MATHEMATICAL STUDIES

Standard Level

Friday 5 November 1999 (morning)

Paper 2

1 hour 30 minutes

This examination paper consists of two sections, Section A and Section B.

Section A consists of 4 questions.

Section B consists of 3 questions.

The maximum mark for Section A is 60.

The maximum mark for each question in Section B is 20.

The maximum mark for this paper is 80.

INSTRUCTIONS TO CANDIDATES

Do NOT open this examination paper until instructed to do so.

Answer all FOUR questions from Section A and ONE question from Section B.

Unless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures as appropriate.

EXAMINATION MATERIALS

Required:

IB Statistical Tables

Millimetre square graph paper

Calculator

Ruler and compasses

Allowed:

A simple translating dictionary for candidates not working in their own language

12 pages

FORMULAE

Sine Rule:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Cosine rule:
$$a^2 = b^2 + c^2 - 2bc \cos A$$
 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

$$u_n = a + (n-1)a$$

Arithmetic sequences:
$$u_n = a + (n-1)d$$
 $S_n = \frac{n}{2}(a+1) = \frac{n}{2}\{2a + (n-1)d\}$

Geometric sequences:

$$u_n = ar^{n-1}$$

$$u_n = ar^{n-1}$$
 $S_n = \frac{a(r^n - 1)}{r - 1}, \quad r \neq 1$

Simple interest:

$$I = \frac{Crn}{100}$$

Compound interest:

$$I = C \left(1 + \frac{r}{100} \right)^n - C$$

Statistics:

If (x_1, x_2, \ldots, x_n) occur with frequencies (f_1, f_2, \ldots, f_n) then the mean m and standard deviation s are given by

$$m = \frac{\sum f_i x}{\sum f_i}$$

$$m = \frac{\sum f_i x_i}{\sum f_i} \qquad s = \sqrt{\frac{\sum f_i (x_i - m)^2}{\sum f_i}}, \qquad i = 1, 2, \dots, n$$

$$i=1,2,\ldots,n$$

[1 mark]

A correct answer with no indication of the method used will normally receive no marks. You are therefore advised to show your working.

SECTION A

Answer all FOUR questions from this section.

- 1. [Maximum mark: 15]
 - (i) Let

```
\mathscr{E} = \{\text{positive integers less than 15}\};

X = \{\text{multiples of 2}\};

Y = \{\text{multiples of 3}\}.
```

- (a) Show, in a Venn diagram, the relationship between the sets \mathscr{C} , X and Y.
- (b) List the elements of:
 - (i) $X \cap Y$ [1 mark]
 - (ii) $X \cap [Y]$. [2 marks]
- (c) Find the number of elements in the complement of $(X \cup Y)$. [2 marks]

(This question continues on the following page)

889-302 Turn over

(Question 1 continued)

(ii) Three propositions are defined as follows:

p: The oven is working.

q: The food supply is adequate.

r: The visitors are hungry.

(a) Write one sentence, in words only, for each of the following logic statements.

(i)
$$q \wedge r \wedge \neg p$$

[2 marks]

(ii)
$$\neg r \lor (p \land q)$$

[2 marks]

(b) Write the sentence below using only the symbols p, q and logic connectives.

"If the oven is working and the food supply is adequate then the oven is working or the food supply is adequate."

[2 marks]

(c) A tautology is a compound statement which is always true. Use a truth table to determine whether or not your answer to part (b) is a tautology.

Hint: Begin by writing the first two columns of your truth table in the following format:

P	q
T	Т
Т	F
F	Т
F	F

[3 marks]

2. [Maximum mark: 15]

A marine biologist records as a frequency distribution the lengths (L), measured to the nearest centimetre, of 100 mackerel. The results are given in the table below.

-5-

Length of mackerel (L cm)	Number of mackerel
27 < L ≤ 29	2
$29 < L \le 31$	4
31 < <i>L</i> ≤ 33	8
$33 < L \le 35$	21
$35 < L \le 37$	30
$37 < L \le 39$	18
$39 < L \le 41$	12
41 < <i>L</i> ≤ 43	5
	100

(a) Construct a cumulative frequency table for the data in the table.

[2 marks]

(b) Draw a cumulative frequency curve.

Hint: Plot your cumulative frequencies at the top of each interval.

[3 marks]

- (c) Use the cumulative frequency curve to find an estimate, to the nearest cm for
 - (i) the median length of mackerel;

[2 marks]

(ii) the interquartile range of mackerel length.

[2 marks]

- (d) It is known that the length of mackerel is normally distributed with mean 35 cm and standard deviation 5 cm. Find the probability that a mackerel chosen at random is
 - (i) longer than 40 cm;

[2 marks]

(ii) less than 28 cm;

[2 marks]

(iii) between 28 cm and 40 cm.

3. [Maximum mark: 15]

Angela needs \$4000 to pay for a car. She was given two options by the car seller.

Option A: Outright Loan

A loan of \$4000 at a rate of 12% per annum compounded monthly.

- (a) Find
 - (i) the cost of this loan for one year;

[2 marks]

(ii) the equivalent annual simple interest rate.

[2 marks]

Option B: Friendly Credit Terms

A 25% deposit, followed by 12 equal monthly payments of \$287.50.

(b) (i) How much is to be paid as a deposit under this option?

[1 mark]

(ii) Find the cost of the loan under Friendly Credit Terms.

·[2 marks]

- (c) Give a reason why Angela might choose
 - (i) Option A

(ii) Option B

[2 marks]

To help Angela, her employer agrees to give her an interest free loan of \$4000 to buy the car. The employer is to recover the money by making the following deductions from Angela's salary:

\$x\$ in the first month,

\$ y every subsequent month.

The total deductions after 20 months is \$ 1540 and after 30 months it is \$ 2140.

(d) Find x and y.

[4 marks]

(e) How many months will it take for Angela to completely pay off the \$ 4000 loan?

4. [Maximum mark: 15]

The vectors BA, BC and CA form a triangle ABC. The points A(4, 5), B(6, 2), C(2, 1) are the vertices of triangle ABC.

(a) (i) On coordinate axes, plot and label the points A, B and C.

[2 marks]

(ii) Draw line segments representing the vectors \overrightarrow{BA} , \overrightarrow{BC} and \overrightarrow{CA} . Indicate clearly the direction of each vector.

[2 marks]

- (b) Write as column vectors
 - $(i) \stackrel{\rightarrow}{CA};$

[2 marks]

 $(ii) \stackrel{\rightarrow}{BC};$

[2 marks]

(iii) \overrightarrow{BA} .

[2 marks]

A'B'C' is the image of triangle ABC after it is rotated through 270° about the point (0,0).

(c) (i) On the same axes as in part (a) above, draw and label triangle A'B'C'.

[2 marks]

(ii) Write the image of the vector \overrightarrow{AB} in the form $\begin{pmatrix} p \\ q \end{pmatrix}$.

[2 marks]

(d) Write down the 2×2 matrix, T, that corresponds to a rotation about (0,0) through 270° .

[1 mark]

SECTION B

Answer ONE question from this section.

5. [Maximum mark: 20]

Vanessa wants to rent a place for her wedding reception. She obtains two quotations.

- (a) The local council will charge her £30 for the use of the community hall plus £10 per guest.
 - (i) Copy and complete this table for charges made by the local council.

Number of guests (N)	10	30	50	70	90
Charges (C) in £				_	

[2 marks]

(ii) On graph paper, using suitable scales, draw and label a graph showing the charges. Take the horizontal axis as the number of guests and the vertical axis as the charges.

[3 marks]

(iii) Write a formula for C, in terms N, that can be used by the local council to calculate their charges.

[1 mark]

(b) The local hotel calculates charges for their conference room using the formula:

$$C = \frac{5N}{2} + 500$$

where C is the charge in £ and N is the number of guests.

(i) Describe, in words only, what this formula means.

[2 marks]

(ii) Copy and complete this table for the charges made by the hotel.

Number of guests (N)	0	20	40	80
Charges (C) in £				

[2 marks]

(iii) On the same axes used in part (a)(ii), draw this graph of C. Label your graph clearly.

[2 marks]

(This question continues on the following page)

(Question 5 continued)

- (c) Explain, briefly, what the two graphs tell you about the charges made. [2 marks]
- (d) Using your graphs or otherwise, find
 - (i) the cost of renting the community hall if there are 87 guests; [2 marks]
 - (ii) the number of guests if the hotel charges £650; [2 marks]
 - (iii) the difference in charges between the council and the hotel if there are 82 guests at the reception.

6. [Maximum mark: 20]

Two types of minibus, Kombi and Danfo, are used to transport 70 students from their hall of residence to college each day. The college can provide up to 7 drivers but no driver is allowed to repeat the journey. The following additional information is known:

Type of Minibus	Number of minibuses available	Maximum number of students
Kombi	4	15
Danfo	5	10

(a) Let x and y represent the number of Kombi and Danfo minibuses, respectively, used each day.

	(i)	Explain why $x + y \le 7$.	[2 marks]
	(ii)	Write down and simplify an inequality in x and y which ensures that all 70 students are transported.	[2 marks]
((iii)	Explain why the two inequalities $x \le 4$ and $y \le 5$ are valid.	[2 marks]
(b)	(i)	Draw a graph to show the region defined by the four inequalities in part (a). Use a suitable scale for each axis.	[5 marks]
	(ii)	Indicate, by shading, the region defined by the four inequalities.	[2 marks]
((iii)	From your graph write down all possible combinations of Kombi and Danfo minibuses that simultaneously satisfy all four inequalities.	[2 marks]
		of using a Kombi minibus is £23 a day and the cost of using a Danfo is £15 a day.	
(c)	(i)	Write an expression in terms of x and y for the total cost, C , of transporting the students each day.	[1 mark]
	(ii)	Using your answer to part (b)(iii), determine the minimum daily cost of transporting the 70 students. Show your method clearly.	[3 marks]
	(iii)	On a particular day, one of the Kombi minibuses is in the garage for repair. What is the cheapest way of transporting the students on that day?	[1 mark]

7. [Maximum mark: 20]

(i) A ship sails from port A and travels due South to port B.

From port B it sails on a bearing of 060° and travels for 50 km to a point C, which is due East of A.

(a) (i) Draw, and label clearly, a diagram to show A, B and C. [2 marks]

(ii) Calculate the distance from port A to point C. [2 marks]

A second ship also sails from port A, but on a bearing of 330° for 50 km to a point D.

(b) Complete your diagram in part (a) to show point D. [2 marks]

(c) Calculate

(i) the distance from point C to point D; [3 marks]

(ii) angle ACD. [3 marks]

(d) What is the bearing of D from C? [2 marks]

(This question continues on the following page)

889-302 Turn over

(Question 7 continued)

(ii) A rectangular prism OABCDEFG is drawn on 3-dimensional axes as shown below.

Point P is the midpoint of the edge EF.

(a) Write down the coordinates of point P.

[1 mark]

- (b) Calculate, correct to three significant figures
 - (i) the length of the internal diagonal EC;

[3 marks]

(ii) angle AEC.