SL Paper 2

Boron is most often encountered as a component in borosilicate glass (heat resistant glass).

The naturally occurring element contains two stable isotopes, ${}^{10}_{5}B$ and ${}^{11}_{5}B$.

a. State the number of protons, neutrons and electrons in an atom of ${}^{11}_{5}B$.

	Protons	Neutrons	Electrons
${}^{11}_{5}B$			

b. The relative atomic mass of boron is 10.8, to three significant figures. Calculate the percentage of ${}^{10}_{5}$ B in the naturally occurring element. [2]

- c. Isotopes of boron containing 7 and 8 neutrons also exist. Suggest why releasing isotopes containing more neutrons than the stable isotope into [1] the environment can be dangerous.
- d. (i) State the formula of the compound that boron forms with fluorine.
 - (ii) Explain why this compound acts as a Lewis acid.

Ammonia, NH_3 , is a base according to both the Brønsted–Lowry and the Lewis theories of acids and bases.

The equation for the reaction between sodium hydroxide, NaOH, and nitric acid, HNO₃, is shown below.

$${
m NaOH}({
m ag}) + {
m HNO}_3({
m ag})
ightarrow {
m NaNO}_3({
m ag}) + {
m H}_2{
m O}({
m l}) ~~ \Delta H = -57.6~{
m kJ\,mol}^{-1}$$

a. Distinguish between the terms strong base and weak base, and state one example of each.	[3]
b.i.State the equation for the reaction of ammonia with water.	[1]

b.iiiExplain why ammonia can also act as a Lewis base.

b.iiExplain why ammonia can act as a Brønsted-Lowry base.

- c. (i) When ammonium chloride, $NH_4Cl(aq)$, is added to excess solid sodium carbonate, $Na_2CO_3(s)$, an acid-base reaction occurs. Bubbles [5] of gas are produced and the solid sodium carbonate decreases in mass. State **one** difference which would be observed if nitric acid, $HNO_3(aq)$, was used instead of ammonium chloride.
 - (ii) Deduce the Lewis structures of the ammonium ion, NH_4^+ , and the carbonate ion, CO_3^{2-} .

[3]

[1]

[1]

(iii) Predict the shapes of NH_4^+ and $\mathrm{CO}_3^{2-}.$

 NH_4^+ :

 CO_{3}^{2-} :

d. (i) Sketch and label an enthalpy level diagram for this reaction.

- (ii) Deduce whether the reactants or the products are more energetically stable, stating your reasoning.
- (iii) Calculate the change in heat energy, in kJ, when 50.0 cm^3 of $2.50 \text{ mol} \, dm^{-3}$ sodium hydroxide solution is added to excess nitric acid.

[6]

- e. When 5.35 g ammonium chloride, $NH_4Cl(s)$, is added to 100.0 cm^3 of water, the temperature of the water decreases from 19.30 °C to 15.80 [3]
 - °C. Determine the enthalpy change, in $kJ \mod^{-1}$, for the dissolving of ammonium chloride in water.

When nitrogen gas and hydrogen gas are allowed to react in a closed container, the following equilibrium is established.

$$\mathrm{N}_2(\mathrm{g}) + 3\mathrm{H}_2(\mathrm{g}) \rightleftharpoons 2\mathrm{NH}_3(\mathrm{g}) ~~\Delta H = -92.6~\mathrm{kJ}$$

a.	Outline two characteristics of a reversible reaction in a state of dynamic equilibrium.	[2]
b.	Deduce the equilibrium constant expression, $K_{ m c}$, for the reaction.	[1]
c.	Predict, with a reason, how each of the following changes affects the position of equilibrium.	[2]

The volume of the container is increased.

Ammonia is removed from the equilibrium mixture.

d.i	. Define the term activation energy, $E_{ m a}$.	[1]
d.i	Ammonia is manufactured by the Haber process in which iron is used as a catalyst. Explain the effect of a catalyst on the rate of reaction.	[2]
d.i	iSketch the Maxwell-Boltzmann energy distribution curve for a reaction, labelling both axes and showing the activation energy with and without	[2]
	a catalyst.	
e.	Typical conditions used in the Haber process are 500 °C and 200 atm, resulting in approximately 15% yield of ammonia.	[3]

- (i) Explain why a temperature lower than 500 °C is **not** used.
- (ii) Outline why a pressure higher than 200 atm is **not** often used.
- f.i. Define the term base according to the Lewis theory.
 [1]

 f.ii. Define the term weak base according to the Brønsted-Lowry theory.
 [1]

f.iii.Deduce the formulas of conjugate acid-base pairs in the reaction below.

 $\mathrm{CH_3NH_2(aq)} + \mathrm{H_2O(l)} \rightleftharpoons \mathrm{CH_3NH_3^+(aq)} + \mathrm{OH^-(aq)}$

Acid	Conjugate base		

f.iv.Outline an experiment and its results which could be used to distinguish between a strong base and a weak base.

Across period 3, elements increase in atomic number, decrease in atomic radius and increase in electronegativity.

a. Define the term <i>electronegativity</i> .	
b. Explain why the atomic radius of elements decreases across the period.	[2]
c.i. State the equations for the reactions of sodium oxide with water and phosphorus(V) oxide with water.	[2]
c.ii.Suggest the pH of the solutions formed in part (c) (i).	
d. Describe three tests that can be carried out in the laboratory, and the expected results, to distinguish between $0.10 \text{ mol} dm^{-3} HCl(aq)$ and	[3]
$0.10~{ m moldm^{-3}~CH_3COOH(aq)}.$	
e. Explain whether BF_3 can act as a Brønsted-Lowry acid, a Lewis acid or both.	[2]
f.i. Describe the bonding and structure of sodium chloride.	
f.ii. State the formula of the compounds formed between the elements below.	

Sodium and sulfur:

Magnesium and phosphorus:

g. Covalent bonds form when phosphorus reacts with chlorine to form PCl_3 . Deduce the Lewis (electron dot) structure, the shape and bond angle [4] in PCl_3 and explain why the molecule is polar.

Lewis (electron dot) structure:

Name of shape:

Bond angle:

[3]

Explanation of polarity of molecule: