

Mathematics: applications and interpretation Standard level Paper 1

1 May 2024		
Zone A afternoon Zone B	afternoon Zone C	afternoon

Candidate session number												

1 hour 30 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- · Answer all questions.
- · Answers must be written within the answer boxes provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: applications and interpretation SL formula booklet** is required for this paper.
- The maximum mark for this examination paper is [80 marks].

045004

Please do not write on this page.

Answers must be written within the answer boxes provided. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1.	[Maximum	mark:	71
	IIVIAAIIIIUIII	man.	•

The following data show the heights, in metres, of six players in a basketball team.

1.67	1.60	1.68	2.31	2.31	2.19
1.07	1.00	1.00	2.51	2.31	2.17

- (a) For these six players, find
 - (i) the mean height.
 - (ii) the median height.
 - (iii) the modal height.
 - (iv) the range of the heights.

[6]

A new player, Gheorghe, joins the team. Their height is measured as $1.98\,$ metres to the nearest centimetre.

(b)	Write down the shortest possible height of Gheorghe.	[1]
-----	--	-----

		•	• •	 	• •	•	 •	 			 	 				 	 •	 	٠.		 	٠.	
• •	 ٠.	 		 		•		 			 	 				 		 			 		
 	 ٠.	 		 				 			 	 				 	 •	 	٠.	. •	 		 •
 	 	 		 				 			 			 •		 		 			 		
 	 	 		 			 •	 			 					 		 			 		
 	 	 		 				 			 					 ٠.		 			 	٠.	
 	 	 		 	٠.			 ٠.			 	 				 		 			 		
 • • •	 	 		 	٠.			 ٠.			 				 	 ٠.		 			 		
 	 ٠.	 		 				 		 •	 ٠.				 	 ٠.		 	٠.		 		
 	 	 		 			 •	 			 ٠.				 	 ٠.		 			 		
 	 ٠.	 		 				 			 				 	 ٠.		 			 		

Turn over

2. [Maximum mark: 6]

A teacher surveys their students to find out if they have eaten at the local Thai and Indian cafés. The results of the survey are shown in the following Venn diagram.

- (a) Write down the number of students surveyed. [1]
- (b) Write down the number of students who have not eaten at the Indian café. [1]

A student is chosen at random from those surveyed.

(c) Find the probability this student has eaten at both the Thai café and the Indian café. [1]

Let $\,T\,$ be the event: a student has eaten at the Thai café.

Let *I* be the event: a student has eaten at the Indian café.

- (d) Find $P(T \cup I)$. [1]
- (e) State whether the events T and I are mutually exclusive. Justify your answer. [2]

(Question	2 continued))
-----------	--------------	---

2224-7204

Please do not write on this page.

•			
3.	[Maximum]	mark:	71

On 1 January 2025, the Faber Car Company will release a new car to global markets. The company expects to sell 40 cars in January 2025. The number of cars sold each month can be modelled by a geometric sequence where r=1.1.

- (a) Use this model to find the number of cars that will be sold in December 2025. [2]
- (b) Use this model to find the total number of cars that will be sold in the year
 - (i) 2025.

(ii)	2026.	[5]
1111	2020.	10:

		•						 					 														 											•	•										
								 					 		•		•	•			•	•				•	 	٠																	 		•		
								 					 														 	•		•				•		•		•			 •								
•							•						 	 •	•	•		•									 	•						٠	•	•									 		•	•	
	•		•	•		 ٠	•		•	٠	•		 	 •	•	•			٠				•	•			 					•	 •		•	•							•		 	•		•	
					•		•			•		•	 						•					•			 	•			•				•	•		•							 				
												•	 	 													 									•		•			 				 				
													 	 														•	•				 •	٠				•			 	•			 				
														 						٠				•	•			•				•	 •			•					 	•		•	 				
			٠	•			•		•			•		 		•					•												 							•	 	•			 				

Turn over

4. [Maximum mark: 7]

A cell phone starts charging at 07:00. While being charged, the percentage of power, P, in the phone is modelled by the function $P=100-60\times a^{-t}$, where t is the number of hours after 07:00.

(a) Find the percentage of power in the phone at 07:00.

[2]

The percentage of power in the phone reaches 75% at 08:00.

(b) Find the value of a.

[2]

(c) Draw the graph of $P = 100 - 60 \times a^{-t}$ on the following set of axes.

[2]

(d) State a mathematical reason why the model predicts the percentage of power in the phone will never reach $100\,\%$.

[1]

(Question 4 continued)

Please do not write on this page.

		- 11 -	2224-1204
5.	[Maː	ximum mark: 6]	
	com	an deposited $\$100000$ into a savings account with a nominal annual interest rate of I^{9} npounded monthly. At the end of the eighth year, the amount in the account had eased to $\$150000$.	6
	(a)	Find the value of I .	[3]
	rate	an withdraws the $\$150000$ and places it in an annuity, earning a nominal annual interest of 6.1% compounded monthly. At the end of each month, Maan will receive a paym 1000 .	
	(b)	Find the amount of money remaining in the annuity at the end of $10\mathrm{years}$. Express your answer to the nearest dollar.	[3]

Turn over

6. [Maximum mark: 6]

Points A(3, 4), B(9, 6) and C(11, 2) are shown on the following diagram, along with the perpendicular bisectors of [AB], [AC] and [BC].

The perpendicular bisector of [BC] intercepts the axes at coordinates (0, -1) and (2, 0).

(a) Write down the equation of the perpendicular bisector of [BC].

[2]

The equation of the perpendicular bisector of [AB] is y = -3x + 23.

(b) Find the coordinates of point V where the perpendicular bisectors meet. Give your answer to four significant figures.

[2]

A Voronoi diagram is constructed with points A, B and C as the three sites.

(c) Draw, clearly, the edges of the Voronoi diagram on the given diagram.

[2]

(Question	6 c	ontinu	ed)
-----------	-----	--------	-----

•••••	
• • • • • • • • • • • • • • • • • • • •	

Turn over

7. [Maximum mark: 6]

The following graph shows the depth of water, d metres, in a river at t hours after 12:00.

At 15:00, the depth of water reaches $7\,\mathrm{m}$, its highest level. At 21:00, the depth of water drops to $1\,\mathrm{m}$, its lowest level.

The depth can be modelled by the function $d(t) = a \sin(bt) + 4$.

(a) Find the value of a.

[1]

(b) Find the value of b.

[2]

(c) Find the first time after 12:00 when the depth is equal to $3\,\mathrm{m}$. Give your answer to the nearest minute.

[3]

(Question	7 continu	ued)
-----------	-----------	------

4

Ņ

 •
 •

,73

Ŋ,

Turn over

Please do not write on this page.

24FP16

_			
8.	[Maximum	mark.	ຂາ
u.	IIVIAAIIIIUIII	IIIain.	UI

¥

The formula F = 1.8C + 32 is used to convert a temperature in degrees Celsius, C, to degrees Fahrenheit, F.

- (a) (i) Find a formula for converting a temperature in degrees Fahrenheit to degrees Celsius.
 - (ii) Find the temperature in degrees Celsius that is recorded as 77 degrees Fahrenheit. [3]

Over one year, the mean daily temperature in Mexico City was calculated to be 17 degrees Celsius with a standard deviation of 9 degrees Celsius.

- (b) For the same year, find in degrees Fahrenheit
 - (i) the mean daily temperature in Mexico City.

Turn over

9. [Maximum mark: 8]

Kyungyoon investigates the rate at which a cubical block of sugar dissolves in hot coffee. Initially, the cube has side lengths of $10\,\mathrm{mm}$. This information is illustrated in the following diagrams.

diagram not to scale

Kyungyoon predicts that, as the block of sugar dissolves, each side length will decrease at a constant rate of $0.2\,\mathrm{mm}$ per second.

- (a) According to this model, find
 - (i) the length of one side of a block of sugar, 20 seconds after it is placed in hot coffee.
 - (ii) the volume of a block of sugar, 20 seconds after it is placed in hot coffee.

[3]

Let the function V(t) represent the volume of the block of sugar, mm^3 , t seconds after it is placed in hot coffee. V(t) is given by

$$V(t) = 1000 - 60t + 1.2t^2 - 0.008t^3$$
, for $0 \le t \le 50$.

(b) Find V'(t).

[2]

(c) Find the rate of change of the volume of the block of sugar at t = 20.

[2]

(d) State one reason why the side length of the cube may not always decrease at a constant rate.

[1]

(Question	9 continu	ed)
-----------	-----------	-----

٧

 •	

Turn over

[4]

[4]

10. [Maximum mark: 8]

(b)

Find the value of k.

When studying big cats, researchers use a model in which the mass (m kilograms) of an animal is directly proportional to the cube of its shoulder height (h metres).

Cheetah

Lion

A cheetah has a mass of $64\,\mathrm{kg}$ and shoulder height of 0.8 metres.

- (a) (i) Use the model to find an expression for m in terms of h.
 - (ii) Hence find the mass of a different cheetah, with a shoulder height of 0.75 metres.

'Rubner's law' states that the energy needs of an animal (E) are directly proportional to the square of h.

The energy needs of a lion of mass $220\,\mathrm{kg}$ are k times the energy needs of a cheetah of mass $64\,\mathrm{kg}$.

	 	 • •	 	 • •	 ٠.	 ٠.	• •	 • •	 			 		 ٠.	 	 	
	 	 	 	 	 	 		 	 	٠,	٠.	 		 	 	 • • ,	
	 	 	 	 	 	 ٠.		 	 			 		 	 	 	
	 	 	 	 ٠.	 	 ٠.	• •	 	 		٠.	 		 	 	 	
	 	 	 	 ٠.	 	 ٠.	• •	 	 			 		 	 	 	
	 	 	 	 ٠.	 	 ٠.		 	 		٠.	 		 	 	 	
	 	 • •	 	 ٠.	 	 	• •	 	 			 		 ٠.	 	 	
	 	 	 	 ٠.	 	 	• •	 	 		٠.	 		 	 	 	
	 	 	 	 ٠.	 	 ٠.		 ٠.	 			 		 	 	 	
	 	 • •	 	 	 	 	• •	 	 ٠.			 	٠.	 	 	 	
	 	 • •	 	 ٠.	 	 		 	 			 		 ٠.	 	 	
	 	 	 	 	 	 ٠.		 	 			 		 	 	 	

11. [Maximum mark: 5]

The following diagram shows a semicircle with centre $\,O$ and diameter PQ. A rectangle $\,OABC$ is also shown, such that $\,AB=8\,$ and $\,OA=5\,$.

diagram not to scale

Find the length of the arc BQ.

••••••
• • • • • • • • • • • • • • • • • • • •
•••••
••••••

Turn over

12. [Maximum mark: 8]

Zac raises funds for a library by running a game where players spin a needle. The final position of the needle results in an outcome where a player wins or loses money. The outcomes, with associated probabilities, are shown in the following diagram.

diagram not to scale

Let *X* represent the amount that a player of this game wins.

- (a) (i) Find the expected value of X.
 - (ii) Interpret your answer to part (a)(i).

[3]

To encourage a person to keep playing this game, Zac increases the winning prize for the second game they play from \$5\$ to \$6. For each successive game they play, the winning prize continues to increase by \$1.

Emily plays k games. The kth game is fair.

- (b) (i) Find the value of k.
 - (ii) Explain why Zac expects to raise money from the games Emily plays.

[5]

Disclaimer:

Content used in IB assessments is taken from authentic, third-party sources. The views expressed within them belong to their individual authors and/or publishers and do not necessarily reflect the views of the IB.

References:

7. Saddako, n.d. Cheetah (Acinonyx jubatus) Running - stock photo. [image online] Available at: https://www.gettyimages. co.uk/detail/photo/cheetah-running-royalty-free-image/523244194?phrase=cheetah+speed&adppopup=true [Accessed 2 May 2023]. SOURCE ADAPTED.

GlobalP, n.d. Lion, Panthera leo, 8 years old, standing - stock photo. [image online] Available at: https://www. gettyimages.co.uk/detail/photo/lion-panthera-leo-8-years-old-standing-royalty-free-image/134976936?phrase=Lion+stand ing&adppopup=true [Accessed 2 May 2023]. SOURCE ADAPTED.

