HL Paper 1

Which mixtures act as buffer solutions?

- I. $100~{\rm cm^3~0.1~mol\,dm^{-3}}$ ethanoic acid and $100~{\rm cm^3~0.1~mol\,dm^{-3}}$ sodium ethanoate
- II. $100~{
 m cm^3}~0.1~{
 m mol}~{
 m dm^{-3}}$ ethanoic acid and $50~{
 m cm^3}~0.1~{
 m mol}~{
 m dm^{-3}}$ sodium hydroxide
- III. $100~{\rm cm^3}~0.1~{\rm mol\,dm^{-3}}$ ethanoic acid and $100~{\rm cm^3}~0.5~{\rm mol\,dm^{-3}}$ sodium hydroxide
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

A buffer solution is formed by mixing equal volumes of $1.00~{
m mol\,dm^{-3}}$ propanoic acid and $0.500~{
m mol\,dm^{-3}}$ potassium propanoate.

What is the concentration, in $\mathrm{mol}\,\mathrm{dm}^{-3}$, of $[\mathrm{H}^+(\mathrm{aq})]$ in this buffer solution? (K_a for propanoic acid is 1.30×10^{-5} .)

- A. 2.60×10^{-5}
- B. 1.95×10^{-5}
- $\text{C.} \quad 1.30 \times 10^{-5}$
- D. 0.650×10^{-5}

The pK_a of ethanoic acid is 4.8 at 298 K. Which combination will produce a buffer solution with a pH of 4.8 at 298 K?

- A. $20.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}~CH_3COOH}$ and $10.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}~NaOH}$
- B. $20.0 \text{ cm}^3 \text{ of } 1.0 \text{ mol dm}^{-3} \text{ CH}_3 \text{COOH} \text{ and } 20.0 \text{ cm}^3 \text{ of } 1.0 \text{ mol dm}^{-3} \text{ NaOH}$
- C. $10.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}~CH_3COOH}$ and $20.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}~NaOH}$
- D. $14.8~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}~CH_3COOH}$ and $10.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}~NaOH}$

Which mixture will form a buffer in aqueous solution?

- A. $0.10 \text{ mol } NH_3 + 0.20 \text{ mol HCl}$
- B. $0.10 \text{ mol NH}_3 + 0.20 \text{ mol NaOH}$
- $\text{C.} \quad 0.10 \ \text{mol NaOH} + 0.20 \ \text{mol KCl}$
- $\text{D.} \quad 0.20 \ mol \ NH_3 + 0.10 \ mol \ HCl$