HL Paper 1

At 700 °C, the equilibrium constant, K_c , for the reaction is 1.075×10^8 .

 $2H_2$ (g) + S_2 (g) $\rightleftharpoons 2H_2S$ (g)

Which relationship is always correct for the equilibrium at this temperature?

A. $[H_2S]^2 < [H_2]^2 [S_2]$

B. $[S_2] = 2[H_2S]$

C. $[H_2S] < [S_2]$

 $\mathsf{D}.\;[\mathsf{H}_2\mathsf{S}]^2>[\mathsf{H}_2]^2[\mathsf{S}_2]$

Markscheme

D

Examiners report

[N/A]

1.0 mol of $N_2(g)$, 1.0 mol of $H_2(g)$ and 1.0 mol of $NH_3(g)$ are placed in a 1.0 dm³ sealed flask and left to reach equilibrium. At equilibrium the concentration of $N_2(g)$ is 0.8 mol dm⁻³.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

What are the equilibrium concentration of $H_2(g)$ and $NH_3(g)$ in mol dm⁻³?

	[H ₂ (g)] / mol dm ⁻³	$[NH_3(g)] / mol dm^{-3}$
Α.	0.2	1.2
В.	0.4	1.4
C.	0.4	0.4
D.	0.8	1.2

Markscheme

В

Examiners report

[N/A]

The equation for the reaction between two gases, A and B, is:

$$2A(g) + 3B(g) \rightleftharpoons C(g) + 3D(g)$$

When the reaction is at equilibrium at 600 K the concentrations of A, B, C and D are 2, 1, 3 and $2 \mod dm^{-3}$ respectively. What is the value of the equilibrium constant at 600 K?

 $\frac{1}{6}$ Α.

- $\frac{9}{7}$ В.
- C. 3
- D. 6

Markscheme

D

Examiners report

[N/A]

Components X and Y are mixed together and allowed to reach equilibrium. The concentrations of X, Y, W and Z in the equilibrium mixture are 4, 1, 4 and $2 \mod dm^{-3}$ respectively.

$$X + 2Y \rightleftharpoons 2W + Z$$

What is the value of the equilibrium constant, K_c ?

- $\frac{1}{8}$ A.
- B. $\frac{1}{2}$
- C. 2
- D. 8

Markscheme

D

Examiners report

[N/A]

A mixture of 2.0 mol of H_2 and 2.0 mol of I_2 is allowed to reach equilibrium in the gaseous state at a certain temperature in a 1.0 dm^3 flask. At equilibrium, 3.0 mol of HI are present. What is the value of K_c for this reaction?

$${
m H}_2({
m g})+{
m I}_2({
m g})
ightarrow 2{
m HI}({
m g})$$

A. $K_{
m c}=rac{\left(3.0
ight)^{2}}{\left(0.5
ight)^{2}}$

- B. $K_{
 m c} = rac{3.0}{\left(0.5
 ight)^2}$
- C. $K_{
 m c}=rac{\left(3.0
 ight)^{2}}{\left(2.0
 ight)^{2}}$
- D. $K_{
 m c}=rac{\left(0.5
 ight) ^{2}}{\left(3.0
 ight) ^{2}}$

Markscheme

А

Examiners report

[N/A]

What is the relationship between $\mathrm{p}K_\mathrm{a}, \mathrm{p}K_\mathrm{b}$ and $\mathrm{p}K_\mathrm{w}$ for a conjugate acid–base pair?

- A. $\mathbf{p}K_{\mathrm{a}} = \mathbf{p}K_{\mathrm{w}} + \mathbf{p}K_{\mathrm{b}}$
- $\mathsf{B.} \quad \mathsf{p}K_\mathrm{a} = \mathsf{p}K_\mathrm{w} \mathsf{p}K_\mathrm{b}$
- $\mathsf{C}.\quad \mathsf{p}K_{\mathrm{a}}\times\mathsf{p}K_{\mathrm{b}}=\mathsf{p}K_{\mathrm{w}}$
- D. $rac{\mathrm{p}K_\mathrm{a}}{\mathrm{p}K_\mathrm{b}} = \mathrm{p}K_\mathrm{w}$

Markscheme

В

Examiners report

[N/A]

The indicator, HIn is used in a titration between an acid and base. Which statement about the dissociation of the indicator, HIn is correct?

 $\mathrm{HIn}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^+(\mathrm{aq}) + \mathrm{In}^-(\mathrm{aq})$

colour A colour B

A. In a strongly alkaline solution, colour B would be observed.

B. In a strongly acidic solution, colour B would be observed.

- C. $[In^{-}]$ is greater than [HIn] at the equivalence point.
- D. In a weakly acidic solution colour B would be observed.

Markscheme

A

Examiners report

[N/A]

When gaseous nitrosyl chloride, NOCI (g), decomposes, the following equilibrium is established:

$$2\mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2\mathrm{NO}(\mathrm{g}) + \mathrm{Cl}_2(\mathrm{g})$$

2.0 mol of NOCl(g) were placed in a 1.0 dm^3 container and allowed to reach equilibrium. At equilibrium 1.0 mol of NOCl(g) was present. What is the value of K_c ?

A. 0.50

- B. 1.0
- C. 1.5
- D. 2.0

Markscheme

А

Examiners report

[N/A]

A mixture of 0.40 mol of CO (g) and 0.40 mol of H₂ (g) was placed in a 1.00 dm³ vessel. The following equilibrium was established.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

At equilibrium, the mixture contained 0.25 mol of CO (g). How many moles of H₂ (g) and CH₃OH (g) were present at equilibrium?

	Equilibrium mol of H_2	Equilibrium mol of CH ₃ OH
A.	0.25	0.15
В.	0.50	0.25
C.	0.30	0.25
D.	0.10	0.15

Markscheme

D

Examiners report

[N/A]

Which is correct for an isolated system in equilibrium?

	Gibbs free energy	Entropy
Α.	maximum	maximum
В.	maximum	minimum
C.	minimum	maximum
D.	minimum	minimum

Markscheme

С

Examiners report

[N/A]

The graph shows values of ΔG for a reaction at different temperatures.

Which statement is correct?

- A. The standard entropy change of the reaction is negative.
- B. The standard enthalpy change of the reaction is positive.
- C. At higher temperatures, the reaction becomes less spontaneous.

D. The standard enthalpy change of the reaction is negative.

Markscheme

В

Examiners report

[N/A]