Question 23M.2.HL.TZ2.3
Date | May 2023 | Marks available | [Maximum mark: 12] | Reference code | 23M.2.HL.TZ2.3 |
Level | HL | Paper | 2 | Time zone | TZ2 |
Command term | Annotate, Deduce, Describe, Determine, Explain, Outline, Suggest | Question number | 3 | Adapted from | N/A |
Electrolysis and Winkler titrations are both applications of redox reactions.
An electrolytic cell was set up using inert electrodes and a dilute aqueous solution of magnesium chloride, MgCl2 (aq).
Annotate the diagram to show the movement of particles that conduct electricity in this cell.
[2]
electron flow from anode to battery OR from battery to cathode ✓
Mg2+/H+ ions to − electrode
AND
Cl−/OH− ions to + electrode ✓
Do not award M1 if electrons are shown in electrolyte.
Deduce the half-equation for the reaction at each electrode. Use section 24 of the data booklet.
Positive electrode: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Negative electrode: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[2]
Positive electrode:
H2O(l) → ½ O2(g) + 2H+(aq) + 2e−
OR
2OH−(aq) → ½O2(g) + H2O(l) + 2e−✓
Negative electrode:
2H2O(l) + 2e− → H2(g) + 2OH−(aq)
OR
2H+(aq) + 2e− → H2(g) ✓
Accept 2Cl−(aq) → Cl2(g) + 2e− for M1.
Award [1 max] for correct equations at wrong electrodes.
Graphite rods are sometimes used as inert electrodes. Describe the structure of graphite and explain why graphite conducts electricity.
[2]
layers «of carbon atoms in a giant structure» ✓
delocalized electrons «flow along layers» ✓
Accept suitable diagram for M1.
Accept two-dimensional network for M1.
Accept electrons are mobile/flow for M2.

Winkler titrations can be used to determine the biochemical oxygen demand, BOD, of a water sample. One set of equations for the reactions occurring is:
2Mn2+ (aq) + O2 (aq) + 4OH→ 2MnO(OH)2 (s)
MnO(OH)2 (s) + 2I (aq) + 4H+ → Mn2+ (aq) + I2 (aq) + 3H2O
I (aq) + I2 (aq) → I3 (aq)
2S2O32 (aq) + I3 (aq) → S4O62 (aq) + 3I (aq)
150 cm3 of a water sample was tested using a Winkler titration. 36.0 cm3 of 0.00500 mol dm3 sodium thiosulfate solution, Na2S2O3 (aq), was required to reach the end point.
Determine the concentration, in mol dm−3, of oxygen dissolved in the water sample.
[3]
«n(S2O32−) = 0.00500 mol dm−3 × 0.0360 dm3 =» 0.000180 / 1.80 × 10−4 «mol» ✓
«n(O2) =» / 0.0000450 / 4.50 × 10−5 «mol» ✓
«[O2] = =» 0.000300 / 3.00 × 10−4 «mol dm−3» ✓
Award [3] for correct final answer.

Outline how the BOD of the water sample could be determined.
[2]
titrate/measure dissolved oxygen in «another» water sample «stored under controlled conditions five days» later ✓
difference between two values «is BOD»✓

Suggest what a low BOD value indicates about a water sample.
[1]
low levels of «organic/oxygen consuming» water pollution ✓
