HL Paper 3

Discuss the production of chlorine and sodium hydroxide from brine using a membrane cell. Include in your answer the materials used for the electrodes, the equations taking place at each electrode and why this method has replaced the mercury cell.

A fuel cell is an energy conversion device that generates electricity from a spontaneous redox reaction.

a. The Geobacter species of bacteria can be used in microbial fuel cells to oxidise aqueous ethanoate ions,

CH ₃ COO ⁻ (a	aq), to	carbon	dioxide	gas.
-------------------------------------	---------	--------	---------	------

State the half-equations for the reactions at both electrodes.

Negative electrode (anode):
Positive electrode (cathode):

- b. A concentration cell is an example of an electrochemical cell.
 - (i) State the difference between a concentration cell and a standard voltaic cell.
 - (ii) The overall redox equation and the standard cell potential for a voltaic cell are:

Zn (s) + Cu²⁺ (aq) \rightarrow Zn²⁺ (aq) + Cu (s) $E^{\theta}_{cell} = +1.10 \text{ V}$

Determine the cell potential E at 298 K to three significant figures given the following concentrations in mol dm⁻³:

 $[Zn^{2+}] = 1.00 \times 10^{-4}$ $[Cu^{2+}] = 1.00 \times 10^{-1}$

Use sections 1 and 2 of the data booklet.

(iii) Deduce, giving your reason, whether the reaction in (b) (ii) is more or less spontaneous than in the standard cell.

c. Dye-sensitized solar cells (DSSC) convert solar energy into electrical energy.

(i) Describe how a DSSC converts sunlight into electrical energy.

(ii) Explain the role of the electrolyte solution containing iodide ions, I⁻, and triiodide ions, I₃⁻, in the DSSC.

[4]

[2]