## **HL Paper 1**

In which reaction will the entropy of the system increase significantly?

- $\text{A.} \quad CaCO_3(s) \to CaO(s) + CO_2(g)$
- B.  $H_2O(g) \rightarrow H_2O(l)$
- C.  $HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)$
- $\mathsf{D.} \quad \mathsf{NaOH}(\mathsf{aq}) + \mathsf{HCl}(\mathsf{aq}) \to \mathsf{NaCl}(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}(\mathsf{l})$

Consider the values of  $\Delta H^\Theta$  and  $\Delta S^\Theta$  À for the reaction of nitrogen with oxygen at 298 K.

$$egin{aligned} \mathrm{N_2(g)} + \mathrm{O_2(g)} & \rightarrow 2\mathrm{NO(g)} & \Delta H^\Theta = +181 \mathrm{~kJ~mol}^{-1} \ \Delta S^\Theta = +25 \mathrm{~J~K}^{-1} \mathrm{mol}^{-1} \end{aligned}$$

Which statement is correct for this reaction?

- A.  $\Delta G^{\Theta}$  is positive at all temperatures.
- B.  $\Delta G^{\Theta}$  is negative at all temperatures.
- C.  $\Delta G^{\Theta}$  is positive at high temperatures.
- D.  $\Delta G^{\Theta}$  is positive at low temperatures.

What is the standard enthalpy of formation, in kJ mol<sup>-1</sup>, of IF (g)?

$$IF_7 (g) + I_2 (s) \rightarrow IF_5 (g) + 2IF (g)$$
  $\Delta H^{\theta} = -89 \text{ kJ}$ 

$$\Delta H_f^{\theta}$$
 (IF<sub>7</sub>) = -941 kJ mol<sup>-1</sup>

$$\Delta H_f^{\theta}$$
 (IF<sub>5</sub>) = -840 kJ mol<sup>-1</sup>

- A. -190
- B. -95
- C. +6
- D. +95

Which is a correct definition of lattice enthalpy?

- A. It is the enthalpy change that occurs when an electron is removed from 1 mol of gaseous atoms.
- B. It is the enthalpy change that occurs when 1 mol of a compound is formed from its elements.

- C. It is the enthalpy change that occurs when 1 mol of solid crystal changes into a liquid.
- D. It is the enthalpy change that occurs when 1 mol of solid crystal is formed from its gaseous ions.

Which equation corresponds to the lattice enthalpy for silver iodide, Agl?

A. 
$$AgI(s) \rightarrow Ag(s) + I(g)$$

B. 
$$\mathrm{AgI}(\mathrm{s}) o \mathrm{Ag}(\mathrm{s}) + frac{1}{2}\mathrm{I}_2(\mathrm{g})$$

C. 
$$AgI(s) \rightarrow Ag^{+}(aq) + I^{-}(aq)$$

$$\mathsf{D.}\quad \mathrm{AgI}(\mathrm{s}) \to \mathrm{Ag^+}(\mathrm{g}) + \mathrm{I}^-(\mathrm{g})$$

Which reaction has the largest increase in entropy?

A. 
$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

B. 
$$Al(OH)_3(s) + NaOH(aq) \rightarrow Al(OH)_4^-(aq) + Na^+(aq)$$

C. 
$$Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)$$

D. 
$$BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$$

Which reaction has the greatest increase in entropy?

A. 
$$SO_2(g) + 2H_2S(g) \rightarrow 2H_2O(l) + 3S(s)$$

$$\text{B.}\quad \operatorname{CaO}(s) + \operatorname{CO}_2(g) \to \operatorname{CaCO}_3(s)$$

C. 
$$\operatorname{CaC}_2(s) + 2\operatorname{H}_2\operatorname{O}(l) \to \operatorname{Ca}(\operatorname{OH})_2(s) + \operatorname{C}_2\operatorname{H}_2(g)$$

$$\text{D.} \quad N_2(g) + O_2(g) \rightarrow 2NO(g)$$

Which equation represents enthalpy of hydration?

A. 
$$Na(g) \rightarrow Na^{+}(aq) + e^{-}$$

B. 
$$Na^+(g) \rightarrow Na^+(aq)$$

C. NaCl(s) 
$$\rightarrow$$
 Na<sup>+</sup>(g) + Cl<sup>-</sup>(g)

D. NaCl(s) 
$$\rightarrow$$
 Na<sup>+</sup>(aq) + Cl<sup>-</sup>(aq)

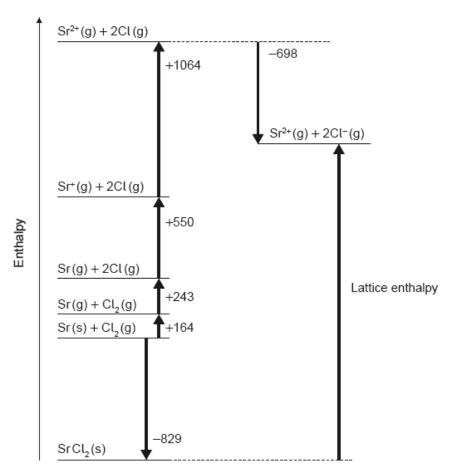
Which ionic compound has the most endothermic lattice enthalpy?

A. NaCl

- B. KCI
- C. NaF
- D. KF

Which statement is correct?

- A. If  $\Delta H < 0$ , reaction is always spontaneous.
- B. If  $\Delta H > 0$ , reaction is never spontaneous.
- C. If  $\Delta S < 0$ , reaction can be spontaneous if temperature is low enough.
- D. If  $\Delta S < 0$ , reaction can be spontaneous if temperature is high enough.


Which step(s) is/are endothermic in the Born-Haber cycle for the formation of LiCI?

- A.  $\frac{1}{2}\mathrm{Cl}_2(\mathrm{g}) o \mathrm{Cl}(\mathrm{g})$  and  $\mathrm{Li}(\mathrm{s}) o \mathrm{Li}(\mathrm{g})$
- B.  $\mathrm{Cl}(g) + e^- o \mathrm{Cl}^-(g)$  and  $\mathrm{Li}(g) o \mathrm{Li}^+(g) + e^-$
- $\text{C.}\quad \text{Li}^+(g) + \text{Cl}^-(g) \rightarrow \text{LiCl}(s)$
- D.  $\frac{1}{2}\mathrm{Cl}_2(g) o \mathrm{Cl}(g)$  and  $\mathrm{Cl}(g) + e^- o \mathrm{Cl}^-(g)$

Which ion's hydration energy is the most exothermic?

- A. Li<sup>+</sup>
- B. Na<sup>+</sup>
- C. Br
- D. I

Which value represents the lattice enthalpy, in kJ mol<sup>-1</sup>, of strontium chloride, SrCl<sub>2</sub>?



- A. -(-829) + 164 + 243 + 550 + 1064 (-698)
- B. -829 + 164 + 243 + 550 + 1064 698
- C. -(-829) + 164 + 243 + 550 + 1064 698
- D. -829 + 164 + 243 + 550 + 1064 (-698)

Which change will **not** increase the entropy of a system?

- A. Increasing the temperature
- B. Changing the state from liquid to gas
- C. Mixing different types of particles
- D. A reaction where four moles of gaseous reactants changes to two moles of gaseous products

Which reaction has the greatest increase in entropy?

A. 
$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

$$\mathsf{B.}\quad H_2(g)+\mathrm{Cl}_2(g)\to 2\mathrm{HCl}(g)$$

C. 
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

D. 
$$C_2H_4(g) + H_2(g) \to C_2H_6(g)$$

Which combination of  $\Delta H$  and  $\Delta S$  signs will always result in a spontaneous reaction at all temperatures?

|    | $\Delta H$ | ΔS |
|----|------------|----|
| A. | +          | +  |
| B. | +          | -  |
| C. | -          | -  |
| D. | _          | +  |

Which compound has the most positive lattice enthalpy of dissociation?

- A. NaCl
- B. NaBr
- C.  $MgCl_2$
- D.  $MgBr_2$

Which transition represents an enthalpy of hydration?

- A.  $2H_2O(I) \rightarrow H_3O^+(aq) + OH^-(aq)$
- B. NaCl (s)  $\rightarrow$  Na<sup>+</sup> (aq) + Cl<sup>-</sup> (aq)
- C.  $K^{+}(s) \rightarrow K^{+}(aq)$
- D.  $K^+(g) \rightarrow K^+(aq)$

Which combination of  $\Delta H$  and  $\Delta S$  values corresponds to a non-spontaneous reaction at all temperatures?

|    | ΔН | ∆s |
|----|----|----|
| A. | _  | _  |
| B. | +  | _  |
| C. | -  | +  |
| D. | +  | +  |

Which reactions/processes have a positive entropy change,  $\Delta S^\Theta ?$ 

- $\text{I.} \quad \operatorname{NaCl}(s) \to \operatorname{NaCl}(aq)$
- II.  $\mathrm{Na_2CO_3(s)} + \mathrm{2HCl(aq)} \rightarrow \mathrm{CO_2(g)} + \mathrm{2NaCl(aq)} + \mathrm{H_2O(l)}$

| III.  | AgNO <sub>2</sub> (ag) | + NaCl(aq)  | $\rightarrow AgCl(s)$ | $+ NaNO_3(aq)$ |
|-------|------------------------|-------------|-----------------------|----------------|
| 1111. | 11511 O 31 aq 1        | 1 Tracitadi | / 11501(5)            | 11011031041    |

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Which change leads to an increase in entropy?

A. 
$$CO_2(g) \rightarrow CO_2(s)$$

$$\mathsf{B.}\quad \mathrm{SF}_6(g)\to\mathrm{SF}_6(l)$$

C. 
$$H_2O(l) \rightarrow H_2O(s)$$

$$\mathsf{D.} \quad \operatorname{NaCl}(s) \to \operatorname{NaCl}(aq)$$

Which ionic compound has the most endothermic lattice enthalpy?

- A. Sodium chloride
- B. Sodium oxide
- C. Magnesium chloride
- D. Magnesium oxide

Which factors will increase the entropy of this system?

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

- I. Increasing the temperature without changing the volume of the container.
- II. Decreasing the concentration of the gas without changing the volume of the container.
- III. Increasing the pressure without changing the volume of the container.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Which system has the most negative entropy change,  $\Delta S$ , for the forward reaction?

- A.  $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
- B.  $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

| $\sim$ | $2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow$             | $0.02 = (-1) \cdot 0 = (-1)$    |
|--------|------------------------------------------------------|---------------------------------|
| U.     | $25_{9}U_{9}^{-1}$ (ad) + $I_{9}$ (ad) $\rightarrow$ | $5_{4}U_{6}^{-}$ (ad) + 21 (ad) |

D. 
$$H_2O(I) \rightarrow H_2O(g)$$

Which change must be negative when a reaction occurs spontaneously?

A.  $\Delta H$ 

B.  $\Delta G$ 

C.  $\Delta S$ 

D.  $\Delta T$ 

Which statements are correct for ionic compounds?

- I. Lattice energy increases as ionic radii increase.
- II. Within the same group, the melting point of salts tends to decrease as the radius of the cation increases.
- III. Solubility in water depends on the relative magnitude of the lattice energy compared to the hydration energy.

A. I and II only

B. I and III only

C. II and III only

D. I, II and III

Which processes have a negative value for  $\Delta S^{\Theta}$ ?

$$\text{I.} \quad H_2O(l) \to H_2O(s)$$

II. 
$$2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$$

III. 
$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

A. I and II only

B. I and III only

C. II and III only

D. I, II and III

Which processes are predicted to have a positive entropy change,  $\Delta S$ ?

I. 
$$I_2(g) o I_2(s)$$

II. 
$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

III. 
$$CH_3OH(l) \rightarrow CH_3OH(g)$$

A. I and II only

- B. I and III only
- C. II and III only
- D. I, II and III

Which equation represents the lattice enthalpy of magnesium sulfide?

A. MgS (s) 
$$\rightarrow$$
 Mg (g) + S (g)

B. MgS (s) 
$$\rightarrow$$
 Mg<sup>+</sup> (g) + S<sup>-</sup> (g)

C. MgS (s) 
$$\rightarrow$$
 Mg<sup>2+</sup> (g) + S<sup>2-</sup> (g)

D. MgS (s) 
$$\rightarrow$$
 Mg (s) + S (s)

Which equation represents the second electron affinity of oxygen?

A. 
$$rac{1}{2}{
m O}_2({
m g}) + 2{
m e}^- o {
m O}^{2-}({
m g})$$

B. 
$$\mathrm{O}(\mathrm{g}) + 2\mathrm{e}^- 
ightarrow \mathrm{O}^{2-}(\mathrm{g})$$

$$\text{C.} \quad \mathrm{O_2(g)} + 4\mathrm{e^-} \rightarrow 2\mathrm{O}^{2-}(\mathrm{g})$$

$$\text{D.}\quad O^-(g)+e^-\to O^{2-}(g)$$

Which combinations of values will result in a spontaneous reaction?

|      | ∆H / kJ mol <sup>-1</sup> | ∆S / J K <sup>-1</sup> mol <sup>-1</sup> | T/K  |
|------|---------------------------|------------------------------------------|------|
| I.   | -100                      | -100                                     | 300  |
| II.  | +100                      | -100                                     | 300  |
| III. | +100                      | +100                                     | 3000 |

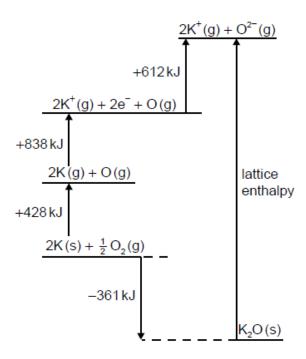
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

What are the signs for the entropy changes associated with this reaction?

|    | $\Delta \mathcal{S}_{	ext{surroundings}}$ | $\Delta \mathcal{S}_{system}$ |
|----|-------------------------------------------|-------------------------------|
| A. | +                                         | _                             |
| B. | +                                         | +                             |
| C. | _                                         | _                             |
| D. | _                                         | +                             |

Which combination of  $\Delta H^{\theta}$  and  $\Delta S^{\theta}$  will result in a non-spontaneous reaction at all temperatures?

|    | ΔH <sup>e</sup> | ∆s <sup>e</sup> |
|----|-----------------|-----------------|
| A. | positive        | negative        |
| В. | negative        | positive        |
| C. | positive        | positive        |
| D. | negative        | negative        |


The combustion of glucose is exothermic and occurs according to the following equation:

$$C_6H_{12}O_6$$
 (s) +  $6O_2$  (g)  $\rightarrow$   $6CO_2$  (g) +  $6H_2O$  (g)

Which is correct for this reaction?

|    | ΔH <sup>e</sup> | ΔS <sup>e</sup> | Spontaneous/<br>non-spontaneous |
|----|-----------------|-----------------|---------------------------------|
| A. | negative        | positive        | spontaneous                     |
| B. | negative        | positive        | non-spontaneous                 |
| C. | positive        | negative        | spontaneous                     |
| D. | positive        | positive        | non-spontaneous                 |

The Born-Haber cycle for potassium oxide is shown below:



Which expression represents the lattice enthalpy in kJ mol<sup>-1</sup>?

What is the correct order for **increasing** lattice enthalpy?

A. 
$$MgO < MgCl_2 < NaCl < CsCl$$

$$B. \quad CsCl < NaCl < MgCl_2 < MgO$$

$$\label{eq:cscl} \text{C.} \quad NaCl < CsCl < MgO < MgCl_2$$

$$\mbox{D.} \quad \mbox{NaCl} < \mbox{CsCl} < \mbox{MgCl}_2 < \mbox{MgO}$$

Consider the following information:

$$egin{aligned} ext{CaCO}_3( ext{s}) &
ightarrow ext{CaO(s)} + ext{CO}_2( ext{g}) \ \Delta H &= +179 \ ext{kJ} \ ext{mol}^{-1} \ \Delta S &= +161.0 \ ext{J} \ ext{K}^{-1} ext{mol}^{-1} \end{aligned}$$

What happens to the spontaneity of this reaction as the temperature is increased?

- A. The reaction becomes more spontaneous as the temperature is increased.
- B. The reaction becomes less spontaneous as the temperature is increased.
- C. The reaction remains spontaneous at all temperatures.
- D. The reaction remains non-spontaneous at all temperatures.

Which equation represents the lattice enthalpy of calcium chloride?

- A.  $CaCl(s) \rightarrow Ca^{+}(g) + Cl^{-}(g)$
- B.  $\operatorname{CaCl}_2(s) o \operatorname{Ca}^{2+}(g) + 2\operatorname{Cl}^-(g)$
- $\text{C.} \quad \operatorname{CaCl}_2(g) \to \operatorname{Ca}^{2+}(g) + 2\operatorname{Cl}^-(g)$
- D.  $\operatorname{CaCl}_2(s) \to \operatorname{Ca}^{2+}(\operatorname{aq}) + 2\operatorname{Cl}^-(\operatorname{aq})$

Which ionic compound has the greatest lattice enthalpy?

- A. MgO
- B. CaO
- C. NaF
- D. KF

A reaction has a standard enthalpy change,  $\Delta H^{\Theta}$ , of  $+10.00~{\rm kJ\,mol^{-1}}$  at 298 K. The standard entropy change,  $\Delta S^{\Theta}$ , for the same reaction is  $+10.00~{\rm J\,K^{-1}mol^{-1}}$ . What is the value of  $\Delta G^{\Theta}$  for the reaction in  ${\rm kJ\,mol^{-1}}$ ?

- A. +9.75
- B. +7.02
- C. -240
- D. -2970

Which process would be expected to have a  $\Delta S^\Theta$  value which is negative?

- A.  $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
- B.  $NaCl(s) \rightarrow Na^+(g) + Cl^-(g)$
- C.  $H_2(g) + I_2(g) \rightarrow 2HI(g)$
- D.  $\mathrm{OF_2}(\mathrm{g}) + \mathrm{H_2O}(\mathrm{g}) o \mathrm{O_2}(\mathrm{g}) + 2\mathrm{HF}(\mathrm{g})$

The reaction between but-1-ene and water vapour produces butan-1-ol.

$$C_4H_8(g) + H_2O(g) \rightarrow C_4H_9OH(l)$$

The standard entropy values  $(S^{\Theta})$  for but-1-ene, water vapour and butan-1-ol are 310, 189 and  $228~\mathrm{J\,K^{-1}mol^{-1}}$  respectively. What is the standard entropy change for this reaction in  $\mathrm{J\,K^{-1}mol^{-1}}$ ?

A. -271

- B. +271
- C. -107
- D. +107

Which combination of enthalpy change and entropy change produces a non-spontaneous reaction at all temperatures?

|    | $\Delta m{H}$ | $\Delta S$ |
|----|---------------|------------|
| A. | +             | _          |
| B. | +             | +          |
| C. | -             | _          |
| D. | -             | +          |

When hydrogen peroxide decomposes, the temperature of the reaction mixture increases.

$$2H_2O_2(aq) \rightarrow O_2(g) + 2H_2O(l)$$

What are the signs of  $\Delta H$ ,  $\Delta S$  and  $\Delta G$  for this reaction?

|    | ΔΗ | ΔS | ΔG |
|----|----|----|----|
| A. | -  | I  | ı  |
| B. | -  | +  | -  |
| C. | +  | +  | -  |
| D. | -  | +  | +  |

Which ionic compound has the largest value of lattice enthalpy?

- A. MgS
- B. MgO
- C. CaBr<sub>2</sub>
- D. NaF

Which reaction has the greatest increase in entropy?

$$\mbox{A.} \quad 2CH_3OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(l) \label{eq:accessory}$$

$$\text{B.}\quad N_2(g)+3H_2(g)\to 2NH_3(g)$$

$$\text{C.} \quad 2\text{HCl}(\text{aq}) + \text{MgCO}_3(\text{s}) \rightarrow \text{MgCl}_2(\text{aq}) + \text{H}_2\text{O}(\text{l}) + \text{CO}_2(\text{g})$$

D.  $NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$ 

Which species are arranged in order of increasing entropy?

A. 
$$C_3H_8(g) < CH_3OH(l) < Hg(l) < Na(s)$$

B. 
$$CH_3OH(l) < C_3H_8(g) < Hg(l) < Na(s)$$

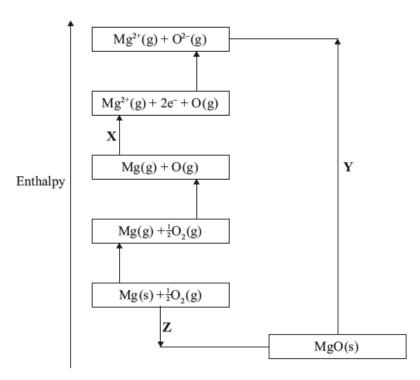
C. 
$$Na(s) < Hg(l) < CH_3OH(l) < C_3H_8(g)$$

$$\mbox{D.} \quad Na(s) \, < \, Hg(l) \, < C_3 H_8(g) \, < \, CH_3 OH(l) \label{eq:definition}$$

Which equation represents the electron affinity of chlorine?

A. 
$$Cl(g) + e^- \rightarrow Cl^-(g)$$

B. 
$$Cl(g) + e^- \rightarrow Cl(g)$$


C. 
$$\mathrm{Cl}_2(\mathrm{g}) + 2\mathrm{e}^- o 2\mathrm{Cl}^-(\mathrm{g})$$

D. 
$$Cl(g) \rightarrow Cl^+(g) + e^-$$

What is the correct definition of lattice enthalpy?

- A. Enthalpy change when one mole of a solid ionic compound is separated into gaseous ions.
- B. Enthalpy change when one mole of a solid ionic compound is separated into its ions in their standard state.
- C. Enthalpy change when one mole of a solid ionic compound is formed from gaseous elements.
- D. Enthalpy change when one mole of a compound is formed from the elements in their standard states.

The Born-Haber cycle for the formation of magnesium oxide is shown below.



What is a correct description of the steps X, Y and Z in this cycle?

|    | Step X                                           | Step Y                       | Step Z                       |
|----|--------------------------------------------------|------------------------------|------------------------------|
| A. | 2nd ionization energy of Mg                      | enthalpy of formation of MgO | lattice enthalpy of MgO      |
| B. | 2nd ionization energy of Mg                      | lattice enthalpy of MgO      | enthalpy of formation of MgO |
| C. | sum of the 1st and 2nd ionization energies of Mg | lattice enthalpy of MgO      | enthalpy of formation of MgO |
| D. | sum of 1st and 2nd ionization<br>energies of Mg  | enthalpy of formation of MgO | lattice enthalpy of MgO      |

Which combination of ions will give the greatest absolute lattice enthalpy?

- A. A small positive ion with a high charge and a small negative ion with a high charge
- B. A small positive ion with a low charge and a small negative ion with a low charge
- C. A large positive ion with a high charge and a large negative ion with a high charge
- D. A large positive ion with a low charge and a small negative ion with a low charge

The rate expression for the reaction between iodine and propanone with an acid catalyst is found to be:

$$\mathrm{rate} = k[\mathrm{H}^+]^1[\mathrm{I}_2]^0[\mathrm{CH}_3\mathrm{COCH}_3]^1$$

What is the overall order of the reaction?

- A. 0
- B. 1

- C.
- D. 3

 $\Delta G^\Theta$  calculations predict that a reaction is always spontaneous for which of the following combinations of  $\Delta H^\Theta$  and  $\Delta S^\Theta$ ?

- A.  $+\Delta H^\Theta$  and  $+\Delta S^\Theta$
- B.  $+\Delta H^\Theta$  and  $-\Delta S^\Theta$
- C.  $-\Delta H^\Theta$  and  $-\Delta S^\Theta$
- D.  $-\Delta H^\Theta$  and  $+\Delta S^\Theta$

Which row of the table correctly represents the equations for the lattice enthalpy of substance XY and the electron affinity of atom Y?

|    | Lattice enthalpy                    | Electron affinity                        |
|----|-------------------------------------|------------------------------------------|
| A. | $X^+(g) + Y^-(g) \rightarrow XY(g)$ | $Y^{-}(g) + e^{-} \rightarrow Y^{2-}(g)$ |
| B. | $X^+(g) + Y^-(g) \rightarrow XY(s)$ | $Y(g) + e^- \rightarrow Y^-(g)$          |
| C. | $X^+(g) + Y^-(g) \rightarrow XY(s)$ | $Y(s) + e^- \rightarrow Y^-(s)$          |
| D. | $X^+(g) + Y^-(g) \rightarrow XY(g)$ | $Y(g) + e^- \rightarrow Y^-(g)$          |

What is the standard entropy change,  $\Delta S^\Theta,$  for the following reaction?

$$2\mathrm{CO}(\mathrm{g}) + \mathrm{O}_2(\mathrm{g}) o 2\mathrm{CO}_2(\mathrm{g})$$

|                                                    | CO(g) | O <sub>2</sub> (g) | CO <sub>2</sub> (g) |
|----------------------------------------------------|-------|--------------------|---------------------|
| $S^{\Theta}$ / J K <sup>-1</sup> mol <sup>-1</sup> | 198   | 205                | 214                 |

- A. -189
- B. -173
- C. +173
- D. +189

What is the enthalpy of solution of  $MgF_2(s)$  in kJ  $mol^{-1}$ ?

Lattice enthalpy of  $MgF_2(s) = 2926 \text{ kJ mol}^{-1}$ 

Hydration enthalpy of  $Mg^{2+}(g) = -1963 \text{ kJ mol}^{-1}$ 

Hydration enthalpy of  $F^{-}(g) = -504 \text{ kJ mol}^{-1}$ 

A. 2926 – 1963 + 2(–504)

B. 2926 - 1963 - 504

C. -2926 - (-1963) - (-504)

D. -2926 - (-1963) - 2(-504)

When solid potassium chlorate,  $KClO_3$ , dissolves in distilled water the temperature of the solution decreases. What are the signs of  $\Delta H^\Theta$ ,  $\Delta S^\Theta$  and

 $\Delta G^\Theta$  for this spontaneous process?

|    | ΔH <sup>Θ</sup> | ΔSΦ | ∆G <sup>e</sup> |
|----|-----------------|-----|-----------------|
| A. | +               | +   | +               |
| B. | +               | +   | _               |
| C. | _               | _   | _               |
| D. | +               | _   | +               |

Which represents the enthalpy change of hydration of the chloride ion?

A.  $Cl^{-}(g) \xrightarrow{H_2O} Cl^{-}(aq)$ 

B.  $Cl(g) \xrightarrow{H_2O} Cl^-(aq)$ 

 $C. \quad \frac{1}{2} \operatorname{Cl}_2(g) \xrightarrow{H_2O} \operatorname{Cl}^-(aq)$ 

 $D. \quad \frac{1}{2} \operatorname{Cl}_2(\operatorname{aq}) \xrightarrow{H_2 O} \operatorname{Cl}^-(\operatorname{aq})$ 

During which process is there a **decrease** in the entropy of the system?

A. 
$$Ag(s) + 2H^{+}(aq) + NO_{3}^{-}(aq) \rightarrow Ag^{+}(aq) + H_{2}O(l) + NO_{2}(g)$$

B.  $\mathrm{Ba(OH)_2(s)} 
ightarrow \mathrm{BaO(s)} + \mathrm{H_2O(g)}$ 

C.  $PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$ 

D.  $H_2O(s) \rightarrow H_2O(l)$