

Markscheme

May 2018

Biology

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section B

Extended response questions – quality mark

- Extended response questions for HLP2 each carry a mark total of [16]. Of these marks, [15] are awarded for content and [1] for the quality of the answer.
- [1] for quality is awarded when:
 - the candidate's answers are clear enough to be understood without re-reading.
 - the candidate has answered the question succinctly with little or no repetition or irrelevant material.
- Candidates that score very highly on the content marks need not necessarily automatically gain [1] for quality (and *vice versa*).

Section A

C	Question		Answers	Notes	Total
1.	а		(32 × 79 =) 2528 √		1
1.	b		 a. same bat may be recorded more than once ✓ b. some bats may not fly over [the recording station] OR only bats flying over the station are recorded ✓ c. two bats flying close/together might be recorded as one ✓ 		1 max
1.	С	i	82 / 82.1 / 82.14 (% decline) √		1

(Question 1 continued)

C	uesti	on	Answers	Notes	Total
1.	C	ii	Conclusion supported (2008 to 2009) <i>M. lucifugus</i> declines more (than <i>L. cinereus</i>) OR (2007 to 2009) <i>M. lucifugus</i> declines whereas <i>L. cinereus</i> increases/fluctuates/did no decline OR more affected than unaffected bats in 2007 and 2008 but more unaffected in 2009 ✓ Conclusion not supported other factors could be causing the difference between the species/the decrease in <i>M. lucifugus</i> OR there will be differences between the two bat species apart from WNS infection OR both species decreased from 2008 to 2009 ✓	statements that make an explicit or clearly implied comparison between the species.	2 max
1.	d		 a. more (frequent) interruptions/emergences from hibernation/shorter periods of hibernation/more spikes in temperature (indicating emergence) in infected bats ✓ b. more fluctuation in (body) temperature (during hibernation) in infected (than uninfected bats) ✓ c. emergences/interruptions become more frequent during the hibernation period in infected bats versus (about) about the same frequency in uninfected ✓ 		1 max

(Question 1 continued)

C	uestic	on	Answers	Notes	Total
1.	е		 a. energy needed to raise body temperature / lost during temperature spikes ✓ b. energy/heat released by/comes from (cell) respiration/metabolism ✓ c. food/fat (stores/reserves) used in (cell) respiration/in generating energy/heat/raising body temperature ✓ d. bats die/starve if fat/energy/food stores used up ✓ e. hibernation conserves food stores/reduces use of energy✓ f. no/little food available/food harder to find (in winter/during hibernation period) ✓ g. (more) energy/food used when flying/hunting ✓ h. (more) heat loss/hypothermia (in winter/cold weather) ✓ i. higher chance of being killed by predators when flying/emerged from hibernation ✓ 		3 max
1.	f		later date of death with longer/bigger intervals (between hibernation emergence)/with less frequent interruptions (to hibernation) ✓	The correlation must be described.	1
1.	g		 Arguments for a causal link a. there is a trend/correlation/relationship (shown by the data in the graph) ✓ b. explanations of how more frequent emergence from hibernation could cause earlier death (are plausible)/example of an explanation ✓ Arguments against a causal link c. there is a correlation but this does not show a causal link / correlation does not prove causation d. more data/further research is needed to show the causes ✓ e. there is (much) variation/spread in the data ✓ f. other factors can affect the date of death ✓ 		2 max

(Question 1 continued)

C	uestion	Answers	Notes	Total
1.	h	 a. differences in body mass OR differences in reserves/stores of food/energy/fat ✓ b. bats may be predated during a flight / chance events might affect the date of death ✓ c. more effective/stronger immune system/immunity (in some bats) ✓ d. more resistance to cold (in some bats) ✓ e. larger bats lose heat less rapidly ✓ f. infected at a different/later date ✓ 		1 max
1.	i	 a. higher mortality/more deaths ✓ b. shorter life expectancy/premature death/death before reproduction ✓ c. extinction/reduction in (size of) of bat populations ✓ d. L. cinereus/species of bats not affected by WNS may increase OR L. cinereus/species of bats not affected by WNS may experience less competition ✓ e. infection may affect birth rates/fertility ✓ f. bats will emerge more from hibernation/in winter ✓ g. bats will use up food/energy reserves faster in winter/faster due to (more) interruptions ✓ h. bat (populations) develop/evolve greater resistance to WNS ✓ 		3 max

Q	uestio	n Answers	Notes	Total
2.	а	 a. hair/fur ✓ b. mammary glands/breasts/(secretion of) milk/lactation ✓ c. sweat glands ✓ d. lungs with alveoli e. placenta (in most mammals) ✓ f. fetus develops in uterus/gives birth to live young ✓ 	Do not award marks for any answers after the first two given.	2
2.	b	 a. (homologous structures have evolved) from a common ancestor ✓ b. divergent evolution/adaptive radiation ✓ c. similarities in forelimb bones (in birds, bats and humans) / description of the similarities in bones ✓ d. different uses/functions ✓ 	Do not accept (positive) correlation.	2 max

Q	uesti	on	Answers	Notes	Total
3.	а	i	 a. unsegmented body (whereas arthropods are segmented) ✓ b. shell (versus exoskeleton in arthropods) ✓ c. muscular foot (which arthropods do not have) ✓ d. no jointed appendages/jointed legs (whereas arthropods have jointed legs/appendages) ✓ e. slimy/mucus-covered / arthropod is not slimy ✓ 	Do not award marks for any answers after the first two given.	2 max
3.	а	ii	calcium carbonate/CaCO₃ ✓	Do not accept carbon or calcium – the mass of oxygen in calcium carbonate is greater than both these and the chemical component is the compound not its constituent elements.	1
3.	b	i	sex-linked genes are on sex/X chromosome(s)/on chromosome 23 whereas genes with linked loci are on the same autosome/chromosome ✓		1 max

Question	Answers	Notes	Total
3. b ii	a. perform a cross/test cross ✓ b. (if) double heterozygotes/CcBb are crossed with double homozygous recessives/ccbb OR Punnett square/genetic diagram showing CcBb crossed with ccbb OR C B C b C b C. (then) expected ratio (for unlinked genes) is 1:1:1:1 ✓ d. (if) double heterozygotes/CcBb are crossed together OR Punnett square showing CcBb crossed with CcBb OR C B C B C B C D C C C C C C C C C C C C C C C C C		3 max

C	uestion	Answers	Notes	Total
4.	а	a. I: GUG AND II: CAC ✓ b. III: Val/valine ✓	Both required. Do not accept GAG to GTC.	2
4.	b	 a. promotion/repression/regulation of gene expression ✓ b. introns (have functions in regulation of gene expression) ✓ c. telomeres (form caps at the end of chromosomes) ✓ d. coding for tRNAs/rRNAs ✓ e. allows genes/traits/heritable characteristics to be passed to offspring ✓ 		2 max
4.	С	free ribosomes produce proteins for use inside the cell/cytoplasm whereas bound ribosomes produce proteins for secretion/for use outside the cell/for use in lysosomes ✓		1

C	Question		Answers	Notes	Total
5.	а	i	cell wall ✓		1
5.	а	ii	metaphase ✓		1
5.	b		 location of ATP synthase a. cristae/inner mitochondrial membrane versus thylakoid membranes ✓ movement of protons b. protons moved/pumped as a result of electron flow/electron transport in both ✓ c. (pumped by the electron transport chain) from the matrix to the intermembrane space versus from the stroma to the thylakoid space ✓ d. through ATP synthase/synthetase in both (respiration and photosynthesis) ✓ e. protons move (through ATP synthase/synthetase) down the concentration gradient in both ✓ f. move (down concentration gradient) from the intermembrane space to the matrix versus from the thylakoid space to the stroma ✓ 		2 max

(Question 5 continued)

Question			Answ	Notes	Total	
5.	C	ATP production use of oxygen release of CO ₂	Cytoplasm small gain / 2 per glucose / substrate level / by glycolysis none / * / no	Mitochondrion larger gain / more than 30 per glucose / chemiosmosis / by oxidative phosphorylation ✓ required/used (as terminal electron acceptor) / ✓ / yes ✓ waste product /produced (by link reaction and Krebs cycle) / ✓ / yes ✓		3
5.	d	curve starting and	ending at the same ene	rgy level but rising to a lower peak ✔	curve drawn lower with the action of an enzyme	1

Section B

Clarity of communication: [1]

The candidate's answers are clear enough to be understood without re-reading. The candidate has answered the question succinctly with little or no repetition or irrelevant material.

Question		Answers	Notes	Total
6. a		Draw a labelled diagram to show the fluid mosaic model of the plasma membrane. a. two correctly orientated layers of phospholipids/phospholipid bilayer shown with heads facing in opposite directions ✓ b. phospholipids shown with two parts labelled hydrophilic/phosphate head AND hydrophobic/hydrocarbon tail ✓ c. protein (any) shown as a globular structure embedded in one/both layers of phospholipid ✓ d. peripheral protein shown as globular structures at the surface of the membrane AND integral protein shown as embedded globular structures ✓ e. glycoprotein shown as embedded globular structure with antenna-like carbohydrate protruding OR carbohydrate shown as branched/antenna-like structure attached either to a protein or to a phospholipid ✓ OR channel protein(s) shown with a pore passing through it OR pump protein shown as a transmembrane globular structure ✓ f. cholesterol shown in between adjacent phospholipids ✓	Do not award the mark unless the structure is labelled with the underlined name.	4 max

(Question 6 continued)

Ques	ion Answers	Notes	Total
6. b	Outline how neurons generate a resting potential.		
	 a. sodium-potassium pump ✓ b. sodium /Na⁺ out and potassium /K⁺ in ✓ OR sodium/Na⁺ concentration higher outside and potassium/K⁺ higher inside ✓ c. three Na⁺ pumped for every two K⁺ (hence negative inside) ✓ OR inside of axon holds negative ions/Cl⁻ ions/negatively charged proteins/organic 		
	anions (hence negative inside) ✓ d. by active transport / using ATP ✓ e. inside (of axon/neuron) is negative in comparison to outside ✓ OR		4 max
	electrochemical concentration/charge difference (across the membrane) is the resting potential ✓ f. resting potential is -70mV ✓		

(Question 6 continued)

Question	Answers	Notes	Total
6. c	Explain the importance of hydrogen bonding for living organisms.		
	 a. cohesion in water/water molecules stick together (due to hydrogen bonds) ✓ b. cohesion helps transport under tension of water/sap in xylem / transpiration stream ✓ 		
	 c. adhesion between water and cell walls/cellulose/polar molecules ✓ d. adhesion/capillary action helps water to rise in plants/stems/xylem / helps keep leaf walls moist ✓ 		
	e. solvent properties (due to hydrogen bonds) with polar/hydrophilic molecules ✓ f. solvent properties exemplified by glucose/other example of a polar solute ✓		
	 g. high latent heat of evaporation / (much) energy required for evaporation so water useful as coolant/for sweating ✓ h. high (specific) heat capacity so water temperature changes less ✓ 		7 max
	 i. base pairing between bases/nucleotides/strands in DNA by hydrogen bonding ✓ j. base pairing between bases in RNA and DNA for transcription/between codon and anticodon for translation ✓ 		
	 k. proteins have hydrogen bonding in secondary structure/α helix/β pleated sheet ✓ I. proteins have hydrogen bonding between R groups/in tertiary structure/to maintain conformation ✓ 		
	m.habitats because water is liquid due to high boiling point/due to water freezing on the surface ✓		
	n. habitats on water surface due to surface tension ✓		

C	uestion	Answers	Notes	Total
7.	а	Outline how greenhouse gases interact with radiation and contribute to global warming.	Allow answers presented in a clearly annotated diagram.	
		 a. carbon dioxide is a greenhouse gas ✓ b. methane/nitrogen oxide/water vapour is a greenhouse gas ✓ c. sunlight/light/(solar) radiation passes through the atmosphere (to reach the Earth's surface) ✓ d. CO₂ in atmosphere/greenhouse gases absorb/trap/reflect back some radiation/heat (emitted by the Earth's surface) ✓ e. CO₂ in atmosphere/greenhouse gases allow short wave radiation to pass (through atmosphere) but absorb long wave/infra-red ✓ f. solar radiation/sunlight is (mostly) short wave ✓ g. radiation/heat emitted by the Earth is long wave/infra-red ✓ 		4 max
7.	b	 Outline how plants make use of the different wavelengths of light. a. light used in photosynthesis/light-dependent reactions/ photolysis/photosystems/photophosphorylation/excitation of electrons/switch to flowering ✓ b. chlorophyll absorbs red AND blue light (more) ✓ c. chlorophyll/leaf/plant reflects/does not absorb/does not use green light ✓ d. absorption spectrum of chlorophyll has peaks in the red and blue/sketch graph to show this ✓ e. action spectrum shows which wavelengths plants use in photosynthesis/sketch graph of action spectrum showing peaks in the blue and red ✓ f. accessory/other (named) photosynthetic pigments absorb different wavelengths/colours ✓ g. violet is the shortest wavelength and red the longest ✓ h. red light and far red/infra-red absorbed to measure length of light/dark periods ✓ 		4 max

(Question 7 continued)

Answers	Notes	Total
Explain how organic compounds are transported within plants.		
a. transported in/translocated in/loaded into phloem√ b. in sieve tubes ✓ c. by mass flow ✓ d. from sources to sinks ✓ e. from leaves/other example of source to roots/other example of sink ✓ f. loading (of sugars/organic compounds) by active transport ✓ g. cause high concentration of solutes (in phloem/sieve tubes) ✓ h. water uptake (in phloem/sieve tubes) by osmosis/water diffuses into phloem ✓ i. rise in (hydrostatic) pressure at source (in phloem) ✓ j. creates a (hydrostatic) pressure gradient/higher pressure in source than sink ✓		7 max
	Explain how organic compounds are transported within plants. a. transported in/translocated in/loaded into phloem√ b. in sieve tubes √ c. by mass flow √ d. from sources to sinks √ e. from leaves/other example of source to roots/other example of sink √ f. loading (of sugars/organic compounds) by active transport √ g. cause high concentration of solutes (in phloem/sieve tubes) √ h. water uptake (in phloem/sieve tubes) by osmosis/water diffuses into phloem √ i. rise in (hydrostatic) pressure at source (in phloem) √	Explain how organic compounds are transported within plants. a. transported in/translocated in/loaded into phloem√ b. in sieve tubes √ c. by mass flow √ d. from sources to sinks √ e. from leaves/other example of source to roots/other example of sink √ f. loading (of sugars/organic compounds) by active transport √ g. cause high concentration of solutes (in phloem/sieve tubes) √ h. water uptake (in phloem/sieve tubes) by osmosis/water diffuses into phloem √ i. rise in (hydrostatic) pressure at source (in phloem) √ j. creates a (hydrostatic) pressure gradient/higher pressure in source than sink √

C	Question	Answers	Notes	Total
8.	а	Describe the process of spermatogenesis leading to the production of four sperm cells in a human male.	Allow answers presented in a clearly annotated diagram.	
		 a. in the seminiferous tubule ✓ b. diploid cells/spermatogonia grow/enlarge ✓ c. two divisions of meiosis ✓ d. primary spermatocyte carries out the first division and secondary spermatocytes carry out the second division ✓ 		4 max
		 e. meiosis produces haploid cells/spermatids ✓ f. haploid cells/spermatids differentiate into spermatozoa/sperm cells OR develop tail/flagellum/helical mitochondrion/acrosome/sac of enzymes ✓ g. Sertoli cells help sperm to mature/differentiate 		
8.	b	Outline the roles of estrogen and progesterone in females during human reproduction.		
		 a. estrogen/progesterone for repair/thickening/development/vascularisation of uterus lining/endometrium ✓ b. estrogen (at high levels) stimulates LH secretion (which stimulates ovulation) c. progesterone maintains the uterus lining/endometrium during pregnancy/prevents miscarriage ✓ d. progesterone/estrogen inhibits FSH/LH secretion ✓ e. progesterone for development of breast tissue during pregnancy ✓ f. fall in progesterone/rise in estrogen leads to labour/contractions/childbirth ✓ g. estrogen/progesterone cause pre-natal development of female reproductive organs <i>OR</i> h. estrogen/progesterone cause secondary sexual characteristics ✓ 		4 max

(Question 8 continued)

(Question	Answers	Notes	Total
8.	Question	Answers Explain the process of muscle contraction. a. muscle fibre contains many myofibrils ✓ b. made up of sarcomeres/labelled diagram showing one or more sarcomeres ✓ c. nerve impulse/signal from (motor) neuron causes release of calcium (ions)/Ca²+ ✓ d. calcium (ions)/Ca²+ released from sarcoplasmic reticulum ✓	Accept any mark point if clearly made on an annotated diagram.	Total 7 max
		 e. calcium (ions)/Ca²+ link to troponin ✓ f. tropomyosin moves to expose actin binding sites ✓ g. ATP hydrolysis/ATP to ADP and phosphate/release of phosphate from ATP ✓ h. ATP binds to myosin heads and causes them to cock/change angle/release/gain energy ✓ i. myosin heads bind/form cross-bridges to actin ✓ j. myosin heads push on actin and then detach from actin ✓ 		
		 k. actin moved towards centre of sarcomere/sliding of filaments ✓ l. sarcomere becomes shorter (resulting in muscle contraction) ✓ 		