HL Paper 1

Which mixtures act as buffer solutions?

- I. $100~{
 m cm^3~0.1~mol\,dm^{-3}}$ ethanoic acid and $100~{
 m cm^3~0.1~mol\,dm^{-3}}$ sodium ethanoate
- II. $100~{
 m cm^3}~0.1~{
 m mol\,dm^{-3}}$ ethanoic acid and $50~{
 m cm^3}~0.1~{
 m mol\,dm^{-3}}$ sodium hydroxide
- III. $100~{
 m cm^3~0.1~mol~dm^{-3}}$ ethanoic acid and $100~{
 m cm^3~0.5~mol~dm^{-3}}$ sodium hydroxide
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Markscheme

Α

Examiners report

[N/A]

A buffer solution is formed by mixing equal volumes of $1.00~\mathrm{mol}~\mathrm{dm}^{-3}$ propanoic acid and $0.500~\mathrm{mol}~\mathrm{dm}^{-3}$ potassium propanoate.

What is the concentration, in $\mathrm{mol}\,\mathrm{dm}^{-3}$, of $[\mathrm{H}^+(\mathrm{aq})]$ in this buffer solution? (K_a for propanoic acid is 1.30×10^{-5} .)

- A. 2.60×10^{-5}
- B. 1.95×10^{-5}
- C. 1.30×10^{-5}
- D. $0.650 imes 10^{-5}$

Markscheme

Δ

Examiners report

This proved to be answered correctly by fewest candidates (37.59%) with many choosing option D, reversing [HA] and $\left[A^{-}\right]$.

The p $K_{\rm a}$ of ethanoic acid is 4.8 at 298 K. Which combination will produce a buffer solution with a pH of 4.8 at 298 K?

- A. $20.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}}$ CH₃COOH and $10.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}}$ NaOH
- B. $20.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}~CH_3COOH}$ and $20.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}~NaOH}$
- C. $10.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}}$ CH₃COOH and $20.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}}$ NaOH
- D. $14.8 \text{ cm}^3 \text{ of } 1.0 \text{ mol dm}^{-3} \text{ CH}_3 \text{COOH} \text{ and } 10.0 \text{ cm}^3 \text{ of } 1.0 \text{ mol dm}^{-3} \text{ NaOH}$

Markscheme

Α

Examiners report

[N/A]

Which mixture will form a buffer in aqueous solution?

- A. $0.10 \text{ mol NH}_3 + 0.20 \text{ mol HCl}$
- $\mathsf{B.}\quad 0.10\ \mathrm{mol}\ \mathrm{NH_3} + 0.20\ \mathrm{mol}\ \mathrm{NaOH}$
- C. 0.10 mol NaOH + 0.20 mol KCl
- $\mathsf{D.}\quad 0.20\ mol\ NH_3 + 0.10\ mol\ HCl$

Markscheme

D

Examiners report

[N/A]