

Environmental systems and societies Standard level Paper 1

	Wednesday	18	May	2016	(morning)
--	-----------	----	-----	------	-----------

	Can	dida	te se	ssior	num	nber	

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all questions.

1 hour

- Write your answers in the boxes provided.
- A calculator is required for this paper.
- The maximum mark for this examination paper is [45 marks].

1.	(a)	Define the term <i>species</i> .	[1]

(b) The four species shown in Figure 1 can be found in wetland ecosystems.

Figure 1

Oystercatcher (Haematopus ostralegus)

[Source: Andreas Trepte, www.photo-natur.de]

Avocet (Recurvirostra avosetta)

[Source: Photo by Andreas Trepte, www.photo-natur.de]

Crested Newt (Triturus cristatus)

[Source: https://en.wikipedia.org/wiki/Northern_crested_ newt#/media/File:Kammmolchmaennchen.jpg, by Rainer Theuer]

Bithynia (Bithynia tentaculata)

[Source: https://en.wikipedia.org/wiki/Bithynia_tentaculata#/ media/File:Bithynia tentaculata.jpg, by Michal Maňas]

(Question 1 continued)

(i) Construct a classification key to identify these animals by entering appropriate contrasting features and the names of the organisms to complete the table below: [2]

Row	Paired contrasting features	Name of organisms			
1	Body covered with feathers	Go to row 2			
	Body not covered with feathers	Go to row 3			
2		Name:			
		Name:			
3		Name:			
		Name:			
(ii) S	(ii) State one limitation of using a key to identify organisms. [1]				

(ii) State one limitation of using a key to identify organisms.	[1]

Turn over

[3]

(Question 1 continued)

(c) Avocets, seen in **Figure 2**, often gather in large populations of up to a few thousand birds before migrating.

Figure 2

[Source: https://en.wikipedia.org/wiki/Pied_avocet#/media/File:Avocet_from_the_Crossley_ID_Guide_Britain_and_Ireland.jpg, by Richard Crossley — The Crossley ID Guide Britain and Ireland]

Describe a method to estimate the size of an avocet population.

/ ^	4	4 *	
(Question	1 60	ntinii	α
COUESIIOI			
, ~			

(d)	Oystercatchers and avocets both feed on small animals in the mud of the wetlands. State the most likely relationship between these two species.	[1]
(e)	Bithynia feeds on plant material in the wetland ecosystem.	
	(i) State its trophic level in the ecosystem.	[1]
	(ii) Describe its role in the carbon cycle of the system.	[2]

Turn over

2. Figure 3: A simplified diagram of the Lake Shergar area.

Figure 3

[Source: © International Baccalaureate Organization 2016]

(a) I ne lake provides a water	supply for the local population.
--------------------------------	----------------------------------

(i)	Outline why this lake may be considered an open system.	[1]
(ii)	Identify two outputs from this lake.	[1]

(iii)	With reference to Lake Shergar, explain what is meant by natural income.	[2]
(iv)	With reference to the cattle in the area, explain how the maximum sustainable yield could be calculated.	[2]

(v) Nitrates and phosphates from nearby farms may drain into the lake. Identify a strategy for managing this pollution at each of the following levels: [3]

Level of management	Management strategy
Reducing production of pollutant.	
Reducing release of pollutant into lake.	
Restoring impacts of pollution.	

Turn over

3. Figure 4: The figure shows changes in the amount of municipal waste recycled as a percentage of total generated waste in 32 European countries in 2001 and 2010.

Figure 4

[Source: adapted from http://na.unep.net]

(a)	(1)	and 2010.	[1]

	3 continued)
	(ii) Identify two countries that have not followed this general trend.
	(iii) Identify one reason why some countries may have not followed this trend.
(b)	Evaluate the use of incineration as an alternative to recycling for the management of solid waste.

Turn over

4. Figure 5: Ecological footprints (EF) for China and the USA between 1961 and 2010.

Figure 5

		China		USA	
			1		
	Remo	ved for copyright reasons		Removed for copyright reasons	
(a)	(i)	Outline one reason for tand the USA in 2010.	the difference betwee	n the ecological footprints of China	[1]
	(ii)	Outline two possible rea	asons for changes in	China's ecological footprint between	[2]
	(iii)	Explain one advantage sustainability.	of using ecological fo	ootprint as a model for assessing	[2]

5. Figure 6: The graph below shows the global CO_2 emissions from 1992 to 2012.

[Source: Adapted from http://infographics.pbl.nl, PBL Netherlands Environmental Assessment Agency]

(a)	(1)	Calculate the percentage increase of global CO_2 emissions from 1992 to 2012.	[1]
	(ii)	CO ₂ is considered a greenhouse gas. Identify two other greenhouse gases.	[2]

(This question continues on the following page)

Turn over

(Question 5 continued)

 		 			 				 															 	-	

6. (a) Human activities affect the concentration of both stratospheric and tropospheric ozone.

Outline the differences in these two effects by completing the following table. [2]

	Stratospheric ozone	Tropospheric ozone
Change in concentration	Increase	Increase
Cause of change in concentration:		
Impact on humans:		

(This question continues on page 14)

Please do not write on this page.

Answers written on this page will not be marked.

Turn over

(Question 6 continued)

(b) Images from space and measurements have allowed scientists to estimate changes in the ozone hole.

Figure 7: Changes in the ozone hole from 1979 to 2008.

[Source: http://earthobservatory.nasa.gov/Features/EarthPerspectives/page3.php]

(Question 6 continued)

Including reference to this data, evaluate the effectiveness of the Montreal Protocol (1987) in managing ozone depletion.	[5]

Please do not write on this page.

Answers written on this page will not be marked.

16FP16