HL Paper 3

The function f is defined on the domain $\left] - rac{\pi}{2}, rac{\pi}{2} \right[\ ext{by} \ f(x) = \ln(1 + \sin x)$.

a.	Shov	w that $f''(x) = -rac{1}{(1+\sin x)}$.	[4]
b.	(i)	Find the Maclaurin series for $f(x)$ up to and including the term in x^4 .	[7]
	(ii)	Explain briefly why your result shows that f is neither an even function nor an odd function.	
c.	Dete	prmine the value of $\lim_{x \to 0} \frac{\ln(1+\sin x) - x}{x^2}$.	[3]

The integral I_n is defined by $I_n = \int_{n\pi}^{(n+1)\pi} \mathrm{e}^{-x} |\sin x| \mathrm{d}x, ext{ for } n \in \mathbb{N}$.

a. Show that $I_0 = \frac{1}{2}(1 + e^{-\pi})$.[6]b. By letting $y = x - n\pi$, show that $I_n = e^{-n\pi}I_0$.[4]c. Hence determine the exact value of $\int_0^\infty e^{-x} |\sin x| dx$.[5]

a. Given that $y = \ln\left(\frac{1+e^{-x}}{2}\right)$, show that $\frac{dy}{dx} = \frac{e^{-y}}{2} - 1$.	[5]
---	-----

b. Hence, by repeated differentiation of the above differential equation, find the Maclaurin series for y as far as the term in x^3 , showing that [11] two of the terms are zero.

The function f is defined by $f(x) = \mathrm{e}^{-x} \cos x + x - 1.$

By finding a suitable number of derivatives of f, determine the first non-zero term in its Maclaurin series.

Let $f(x) = e^x \sin x$.

a. Show that $f''(x) = 2\left(f'(x) - f(x)\right)$.

b. By further differentiation of the result in part (a) , find the Maclaurin expansion of f(x), as far as the term in x^5 .

[4]

Let f(x)=2x+|x| , $x\in\mathbb{R}$.

- a. Prove that f is continuous but not differentiable at the point (0, 0).
- b. Determine the value of $\int_{-a}^{a} f(x) dx$ where a > 0.

The curves y = f(x) and y = g(x) both pass through the point (1, 0) and are defined by the differential equations $\frac{dy}{dx} = x - y^2$ and $\frac{dy}{dx} = y - x^2$ respectively.

- a. Show that the tangent to the curve y = f(x) at the point (1, 0) is normal to the curve y = g(x) at the point (1, 0).[2]b. Find g(x).[6]c. Use Euler's method with steps of 0.2 to estimate f(2) to 5 decimal places.[5]d. Explain why y = f(x) cannot cross the isocline $x y^2 = 0$, for x > 1.[3]e. (i) Sketch the isoclines $x y^2 = -2$, 0, 1.[4]
 - (ii) On the same set of axes, sketch the graph of f.

a. Consider the functions $f(x) = (\ln x)^2$, $x > 1$ and $g(x) = \ln(f(x))$, $x > 1$.	[5]
---	-----

- (i) Find f'(x).
- (ii) Find g'(x).
- (iii) Hence, show that g(x) is increasing on]1, ∞ [.
- b. Consider the differential equation

$$(\ln x)rac{\mathrm{d}y}{\mathrm{d}x}+rac{2}{x}y=rac{2x-1}{(\ln x)},\ x>1.$$

- (i) Find the general solution of the differential equation in the form y = h(x).
- (ii) Show that the particular solution passing through the point with coordinates (e, e²) is given by $y = \frac{x^2 x + e}{(\ln x)^2}$.
- (iii) Sketch the graph of your solution for x > 1, clearly indicating any asymptotes and any maximum or minimum points.

[12]

[7]

[3]