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Abstract 

RSA and Diffie-Hellman Key Exchange are two widely used encryption systems in 

modern technology. Although grounded in similar mathematics, they rely on fundamentally 

different pro bl ems to remain secure. The goal of the investigation was to find out which of these 

two methods of encryption is better under different circumstances. 

I researched the capabilities, limitations, specialties, of each of DHKE and RSA, as well 

as how each one works. I examined different journal articles, websites, and textbooks in order to 

gather information on each of these encryption methods. I then used this information on the two 

methods to compare the two, and find out which is stronger under what conditions. After 

analysis, ~c:~nclll.ded that RSA is more suitable for anything where a new key doesn't need to be 

created as often, such as e-mail, while DHKE is better for applications where many new keys 

may need to be formed for communication between many parties, such as in online 

communications and web browsing. 
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Introduction to Cryptography 

Cryptography has been important in communications since the times of the Romans and 

the Greeks, primarily during warfare. Nowadays, cryptography plays an important role in both 

war and everyday life. Technology has progressed to a state where it is now to communicate and 

share information. This makes it much easier for information fall into the wrong hands such as 

those of shady corporations, real life enemies, and most worrisomely, hackers and criminals. 

Fortunately, along with this new technology, we have developed new cryptographic methods of 

keeping this information safe. 

Introduction to RSA and Diffie-Hellman 

RSA and Diffie-Hellman Key Exchange are two examples of modem encryption 

methods. Both RSA and Diffie-Hellman are unique encryption methods that that allow for secure 

keys to be used quickly and efficiently. The purpose of this essay is to familiarize the reader with 

each of these methods of encryption and their strengths, weaknesses, and specialties and then to 

directly compare them on each of these fronts. 

\ 

RSA 

Named after Ron Rivest, Adi Shamir, and Leonard Adleman who first introduced it in 

1978, RSA is a modem cipher that has stood up against years of cryptanalysis. RSA is a public 

key cipher, meaning that there are two keys each time it is used: one key known as the public key 

that anyone can know and must use in order to send a message to the receiver, who is the only 
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one who knows the other key, the private key. In order to generate the public and private keys, 

find two large prime numbers, let's call themp and q. Then find the product of these two 

numbers n. 

n Pr* q 

Next, select an encryption key e such that e is ~~~)o (p- Il *(q - 1). Finally, use the 
~,,,,...,,., 

Extended Euclidean algorithm to compute the decryption key d, the private key, such that 
c-'••,,, _ _,_.,-~~""'"'~-~·,.,-~-=,~--~>"'-.,..m~ ---=------~"'-

1 (mod (p - 1)/* !q - 1)) (fig].) 

Another way to state this would be 

d e - 1 (mod (p - l)(* }q - 1)) 
'-..,c' 

The value of d can be computed using the Extended Euclidean Algorithm. 

Now, you should have the values e, d, and n. Publish e and n, as people will need to use these to 

send you messages, but keep d a secret. This is the secret key that is needed to decipher the 

messages, so only you should know it. To encrypt, the sender must turn their message into a 

series of integers that are each less than n. The encrypted message will be represented as 
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similarly sized integers. The encryption formula is as follows, where m is the block of message 

and c is the block of encrypted message: 

c = me (mod n) 

To decrypt, simply use the following: 

m=cd(modn) 

Because: 

Cd= (met= med 

med=mk(p-I)(q-1)+1 6eefigl.) 
""' "''·"~- ""'~··' 

k(p - l)(q - I)+ I _ k(p - l)(q - !'Ii m -m 1 1m 
\_ 

\ 
() ~, 

\ 

. - ) ~ \ 

Euler's Theorem states t~~t aq>(n)= 1 (mod n). cp(n) is known as Euler's Toitent Function, 

which counts the positive integers less than n which are also relatively P!i!}l_~ to n. The only ,,, 
f\ 

important thing that we need to know this for, however, is that if n is serriiprime, then cp(n) is 
"""-·-"'=·"'·~\,p --,,_-

equal to the product of one less than each of its factors. In other words 

cp(n) = (p- I)(q - 1) 

where n = pq 

This is the case for our specific scenario, so we can further simplify 



(mk(p- I)(q-1) * m) = (mk<p(n) * m) = (lk * m) = m 

Because of this, the message could have been encrypted with d and decrypted withe just as 

easily as vice-versa. 

RSA gains its security from the inherently difficult problem of obtaining the 

prime factorization of very large numbers which only have two prime factors. Although there is 

no proof, mathematicians believe that this is an inherently difficult task for which there is no 

possible shortcut. Similar to the conjecture that there is no shortcut to factoring large numbers, 

RSA has never been mathematically proven to be secure. Although many years' worth of 

cryptanalysis has not been able to prove or disprove the security of RSA mathematically, the lack 

of a solution over these many years of cryptanalysis has proved it empirically (Shneier 281). 

More about RSA 

RSA Speedup Using the Chinese Remainder Theorem 

Many Crypto libraries use a version of a formula based upon Fermat's Little Theorem 
<:

0 

(i'\? • 

and the Chinese Remainder Theorem (CRT) fu order to greatly increase the speed of decryption. 
'"'"<, ) 

The following values can be computed before receiving the encrypted message and are used in 

encryption: 

x = d mod (p - 1) 

y = d mod (q - 1) \. c 
z = q-1 mod p (using the extended euclidean algorithm) 
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Then after receiving the encrypted message c, you can carry out the rest of the formula: 

m1 = ex modp 

h =z(m1 -m2 + p) modp 

m=m2 +hq 

with m being your final deciphered message. This method works to speed up the process of 

decryption using the following equations: 

m1 = (cd mod n) modp = (c modptmod(p-I) modp 

The same is true replacing m 1 andp with m2 and q respectively. This equation can be reached 
0 

from our original definition of m1 using Fermat's Little Theorem. The step between these two 

expressions is also what saves most of the computational time when using this algorithm. 

Computing the right side of this equation is much easier than computing the middle because d 

is so much smaller than d, fewer steps have to be taken in the process of modular 
,,.,=-···-···· ... :,, 

exponentiation. It is also worth noting that c mod n is much less than c, which helps speed up the 

-; 
proc~1,s also (Paar, Pelzl 184). 
,.-,..-

Signatures in RSA 
~ ) 

RSA can also be used to create digital signatures. To do thitencrypts m with their own 

private d. The receiver can decrypt this with the sender's public e. If the signature, when 

decrpyted, is the same as the message, then the signature is authentic (Delfs, Knebl 45). 



Vulnerabilities of RSA 

If two separate people have different large semiprime ns that share one factor, it is trivial 

to find the prime factorization of both ns by simply finding the greatest common factor of the 

two. It is possible to compare one large semiprime to many at the same time this way by 

comparing it to the product of all of those large semi primes. Another attack, called a timing 

attack, finds out the message after many decipherings by how long it takes the computer to 

decipher each ciphertext (Paar, Pelzl 195). This can be easily thwarted by computing (rect mod 

n instead of just cd mod n. This will leave you with rm mod n, from which you can find m by 

multiplying by the inverse of r mod n. Because RSA is also a deterministic cipher, i.e. it has no 

random component, a chosen plaintext attack is also possible. This method works by guessing 

possible plaintexts, and then enciphering them, and then comparing them to the ciphertext. 

Vulnerabilities to attacks such as chosen plaintext attacks and adaptive chosen ciphertext attacks 

can be protected against using padding (Delfs, Knebl 47). This is an extra step to encryption 

compared to pure RSA that adds uniformity and randomness to the cipher. It incorporates 

random numbers and hash functions to help do this. One strong padding method is Optimal 

Asymmetric Encryption Padding (RSA Laboratories). Pure RSA is very slow. Practically, users 

only use RSA to send the key to a more secure systematic cipher, such as Advanced Encryption 

Standard (AES). This allows for a much faster encryption and decryption process (Paar, Pelzl 

174). 
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Diffie-Hellman Key Exchange 

In 1976 the Diffie-Hellman Key Exchange system was published as the first public key 

encryption system. Unlike RSA, DHKE can only be used to securely create keys to symmetric 

ciphers and not to send actual messages. The usefulness of DHKE is that each participant ends 

up with a secret key which they both know, but nobody else knows. A good analogy has to do 

with different colors of paint. For this analogy pretend that it is very difficult to separate the 

colors of paint. Alice and Bob want to develop a secret color of paint that only they know, but 

any paint that sent can be intercepted by Eve, who can discover the color of the paint. Alice and 

Bob each start out with one quart of the same color paint, say yellow for instance. Then Alice 

and Bob each add of secret color paint to the yellow paint so that they each have a 2 quart 

mixture. The color of this secret paint doesn't matter, only that each party remembers what color 

it is until the end of the process, and keep the color a secret. Alice and Bob each send their 2 

quart mixture to each other. Then, they add one more quart of their secret color paint to the 

mixture they have received, so that they each then have a 3 quart mixture. Eve knows that they 

each started with yellow paint because that was public, but she is unable to separate the secret 

paint from the yellow paint. After this, Bob and Alice each have a secret color paint that consists 

of one quart yellow paint, one quart of Bob's secret color paint, and one quart of Alice's secret 

color paint, thus they both have 3 quarts of a new secret color that they, and only they, know. 

However, having never known the secret color of the other party, neither Alice nor Bob could 

have predicted what the resulting secret color would be. DHKE works similarly to this example, 

but instead of a public color, there is a public modulus n and a public base e, and instead of 

adding a secret color paint Bob and Alice each multiply by a secret integer mod 
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Imagine that you are Bob. In order to create a secret key that only you and Alice know, 

you first must select a large prime n and an integer e so that 1 < e < n and e is a primitive root 

mod n. Fore to be a primitive root mod n means that for every integer a that is relatively prime 

to n there exists a k so that i = a mod n. In this case k is known as the discrete logarithm for a to 

the base e mod n. After you, Bob, have \~ent these public numbers to Alice, you and she must 

randomly choose an integer b and a respectively, and multiply them by e mod n to get the 
'\ 

\, 

following ',, 

B = e6 mod n and 

A= ea mod n 

After this you and Alice each send each other Band A. Then multiply again to get the 

following 

k = Ab mod n and 

k'=Ba modn 

k and k' are equal, because both are equal to eab mod n. Alice and Bob can now use k, 

some portion of k, or even a cryptographic hash of k as the key to a symmetric cipher, most 

likely AES. However, k could not have been known by either party beforehand (Paar, Pelzl 206). 
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The reason that Diffie-Hellinan is secure is because of the inherent difficulty of finding 
,!,,P'/' 

discrete logarithms modulo n. In other words it is very difficult to find b given e and n and B and 

B = i mod n given that n is sufficiently large. It is recommended that that n be around 2048 bits. 

Note that there is no size limit to a and b; however they need to be at least as big as loge n. It is 

also recommended that the smallest prime factor of n - 1 be at least 256 bits in order to prevent a 

Pohlig-Hellman attack on the discrete log. Similar to the prime factorization problem, the 

discrete logarithm problem is not mathematically proven to be difficult, but so far it remains 

infeasible to solve for sufficiently large values of n (Paar, Pelzl 216). 

Problems with DHKE 

Even though this key exchange by Diffie-Hellman is supposed to be secure, the fact that 

there is a key exchange at all still leaves vulnerabilities. It is difficult for an eavesdropper to find 

Alice and Bob's private key if they can't change the intercepted messages. However, if an 

eavesdropper had the ability to create and delete messages (an assumption which relies on Bob 

and Alice not having secure digital signatures) then it is fairly easy for Eve, our eavesdropper, to 

know the secret key. When Eve modifies messages this way it is known as a "man in the middle" 

attack. Essentially Eve can replace the B with her own B' and A with her own A '. This would 

allow her to cause Alice and Bob to make encryption keys that correspond to her rather than with 

each other. This requires a lot of subsequent interception and replacement on Eve's part 

however, so that Alice and Bob don't realize that they actually have 2 different secret keys. One 

way to get around this is to instead modify the messages so that Alice and Bob end up with a 

very weak or known key. For instance, Eve can create a weak key if she replaces A and B with 

any number of the form It (n - l) where x > 1, because this value equals one mod n. This would 

cause the resulting secret key to be 1 for both Alice and Bob. T~s would not work if Alice and 
{ 
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Bob were real people, because they would almost surely notice this difference. Realistically, 

though, Alice and Bob are actually probably just Alice's and Bob's computers, which might not 

be programmed to recognize this form of attack (Raymond, Stiglic ). 

Pohlig-Hellman Attack 

Other attacks try to solve the discrete logarithm problem. The discrete logarithm problem 

can be solved relatively easily with the Pohlig-Hellman attack providing that the prime factors of 

n - 1 ( one less than the prime modulus used for DHKE) are all fairly small. This would allow an 

,,-, " () 

attacker to break DHKE. Given e = gx mod p, and the integer 6,~g, and p'(a prime), this formula 

will solve for x. First, you must break up (p - 1) into its prime factors p/1 p/2/* p/3 
.... pti. 

\.,J 

Next we can find x modulo each of these p. To do this we will express x mod Pn as anPn + Xn, we 

can find this by using the following: 

e<P - 1)/pn = gx(p - 1)/pn (mod p) 

e(P -1)/pn = g(p- l)ang(p- l)pnxn (mod p) 

e(p- l)pn = g(p- l)pnxn (mod p) (via Euler's theorem) 

At this point we can just guess and check every possible value ofx1 through Xi, Once you have 

all Xn you can find x using this generalization of the Chinese Remainder Theorem:' 

"For integers a1 through ai and relatively prime integers q1 through qi there exists an x 

such that 

x =a2 mod qa .... 

) {' 
l 

12 



all solutions x are congruent modulo the product of all qn 

the following can be used to find x mod q 

where bn is defined as 

bn q/qn = 1 (mod q)" 

The fact that this algorithm requires one to iterate through all possible values of Xn is the reason 

that all factors of (p - I) must be small. As long as all Pn are small, then iterating through all 

possible Xn should not take very long. If there were some large Pn, and thus many possible values 

of Xn, however, computation of this algorithm would be infeasible. Primes of the following form 

are safe from this attack: 

where all tare large primes (Paar, Pelzl 222). 

Probabilistic Prime Testing 

For both RSA and DHKE, having good random numbers and random primes is 

important. The secret numbers that only one person knows in DHKE, each party's secret 

multiplier, should be chosen randomly and not reused in order to remain secure. RSA usually 

requires another layer of security in the form of padding algorithms. These algorithms use hash 

functions and random number generation in order to make RSA stronger against certain kinds of 

attacks, such as chosen plaintext attacks. Also, it is very important to find the prime numbers p 

and q randomly, so that they are hard to guess. In fact, random number generation is important at 

every step of the encryption process where one has to choose new numbers, as they need to be 

difficult to guess. For example, even if two parties exchange a symmetric cipher key securely 
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using RSA, if the key is not hard to guess, then an attacker could guess it and bypass the whole 

RSA part altogether. Finding random primes is usually done in a guess and check method, by 

picking random numbers of approximately the correct size as needed and then conducting 

primality tests on them. 

Probabilistic primality tests are actually just compositeness tests. If the test says a number 

is prime, there is always a small chance, however, that it really is composite. The test is 

repeatable for different randomly chosen "witness" integers, and for each repetition if the 

number is composite, there is a chance(% when using the Miller-Rabin test) that it will report 

the number as composite. Otherwise, it will make no report. If each repetition has a% chance to 

report a composite if it is a composite, then the probability that the algorithm comprising of k 

repetitions of this test for different random witness numbers makes an error (i.e. doesn't report 

the number as a composite when it really is) is Yt One example of a strong probabilistic 

primality test is the Miller-Rabin test, which is computed as follows: Given a number n, choose a 

random witness integer 1 < a < n - 1. Also let s and d satisfy 28d = n - 1 where d is odd. For each 

randomly chosen a, if n is composite, there is a % chance that it will return that n is composite. It 

will return that n is composite if 

ad '$. 1 (mod n) and 

at~:)d '$. -1 (mod n) for all O :Sr :S s - 1 
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This algorithm is then repeated until it returns composite or the desired number of repetitions is 

reached, at which point n is considered prime. It is advisable to repeat this until the error 

probability is below 2-80
, which in this case is 40 times (Paar, Pelzl 190). 

y I 
' 

Comparison of RSA and DHKE 

Overall, RSA and DHKE are very similar. Both cryptographic methods rely on very 

difficult modular arithmetic problems. Despite this, they do have significant differences and are 

each better for different tasks. In terms of raw security, RSA and DHKE are somewhat similar. 

Both have a recommended key size of at least 2048 bits and are both somewhat vulnerable to a 

variety of similar attacks such as timing attacks and attacks based on poor random number 

generators. Commonly, both RSA and DHKE are used to create or share keys in order to use 

with a stronger symmetric cipher, such as AES. However, there are many differences between 

the two. 

The biggest weakness that DHKE has over RSA is that you actually have to exchange 

keys. This gives attackers the opportunity to change the keys as they are being set up. 

RSA is very easy to authenticate, however it is not as easy to authenticate the exchange 

ofDiffie-Hellman keys. Security-wise, RSA seems superior to DHKE assuming that for each 

you have sufficient padding, random number generation, blinding to timing attacks, primes, etc. 

to supplement the basic algorithm. For DHKE, the primes don't need to be as strong. One only 

needs to be sure that the primes are strong against several fairly common discrete logarithm 

algorithms such as the Pohlig-Hellman algorithm. A good random number generator is 

recommended for generating secret exponents so that there is little correlation, but these 
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exponents are sometimes even safely reusable. With RSA however, it is extremely important to 

find primes p and q that fit certain criteria and are not too common. If an attacker guesses just 

one of these prime factors, then they have complete access to all messages you send until you get 

a new key. With RSA, usually you keep the same key for longer than with DHKE, with which 

the same base, prime, and secret exponents are never used again. Essentially, RSA seems 

stronger to a person who has all the resources and ability to ensure that the keys which they have 

chosen are secure, but requires more effort in order to do so. In the case that strong keys are not 

available for some reason, DHKE is stronger. 

RSA has the advantage of utility over DHKE. DHKE can only be used for creating secret 

keys, and for a few other similar things such as password authenticated key agreements. RSA is 

useful as a public key cipher on its own in addition to use in tandem to symmetric ciphers and in 

digital signatures. 

Computationally, both RSA and DHKE are very similar at their core. However, RSA 

requires a much longer key generation time. For things like email where new keys don't need to 

be created all the time for many different places, RSA is generally better. However, for things 

like online communications (i.e. web browsing), where one might go to many different websites 

and need new keys to communicate with multiple different parties, DHKE is generally more 

practical (Wiener). 

The Current Value of RSA and DHKE 

RSA and Diffie Hellman both seem to be on their way out. With modern computers 

getting stronger and stronger, it is probable that within the next ten or so years both methods will 

require 4096 bit keys in order to be secure. It is also quite possible that either or both of these 
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ciphers could even be cracked by that time. Currently the NSA is encouraging a switch from 

these cryptosystems to elliptic-curve cryptography (ECC), which is more secure and faster than 

both RSA and DHKE, as well as having a smaller secure key size of only around 128 bits (NSA). 

Despite this, RSA and DHKE still have a large role in contemporary security systems. 

( 

'\ r \ 

\ 
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