SL Paper 1

Which descriptions are correct for both a Brønsted-Lowry acid and a Lewis acid?

	Brønsted–Lowry acid	Lewis acid
Α.	proton donor	electron pair donor
B.	proton donor	electron pair acceptor
C.	proton acceptor	electron pair donor
D.	proton acceptor	electron pair acceptor

Which definition of a base is correct?

- A. A Lewis base accepts a proton.
- B. A Brønsted-Lowry base accepts an electron pair.
- C. A Brønsted-Lowry base donates an electron pair.
- D. A Lewis base donates an electron pair.

Which substance can act as a Lewis acid but not as a Brønsted-Lowry acid?

- A. HCI
- B. CH₃COOH
- C. BF₃
- D. CF₃COOH

Which are definitions of an acid according to the Brønsted-Lowry and Lewis theories?

	Brønsted-Lowry theory	Lewis theory
Α.	proton donor	electron pair acceptor
В.	proton acceptor	electron pair acceptor
C.	proton acceptor	electron pair donor
D.	proton donor	electron pair donor

Which species cannot function as a Lewis acid?

- A. BF_3
- B. AlCl₃
- $\mathsf{C}.\quad CCl_4$
- $\mathsf{D}.\quad \mathrm{H}^+$

Which statement explains why ammonia, NH_3 , is classified as a Lewis base?

- A. It can accept a proton.
- B. It can accept a lone pair of electrons.
- C. It can donate a lone pair of electrons.
- D. It can donate a proton.