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Abstract 

The research question for this essay is "To what extent was t h e 

method of infinite descent conclusive in proving Fermat's Last 

Theorem?" Fermat's Last Theorem is one of the greatest problems 

ever encountered in mathematics, and it became a real fascination of 

mine after reading about it. I discovered that the method of infinite 
I,\ •. ~ ? 

descent was a common appearance among these books, so I decided to ..., -......v 

investigate how conclusive it was in proving Fermat's Last Theorem and {) 
- - I I U \- \o,.e UtP\ 

thus emerged my research question. f1. 4 ~~" ,.. ... ~~ ~e;!,...\A..o tv,r 

This essay focuses on the proofs used by Euler, Dirichlet and Kum- ·• ~~~a~:c~ \
mer, and how the method of infinite descent is used in each of them. The ~ ~ w(T"fcA:w. ~ ~ 
proofs themselves are not focused on in detail, only a brief summary of ~4! rt ~ <' c\... 
how the proof works can be given seeing as how the proofs are exten

sive, although beautifully elegant. Euler 's proof of n = 3 was the first 

looked at , as it presents the template for the method of infinite descent. 

Dirichlet's and Kummer's proofs were then investigated afterwards, ob-

serving how the meLhod of infinite descent evolved to work for different 

exponenLs of Fermat's Last Theorem. 

'\uh~ .A~ 
~~ \MA~<?w..uc-\t 

T he method that Ernst Kummer used to prove Fermat's Last The

orem for specific exponents was at first made for regular primes, but 

was then adapted for irregular primes. This led to Fermat's Last T he

orem being proved for all prime exponents up to 4 million with the aiel 

of computers. This might seem conclusive enough, since 4 million is a 

relatively large number , however no one knows for sure that it might not 

work for prime numbers above 5 million. Therefore the conclusion is that 

the method of infinite descent is useful in giving,.an idea as to whether 

Fermat's Last Theorem is true or not, b~ will(neY;p conclusi~!Y_Qrovc D. J 

~- _ '"" "w CQN. ~ \)-V. ~ kc.. ~ :;) , ~ ~ (..v _..,._ ~Pt \..t ci 
Word Count: 295 \1\M~--\::_· ~t~ C.C~ c.~~;~ · 
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1 Introduction to Fermat's Last Theorem 

(FLT) 

1.1 Pythagoras Theorem 

Fermat's Last Theorem is lmown to be one of the greatest mathematical 

problems the world has ever encountered. Its simple look is deceiving, 

troubling mathematicians for 350 years untH Andrew Wiles cracked it in 

1995. The histmy of this problem starts in the sixth century B.C. with 

Pythagoras of Samos. During t his essay I shall be referring to Fermat's 

Last T heorem as FLT. 

As Simon Singh said in his book 'Fermat's Enigma', "Usually half the 

difficulty in a mathematics problem is understanding the question, but 

in this case it was straightforward-... " 1 The problem of Fermat's Last 

Theorem looks very familiar to most people as it is based on Pythagoras' 

Thf>..orem, a theorem engraved in millions of people's brain: ( 

\-v\l~"' "u].t \S . ? 
( x2 +y2 = z2 / \..,.~~\ ~ JC l' :::> 

Pythagoras of Samos and his brotherhood in Croton, Italy, managed 

to find a very elegant proof for tllis, one of their biggest successes, su bse-

q uently leading t o one of the gr$test mathematical problem of all t ime. 
\. u_,~, \- ? 

1.2 The beginning of Fermat's Last Theorem 

Inevitably, t his led to mathematicians asking themselves what would 

happen if the power in the equation was changed from '2' to '3' so that. 

it looked like this: 

I Singh J 998, p.6 
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. . 

No one knew that they had unleashed a monster of an equation, and 

although finding s~lutioliS to Py}hagoras thcore1p, also called Pythagorean 

triples, was relatively easy, finding solutions to this new modified ver

sion s~ed to be impos§ib]e. If the power in the equation is changed 

to an even higher number, finding solutions appears to be equally im

possible. For centuries, mathematicians tried to find solutions to these 

modifications of Pythagoras' theorem with no success. Tbis led the great 

seventeenth-century French mathematician Pierre de Fermat to believe 

that the reason nobody could find any solutions was because there were 

no solutions. In the margin of bis copy of Diophantus' Arithmetica, he 

noted his observations: 
~ ':_\:~ 

Propositi~n 1 It is impossible for a cube to be written as a sum of two 

cubes~· 'a fo'tt~ power to be written as the sum of two fmtrth power·s 

or, in general, for any numbe1· which is a power greater than the second 

to be written as a sum of two like powers. r\ v 

This gave birth to an adventure that would last 350 years to p~ove 

Fermat's Last Theorem with some successes but many failures. Th(('J!rs~ 

success would come with Leonhard Euler in the 18th century when he 

discovered a proof for the case where the power of the equatiou is 3. 

s {\C'.\.~('1\.~ 
2 Proofs of Fermat's Last Theorem ( 

2.1 Euler and the method of infinite descent 

The method of infinite descent was the first method used to try and solve 

Fermat's Last Theorem for specific exponents, the first ones being n = 4 

and later on n = 3. This method is a particular form of proof by con

tradiction (sec further) and it is seen in Fermat's jottings in Arithmetica 

by Diophantus. Fermat used this method to prove the case for n = 4, - - 1J 
2 



and this is the most complete calculation by Fermat he ever committed 

~r. j ,1 ~ . \-'- vr. Ci..-, M -''~'~t) ¥\.,. <- • \ tt-"~ 
The method of infinite descent is very simple to understand. You 

begin by assuming that there is a solution to Fermat's Last Theorem for 

n=4: 

x=XJ/y=~/z=Z1 r.o tT , 

After examining the properties of this solution, you can sho~ that if 

this solution does exist, t hen there must be a smaller solution (X2, Y2 , Z2 ). 

If you then examine this solution, you can find an even smaller solution 

(X3 , Y3 , Z3 ). This can be done infinitely many times, finding infinitely 

many smaller solutions. However, the solutions to Fermat's Last Theo

rem must be whole numbers, therefore you cannot have infinitely many 

smaller solutions tha ar~ whole numbers so you reject the asswnption ~ 

that there is a t;~t(!'On {l Fermat's Last :Theorem for n = 4. 

Leouhard Euler saw this proof by Fermat and used this as his starting 

point for finding a general proof to prove all other cases of FLT. Euler 

started by attempting to prove FLT for n = 3. He adapted thic; method 

of infinite descent used by Fermat and was able to prove it . This was the 

first major breakthrough on FLT since Fermat himself, and it motivated 

more mathematicians to start working on it. In the following section 

I will show how Euler proved that there were no solutions to Fermat's 

Last Theorem for n = 3 using the method of infinite descent. 

2.1.1 Euler's proof for n = 3 

2The first thing Euler did was to assume there was a solution for Fermat's 

Last theorem for the case where n = 3. 

An important part of the whole proof is showing that different num-

2 Eel wards 2000 
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r,J- \~_?) 
bers are coprime:) The first time he does tlus is when he shows t hat 

~;, y, z are coprime. To do this he proved that if an integer d divides 2 

numbers in Fermat's Last Theorem, then d'~'~ divides the nth power of 

t he third. After that he proved that if dn divides xn then d divides t hat 

number x. By doing this he showed that if 2 of the numbers in FLT have 

a greatest common divisor larger than 1, then this number also divides 

the 3rd number. Therefore you can divide all of them by that number 

and keep doing this until they are coprime. 

Euler then went on to show that if x, y, z are coprime, then there 

exist two integers p, q such that: 

1. gcd(p, q) = 1 

2. p, q are positive 

3. p, q have opposite parity (one is odd, one is even) 

4. 2p(p2 + 3q2
) is a cube 

He later proved that the greatest common divisor of 2p , p2 + 3q2 can 

only be 1 or 3. Euler did this by showing that the greatest common 

divisor cannot be 2 because p2 + 3q2 is odd and it can't be any prime 

larger than 3 by showing that it would divide both p and q, going against 

p aud q being coprime. 

By doing this, Euler cau show that (2a)(a- 3b)(a + 3b) is a cube 

because (2a)(a- 3b)(a+ 3b) = 2a3 - 18ab2 = 2p (2p is a cube). Again he 

shows that 2a, a - 3b, a+ 3b are coprime so that each of them is a cube. 

And thus he found a new solution to Fermat 's Last Theorem for n = 3 

since A 3 = 2a = (a + 3b) + (a - 3b) = B 2 + 0 2
. He then showed that this 

new solution is smaller than the previous solution. This argument can 

be done infinitely many times and so there is a case of infinite descent . 

Since the solutions to Fermat's Last Theorem must be whole numbers, 

this is contradictory so he rejects the initial assumption that there exists 

a solution to Fermat's Last Theorem for n = 3. 

3Coprime: Two integers a, bare said to be coprime if their greatest common divisor 
is 1 (tlley have no common positive divisor ot her than 1) 

4 



In tbjs proof we see the fundamental principles of the method of infi

nite descent. Euler assumed a solution existed, and tlu·ough some ~ 

number theory, (greatest common divisors, and proving two numbers are 

coprime) Euler was able to prove that if a solution did exist, then an

other solution must exist . T his solution 2o., a- 3b, a+ 3b is shown to be 

smaller than the first solutions and this process can be repeated infinitely 

many times, which would make no sense. Therefore there is no solution 

to FLT for n = 3. The original proof for n = 3 is much lo~er ..t:(lan 

the condensed version I have presented, as I have only shown the mosJ, --important parts of the argument leading to the final conclusion. This 

method was adapted from Pierre de Fermat's proof of n = 4, and it was 

the first major breakthrough of Fermat's Last Theorem after Pierre de 

Fermat hin1Self. Mathematicians went back to work, and the method of 

infinite descent seemed promising to give a final proof for all exponents 

of Fermat's Last T heorem. 

2.2 Dirichlet, Sophie Germain's Theorem, proof by 

contradiction 

Proof by contradiction is a very popular form of proof in the world of 

mathematics, and can be seen in many cases, for example proving the 

irrationality of ..;2. It is very similar to the method of infinite descent. 

seen previously, a.c:; that itself is a type of proof by contradiction. To 

explain how proof by contradiction works, I will usc t he example of 

proving the irrationality of ..;2. 
You start by assuming that something is true, in thic:; ca.c:;e you assume 

that ..j2 is rational. If ..j2 is rational, then it can be written as a fraction 

~. By doing some calculations we can then find that this fraction can be 
q 

simplified: 

1. ..j2 = E 
q 2 

2. Square both sides: 2 = ~ 

5 

. ' I ~Uol\. . 

M\-
\o..H dtA 
Iwt~t ~Jr,..., \
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3. Mult iply by q2
: 2q2 = p2 

4. Ftom this we can sec that p2 must be even, so p must also be even. 

T herefore, we can substitute 2m for p: 2q2 = (2m)2 =4m2 

5. Divide both sides by 2: q2 =2m2 

6. Here we have the same situation as before, q2 is even therefore q 

must b e even. We can then say that q = 2n. From t his we have found 

that .J2 = 2
m = !!! 

2n n 

7. We now have a fraction that is simpler than T!. which is ~ 
q n 

8. T llis argument call be repeated over and over again to find simpler 

fractions. However we know that fractions cannot be simplified forever 

t herefore we must reject our asswnption that /2 is rational. 

We can see that this proof by contradiction , is actually another case ---
of the method of infinite descent. Johann Dirichlet used thls method to 

a-aeiiipt to prove t he case for n = 5. Dirichlet completed part of the 

proof for n = 5, and the whole proof was then completed by Adrien

Marie Legendre. This proof uses Sophle Germain's Theorem, named 

after Sophie Germa in that deals with t he divisibility of the solutions of 

FLT, which I will explain in the proof for n = 5 in the following section. 

2.2.1 Dirichlet's proof for n = 5 

4 Just like Euler did, Dirichlet started by assuming there was a solut ion 

to Fermat's Last Theorem and proving that the solutions :c;, y , z were 

coprime. Dirichlet t hen made the assumption that ~c, yare odd and z is 

even , because there can only be at most one even number since they are 

all coprime but there must be at least one even because odd+odd:fodd. 

Dirichlet used Sophie Germain's Theorem to help hlm prove tllis case 

of Fermat's Last T heorem. Sophie Germain's t heorem said that if Fer

mat's Last Theorem is t rue for any prim£ )2: 3 and if 2f, )t- 1 is a prime, 

th~r ? rust divide the product x yz . He used this theorem to sho\ that 

1 E wards 2000 V...O ~ \}v.t \ ~ Q V\ 1 
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either 5 divides z or it divides x, y. 
I .. ~ . 

Dirichlet. then assumed that 5 divides z and showed a case of infinite 

descent by showing that if there is a solution, there must be a smaller 

solution. Therefore, if 5 divides z, there are no integer solutions. He 

also showed that. if 5 divides x or y (doesn't matter which since they are 

symmetric) tl1en there are also no integer solutions by using the method 

of infinite descent once again. 

The proof that Dirichlet used to prove Fermat's Last Theorem for 

n = 5 showed lots of similarities to the previous proof by Euler for n = 3, 

t he main one being that they both used the method of infinite descent 

to prove that there couldn't be any solutions. A considerable amount 

of number theory was again used, the concept of coprime numbers and --greatest common divisors being used constantly to develop the argument -further. The method of infinite descent was the key to proving Fermat's 

Last Theorem for n = 5, however it needed an extra bit of help from 

Sophie Germain's theorem. For n = 3,4 the method of infinite descent 

alone was enough to prove Fermat's Last Theorem, but for th is case 

something else was needed to come to the final conclusion. Doubts about 

the method of infinite descent being used to prove Fermat's Last Theorem 

completely started appearing, but people had faith in it, and so continued 

to use it to carry on proving specific exponents. 

2.3 Lame and Kummer: Cyclotomic Integers to prove 

FLT 

In 1847 the French academy of sciences set up an award and offered 

prizes, of which one was a gold medal and 3,000 francs , to whoever 

could prove Fermat's Last Theorem once and for all. Mathematicians 

were given an extra motivation to go and prove FLT, as apart from the 

personal satisfaction of proving it, t here was a respectable sum of money 

involved as well. Various rumours were running around France as to who 

7 



was using which methods and how close people were to actually proving 

it. The big shock came on the 1st of March 184 7, in the hands of Gabriel 

Lame. 

2.3.1 Lame's idea of a final proof 

Gabriel Lame had proved FLT for the case n = 7 and was now stepping 

up in front of the meeting of the French acade1ny of sciences and made 

it known that he was on the verge of proving Fermat's Last Theorem. 

Lame's idea was very simple and could potentially work if it were not 

for t he flaw in his logic that Liouville and Kummer pointed out later . 

Lame realized that :in the previous proofs for the cases n = 3, 4, 5, 7, a lot 

depended on an algebraic factorization of some sort . An example would 

be in the case for n = 3, where x3 + y3 is factorized into (x + y)(x2 -

xy + y2
) . Lame noted that a.c:; n becomes very large, it becomes harder to 

factorize as t he degree of the polynomial becomes very large. Therefore, 

Lame thought of using complex numbers to factorize x11 + yn completely 

into linear factors. The only way this can be done is by inputting a 

complex mm1ber a such that d' = 1 where(a =I= ±:J T he equation would 

then look like this: \...,. \r ~~ ~ ~ 

xn + yn = (x + y)(x + ay)(x + a2 y) ... (x + a 11
-

1y) 

Once Lame had this equation , all that was left for him Lo do was prove 

that all the linear factors are coprime, i.e. their greatest common divisor 

is 1. This would mean , as seen in the other proofs earlier, t hat each 

linear factor is an nth power and from tills he would then demonstrate 

a case of infinite descent which would prove FLT. It seemed as t hough 

with the help of complex numbers, the method of infinite descent would 

prove Fermat's Last T heorem once and for all. It had been used for 

n = 3, 4, 5, 7, and had worked perfectly so people were becoming more 

convinced that this would finally give t he solution everyone was looking 

8 



for. 

However, Lame missed out a minor detail, but a detail that would 

ultimately make all his work up to then useless. After Lame's presen

tation, Liouville came up on the podium, and showed everyone Lam6's 

unfortunate flaw in his proof. 

2.3.2 Liouville's discovery of Lame's flaw 

We all lmow that integers can only be fully factorized in one way, for 

example the number 76 is factorized to 76 = 22 * 19 and it can 't be 

factorized in any other way. In other words, "there is only one possible 

combination of primes that will multiply together to give any part icular 

integer greater than l " r,. Lame's proposed proof depended on this theo

rem, however he had failed to consider if complex numbers could also be 

factorized uniquely and Liouville was there to point this out. This didn 't 

stop Lame though, a.c; he realized that the law for integers also worked 

for complex numbers when n = 5. He was determined to carry on with 

his work. 

However, later on, Liouville read a letter from Ernst Kummer, a 

German mathematician, stating that Liouville was correct when he was 

quest ioning Lame's usc of unique factorization on complex numbers. Ap

parently, Kummer had proved this in a memoir he had published three 

years earlier. After this, Lame deserted his attempts io prove Fermat's 

Last Theorem and Kummer continued this work, trying to find an alter

native. 

2.3.3 Kummer and cyclotomic integers 

The problem which Kummer posed was the breaking up of numbers 

built up from a by repeated addition, multiplication and subtraction - ,..... -
into prime factors. T he numbers look like this: 

5Singh 1998, p .l14 

9 
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In tllis number , a 1 , a 2, ... , a>.-J are integers. Kummer used t he letter 

A to represent a prime number and say that a>. = 1, (a #(±1}- These 

complex numbers are known as cyclotomic integers. Since a>- = 1, Kum-

mer reduced all the powers of the equation by saying t hat a>-+1 = a, 1 

a>-+2 = a 2 and so on. I\ {1. ~ ., tr'""\\-~ ~ v I Q \( ~ "' t 
1 

W(i'l h ~M c:AeGl41'r ' 
An interesting property of cyclotomic integers that will be needed 

later to prove another property is that "representations of cyclotomic 

integers in the form as seen above are not tmique" 6
. An example of 

this would be that 1 +a+ a 2 + ... + a>.-J = a>. +a+ a2 + ... + a>.- 1 = 

a ( 1+ a+ o2 + ... + a'- 1
). This implies that either 1+ o + a2 + ... +o'- 1 ~ 0 J.~Jfj 

or a = 1. Kummer had already assumed that a # 1 therefore the former ) 

must be t rue. ,~ 0 ? 1."' tA.: ~~h '""t. ' <,\T'v ' ~\ ! t' J o \- V. ltt 1 ~<!>J. 
Another property of cyclotomic integers that was necessary for Kum-

mer to t ry to prove Fermat's Last T heorem is the norm of a cyclotomic 

integer. The norm of a cyclotomic integeriJ(a) would be written as ,_ -- c 
N J(a) ar1 it is defined a.c; "the product of A- 1 conjugates of f(a)" 7

: 

. . ~ . 9 ? Go ; ~,( w i ~ \.- ' 
Nf(a) = f(a)f(a2

) ... f(a>. - l ) , • 'r _. \ - · ./•.w.( . 

He then established that the norm of any cyclotomic integer is an 

integer itself. The proof for this is fairly simple. We must fir st note 

that if we convert a - ai(j = 1, 2, ... , >.- 1) tllis only rearranges the 

factors of N f (a) but does not change the norm. Thus, we have that 

N f(a) = Co+ c1a + c2a2 + .. . + C>.- la>.- 1 (=j Co+ c1ai + G2a2i + ... + 

C>._1a<>.- J)J. From this we can say that eo- eo = Cj - c1 = 0. Therefore 

Cj = cl> (j = 1, 2, 3, ... , A-1) and N J(a) = ~+c1(a+a2+ ... + a>.- J ).From 

earlier , we know that 1 + a+ a 2 + ... + a>-r = 0 and so we know that 

6 Edwards 2000, p.82 
7 Edwards 2000, p.83 J ? 

~~ -
10 
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n+a2+ ... +n~-l = - 1. Hence N.f(a) = eo+ct (a+a2+ ... +a~- l) = eo-cl 

which is an integer . 

If a cyclotomic integer is found to have norm 1, this integer is then 

called a mut. A cyclotomic integer h(a) which L'3 irreducible (it cannot 

be factored into two primes) only has the factorizatious h(a) = f(a)g(a) 

where either of them is a unit. If one was talking about ordinary integers 

here, they would be tempted to then call h(a) prime. However, when 

talldng about cyclotomic integers, just because it is irreducible, does not 

mean it is prime. Another factor that has to be taken into account for 

a cyclotomic integer to be prime is that "there must exist cyclotomic 

integers that it does not divide and if the product of any two cyclQtomic ) ~ \- l.. ;\..~ 1 
integers it does not Qj.v..ide, is itself cyclotomic integer it does not divide" 8 . l. e.t"(' ,j f. o. . --- __.- " The fact that a cyclotomic integer can be irreducible but not prime 

is the main problem that causes t he failure of unique factorization for 

cyclotomic integers. 

Now Kllllllner had to apply this to try and prove Fermat's Last The

orem. His problem now was that he had to factor binomials of the form 

x + aiy and also find all possible prime factors to those binomials. This 

would then show if (:,~; + y)(x + ay)(x + a2y) ... (x + aA-
1y) were rela-

tively prime so that he could prove FLT. Kummer was aware that not 

all cyclotomic integers could be factori7.ed in only one way and so he 

introduced the concept of ideal numbers. Kummer's discovery was that 
- .. 

"the set of all complex integers defined by an nth root of unity could 

be so enlarged by the introduction of ideal m.unbers that unique factor

ization into primes would prevail in the enlarged set''9 . An example of 

how ideal nmnbers can help make unique factorization possible is shown 

below: 

1. 25 can be factorized into 5 * 5 or it can also be factorized into 

(4 - 8)(4 + 8) where f) = 3i 

8 Edwards 2000, p .8L1 
9 Dickson 1917, p.170 
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2. Tbis problem of unique factorizat ion can be solved by the intr(}

duction of a.,(3, 1 ideal prime numbers such that: 

5 = a(3 

4-B = o? 

4 + () (32 

Now each factor of 25, breaks down further into ideal prime numbers 

such that 25 = o? (32 so that now there is only one ~ to factorize ~-
The introduction of ideal nwnbers helped to save unique factoriza

tion for complex numbers and Kummer was able to prove Fermat's Last 

Theorem for all regular primes, but not for the irregular primes which 

occur around 39% of t he time. Kummer's method was later extended to 

irregular primes in the 20th centmy and his method was then inp utted 

into computers so that the computers could carry on proving cases for 

Fermat's Last Theorem. By 1993, Fermat's Last Theorem had been 

proved for all prime numbers up to 4 million. Fermat's Last Theorem 

only needs to be proved for prime numbers as every other number is 

built up fTom prime numbers therefore it could be re-written with the 

exponent as one of the primes. Thanks to Ernst Kummer, the method 

of infinite descent prevailed and was used right up until the final proof of 

Fermat's Last Theorem to prove specific exponents. Some people might 

say that Fermat's Last Theorem is true simply b ecause so many cases 

have been proved, and it seems as though this will carry on working for 

all other exponents. However, mathematicians are never satisfied wi0 

the finite, onl.z_ with t~ infiJP.Le. It could be that Fermat's Last Theorem 

is false when the exponent is 5 million. Only when Andrew Wiles proved 

Fermat's Last Theorem for all possible exponents, were mathematicians 

satisified that it was true. 

12 
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3 Conclusion 

This wasn't the end of the history of proving Fermat's Last Theorem. 

Goro Shimma and Yutaka Taniyama would create the Taniyama-Shimma 

conjectme. Frey would then link this to Fermat's Last Theorem and 

whoever could prove the Taniyama-Shimura conjecture would then sub

sequently prove Fermat's Last Theorem and that someone was Andrew 

Wiles.10 

The method of infinite descent was the key to the first proofs of 

Fermat's Last Theorem. The pme method created by Pierre de Fermat 

himself, is seen in both his and Euler's proof of FLT for n = 3, 4 and it 

is both simple yet solid. In the proof for n = 5 by Dirichlet, you can see 

the method of infinite descent being used along with Sophie Germain's 

theorem about the divisibility of solutions to Fermat's Last Theorem to 

show that there are no solutions and we can also see many aspects that 

are similar between Dirichlet's proof and Euler's proof. 

Later on it seemed that the method of infinite descent would be the 

key to proving Fermat's Last Theorem completely. Lame proposed a way 

to do this, by factorizing using roots of unity and cyclotomic integers, 

and then using the method of infinite descent to show that there couldn't 

possibly be a solution in the first place. Liouville and Kummer however 

crushed this proposed proof because a cyclotomic integer does not abide 

to the laws of ordinary integers when talking about unique factorization 

into prime numbers. 

Kummer however, picked this method up again and by introducing 

the concept of ideal numbers, he was able to prove Fermat's Last Theo

rem for regular primes using tllis method of factorizing and then proving 

a case of infinite descent. Kummer's method then lived on and was 

adapted to be able to prove Fermat's Last Theorem for irregular primes 

as well and computers were able to prove it for a ll prin1es up to 4 million 

10Singb 1998 
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by 1993. 

The method of infinite descent was a beautiful and elegant way 

to prove Fermat's Last theorem and it is usual for mathematicians to 

strongly believe in something elegant. The method works perfectly for 

specific exponents, with a few adjustments along the way, the main ones 

being Sophie Germain's theorem, the introduction of ideal numbers, and 

also an adaption of this method to work for irregular primes. However, 

how conclusive was the method of infinite descent in proving Fermat 's 

Last Theorem? From a normal person's perspective, it is perfectly ac

ceptable, as proving a theorem for all prime numbers up to 4 million 

seems to be solid evidence. However, from a mathematician's perspec

tive, the method of infinite descent was nowhere near conclusive in prov-
~ 

ing Fermat's La.st Theorem. The actual proof is very different, using 

~h m~~mplex mathematics concerning elliptic curves and modular 

forms. The method of infinite descent helped to motivate mathemati

cians to carry on working on Fermat's Last Theorem, and other proofs 

emerged fr;Q!!l...i.t a.s well such as provin_g the irrationality of ../2. Over-- .....__ ---- -
all the method of infirrite descent was a gTeat discovery in the world of 

mathematics, but was only partly successful in proving Fermat's Last 

Theorem from a mathematicians perspective. 
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