SL Paper 2

Consider the following equilibrium:

$$4\mathrm{NH}_3(\mathrm{g}) + 5\mathrm{O}_2(\mathrm{g}) \rightleftharpoons 4\mathrm{NO}(\mathrm{g}) + 6\mathrm{H}_2\mathrm{O}(\mathrm{g}) \quad \Delta H^\Theta = -909 \ \mathrm{kJ}$$

Nitrogen reacts with hydrogen to form ammonia in the Haber process, according to the following equilibrium.

$${
m N}_2({
m g})+3{
m H}_2({
m g})
ightarrow 2{
m N}{
m H}_3({
m g}) \quad \Delta H^{\Theta}=-92.6~{
m kJ}$$

a.i. Deduce the equilibrium constant expression, $K_{ m c}$, for the reaction.	[1]
a.ii.Predict the direction in which the equilibrium will shift when the following changes occur.	[4]
The volume increases.	
The temperature decreases.	
$ m H_2O(g)$ is removed from the system.	
A catalyst is added to the reaction mixture.	
b. Define the term activation energy, $E_{\rm a}$.	[1]
c. Nitrogen monoxide, NO, is involved in the decomposition of ozone according to the following mechanism.	[2]
$\mathrm{O}_3 ightarrow \mathrm{O}_2 + \mathrm{O}ullet$	
$\mathrm{O}_3 + \mathrm{NO} o \mathrm{NO}_2 + \mathrm{O}_2$	
$\mathrm{NO}_2 + \mathrm{O}ullet o \mathrm{NO} + \mathrm{O}_2$	
$\mathrm{Overall:} \ \ \mathrm{2O}_3 ightarrow \mathrm{3O}_2$	
State and explain whether or not NO is acting as a catalyst.	
d.i.Define the term endothermic reaction.	[1]
d.iiSketch the Maxwell-Boltzmann energy distribution curve for a reaction with and without a catalyst, and label both axes.	[3]
e.i. Define the term rate of reaction.	[1]
f. Iron, used as the catalyst in the Haber process, has a specific heat capacity of $0.4490 \text{ Jg}^{-1} \text{K}^{-1}$. If 245.0 kJ of heat is supplied to 8.5	00 kg of [3]
iron, initially at a temperature of 15.25 °C, determine its final temperature in K.	