

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MATHEMATICS STANDARD LEVEL PAPER 2

Thursday 4 May 2006 (morning)

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

-2-

1. [Maximum mark: 21]

Let
$$f(x) = -\frac{3}{4}x^2 + x + 4$$
.

- (a) (i) Write down f'(x).
 - (ii) Find the equation of the normal to the curve of f at (2, 3).
 - (iii) This normal intersects the curve of *f* at (2, 3) and at one other point P. Find the *x*-coordinate of P. [9 marks]

Part of the graph of f is given below.

- (b) Let *R* be the region under the curve of *f* from x = -1 to x = 2.
 - (i) Write down an expression for the area of *R*.
 - (ii) Calculate this area.
 - (iii) The region R is revolved through 360° about the *x*-axis. Write down an expression for the volume of the solid formed. [6 marks]
- (c) Find $\int_{1}^{k} f(x) dx$, giving your answer in terms of k. [6 marks]

2. [Maximum mark: 16]

The diagram below shows a quadrilateral ABCD. AB = 4, AD = 8, CD = 12, $BCD = 25^{\circ}$, $BAD = \theta$.

(a) Use the cosine rule to show that
$$BD = 4\sqrt{5 - 4\cos\theta}$$
. [2 marks]

Let $\theta = 40^{\circ}$.

- (b) (i) Find the value of $\sin C\hat{B}D$.
 - (ii) Find the two possible values for the size of $C\hat{B}D$.
 - (iii) Given that $C\hat{B}D$ is an acute angle, find the perimeter of ABCD. [12 marks]
- (c) Find the area of triangle ABD.

[2 marks]

3. [Total mark: 22]

Part A [Maximum mark: 8]

Three students, Kim, Ching Li and Jonathan each have a pack of cards, from which they select a card at random. Each card has a 0, 3, 4, or 9 printed on it.

(a) Kim states that the probability distribution for her pack of cards is as follows.

x	0	3	4	9
P(X = x)	0.3	0.45	0.2	0.35

Explain why Kim is incorrect.

(b) Ching Li correctly states that the probability distribution for her pack of cards is as follows.

x	0	3	4	9
P(X = x)	0.4	k	2k	0.3

Find the value of *k*.

- (c) Jonathan correctly states that the probability distribution for his pack of cards is given by $P(X = x) = \frac{x+1}{20}$. One card is drawn at random from his pack.
 - (i) Calculate the probability that the number on the card drawn is 0.
 - (ii) Calculate the probability that the number on the card drawn is greater than 0. [4 marks]

(This question continues on the following page)

[2 marks]

[2 marks]

(Question 3 continued)

Part B [Maximum mark: 14]

A game is played, where a die is tossed and a marble selected from a bag.

Bag M contains 3 red marbles (R) and 2 green marbles (G).

Bag N contains 2 red marbles and 8 green marbles.

A fair six-sided die is tossed. If a 3 or 5 appears on the die, bag M is selected (M).

If any other number appears, bag N is selected (N).

A single marble is then drawn at random from the selected bag.

(a) **Copy** and **complete** the probability tree diagram on **your answer sheet**.

- (b) (i) Write down the probability that bag M is selected and a green marble drawn from it.
 - (ii) Find the probability that a green marble is drawn from either bag.

(iii)	Given that the marble is green, calculate the probability that it came from	
	Bag M.	[7 marks]

(c) A player wins \$ 2 for a red marble and \$ 5 for a green marble. What are his expected winnings? [4 marks]

4. [Maximum mark: 12]

(a)	Consider the geometric sequence $-3, 6, -12, 24, \ldots$		
	(i)	Write down the common ratio.	
	(ii)	Find the 15 th term.	[3 marks]
Cons	sider t	he sequence $x-3$, $x+1$, $2x+8$,	
(b)	When $x = 5$, the sequence is geometric.		
	(i)	Write down the first three terms.	
	(ii)	Find the common ratio.	[2 marks]
(c)	Find	the other value of x for which the sequence is geometric.	[4 marks]
(d)	For this value of <i>x</i> , find		
	(i)	the common ratio;	
	(ii)	the sum of the infinite sequence.	[3 marks]

- 6 -

M06/5/MATME/SP2/ENG/TZ1/XX+

5. [Maximum mark: 19]

The position vector of point A is 2i+3j+k and the position vector of point B is 4i-5j+21k.

(a)	(i)	Show that $\overrightarrow{AB} = 2i - 8j + 20k$.		
	(ii)	Find the unit vector \boldsymbol{u} in the direction of \overrightarrow{AB} .		
	(iii)	Show that \boldsymbol{u} is perpendicular to \vec{OA} .	[6 marks]	
Let S be the midpoint of [AB]. The line L_1 passes through S and is parallel to \vec{OA} .				
(b)	(i)	Find the position vector of S.		
	(ii)	Write down the equation of L_1 .	[4 marks]	
The line L_2 has equation $r = (5i + 10j + 10k) + s(-2i + 5j - 3k)$.				
(c)) Explain why L_1 and L_2 are not parallel. [2 marks]			
(d)	The l	ines L_1 and L_2 intersect at the point P. Find the position vector of P.	[7 marks]	

-7-