
CRITERION A
Defining the problem

‘Ewenty’ is a small company which specializes in organizing sport competitions (called
events). The events range in types (e.g. football match or basketball match), and each has a
specific number of places available. Currently the company has two venues for its events: a
sports field and a swimming pool. Attending an event requires the client to book it in
advance - currently this can be done by calling the company’s office and agreeing on a date.
The company is growing, so phone booking event places starts to become very inconvenient.
Five months ago, when I attended a swimming competition organized by ‘Ewenty’, a worker
told me about the issue. I realized that this was a good opportunity for my IA, so I offered to
build a website. The company accepted my proposition and we scheduled a meeting to
further discuss the details.

Rationale for solution

The website for company ‘Ewenty’ will be divided into two sections: a section for company
workers and clients. All users, after registration, will be able to book and unbook event
places. In additional company workers will be able to create, edit and delete events. They
will also be able to view, which users booked which events, as well as, details the users gave
during registration. This will help solve the company’s problem, because users will be able to
book events at any time, without any interaction with the company’s staff, which, on the
other hand, will have all the users, who plan to attend a specific competition, grouped.

The website will consist of two parts: the front-end and an API. The API will be built in
Node.js – a JavaScript runtime environment – using the Express framework. I decided to use
Node mainly because I am already familiar with it. I also think that it is a good choice for this
project because it is scalable and fast, so it will be able to serve the company even if it grows
very large. Node.js also has NPM (Node Package Manager) built in, which gives developers
access to thousands of libraries and therefore makes development easier. I will use
Express.js because it provides a level abstraction for Node.js and therefore makes
development faster. The API will also have to communicate with a database, specifically
MongoDB, which will be used to store users and event details. I decided to use this NoSQL
database because I think it will work well Node.js as it stores records in JSON format, which
is very convenient to use with JavaScript.
For my front-end I decided to use React.js. First of all, React makes it possible to easily
create a single page application which my client requested. Secondly, React provides a
component based structure which allows greater reusability and therefore better code
organization.

Success criteria
1. Clients and admins can login with existing accounts
2. Clients can create accounts themselves

3. Admins (company workers) can add and edit events
4. Admins can delete events which causes the cancelation of reservations for all users

who booked that specific event
5. Admins can view users’ information
6. Users can book/unbook events
7. If the number of places for an event has been exceeded the website doesn’t allow

any additional users to book a place for this event
8. Website doesn’t refresh
9. All user inputs must be validated
10. Clients can book both a swimming and field event on the same day

Words: 457

CRITERION B
Database schemas:
User schema:
{
 name: String,
 surname: String,
 address: {

city: String,
street: String,
number: String

 },
 password: String,
 email: String,
 joinDate: String,
 admin: {type: Boolean, default: false},
 swimmingEvents: [{type: Schema.Types.ObjectId, ref: 'Swimming'}],
 fieldEvents: [{type: Schema.Types.ObjectId, ref: 'Field'}]
}

Swimming event schema:
{
 jacuzziAvailable: {type: Boolean, default: false},
 style: String,
 date: Date,
 places: Number,
 users: [{type: Schema.Types.ObjectId, ref: 'User'}]
}

Field event schema:
{
 type: String,
 date: Date,
 places: Number,
 users: [{type: Schema.Types.ObjectId, ref: 'User'}]
}

Interface:
Home page:

Welcome to company Ewenty!

Book an event!

Button linking to the
book page

Book page:

Login page:

Field event calendar,
clients book events by
clicking on a day with

an event available

Email address

Email address

Password

Password

Submit
Don’t have an account?

Field for email
address

Field for password

Button to login

Button to move to
register page

Swimming calendar,
clients book events by
clicking on a day with

an event available

Register page:

Name

Name

Surname

Surname

Email

Email

City

City

Street

Street

Street Number

Street Number

Password

Password

Confirm password

Password

Submit

Input box

Box title

Button to
submit

registration

Profile page (customer):

Profile page (admin):

To create/edit/delete an event, the admin must click on the day, on the calendar, of the
event. The following modal will show up in the center of the screen:

Hi, NAME

Wednesday 10 July 2019
In 2 days

Unbook

Wednesday 10 July 2019
In 2 days

Unbook

Greeting message,
generated

automatically using
the user’s name

Events booked by user,
with date and time to
event – generated
automatically

Button to unbook event

List of all user and their
information

Calendar to
create/edit/delete
swimming events –

similar to the one on
the book page

Add new event
Add new event for June 1st 2019

Places

0

Cancel Add

Input field for number of
places available

Buttons to add or
discard changes to the

event

Delete button, rendered
automatically

Calendar to
create/edit/delete field
events – similar to the
one on the book page

Style/activity

Input field for style or type
of activity (depends

whether admin is creating a
swimming or field event)

Jacuzzi available

Slider determining
whether jacuzzi is

available, rendered
only for swimming

events

Flowcharts
Create/update event

Delete event

Book/unbook event

Test plan
Action to be tested Test method Expected result Success criteria
Clients are able to
register

Input appropriate data
into the form on the
register page. Submit.

User created in
database

2

Users are able to login Go to the login page
and input correct
credentials (of user who

User cookie, which
corresponds to the
appropriate user,
gets created.

1

is already in the
database).

Admins can add events Go to the admin
dashboard. Select a
date on a calendar.
Input number of places
to the modal being
displayed. Click
‘submit’.

Event gets added to
the database with
appropriate data.

3

Admins can edit events On the calendar (on the
admin dashboard), click
on a day which has an
event already created.
Change number of
places and submit.

Event in database
has the number of
places changed.

3

Admins can delete
events

On the calendar (on the
admin dashboard) click
a day which has an
event on it. Click the
delete icon on the
model.

Event no longer
exists in database.
The reservation of
this event is
canceled from all
users who booked
it.

4

Admins can view users’
information

On the admin
dashboard check, with
database, if the table
contains correct
information.

Table contains all
the user records
from the database.

5

Users can book events On the book page click
on a day with an event
available.

Event was added to
user’s list of booked
events in database.

6

Users can unbook
events

On the book page click
on a previously booked
event.

In database, event
was removed from
user’s list of booked
events.

6

Don’t allow to book
event if no places are
left

Check if the event which
has all of its places
occupied is disabled on
the calendar (i.e.
clicking it doesn’t
trigger any action)

Event is disabled on
the calendar.

7

Page doesn’t refresh Go to each page of the
application (using the
navbar links), check if
the page doesn’t reload.

Website doesn’t
refresh at all.

8

Input validation Input inappropriate
data to each form.

Error message
displayed and no
other action taken.

9

Clients can book both a
swimming and field
event on the same day

On the book page click
on a field and swimming
event on the same day
in order to book each
one of them.

Both events were
added to the user’s
list of booked
events in the
database

10

CRITERION C
Dependencies
Backend:

1. Bcrypt.js – used for hashing and comparing hashed users’ passwords
2. Body-parser – used for parsing the body of POST requests
3. Cookie-session – used to create a session cookie on the client when a user logs in
4. Express – Node.js framework which speeds up development
5. Express-validator – used to validate user input
6. Mongoose – Used to communicate with the database (MongoDB)
7. Passport & passport-local – used for user authentication

Frontend:
1. Material-ui – pre-built components, used to make the website look nice
2. Axios – HTTP client, used to send HTTP requests to the server
3. Moment – Used for parsing dates
4. React – library for creating user interfaces
5. React-calendar – calendar component
6. React-redux – Binds react with redux
7. Redux – used as a global store of data on the client

Handling asynchronous code
A lot of actions in this web app, such as database queries and HTTP requests, are
asynchronous – they run separately from the primary application thread. This asynchronous
nature is very useful because it means that the execution of code isn’t blocked by a single
action that might take long (e.g. a database query might take 100 milliseconds) and in result
makes the web app run faster.

The code above is a part of the server route responsible for booking an event (a flowchart of

it was presented in the Design section). In the first line an asynchronous callback function is
created using the async keyword. Asynchronous functions allow to use the await keyword
inside them which pauses the execution of this function and waits for the passed Promise’s
resolution. This allows for a very clear syntax and therefore good code readability. An
example of the use of the await keyword can be seen in line 12. Here, it pauses the code
until the query of the Swimming event collection finishes and is assigned to the event
variable. Without this await keyword the code would just proceed without waiting for the
database query to finish and in result the event variable would be undefined.

Validation
All user input is validated on the server to make sure that it’s in a correct format. This not
only prevents errors on the server but also greatly increases security by, for example,
preventing NoSQL injection attacks.

The code above is a part of the server route responsible for user registration. A request is
sent to it from the client when a user submits the registration form. Most validation here is
performed using the express-validator library. Here, it is used as middleware, which means
that it runs before the callback function. The validation results are attached to the request
object. If any validation errors occurred they can be accessed in the callback function using
the validationResult() function (imported from express-validator). If there are any errors a
JSON response is returned (which exits the callback and therefore stops later code from
executing) with the message of the first validation error that occurred. Also, if no validation
errors occurred the password is validated to be eight characters or longer using a regular
expression. If it fails, the validation also a JSON response with an error message is returned.
If all validation is successful, the rest of the code continues.

Redux
During the development of my front-end I realized that as the website started to consist of
more and more components the data flow was harder to manage. After some research I
decided to use Redux - a state container for React applications, which acts as a global store
of data.

Both the logged in user and all the swimming and field events are fetched from the server
when the main component (App.js) mounts. The mapDispatchToProps() function, that adds
two functions (fetchUser() and fetchEvents()) to the component’s props, is created and
connected to the global store (Redux) using the connect() function imported from the react-
redux library. After the user and events are fetched they are sent to the global store
controller using the fetchUser() and fetchEvents() functions. Part of this global store
controller is shown below:

It receives the actions dispatched (called) from other components. Each action has a certain
payload and a type based on which the global state is updated.

To access the global state (store) from a different component a function mapStateToProps()
must be created and together with that component connected to Redux:

The example above shows the Book component, responsible for booking events, which has
both the state and actions which change it connected to it.

Query strings for reusability
The web app has two types of events: swimming and field. At the beginning I was developing
separate handlers for each event type i.e. there was a separate route for unbooking a
swimming event and a separate one for unbooking a field event. I soon realized that this
resulted in a lot of repetition and I tried looking for an alternative. After some
experimentation I decided to settle on using query strings to send the appropriate type to
the API and perform operations based on that.

This is the function that is called when the user clicks the unbook event button on his profile
page. Each button has a data-type attribute that is either set to swimmingEvents or
fieldEvents (same name as fields of events in user records in the database) depending on the
event type. After extracting the type and id attributes from the clicked button a post request
is sent to the profile route (which is responsible for unbooking events from the profile page).
The id of the event being unbooked is sent in the body of the request while the type is
included in the query string (although the type could also be sent in the body, some other
HTTP request performed by the web app, such as PUT, can’t have a body but still need to
send the type which can only be achieved in a query string. Therefore, here the type is sent
in a query string for consistency).

The code in the profile route extracts the type from the query string and based on it, it either
fetches the event from the Swimming or Field collection.

Words: 1049

CRITERION E

1. Clients and admins can login with existing accounts
a. MET
b. Users can login on the /login page, if the credentials are correct the user is

logged in, otherwise an error message is displayed.
2. Clients can create accounts themselves

a. MET
b. Users can register on the /register page, if no other user with the same

username exist, they will by successfully registered.
3. Admins (company workers) can add and edit events

a. MET
b. Users with admin privileges can add or edit (if the event already exists) an

event by clicking on a specific day of the calendar and filling out the necessary
fields.

4. Admins can delete events which causes the cancelation of reservations for all users
who booked that specific event

a. MET
b. Admins can delete an event by clicking on its bin icon.

5. Admin’s can view users’ information
a. MET
b. A table with all the users and their corresponding information is displayed on

the admin page.
6. Users can book/unbook events

a. MET
b. On the /book page users can book (or unbook if they already booked it)

events by simply clicking on the day with the desired event.
7. If the number of places for an event has been exceeded the website doesn’t allow

any additional users to book a place for this event
a. MET
b. Calendar tiles with events which have no more places left, are disabled and

therefore don’t allow to be booked.
8. Website doesn’t refresh

a. MET
b. All the pages of the web app cab be accessed (using the navbar) without it

refreshing
9. All user inputs must be validated

a. MET
b. Each endpoint of the API validates user input. If the input doesn’t pass the

validation an error message is sent and the code stops executing.
10. Clients can book both a swimming and field event on the same day

a. MET
b. On the /book page users can book both a swimming and field event for the

same day.

Improvements
- Confirmation question before deleting an event. The client mentioned that,

during testing, workers accidently deleted a few events while trying to edit them.
The confirmation dialog would make sure that the user double checks before
deleting.

- Mobile responsibility: Although some parts of the app are responsive, most
aren’t. The client asked to make the whole website responsive, to provide a
better experience for potential users who would visit it using a mobile device.

Extensibility
The client was very satisfied with the final result, as it met all of his requirements. After
some additional discussion we concluded that the following future extensions could be
added:

- Live updating the number of places for each event – as long as the user stays on
the /book page the number of places isn’t updated, which means that sometimes
it might be misleading (an event isn’t disabled event though all the places for are
already booked). WebSockets could be used to provide live changes.

- Allowing users to edit their profile – currently users are unable to change any
information. This means that if they, for example, move houses, they have to
create a new account with the updated information. This results in a duplicate
accounts.

Words: 501

Interview with CEO of company Ewenty
Me: Good morning, as agreed, I will build a website, which will allow you company employees to add
events, which later can be booked online by clients. Could you please provide me with a bit more details
regarding the overall design of the web app?

CEO: Yes, of course. First, it would be very nice if clients were able to create an account rather than
provide their personal details every time, they book an event. Is programming this possible?

Me: Absolutely. What information exactly do you want the clients to provide during registration?

CEO: First name, surname, email address, city, street and street number.

Me: Ok, thank you. Could you also provide a bit more detail regarding the creation of events by
company workers?

CEO: As you might already know, our company organizes two types of events: a swimming competition
and a field competition. The company workers should be able to create each event on a desired date
and specify the number of places available for it. Additionally, for swimming events the swimming style
as well as whether the jacuzzi is available should be specified, while for field events the activity type.
Also, the company workers should be able to edit/delete the events once they are created and view the
name and surname of the users who booked them.

Me: Fine, I am thinking of placing two calendars on the admin dashboard – one for swimming events
and the other for field events. Once the employee clicks on a specific day a modal would be displayed,
where the employee could add/edit information about the event on that specific day. He could also
delete it by clicking a dedicated button on the model. Does that sound fine?

CEO: Yes, perfect. Could you also apply the same design to the page where clients can book events? It
would be nice to also have two calendars on that page with information about an event on each day.
Clients would book/unbook events by clicking on the day with an event available.

Me: No problem. The days with booked events will have a green background color so that clients can
easily distinguish between them and the one which they haven’t booked.

CEO: Also, don’t worry a lot about the home page. Since we already have an information website, the
homepage doesn’t need to be very detailed. A button encouraging users to book events would be
enough.

Me: OK

CEO: Could you also include a client’s profile page, where each client would have a list of all the events
he booked. This will make it easier for clients to manage their events.

Me: No problem, would you like an unbook button next to each event on the client’s page?

CEO: If it's not a big problem, yes. The company would also highly appreciate if the website wouldn’t
reload when the user changes pages, as this will create an impression in clients that the website is more
modern. Is it possible to build something like this?

Me: Yes, that won’t be a problem.

Final Interview with CEO of company Ewenty
Me: Good morning, how did you like the website I presented to you?

CEO: A lot, thank you! The thing that could be improved in the future is making the website mobile
friendly since right now some of the elements don’t look that nice when viewed on a smartphone.

Me: I see. Is there anything else?

CEO: I think this is a minor thing but two of the admins accidentally deleted events. Displaying a
confirmation dialog before deleting an event would be nice.

Me: Ok. How do you think the website could be further extended in the future?

CEO: I think that allowing users to edit their profile information such as the address would be suitable.
This would allow users to change their account information when they are for example, moving homes,
instead of creating a second account.

Me: I personally also think that some sort of live update should be added to the booking page so that
users don’t have to refresh the page to see live changes.

CEO: That’s an excellent idea, thank you!

Me: Thank you!

