

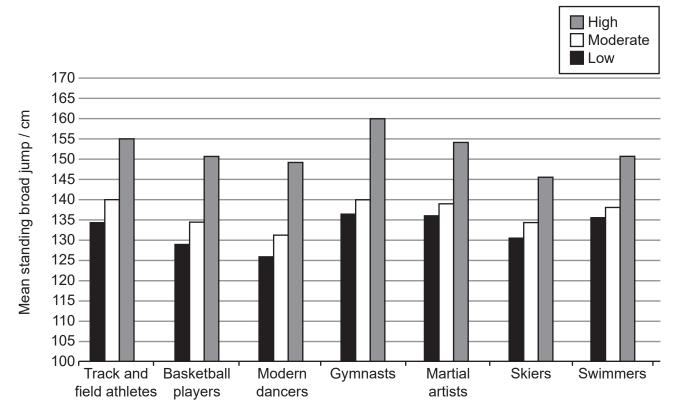
Sports, exercise and health science Higher level Paper 2

	Car	ıdida	te se	ssior	num	nber	

2 hours 15 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer two questions.
- Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- The maximum mark for this examination paper is [90 marks].


International Baccalaureate Baccalauréat International Bachillerato Internacional

Section A

Answer **all** questions. Answers must be written within the answer boxes provided.

- 1. A study examined physical fitness levels of 10-year-old children who regularly participate in sports. The 900 participants were divided evenly between three groups according to their training level:
 - Low: training less than 1 hour per week
 - Moderate: training between 1 and 5 hours per week
 - High: training more than 5 hours per week.

Each participant performed the standing broad jump fitness test. The mean results are shown in the graph.

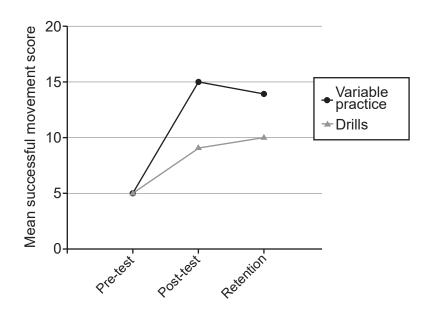
[Source: © International Baccalaureate Organization 2018]

(a)	(i))	Identify the training level and sport for the group that has the highest mean score on the standing broad jump fitness test.	[1]

l	വ	HE	sti	on	1	conti	nued	١
١	u	uc	JU	OII		COIIL	Hucu	,

(ii)	Calculate the difference of mean standing broad jump fitness test score between moderate and high training levels for the group stated in 1(a)(i).	[2]
(iii)	Using the data, deduce the effect of high level of participation in sport on performance in the standing broad jump test.	[2]
(iv)	A two-tailed, unpaired <i>t</i> -test was conducted on the data. The calculations yielded the following results:	
	 comparing low and moderate training level yielded p > 0.05 comparing moderate and high training level yielded p < 0.05 comparing low and high training level yielded p < 0.01. 	
	Comment on the meaning of the results from the <i>t</i> -test.	[3]

Turn over


(Question	1	continued)
-----------	---	------------

(b)	(i)	State an alternative test (other than standing broad jump) for measuring leg power.	[1]
• • • •			
	(ii)	Outline the procedure for measuring leg power in the test stated in 1(b)(i).	[3]

- 2. A study investigated teaching that supports individual differences in skill learning. Two groups of 10-year-old participants were taught for four weeks using the following techniques:
 - Variable practice (non-linear pedagogy)
 - Drills (traditional pedagogy).

Participant movement was recorded by digital video and scored against criteria. The graph shows the mean score of successful movements during the pre-test performance (day 1), post-test performance (4 weeks), and retention testing (10 weeks).

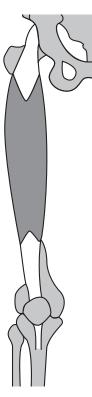
[Source: Lee MCY, Chow JY, Komar J, Tan CWK, Button C (2014) Nonlinear Pedagogy: An Effective Approach to Cater for Individual Differences in Learning a Sports Skill. *PLoS ONE* **9**(8): e104744. https://doi.org/10.1371/journal.pone.0104744. Licenced under a Creative Commons International 4.0 licence, https://creativecommons.org/licenses/by/4.0.]

(a)	Identify the highest mean movement score for retention testing.	[1]
(b)	Calculate the change between the pre-test and post-test mean movement scores for the variable practice participants.	[2]

(This question continues on the following page)

Turn over

Question	2	continue	d)
----------	---	----------	----


	(0)	Suggest reasons for the trends shown in the graph.	[၁]
3.	(a)	State the general characteristic common to muscle tissue that allows the muscle to stretch and return to its original resting length.	[1]
	• • •		

(Question 3 continued)

(b) (i) Identify the origin and insertion for the rectus femoris.

[2]

[Source: Copyright 2003-2004 University of Washington, Seattle, Washington, U.S.A. All rights reserved including all photographs and images. No re-use, re-distribution or commercial use without prior written permission of the authors and the University of Washington. Musculoskeletal images are from the University of Washington 'Musculoskeletal Atlas:

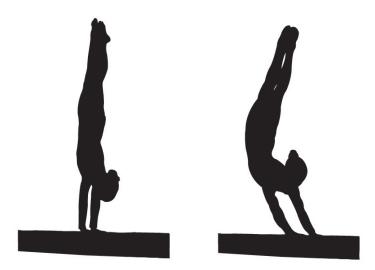
A Musculoskeletal Atlas of the Human Body" by Carol Teitz, M.D. and Dan Graney, Ph.D.]

Origin:										
										•
Insertion:										
(ii)	Describe th	ne functio	ns of liga	aments a	and tendo	ons in a jo	oint such	as the k	knee joint.	
(ii)	Describe th	ne functio	ns of liga	aments a	and tendo	ons in a jo	oint such	as the k	knee joint.	
(ii)	Describe th	ne functio	ns of liga	aments a	and tendo	ons in a jo	pint such	as the k	knee joint.	
(ii)	Describe th	ne functio	ns of liga	aments a	and tendo	ons in a jo	pint such	as the k	knee joint.	

(This question continues on the following page)

Turn over

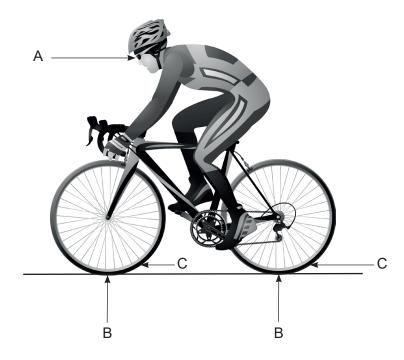
(c) Distinguish between maximal oxygen consumption during cycling and arm ergometry.	
(d) Describe the process of oxygen exchange between the lungs and pulmonary capillaries at rest.	
(e	e) (i) Outline the characteristics of hormones.	
-		
	(ii) Describe how circulating hormone levels are regulated.	
		_


(a)		=X	Ole	airi	n	OW	a	ce	tyi	CH	OII	ПЕ	(/-	10	11)	IIIII	liati	es	SK	ele	lai	mu	SCI	e c	on	uac	JUO	11.						[2]
								٠.					٠.		٠.	٠.	٠.																٠.		
							٠.					٠.				٠.																			
(b)	A	۱n	aly	/S6	e h	10\	V C	cap	oill	ary	y a	anc	l m	nito	ch	on	dri	al o	der	nsit	ies	aff	ect	t sl	ow	twi	itch	(ty	ре	l) r	nus	scle	fibr	es. [2]
(b)	<i>F</i>	۱n	aly	/S6	e h	10\	V (eap	oill	ary	y a	anc	l m	nito	ch	ion	ıdri	al o	der	nsit	ies	aff	ect	t sl	ow 	twi	itch	(ty	pe	l) r	nus	scle	fibr	es. [2]
(b)		<i>P</i>	\n	aly	/S6	e h				oill	ar <u>y</u>	y a		l m	nitc		on	idri	al (der	nsit	ies	aff	ect	t sl	ow 	twi	itch	(ty	pe	l) r	mus	scle	e fibro	es. [2]
(b			\n.	aly	//S6	e h				:	ary							ıdri	al (der	nsit	ies 	aff	ect	t sl	ow 	twi	itch	(ty	pe	l) r	mus	scle	fibro	es. [2]
(b			\n.	aly		e h				:	ar <u>y</u>								al (der	nsit		aff		t sl		twi	itch	(ty		l) r			fibre	es. [2]

Turn over

(Question 4 continued)

(c) Diagram A, shows a gymnast balanced on a beam. In Diagram B, she is about to fall. Explain how a fall can be avoided by moving the body and therefore the centre of mass. [3]


[Source: © Ranko Bojanovic/123RF.COM]

•	•	٠	٠		٠	٠	•		 •	٠	٠	•	٠	٠	 	٠	٠	 	٠	٠	٠	•	 	٠	•	 ٠	•	 ٠	 •	٠	 •	٠	 •	•	 	٠	•	 •	٠	•	 ٠	•	 	٠	٠
								-										 					 																				 		

(Question 4 continued)

(d) The diagram shows a cyclist.

[Source: elmm/Vector Images/Shutterstock]

	Label the three forces: A, B, and C.	[2]
A:		
B:		
C:		
(e)	Outline how wave drag can be reduced for a swimmer.	[2]
	Outline how wave drag can be reduced for a swimmer.	[2]
		[2]
		[2]

Turn over

– 12 –

Section B

Answer two questions. Answers must be written within the answer boxes provided.

6. (a) Describe the need for glucose and oxygen by the brain. [3] (b) Using an example, describe how selective attention prevents information overload. [3] (c) (i) Define motor programme. [1] (ii) Apply the concept of motor programme to improving performance of a gymnastics [2] routine. (d) Explain how genetic and environmental factors contribute to improved performance in long distance runners. [5] (e) Discuss how the three energy systems contribute to ATP production during an 800-metre run. [6] 7. (a) Describe how cardiovascular drift takes place. [3] (b) Identify the location and function of the pituitary gland. [3] (c) Outline the chemical control of ventilation during exercise. [3] (d) Explain physiological causes of peripheral fatigue in long distance running. [5] (e) Explain excess post-exercise oxygen consumption (EPOC) during recovery. [6] 8. (a) Outline characteristics of performance outcome model of qualitative biomechanical analysis for an individual sports technique. [3] (b) Distinguish between the movement permitted in different types of joints. [3] (c) (i) Define delayed onset muscle soreness (DOMS). [1] (ii) Outline components of a resistance training session in order to reduce DOMS. [2] (d) Analyse factors that decrease drag for a road cyclist. [5] Explain sliding filament theory after acetylcholine (ACh) increases muscle membrane (e) permeability. [6]

Turn over

- -14-
- **9.** (a) Describe the path taken by blood from the right ventricle to the left ventricle. [3]
 - (b) Distinguish how cardiac output, stroke volume and resting heart rate would differ between trained and untrained women during exercise.
 - [3]
 - (c) Draw a flowchart with features that can be used for match analysis in a team invasion game of choice.
- [3]
- (d) Discuss how exercise affects susceptibility to infectious disease in a highly-trained athlete.
- [5]

[6]

(e) Using examples from team sports, evaluate the concept of the psychological refractory period (PRP).

Please **do not** write on this page.

Answers written on this page will not be marked.

Please **do not** write on this page.

Answers written on this page will not be marked.

24FP24