

Markscheme

November 2018

Sports, exercise and health science

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Q	Question		Answers	Notes	Total	
1.	а	i	gymnasts with high training level ✓	Both gymnast and high required for [1] mark.	1	
1.	а	ii	160–140 ✓	Accept the subtraction in a different order.		
			=20 «cm» √	Accept correct calculation if (a)(i) is incorrect.	2	
1.	а	iii	children who regularly participate in sport perform better on standing broad jump ✓	Accept other reasonable hypothesis.		
			gymnasts perform better than children from other sports across all participation levels ✓ A high level/ >5hr per week of training appeared to have a significant effect on standing broad jump performance in every sport when compared to the other 2 groups/ the greater the training the greater the effect✓		2	
1.	а	iv	low to moderate training level group did not show «statistically» <u>significant</u> results ✓ moderate and high training level group did show «statistically» significant_results/ showed they were significantly different to 95% ✓ low and high training level group did show «extremely statistically» <u>significant</u> results/ showed they were significantly different to 99% ✓	Accept response if "significant" is mentioned once but implied in the rest of the answers. Eg the low to moderate training level did not show significant results but the moderate and high training level group and the low and high training level group did.	3	
1.	b	i	vertical jump/Sargent test ✓	Accept valid tests eg Wingate, Margaria-Kalamen.	1	
1.	b	ii	place a vertical marker from a standing position OR	Despite current research award [1] mark for warm-up.	3 max	
			create a "baseline" measurement ✓	Accept protocols for alternate valid test from (b)(i).	J	

	perform a two-foot take-off ✓		
	bending knees/swinging the arms for the take-off ✓		
	place a vertical marker at the apex of the jump ✓ power is measured as the distance from standing position marker to marker at the apex of the jump ✓		
а	elasticity ✓		1
b	tendons connect muscles to bones ✓		
	ligaments connect bones to bones ✓	1 max for ligaments or tendons	
	ligaments/ tendons stabilize joints ✓		2 max
	tendons enable flexion and/ or extension of the joint√		
С	cycling produces higher maximal oxygen consumption/VO₂max values than arm ergometry ✓	Accept in the converse.	1
d	Gases/O₂ move from a high to low partial pressure / concentration gradient ✓		
	Oxygen partial pressure is higher in the lungs than in the capillary OR		
	oxygen/O₂ moves from the lungs/alveoli to the pulmonary capillaries ✓		
	Gases/O₂ diffuse across the membranes / into blood✓		
	The capillary and alveoli walls are 1 cell thick <which assists="" diffusion="" high="" in="" of="" rate="" the="">✓</which>		4 max
	A large surface area increases diffusion rate√		
	the amount and rate of gas exchange that occurs across the membrane depends on the partial pressure of O₂, the thickness of the wall and the surface area <which fick's="" is="" law="">✓</which>		
	<98%> oxygen combines with hemoglobin <to form="" oxyhemoglobin="">✓</to>		
	b	bending knees/swinging the arms for the take-off ✓ place a vertical marker at the apex of the jump ✓ power is measured as the distance from standing position marker to marker at the apex of the jump ✓ a elasticity ✓ b tendons connect muscles to bones ✓ ligaments connect bones to bones ✓ ligaments/ tendons stabilize joints ✓ tendons enable flexion and/ or extension of the joint ✓ c cycling produces higher maximal oxygen consumption/VO₂max values than arm ergometry ✓ d Gases/O₂ move from a high to low partial pressure / concentration gradient ✓ Oxygen partial pressure is higher in the lungs than in the capillary OR oxygen/O₂ moves from the lungs/alveoli to the pulmonary capillaries ✓ Gases/O₂ diffuse across the membranes / into blood ✓ The capillary and alveoli walls are 1 cell thick <which assists="" diffusion="" high="" in="" of="" rate="" the="">✓ A large surface area increases diffusion rate ✓ the amount and rate of gas exchange that occurs across the membrane depends on the partial pressure of O₂, the thickness of the wall and the surface area <whireholders fick's="" is="" law="" which="">✓</whireholders></which>	bending knees/swinging the arms for the take-off ✓ place a vertical marker at the apex of the jump ✓ power is measured as the distance from standing position marker to marker at the apex of the jump✓ a elasticity ✓ b tendons connect muscles to bones ✓ ligaments connect bones to bones ✓ ligaments / tendons stabilize joints ✓ tendons enable flexion and/ or extension of the joint✓ c cycling produces higher maximal oxygen consumption/VO₂max values than arm ergometry ✓ d Cases/O₂ move from a high to low partial pressure / concentration gradient√ Oxygen partial pressure is higher in the lungs than in the capillary OR oxygen/O₂ moves from the lungs/alveoli to the pulmonary capillaries ✓ Gases/O₂ diffuse across the membranes / into blood√ The capillary and alveoli walls are 1 cell thick <which <which="" a="" across="" amount="" and="" area="" assists="" depends="" diffusion="" diffusions="" exchange="" fick's="" gas="" high="" in="" increases="" is="" large="" law="" membrane="" occurs="" of="" on="" o₂,="" partial="" pressure="" rate="" rate√="" surface="" that="" the="" thickness="" wall="" ✓="">✓</which>

2.			untrained	trained		
- -	е	otroko volumo		trained		
		stroke volume	lower	higher	√	
		resting heart rate	higher	lower	✓	
		<maximal> cardiac output</maximal>	lower	higher	✓	
		For a set task at submax le but SV will be higher in tra		the same	√	
		and HR will be higher in ur	trained		✓	
3.	а	changes the electrical/neura	al impulse into	a chemica	al stim	
		OR				
		the m				
			2			
		a⁺ √				
		which causes Ca++ to be rele	eased <into td="" th<=""><td>ne muscle (</td><td>cell> •</td><td></td></into>	ne muscle (cell> •	
		ACh is broken down < by ch	olinesterase>	> to preven	t cont	
		stimulation √				
8.	b	Type I has a high density of	capillaries an	nd mitocho	ndria.	
		high capillary density allows	for increased	doxygenat	ion 🗸	
		high mitochondrial density a	llows for incre	eased use	of oxy	
		OR				2
		high mitochondrial density a amounts of ATP» ✓	llows for use	of aerobic	respir	
		both contribute to activities	hat require pr	rolonged e	nergy	

		OR increases fatigue resistance ✓		
3.	С	insulin production is a response to high blood sugar/glucose levels ✓ insulin stimulates glucose uptake from the blood into skeletal muscle <i>OR</i>	Award [2 max] for either insulin or muscle contraction	
		insulin improves cell membrane permeability to glucose ✓ muscle contraction stimulates glucose uptake from the blood into skeletal muscle		3 max
		OR		
		exercise improves cell membrane permeability to glucose ✓		
		increased sensitivity leads to decreased insulin/glycogen production ✓		

Section B

C	Questi	on			Answers	Notes	Total		
4.	а		Feature	Skeletal	Cardiac	Smooth			
			Movement	Voluntary	Involuntary	Involuntary	√		
			Structure	Cells are bound together into bundles by connective tissue known as fascia connected to bone by tendon	Structure is somewhere between skeletal and smooth. The branched fibres are not attached to bone	Cells are small and not attached to bone.	✓		
			Striated	Yes	yes	no	√		3
			Nucleus	Cells or fibres are multinucleate	Cells have a single nucleus.	Cells are single nucleus.	√		3
			Location	Found in skeletal muscles, e.g.: biceps, triceps	heart	hollow tubes such as digestive tract, blood vessels	✓		
			Nervous stimulation	somatic motor neurons	autonomic nervous system	autonomic nervous system	✓		

			Tension sensors Stretch receptors	Yes Yes	no no	no no	√ ✓			
4.	b	i	«regardless o	nme is a set of m f whether feedba	ck is used in their	execution»	e memor	y		1
<u>4.</u>	<u>b</u>	<u>ii</u>	improves prof improved prof movement ha	iciency reduces es s become more fl opportunity to pra	executive progran	nmes to subrout	ines as th	e	Accept any valid example that refers to a gymnastics routine.	2 max

4.	С	during static execution contrast to dynatic vessels during static execution during static execution contract to dynatic execution contract to dynatic execution contract to during static execution contract execu	uscle contraction during ular resistance differently ercise muscles create his mic exercise which result ercise there is an increase ontinuous pressure on the surface of t	gher pressure on the bluts in lower pressure or see even in diastolic BP	ood vessels in In the blood because the	Award [2 max] if no explanation.	4 max
		running plank position	higher than rest «~150 mm Hg» much higher than rest «~200 mm Hg»	Diastolic BP Little or no change from rest «~80 mm Hg» higher than rest «~150 mm Hg»	√		
4.	d	information can information is brelevant information detection process	occurs / detected by the come from intrinsic and iefly stored in short termation is perceived/attendard	sense organs/interoception extrinsic feedback/sount sensory store detective	rces √ attention/signal		4 max

4.	е	during «approximately» the first minute all energy systems will be working ✓ during an 800 m run, energy systems do not respond in a sequential manner ✓	Award [3 max] for each energy system and [5 max] if only 2 energy systems are discussed	
		ATP-CP system: ATP production is from the breakdown of phosphocreatine <anaerobically> during initial seconds of activity ✓ 1 PC = 1 ATP ✓ may contribute at other times of rapid change in energy demand <as a="" as="" athlete="" found="" into="" is="" long="" pace="" settles="" state="" steady="" the="" where=""> such as at the end of the race ✓ can only last for 10–15 seconds/ short bursts ✓</as></anaerobically>		
		Lactic Acid System: partial breakdown of glucose anaerobically to produce ATP ✓ 1 glucose molecule = <net> 2ATP ✓ will dominate after the ATP-PC system up to 1–2 minutes <while aerobic="" fully="" functional="" gets="" system="" the=""> ✓ The lactic acid system will dominate at other times where effort increases towards 100% such as during the final sprint ✓</while></net>		6 max
		Aerobic System: The aerobic system will dominate from approx. 1–2 minutes as the runner settles into their race pace ✓ 1 glucose molecule = 38 ATP with the aerobic system ✓ Complete breakdown of glucose molecule in the presence of oxygen ✓		

5.	а	ventilation is «chemically» regulated by blood acidity levels/low pH ✓	Accept appropriately labelled diagram.	
		blood acidity levels increase/pH drops due to an increase in carbon dioxide levels ✓		3 max

		blood acidity levels are detected by chemoreceptors ✓	
		medulla oblongata/ANS/respiratory control centre receive information from receptors ✓	
		increased blood acidity «and information from the proprioceptors» increases the depth / rate of ventilation ✓	
5.	b	deficit is calculated as the difference between the oxygen required for a given rate of work and the oxygen actually consumed ✓	
		deficit takes place during the initial stages of exercise ✓	
		muscles generate ATP through anaerobic pathways ✓	
		oxygen transport system is not immediately able to supply the needed quantity of oxygen to the active muscles	3 max
		OR	
		oxygen consumption requires several minutes/time before a homeostatic level is reached \checkmark	
		homeostatic level is reached when the aerobic system meets the demands 🗸	
		is repaid after exercise is finished√	

5.	С	rehearsal ✓	Award [1 max] for a list of methods.	
		information is processed mentally or physically ✓	Award [2 max] per memory aid.	
		coding ✓	Description must correspond to the	
		labelling sets of information to make it easier to access ✓	named method to obtain the mark.	
		brevity √		
		giving a learner a small amount of information at a time to avoid overload ✓		
		clarity ✓		
		keeping learning / teaching simple at the beginning ✓		
		avoiding to teach / learn similar but distinct items in the same session «to avoid interference with the memory of the other» 🗸		4 max
		chunking ✓		4 IIIax
		learners retain more if the information is chunked «instead of being presented as individual items» ✓		
		organization ✓		
		we remember more easily if we organize the way in which we are to learn and ensure that the information is meaningful \checkmark		
		association ✓		
		ensuring that new learning is linked to what players already know 🗸		
		practice ✓		
		establishes memory trace/pathway ✓		

5.	d	Angular momentum=moment of inertia x angular velocity angular momentum is conserved after push off/take off OR the magnitude of angular momentum remains constant with decrease in radius the body has lower moment of inertia the speed of rotation/rotational velocity increases with decreased radius/body being in a compact shape OR eg moving arms/legs closer in will increase the speed of rotation when an athlete wants to stop the spin, they increase the radius to decrease the rotational velocity when an experimental experimental experiments and the spin	Award [2 max] if no reference to an example is included.	4 max
5.	е	sodium ions/Na ⁺ enter the muscle and change the polarization in the myofibril ✓ the sarcoplasmic reticulum releases calcium ions ✓ calcium ions bind to troponin ✓ Tropomyosin/troponin complex exposes the binding site «on actin» ✓ myosin «head» creates a cross-bridge with the actin ✓ power stroke takes place ✓ z lines come closer together / H zone gets smaller ✓ myosin releases actin if new ATP appears ✓ myosin head reattached further down the actin filament repeating the cycle < called the ratchet mechanism > ✓ process goes on until acetylcholine-esterase breaks the acetylcholine down ✓		6 max

6.	а	fibrous/ synarthrosis	no movement	√
		cartilaginous/ amphiarthrosis	slight movement	√
		synovial/ diarthrosis	freely movable	√

6.	b		Cardiovascular drift is an increase in heart rate during prolonged exercise <despite effort="" remaining="" same="" the="">✓</despite>		
			during prolonged exercise there is an increase in core temperature ✓		
		the rise in core temperature causes redistribution of blood to the periphery in orde to cool ✓			
			the blood volume redistribution causes the heart to work harder in order to maintain muscle blood flow / energy demands✓		3 max
		blood flow to skin increases and water is lost via sweating ✓ prolonged cooling/sweating causes a decrease in blood volume / increase in viscosity✓			
			reduction in venous return/stroke volume causes the heart rate to increase to maintain cardiac output ✓		
6.	ပ		creatine phosphate/CP/PCr is a high-energy molecule/fuel ✓	Accept a reaction equation.	
			speed of breakdown is increased by creatine kinase ✓		
			CP is broken down to provide a phosphate molecule for the re-synthesis of ATP/ energy released is used to add Pi to ADP «endothermic reaction» ✓		
			reaction is a coupled reaction where one reaction is linked to another reaction ✓		4 max
			releases energy «exothermic reaction» and phosphate molecule/Pi ✓		1 1116.51
			1 PC = 1ATP✓		
		does not require oxygen√			
			is the first system to provide ATP / occurs in the first 10–15sec of exercise✓		

6.	d	force is proportional to acceleration / F=ma	Accept other valid examples.		
		OR	Award [3 max] if no example provided		
		more force yields greater acceleration ✓			
		eg kicking harder/application of more force increases the acceleration of a ball \checkmark			
		mass is proportional to the force / $m = \frac{F}{a}$			
		OR		4 max	
		smaller mass yields greater acceleration with application of the same amount of force \checkmark			
		eg decreasing the weight of gear in cycling allows for more acceleration when the same force in pedaling is applied \checkmark			
		longer application of the same force causes greater acceleration ✓			
		acceleration occurs in the direction of the force ✓			

6.	е	psychological refractory period/PRP is the increase in reaction time to a second stimulus caused when the second stimulus has been delivered while the performer is responding to the first stimulus OR it is the time delay in reaction time caused by the arrival of a second stimulus before the first is processed ✓ this is believed to take place due to brain processing information on a single track/using the single channel mechanism ✓ in sports you can use PRP as an advantage by introducing a dummy stimulus before the real movement ✓	Award [2 max] for an annotated diagram of the single channel hypothesis for mark points 1 and 2. Award 4 [max] if only strengths or limitations provided Award [4 max] if no example given	
		strengths: can be used to help a performer have greater chances of success <i>eg</i> pretending to pass / run one direction then quickly changing to pass / run the other way ✓ provides a performer with a greater range of options in their play ✓ external noise <i>eg</i> other players calling, or crowd noise can enhance the effectiveness of the PRP ✓ the more options that a player has will increase the reaction time to the stimulus <hick's law=""> ✓</hick's>		6 max
		limitations: if a performer uses it too often, they will become predictable and this limits success ✓ PRP may be reduced by anticipation / early cue detection / effective coach analysis / practicing «open» skills ✓ anxiety might make the performer get the timing wrong and thus the PRP is not effective ✓		