HL Paper 1

A buffer solution is formed by mixing equal volumes of $1.00~\mathrm{mol}~\mathrm{dm}^{-3}$ propanoic acid and $0.500~\mathrm{mol}~\mathrm{dm}^{-3}$ potassium propanoate.

What is the concentration, in $\mathrm{mol}\,\mathrm{dm}^{-3}$, of $[\mathrm{H}^+(\mathrm{aq})]$ in this buffer solution? (K_a for propanoic acid is 1.30×10^{-5} .)

- A. 2.60×10^{-5}
- B. 1.95×10^{-5}
- C. 1.30×10^{-5}
- D. $0.650 imes 10^{-5}$

The pK_a of ethanoic acid is 4.8 at 298 K. Which combination will produce a buffer solution with a pH of 4.8 at 298 K?

- A. $20.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}~CH_3COOH}$ and $10.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}~NaOH}$
- B. $20.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}~CH_3COOH}$ and $20.0~\mathrm{cm^3}$ of $1.0~\mathrm{mol\,dm^{-3}~NaOH}$
- C. $10.0 \text{ cm}^3 \text{ of } 1.0 \text{ mol dm}^{-3} \text{ CH}_3\text{COOH} \text{ and } 20.0 \text{ cm}^3 \text{ of } 1.0 \text{ mol dm}^{-3} \text{ NaOH}$
- D. $14.8 \text{ cm}^3 \text{ of } 1.0 \text{ mol dm}^{-3} \text{ CH}_3 \text{COOH} \text{ and } 10.0 \text{ cm}^3 \text{ of } 1.0 \text{ mol dm}^{-3} \text{ NaOH}$

Which mixture will form a buffer in aqueous solution?

- $\text{A.} \quad 0.10 \ mol \ NH_3 + 0.20 \ mol \ HCl$
- $\mathsf{B.}\quad 0.10\ \mathrm{mol}\ \mathrm{NH_3} + 0.20\ \mathrm{mol}\ \mathrm{NaOH}$
- C. 0.10 mol NaOH + 0.20 mol KCl
- $\mathsf{D.}\quad 0.20\ \mathrm{mol}\ NH_3 + 0.10\ \mathrm{mol}\ HCl$

Which mixtures act as buffer solutions?

- I. $100~{\rm cm^3~0.1~mol\,dm^{-3}}$ ethanoic acid and $100~{\rm cm^3~0.1~mol\,dm^{-3}}$ sodium ethanoate
- II. $100~{\rm cm^3}~0.1~{\rm mol\,dm^{-3}}$ ethanoic acid and $50~{\rm cm^3}~0.1~{\rm mol\,dm^{-3}}$ sodium hydroxide
- III. $100~{\rm cm^3}~0.1~{\rm mol\,dm^{-3}}$ ethanoic acid and $100~{\rm cm^3}~0.5~{\rm mol\,dm^{-3}}$ sodium hydroxide
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III