
ln 2

1 2 1

n

n

x x
x n

+∞

=

+⎛ ⎞
=⎜ ⎟− +⎝ ⎠

∑ , 1x <

15. (a) 1
1 0

( 1)
( ) d ( 1)

( 1)!

nx n

n
f t x x

n

∞
+

=

−
′ = −

+∑∫      (b)  0.2212



Answers

812

Exercise 26.12
2. (a) –1   (b)  1   (c)  3   (d) ln2   (e) 1

8−    (f) –1   (g)  1   (h)  2   (i)  3
(j)  no limit   (k)  0   (l)  1   (m) 6

11−    (n)  no limit   (o) ln3
3. (a)  0   (b)  0   (c)  0   (d)  1   (e)  0   (f)  1

Exercise 26.13

2.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

3.
The general solution is 2 2x y k+ =  which is a family of concentric circles 
with the origin as their centres.
This confirms the results from Question 2.

Exercise 26.14
1. (3.1) 3.1, (3.2) 3.2y y= =

The general solution is e xy x c −= +  and the particular solution for which 
(3) 3y =  is the straight line y x= . Since this line has constant slope, Euler's 

method must produce exact answers.
2.

 x   y
3   9
3.1 9.6
3.2 10.2
3.3 11.5
3.4 12.2
3.5 12.9
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3.
x   y
1   2
1.1 1.73
1.2 1.52
1.3 1.36
1.4 1.24
1.5 1.14

4. (a)
x   y
3   9
3.1   9.6
3.2 10.23
3.3 10.88
3.4 11.54
3.5 12.24

(b)

2 2.5 3 3.5 4

x

y

All the solution curves drawn are virtually indiscernible  over the domain shown 
in the diagram above and the radius of curvature at any point on each curve is 

quite large so that d   and
d
y y
x x

δ
δ

 in each interval are extremely close.

Exercise 26.15
1. (a) ln( )y x cx=      (b) ( 3)y x cx= −      (c) ( 1)y x cx= −

(d) 21
2 ( 1)y x cx= +      (e) 2 22 lny x cx=    (f) [ ]( )lny x c x y= +

(g) ln( ln )y x c x= −      (h) ecxy x=      (i) 2(2 ) ( )x y x y c+ − =

(j) 4(2 ) ( )y x c x y− = +

4

8

12
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2. (a) 2 2 410x y x+ =      (b)
2 2

2 2 e2 ln
4
yx y

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
     (c)

1
2

ln 2
y x

x
⎛ ⎞= − +⎜ ⎟+⎝ ⎠

(d) 2 22 2y xy x− − =

3. (a) 2
21

1 e xy x
c

= − +
−

     (b) arcsin( e )xy c x= −      (c) 1 ln( )y x c
x

= +

(d) ( )4 2
2arctan ln
y

c x y
x

⎛ ⎞ = +⎜ ⎟⎝ ⎠

4. (a) 1 2 3y x x= + − −      (b) 2
2

1 exp( )
y

x
=

+ −
     (c) 6 19 2 1y x x= + − −

(d) ( )1ln exy x+= −

Exercise 26.16
1. (a) e 2xy c= −    (b)

2

e xy c −=    (c) 22e ex xy c −= +    (d)
2 2e 1xy c −= +

(e) e ( cos )xy c x−= −    (f) csc ( )y x x c= +    (g) e ( )kxy x c−= +

(h) 1 siny c x= +    (i) 2 (e )xy x c= +

 2. (a) 1 e xy x c −= − +    (b) 2( 1) e xy x c= + +    (c) 7 1
49e (7 1)xy c x= − +

(d) 2 3y cx x= −    (e) 31
10 (3sin cos ) e xy x x c −= − +    (f)

2 2e (e )x xy c−= +

(g) 1
22

1 ( 4arcsin )
4

y c x
x

= −
−

3. (a) e ( 1)xy x= −    (b) tan 2secy x x= +    (c) 3e ( 1)xy x= +

(d) 2 1 e xy x −= + −    (e) 2y x x= −
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Equations 
discriminant 37 
homogeneous 231,753 
irrational 16 
linear systems 231 
polynomial 511 
quadratic  42 
trigonometric 98 

Euler's method 751 
Exponents     17 
Factor theorem 502 
Factorial notation 191 
Frequency 

cumulative 174 
histograms 167 
tables 165 

Functions 
circular     87,103 
composite 129 
derived 252 
domain & range 123 
exponential   20 
exponential derivatives 465 
exponential integrals 475 
general quadratic 36 
inverse 132 
limits of 245 
logarithmic 20 
logarithmic derivatives 470 
modulus 9 
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Taylor polynomials 729 
trigonometric 81 

Gaussian elimination 232 
Gradient of a curve 250 
Gradient of a straight line 249 
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Abelian 687 
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cyclic 687 
cyclic notation 679 
definition 681 
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Irrational equations 16 
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l'Hôpital's rule 746 
Lagrange's theorem 689 
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l'Hôpital's rule 746 
of functions 245 
theorems 248,700 

Linear equations 
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solutions 232 
systems 231 

Logarithms 
determination of formulae 25 
growth & decay 24 

Maclaurin series 728 
Mathematical Induction 

conjectures 495 
principle 487 
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Matrices 
addition 210 
algebra 222 
augmented 232 
determinant 217 
dimension 209 
Gaussian elimination 232 
inverse 223 
multiplication 212 
scalar multiplication 211 
transpose 211 

Mean 170,394,587 
Median 172 
Mensuration of the circle 94 
Mode 173 
Modulus 

complex numbers 526 
inequalities 9 

Optimisationn 275 
Percentiles  176 
Permutations  

counting 192 
groups 676 

Poisson distribution 406 
Polynomials 

addition 498 
contracted division 506 
definition 497 
division 499 
equations 511 
factor theorem 502 
multiplication 498 
remainder theorem 502 

Power series 725,741 
Probability 

Bayes' theorem 380 
binomial 383 
complementary events 371 
conditional 379 
elementary theory 370 
independent events 376 
mutually exclusive events 376 
sets 365 
sum & product laws 375 
tree diagrams 373 
Venn diagrams 366 

Product principle 189 
Product rule 345 

Quadratic equation 42 
Quartiles 176 
Quotient rule 347 
Random Variables 

Bernoulli distribution 402 
Binomial distribution 403 
continuous 549 
definition 389 
exponential 609 
geometric 603 
hypergeometric 600 
negative binomial 606 
normal distribution 413 
Poisson distribution 406 
uniform – continuous  551 
uniform – discrete 599 

Rational functions 358 
Real Numbers 

exponents 17 
irrational equations 16 
modulus 9 
order properties 7 
roots & surds 11 
subsets 5 
surds 12 

Relations & Functions 
bijections 664 
binary relations 652 
composition of functions 129 
domain & range 123 
equivalence classes 656 
equivalence relations 655 
injections 662 
inverse functions 132 
matrices of relations 658 
surjections 662 

Remainder theorem 502 
Residue classes 673 
Sequences 

arithmetic 144 
definition 143 
geometric 152 
infinite 697 
limit theorems 700 
squeeze theorem 700 

 Series 
absolute convergence 722 
alternating 721 
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arithmetic 148 
geometric 155 
infinite geometric 160 
Maclaurin 728 
power series 725,741 
sigma notation 148 
Taylor 728 
tests for convergence 708 

Sets 
binary relation 652 
Cartesian product 651 
equivalence relations 655 
laws of algebra 648 
order 649 
partitions 650 

Sine rule 65 
Slope fields 750 
Squeeze Theorem 700 
Standard deviation 182,398 
Statistics 

box & whisker plots 178 
central limit theorem 618 
contingency tables 640 
cumulative frequency 174 
discrete distributions 389 
expected value 394 
frequency histograms 167 
frequency tables 165 
goodness of fit 638 
interval estimates 617 
mean 394,587 
measures of dispersion 181 
median 172 
mode 173 
normal distribution 413 
p-values 631 
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sampling 612 
significance testing 624 
standard deviation 182,398 
statistics 165 
student's t-distribution 632 
variance 182,398,587 

Surjections 662 
Tables, frequency 165 
Taylor series 728 
 
 

Theorem 
Bayes' 380 
binomial  203 
central limit 618 
de Moivre's 539 
factor 502 
remainder 502 
squeeze 700 

Tree diagrams 373 
Triangles 

cosine rule 72 
sine rule 65 

Trigonometry 
addition formulae 108 
calculus 447 
cosine rule 72 
csc, sec, cot 103 
derivatives 449,459 
double angle formulae 84 
duplication formulae 114 
equations 98 
functions 81 
graphs 81,87 
half-angle formulae 116 
integrals 456,461 
inverse functions 138,557 
limits 447 
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sine rule 65 

Variance 182,398,587 
Vectors 

algebra in 2D 288 
algebra in 3D 302 
components 288 
definition 281 
equation of a line in 2D 298 
equations of a line in 3D 315 
equations of a plane 318 
orthogonal projection 294 
position 285,302 
scalar product 292,302 
unit 288,302 
vector product 305 

Venn diagrams 366 




