HL Paper 1

Which variable affects the equilibrium constant, K_c ?

- A. Atmospheric pressure
- B. Catalyst
- C. Concentration of reactants
- D. Temperature

What is the effect of an increase of temperature on the yield and the equilibrium constant for the following reaction?

	-		
	Yield	Equilibrium constant	
Α.	Increases	Increases	
B.	Increases	Decreases	
C.	Decreases	Increases	
D.	Decreases	Decreases	

 $2 \mathrm{H}_2(\mathbf{g}) + \mathrm{CO}(\mathbf{g}) \rightleftharpoons \mathrm{CH}_3 \mathrm{OH}(\mathbf{l}) \quad \Delta H^\Theta = -128 \; \mathrm{kJ}$

Which statements explain why a catalyst is used in the Contact process (shown below)?

$$\mathrm{SO}_2(\mathrm{g}) + rac{1}{2}\mathrm{O}_2(\mathrm{g}) \rightleftharpoons \mathrm{SO}_3(\mathrm{g})$$

- I. A catalyst lowers the activation energy.
- II. A catalyst moves the position of equilibrium towards the product.
- III. A catalyst allows the same rate to be achieved at a lower temperature.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

What is the effect of increasing the temperature in this reaction?

 $\mathrm{CO}_2(g) + \mathrm{H}_2\mathrm{O}(I) \rightleftharpoons \mathrm{H}^+(\mathrm{aq}) + \mathrm{H}\mathrm{CO}_3^-(\mathrm{aq}) \quad \Delta H < 0$

- A. The pH will decrease.
- B. The pH will increase.
- C. CO₂ pressure will decrease.
- D. The equilibrium position will shift to the right.

Which statement is correct for the equilibrium $H_2O(l) \rightleftharpoons H_2O(g)$ in a closed system at 100 °C?

- A. All the $H_2O(l)$ molecules have been converted to $H_2O(g)$.
- B. The rate of the forward reaction is greater than the rate of the reverse reaction.
- C. The rate of the forward reaction is less than the rate of the reverse reaction.
- D. The pressure remains constant.

Consider the following reversible reaction.

$$\mathrm{Cr}_2\mathrm{O}_7^{2-}(\mathrm{aq}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \rightleftharpoons 2\mathrm{Cr}\mathrm{O}_4^{2-}(\mathrm{aq}) + 2\mathrm{H}^+(\mathrm{aq})$$

What will happen to the position of equilibrium and the value of K_c when more H^+ ions are added at constant temperature?

	Position of equilibrium	Value of K _c
A.	shifts to the left	decreases
Β.	shifts to the right	increases
C.	shifts to the right	does not change
D.	shifts to the left	does not change

The enthalpy change for the dissolution of NH₄NO₃ is +26 kJ mol⁻¹ at 25 °C. Which statement about this reaction is correct?

- A. The reaction is exothermic and the solubility decreases at higher temperature.
- B. The reaction is exothermic and the solubility increases at higher temperature.
- C. The reaction is endothermic and the solubility decreases at higher temperature.
- D. The reaction is endothermic and the solubility increases at higher temperature.

What occurs when the pressure on the given equilibrium is increased at constant temperature?

- A. *K*_c increases and the position of equilibrium moves to the right.
- B. K_c stays the same and the position of equilibrium is unchanged.
- C. K_c stays the same and the position of equilibrium moves to the left.
- D. K_c decreases and the position of equilibrium moves to the left.

Which of the following will shift the position of equilibrium to the right in the Haber process?

 ${
m N}_2({
m g})+3{
m H}_2({
m g})
ightarrow 2{
m N}{
m H}_3({
m g}) ~~\Delta H^\Theta=92.6~{
m kJ}$

I. Decreasing the concentration of $NH_{3}(g)$

- II. Decreasing the temperature
- III. Increasing the pressure
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III