HL Paper 1

What is the hybridization of the carbon atom, and the number of σ and π bonds in the methanal molecule?

			н—с
	Hybridization	σ bonds	π bonds
Α.	sp^2	3	1
B.	sp^3	3	1
C.	sp^3	4	0
D.	sp^2	4	0

Which species has bond angles of 90°?

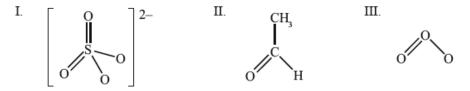
A. AICl4-

 $\mathsf{B}.\ \mathsf{ICl}_4^-$

C. NH₄⁺

D. SiCl₄

Which molecule has an expanded octet?


A. CO

B. CO₂

C. SF₂

D. SF₄

Which species contain delocalized electrons?

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Which statement is correct?

- A. Sigma bonds are formed only by the combination of s atomic orbitals.
- B. Pi bonds can be formed in the absence of sigma bonds.
- C. Pi bonds are formed parallel to the axis between atoms.
- D. Pi bonds are formed only by the combination of hybrid orbitals.

Which of the following best describes the formation of π bonds?

- A. They are formed by the sideways overlap of parallel orbitals.
- B. They are formed by the axial overlap of orbitals.
- C. They are formed by the sideways overlap of an s and p orbital.
- D. They are formed by the axial overlap of either s or p orbitals.

Which molecules have at least one sp² hybridized atom?

- I. CH₃COOH
- II. CH₃COCH₃
- III. CH₂CHCH₂OH
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Which species have delocalized π electrons?

- I. CH_3COCH_3
- II. NO_2^-
- III. CO_3^{2-}
- A. I and II only
- B. I and III only

- C. II and III only
- D. I, II and III

 σ
 π

 A.
 5
 3

 B.
 6
 2

 C.
 7
 1

 D.
 8
 0

How many σ and π bonds are present in a molecule of propyne, $CH_3CCH?$

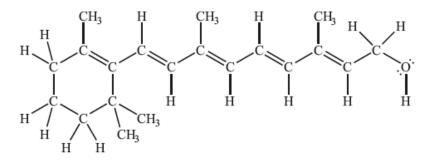

How many sigma (σ) and pi (π) bonds are there in CH₃CH₂CCCH₂COOH?

- A. 13 σ and 5 π
- B. 15 σ and 2 π
- C. 15 σ and 3 π
- D. 15 σ only

How many bonding pairs and lone pairs of electrons surround the sulfur atom in the SF_4 molecule?

	Bonding pairs	Lone pairs
Α.	4	1
В.	4	0
C.	6	0
D.	8	2

The Lewis structure of $SO_2\xspace$ is given below.

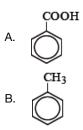

What is the shape of the SO_2 molecule?

- A. Bent (V-shaped)
- B. Linear
- C. T-shaped

Which species have resonance structures?

- I. Ozone, O₃
- II. Carbon dioxide, CO₂
- III. Benzene, C₆H₆
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Retinol (vitamin A) contains a total of 5 double bonds and 46 single bonds.

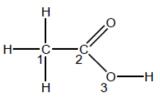

Which statements are correct?

- I. There are 51 σ and 5 π bonds.
- II. The oxygen atom is sp^3 hybridized.
- III. Retinol is a primary alcohol.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Which statements about hybridization are correct?

- I. The hybridization of carbon in diamond is sp^3 .
- II. The hybridization of carbon in graphite is ${\rm sp}^2.$
- III. The hybridization of carbon in $C_{60} \mbox{ fullerene is } {\rm sp}^3.$
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

In which compound are all the carbon atoms ${\rm sp}^2 {\rm hybridized}?$



- $C. \quad CH_2 CHCH_3$
- D. CH₃CH₂CHCHCH₂CH₃

Which species does not have delocalized electrons?

- A. NO_3^-
- B. NO_2^-
- C. O₃
- $\mathsf{D}.\quad C_3H_6$

What is the hybridization of the numbered atoms in ethanoic acid?

	Atom 1	Atom 2	Atom 3
Α.	sp³	sp	sp ²
В.	sp³	sp²	sp
C.	sp²	sp³	sp²
D.	sp³	sp²	sp³

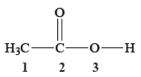
Which does not show resonance?

- A. PO₄^{3–}
- B. C₆H₆

- C. C₆H₁₂
- D. 0₃

In which group do both compounds contain delocalized electrons?

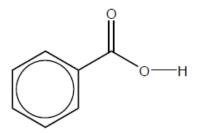

A. C₆H₁₀, C₅H₁₀


- B. Na₂CO₃, NaOH
- C. NaHCO₃, C_6H_6
- D. NaHCO₃, C₆H₁₂

Which combination best describes the type of bonding present and the melting point of silicon and silicon dioxide?

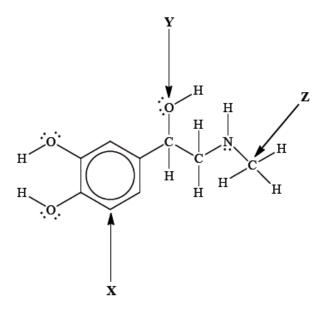
	Silicon		Silicon	dioxide
А.	covalent bonding	high melting point	covalent bonding	high melting point
B.	metallic bonding	high melting point	covalent bonding	low melting point
C.	ionic bonding	high melting point	ionic bonding	low melting point
D.	covalent bonding	low melting point	ionic bonding	high melting point

What are the hybridizations of the atoms labelled 1, 2 and 3 in the molecule below?

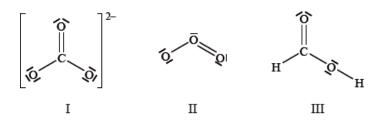


Which allotropes of carbon show sp^2 hybridization?

- I. Diamond
- II. Graphite
- III. C_{60} fullerene


- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Which combination describes the bonding and structure in benzoic acid, C₆H₅COOH?


	Number of electron domains per carbon atom	Number of π -electrons	Number of σ-bonds
A.	3	6	6
B.	3	8	15
C.	4	6	6
D.	4	8	10

What is the hybridization of atoms X, Y and Z in epinephrine?

	Х	Y	Z
Α.	sp^2	sp ³	sp ³
Β.	sp^2	sp	sp^3
C.	sp ³	sp^2	sp^2
D.	sp ³	sp ³	sp ³

Which species have delocalized electrons?

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Which structure has delocalized π electrons?

 $\mathsf{A.}\quad O_3$

B. CO

C. HCN

 $\mathsf{D}.\quad \mathrm{CO}_2$

What is correct for PCl_5 ?

	Shape	Bond angle(s)
A.	Octahedral	90° and 180°
В.	Trigonal pyramidal	107°
C.	Square pyramidal	90° and 180°
D.	Trigonal bipyramidal	90°, 120° and 180°

Which combination of shape and bond angle is correct for a molecule of xenon tetrafluoride, XeF_4 ?

	Shape	Bond angle
Α.	square pyramid	90'
В.	square planar	90.
C.	tetrahedral	109.5
D.	octahedral	90'

Which overlap of atomic orbitals leads to the formation of only a sigma (o) bond?

l. s – p

II. p-p

III. s–s

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

How many sigma and pi bonds are there in propyne, $\ensuremath{CH_3CCH}\xspace$

- A. 2 sigma and 2 pi
- B. 7 sigma and 1 pi
- C. 6 sigma and 2 pi
- D. 5 sigma and 3 pi

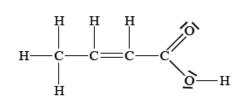
Which can be represented with only one Lewis structure?

- A. CH₂O
- B. C₆H₆
- C. O₃
- D. NO3-

Which molecules have sp^2 hybridization?

I. C_2H_4

- ${\sf II.} \quad C_4 H_{10}$
- III. C_6H_6
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

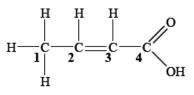

Which of the following is correct?

	Atom	Number of electron domains	Molecular geometry	Hybridization
Α.	C in C ₂ H ₂	2	linear	sp
В.	C in C ₂ H ₆	4	square planar	sp ³
C.	N in NH ₃	3	trigonal pyramidal	sp³
D.	O in H ₂ O	4	bent	sp ²

Which species does **not** contain delocalized electrons?

- A. $CH_3CH_2O^-$
- B. $CH_3CO_2^-$
- $\mathsf{C}.\quad O_3$
- D. NO_3^-

How many sigma (σ) and pi (π) bonds are there in the following molecule?

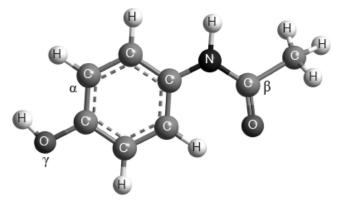


	σ bonds	π bonds
A.	9	2
Β.	9	4
C.	11	2
D.	11	4

Which species breaks the octet rule?

- A. PCI_3
- B. BF_4^-
- C. SCl₄
- D. NH₄⁺

Identify the hybridization of carbon atoms in this molecule

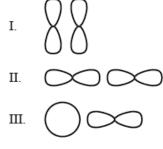


	1	2	3	4
А.	sp ³	sp^2	sp^2	sp^2
В.	sp ²	sp^2	sp^2	sp
C.	sp ³	sp	sp^2	sp
D.	sp	sp^2	sp	sp^2

What is the type of hybridization of the silicon and oxygen atoms in silicon dioxide?

	Silicon	Oxygen
Α.	sp^3	sp ³
В.	sp³	sp^2
C.	sp^2	sp³
D.	sp^2	sp ²

Which combination correctly describes the types of hybridization shown by the two carbon atoms labelled α and β and the oxygen atom labelled γ in the molecule of paracetamol shown below?


Paracetamol

	α	β	γ
A.	sp²	sp ²	sp³
В.	sp ³	sp ²	sp ²
C.	sp²	sp ²	sp²
D.	sp ²	sp³	sp ³

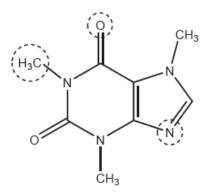
Which molecule is trigonal bipyramidal in shape?

- A. PCl_3
- $\mathsf{B}.\quad SiCl_4$
- C. PCl_5
- D. SF_6

The diagrams below show s and p orbitals in different positions. Which combinations can form a σ -bond?

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

What is the correct number of sigma (σ) and pi (π) bonds in prop-2-enenitrile, CH₂CHCN?


	σ bonds	π bonds
А.	7	2
B.	4	5
C.	6	3
D.	3	3

How many sigma (\sigma) and pi (\pi) bonds are present in this molecule?

	σ	π
A.	12	6
B.	14	5
C.	16	6
D.	17	5

What is the hybridization state and electron domain geometry around the circled C, N and O atoms?

	с	0	N
A.	sp ³ and tetrahedral	sp ² and trigonal planar	sp ² and trigonal planar
В.	sp ² and trigonal planar	sp and linear	sp ³ and tetrahedral
C.	sp ³ and tetrahedral	sp and linear	sp ² and trigonal planar
D.	sp ³ and trigonal pyramidal	sp ² and trigonal planar	sp ³ and trigonal pyramidal

Which combination describes the $\mathrm{PH_4}^+$ ion?

	Molecular geometry	Central atom hybridization
Α.	Tetrahedral	sp³
В.	Square planar	sp³
C.	Tetrahedral	sp²
D.	Square planar	sp²