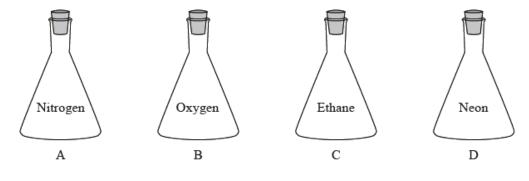
HL Paper 1


At which temperature, in K, assuming constant pressure, is the volume of a fixed mass of gas at 127 °C doubled?

- A. 200 K
- B. 254 K
- C. 400 K
- D. 800 K

 300 cm^3 of water is added to a solution of 200 cm^3 of 0.5 mol dm^{-3} sodium chloride. What is the concentration of sodium chloride in the new solution?

- A. 0.05 mol dm^{-3}
- $\mathsf{B.}\quad 0.1\ \mathrm{mol}\,\mathrm{dm}^{-3}$
- C. 0.2 mol dm^{-3}
- D. $0.3 \,\mathrm{mol}\,\mathrm{dm}^{-3}$

Four identical containers under the same conditions are filled with gases as shown below. Which container and contents will have the highest mass?

What is the pressure, in Pa, inside a 1.0 m^3 cylinder containing 10 kg of H₂ (g) at 25 °C?

- $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}; pV = nRT$
- A. $\frac{1 \times 10^4 \times 8.31 \times 25}{1.0 \times 10^3}$
- $\mathsf{B.} \ \frac{5{\times}10^2{\times}8.31{\times}298}{1.0}$
- C. $\frac{1 \times 8.31 \times 25}{1.0 \times 10^3}$

A compound with M_r = 102 contains 58.8 % carbon, 9.80 % hydrogen and 31 % oxygen by mass.

What is its molecular formula?

*A*_r: C = 12.0; H = 1.0; O = 16.0

A. C₂H₁₄O₄

B. C₃H₄O₄

C. C₅H₁₀O₂

D. C₆H₁₄O

Which solution neutralizes 50.0 cm³ of 0.120 mol dm⁻³ NaOH (aq)?

- A. 12.5 cm³ of 0.080 mol dm⁻³ H₃PO₄
- B. 25.0 \mbox{cm}^3 of 0.120 mol \mbox{dm}^{-3} $\mbox{CH}_3\mbox{COOH}$
- C. 25.0 cm³ of 0.120 mol dm⁻³ H₂SO₄
- D. 50.0 cm³ of 0.060 mol dm⁻³ HNO₃

What mass, in g, of hydrogen is formed when 3 mol of aluminium react with excess hydrochloric acid according to the following equation?

$$2\mathrm{Al}(\mathrm{s}) + 6\mathrm{HCl}(\mathrm{aq}) \rightarrow 2\mathrm{AlCl}_3(\mathrm{aq}) + 3\mathrm{H}_2(\mathrm{g})$$

A. 3.0

B. 4.5

C. 6.0

D. 9.0

Which coefficients would balance this equation?

 $_ MnO_2 + _ HCl \rightarrow _ MnCl_2 + _ Cl_2 + _ H_2O$

	MnO ₂	HCl	MnCl ₂	Cl ₂	H_2O
Α.	1	2	1	1	1
B.	1	3	1	1	1
C.	1	4	1	1	2
D.	1	4	1	2	2

4.0 g of solid sodium hydroxide is added to $0.10~{\rm dm^3}$ of $1.0~{\rm mol}~{\rm dm^{-3}}$ aqueous sulfuric acid.

$$2 \mathrm{NaOH}(\mathrm{s}) + \mathrm{H}_2 \mathrm{SO}_4(\mathrm{aq}) \rightarrow \mathrm{Na}_2 \mathrm{SO}_4(\mathrm{aq}) + 2 \mathrm{H}_2 \mathrm{O}(\mathrm{l})$$

Which statement is correct?

- A. Neither reactant is in excess.
- B. 0.10 mol Na_2SO_4 is formed.
- C. Excess H_2SO_4 remains in solution.
- D. Excess NaOH remains in solution.

What are the coefficients of $H_2SO_4(aq)$ and $H_3PO_4(aq)$ when the following equation is balanced using the smallest possible whole numbers?

	Coefficient of H ₂ SO ₄ (aq)	Coefficient of H ₃ PO ₄ (aq)
Α.	1	2
В.	2	3
C.	3	1
D.	3	2

 $\underline{\qquad} Ca_3(PO_4)_2(s) + \underline{\qquad} H_2SO_4(aq) \rightarrow \underline{\qquad} CaSO_3(s) + \underline{\qquad} H_3PO_4(aq)$

What volume of carbon dioxide, in dm³ under standard conditions, is formed when 7.00 g of ethene $(C_2H_4, M_r = 28.1)$ undergoes complete

combustion?

A. $\frac{22.4 \times 28.1}{7.00}$ B. $\frac{22.4 \times 7.00}{28.1}$

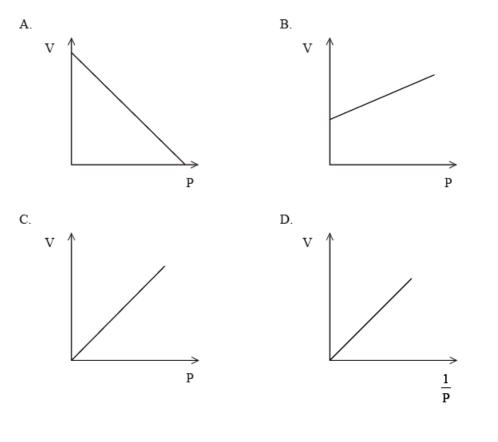
- C. $\frac{2 \times 22.4 \times 28.1}{7.00}$
- D. $\frac{2 \times 22.4 \times 7.00}{28.1}$

Under which conditions does CH_4 have the same number of molecules as $100~cm^3$ of O_2 at 27 °C and $1.0 imes 10^5~Pa$?

	Volume / cm ³	Temperature / $^{\circ}C$	Pressure / 10 ⁵ Pa
А.	50	54	1.0
B.	50	327	1.0
C.	100	54	2.0
D.	100	327	2.0

7.102 g of Na₂SO₄ (M = 142.04 g mol⁻¹) is dissolved in water to prepare 0.5000 dm³ of solution. What is the concentration of Na₂SO₄ in mol dm⁻³

- ?
- A. $2.500 imes 10^{-2}$
- B. 1.000×10^{-1}
- $\text{C.} \quad 1.000\times 10$
- D. 1.000×10^2


Which expression gives the sum of all the coefficients for the general equation for the complete

combustion of hydrocarbons?

$$_$$
 C_xH_u(g)+ $_$ O₂(g) \rightarrow $_$ CO₂(g)+ $_$ H₂O(l)

A. $1 + x + \frac{y}{4}$ B. $1 + x + \frac{y}{2}$ C. $1 + 2x + \frac{3y}{4}$ D. $1 + 2x + \frac{3y}{2}$

Which graph represents the relationship between volume and pressure for a fixed mass of gas at constant temperature?

