
HAESE & HARRIS PUBLICATIONS

with interactive CD indudes

MIERACTIVE STUDENT CD

STUBLE

tor men fitter

Keith Black Pamela Vollmar Michael Haese Robert Haese Sandra Haese Mark Humphrites

for use with IB Middle Years Programme

Specialists in mathematics publishing

Mathematics for the international student Pre-Diploma Studies SL (MYP 5)

Presumed Knowledge for Mathematical Studies SL

Keith Black Pamela Vollmar Michael Haese Robert Haese Sandra Haese Mark Humphries

for use with IB Middle Years Programme

MATHEMATICS FOR THE INTERNATIONAL STUDENT Pre-Diploma Studies SL (MYP 5) Presumed Knowledge for Mathematical Studies SL

Keith BlackB.Pamela VollmarB.Michael HaeseB.Robert HaeseB.Sandra HaeseB.Mark HumphriesB.

B.Sc.(Hons.), Dip.Ed. B.Sc.(Hons.), PGCE. B.Sc.(Hons.), Ph.D. B.Sc. B.Sc. B.Sc. B.Sc.(Hons.)

Haese & Harris Publications 3 Frank Collopy Court, Adelaide Airport, SA 5950, AUSTRALIA Telephone: +61 8 8355 9444, Fax: +61 8 8355 9471 Email: info@haeseandharris.com.au Web: www.haeseandharris.com.au

National Library of Australia Card Number & ISBN 978-1-876543-10-5

© Haese & Harris Publications 2008

Published by Raksar Nominees Pty Ltd 3 Frank Collopy Court, Adelaide Airport, SA 5950, AUSTRALIA

First Edition 2008

Cartoon artwork by John Martin. Artwork by Piotr Poturaj and David Purton. Cover design by Piotr Poturaj. Computer software by David Purton and Thomas Jansson.

Typeset in Australia by Susan Haese (Raksar Nominees). Typeset in Times Roman $10\frac{1}{2}/11\frac{1}{2}$

The textbook and its accompanying CD have been developed independently of the International Baccalaureate Organization (IBO). The textbook and CD are in no way connected with, or endorsed by, the IBO.

This book is copyright. Except as permitted by the Copyright Act (any fair dealing for the purposes of private study, research, criticism or review), no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Enquiries to be made to Haese & Harris Publications.

Copying for educational purposes: Where copies of part or the whole of the book are made under Part VB of the Copyright Act, the law requires that the educational institution or the body that administers it has given a remuneration notice to Copyright Agency Limited (CAL). For information, contact the Copyright Agency Limited.

Acknowledgements: The publishers acknowledge the cooperation of Oxford University Press, Australia, for the reproduction of material originally published in textbooks produced in association with Haese & Harris Publications.

While every attempt has been made to trace and acknowledge copyright, the authors and publishers apologise for any accidental infringement where copyright has proved untraceable. They would be pleased to come to a suitable agreement with the rightful owner.

Disclaimer: All the internet addresses (URL's) given in this book were valid at the time of printing. While the authors and publisher regret any inconvenience that changes of address may cause readers, no responsibility for any such changes can be accepted by either the authors or the publisher.

FOREWORD

Pre-Diploma Studies SL (MYP 5) is an attempt to cover, in one volume, the Presumed Knowledge required for the IB Diploma course "Mathematical Studies SL" as well as including some extension topics. It may also be used as a general textbook at about Grade 10 level in classes where students might be expected to embark on an "Applications" type of Mathematics course in their final two years of high school.

In terms of the IB Middle Years Programme (MYP), this book does not pretend to be a definitive course. In response to requests from teachers who use "Mathematics for the International Student" at Diploma level, we have endeavoured to interpret their requirements, as expressed to us, for a book that would prepare students for Mathematical Studies SL at Diploma level. We have developed the book independently of the International Baccalaureate Organization (IBO) in consultation with experienced teachers of IB Mathematics. The text is not endorsed by the IBO.

It is not our intention that each chapter be worked through in full. Time constraints may not allow for this. Teachers must select exercises carefully, according to the abilities and prior knowledge of their students, to make the most efficient use of time and give as thorough coverage of content as possible.

To avoid producing a book that would be too bulky for students, we have presented these chapters on the CD as printable pages:

Chapter 25: Transformation geometry

Chapter 26: Sine and cosine rules

The above were selected because the content could be regarded as extension beyond what might be regarded as an essential prerequisite for Diploma.

This package is language rich and technology rich. We hope the combination of textbook and interactive Student CD will foster the mathematical development of students in a stimulating way. Frequent use of the interactive features on the CD should nurture a much deeper understanding and appreciation of mathematical concepts. The inclusion of our new students software (see p. 4) is intended to help students who have been absent from classes or who experience difficulty understanding the material.

The book contains many problems from the basic to the advanced, to cater for a range of student abilities and interests. While some of the exercises are simply designed to build skills, every effort has been made to contextualise problems, so that students can see everyday uses and practical applications of the mathematics they are studying, and appreciate the universality of mathematics. We understand the emphasis that the IB MYP places on the five Areas of Interaction and in response there are links on the CD to printable pages which offer ideas for projects and investigations to help busy teachers (see p. 8).

The interactive CD also allows immediate access to our own specially designed geometry packages, graphing packages and more.

In this changing world of mathematics education, we believe that the contextual approach shown in this book, with the associated use of technology, will enhance the students' understanding, knowledge and appreciation of mathematics, and its universal application.

We welcome your feedback.

Email: info@haeseandharris.com.au Web: www.haeseandharris.com.au

KB, PV, PMH, RCH, SHH, MH

Acknowledgements

The authors and publishers would like to thank all those teachers who have read proofs and offered advice and encouragement.

Among those who submitted courses of study for Middle Years Mathematics and who offered to read and comment on the proofs of the textbook are: Margie Karbassioun, Kerstin Mockrish, Todd Sharpe, Tamara Jannink, Yang Zhaohui, Cameron Hall, Brendan Watson, Daniel Fosbenner, Rob DeAbreu, Philip E. Hedemann, Alessandra Pecoraro, Jeanne-Mari Neefs, Ray Wiens, John Bush, Jane Forrest, Dr Andrzej Cichy, William Larson, Wendy Farden, Chris Wieland, Kenneth Capp, Sara Locke, Rae Deeley, Val Frost, Mal Coad, Pia Jeppesen, Wissam Malaeb, Eduardo Betti, Robb Kitcher, Catherine Krylova, Julie Tan, Rosheen Gray, Jan-Mark Seewald, Nicola Cardwell, Tony Halsey, Ros McCabe, Alison Ryan, Vivienne Verschuren, Mark Willis, Curtis Wood, Ufuk Genc, Fran O'Connor. Special thanks to Heather Farish. To anyone we may have missed, we offer our apologies.

The publishers wish to make it clear that acknowledging these individuals does not imply any endorsement of this book by any of them, and all responsibility for the content rests with the authors and publishers.

USING THE INTERACTIVE CD

The interactive CD is ideal for independent study.

Students can revisit concepts taught in class and undertake their own revision and practice. The CD also has the text of the book, allowing students to leave the textbook at school and keep the CD at home.

By clicking on the relevant icon, a range of new interactive features can be accessed:

- ♦ SelfTutor
- Areas of Interaction links to printable pages
- ♦ Printable Chapters
- Interactive Links to spreadsheets, video clips, graphing and geometry software, computer demonstrations and simulations

SELF TUTOR is a new exciting feature of this book.

The Self Tutor icon on each worked example denotes an active link on the CD.

Simply 'click' on the Self Tutor (or anywhere in the example box) to access the worked example, with a teacher's voice explaining each step necessary to reach the answer.

Play any line as often as you like. See how the basic processes come alive using movement and colour on the screen.

Ideal for students who have missed lessons or need extra help.

Example 8 Solve for <i>x</i> :	$\frac{4x+3}{5} = -2$
	5 2
$\frac{4x+3}{5} = -2$	
$\therefore 5 \times \frac{(4x+3)}{5} = -2 \times 5$	$\{$ multiply both sides by $5\}$
$\therefore 4x + 3 = -10$	{simplify}
$\therefore 4x + 3 - 3 = -10 - 3$	{subtract 3 from both sides}
$\therefore 4x = -13$	{simplify}
$\therefore \frac{4x}{4} = -\frac{13}{4}$	{divide both sides by 4}
$\therefore x = -3\frac{1}{4}$	{simplify}

AREAS OF INTERACTION

The International Baccalaureate Middle Years Programme focuses teaching and learning through five Areas of Interaction:

- Approaches to learning
- Community and service
- ♦ Human ingenuity

- Environments
- Health and social education

The Areas of Interaction are intended as a focus for developing connections between different subject areas in the curriculum and to promote an understanding of the interrelatedness of different branches of knowledge and the coherence of knowledge as a whole.

In an effort to assist busy teachers, we offer the following printable pages of ideas for projects and investigations:

Click on the heading to access a printable 'pop-up' version of the link.

Links to printable pages of ideas for projects and investigations

Chapter 1: Measurement and units p. 39	ERRORS IN MEASUREMENT Approaches to learning
Chapter 4: Rounding and estimating p. 88	AREA AND VOLUME ERRORS Approaches to learning
Chapter 5: The Rule of Pythagoras p. 99	PYTHAGORAS Human ingenuity
Chapter 7: Length and area p. 137	ESTIMATING AREAS Approaches to learning/Human ingenuity
Chapter 10: Statistics p. 217	HOW MANY TROUT ARE IN THE LAKE? Environments/Human ingenuity
Chapter 12: Ratios and rates p. 252	ALL THAT GLITTERS IS NOT GOLD Human ingenuity
Chapter 14: Congruence and similarity p. 294	HOW WIDE IS THE CANAL? Human ingenuity
Chapter 16: Trigonometry p. 326	HOW FAR AWAY IS THE MOON AND HOW LARGE IS IT? Human ingenuity
Chapter 19: Probability p. 392	WHAT ARE YOUR SURVIVAL PROSPECTS? Environments/Health and social education
Chapter 21: Geometry p. 434	WHAT REGION CAN BE EATEN BY A GOAT? Approaches to learning/Environments
Chapter 23: Finance p. 472	HOW MUCH CAN I SAVE BY NOT SMOKING? Environments/Health and social education
Chapter 24: Quadratic functions p. 485	WHAT IS THE STRONGEST ARCH? Approaches to learning/Environments/Human ingenuity

TABLE OF CONTENTS

GRAPHICS CALCULATOR INSTRUCTIONS

9

96

А	Basic calculations	10
В	Basic functions	12
С	Secondary function and alpha keys	15
D	Memory	15
Е	Lists	18
F	Statistical graphs	20
G	Working with functions	21
1	MEASUREMENT AND UNITS	25
А	Standard units	26
В	Converting units	29
С	Area units	32
D	Volume units	33
Е	Capacity	34
F	Mass	35
G	Time	36
Η	24-hour time	39
	Review set 1A	40
	Review set 1B	41
2	NUMBER OPERATIONS	43
А	Operations with integers	44
В	Operations with fractions	49
С	Index notation	53
D	Laws of indices	57
	Review set 2A	59
	Review set 2B	60
3	SETS, SEQUENCES AND LOGIC	61
А	Set notation	62
В	Important number sets	63
С	Constructing sets (Interval notation)	66
D	Venn diagrams	67
Е	Union and intersection	69
F	Simple set problems	72
G	Number sequences	73
Н	Introduction to logic	75
	Review set 3A	79
	Review set 3B	80
4	ROUNDING AND ESTIMATION	81
А	Rounding numbers	82
В	Rounding money	83
С	One figure approximations	86
D	Rounding decimal numbers	88
Е	Using a calculator to round off	90
F	Significant figure rounding	92
G	Rounding time	94
	Review set 4A	95

Review set 4B

5	THE RULE OF PYTHAGORAS	97
А	The Rule of Pythagoras (Review)	99
В	Further problem solving	103
С	Testing for right angles	106
D	Navigation	107
	Review set 5A	109
	Review set 5B	110
6	ALGEBRA	111
А	Changing words into symbols	112
В	Generalising arithmetic	113
С	Converting into algebraic form	115
D	Formula construction	116
E	Number patterns and rules	118
F	The value of an expression	120
	Review set 6A	124
	Review set 6B	125
7	LENGTH AND AREA	127
Α	Perimeter and length	128
В	Area	133
C	Surface area	139
D	Problem solving	145
	Review set 7A	147
	Review set 7B	148
8	DECIMALS AND PERCENTAGE	149
А	Decimal numbers	150
В	Percentage	152
B C	Percentage Working with percentages	152 154
B C D	Percentage Working with percentages Unitary method in percentage	152 154 156
B C D E	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease	152 154 156 157
B C D	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form)	152 154 156 157 159
B C D E	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A	152 154 156 157 159 163
B C D E F	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B	152 154 156 157 159
B C D E	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION	152 154 156 157 159 163 164
B C D E F	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION AND EXPANSION	152 154 156 157 159 163 164 167
B C D E F 9	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION AND EXPANSION Collecting like terms	152 154 156 157 159 163 164 167 168
B C D E F 9 A B	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION AND EXPANSION Collecting like terms Product notation	152 154 156 157 159 163 164 167 168 170
B C D E F F 9 A B C	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION AND EXPANSION Collecting like terms Product notation The distributive law	152 154 156 157 159 163 164 167 168 170 172
B C D E F 9 A B	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION AND EXPANSION Collecting like terms Product notation The distributive law The expansion of $(a+b)(c+d)$	152 154 156 157 159 163 164 167 168 170 172 177
B C D E F 9 A B C D E E	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION AND EXPANSION Collecting like terms Product notation The distributive law The expansion of $(a+b)(c+d)$ The expansion rules	152 154 156 157 159 163 164 167 168 170 172 177 179
B C D E F F 9 A B C D	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION AND EXPANSION Collecting like terms Product notation The distributive law The expansion of $(a+b)(c+d)$ The expansion rules Perimeters and areas	152 154 156 157 159 163 164 167 168 170 172 177 179 183
B C D E F 9 A B C D E E	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION AND EXPANSION Collecting like terms Product notation The distributive law The expansion of $(a+b)(c+d)$ The expansion rules Perimeters and areas Review set 9A	152 154 156 157 159 163 164 167 168 170 172 177 179 183 185
B C D E F 9 A B C D E E	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION AND EXPANSION Collecting like terms Product notation The distributive law The expansion of $(a+b)(c+d)$ The expansion rules Perimeters and areas	152 154 156 157 159 163 164 167 168 170 172 177 179 183
B C D E F 9 A B C D E E	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION AND EXPANSION Collecting like terms Product notation The distributive law The expansion of $(a+b)(c+d)$ The expansion rules Perimeters and areas Review set 9A Review set 9B STATISTICS	152 154 156 157 159 163 164 167 168 170 172 177 179 183 185
B C D E F 9 A B C D E F	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION AND EXPANSION Collecting like terms Product notation The distributive law The expansion of $(a+b)(c+d)$ The expansion rules Perimeters and areas Review set 9A Review set 9B STATISTICS Terminology for the study of statistics	152 154 156 157 159 163 164 167 168 170 172 177 179 183 185 185 187 189
B C D E F 9 A B C D E F 10 A B	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION AND EXPANSION Collecting like terms Product notation The distributive law The expansion of $(a+b)(c+d)$ The expansion rules Perimeters and areas Review set 9A Review set 9B STATISTICS Terminology for the study of statistics Quantitative (numerical) data	152 154 156 157 159 163 164 167 168 170 172 177 179 183 185 185 187 189 194
B C D E F 9 A B C D E F F 10 A	Percentage Working with percentages Unitary method in percentage Percentage increase and decrease Scientific notation (Standard form) Review set 8A Review set 8B ALGEBRAIC SIMPLIFICATION AND EXPANSION Collecting like terms Product notation The distributive law The expansion of $(a+b)(c+d)$ The expansion rules Perimeters and areas Review set 9A Review set 9B STATISTICS Terminology for the study of statistics	152 154 156 157 159 163 164 167 168 170 172 177 179 183 185 185 187 189

	199	15	VOLUME AND CAPACITY	297
	202	А	Volume	298
	208	В	Capacity	304
	211	С	Problem solving	307
	213		Review set 15A	309
	217		Review set 15B	310
	218			
	219	16	TRIGONOMETRY	311
	221	А	Labelling sides of a right angled triangle	312
or	223	В	Trigonometric ratios	315
01	223	С	Using the sine ratio	316
	224	D	Using the cosine ratio	318
	228	Е	Using the tangent ratio	319
	230	F	Problem solving with trigonometry	321
	230	G	Bearings	325
	233		Review set 16A	326
	235		Review set 16B	328
	237	17	COORDINATES AND LINES	329
	240	А	Plotting points on the Cartesian plane	330
	243	В	Distance between two points	332
	244	С	Midpoints	334
	245	D	Gradient (or slope)	335
	246	Е	Linear relationships	338
		F	Linear functions	340
	247 249	G	Finding equations of straight lines	342
	249 251	Н	Graphing lines	347
	251	Ι	Points on lines	348
	252 254	J	Other line forms	349
	255	Κ	Parallel and perpendicular lines	350
	255 259	L	Using gradients	353
	261		Review set 17A	354
	262		Review set 17B	355
	262			
		18		
	265		EQUATIONS	357
	266	А	The point of intersection of	
	268		linear graphs	358
ns	272	В	Simultaneous equations	360
	273	С	Algebraic methods for solving	
	275		simultaneous equations	362
	278	D	Problem solving	366
	278	Е	Using a graphics calculator to solve	260
	279		simultaneous equations	368
			Review set 18A Review set 18B	370 370
	281		Review set 10D	570
	282	19	PROBABILITY	371
	282	А	Probability by experiment	373
	283	В	Theoretical probability	374
	289	С	Expectation	376
S	292	D	Probabilities from tabled data	378
-	295	Е	Representing combined events	379
	296	F	Probabilities from lists and diagrams	381

11	EQUATIONS
	Review set 10B
	Review set 10A
Ι	Statistics from technology
Η	Box-and-whisker plots
G	Measuring the spread
F	Cumulative data
E	Measuring the centre
D	Frequency histograms

11 EQUATIONS

- А Solution by inspection or trial and error
- В Maintaining balance
- С Formal solution of linear equations
- D Equations with a repeated unknown
- Е Fractional equations
- F Unknown in the denominator
- G Forming equations
- Н Problem solving using equations
- Finding an unknown from a formula Ι J Formula rearrangement Review set 11A Review set 11B

12 RATIOS AND RATES

А	Ratio
В	Simplifying ratios
С	Equal ratios
D	The unitary method for ratios
Е	Using ratios to divide quantities
F	Scale diagrams
G	Rates
Н	Rate graphs
Ι	Travel graphs
	Review set 12A
	Review set 12B

13 ALGEBRAIC FACTORISATION

- А Common factors
- В Factorising with common factors
- С Factorising expressions with four term D
- Factorising quadratic trinomials
- Е Factorisation of $ax^2 + bx + c$ ($a \neq 1$)
- Difference of two squares factorising F Review set 13A Review set 13B

14 CONGRUENCE AND SIMILARITY

Congruence of figures А В Congruent triangles С Similarity D Similar triangles Е Problem solving with similar triangles Review set 14A Review set 14B

8 TABLE OF CONTENTS

G	Multiplying probabilities	384
Η	Using tree diagrams	385
Ι	Sampling with and without replacement	388
J	Mutually exclusive and	
	non-mutually exclusive events	390
Κ	Independent events	392
	Review set 19A	393
	Review set 19B	394

20 FUNCTIONS, GRAPHS AND NOTATION

21	GEOMETRY	413
	Review set 20B	412
	Review set 20A	410
Η	Function notation	409
G	Functions	406
F	Mappings	405
Е	Step graphs	403
D	Time series data	402
С	Conversion graphs	400
В	Interpreting line graphs	398
А	Graphical interpretation	396

А	Angle properties	417
В	Triangles	422
С	Isosceles triangles	424
D	Angles of a quadrilateral	427
Е	Polygons	430
F	The exterior angles of a polygon	433
G	Nets of solids	434
	Review set 21A	435
	Review set 21B	437

22 QUADRATIC AND OTHER EQUATIONS

A	Quadratic equations	440
В	Problem solving with quadratics	443
С	Exponential equations	446
D	Solving harder equations with technology	447
	Review set 22A	449
	Review set 22B	450

23 FINANCE

А	Profit and loss	452
В	Percentage profit and loss	454
С	Discount	456
D	Using a multiplier	459
Е	Chain percentage problems	461
F	Simple interest	463
G	Compound interest	467
Η	Foreign exchange	470
	Review set 23A	472
	Review set 23B	474

24 QUADRATIC FUNCTIONS 475

А	Graphs of quadratic functions	476
В	Axes intercepts	478
С	The axis of symmetry	480
D	Quadratic modelling	483
	Review set 24A	485
	Review set 24B	486

25 TRANSFORMATION

	GEOMETRY	487
	Chapter on CD only	
А	Reflection	3
В	Rotation	6
С	Translation	9
D	Enlargement	11
	Review set 25A	14
	Review set 25B	15

26	SINE AND COSINE RULES	488
	Chapter on CD only	
A	Obtuse angles	2
В	Area of a triangle using sine	4
С	The sine rule	5
D	The cosine rule	10
Е	Problem solving with the sine	
	and cosine rules	13
	Review set 26A	14
	Review set 26B	15
	ANSWERS	489

INDEX 526

Graphics calculator instructions

A Basic calculations

- **B** Basic functions
- Secondary function and alpha keys
- Memory
- E Lists
- F Statistical graphs
- **G** Working with functions

10 GRAPHICS CALCULATOR INSTRUCTIONS

In this course it is assumed that you have a **graphics calculator**. If you learn how to operate your calculator successfully, you should experience little difficulty with future arithmetic calculations.

There are many different brands (and types) of calculators. Different calculators do not have exactly the same keys. It is therefore important that you have an instruction booklet for your calculator, and use it whenever you need to.

However, to help get you started, we have included here some basic instructions for the **Texas Instruments TI-83** and the **Casio fx-9860G** calculators. Note that instructions given may need to be modified slightly for other models.

GETTING STARTED

Texas Instruments TI-83

The screen which appears when the calculator is turned on is the **home screen**. This is where most basic calculations are performed.

You can return to this screen from any menu by pressing 2nd MODE .

When you are on this screen you can type in an expression and evaluate it using the **ENTER** key.

Casio fx-9860g

Press MENU to access the Main Menu, and select RUN·MAT.

This is where most of the basic calculations are performed.

When you are on this screen you can type in an expression and evaluate it using the **EXE** key.

BASIC CALCULATIONS

Most modern calculators have the rules for **Order of Operations** built into them. This order is sometimes referred to as BEDMAS. You will learn more about it in **Chapter 2**.

This section explains how to enter different types of numbers such as negative numbers and fractions, and how to perform calculations using grouping symbols (brackets), powers, and square roots. It also explains how to round off using your calculator.

NEGATIVE NUMBERS

To enter negative numbers we use the **sign change** key. On both the **TI-83** and **Casio** this looks like $\boxed{(-)}$.

Simply press the sign change key and then type in the number.

For example, to enter -7, press (-) 7.

FRACTIONS

On most scientific calculators and also the **Casio** graphics calculator there is a special key for entering fractions. No such key exists for the **TI-83**, so we use a different method.

Texas Instruments TI-83

To enter common fractions, we enter the fraction as a division.

For example, we enter $\frac{3}{4}$ by typing	3 ÷ 4.	If the fraction is part of a larger calculation	n,
it is generally wise to place this divi	sion in bra	ackets, i.e., $(3 \div 4)$.	

To enter mixed numbers, either convert the mixed number to an improper fraction and enter as a common fraction *or* enter the fraction as a sum.

For example, we can enter $2\frac{3}{4}$ as	(11÷4)	or	(2 +	$3 \div$	4).
---	--------	----	-------	----------	------

Casio fx-9860g

To enter fractions we use the **fraction** key $\boxed{a \ b/c}$.

For example, we enter $\frac{3}{4}$ by	typing $3 \boxed{a \frac{b}{c}} 4$	and $2\frac{3}{4}$ by typing	2 a b/c 3 a b/c 4.	Press
SHIFT a b/c $(a\frac{b}{c} \leftrightarrow \frac{d}{c})$ to	o convert between	mixed numbers and	improper fractions.	

SIMPLIFYING FRACTIONS & RATIOS

Graphics calculators can sometimes be used to express fractions and ratios in simplest form.

Texas Instruments TI-83

To express the fraction $\frac{35}{56}$ in simplest form, press $35 \div 56$ MATH 1 ENTER. The result is $\frac{5}{8}$. To express the ratio $\frac{2}{3}: 1\frac{1}{4}$ in simplest form, press (2 $\div 3$) \div (1 \div 1 \div 4) MATH 1 ENTER. The ratio is $8: 15$.	35/56⊧Frac 5/8 (2/3)/(1+1/4)⊧Fr ac 8/15
Casio fx-9860g	
To express the fraction $\frac{35}{56}$ in simplest form, press 35 a b/c 56 EXE. The result is $\frac{5}{8}$.	35,56 5,8 2,3÷1,1,4 8,15
To express the ratio $\frac{2}{3}: 1\frac{1}{4}$ in simplest form, press 2 a b /c	DMAT
$3 \div 1$ a ^b / _c 1 a ^b / _c 4 EXE. The ratio is $8:15$.	

ENTERING TIMES

In questions involving time, it is often necessary to be able to express time in terms of hours, minutes and seconds.

12 GRAPHICS CALCULATOR INSTRUCTIONS

Texas Instruments TI-83

To enter 2 hours 27 minutes, press 2 2nd MATRX (ANGLE) 1:° 27 2nd MATRX 2:'. This is equivalent to 2.45 hours. To express 8.17 hours in terms of hours, minutes and seconds, press 8.17 2nd MATRX 4:►DMS ENTER. This is equivalent to 8 hours, 10 minutes and 12 seconds.

Casio fx-9860g

To enter 2 hours 27 minutes, press 2 OPTN F6 F5 (ANGL) F4 (°^{'''}) 27 F4 (°^{'''}) EXE. This is equivalent to 2.45 hours. To express 8.17 hours in terms of hours, minutes and seconds, press 8.17 OPTN F6 F5 (ANGL) F6 F3 (►DMS) EXE. This is equivalent to 8 hours, 10 minutes and 12 seconds.

2°27' 2.45 8.17⊧DMS 8°10'12"

2°27°	2.45
8.17⊁DMS	8°10'12"
Pol(Rec(DMs	4

BASIC FUNCTIONS

GROUPING SYMBOLS (BRACKETS)

Both the **TI-83** and **Casio** have bracket keys that look like (and).

Brackets are regularly used in mathematics to indicate an expression which needs to be evaluated before other operations are carried out.

For example, to enter $2 \times (4+1)$ we type $2 \times (4+1)$.

We also use brackets to make sure the calculator understands the expression we are typing in.

For example, to enter $\frac{2}{4+1}$ we type	$2 \div (4 + 1)$.	If we typed	$2 \div 4 + 1$
the calculator would think we meant	$\frac{2}{4} + 1.$		

In general, it is a good idea to place brackets around any complicated expressions which need to be evaluated separately.

POWER KEYS

Both the **TI-83** and **Casio** also have power keys that look like \land . We type the base first, press the power key, then enter the index or exponent.

For example, to enter 25^3 we type $25 \land 3$.

Note that there are special keys which allow us to quickly evaluate squares.

Numbers can be squared on both **TI-83** and **Casio** using the special key x^2 .

For example, to enter 25^2 we type $25 x^2$.

SQUARE ROOTS

To enter square roots on either calculator we need to use a secondary function (see the **Secondary Function and Alpha Keys** section).

Texas Instruments TI-83

The TI-83 uses a secondary function key 2nd .

To enter $\sqrt{36}$ we press 2nd x^2 36).

The end bracket is used to tell the calculator we have finished entering terms under the square root sign.

Casio fx-9860g

The Casio uses a shift key SHIFT to get to its second functions.

To enter $\sqrt{36}$ we press SHIFT x^2 36.

If there is a more complicated expression under the square root sign you should enter it in brackets.

For example, to enter $\sqrt{18 \div 2}$ we press	SHIFT x^2 (18 \div 2)	
---	-----------------------------	--

ROUNDING OFF

You can use your calculator to round off answers to a fixed number of decimal places.

Texas Instruments TI-83

To round to 2 decimal places, press $\boxed{\text{MODE}}$ then $\boxed{\checkmark}$ to scroll down to Float.

Use the \blacktriangleright button to move the cursor over the 2 and press

ENTER . Press 2nd MODE to return to the home screen.

If you want to unfix the number of decimal places, press MODE

ENTER to highlight Float.

Casio fx-9860g

To round to 2 decimal places, select **RUN·MAT** from the Main Menu, and press **SHIFT MENU** to enter the setup screen. Scroll down to Display, and press **F1** (**Fix**). Press 2 **EXE** to select the number of decimal places. Press **EXIT** to return to the home screen.

To unfix the number of decimal places, press **SHIFT MENU** to return to the setup screen, scroll down to Display, and press **F3** (**Norm**).

INVERSE TRIGONOMETRIC FUNCTIONS

To enter inverse trigonometric functions, you will need to use a secondary function (see the **Secondary Function and Alpha Keys** section).

Texas Instruments TI-83

The inverse trigonometric functions \sin^{-1} , \cos^{-1} and \tan^{-1} are the secondary functions of SIN, COS and TAN respectively. They are accessed by using the secondary function key 2nd.

For example, if $\cos x = \frac{3}{5}$, then $x = \cos^{-1}\left(\frac{3}{5}\right)$.

To calculate this, press 2nd COS 3 \div 5) ENTER .

Casio fx-9860g

The inverse trigonometric functions \sin^{-1} , \cos^{-1} and \tan^{-1} are the secondary functions of sin, cos and tan respectively. They are accessed by using the secondary function key SHIFT.

For example, if $\cos x = \frac{3}{5}$, then $x = \cos^{-1}\left(\frac{3}{5}\right)$.

To calculate this, press SHIFT $\cos (3 \div 5)$ EXE.

SCIENTIFIC NOTATION

If a number is too large or too small to be displayed neatly on the screen, it will be expressed in scientific notation, that is, in the form $a \times 10^k$, where $1 \le a < 10$ and k is an integer.

Texas Instruments TI-83

To evaluate 2300 ³ , press 2300 \land 3 ENTER. The answer displayed is 1.2167E10, which means 1.2167×10^{10} .	2300^3 1.2167±10 3/20000 1.5±-4
To evaluate $\frac{3}{20000}$, press $3 \div 20000$ ENTER . The answer displayed is 1.5 ± -4 , which means 1.5×10^{-4} .	
You can enter values in scientific notation using the EE function, which is accessed by pressing 2nd γ . For example, to eval- uate $\frac{2.6 \times 10^{14}}{13}$, press 2.6 2nd γ 14 \div 13 ENTER. The	2.6∈14∕13 2∈13
answer is 2×10^{13} .	

Casio fx-9860g

To evaluate 2300 ³ , press 2300 \land 3 EXE. The answer displayed is 1.2167E+10, which means 1.2167×10^{10} .	2300^3 3÷20000 1.5E-04	
To evaluate $\frac{3}{20000}$, press $3 \div 20000$ EXE . The answer displayed is 1.5 ± -04 , which means 1.5×10^{-4} .	THAT	
You can enter values in scientific notation using the EXP key. For example, to evaluate $\frac{2.6 \times 10^{14}}{13}$, press 2.6 EXP 14 \div 13	2.6E14÷13 2E+13	
EXE . The answer is 2×10^{13} .	PM87	

SECONDARY FUNCTION AND ALPHA KEYS

Texas Instruments TI-83

The secondary function of each key is	s displayed in yellow above the key. It is accessed by
pressing the 2nd key, followed by the	key corresponding to the desired secondary function.
For example, to calculate $\sqrt{36}$, press	2nd x^2 36) ENTER.

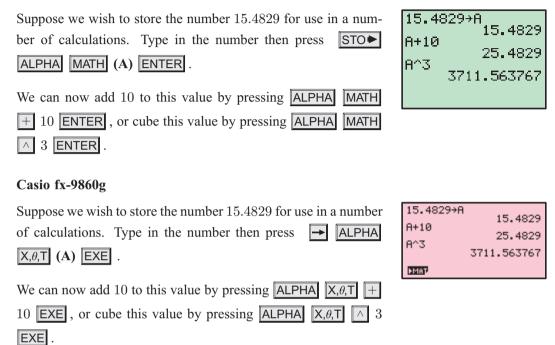
The **alpha function** of each key is displayed in green above the key. It is accessed by pressing the **ALPHA** key followed by the key corresponding to the desired letter. The main purpose of the alpha keys is to store values into memory which can be recalled later. Refer to the **Memory** section.

Casio fx-9860g

The **shift function** of each key is displayed in yellow above the key. It is accessed by pressing the **SHIFT** key followed by the key corresponding to the desired shift function.

For example, to calculate $\sqrt{36}$, press SHIFT x^2 36 EXE.

The **alpha function** of each key is displayed in red above the key. It is accessed by pressing the **ALPHA** key followed by the key corresponding to the desired letter. The main purpose of the alpha keys is to store values which can be recalled later.



Utilising the memory features of your calculator allows you to recall calculations you have performed previously. *This not only saves time, but also enables you to maintain accuracy in your calculations.*

SPECIFIC STORAGE TO MEMORY

Values can be stored into the variable letters A, B, ..., Z using either calculator. Storing a value in memory is useful if you need that value multiple times.

Texas Instruments TI-83

ANS VARIABLE

Texas Instruments TI-83

The variable **Ans** holds the most recent evaluated expression, and can be used in calculations by pressing 2nd (-).

For example, suppose you evaluate 3×4 , and then wish to subtract this from 17. This can be done by pressing 17 - 2nd

	17-Ans
sub-	
2nd	

|3∗4

17-Ans	12
Ans/2	5
Hns∕∠ Ans⊧Frac	2.5
	572
	2 10

12

5

(-) ENTER.

If you start an expression with an operator such as [+], [-], etc, the previous answer **Ans** is automatically inserted ahead of the operator. For example, the previous answer can be halved simply by pressing $[\div 2]$ ENTER.

If you wish to view the answer in fractional form, press $\fbox{\time{MATH}}$

1 ENTER.

3×4

17-Ans

Ans÷2

▶M8T

Casio fx-9860g

The variable **Ans** holds the most recent evaluated expression, and can be used in calculations by pressing SHIFT (-). For example, suppose you evaluate 3×4 , and then wish to subtract this from 17. This can be done by pressing 17 - SHIFT (-)

EXE .

If you start an expression with an operator such as [+], [-], etc, the previous answer Ans is automatically inserted ahead of the operator. For example, the previous answer can be halved simply by pressing $[\div 2]$ [EXE].

MAT.	
3×4	10
17-Ans	12

12

5

2.5

If you wish to view the answer in fractional form, press $F \leftrightarrow D$.

RECALLING PREVIOUS EXPRESSIONS

Texas Instruments TI-83

The ENTRY function recalls previously evaluated expressions, and is used by pressing 2nd ENTER.

This function is useful if you wish to repeat a calculation with a minor change, or if you have made an error in typing.

Suppose you have evaluated $100 + \sqrt{132}$. If you now want to evaluate $100 + \sqrt{142}$, instead of retyping the command, it can be recalled by pressing 2nd ENTER.

The change can then be made by moving the cursor over the 3 and changing it to a 4, then pressing **ENTER**.

If you have made an	error in your original c	calculation, and inter	ded to calculate	$1500 + \sqrt{132},$
again you can recall	the previous command	d by pressing 2nd	ENTER .	

Move the cursor to the first 0.

You can insert the digit 5, rather than overwriting the 0, by pressing 2nd DEL 5 ENTER.

Casio fx-9860g

Pressing the left cursor key allows you to edit the most recently evaluated expression, and is useful if you wish to repeat a calculation with a minor change, or if you have made an error in typing.

Suppose you have evaluated $100 + \sqrt{132}$.

If you now want to evaluate $100 + \sqrt{142}$, instead of retyping the command, it can be recalled by pressing the left cursor key.

Move the cursor between the 3 and the 2, then press **DEL** 4 to remove the 3 and change it to a 4. Press **EXE** to re-evaluate the expression.

E

Lists are used for a number of purposes on the calculator. They enable us to enter sets of numbers, and we use them to generate number sequences using algebraic rules.

CREATING A LIST

Texas Instruments TI-83

Press **STAT** 1 to take you to the **list editor** screen.

To enter the data $\{2, 5, 1, 6, 0, 8\}$ into List1, start by moving the cursor to the first entry of L₁. Press 2 ENTER 5 ENTER and so on until all the data is entered.

Casio fx-9860g

Selecting **STAT** from the Main Menu takes you to the **list editor** screen.

To enter the data $\{2, 5, 1, 6, 0, 8\}$ into **List 1**, start by moving the cursor to the first entry of **List 1**. Press 2 **EXE** 5 **EXE** and so on until all the data is entered.

DELETING LIST DATA

Texas Instruments TI-83

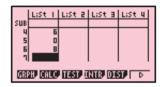
Pressing **STAT** 1 takes you to the **list editor** screen.

Move the cursor to the heading of the list you want to delete then press CLI

Casio fx-9860g

Selecting STAT from the Main Menu takes you to the list editor screen.

Move the cursor to anywhere on the list you wish to delete, then press F6 (>) F4 (DEL-A) F1 (Yes).


REFERENCING LISTS

Texas Instruments TI-83

Lists can be referenced by using the secondary functions of the keypad numbers 1–6.

For example, suppose you want to add 2 to each element of List1 and display the results in List2. To do this, move the cursor to the heading of L₂ and press 2nd 1 + 2 ENTER.

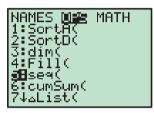
L1	L2	L3 1
MOTH NN		
L1(7)=		

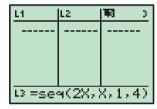
Casio fx-9860g

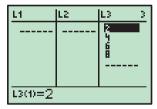
Lists can be referenced using the List function, which is accessed by pressing SHIFT 1.

For example, if you want to	add 2 to each element of	List 1 and display the results in
List 2, move the cursor to the	heading of List 2 and press	SHIFT 1 (List) $1 + 2$ EXE.

Casio	models	without	the	List	function	can	do	this	by	pressing	OPTN	F1	(LIST)	F1
(List)	1 + 2	FXF												


NUMBER SEQUENCES


Texas Instruments TI-83


You can create a sequence of numbers defined by a certain rule using the *seq* command.

This command is accessed by pressing 2nd **STAT** \blacktriangleright to enter the **OPS** section of the List menu, then selecting **5:seq**.

This evaluates 2x for every value of x from 1 to 4.

Casio fx-9860g

You can create a sequence of numbers defined by a certain rule using the *seq* command.

This command is accessed by pressing OPTN F1 (LIST) F5 (Seq).

For example, to store the sequence of even numbers from 2 to 8 in **List 3**, move the cursor to the heading of **List 3**, then press

OPTN F1 F5 to enter a sequence, followed by 2 X, θ, T ,

 X, θ, T y 1 y 4 y 1) EXE.

This evaluates 2x for every value of x from 1 to 4 with an increment of 1.

F

STATISTICAL GRAPHS

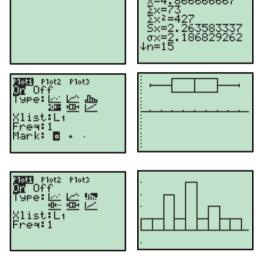
STATISTICS

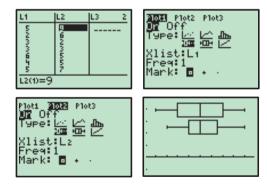
Your graphics calculator is a useful tool for analysing data and creating statistical graphs.

In this section we will produce descriptive statistics and graphs for the data set 5 2 3 3 6 4 5 3 7 5 7 1 8 9 5.

1-Var Stats Li

Texas Instruments TI-83

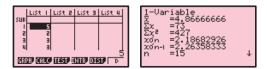

Enter the data set into List1 using the instructions on page 18. To obtain descriptive statistics of the data set, press STAT > 1:1-Var Stats


To obtain a boxplot of the data, press 2nd Y= (STAT PLOT) 1 and set up Statplot1 as shown. Press ZOOM 9:ZoomStat to graph the boxplot with an appropriate window.

To obtain a vertical bar chart of the data, press 2nd Y= 1, and change the type of graph to a vertical bar chart as shown. Press ZOOM 9:ZoomStat to draw the bar chart. Press WINDOW and set the Xscl to 1, then GRAPH to redraw the bar chart.

We will now enter a second set of data, and compare it to the first.

Enter the data set 9 6 2 3 5 5 7 5 6 7 6 3 4 4 5 8 4 into List2, press 2nd Y= 1, and change the type of graph back to a boxplot as shown. Move the cursor to the top of the screen and select Plot2. Set up Statplot2 in the same manner, except set the XList to L₂. Press ZOOM 9:ZoomStat to draw the side-by-side

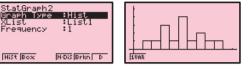


Casio fx-9860g

boxplots.

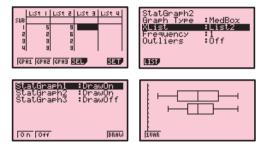
Enter the data into List 1 using the instructions on page 18. To obtain the descriptive statistics, press F6 (>) until the **GRPH** icon is in the bottom left corner of the screen, then press F2 (CALC) F1 (1VAR).

GRAPHICS CALCULATOR INSTRUCTIONS 21


To obtain a boxplot of the data, press **EXIT EXIT F1** (**GRPH**) **F6** (**SET**), and set up **StatGraph 1** as shown. Press **EXIT F1** (**GPH1**) to draw the boxplot.

To obtain a vertical bar chart of the data, press

EXIT F6 (SET) F2 (GPH 2), and set up


StatGraph 2 as shown. Press **EXIT F2 (GPH 2)** to draw the bar chart (set Start to 0, and Width to 1).

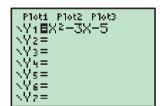
We will now enter a second set of data, and compare it to the first.

Enter the data set 9 6 2 3 5 5 7 5 6 7 6 3 4 4 5 8 4 into List 2, then press **F6**

(SET) F2 (GPH2) and set up StatGraph 2 to draw a boxplot of this data set as shown. Press EXIT F4 (SEL), and turn on both StatGraph

1 and **StatGraph 2**. Press **F6** (**DRAW**) to draw the side-by-side boxplots.

G


WORKING WITH FUNCTIONS

GRAPHING FUNCTIONS

Texas Instruments TI-83

Pressing Y= selects the Y= editor, where you can store functions to graph. Delete any unwanted functions by scrolling down to the function and pressing CLEAR.

To graph the function $y = x^2 - 3x - 5$, move the cursor to **Y**₁, and press X,T,θ,n $x^2 - 3$ $X,T,\theta,n - 5$ ENTER. This stores the function into **Y**₁. Press **GRAPH** to draw a graph of the function.

Graph Func: : Y= V1=X2=3X=5 V2: V3: V4: I=1 V5: I=1 V6: ISEL DEL INPE SIVE MISH (DRAW)

Casio fx-9860g

Selecting **GRAPH** from the Main Menu takes you to the Graph Function screen, where you can store functions to graph. Delete any unwanted functions by scrolling down to the function and pressing **DEL F1** (Yes).

To graph the function $y = x^2 - 3x - 5$, move the cursor to Y1 and press X, θ, T x^2 - 3 X, θ, T - 5 EXE. This stores the function into Y1. Press F6 (DRAW) to draw a graph of the function.

FINDING POINTS OF INTERSECTION

It is often useful to find the points of intersection of two graphs, for instance, when you are trying to solve simultaneous equations.

Texas Instruments TI-83

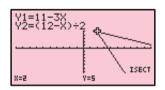
We can solve y = 11 - 3x and $y = \frac{12 - x}{2}$ simultaneously by finding the point of intersection of these two lines. Press Y=, then store 11 - 3x into Y₁ and $\frac{12 - x}{2}$ into Y₂. Press **GRAPH** to draw a graph of the functions.

To find their point of intersection, press 2nd TRACE (CALC) 5, which selects 5:intersect. Press ENTER twice to specify the functions Y₁ and Y₂ as the functions you want to find the intersection of, then use the arrow keys to move the cursor close to the point of intersection and press ENTER once more.

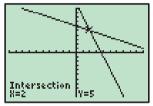
The solution x = 2, y = 5 is given.

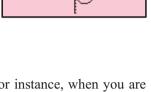
Casio fx-9860g

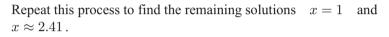
We can solve y = 11 - 3x and $y = \frac{12 - x}{2}$ simultaneously by finding the point of intersection of these two lines. Select **GRAPH** from the Main Menu, then store 11 - 3x into **Y1** and $\frac{12 - x}{2}$ into **Y2**. Press **F6** (**DRAW**) to draw a graph of the functions.


To find their point of intersection, press **F5** (G-Solv) **F5** (ISCT). The solution x = 2, y = 5 is given.

Note: If there is more than one point of intersection, the remaining points of intersection can be found by pressing \blacktriangleright .


SOLVING f(x) = 0


In the special case when you wish to solve an equation of the form f(x) = 0, this can be done by graphing y = f(x) and then finding where this graph cuts the x-axis.



Texas Instruments TI-83

To solve $x^3 - 3x^2 + x + 1 = 0$, press Y= and store $x^3 - 3x^2 + x + 1$ into Y1. Press GRAPH to draw the graph.

To find where this function first cuts the x-axis, press 2nd TRACE (CALC) 2, which selects 2:zero. Move the cursor to the left of the first zero and press ENTER, then move the cursor to the right of the first zero and press ENTER. Finally, move the cursor close to the first zero and press ENTER once more. The solution $x \approx -0.414$ is given.

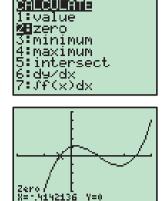
Casio fx-9860g

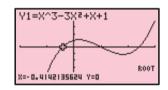
To solve $x^3 - 3x^2 + x + 1 = 0$, select **GRAPH** from the Main Menu and store $x^3 - 3x^2 + x + 1$ into **Y1**. Press **F6** (**DRAW**) to draw the graph.

To find where this function cuts the x-axis, press **F5** (G-Solv) **F1** (ROOT). The first solution $x \approx -0.414$ is given.

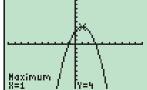
Press \blacktriangleright to find the remaining solutions x = 1 and $x \approx 2.41$.

TURNING POINTS

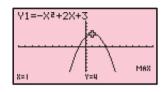

Texas Instruments TI-83


To find the turning point (vertex) of $y = -x^2 + 2x + 3$, press Y= and store $-x^2 + 2x + 3$ into Y1. Press **GRAPH** to draw the graph.

From the graph, it is clear that the vertex is a maximum, so press 2nd TRACE (CALC) 4 to select 4:maximum. Move the cursor to the left of the vertex and press ENTER, then move the cursor to the right of the vertex and press ENTER. Finally, move the cursor close to the vertex and press ENTER once more. The vertex is (1, 4).


Casio fx-9860g

To find the turning point (vertex) of $y = -x^2 + 2x + 3$, select **GRAPH** from the Main Menu and store $-x^2 + 2x + 3$ into **Y1**. Press **F6** (**DRAW**) to draw the graph.



From the graph, it is clear that the vertex is a maximum, so to find the vertex press **F5** (G-Solv) **F2** (MAX).

The vertex is (1, 4).

ADJUSTING THE VIEWING WINDOW

When graphing functions it is important that you are able to view all the important features of the graph. As a general rule it is best to start with a large viewing window to make sure all the features of the graph are visible. You can then make the window smaller if necessary.

Texas Instruments TI-83

Some useful commands for adjusting the viewing window include:

ZOOM 0:ZoomFit :	This command scales the y-axis to fit			
	the minimum and maximum values of the displayed graph within the current x -axis range.			
ZOOM 6:ZStandard :	This command returns the viewing			
	window to the default setting of $-10 \le x \le 10$, $-10 \le y \le 10$.			

If neither of these commands are helpful, the viewing window can be adjusted manually by pressing $\boxed{\text{WINDOW}}$ and setting the minimum and maximum values for the x and y axes.

Casio fx-9860g

The viewing window can be adjusted by pressing SHIFT F3 (V-Window). You can manually set the minimum and maximum values of the x and y axes, or press F3 (STD) to obtain the standard viewing window $-10 \le x \le 10$, $-10 \le y \le 10$.

View Window
Xmin :-10
max :10 scale:1
dot :0.15873015
Ymin :-10 max :10
INIT TRIGSTO STO RCL

Chapter

Measurement and units

- A Standard units
- **B** Converting units
- C Area units
- Volume units
- **E** Capacity
- F Mass
- G Time
- H 24-hour time

A

STANDARD UNITS

The IB course requires a knowledge of the SI (Systeme International) and other basic units. The important ones are as follows:

Measurement of	Standard unit	What it means
Length	metre	How long or how far.
Mass	gram	How heavy an object is.
Capacity	litre	How much liquid or gas is contained.
Time	hours, minutes, seconds	How long it takes.
Temperature	degrees Celsius and Fahrenheit	How hot or cold.
Speed	metres/second (m s ^{-1})	How fast it is travelling.

The conversion between various units is dealt with in **Section B**, but it is important that you connect quantities with appropriate units.

OTHER UNITS

There are other units you may see, in everyday life and in other subjects. These are:

Measurement of	Base units	What it means
Area	square metres (m ²)	How much surface it has.
Volume	cubic metres (m ³)	How much space is occupied.
Acceleration	metres per second ² (m s ^{-2})	How much speed is changing over time.
Force	newtons	What force is being applied.
Power	watts	How much electricity we are using.
Energy	joules	How much energy is being used.

The measurement of length, time and speed is of great importance.

Builders, architects, engineers and manufacturers need to measure the sizes of objects to great accuracy.

Constructing a skyscraper, building a long bridge across a river, and coordinating the repair of a satellite in space all require the use of measurement with skill and precision.

OPENING PROBLEM

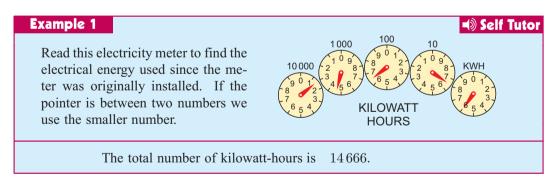
The fence at Jahmadahl High School needs to be replaced. Metal posts will be used with mesh fencing between them. Things to discuss:

- How would you find the length of fencing needed?
- How would you find the number of posts needed?
- How would you find the total cost of materials and labour?

THE METRIC SYSTEM

The Metric System was developed in France in 1789 and uses the decimal system to convert from one unit to another.

Common prefixes show size. They are used with the basic units such as metres, grams, litres, watts, and joules.


For example:

kilo means 1000 centi means $\frac{1}{100}$ deci means $\frac{1}{10}$ **mega** means $1\ 000\ 000$ **milli** means $\frac{1}{1000}$

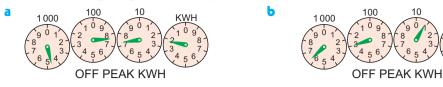
These prefixes will be used in Section B.

READING INSTRUMENTS AND METERS

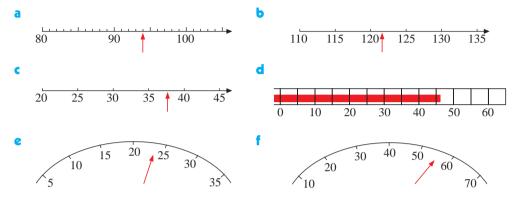
In this exercise we read various instruments and meters.

EXERCISE 1A

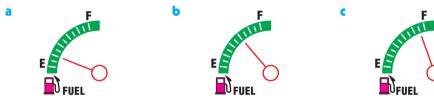
1 Read the following electricity meters:



FENCING THE SCHOOL



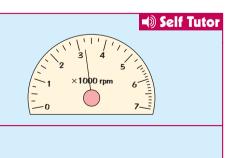
28 MEASUREMENT AND UNITS (Chapter 1)


2 Read the following off peak electricity meters:

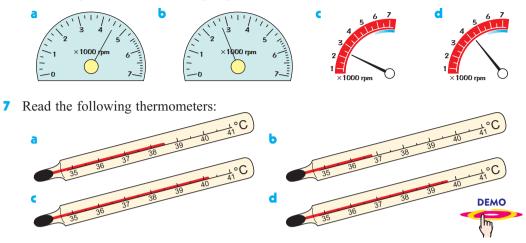

3 Estimate the readings on the following meters:

4 Estimate the fraction of fuel remaining in the following:

5 Estimate the speeds from the following speedometers:



The given tachometer shows the speed of an engine in revolutions per minute (rpm).

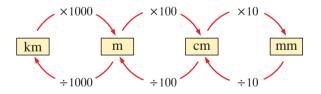

Find the speed of the engine for the tachometer shown.

The meter reading is approximately $3\frac{1}{4}$.

 \therefore speed of motor = $3\frac{1}{4} \times 1000 = 3250$ rpm.

6 Find the speeds of the following engines:

CONVERTING UNITS


The base unit of length in the International System of units is the **metre** (m). Other units of length based on the metre are:

- millimetres (mm) used to measure the length of a bee
- **centimetres** (cm) used to measure the width of your desk
- kilometres (km) used to measure the distance between two cities.

The table below summarises the connection between these units of length:

1 kilometre (km) = 1000 metres (m) 1 metre (m) = 100 centimetres (cm) 1 centimetre (cm) = 10 millimetres (mm)

LENGTH UNITS CONVERSIONS

So, to convert cm into km we \div 100 and then \div 1000.

Notice that, when converting from:

- smaller units to larger units we divide by the conversion factor
- larger units to smaller units we **multiply** by the conversion factor.

EXERCISE 1B

e

P

- 1 Suggest an appropriate unit of length for measuring the following:
 - a the length of a baby

the length of an ant

- c the distance from Perth to Darwin
- **b** the width of an eraser
- **d** the height of an old gum tree
- f the length of a pen

- **2** Estimate the following and then check by measuring:
 - a the length of your desk
 - the height of a friend
 - the length of a tennis court
- **b** the width of your pencil case
- **d** the dimensions of your classroom
- f the width of a hockey pitch

CONVERTING LENGTH UNITS

Larger to smaller

Example 3	Self Tuto
Convert: a 4.5 km to m b 1.25 m to mm	a km to m: × 1000 ∴ 4.5 km = (4.5 × 1000) m = 4500 m
	b m to mm: $\times 100$ then $\times 10$ $\therefore 1.25$ m $= (1.25 \times 100 \times 10)$ mm = 1250 mm

3 Convert:

a	52 km to m	b	115 cm to mm	C	$1.65~\mathrm{m}$ to cm
d	6.3 m to mm	e	0.625 km to cm	f	8.1 km to mm

Smaller to larger

Example 4	Self Tutor			
Convert: a 350 cm to m b 23 000 mm to m	a cm to m: ÷100 ∴ 350 cm = (350 ÷ 100) m = 3.5 m			
	 b mm to m: ÷10 then ÷100 ∴ 23 000 mm = (23 000 ÷ 10 ÷ 100) m = 23 m 			

4 Convert:

d

- **a** 480 cm to m
 - 2000 mm to m
- **b** 54 mm to cm
- e 580 000 cm to km
- **c** 5280 m to km
- f 7000000 mm to km

5 Convert the following lengths:

- **a** 42.1 km to m
- **d** 1500 m to km
- **9** 2.8 km to cm
- **b** 210 cm to m
- € 1.85 m to cm
- **h** 16500 mm to m
- \mathbf{c} 75 mm to cm
- f 42.5 cm to mm
- 0.25 km to mm

A reminder about prefixes for metric units:

Prefix	Example
kilo means 1000	1 kilogram (kg) = 1000 grams (g)
mega means 1 000 000	1 megajoule (MJ) = 1000000 joules (J)
deci means $\frac{1}{10}$	1 decilitre (dL) = $\frac{1}{10}$ litre (L)
centi means $\frac{1}{100}$	1 centimetre (cm) = $\frac{1}{100}$ metre (m)
milli means $\frac{1}{1000}$	1 millimetre (mm) = $\frac{1}{1000}$ metre (m)

grams

watts

C

g

k

These prefixes go with:

- 6 Convert:
 - 7 g into mg а
 - 2.3 g into cg e
 - 20 mg into g
- 7 Convert:

d

- а 2 litres into mL
 - b 45 cL into litres e

metres

newtons

7 g into kg

56 g into mg

240 mg into cg

- 2 cL into mL 0.045 L into dL g
- 2 mL into cL
- h 40 msec into sec
- C f

580 g into kg

3 kg into mg

0.45 g into mg

litres joules

d

h

L

1.2 kilowatts into watts 3500 dL into litres

580 kg into g

450 cg into g

6500 mg into kg

- i. 2000 watts into kilowatts
- 8 Mike ran 8.5 km while Mal walked 3200 m. How much farther did Mike run than Mal walk?

f

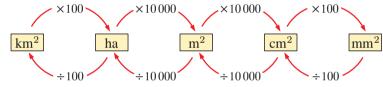
i.

- **9** I have 45 coils of fencing wire and each coil is 275 m long. How many kilometres of wire do I have?
- **10** Liesel swims eighty 25 m laps in 1 hour. If she continues to swim at that speed, how many kilometres will she swim in 3 hours?

- 11 John has 3.85 km of copper wire and needs to cut it into 1.5 cm lengths to be used in electric toasters. How many lengths can he make?
- **12** How many 5 dL glasses can be filled from a jug containing 2 litres of water?
- **13** An electric light bulb has a power rating of 75 watts. A kettle has a rating of 3 kilowatts. How many light bulbs must be switched on to use the same power as 2 kettles?
- 14 A postage stamp has a mass of 2 cg. How many of these stamps would have a total mass of 1 kg?
- **15** A pack of 500 sheets of paper has a mass of 2.5 kg. Find the mass of one sheet, giving your answer in the most appropriate unit.
- 16 A bottle of medicine has a capacity of 50 cL. How many 5 mL spoonfuls can be obtained from the bottle?

32 MEASUREMENT AND UNITS (Chapter 1)

- 17 A small car has a mass of 0.96 tonnes and a larger car is 600 kg heavier. Given that 1 tonne = 1000 kg, find the mass, in tonnes, of the larger car.
- 18 Maria's stride length is 0.9 m. How many strides does she take when she walks 2.7 km?


The **area** enclosed by a shape is a measure of how large the surface is. It is measured in *square* units.

UNITS OF AREA

Area can be measured in square millimetres, square centimetres, square metres and square kilometres; there is also another unit called a hectare (ha).

$1 \text{ mm}^2 = 1 \text{ mm} \times 1 \text{ mm}$
$1 \text{ cm}^2 = 10 \text{ mm} \times 10 \text{ mm} = 100 \text{ mm}^2$
1 $\mathbf{m^2} = 100 \text{ cm} \times 100 \text{ cm} = 10000 \text{ cm}^2$
1 ha = $100 \text{ m} \times 100 \text{ m} = 10000 \text{ m}^2$
1 km ² = 1000 m × 1000 m = 1000 000 m ² or 100 ha

AREA UNITS CONVERSIONS

EXERCISE 1C

1 Suggest an appropriate area unit for measuring the following:

- a the area of a postage stamp
- **b** the area of your desktop
- the area of a vineyard
- d the area of your bedroom floor
- the area of Tasmania
- f the area of a toe-nail

EX	a	Î	р	e	5

Self Tutor

Convert: a $6 \text{ m}^2 \text{ to } \text{cm}^2$	b 18500 m^2 to ha
a m ² to cm ² : ×10 000 \therefore 6 m ² = (6 × 10 000) cm ² = 60 000 cm ²	b m^2 to ha: $\div 10000$ $\therefore 18500 m^2 = (18500 \div 10000)$ ha $= 18500. \div 10000$ ha = 1.85 ha

2 Convert:

d

- **a** 23 mm^2 to cm^2
 - $7.6 \text{ m}^2 \text{ to } \text{mm}^2$
 - m^2 to mm^2 c
- **g** $13.54 \text{ cm}^2 \text{ to } \text{mm}^2$
- **b** 3.6 ha to m² **e** 8530 m² to ha
- h $432 \text{ m}^2 \text{ to } \text{cm}^2$
- \mathbf{c} 726 cm² to m²
- f 0.354 ha to cm²
- $0.004\,82 \text{ m}^2 \text{ to } \text{mm}^2$

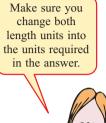
E.

- 3 km^2 into m^2 i -
- 0.7 km^2 into ha
- $660 \text{ ha into } \text{km}^2$ m

3 Calculate the area of the following rectangles:

 $50 \text{ cm by } 0.2 \text{ m in cm}^2$

 $30 \text{ mm by } 4 \text{ mm in cm}^2$


- 5.2 mm^2 into cm^2
- 0.05 m^2 into cm^2
 - 0.72 km^2 into mm²

 $0.6 \text{ m by } 0.04 \text{ m in cm}^2$

d $0.2 \text{ km by } 0.4 \text{ km in } \text{m}^2$

- $660 \text{ ha into } \text{m}^2$
- 25 cm^2 into m^2 0

VOLUME UNITS

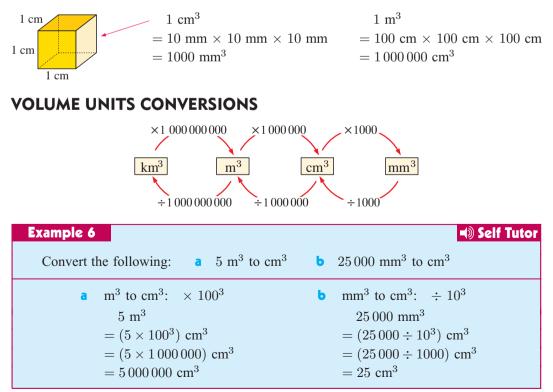
b Sam purchased 2 m^2 of material, and needed to cut it into rectangles of area 200 cm^2 for a patchwork quilt. This can be done with no waste. How many rectangles can Sam cut out?

a I have purchased a 4.2 ha property. Council regulations

allow me to have 5 free range chickens for every 100 m². How many free range chickens am I allowed to have?

Ь

а


C

4

The volume of a solid is the amount of space it occupies. It is measured in *cubic* units.

UNITS OF VOLUME

Volume can be measured in cubic millimetres, cubic centimetres or cubic metres.

EXERCISE 1D

d

2

- 1 Convert the following:
 - **a** $8.65 \text{ cm}^3 \text{ to } \text{mm}^3$

 124 cm^3 to mm³

- **b** $86\,000 \text{ mm}^3 \text{ to } \text{cm}^3$
- e 300 mm³ to cm³
- a 30 000 ingots of lead, each with volume 250 cm³, are required by a battery manufacturer. How many cubic metres of lead does the manufacturer need to purchase?
 - A manufacturer of lead sinkers for fishing has 0.237 m³ of lead. If each sinker is 5 cm³ in volume, how many sinkers can be made?

- **c** $300\,000 \text{ cm}^3$ to m^3
 - 3.7 m^3 to cm³

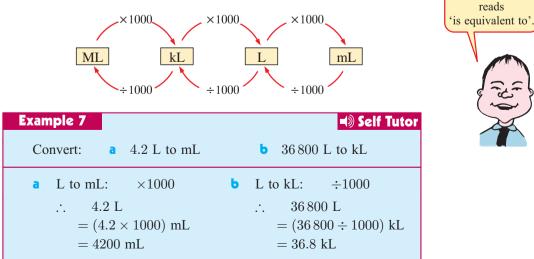
f

=

The **capacity** of a container is the quantity of fluid used to fill it.

UNITS OF CAPACITY

The basic unit of capacity is the **litre (L)**.


1 litre (L) = 1000 millilitres (mL) **1 kilolitre (kL)** = 1000 litres (L) **1 megalitre (ML)** = 1000 kilolitres (kL)

CONNECTING VOLUME AND CAPACITY

Reminder: 1 millilitre (mL) of fluid fills a container of size 1 cm³.

We say: $1 \text{ mL} \equiv 1 \text{ cm}^3$, $1 \text{ L} \equiv 1000 \text{ cm}^3$ and $1 \text{ kL} = 1000 \text{ L} \equiv 1 \text{ m}^3$.

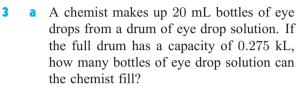
CAPACITY UNITS CONVERSION

EXERCISE 1E

1 Give the most appropriate units of capacity for measuring the amount of water in a:

Ь

small drink bottle

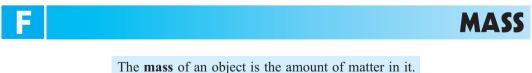

f

laundry tub

- reservoir а
- swimming pool C
- 2 Convert:

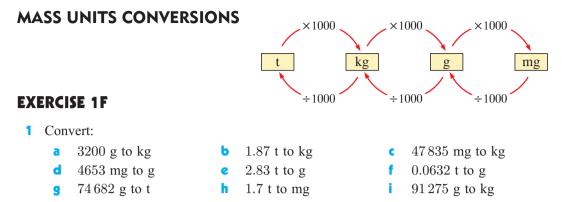
d

- 3.76 L into mL а
- 47320 L into kL 0.423 L into mL 0
 - 0.054 kL into mL
- 3.5 kL into L c
 - 58 340 mL into kL

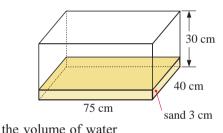


b 1000 dozen bottles of wine, each of capacity 750 mL, need to be emptied into tanks of capacity 1000 L for export.

How many tanks are needed?



- 4 A jug has capacity 0.005 kL. How many 6 dL glasses can be filled from a full jug of water?
- **5** The capacity of a car engine is quoted as 1800 cc, meaning 1800 cubic centimetres. What is this in litres?
- 6 One litre of water has a mass of 1 kg. Find the mass of 20 cL of water, giving your answer in grams.
- **7** The capacity of a cuboid can be calculated by multiplying its length, width and depth. The following cuboids are filled with gas. Find the capacity of each in the units stated:
 - 85 cm by 65 cm by 20 cm (litres) а
 - 1.2 m by 1.2 m by 0.9 m (litres) C
 - 3 cm by 2.5 cm by 2 cm (litres) e
- Ь 4 mm by 3 mm by 3 mm (mL)
- d 4 m by 3 m by 2 m (kL)
- f 1.3 m by 80 cm by 90 cm (kL)
- 8 **a** What is the capacity (in mL) of a bottle of volume 25 cm^3 ?
 - **b** Find the volume of a tank (in m^3) if its capacity is 3200 kL.
 - How many litres are there in a tank of volume 7.32 m^3 ?



1 gram (g) is the mass of 1 mL of pure water.	$1~\mathrm{g}=1000~\mathrm{mg}$
1 kilogram (kg) is the mass of 1 L of pure water.	1 kg = 1000 g
1 tonne (t) is the mass of 1 kL of pure water.	1 t = 1000 kg

- **2** a In peppermint flavoured sweets, 1 gram of peppermint extract is used per sweet. How many sweets can be made from a drum containing 0.15 t of peppermint extract?
 - **b** A publisher produces a book weighing 856 grams. 6000 of the books are printed and are to be transported interstate.
 - How many tonnes of books are to be sent?
 - If the transport costs \$450 per tonne, what will be the total cost of sending the books?
- 3 A glass fish tank has dimensions as shown. Sand is placed in the tank to a depth of 3 cm. Water is then added until it is 3 cm from the top of the tank. The sand is 3.7 times heavier than water. Find:

- a the volume of sand
- the mass of water

- the volume of waterthe mass of sand
- e the total mass of the tank and contents if the mass of the glass is 15.6 kg.

In early civilisations, time was measured by regular changes in the sky. The recurring period of daylight and darkness came to be called a **day**. The Babylonians divided the day into hours, minutes and seconds. Ancient astronomers found the time taken for the Earth to complete one orbit around the Sun. This became known as a **year**.

The base unit of time in the International System of Units is the second, abbreviated s.

UNITS OF TIME

```
1 minute = 60 seconds
1 day = 24 hours
```

1 year = 12 months = $365\frac{1}{4}$ days

```
    hour = 60 minutes = 3600 seconds
    week = 7 days
    decade = 10 years
    century = 100 years
    millennium = 1000 years
```

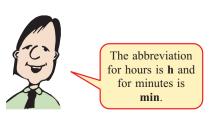
Example 8	Self Tutor
Convert 8 days 7 hours and 6 min	utes to minutes.
8 days × $24 \times 60 = 11520$	minutes
7 hours \times 60 = 420	minutes
6 minutes = 6	minutes
\therefore total = $\overline{11946}$	minutes

EXERCISE 1G

- 1 Convert the following times to minutes:
 - **a** 5 hours **b** 3 days **c** 2 days 15 hours **d** 2220 seconds

Example 9	Self Tutor
Convert 30 240 minut	es to days.
30240 = (3024) = 504 ho	$0 \div 60$ hours {60 min in 1 hour}
$= (504 \div 21 \text{ day})$	- 24) days {24 hours in 1 day} rs

2 Convert the following times to days:


a 1248 hours	b 23 040 min	c 3 years	d 6 hou
Example 10			Self Tutor
Convert 3 hours, 14	minutes to seconds.		
3 hours, 14 minutes	$= (3 \times 60) \min + 14 \pi$ = 194 min	min $\{60 \text{ min in } 1\}$	hour}
	= (194×60) s = 11640 s	{60 sec in 1 n	nin}

3 Convert the following times to seconds:

- **a** 35 minutes **b** 3 hours 19 min
 - **c** 5 days

d 1 week 2 days

- 4 Calculate the following, expressing your answers in hours, minutes and seconds:
 - **a** 1 h 19 min + 2 h 42 min + 1 h 7 min
 - **b** $4 h 51 \min 16 s + 2 h 19 \min 54 s$
 - **c** 12 h 7 h 55 min
 - **d** 5 h 23 min 2 h 48 min

38 MEASUREMENT AND UNITS (Chapter 1)

5 Xani has 6 science lessons a week, each of 45 minutes duration. Find the total time spent in science lessons in a twelve week term.

Example 11 Self Tutor
What is the time difference between 9.55 am and 1.25 pm?
9.55 am to $10.00 \text{ am} = 5 \text{ min}$
10.00 am to 1.00 pm = 3 h
1.00 pm to 1.25 pm = 25 min
i.e., <u>3 h 30 min</u>

- 6 Find the time difference between:
 - **a** 4.30 am and 6.55 am
 - **c** 3.15 pm and 9.03 pm
- 10.08 am and 5.52 pm
- **d** 7.54 am and 2.29 pm
- 7 Henry left home at 7.48 am and arrived at work at 9.02 am. How long did it take him to get to work?
- 8 Your time schedule shows you worked the following hours last week:

Monday	8.45 am - 5.05 pm
Tuesday	8.50 am - 5.10 pm
Wednesday	8.45 am - 4.55 pm
Thursday	8.30 am - 5.00 pm
Friday	8.35 am - 5.15 pm

- a How many hours did you work last week?
- b If you are paid €9.00 per hour, what was your income for the week?

Self Tutor

Example 12

What is the time $3\frac{1}{2}$ hours after 10.40 am?

10.40 am + $3\frac{1}{2}$ hours = 10.40 am + 3 h + 30 min = 1.40 pm + 30 min = 2.10 pm

d

? Calculate the time:

C

- **a** 3 hours after 8.16 am
- **b** 3 hours before 11.45 am
- $5\frac{1}{2}$ hours after 10.15 am
- 10 Boris caught a plane flight at 8.45 am. The flight was $6\frac{1}{2}$ hours. At what time did he arrive at his destination, assuming it was in the same time zone?
- If a train is travelling at 36 m s⁻¹, how far will it travel in 1 hour? Give your answer in kilometres.

 $3\frac{1}{2}$ hours before 1.18 pm

24-HOUR TIME

24-hour time is used by the armed forces and in train and airline timetables. It avoids the need for using **am** and **pm** to indicate morning and afternoon.

In 24-hour time, four digits are always used. For example:

0800 is 8.00 am
*Oh eight hundred hours"

- 2000 is 8.00 pm
- "twenty hundred hours"

1200 is noon or midday

- 0000 is midnight
 - 2359 is one minute before midnight

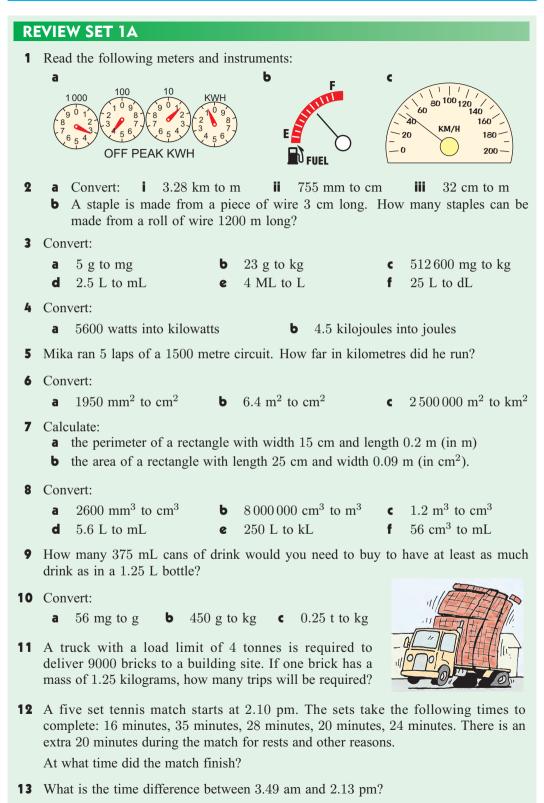
Morning times (am) are from midnight (0000) to midday (1200).

Afternoon times (pm) are from midday (1200) to midnight (0000).

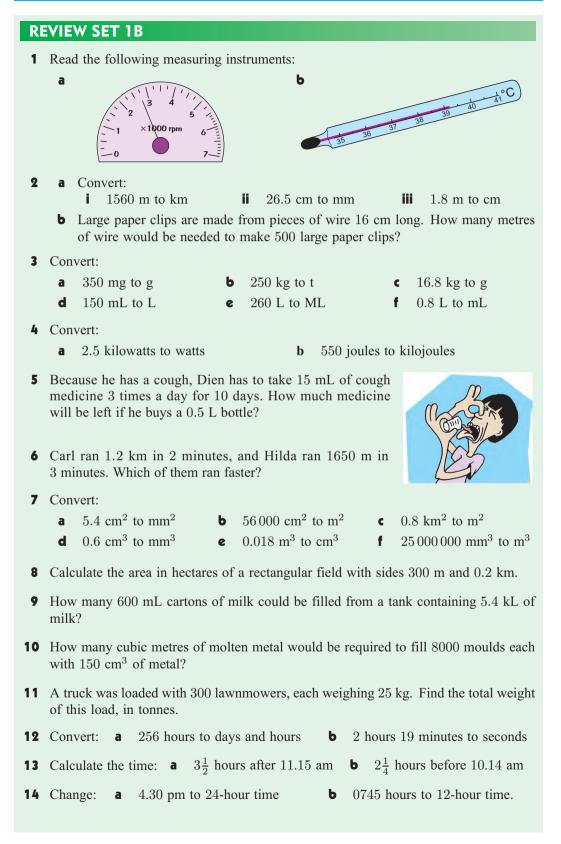
- **Note:** Midnight is 0000 not 2400.
 - To convert afternoon 24-hour time to pm times we subtract 1200.

EXERCISE 1H

- 1 Change to 24-hour time:
 - 9.57 am 11.06 am a C 4 o'clock pm d 2.25 pm8 o'clock am f 1.06 am 2 1 2 minutes past midnight 8.58 pm h noon g
- **2** Change to am/pm time:


a	1140	Ь	0346	c	1634	d	1900
6	0800	f	2330	9	1223	h	2040

3 Copy and complete the following railway schedule:


	Departure	Travelling time	Arrival
a	0520	6 h 20 min	
Ь	0710		1405
C		56 min	1027
d		4 h 23 min	1652
e	2012		0447 (next day)

ERRORS IN MEASUREMENT

Areas of interaction: Approaches to learning

14 a Write 5.31 pm in 24-hour time. **b** Write 0014 in 12-hour time.

THE THREE DICE TRICK

Adele says to George: "Throw three dice and write down the numbers which result without letting me see them. Now double the first number, add 5, multiply by 5, add the second number, multiply by 10 and add the third number. Now tell me your answer."

Adele then subtracts 250 from George's answer and immediately informs him of the numbers he threw on the dice.

On one occasion George threw a 4, a 2 and a 3. He then did his calculation and told Adele his answer was 673. When Adele subtracted 250 she got an answer of 423 and so predicted that the dice were 4, 2 and 3. George was amazed.

Try this trick with a friend. Can you explain why it always shows the correct dice results?

PUZZLE

ARE YOU A GOOD CONVERTER?

Answer the questions below, then place the letter for each question in the box corresponding to the correct solution, to reveal the message.

- **A** 5.6 m = cm
- **C** 430 $g = \dots kg$
- **D** 5.6 L = dL
- **E** 50 000 $m^2 = \dots km^2$
- **F** 17 280 minutes = days
- **G** 5600 cm³ = m³
- **H** $43\,000 \text{ m}^2 = \dots$ ha
- I 50 000 L = kL
- **M** 0.043 Mg = g
- **N** 4 days, 2 h, 27 min = min

- **O** How many metres farther is 1.9 km than 1590 m?
- **R** How many minutes does it take to run 3 km at 5 m s⁻¹?
- T How many litres of soft drink are in a drink machine containing 240 cans holding 375 mL each?
- U A truck holds ninety 11 litre water containers. How many tonnes does the truck's load weigh?
- V How many hours are there between 9 pm and 2 pm the next day?
- Y How many seconds are there in 1 week?

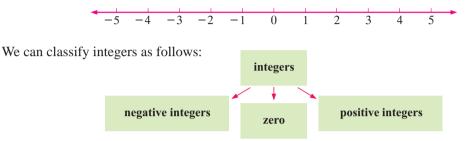
		604800	310	0.99	560	10	0.05	0.0056	310	310	56	560	06		
	0.43	310	5907	17	0.05	10	06	50	5907	0.0056	12	10	310	43000	
									4,	0.0				43	
310	5907	0.05	0.99	5907	50	06	06	310	560	5907	310	06	4.3	0.05	10

Number operations

Contents:

- **Operations** with integers
- **B** Operations with fractions
- C Index notation

Α


Laws of indices

OPERATIONS WITH INTEGERS

The negative whole numbers, zero, and the positive whole numbers form the set of all **integers**, i.e., $\dots -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5 \dots$

We can show these numbers on a number line. Zero is neither positive nor negative.

We have previously developed the following **rules** for handling **addition** and **subtraction** of **integers**:

+ (positive)	gives a	(positive)
– (positive)	gives a	(negative)
+ (negative)	gives a	(negative)
- (negative)	gives a	(positive)

Example 1			Self Tutor
Simplify: a $4 + -9$	b 49	c $-3 + -5$	d -35
a $4 + -9$ = $4 - 9$ = -5	b 49 = 4 + 9 = 13	c $-3 + -5$ = $-3 - 5$ = -8	d $-3 - 5$ = $-3 + 5$ = 2

EXERCISE 2A

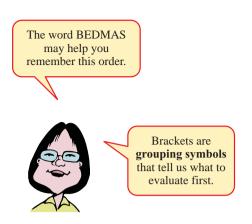
1 Find the value of:

a	17 - 9	b	17 + -9	c	179	d	-17 + 9
e	-17 - 9	f	-179	9	9 - 17	h	17 + 9
1	13 + 27	j	13 - 27	k	13 + -27	Т	1327
m	-13 + 27	n	-13 + -27	0	-1327	р	27 - 13

We have also developed the following **rules for multiplication** of integers:

(positive) \times (positive) gives a (positive) (positive) \times (negative) gives a (negative) (negative) \times (positive) gives a (negative) (negative) \times (negative) gives a (positive)

Example 2 Self Tutor Find the value of: **b** 3×-4 **c** -3×4 **d** -3×-4 a 3×4 **b** $3 \times -4 = -12$ **c** $-3 \times 4 = -12$ **d** $-3 \times -4 = 12$ **a** $3 \times 4 = 12$ **2** Find the value of: **b** 6×-8 **c** -6×8 **f** 9×-7 **g** -9×7 **a** 6×8 d -6×-8 h -7×-9 9×-7 Example 3 Self Tutor Simplify: **b** $(-4)^2$ **c** -2^3 d $(-2)^3$ a -4^2 a -4^2 -2^3 d $(-2)^3$ **b** $(-4)^2$ $= -4 \times 4$ $= -4 \times -4$ $= -2 \times 2 \times 2$ $= -2 \times -2 \times -2$ = -16= 16= -8= -8**3** Find the value of: **b** $(-6)^2$ **c** $(-3)^3$ **d** -3^3 a -6^2 **f** $-4 \times 2 \times -6$ **g** $-4 \times -3 \times -6$ **h** $2 \times (-4)^2$ \bullet 4 × -3 × 6 $-3 \times (-4)^2$ -3^4 **k** $(-3)^4$ **l** $(-5)^2 \times (-3)^2$ The following rules


have also been developed	(positive) \div (positive) = (positive)
for division with integers:	(positive) \div (negative) = (negative)
	(negative) \div (positive) = (negative)
	$(negative) \div (negative) = (positive)$

Example 4 Find the value of:			() Self Tutor
a $14 \div 2$	b 14 ÷ -2	c $-14 \div 2$	d $-14 \div -2$
a $14 \div 2$	b 14 ÷ -2	c $-14 \div 2$	d $-14 \div -2$
=7	= -7	= -7	=7
4 Find the value of: $18 \div 2$	b 10	10 • 9	10.2

a	$18 \div 3$	Ь	$18 \div -3$	C	$-18 \div 3$	d	$-18 \div -3$
e	$35 \div 7$	f	$35 \div -7$	9	$-35 \div 7$	h	$-35 \div -7$
i.	$\frac{6}{18}$	i	$\frac{-6}{18}$	k	$\frac{6}{-18}$	I	$\frac{-6}{-18}$

ORDER OF OPERATIONS RULES:

- Perform the operations within **brackets** first.
- Calculate any part involving **exponents**.
- Starting from the left, perform all **divisions** and **multiplications** as you come to them.
- Finally, restart from the left and perform all **additions** and **subtractions** as you come to them.

RULES FOR BRACKETS:

- If an expression contains *one set* of grouping symbols, i.e., brackets, work that part first.
- If an expression contains *two or more sets* of grouping symbols one inside the other, work the innermost first.
- The division line of fractions also behaves as a grouping symbol. This means that the numerator and the denominator must be found separately before doing the division.

	Example 5 Self Tutor
	Simplify: a $3 + 7 - 5$ b $6 \times 3 \div 2$
	a $3+7-5$ {Work left to right as only + and - are involved.} = $10-5$
	= 10 - 5 = 5
	b $6 \times 3 \div 2$ {Work left to right as only \times and \div are involved.} = $18 \div 2$
	$= 10 \div 2$ $= 9$
5	Simplify:
	a $6+9-5$ b $6-9+5$ c $6-9-5$
	d $3 \times 12 \div 6$ e $12 \div 6 \times 3$ f $6 \times 12 \div 3$
	Example 6
	Simplify: a $23 - 10 \div 2$ b $3 \times 8 - 6 \times 5$
	a $23 - 10 \div 2$ b $3 \times 8 - 6 \times 5$
	$= 23 - 5 \{ \div \text{ before } - \} = 24 - 30 \{ \times \text{ before } - \}$
	= 18 = -6

6 Simplify:

- ~		
a $5+8\times 4$	b $9 \times 4 + 7$	$17 - 7 \times 2$
d $6 \times 7 - 18$		f $19-7 imes 0$
$3 \times 6 - 6$	h $70-5 imes 4 imes 3$	$45 \div 3 - 9$
$8 \times 5 - 6 \times 4$	k $7 + 3 + 5 \times 2$	$17-6 \times 4+9$
Example 7		Self Tutor
Simplify:	$3 + (11 - 7) \times 2$	
	· · · · ·	
$3 + (11 - 7) \times 2$	$= 3 + 4 \times 2 \qquad \{\mathbf{v}\}$	work the brackets first}
	$= 3 + 8$ {:	\times before +}
	= 11	
7 Simplify:		
a $14 + (8 - 5)$	b $(19+7) - 13$	$(18 \div 6) - 2$
d $18 \div (6-4)$	\bullet 72 - (18 ÷ 6)	f $(72 - 18) \div 6$
g $36 + (14 \div 2)$	h $36 - (7 + 13) - 9$	i $(22-5) + (15-11)$
$(18 \div 3) \div 2$	$\mathbf{k} 32 \div (4 \div 2)$	$28 - (7 \times 3) - 9$
Example 8		Self Tutor

Simplify:	$[12 + (9 \div 3)] - 11$	
$[12 + (9 \div 3)] - 11$	= [12 + 3] - 11	{work the inner brackets first}
	= 15 - 11	{outer brackets next}
	= 4	

8 Simplify:

7

- **a** $8 [(4-6) + 3 \times 2]$
- c 25 [(11 7) + 8]
- \bullet 300 ÷ [6 × (15 ÷ 3)]
- **b** $[22 (11 + 4)] \times 3$
- d $[28 (15 \div 3)] \times 4$
- f $[(14 \times 5) \div (28 \div 2)] \times 3$

Example 9			Self Tutor
	Simplify:	$\frac{12 + (5 - 7)}{18 \div (6 + 3)}$	
$\frac{12 + (5 - 7)}{18 \div (6 + 3)}$			
$=\frac{12+(-2)}{18\div 9}$	{working	the brackets first}	
$=\frac{10}{2}$	{simplify	ing numerator and de	nominator}
= 5			

9 Simplify:

a	$\frac{240}{8\times6}$	b	$\frac{27}{17-8}$	c	$\frac{39\div 3}{14+12}$	d	$\frac{18+7}{7-2}$
e	$\frac{58 - 16}{11 - 5}$	f	$\frac{6\times7+7}{7}$	9	$\frac{54}{11 - (2 \times 4)}$	h	$\frac{(6+9)-5}{7+(9-6)}$

USING YOUR CALCULATOR WITH INTEGERS

Most modern calculators have the Order of Operations rules built into them.
For example, consider $5 \times 3 + 2 \times 5$.
If you key in $5 \times 3 + 2 \times 5 =$ the calculator gives an answer of 25, which is correct .
The calculator has performed the two multiplications before the addition.
However, if we consider $\frac{12}{4+2}$ and key in $12 \div 4 + 2 =$ the calculator
gives an answer of 5, which is incorrect .
The calculator has divided 12 by 4 to give 3, and then added on 2 to give 5.
To fix this problem we use brackets.
We need to evaluate the denominator first before performing the division.
If we key in $12 \div (4 + 2) =$ we obtain the answer 2, which is correct.
In this case the calculator has divided 12 by the sum of 4 and 2.
Example 10 Self Tutor

Exam	Calculate: a $12 + 32 \div (8 - 6)$	b $\frac{75}{7+8}$	Self Tutor
a	12 + 32 ÷ (8 - 6) =	Answer: 28	
ь	75 ÷ (7 + 8) =	Answer: 5	

THE SIGN CHANGE KEY

The (-) (or +/-) key is used to enter negative numbers into the calculator.

To enter -5 into the calculator, key in	(-) 5	or	5 +/-	and -5 will appear on the
display.				

Example 11	Calculate: a $41 \times$	-7 b -18×23	Self Tutor
a Key in	41 🗙 (-) 7 =	4nswer: -287	
b Key in	(-) 18 × 23 =	4 <i>nswer</i> : -414	

10 Evaluate each of the following using your calculator:

а	$87+27\times13$	Ь	$(29 + 17) \times 19$	C	$136 \div 8 + 16$
d	$136 \div (8+9)$	e	39 imes -27	f	$-128 \div -32$
9	$\frac{97+-7}{-5\times3}$	h	$-67 + 64 \div -4$	i	$\frac{-25 - 15}{9 - (16 \div 4)}$

OPERATIONS WITH FRACTIONS

A **common fraction** consists of two whole numbers, a **numerator** and a **denominator**, separated by a bar symbol.

 $\frac{4}{5} \stackrel{\leftarrow}{\leftarrow} \text{ numerator} \\ \frac{4}{5} \stackrel{\leftarrow}{\leftarrow} \text{ bar (which also means$ *divide* $)} \\ \frac{4}{5} \stackrel{\leftarrow}{\leftarrow} \text{ denominator}$

TYPES OF FRACTIONS

B

$\frac{4}{5}$ is a proper fraction	{as the numerator is less than the denominator}
$\frac{7}{6}$ is an improper fraction	$\{as the numerator is greater than the denominator\}$
$2\frac{3}{4}$ is a mixed number	$\{\text{as it is really} 2+\frac{3}{4}\}$
$\frac{1}{2}, \frac{3}{6}$ are equivalent fractions	{as both fractions represent equivalent portions}

ADDITION AND SUBTRACTION

To **add** (or **subtract**) two fractions we convert them to equivalent fractions with a common denominator. We then add (or subtract) the new numerators.

Example 12	Self Tutor
Find: $\frac{3}{4} + \frac{5}{6}$	LCD stands for
$\frac{3}{4} + \frac{5}{6}$	{LCD = 12}
$= \frac{3\times3}{4\times3} + \frac{5\times2}{6\times2}$ $= \frac{9}{12} + \frac{10}{12}$	{to achieve a common denominator of 12}
$=\frac{19}{12}$	
$=1\frac{7}{12}$	

Example 13	ind: $1\frac{2}{3} - 1\frac{2}{5}$	Self Tutor
$1\frac{2}{3} - 1\frac{2}{5}$ $= \frac{5}{3} - \frac{7}{5}$ $= \frac{5\times5}{3\times5} - \frac{7\times3}{5\times3}$ $= \frac{25}{15} - \frac{21}{15}$ $= \frac{4}{15}$	{write as improper frac {to achieve a common	-

EXERCISE 2B

1 Find:

2

а	$\frac{5}{13} + \frac{7}{13}$	b	$\frac{9}{16} + \frac{2}{16}$	c	$\frac{3}{8} + \frac{1}{4}$	d	$\frac{2}{5} + \frac{1}{6}$
e	$\frac{3}{7} + 4$	f	$1\frac{1}{3} + \frac{5}{6}$	9	$2\frac{1}{3} + 1\frac{1}{6}$	h	$1\frac{1}{2} + 4\frac{2}{3}$
Find	:						
a	$\frac{7}{11} - \frac{3}{11}$	b	$\frac{5}{6} - \frac{2}{3}$	c	$\frac{4}{9} - \frac{1}{3}$	d	$1 - \frac{3}{8}$
e	$4 - 2\frac{1}{4}$	f	$2\frac{3}{5} - 1\frac{1}{2}$	9	$3\frac{1}{3} - 1\frac{1}{2}$	h	$4\frac{3}{7} - 2\frac{1}{3}$

MULTIPLICATION

To **multiply** two fractions, we first cancel any common factors in the numerator and denominator. We then multiply the numerators together and the denominators together.

Example 14Find:a $\frac{1}{4} \times \frac{2}{3}$	↓ (3 ¹ / ₂) ²	any	nember to cancel common factors fore completing multiplication.
a $\frac{1}{4} \times \frac{2}{3}$ $= \frac{1}{2} \times \frac{2}{3}^{1}$ $= \frac{1}{6}$	b $(3\frac{1}{2})^2$ = $3\frac{1}{2} \times 3$ = $\frac{7}{2} \times \frac{7}{2}$ = $\frac{49}{4}$ o	31/2	- Indiana - Indi
3 Calculate:	6×1		
a $\frac{2}{15} \times \frac{5}{6}$ e $1\frac{1}{3} \times \frac{6}{7}$	b $\frac{6}{7} \times \frac{1}{3}$ f $1\frac{1}{8} \times \frac{4}{9}$	c $3 \times \frac{3}{6}$ g $(2\frac{1}{2})^2$	d $\frac{2}{3} \times 7$ h $(1\frac{1}{3})^3$

DIVISION

To **divide** by a fraction, we multiply the number by the reciprocal of the fraction we are dividing by.

	Ex	ample 1	5			Self Tut	or				
		Find:	а	$3 \div \frac{2}{3}$	b	$2\frac{1}{3} \div \frac{2}{3}$				reciprocal $\frac{c}{d}$ is $\frac{d}{c}$!	
		a 3.	0		b	$2\frac{1}{3} \div \frac{2}{3}$				$\overline{\mathcal{N}}$	
		$= \frac{3}{1}$ $= \frac{3}{1}$	0			$= \frac{7}{3} \div \frac{2}{3}$ $= \frac{7}{3} \times \frac{3}{2}^{1}$					
		$ = \frac{1}{2} $	-			$= \frac{1}{2}^{3} \wedge \frac{2}{2}$ $= \frac{7}{2}$				J	
		$=4\frac{1}{2}$	<u>1</u> 2			$=3\frac{1}{2}$					
4	Eval	uate:									
		$\frac{3}{5} \div \frac{7}{10}$		Ь	$\frac{3}{8} \div \frac{6}{11}$		c	$\frac{4}{15} \div \frac{2}{5}$		d	$\frac{2}{5} \div 4$
	e	$1 \div \frac{3}{5}$		f	$1\frac{1}{3} \div \frac{3}{8}$	<u>3</u>	9	$\frac{2}{3} \div 1\frac{1}{2}$		h	$2\frac{1}{4} \div 1\frac{2}{3}$
5	Calc	ulate:									
	а	$3\frac{3}{7} + 1$	$\frac{4}{5}$			$(\frac{3}{4})^4$			c	$7-6 \times$	$\frac{3}{4}$
	d	$\frac{4}{5} \times 1\frac{1}{2}$	$\div 3$		e	$\frac{8 \times 3 \times \frac{1}{3}}{\frac{2}{3}}$			f	$1 \div \left(\frac{1}{4}\right)$	$+\frac{2}{3})$
	9	$1 \div \frac{1}{4}$ -	$+\frac{2}{3}$		h	$\frac{3-\frac{1}{2}}{3\times\frac{5}{2}}$			i.	$\frac{2}{3} + \frac{1}{3} >$	$\times 1\frac{1}{2}$
		$\frac{5}{6} \times \frac{4}{5}$ -	$-\frac{1}{15}$			$3 \times \frac{1}{3}$ $\frac{1}{3} + \frac{1}{3} \div \frac{1}{5} +$	3			$1\frac{1}{2} - 2$	$\frac{1}{2} \div 1\frac{2}{2}$
		$12 - \frac{2}{7}$	10			$1\frac{1}{3} + \frac{5}{6} - \frac{11}{12}$	0			2	$\times 1\frac{1}{3} \div \frac{1}{6}$
			-			5 0 I <u>2</u>				Ŭ I	5 0
	Ex	ample 1	6					■)) Self T	utor		
			<u> </u>			als in a netba				Remember of ' means	
	How many goals did she shoot if the team shot 70 goals?										
	Anna shoots $\frac{3}{5}$ of 70 $= \frac{3}{5} \times 70$ $= \frac{3 \times 70}{15}^{14}$										
										K	
					= 42 gc	bals.				(F)WIR	

- **6** Solve the following problems:
 - a Colin eats $\frac{1}{3}$ of a pie and later eats $\frac{2}{5}$ of the pie. What fraction remains?
 - **b** The price of a skirt is $\frac{3}{7}$ of the price of a matching jacket. What does the skirt cost if the jacket sells for \$105?

- A family spends $\frac{1}{4}$ of its weekly budget on rent, $\frac{1}{4}$ on food, $\frac{1}{10}$ on clothes, $\frac{1}{12}$ on entertainment, and the remainder is banked. How much is banked if the weekly income is \$859.00?
- **d** Yukhi spent $\frac{1}{3}$ of his pocket money, and later spent $\frac{2}{3}$ of what remained. What fraction of the original amount was left?
- A farmer has 268 cows and each cow has either one or two calves. If there are 335 calves in total, what fraction of the cows have two calves?
- 7 Isabella had a big bag of sweets. She ate two fifths of them on Monday, two fifths of those remaining on Tuesday, and two thirds of what remained on Wednesday. She then had 12 sweets. How many were in the bag originally?

FRACTIONS ON A CALCULATOR

Most scientific calculators and the **Casio fx-9860G** have a fraction key $\boxed{a \frac{b}{c}}$ that is used to enter common fractions.

There is no such key for the **TI-83**, so fractions need to be entered differently. You should consult the calculator section on page **11**.

Remember that although you may perform operations on fractions using your calculator, you **must not rely** on your calculator and forget how to manually perform operations with fractions.

Example 17				Self Tutor
Find, using you	r calculator: a	$\frac{1}{4} - \frac{2}{3}$	b $1\frac{1}{12} + 2\frac{1}{4}$	$\frac{1}{4} \div \frac{2}{3}$
Note the solution	on given is for a se	cientific calcula	ator or the Casio	fx-9860G.
a $\frac{1}{4} - \frac{2}{3}$	Key in 1 a %	4 - 2 ab/c	3 EXE	
	Display 1	14-213	-5,12	Answer: $-\frac{5}{12}$
b $1\frac{1}{12} + 2\frac{1}{4}$	Key in 1 a b/c	1 <mark>a ^b/c</mark> 12 <mark>+</mark>	2 <mark>a ^b/c</mark> 1 <mark>a ^b/c</mark> 4	EXE SHIFT F+D
	Display 1	JJJ2+2J1J4	31113	Answer: $3\frac{1}{3}$
c $\frac{1}{4} \div \frac{2}{3}$	Key in 1 a b/c	4 <mark>∶</mark> 2 a ^b⁄c	3 EXE	
	Display 1	J4÷2J3	278	Answer: $\frac{3}{8}$

- 8 Find, using your calculator:

INDEX NOTATION

Rather than write

 $2 \times 2 \times 2 \times 2 \times 2$, we write such a product as 2^5 . 2^5 reads "two to the power of five" or "two with index five". Thus $5^3 = 5 \times 5 \times 5$ and $3^6 = 3 \times 3 \times 3 \times 3 \times 3 \times 3$.

05	power, index or
.)0	exponent
	- base

Example 18	Self Tutor
Find the integer equal to:	a 3^4 b $2^4 \times 3^2 \times 7$
a 3^4	b $2^4 \times 3^2 \times 7$
$= 3 \times 3 \times 3 \times 3$	$= 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7$
$= 9 \times 9$	$= 16 \times 9 \times 7$
= 81	= 1008

Example 19			Self Tutor
Write as a product of prime factors in index form: a 144 b 4312	a 2 144 2 $\frac{72}{22}$ 2 $\frac{36}{18}$ 3 $\frac{9}{3}$ ∴ 144 = 2 ⁴ × 3 ²	b $\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1078 \\ 7 \\ 539 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 11 \\ \end{array}$ $\therefore 4312 = 2^3 \times $	$7^2 \times 11$

EXERCISE 2C

1 Find the integer equal to:

a	2^{3}	b	3^{3}	C	2^{5}	d	5^{3}
e	$2^2 \times 3^3 \times 5$	f	$2^3 \times 3 \times 7^2$	9	$3^2\times 5^2\times 13$	h	$2^4 \times 5^2 \times 11$

2 By dividing continuously by the primes 2, 3, 5, 7,, write as a product of prime factors in index form:

a	50	Ь	98	C	108	d	360
e	1128	f	784	9	952	h	6500

54 NUMBER OPERATIONS (Chapter 2)

3 Copy and complete the values of these common powers. Try to memorise them.

- **a** $2^1 = \dots, 2^2 = \dots, 2^3 = \dots, 2^4 = \dots, 2^5 = \dots, 2^6 = \dots$ **b** $3^1 = \dots, 3^2 = \dots, 3^3 = \dots, 3^4 = \dots$ **c** $5^1 = \dots, 5^2 = \dots, 5^3 = \dots, 5^4 = \dots$
- $J = \dots, J = \dots, J = \dots, J = \dots$
- **d** $7^1 = \dots, 7^2 = \dots, 7^3 = \dots$
- 4 The following numbers can be written as 2^n . Find n.
 - **a** 32 **b** 256 **c** 4096
- 5 The following numbers can be written as 3^n . Find *n*.
 - **a** 27 **b** 729 **c** 59049
- **6** By considering 3^1 , 3^2 , 3^3 , 3^4 , 3^5 and looking for a pattern, find the last digit of 3^{33} .
- **7** What is the last digit of 7^{77} ?

HISTORICAL NOTE

Nicomachus, who lived around 100 AD, discovered an interesting number pattern involving cubes and sums of odd numbers.

 $1 = 1^{3}$ 3 + 5 = 8 = 2³ 7 + 9 + 11 = 27 = 3³ etc.

NEGATIVE BASES

So far we have only considered **positive** bases raised to a power.

We will now briefly look at negative bases. Consider the statements below:

$(-1)^1 = -1$	$(-2)^1 = -2$
$(-1)^2 = -1 \times -1 = 1$	$(-2)^2 = -2 \times -2 = 4$
$(-1)^3 = -1 \times -1 \times -1 = -1$	$(-2)^3 = -2 \times -2 \times -2 = -8$
$(-1)^4 = -1 \times -1 \times -1 \times -1 = 1$	$(-2)^4 = -2 \times -2 \times -2 \times -2 = 16$

From the pattern above it can be seen that:

- a negative base raised to an odd power is negative
- a negative base raised to an even power is positive.

Example 20				Self Tutor
Evaluate: a $(-2)^4$	b -2^4	c $(-2)^5$	d $-(-2)^5$	Notice the effect of the brackets in
a $(-2)^4$ = 16	b -2^4 = -1×2^4	c $(-2)^5$ = -32	d $-(-2)^5$ = $-1 \times (-2)^5$	these examples.
	= -16		$= -1 \times -32$ $= 32$	

8 Simplify:

а	$(-1)^4$	Ь	$(-1)^5$	c	$(-1)^{10}$	d	$(-1)^{15}$
e	$(-1)^8$	f	-1^{8}	9	$-(-1)^8$	h	$(-3)^3$
i	-3^{3}	j.	$-(-3)^3$	k	$-(-6)^2$	\mathbf{I}_{i}	$-(-4)^3$

CALCULATOR USE

Just like for other operations, different calculators have different keys for entering powers. In general, however, they all perform raising to powers in a similar manner.

Power keys

x^2 squares the number in the display.	
raises the number in the display to whater	Not all calculators will use
power is required. On some calculators	these key sequences. If you have problems, refer to the
	calculator instructions on
this key is y^x , a^x or x^y .	page 12.
Evample 01	
Example 21 Self Tutor	
Find, using your calculator: a 6^5 b $(-5)^4$ c -7^4	
Answer	1-2-1
a Press: 6 🔨 5 ENTER 7776	
b Press: (() 5) ^ 4 ENTER 625	
• Press: (−) 7 ∧ 4 ENTER −2401	
• Use your calculator to find the value of the following, record	
a 2^8 b $(-5)^4$ c -3^5 d 7^4	e 8 ³
a 2^8 b $(-5)^4$ c -3^5 d 7^4 f $(-7)^6$ g -7^6 h 1.05^{12} i -0.6	23^{11} j $(-2.11)^{17}$
	· · · · · · · · · · · · · · · · · · ·
10 To find 5^{-2} you could key in: $5 \land (-) 2$ ENTER. The	ie answer is 0.04.
Use your calculator to find the values of the following:	
a 9^{-1} b $\frac{1}{9^1}$ c 4^{-2}	d $\frac{1}{4^2}$
9 ¹	4^2
e 3^{-4} f $\frac{1}{3^4}$ g 15^0	h 97^{0}
What do you notice?	
what do you notice:	
Summary: • $x^0 = 1$ for any x except $x = 0$	
• $x^{-n} = \frac{1}{x^n}$ i.e., x^{-n} is the reciprocal	of x^n .

	Example 22		Self Tutor	
	Simplify:		The negative	
	a 3 ⁻¹	b 5 ⁻²	c 10 ⁻⁴ index indicates the reciprocal!	
	a 3^{-1}	b 5^{-2}	c 10 ⁻⁴	
	$=\frac{1}{3^1}$	$=\frac{1}{5^2}$	$=\frac{1}{10^4}$	
	$=\frac{1}{3}$	$=\frac{1}{25}$	$=\frac{1}{10000}$	
	3	- 25		/
11 Simplify, g	iving answers in sim	plest rational form:		
a 4^{-1}	b 2^{-1}	c 6 ⁻¹	d 8^{-1} e 2^{-2}	
f 3^{-2}	g 7 ⁻²	h 9^{-2}	i 3^{-3} i 10^{-5}	
Ev	ample 93			

Example 23		Self Tutor
Simplify, giving an	nswers in simplest ration	nal form:
a $\left(\frac{2}{3}\right)^{-1}$	b $\left(\frac{3}{5}\right)^{-2}$	$ 8^0 - 8^{-1} $
a $\left(\frac{2}{3}\right)^{-1}$	b $\left(\frac{3}{5}\right)^{-2}$	c $8^0 - 8^{-1}$
$=\left(\frac{3}{2}\right)^1$	$=\left(\frac{5}{3}\right)^2$	$= 1 - \frac{1}{8}$
$=\frac{3}{2}$	$=rac{5^2}{3^2}$	$=\frac{7}{8}$
	$=\frac{25}{9}$	
	9	

12 Simplify, giving answers in simplest rational form:

	a	$(\frac{1}{3})^{-1}$	Ь	$(\frac{2}{5})^{-1}$	-1	c	$(\frac{4}{3})^{-1}$		d	$(\frac{1}{12})^{-1}$	e	$(\frac{2}{7})^{-1}$
	f	$5^0 - 5^{-1}$	9	$(\frac{3}{4})^{-1}$	-2	h	$(2\frac{1}{4})^{-2}$		i	$(1\frac{1}{2})^{-3}$	j	$2^0 + 2^1 + 2^{-1}$
13	Writ	e as powers	of 10):								
	a	1000		b	10000	000	c		0.001		d	0.00000001
14	Writ	e as powers	s of 2,	3 or	5:							
	a	8		b	$\frac{1}{8}$		c		9		d	$\frac{1}{9}$
	e	125		f	$\frac{1}{125}$		9		32		h	$\frac{1}{32}$
	i.	81		j	$\frac{1}{81}$		k	K	$\frac{1}{25}$		1	1
15	The	following c	an be	writt	en in th	e foi	$m 2^p >$	< 3'	$^q \times 5^r$. Find p ,	q and	d r in each case.
	a	60	b :	300	c	$\frac{10}{9}$	0	d	250	e	$\frac{3}{8000}$	f $2\frac{2}{5}$
	9	$\frac{25}{72}$	h :	L	1	$9\frac{3}{8}$	3	j	$\frac{1}{15}$	k	$1\frac{11}{25}$	$\frac{27}{500}$

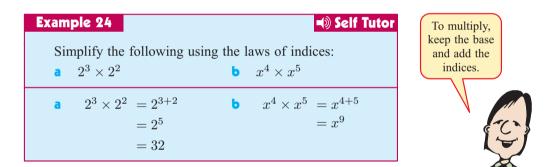
LAWS OF INDICES

• $2^3 \times 2^4 = 2 \times 2 = 2^7$ Notice that:

- $\frac{2^5}{2^2} = \frac{2 \times 2 \times 2 \times 2 \times 2}{2 \times 2} = 2^3$
- $(2^3)^2 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^6$

This suggests that:

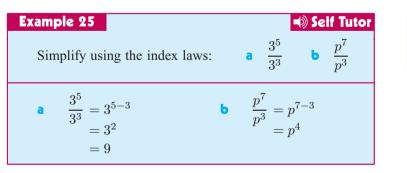
•
$$a^m \times a^n = a^{m+n}$$


•
$$\frac{a^m}{a^n} = a^{m-n}, \quad a \neq 0$$

 $(a^m)^n = a^{m \times n}$

To multiply numbers with the same base, keep the base and **add** the indices.

To divide numbers with the same base, keep the base and **subtract** the indices.


When raising a power to a power, keep the base and **multiply** the indices.

EXERCISE 2D

1 Simplify using the index laws:

a	$2^3 \times 2^1$	b	$2^2 \times 2^2$	C	$3^5 imes 3^4$
e	$x^2 imes x^4$	f	$a^3 \times a$	9	$n^4 \times n^6$

d $5^2 \times 5^3$ $b^3 \times b^5$

h

2 Simplify using the index laws:

a
$$\frac{2^4}{2^3}$$
 b $\frac{3^5}{3^2}$ **c** $\frac{5^7}{5^3}$ **d** $\frac{4^9}{4^5}$
e $\frac{x^6}{x^3}$ **f** $\frac{y^7}{y^4}$ **g** $a^8 \div a^7$ **h** $b^9 \div b^5$

E	Sin	ple 26 nplify using $(2^3)^2$	the ir		$ riangle $ Self $ ilde (x^4)^5$	Fut c	po	o raise a power, keep multiply t	
	a	$(2^3)^2$		b	$(x^4)^5$				
		$= 2^{3 \times 2}$ $= 2^{6}$			$= x^{4 \times 5}$ $= x^{20}$				NES ?
		-2 = 64			$=x^{20}$				
		01							
Sim	plify	using the in	idex la	ws:					
a	(2^2)	3	Ь	$(3^4)^3$		c	$(2^3)^6$	d	$(10^2)^5$
e	(x^{3})	$)^2$	f	$(x^5)^3$		9	$(a^5)^4$	h	$(b^{6})^{4}$
Sim	plify	using the in	idex la	ws:					
a	$a^5 >$	$\langle a^2$	Ь	$n^3 imes n^5$		c	$a^7 \div a^3$	d	$a^5 imes a$
	_						_		

FRACTIONAL INDICES

3

4

	Notice that $9^{\frac{1}{2}}$	$\frac{1}{2} \times 9^{\frac{1}{2}} = 9^{\frac{1}{2} + \frac{1}{2}}$ {using an index law}
	$\therefore 9^{\frac{1}{2}}$	$(\frac{1}{2} \times 9^{\frac{1}{2}} = 9^{1})$
	$\therefore 9^{\frac{1}{2}}$	$\frac{1}{2} \times 9^{\frac{1}{2}} = 9$
But	$3 \times 3 = 9$ and this suggests that	at $9^{\frac{1}{2}} = \sqrt{9} = 3.$
	In general,	$a^{rac{1}{2}}=\sqrt{a}$.
		$\frac{1}{2} \times 8^{\frac{1}{3}} = 8^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = 8^1 = 8$
	This suggests that	at $8^{\frac{1}{3}} = \sqrt[3]{8}$.
	In general,	$a^{rac{1}{3}}=\sqrt[3]{a}$ and $a^{rac{1}{n}}=\sqrt[n]{a}$.

Example 27		Self Tutor
Simplify: a $16^{\frac{1}{2}}$	b $125^{\frac{1}{3}}$	c $16^{\frac{1}{4}}$
a $16^{\frac{1}{2}}$ $=\sqrt{16}$ =4 Note: In b we ask, 'What What question do y	b $125^{\frac{1}{3}}$ = $\sqrt[3]{125}$ = 5 t number multiplied by itself three we ask in c ?	$c = 16^{\frac{1}{4}}$ $= \sqrt[4]{16}$ $= 2$ e times gives 125?'
f $27^{\frac{1}{3}}$ g $64^{\frac{1}{3}}$	c $64^{\frac{1}{2}}$ d $100^{\frac{1}{3}}$ h $1000^{\frac{1}{3}}$ i $81^{\frac{1}{4}}$ m $16^{-\frac{1}{2}}$ n $8^{-\frac{1}{3}}$ so $8^{\frac{2}{3}} = (\sqrt[3]{8})^2 = 2^2 = 4$	¹ / ₂ e $225^{\frac{1}{2}}$ j $32^{\frac{1}{5}}$ o $32^{-\frac{1}{5}}$
Use the above rule to find: a $16^{\frac{3}{4}}$ b $27^{\frac{2}{3}}$ 7 Find the value of: a $(1\frac{1}{2})^2$ b		d $\left(\frac{5}{6}\right)^{-2}$
REVIEW SET 2A		
1 Find the value of: a $16-7$ d -3^2		c -3×7 f $-42 \div -6$
2 Simplify: a $10 - 5 - 2$	b $12 + 3 \times 5$	c $12 \div 4 - 1$
 3 Simplify: a 20 ÷ (3 + 2) 	b $14 + [(12 - 2) \times 5]$	c $\frac{9+7-6}{18-4\times 2}$
4 Find the value of: a $1\frac{1}{2} + \frac{3}{5}$	b $2\frac{1}{5} - \frac{3}{4}$	c $4\frac{1}{2} - 1\frac{1}{4} \div 2$

5 Before he leaves for the airport, Jorg weighs his luggage. He has a case, a laptop computer and a backpack with total weight 19.2 kg. $\frac{2}{3}$ of the 19.2 kg is the weight of the case and $\frac{3}{5}$ of the remainder is the weight of his laptop. How much does the backpack weigh?

6	Find the integer equal to: a 3^4 b 5×2^3
7	Write as a product of primes in index form: a 36 b 242
8	Simplify, giving your answers in simplest rational form:
	a 3^{-3} b $\left(\frac{4}{3}\right)^{-2}$ c $3^0 - 3^1$
9	Write $\frac{1}{16}$ as a power of 2.
10	Simplify, using the index laws:
	a $5^6 \times 5$ b $b^7 \div b^2$ c $(x^4)^3$
11	Simplify: a $16^{\frac{1}{2}}$ b $27^{-\frac{1}{3}}$
RF	VIEW SET 2B

1 Find the value of:		
a $-9 + 17$	b 127	c -3×-5
d $(-3)^3$	e $-2^2 imes (-3)^2$	f $24 \div -3$
2 Simplify:		
a $3 \times 4 \div 2$	b $7 - 2 \times 6$	c $4 \times 6 - 8 \div 2$
3 Simplify:		
a $24 \div (6 \div 2)$	b $18 - (2 \times 7) - 4$	c $\frac{22+5}{9-(3\times 2)}$
4 Find the value of:		
a $2\frac{3}{4} + 3\frac{1}{3}$	b $5 - 1\frac{2}{3}$	c $6\frac{1}{2} - 5 imes \frac{3}{4}$

5 Gabriella had to drive 260 km to visit her best friend.
She decided to drive ²/₅ of the distance before stopping for lunch, then ²/₃ of the remaining distance before stopping again for a cup of coffee.
a What fraction of the journey was left to drive?

b How far had Gabriella travelled when she stopped the second time?

6 Find the integer equal to: **a** 7^3 **b** $3^2 \times 5^2$

7 Write as a product of primes in index form: **a** 42 **b** 144

8 Simplify, giving your answers in simplest rational form:

a 6^{-2} **b** $\left(1\frac{1}{2}\right)^{-1}$ **c** $\left(\frac{3}{5}\right)^{-2}$

b $a^5 \div a^5$

 $(y^3)^5$

9 125 can be written as 5^n . Find n.

10 Simplify, using the index laws:

a $3^2 imes 3^6$

11 Simplify: **a** $25^{\frac{1}{2}}$ **b** $16^{-\frac{1}{4}}$

Sets, sequences and logic

- A Set notation
- **B** Important number sets
- C Constructing sets (Interval notation)
- D Venn diagrams
- E Union and intersection
- Simple set problems
- **G** Number sequences
- H Introduction to logic

OPENING PROBLEM

A city has two newspapers, The Sun and The Advertiser. 56% of the people read The Sun and 71% of the people read The Advertiser.

18% read neither of these newspapers.

What percentage of the people read:

- both of the newspapers
- at least one of the newspapers
- The Sun, but not The Advertiser
- exactly one of the two newspapers?

SET NOTATION

A set is a collection of objects or things.

For example, we might have:

- the set of all boys in a class
- the set of all girls who play a musical instrument
- the set of all books in a library
- the set of vowels a, e, i, o and u
- the set of even numbers.

We usually use a capital letter to represent a set.

We may describe the set in words or using a formula, or else list each member of the set. The description is placed in curly brackets.

The members of a set are also called elements.

For example,
$$V = \{vowels\} = \{a, e, i, o, u\}$$

 $E = \{even numbers\} = \{2, 4, 6, 8, 10, 12, \dots\}$
These dots indicate the set continues endlessly.

We say that V is a **finite set** as it has a finite number of elements (5).

E is an **infinite set** as it has infinitely many elements.

We use the symbol \in to mean 'is a member of' or 'is in' and \notin to mean 'is not a member of' or 'is not in'. So, in the above sets $a \in V$, but $w \notin V$ $28 \in E$, but $117 \notin E$.

The number of elements in set S is represented by n(S).

Using this notation, n(V) = 5 whereas n(E) is infinite.

EXERCISE 3A

- 1 If $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - **a** use \in or \notin to complete: **i** 7.....A **ii** 17.....A **b** find n(A).
- **2** If M_3 is the set of all multiples of 3, list the first 8 elements of M_3 in set notation.
- 3 If F_8 is the set of all factors of 8, list the members of F_8 in set notation. What is $n(F_8)$?
- 4 If $B = \{Mohammed, Abdul, Samira\}$: use \in or \notin to complete Fahran B find n(B). а Ь **5** List the following sets in set notation: the set of all multiples of 6 Ь the set of all multiples of 11 а the set of all factors of 3 d the set of all factors of 9 C the set of all factors of 24 f the set of all factors of 32 e the set of all factors common to 12 and 15 g 6 A prime number is a positive whole number which has exactly 2 factors, itself and 1. List the set of all prime numbers less than 20. а
 - If this set is represented by P_{20} , what is $n(P_{20})$?
 - **i** List the set of all prime numbers between 30 and 50. **ii** If this set is represented by Y, what is n(Y)?
 - What are the prime factors of $i \ 3 \ ii \ 8 \ iii \ 77 \ iv \ 60?$
- 7 A *composite* number is a positive whole number which has more than two factors.
 - a Explain why 6 is a composite number.
 - **b** List the set of all prime numbers less than 13.
 - c List the set of all composite numbers less than 13.
 - **d** What set is made up of all primes and composites less than 13?

IMPORTANT NUMBER SETS

We use:

• \mathbb{N} to represent the set of all **natural numbers** {0, 1, 2, 3, 4, 5, 6}

- \mathbb{Z} to represent the set of all integers $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \dots, \}$
- \mathbb{Z}^+ to represent the set of all **positive integers** {1, 2, 3, 4, 5, 6}

• Q to represent the set of all **rational numbers**

Rational numbers have the form $\frac{p}{q}$ where p and q are integers and $q \neq 0$.

For example: $\frac{15}{4}$, 10 (= $\frac{10}{1}$), 0.5 (= $\frac{1}{2}$), $-\frac{3}{8}$ are all rational numbers.

Numbers which cannot be written in rational form are called irrational numbers.

For example: Radicals (or surds) such as $\sqrt{2}$ and $\sqrt{7}$ are irrational. π which is 3.14159265..... is an irrational number. Non-recurring decimal numbers and numbers such as 0.12233344445..... are irrationals.

• \mathbb{R} to represent the set of all **real numbers**

Real numbers include all numbers which can be placed on the number line. For example, $\frac{1}{8} = 0.125$, $\sqrt{2} = 1.41421356...$, $\pi = 3.14159265...$ are all real numbers.

 $\frac{2}{0}$ and $\sqrt{-2}$ are not real numbers because we cannot write them in decimal form.

EXERCISE 3B

2

1 True or false?

a $3\in\mathbb{Z}^+$	b $6\in\mathbb{Z}$	c $\frac{3}{4} \in \mathbb{Q}$	d $\sqrt{2} \notin \mathbb{Q}$
e $-\frac{1}{4} \notin \mathbb{Q}$	f $2\frac{1}{3} \in \mathbb{Z}$	g $0.3684 \in \mathbb{R}$	$h \frac{1}{0.1} \in \mathbb{Z}$
Which of these are r	rational?		
a 8	b -8	$2\frac{1}{3}$	d $-3\frac{1}{4}$
e $\sqrt{3}$	f $\sqrt{400}$	9 9.176	h $\pi-\pi$

All terminating and recurring decimal numbers can be shown to be rational numbers. For example, $0.\overline{3} = \frac{1}{3}$, $0.53 = \frac{53}{100}$, $0.\overline{17} = \frac{17}{99}$.

Example 1 Self Tutor
Show that $0.\overline{36}$, which is 0.36363636 , is a rational number.
Let $x = 0.\overline{36} = 0.36363636$
$\therefore 100x = 36.363636 = 36 + x$
\therefore 99x = 36 and so $x = \frac{36}{99} = \frac{4}{11}$
So, $0.\overline{36}$ is actually the rational number $\frac{4}{11}$.

- **3** Show that these numbers are rational: **a** $0.\overline{7}$ **b** $0.\overline{41}$ **c** $0.\overline{324}$
- **4** Why is 0.527 a rational number?
- **5** $0.\overline{9}$ is a rational number. In fact, $0.\overline{9} \in \mathbb{Z}$. Give evidence to support this statement.
- 6 Explain why these statements are false:
 - **a** The sum of two irrationals is irrational.
 - **b** The product of two irrationals is irrational.

Note: You only have to find one counter-example to show that a statement is untrue.

UNIVERSAL SETS

A universal set is the set of all elements under consideration.

For example, we may be considering all of the positive integers less than 20. The universal set in this case is:

 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19\}.$

We could also consider subsets of U, such as:

$$M_6 = \{\text{all multiples of 6 less than 20}\}$$
$$= \{6, 12, 18\}$$
or $P_{20} = \{\text{primes less than 20}\}$
$$= \{2, 3, 5, 7, 11, 13, 17, 19\}$$

SUBSETS

Consider two sets A and B.

A is a subset of B, written $A \subseteq B$, if every element of A is also in B.

For example, for $A = \{2, 3, 5\}$, $B = \{1, 2, 3, 4, 5, 6, 7\}$ and $C = \{3, 5, 8\}$ we see that $A \subseteq B$ as every element of A is also in B, but C is not a subset of B as C contains 8 which is not in B.

THE COMPLEMENT OF A SET

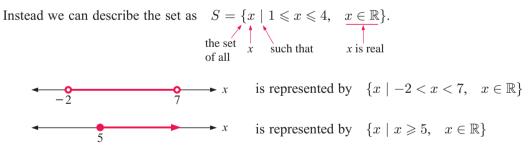
S', the **complement** of S, consists of all the members of U which are not in S.

For example, if $U = \{1, 2, 3, 4, 5, 6, 7\}$ and $S = \{1, 3, 5, 7\}$ then $S' = \{2, 4, 6\}$.

THE EMPTY SET

An **empty set** has no elements. It is represented by \emptyset or $\{ \}$.

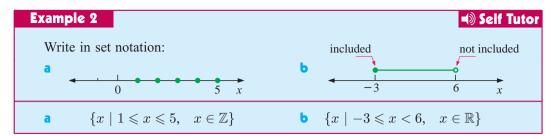
66 SETS, SEQUENCES AND LOGIC (Chapter 3)


- **7** For the universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$:
 - List S, the set of factors of 12. **b** List S'. а
 - Why is $S \subseteq U$? C
 - List P'. f e
- 8 If $U = \mathbb{Z}^+$ and $E = \{\text{even integers}\}, \text{ describe } E'$.
- If $U = \mathbb{Z}$ and $E = \mathbb{Z}^+$, describe the set E'.
- 10 If $U = \mathbb{Z}^+$ and $P = \{\text{primes}\}$, describe the set P'.
- 11 The empty set \emptyset is a subset of any other set.
 - a Explain why this statement is true.
 - **b** List all the subsets of:
 - $\{a\},\$ the set containing the one symbol, a
 - $\{a, b\}$
 - $\{a, b, c\}$

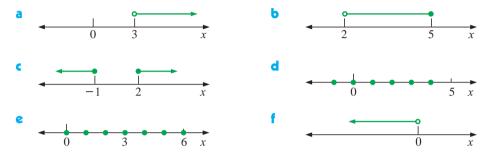
CONSTRUCTING SETS (INTERVAL NOTATION)

Consider the set of numbers on the number line from 1 to 4 inclusive, i.e., including 1 and 4. We will call this set S.

Now S is not $\{1, 2, 3, 4\}$ since we also need to include the non-integer numbers between 1 and 4.


Note: $\{x \mid -2 < x < 4, x \in \mathbb{Z}\}$ is read as:

"the set of all x such that x is an integer between -2 and 4". So, this set would simplify to $\{-1, 0, 1, 2, 3\}$.

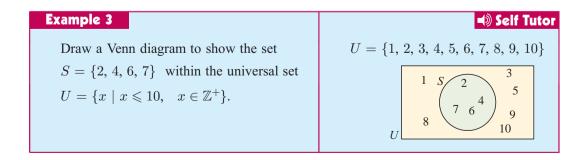

EXERCISE 3C

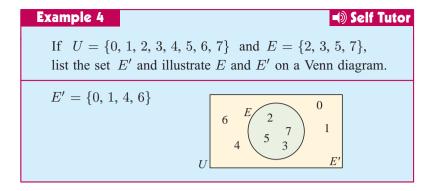
- 1 Write verbal statements for the meaning of:

- **d** List P, the set of all primes in U.
 - Why is $P' \subset U$?

2 Write in set notation:

3 Sketch the following number sets:

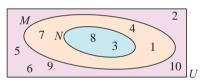

a $\{x \mid 4 \leqslant x < 8, x \in \mathbb{N}\}$ $x \mid x \leq 6, \quad x \in \mathbb{R}$



Note: Unless stated otherwise, we assume that we are dealing with *real* numbers. So, $\{x \mid -3 < x < 2\}$ is really $\{x \mid -3 < x < 2, x \in \mathbb{R}\}$.

VENN DIAGRAMS

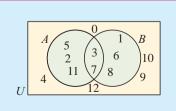
A Venn diagram consists of a universal set U represented by a rectangle, and sets within it that are generally represented by circles.



EXERCISE 3D

- 1 If $U = \{x \mid x \leq 8, x \in \mathbb{Z}^+\}$ and $A = \{\text{prime numbers} \leq 8\}$:
 - a Show set A on a Venn diagram. b List the set A'.
- 2 Suppose $U = \{$ letters of the English alphabet $\}$ and $V = \{$ letters of the English alphabet which are vowels $\}$.
 - **a** Show these two sets on a Venn diagram. **b** List the set V'.

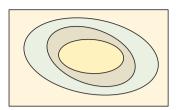
3


a List the elements of: i U ii N iii M b What are n(N) and n(M)? c Is $M \subseteq N$?

Self Tutor

- **4** a $U = \{1, 2, 3, 4, 5, 6, 7, 8\}, A = \{2, 4, 6, 8\}$ and $B = \{2, 6\}$ Illustrate these sets on a Venn diagram.
 - **b** Copy and complete: If $S \subseteq T$ then on a Venn diagram the circle representing S lies

Example 5


If $U = \{x \mid 0 \le x \le 12, x \in \mathbb{Z}\}, A = \{2, 3, 5, 7, 11\}$ and $B = \{1, 3, 6, 7, 8\}$, show A and B on a Venn diagram.

We notice that 3 and 7 are in both A and B so the circles representing A and B must overlap. We place 3 and 7 in the overlap, then fill in the rest of A, then fill in the rest of B. The remaining elements of U go outside the two circles.

- 5 Show A and B on a Venn diagram if:
 - **a** $U = \{1, 2, 3, 4, 5, 6\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}$
 - **b** $U = \{4, 5, 6, 7, 8, 9, 10\}, A = \{6, 7, 9, 10\}, B = \{5, 6, 8, 9\}$
 - $U = \{3, 4, 5, 6, 7, 8, 9\}, A = \{3, 5, 7, 9\}, B = \{4, 6, 8\}$

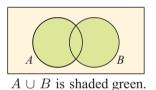
- 6 Suppose the universal set is $U = \mathbb{R}$, the set of all real numbers.
 - \mathbb{Q} , \mathbb{Z} , and \mathbb{N} are all subsets of \mathbb{R} .
 - a Copy the given Venn diagram and label the sets U, \mathbb{Q} , \mathbb{Z} , and \mathbb{N} on it.
 - **b** Place these numbers on the Venn diagram: $\frac{1}{2}$, $\sqrt{2}$, $0.\overline{3}$, -5, $-5\frac{1}{4}$, 0, 10, and

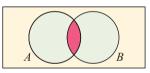
- 0.2137005618..... which does not terminate or recur.
- **c** True or false? **i** $\mathbb{N} \subseteq \mathbb{Z}$ **ii** $\mathbb{Z} \subseteq \mathbb{Q}$ **iii** $\mathbb{N} \subseteq \mathbb{Q}$
- **d** Shade the region representing the set of irrationals \mathbb{Q}' .

UNION AND INTERSECTION

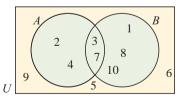
THE UNION OF TWO SETS

 $A \cup B$ denotes the **union** of sets A and B. This set contains all elements belonging to A or B or both A and B.

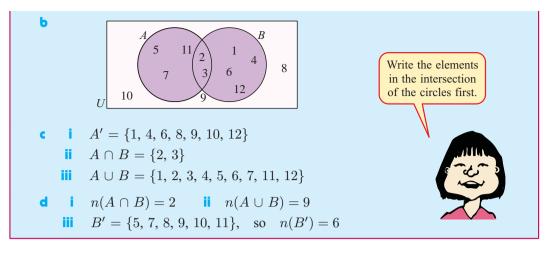

 $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

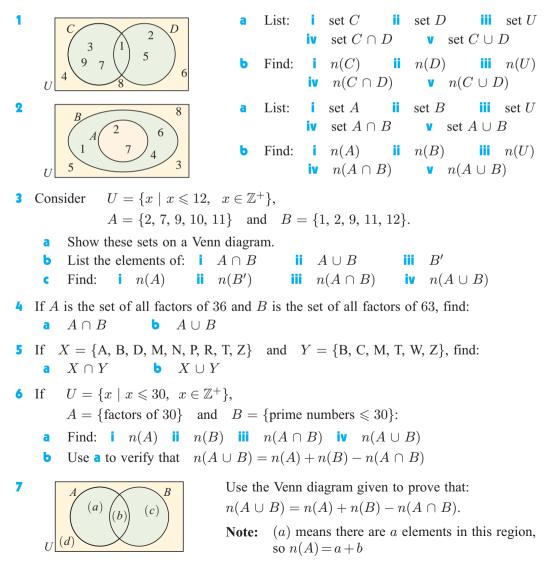

THE INTERSECTION OF TWO SETS

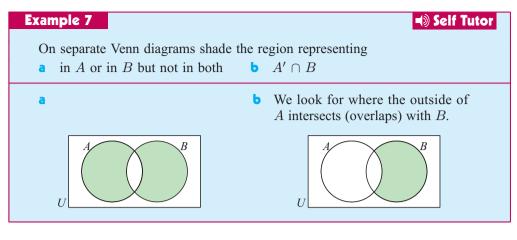
 $A \cap B$ denotes the **intersection** of sets A and B. This is the set of all elements common to both sets.


 $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

In the Venn diagram alongside, $A = \{2, 3, 4, 7\}$ and $B = \{1, 3, 7, 8, 10\}.$ We can see that $A \cap B = \{3, 7\}$ and $A \cup B = \{1, 2, 3, 4, 7, 8, 10\}$



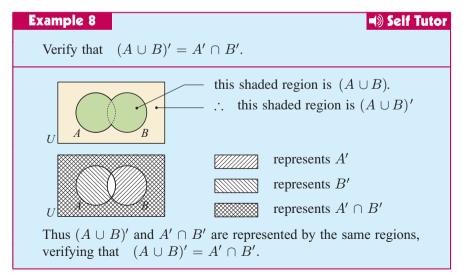

 $A \cap B$ is shaded red.


Exar	nple 6			Self Tutor
If $U = \{ \text{whole numbers} \leq 12 \}$, $A = \{ \text{primes} \leq 12 \}$ and $B = \{ \text{factors of } 12 \}$:				
a	List the elements of	the sets A and B .		
Ь	Show the sets A, B	and \boldsymbol{U} on a Venn dia	gram.	
c	List the elements in	A'	$A \cap B$	$\blacksquare A \cup B$
d	Find:	i $n(A \cap B)$	$n(A \cup B)$	$ \qquad \qquad$
a $A = \{2, 3, 5, 7, 11\}$ and $B = \{1, 2, 3, 4, 6, 12\}$				

EXERCISE 3E

COMPUTER DEMO

8 On separate Venn diagrams like the one given, shade the region representing:


	a	not in A	Ь	in both A and B	
	c	$A\cap B'$	d	in either A or B	$A \xrightarrow{B}$
	e	$A \cup B'$	f	$(A \cup B)'$	
	9	$(A \cap B)'$	h	in exactly one of A or B	U
9	a			$4, 5, 6, 7, 8\}, X = \{1, 3, 5, 7\},$	$Y = \{2, 4, 6, 8\}$
		find $X \cup Y$		$X \cap Y.$	

b Find **i** $A \cup A'$ **ii** $A \cap A'$ for any set A in universal set U.

A set identity is an equation involving sets which is true for *all* sets.

Examples of set identities include:	$A\cup A'=U$	$A\cap A'=\varnothing$
	$(A\cup B)'=A'\cap B'$	$(A\cap B)'=A'\cup B'$

Set identities can be verified using Venn diagrams.

10 Verify that $(A \cap B)' = A' \cup B'$.

SIMPLE SET PROBLEMS

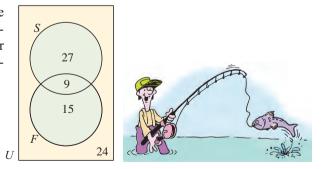
Self Tutor

Example 9

The Venn diagram alongside illustrates the number of people in a sporting club who play tennis (T) and hockey (H).

Determine the number of people:

- a in the club
- who play both sports
- who play at least one sport
- a Number in the club = 15 + 27 + 26 + 7 = 75
- Number who play both sports = 27
- Number who play at least one sport = 15 + 27 + 26 = 68


Т 15 27 26 Л

- who play hockey
- d who play neither sport
- Number who play hockey = 27 + 26 = 53
- **d** Number who play neither sport = 7

EXERCISE 3F

- 1 The Venn diagram alongside illustrates the number of students in a particular class who study French (*F*) and Spanish (*S*). Determine the number of students:
 - a in the class
 - **b** who study both subjects
 - who study at least one of the subjects
 - d who only study Spanish.
- 2 In a survey at a resort, people were asked whether they went sailing (S) or fishing (F) during their stay. Use the Venn diagram to determine the number of people:
 - **a** in the survey
 - **b** who did both activities
 - who did neither activity
 - **d** who did exactly one of the activities.

U

- 3 In a class of 30 students, 19 study Physics, 17 study Chemistry and 15 study both of these subjects. Display this information on a Venn diagram and hence determine the number of students who study:
 - a at least one of the subjects
 - c exactly one of the subjects
- **b** Physics, but not Chemistry
- d neither subject.

- **4** In a class of 40 students, 19 play tennis, 20 play netball and 8 play neither of these sports. Determine the number of students in the class who:
 - a play tennis b do not play netball
 - play at least one of the sports **d** play one and only one of the sports
 - e play netball, but not tennis

C

- **5** In a class of 25 students, 15 play hockey and 16 play basketball. If there are 4 students who play neither sport, determine the number of students who play both hockey and basketball.
- In a class of 40, 34 like bananas, 22 like pineapples and 2 dislike both fruits. Find the number of students who:
 - a like both fruits b like at least one fruit
- 7 In a group of 50 students, 40 study Mathematics and 32 study Physics. Each student studies at least one of these subjects. From a Venn diagram, find how many students:
 - a study both subjects b study Mathematics but not Physics
- 8 In a class of 40 students, 23 have dark hair, 18 have brown eyes, and 26 have dark hair, brown eyes, or both. How many students have:
 - a dark hair and brown eyes **b** neither dark hair nor brown eyes
 - **c** dark hair but not brown eyes?
- 9 400 families were surveyed. It was found that 90% had a TV set and 60% had a computer. Every family had at least one of these items. How many of the families had both a TV set and a computer?

G

NUMBER SEQUENCES

A number sequence is a set of numbers connected by some kind of rule or pattern.

For example, 1, 3, 9, 27, is the number sequence of the powers of 3.

Number sequences have a rule which can be used to generate the terms of the sequence.

For 1, 3, 9, 27, the rule could be 'start with 1 and multiply by 3 each time'.

Often a formula can be used to construct the sequence.

For 1, 3, 9, 27, the formula $u_n = 3^{n-1}$ could be used.

- Notice that: u_1 , the first term, is $3^{1-1} = 3^0 = 1$
 - u_2 , the second term, is $3^{2-1} = 3^1 = 3$
 - and so on.
 - u_n is called the **nth term** of the sequence.

If we are given a formula for u_n then we can use a graphics calculator to generate the terms of the sequence. You should consult the calculator instructions section on **Lists**, beginning on page 18. You will first need to learn how to create a list on your calculator, and then proceed to the specific section on **Number Sequences**.

EXERCISE 3G

- 1 Find the next *two* terms and write a rule in words to describe these number sequences:
 - **a** 2, 3, 4, 5, 6,
 - **c** 1, 2, 4, 8, 16,
 - **2**, 5, 8, 11, 14,
 - **9** 1, 8, 27, 64,
- **2** Use the rules to list the first six terms of the sequence:
 - a start with 1 and add 2 each time
 - **b** start with 3 and multiply by 2 each time
 - start with 24 and subtract 8 each time
 - d start with 32 and divide by 2 each time
 - e start with 5 and double each time
 - f start with 1 and 2 and add the previous two numbers to get the next one.
- **3** Write down the first *five* terms of the sequence given by:
- 4 All of the sequences in question 3 are of the form $u_n = an + b$.

For example: in f, $u_n = 3n + 2$ has a = 3 and b = 2in k, $u_n = -2n + 5$ has a = -2 and b = 5.

In what way does the value of a affect the terms of the sequence?

You should have noticed in 3 and 4 that:

For a sequence where we are adding on a each time, the rule generating the sequence has form $u_n = an + b$.

Example 10 Self Tutor Find the rule which will generate the sequence: 92, 88, 84, 80, 76, а 3, 7, 11, 15, 19, Ь $\therefore u_n = 4n + b$ We are adding on 4, а $\therefore u_1 = 4(1) + b = 4 + b$ But $u_1 = 3$, so b = -1 $\therefore u_n = 4n - 1$ We are adding on -4, \therefore $u_n = -4n + b$ Ь $\therefore u_1 = -4(1) + b = -4 + b$ But $u_1 = 92$, so b = 96 $\therefore u_n = -4n + 96$

- **b** 29, 27, 25, 23, 21,
- **d** 48, 24, 12, 6,
- f 100, 93, 86, 79, 72,
- **h** 1, 1, 2, 3, 5, 8,

76, 72, 68, 64,

- **5** Find the rule which will generate the sequence:
 - **a** 4, 7, 10, 13, 16, **b** -2, 3, 8, 13, 18,
 - **c** 1, 7, 13, 19, 25, **d** 3, 10, 17, 24, 31,
 - **e** 40, 37, 34, 31,
 - **g** 8, 3, -2, -7, **h** 127, 121, 115, 109,
 - i $\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{5}{11}, \dots$ j $\frac{1}{4}, \frac{3}{7}, \frac{5}{10}, \frac{7}{13}, \frac{9}{16}, \dots$

6 a Write down the first *five* terms of the sequence given by: i $u_n = 3^{n-1}$ ii $u_n = 2 \times 3^{n-1}$ iii $u_n = 5 \times 3^{n-1}$

b State in words how the next term is found from the previous one in each part of **a**.

f

- What part of each formula causes this to happen?
- **7** If $u_n = n^2 + 1$: find **a** u_1 **b** u_9 **c** u_{57} .
- **8** Suppose D_n is the number of diagonals of an *n*-sided polygon.

For example, for a pentagon, n = 5

and
$$D_5 = 5$$
.

- **a** Find D_3 , D_4 , D_6 , D_7 and D_8 .
- **b** Jian stated that a 10-sided polygon has 70 diagonals. She said 'Consider the number of diagonals from one vertex. There are 7 of them. Since there are 10 vertices there must be $7 \times 10 = 70$ diagonals'.

Toshi drew a diagram of a 10-sided polygon and its diagonals. He counted 35 diagonals. So why is Jian's reasoning incorrect?

- How many diagonals has:
 - a 20-sided polygon

an *n*-sided polygon?

This is a 2 by 2 chess board. We can see 5 squares: 4 small ones and one large one.

Notice that $5 = 1^2 + 2^2$.

- a Show that a 3 by 3 chess board contains $1^2 + 2^2 + 3^2$ squares.
- **b** How many squares can be seen on a 4 by 4 chess board?
- How many squares can be seen on a real chess board which is 8 by 8?

INTRODUCTION TO LOGIC

Logic is a topic connected with **Pure Mathematics**. Much of its theory was devised by **Aristotle** some 2300 years ago. In this introduction to the topic we will learn what is meant by a proposition, negation, conjuction, and disjunction.

A **proposition** is a statement which can only be true (T) or false (F). Whether it is true or false is the **truth value** of the proposition. An example of a proposition is "A square has four equal sides". It is a proposition because it is a statement and it is always true.

Questions and opinions are not propositions.

For example:

"I think it will rain tomorrow" is an opinion and not everyone will agree. It is therefore not a proposition.

"It will rain tomorrow" *is* a proposition, because although we do not yet know if the statement is true or false, it will definitely be one or the other.

NEGATION

The **negation** of a proposition is the exact opposite to the proposition.

For example, the negation of "It will rain today" is "It will not rain today". Notice that if the statement is true its negation is false, and vice versa.

CONJUNCTION

When two propositions are combined using the word **and**, the new proposition is the **conjunction** of the original propositions.

For example, for the propositions "It will be sunny today" and "I will go swimming today", the conjunction is "It will be sunny today and I will go swimming".

A **conjunction** is true (T) only when both propositions are true.

DISJUNCTION

When two propositions are combined using the word **or**, the new proposition is the **disjunction** of the original propositions.

For example, for the propositions "I will go to the movies today" and "I will go swimming today", the disjunction is "I will go to the movies or I will go swimming today".

A disjunction is true (T) when either or both propositions are true.

EXERCISE 3H

- 1 Which of these statements is a proposition?
 - **a** Is there sugar in my coffee?
 - **c** Is it sunny this morning?
 - Where are my brown socks?
 - **9** The train will be on time.
- **2** Write down the negation of these propositions:
 - a I will go skiing today.
 - I enjoy Art lessons.
 - It will be sunny today.

- **b** It will be warm enough to go swimming.
- **d** I understand this exercise.
- f I will get a top grade in my next test.
- h Today is Monday.
- **b** Today is Saturday.
- **d** The train will not be on time.
- f This exercise is difficult.

- 3 Write the negations of these propositions without using the word *not*.
 - a Wendy likes mathematics.
 - A student in my class snores
- He owns at least three cats.
- **d** My brother is taller than me.
- **4** Write down the conjunction of:
 - a "The train will be late today", "I will miss the first lesson".
 - **b** "There is hot weather forecast", "We will go to the beach"
 - "I will go to the café", "I will go to the cinema".
- **5** Write down the disjunction of:
 - a "We will have eggs for breakfast", "We will have porridge for breakfast".
 - **b** "We will play tennis", "We will ride horses".
 - "x is a factor of 8", "x is a factor of 12".

NOTATION AND TRUTH TABLES

Propositions are usually represented by lower case letters such as p, q and r.

For example, p could be the proposition "Jon snores when sleeping" q could be the proposition "Jon sleeps poorly".

Symbols: \neg is used for negation, \land for conjunction, \lor for disjunction.

 $\neg p$ is the proposition "Jon does not snore when sleeping"

- $\neg q$ is the proposition "Jon does not sleep poorly"
- $p \wedge q$ is the proposition "Jon snores when sleeping **and** Jon sleeps poorly"
- $p \lor q\;$ is the proposition "Jon snores when sleeping or Jon sleeps poorly"

A **truth table** for a compound proposition is a table which lists all possibilities for the truth values of the original propositions.

Consider negation.

Clearly if p is true then $\neg p$ is false and vice versa. These are the only possibilities, so the truth table is:

For the **conjunction** and **disjunction** of two propositions p and q there are four possibilities to consider: both p and q are true, p is true and q is false,

p is false and q is true, both p and q are false.

The conjunction $p \wedge q$ is true if both p and q are true; otherwise it is false.

The disjunction $p \lor q$ is true if either or both p and q are true; otherwise it is false.

The truth tables are:

Conjunction

Disi	unction

p	q	$p \wedge q$	
Т	Т	Т	
Т	F	F	
F	Т	F	
F	F	F	

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

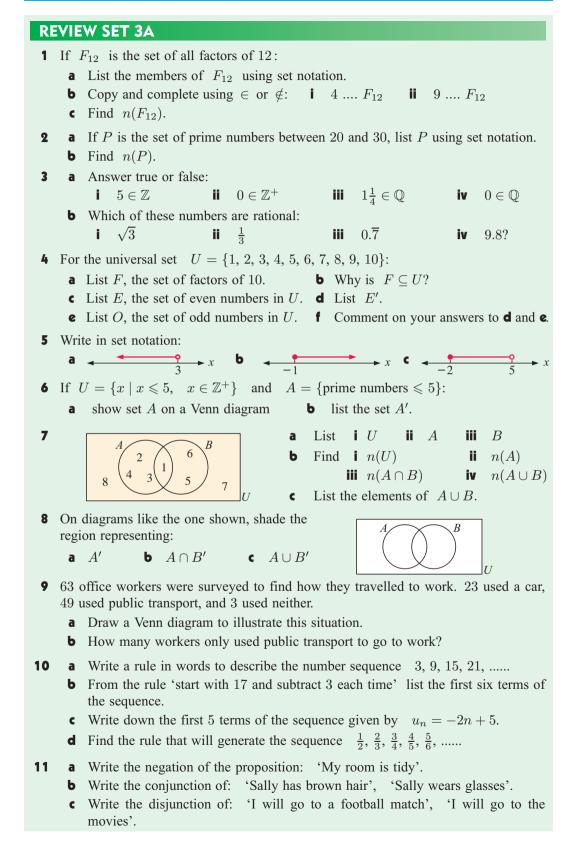
 $\neg p$ is said "not p"

Examp	ole 11									⊲) Self 1	Tutor
For	propo	sition	s p an	d q constr	ruct truth ta	ables t	for:	a ¬1	$p \lor q$ b	$\neg (p \land \neg q)$	
		-	-		_				-		_
a	p	q	$\neg p$	$\neg p \lor q$	Ь	p	q	$\neg q$	$p \wedge \neg q$	$\neg (p \land \neg q)$	
	Т	Т	F	Т		Т	Т	F	F	Т	
	Т	F	F	F		Т	F	Т	Т	F	
	F	Т	Т	Т		F	Т	F	F	Т	
	F	F	Т	Т		F	F	Т	F	Т	
				<u>+</u>							-
	Note:					i	dentica	ıl			
	The ti	ruth ta	ables a	re identic	al for $\neg p$	$\vee q$	and	$\neg (p)$	$\wedge \neg q$).		
					q) and $-$	_		~	-,	valent.	

6 For the propositions p and q draw truth tables for:

a
$$\neg(\neg q)$$
 b $\neg(p \land q)$ **c** $\neg q \lor \neg p$ **d** $p \land \neg q$

- 7 From **6a**, what statement is logically equivalent to:
 - a I will not not go to the beach.
 - **b** He is not not the best mathematician in the class.
- 8 Show that:
 - **a** $\neg p \land \neg q$ and $\neg (p \lor q)$ are logically equivalent.
 - **b** $\neg p \lor \neg q$ and $\neg (p \land q)$ are logically equivalent.
- Write down the negations of these compound statements using your observations in 8.
 - a It will be sunny today and I will go to the beach.
 - **b** I will go shopping or I will go to the cinema.
 - I like football and I like basketball.
 - d I like skiing and I do not like swimming.
 - e I will walk to school or I will cycle to school.
 - f It will not rain today or it will not snow today.


DISCUSSION

- **1** Compare:
 - (A')' in sets with $\neg(\neg p)$ in logic
 - $A \cap B$ in sets with $p \wedge q$ in logic
 - $A \cup B$ in sets with $p \lor q$ in logic.
- **2** In **Example 8** we used a Venn diagram to show that $(A \cup B)' = A' \cap B'$ and in the following question we showed that $(A \cap B)' = A' \cup B'$.

Use what you have learnt from the discussion in **1** to predict logic rules for $\neg(p \lor q)$ and $\neg(p \land q)$.

SETS AND LOGIC

REVIEW SET 3B 1 **a** List, in set notation, the set M of multiples of 3 less than 20. **b** Find n(M). • List the set N of multiples of 9 less than 20. **d** Is $N \subseteq M$? Explain your answer. ii $\frac{1}{0} \in \mathbb{Q}$ **a** Answer true or false: 2 $0.151 \in \mathbb{R}$ **b** Show that $0.\overline{1}$ is rational. If $U = \mathbb{Z}^+$ and $O = \{\text{odd integers}\}, \text{ describe } O'.$ 3 **a** Write in words: $\{x \mid x \leq -5 \text{ or } x > 2\}$ 4 \mathbf{i} $\mathbf{0}$ $\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$ \mathbf{x} \mathbf{ii} $\mathbf{-3}$ $\mathbf{4}$ \mathbf{x} **b** Write in set notation: **c** Sketch $\{x \mid x \leq 8, x \in \mathbb{Z}\}.$ 5 **a** Draw a Venn diagram to show the sets $A = \{2, 3, 5, 7\}$ and $B = \{2, 4, 6, 8\}$ within the universal set $U = \{x \mid x \leq 8, x \in \mathbb{Z}^+\}$. **b** List: **i** A' $i A \cup B$ $\blacksquare A \cap B$ • Find n(B'). **6** $U = \{x \mid x \leq 20, x \in \mathbb{Z}^+\}, A = \{\text{factors of } 20\}$ and $B = \{ \text{multiples of } 4 \leq 20 \}.$ **a** Find: **i** n(A) **ii** n(B) **iii** $n(A \cap B)$ **iv** $n(A \cup B)$ **b** Use **a** to verify that $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ 7 In a class of 25 students, 9 are left handed and 7 wear glasses. 3 students are left handed and wear glasses. Display this information on a Venn diagram and hence determine the number of students who: **a** are not left handed and wear glasses **b** are left handed and do not wear glasses **c** are neither left handed nor wear glasses. **a** Find the rule that will generate the sequence 1, 2, 4, 8, 16, 8 i $u_n = 5n - 8$ ii $u_n = 3 \times 2^{n+1}$ **b** Write the first *five* terms of: **c** If $u_n = 100 - n^2$, find: **u** 5 u_{10} . u_1 9 **a** Write the negation of the propositions: **i** It is not raining. ii Sarah is playing her flute. **b** Write the conjunction of the propositions: 'Raphael plays tennis', 'Raphael plays best on clay courts'. Write the disjunction of the propositions: C 'I will ride my bike to school', 'I will go to school by bus'. **10** Construct truth tables for $\neg(p \land q)$ and $\neg p \lor \neg q$ using the following headings: $p \wedge q \mid \neg (p \wedge q) \mid$ p $\neg q$ $\neg p \lor \neg q$ qq $\neg p$ p

What do you notice from your results?

Chapter

Rounding and estimation

- A Rounding numbers
- **B** Rounding money
- C One figure approximations
- D Rounding decimal numbers
- Using a calculator to round off

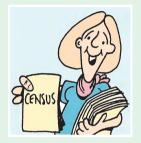
- F Significant figure rounding
- G Rounding time

82 ROUNDING AND ESTIMATION (Chapter 4)

Often we are not really interested in the exact value of a number. We only want a reasonable estimate of it.

For example, there may be 58 students in the library or 515 competitors at the athletics carnival or 48948 spectators at the football match.

If we are only interested in approximate numbers then 60 students, 500 competitors and 49000 spectators would be good approximations.



OPENING PROBLEM

What are sensible approximations for:

- There are 229 students in Year 10.
- This school has a student body of 2788.
- 387066 spectators attended the tennis championships this year.
- The population of our state was 6 277 168 at the last census.

A

ROUNDING NUMBERS

If there are 58 students in the library then we can say this is approximately 6 lots of 10, or 60 students. We have *rounded* the number 58 to the nearest ten.

Notice that 468 is roughly 47 tens or 470, whereas 463 is roughly 46 tens or 460.

We say 468 is rounded up to 470 and 463 is rounded down to 460.

Rules for rounding off are:

- If the digit after the one being rounded off is less than 5 (i.e., 0, 1, 2, 3 or 4) we round down.
- If the digit after the one being rounded off is 5 or more (i.e., 5, 6, 7, 8, 9) we round up.

Example 1

Self Tutor

Ro ^r a	und off the following to the ne38 b 483	earest 10: c 8605
a	38 is approximately 40	{Round up as 8 is greater than 5}
b	483 is approximately 480	{Round down as 3 is less than 5}
c	8605 is approximately 8610	{Round up as 5 is rounded up}

EXERCISE 4A

1 Round off to the nearest 10:

a	23	b	65	c	68	d	97
e	347	f	561	9	409	h	598
1	3015	j	2856	k	3094	I.	8885
m	2895	n	9995	0	30905	P	49895

Exam	ple 2 🚽 🔊 Self Tutor
	and off the following to the nearest 100: 89 b 152 c 19439
а	89 is approximately 100 {Round up as 8 is greater than 5}
Ь	152 is approximately 200 {Round up for 5 or more}
c	19439 is approximately 19400 $\{$ Round down as 3 is less than 5 $\}$

2 Round off to the nearest 100:

a	81	Ь	671	c	617	d	850
e	349	f	982	9	2111	h	3949
1	999	j –	13484	k	99199	1	10074

- Round off to the accuracy given: 3
 - €187 (to nearest €10) а
 - 375 km (to nearest 10 km) C
- Ь $\pounds 18745$ (to nearest $\pounds 1000$)
- 785 Ft (to nearest 100 Ft) d
- e the population of a town is 29295 (to nearest one thousand)
- 995 cm (to nearest metre) f
- 8945 litres (to nearest kilolitre) g
- h the cost of a house was \$274950 (to nearest \$10000)
- i. the number of sheep on a farm is 491560 (nearest 100000)

ROUNDING MONEY

R

People operating computers and calculators sometimes make mistakes when typing in the information.

So, it is very important when we use calculators that we can make an estimate of what the answer should be. An estimate is not a guess. It is a quick and easy approximation to the correct answer.

By making an estimate we can tell if our calculated answer is reasonable.

ROUNDING TO THE NEAREST 5 CENTS

Some countries no longer use smaller denominations of currency such as 1 cent and 2 cent coins. Amounts of money to be paid in cash must therefore be rounded to the nearest 5 cents.

For example, a supermarket bill and the bill for fuel at a service station must be rounded to the nearest 5 cents.

If the number of cents ends in

- 0 or 5, the amount remains unchanged
- 1 or 2, the amount is rounded down to 0
- 3 or 4, the amount is rounded up to 5
- 6 or 7, the amount is rounded down to 5
- 8 or 9, the amount is rounded up to 10.

Have you noticed that petrol pumps show prices such as \$51.82, \$51.83, \$51.86?

These prices have not been rounded to the nearest 5 cents.

When you pay cash for the petrol, however, you may have to pay to the nearest 5 cents.

For example,	\$51.82	would be	\$51.80
	\$51.83	would be	\$51.85
	\$51.86	would be	\$51.85
	\$51.88	would be	\$51.90

Exan	nple 3 🔹 🗐 Self Tu	tor
Ro a	und the following amounts to the nearest 5 cents:\$1.42\$12.63\$ \$24.99	
a	\$1.42 would be rounded down to \$1.40 2 is rounded down	
ь	\$12.63 would be rounded up to \$12.65 3 is rounded up to 5	
c	 \$24.99 would be rounded up to \$25.00 9 is rounded up to 10, so 99 becomes 100 and \$24.99 becomes \$25.00 	

EXERCISE 4B

1 Round these amounts to the nearest 5 cents:

a	99 cents	Ь	\$2.74	C	\$1.87	d	\$1.84
e	\$34.00	f	\$25.05	9	\$16.77	h	\$4.98
1	\$13.01	j	\$102.23	k	\$430.84	1	\$93.92

- 2 a Xingfeng paid cash for her supermarket bill of \$84.72. How much did she pay?
 - **b** Rolando filled his car with petrol and the amount shown at the petrol pump was \$31.66. How much did he pay in cash?
 - Marcel used the special dry-cleaning offer of '3 items for \$9.99'. How much money did he pay?

ROUNDING IN DECIMAL CURRENCIES

The term **decimal currency** is used to describe any currency for which one basic unit is made up of 100 (or sometimes 1000) sub-units.

For example: 100 cents make one dollar (\$)
100 euro cents make one euro (€)
100 pence make one pound (£)
100 Russian kopecks make one ruble (R)
100 Indian paise make one rupee (Rs)

To estimate money in these currencies, we often round to the nearest whole unit:

- If the decimal is from 0.01 to 0.49 then we round *down*.
- If the decimal is from 0.50 to 0.99 then we round *up*.

Chocolate bar \$1.30

86 ROUNDING AND ESTIMATION (Chapter 4)

Estimate the total cost (by rounding the prices to the nearest dollar) of:

- a one icecream, a packet of crisps, a health bar and a drink
- **b** 5 licorice ropes, 4 icecreams, 2 honeycomb bars and 4 drinks
- c 3 ice blocks, 2 packets of jelly snakes, 4 chocolate bars and 3 cheese snacks
- **d** 10 health bars, 4 icecreams, 6 jubes and 3 licorice ropes
- e 19 ice blocks, 11 drinks, 12 packets of cheese snacks and 9 packets of jelly snakes
- f 21 packets of crisps, 18 chocolate bars, 28 health bars and 45 drinks
- g 4 dozen drinks, half a dozen packets of jelly snakes and a dozen health bars
- h 192 honeycomb bars, 115 icecreams, 189 packets of crisps and 237 drinks
- i 225 licorice ropes, 269 drinks, 324 honeycomb bars and 209 ice blocks.

Example 5 Self Tutor
Estimate the cost of 19 pens at \$1.95 each.
$19 \times \$1.95 \approx 19 \times \2
\approx \$38

5 Estimate the cost of:

- a 195 exercise books at 98 pence each
- \mathbf{c} 18 show bags at \$3.45 each
- 4 dozen iceblocks at RM 1.20 each
- **b** 27 sweets packets at \$21.80 a packet
- **d** 12 bottles of drink at \$2.95 a bottle
- f 3850 football tickets at $\notin 6.50$ each.

ONE FIGURE APPROXIMATIONS

A fast way of estimating a calculation is to perform a **one figure approximation**. We round each number in the calculation to one significant figure, then perform the calculation with these approximations.

Rules:

- Leave single digit numbers as they are.
- Round all other numbers to one figure approximations.
- Perform the calculation.

For example,

 3785×7 $\approx 4000 \times 7$ $\approx 28\,000$

Example 6	Self Tutor
Estimate the product: a 57×8	b 537 × 6
a Round off to the nearest 10.	b Round off to the nearest 100.
57×8	537 imes 6
pprox 60 imes 8	$\approx 500 \times 6$
≈ 480	≈ 3000

EXERCISE 4C

1

2

Estimate the products:				
a $79 imes 4$	b	47×8	C	62×7
d 88×6	e	55×3	f	37×5
Estimate the products:				
a $284 imes 3$	b	617×7	C	408×9
\mathbf{d} 494 $ imes 6$	e	817×8	f	2094×7

Example 7 Self Tutor
Estimate the product: 623×69
Round 623 to the nearest 100 and round 69 to the nearest 10.
623 imes 69
$\approx 600 \times 70$
pprox 42000
The estimate tells us the correct answer should have 5 digits in it.

3 Estimate the products using one figure approximations:

а	57×42	b	73×59	c	85×98	DEMO
d	275×54	e	389 imes 73	f	4971×32	
9	3079×29	h	40989×9	i	880×750	Ţ

Example 8	Self Tuto
Find the approximat	e value of $3946 \div 79$.
$3946 \div 79 \approx$	$4000 \div 80$
\approx	$400 \div 8$
\approx	50

4 Estimate using one figure approximations:

a	$397 \div 4$	Ь	$6849 \div 7$	C	$79095 \div 8$
d	$6000 \div 19$	e	$80000 \div 37$	f	$18700\div97$
9	$2780 \div 41$	h	$48097\div243$	1	$798450\div399$

5 Use estimation only to find which of these calculator answers is reasonable:

a	489×19	9291	96 081	92 901
b	843×74	62 382	562 382	6238
c	3907×89	347723	5 361 243	35 723
d	$3132 \div 87$	3600	36	306

88 ROUNDING AND ESTIMATION (Chapter 4)

- 6 In the following questions, round to one figure to find the approximate value asked for.
 - a In her bookcase Lynda has 12 shelves. Estimate the number of books in the bookcase if there are approximately 40 books on each shelf.
 - Miki reads 217 words in a minute. Estimate the number of words she can read in one hour.
 - A bricklayer lays 115 bricks each hour. If he works a $37\frac{1}{2}$ hour week, approximately how many bricks will he lay in one month?
 - d If Joe can type at 52 words per minute, find an approximate time for him to type a document of 3820 words.
 - In a vineyard there are 189 vines in each row. There are 54 rows. Find the approximate number of vines in the vineyard.

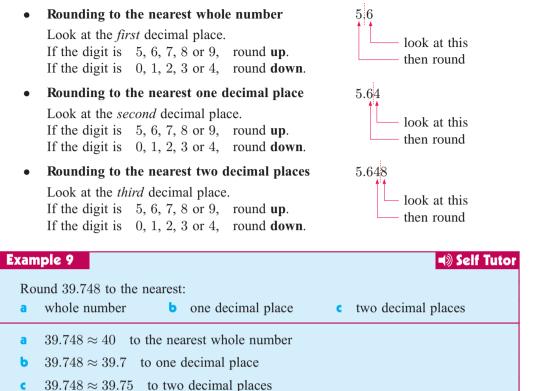
- A winery bottles 480 000 cases of wine each year. If each case holds one dozen bottles, approximately how many bottles of wine are produced each year?
- **9** A trip of 1023 km from Adelaide to Sydney took 19 hours. Find the approximate average speed in kilometres per hour.
- h An electricity supply company employs 19 people to read meters.

Each meter takes approximately 3 minutes to read. Estimate how many meters are read each hour.

AREA AND VOLUME ERRORS

Areas of interaction: Approaches to learning

ROUNDING DECIMAL NUMBERS


In many situations we may be given a measurement as a decimal number. Stating the *exact* value of the measurement may not be particularly important; what we want is a good *approximation* of the measurement.

For example:

Since 1924 the Olympic marathon has been measured as exactly 42.195 km or 26.2187 miles. The exact value is rarely quoted, however, since most people use approximations; they commonly say 42 km, 42.2 km, 26 miles, or 26.2 miles.

RULES FOR ROUNDING

Notice that: $0.5864 \approx 0.586$ (to 3 decimal places) ≈ 0.59 (to 2 decimal places) ≈ 0.6 (to 1 decimal place)

ANOTHER APPROACH

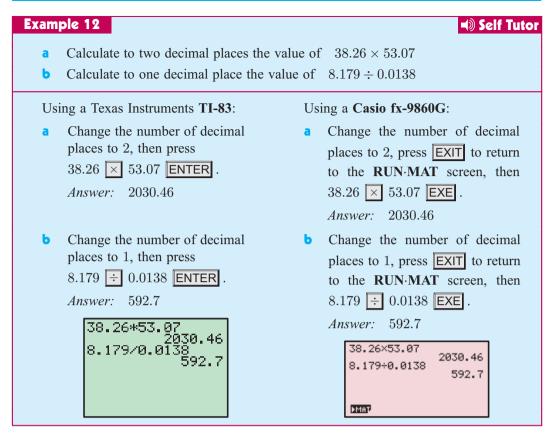
Consider rounding 37.1485 to 1 decimal place. Use these steps if you find rounding difficult.

Step 1:	Circle the digit in the place to be rounded.	37. <u>1)4</u> 85					
Step 2:	37. <u>1)4</u> 85						
Step 3:	Step 3: Remove all digits to the right of the underlined digit.						
Step 4:	37.1						
	add 1 to the circled digit.						
Example 1	ç	Self Tutor					
-	ç						

EXERCISE 4D

1	Round to the nearest whole n a 0.813 b 7.499	number: c 7.500	d 11.674 € 128.437
2	Write these numbers correct t a 2.43 b 3.57	to 1 decimal place: • 4.92	d 6.38 e 4.275
3	Write these numbers correct a 4.236 b 2.731	to 2 decimal places: c 5.625	d 4.377 e 6.5237
4	Write 0.486 correct to: a 1 decimal place	b 2 decimal place	ces
5	Write 3.789 correct to:	a 1 decimal plac	ce b 2 decimal places
6	Write 0.18375 correct to:	a 1 decimal plac 3 decimal pla	-
7	 Find approximations for: a 3.87 to the nearest tenth c 6.09 to one decimal pla e 2.946 to 2 decimal place 	d 0.	3 to the nearest whole number 4617 to 3 decimal places 17561 to 4 decimal places
	Example 11 Find $\frac{2}{7}$ correct to 3 decimal places.	$\begin{array}{c c} 0.2 & 8 \\ \hline 7 & 2.0 & 6 \\ \hline \end{array}$	$\begin{array}{c} \hline \hline 4 \end{array} \\ \hline 5 \\ \hline 7 \\ \hline 4 \\ 0 \\ \hline 5 \\ 0 \end{array} \\ \hline \therefore \\ \hline 2 \\ \hline 7 \\ \approx 0.286 \end{array}$
8	Find the answer correct to the	e number of decima	l places shown in square brackets:
	a $\frac{17}{4}$ [1]	b $\frac{73}{8}$ [2]	c 4.3×2.6 [1]
	d 0.12×0.4 [2]	$e \frac{8}{11}$ [2]	f 0.08×0.31 [3]

g $(0.7)^2$ [1] **h** $\frac{37}{6}$ [2] **i** $\frac{17}{7}$ [3]


9 In her maths exam Julie was asked to round 7.45 cm to one decimal place and to the nearest whole integer.

Julie's answer was that $7.45 \text{ cm} \approx 7.5 \text{ cm}$ (to one decimal place), and that $7.5 \text{ cm} \approx 8 \text{ cm}$ (to the nearest whole number).

Explain what Julie has done wrong and why we need to be careful when we make approximations.

USING A CALCULATOR TO ROUND OFF

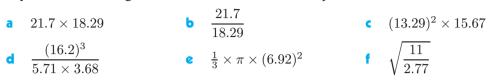
If you have several calculations to do and must give your answers to a certain fixed number of decimal places, it is convenient to get your calculator to do this for you. Instructions for fixing the number of decimal places in the calculator display can be found on page 13.

EXERCISE 4E

1 When denominators are not a single number we must take great care.

Consider these attempts at finding $\frac{20}{2 \times 5}$ and $\frac{36}{12-3}$: For $\frac{20}{2 \times 5}$ Yan pressed $20 \div 2 \times 5 =$ Frank pressed $20 \div (2 \times 5) =$ For $\frac{36}{12-3}$ Yasuka pressed $36 \div 12 = 3 =$ Melanie pressed $36 \div (12 = 3) =$ a Without using a calculator, find the values of $\frac{20}{2 \times 5}$ and $\frac{36}{12-3}$. b Which of Yan and Frank is correct?

- **d** Explain in your own words what you have learnt from **a**, **b** and **c**.
- 2 Give the order in which the calculator keys should be pressed to calculate:


a
$$8.704 + \frac{6.93}{0.74}$$
 b $\frac{8.704 + 6.93}{0.74}$ **c** $\frac{0.74}{8.704 + 6.93}$

92 ROUNDING AND ESTIMATION (Chapter 4)

3 Set your calculator to give answers to 1 decimal place. Then find:

a
$$\frac{3.675 + 11.291}{5.67}$$
 b $\frac{17.65}{3 - 0.271}$ c $\pi \times (5.67)^2$

4 Set your calculator to give answers correct to 2 decimal places. Then find:

- **5** Solve the following problems:
 - **a** A petrol tank holds exactly 64 litres. Find the cost of filling an empty tank at 122.7 cents per litre.
 - A courier receives 37 cents per kilometre travelled. What does the courier receive for a trip of 1079 km?
 - Cindy averages 39.43 seconds for each lap of a 50 m pool. Find the total time taken, in minutes and seconds, by Cindy if she swam 1500 m.

d

A gold nugget weighs 1.389 kg. If it is sold for 43 607 Swiss francs, how much was one gram of gold worth on the day of sale?

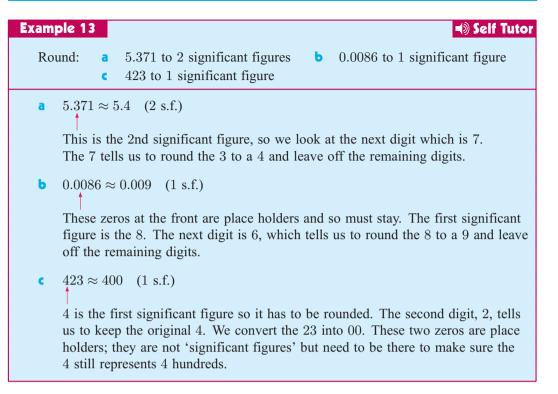
SIGNIFICANT FIGURE ROUNDING

The first significant figure of a decimal number is the first (left-most) non-zero digit.

For example:

- the first significant figure of 1234 is 1
- the first significant figure of 0.02345 is 2.

Every digit to the right of the first significant figure is regarded as another significant figure.


Procedure for rounding off to significant figures:

Count off the specified number of significant figures then look at the next digit.

- If the digit is less than 5, do not change the last significant figure.
- If the digit is 5 or more then increase the last significant figure by 1.

Delete all figures following the significant figures, replacing with 0s where necessary.

Notice that if 13.238 is rounded to 13.24, then it has been rounded to 2 decimal places or to 4 significant figures.

EXERCISE 4F

1 Round correct to the number of significant figures shown in brackets.

a	42.3	[2]	b	6.237	[3]	c	0.0462	[2]
d	0.2461	[2]	e	437	[2]	f	2064	[2]
9	31009	[3]	h	10.27	[3]	- i -	0.999	[1]
J	0.999	[2]	k	264003	[4]	- E	0.037642	[4]
m	3699.231	[4]	n	0.007639	[2]	0	29999	[3]
р	69.7003	[2]						

- 2 The crowd at a football match was officially 26 247 people.
 - a Round the crowd size to:
 - 1 significant figure
 - 2 significant figures.
 - Which of these figures might be used by the media to indicate crowd size?

- 3 The newspaper stated that 2500 people attended a protest march in Paris. If this figure had been rounded to two significant figures, what was the largest number of people that could have attended the protest?
- 4 During a rabbit plague there were 132 709 rabbits in South Australia. What figure would you expect to see in a newspaper headline for an article on these rabbits?

94 ROUNDING AND ESTIMATION (Chapter 4)

Solve these problems by rounding each quantity to a sensible number of significant figures.

- 5 Andy wants to build a 480 m long post and wire fence. Posts will be 9 m apart and cost \$8.75 each. A coil of wire is 100 m long and costs \$42.50. Estimate the cost of a seven wire fence.
- To paint and wallpaper a bedroom Bronwyn needs five rolls of paper at \$19.50 each and one 10 litre tin of paint that costs \$88.70 on special. Estimate the total cost of the paint and paper.
- **7** Fertiliser costs \$250 per tonne to buy and spread. It is spread on fields at a rate of 0.5 tonne per hectare. Estimate the cost to spread fertiliser on a 324.6 ha farm.

G

ROUNDING TIME

Example 14

Self Tutor

Change 3 hours 45 minutes and 33 seconds into hours, correct to 4 decimal places.

33 seconds = $\frac{33}{60}$ minutes = 0.55 minutes

 \therefore 45 minutes 33 seconds = 45.55 minutes

Now 45.55 minutes = $\frac{45.55}{60}$ hours ≈ 0.7592 hours

So, 3 hours 45 minutes and 33 seconds ≈ 3.7592 hours.

Example 15

Self Tutor

Change 12.8967 hours into hours, minutes and seconds, to the nearest second.

We have 12 whole hours which we can immediately record in the answer.

The remaining 0.8967 hours $= 0.8967 \times 60 = 53.802$ minutes

We can hence record the 53 whole minutes in the answer.

The remaining $0.802 \text{ minutes} = 0.802 \times 60 = 48.12 \text{ seconds}$

which rounds to 48 seconds.

So, 12.8967 hours \approx 12 hours, 53 minutes, 48 seconds.

EXERCISE 4G

- 1 Convert:
 - a 3.567 minutes into minutes and seconds to the nearest second
 - **b** 24 921 seconds into hours, minutes and seconds
 - **c** 4.835 hours into hours, minutes and seconds
 - **d** 5 minutes 23 seconds into minutes, to 3 decimal places

- 1 hour 17 minutes 47 seconds into hours, to 2 decimal places
- **f** 8.00579 hours into hours, minutes and seconds to the nearest second
- **g** 4.833 weeks into weeks, days and hours to the nearest hour
- **h** 2 days, 17 hours and 55 minutes into days to 3 significant figures.
- 2 Chris leaves home at 0755 and takes 2.72 hours to complete a journey. Find the arrival time, to the nearest minute.
- 3 A train travels 200 km in 1 hour 5 minutes. Calculate its speed, in km h⁻¹. Remember that speed = $\frac{\text{distance}}{\text{time}}$.

REVIEW SET 4A

- **1** Round 3579 to the: **a** nearest 10 **b** nearest 100 **c** nearest 1000
- **2** Round off:
 - a 388 km to the nearest 10 km b 3501 L to the nearest kL
 - **c** $74\,821$ sheep to the nearest $10\,000$ sheep
- **3** Round: **a** \$13.68 to the nearest 5 cents **b** $\pounds 13.68$ to the nearest pound.
- **4** Estimate the cost of the following using sensible rounding:
 - a 78 notepads at €1.95 each b 6 dozen icecreams at RM 0.95 each.

5 Using 1 figure approximations, find estimates of:

- **a** 148×6 **b** 804×29
- 6 A tiler can lay 72 tiles each hour and works a 42 hour week.
 - **a** Estimate the number of tiles laid in a week using 1 figure approximations.
 - **b** What is the actual number laid in a week?
 - What is the error made when the estimation is used?

- 7 Chen walks 31729 metres in 5 hours 58 min. Find a 1 figure estimate of Chen's average speed in metres per minute.
- 8 Round 28.907 to: a the nearest whole b 1 dec. place c 2 dec. places.
- **9** Find $\frac{22}{7}$ correct to: **a** 1 decimal place **b** 2 decimal places.
- **10** Use a calculator to find, correct to 2 decimal places, the value of:

a $\pi \times 3.68^2$ **b** $\frac{48.67}{314.72 \times 0.0766}$ **c** $\frac{21.66 - 18.79}{21.66 + 18.79}$

11 Kerosene is sold in drums of capacity 48 litres. Estimate the cost of 97 drums of kerosene costing \$0.62 per litre.

- **12** At the football match on Sunday the crowd was 43768. Round the crowd size to:
 - a 1 significant figure b 2 significant figures.
- **13** Change 2 hours 43 minutes 27 seconds into hours, correct to 4 decimal places.

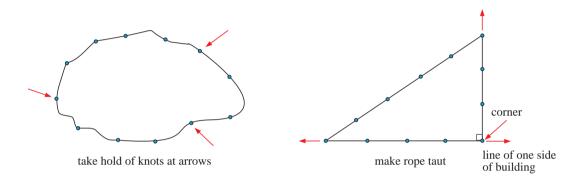
REVIEW SET 4B 1 Round 4608 to the nearest: 10100 1000 b а C Round off: 2 **a** 659 km to the nearest 100 km **b** $20\,144$ tonnes to the nearest 1000 tonnes \mathbf{c} 156 797 people to the nearest 10 000 people. **3** Round: а \$69.73 to the nearest 5 cents Ь $\notin 172.62$ to the nearest euro. Estimate the cost of the following using sensible rounding: 4 **b** 32 kg of apples at 3.15 per kg.а 6 magazines at ± 25.85 each 5 Estimate using 1 figure approximations: 63×9 198×4 а b $1989 \div 42$ C A company wants to mail advertising to 3065 clients. Each package of advertising 6 takes 2 minutes to prepare for mailing. Estimate how long it would take to prepare the mailing if 3 people were working at once on this task. **7** Round 55.039 to: а the nearest whole number **b** 1 decimal place **c** 2 decimal places. **a** Find $\frac{8}{11}$ correct to 3 decimal places. 8 **b** Find 6.8×0.0253 correct to 2 decimal places. Use a calculator to find, correct to 2 decimal places, the value of: 9 $\frac{12.37 + 63.85}{15.2 \times 1.09}$ **b** $\frac{1}{3} \times \pi \times (46.73)^2$ a **10** Laszlo drives 876 km at an average speed of 75.4 km h^{-1} . Use your calculator to find the time he takes to drive this distance, correct to the nearest minute. **11** The profit for 2007 for a business is Rs $5\,683\,422$. Round this amount to: **a** 1 significant figure 2 significant figures. b 268.7**12** Calculate to 3 significant figures: 2367×0.8621 a **13** Change 8.4679 hours into hours, minutes and seconds, to the nearest second.

The Rule of Pythagoras

A The Rule of Pythagoras (Review)

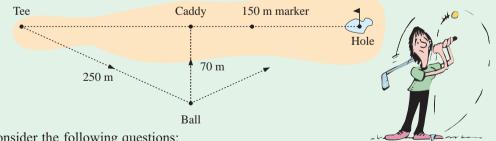
- **B** Further problem solving
- **C** Testing for right angles
- Navigation

98 THE RULE OF PYTHAGORAS (Chapter 5)


Right angles (90° angles) are used when constructing buildings and dividing areas of land into rectangular regions.

The ancient **Egyptians** used a rope with 12 equally spaced knots to form a triangle with sides in the ratio 3:4:5.

This triangle had a right angle between the sides of length 3 and 4 units.


In fact, this is the simplest right angled triangle with sides that are whole numbers.

OPENING PROBLEM

Karrie is playing golf in the British Open. She hits a poor tee shot on the opening hole. Her caddy paces out some distances and finds that Karrie has hit the ball 250 m, but 70 m from the centre of the fairway. A marker which is 150 m from the hole is further up the fairway as shown.

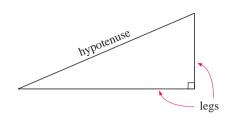
Consider the following questions:

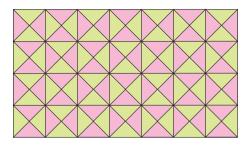
- 1 From where he stands on the fairway, how far would the caddy have to walk back to retrieve Karrie's putter if he left it on the tee?
- From where the caddy stands on the fairway, what distance is left to the 150 m marker 2 if he knows the hole is 430 m long?
- How far does Karrie need to hit her ball with her second shot to reach the hole? 3

THE RULE OF PYTHAGORAS (REVIEW)

A **right angled triangle** is a triangle which has a right angle as one of its angles.

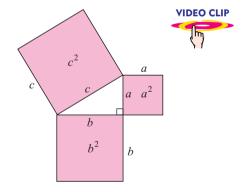
The side **opposite** the **right angle** is called the **hypotenuse** and is the **longest** side of the triangle.


The other two sides are called the **legs** of the triangle.


Around 500 BC, the Greek mathematician **Pythagoras** discovered a rule. It connects the lengths of the sides of all right angled triangles.

It is thought that he discovered the rule while studying tessellations of tiles on bathroom floors. Such patterns, like the one illustrated, were common on the walls and floors of bathrooms in ancient **Greece**.

h

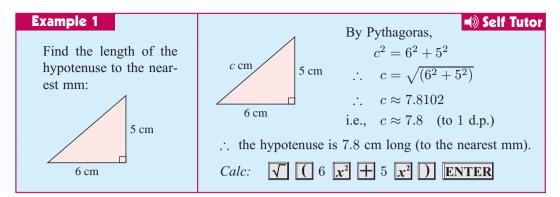

In a right angled triangle, with hypotenuse c and legs a and b,

$$c^2 = a^2 + b^2.$$

In geometric form, the Rule of Pythagoras is:

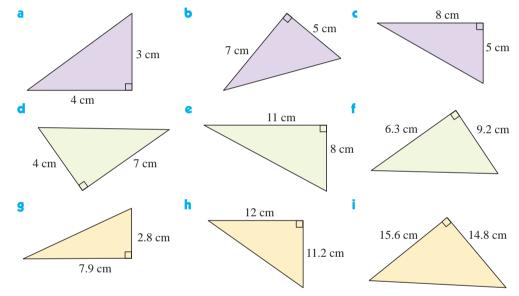
In any right angled triangle, the area of the square on the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

а



PYTHAGORAS

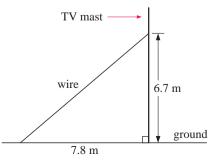
Areas of interaction: Human ingenuity


100 THE RULE OF PYTHAGORAS (Chapter 5)

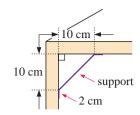
EXERCISE 5A

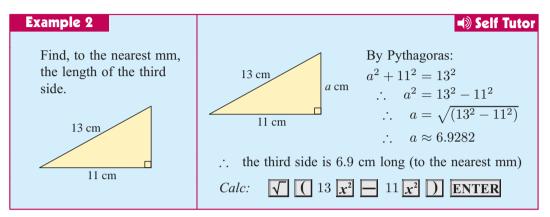
2

1 Find the length of the hypotenuse to the nearest mm:



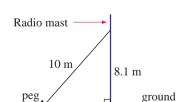
The size of a computer monitor is the length across its diagonal. If a computer monitor is 34.4 cm long and 27.5 cm high, what size is it?

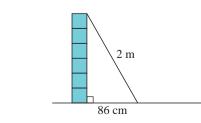

a Find the length of the wire shown supporting the TV mast.


diagonal

- **b** There are six wires which support the mast.
 - Find their total length.
 - **ii** If 3% extra wire is needed for tying, how many metres of wire need to be purchased? The wire must be purchased in a whole number of metres.

4 Metal supports are made as shown. They are fitted from the lower edge of the table top to the legs. The flat ends of the supports are 2 cm long. Find the length of the metal needed to make the 8 supports used to stabilise the table.



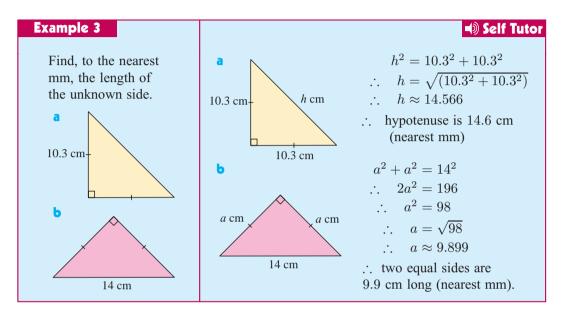


5 Find, to the nearest mm, the length of the third side of the triangle:

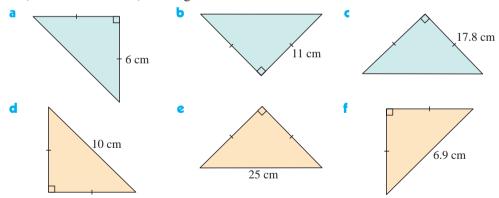
a radio mast has a support wire field 8.1 m above ground level. The other end is field to a peg in the ground. How far is the peg from the base of the mast?

7

A ladder is 2 metres long. It leans against a wall so the base is 86 cm from the wall.

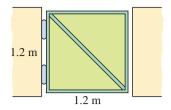

- a Write 86 cm in metres.
- **b** How far up the wall does the ladder reach?

102 THE RULE OF PYTHAGORAS (Chapter 5)


- 8 Heidi has made a rectangular cushion cover which measures 36 cm long by 32 cm wide. She wants to put lace across one diagonal on each side.
 - **a** Find the length of the diagonal.
 - Find the total length of lace required, if 4 cm extra is allowed for finishing off the ends.

• Calculate the cost of the lace at \$2.30 per metre.

9 Find, to the nearest mm, the length of the unknown side:

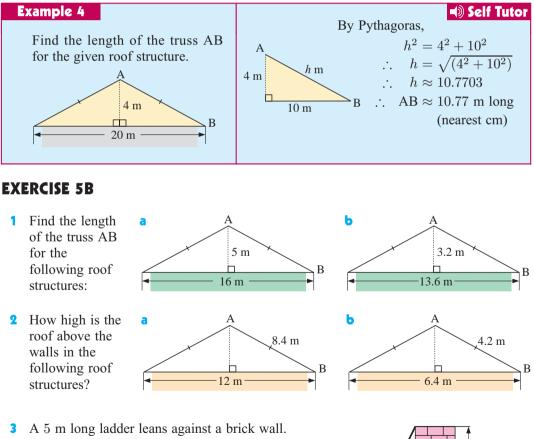


- **10** A square garden with sides 100 m is divided into two triangular plots by a fence along one diagonal.
 - **a** What is the length of the fence in metres (to 1 decimal place)?
 - **b** If the fence costs \$15.50 per metre, what is the total cost?
- 11 A 160 m long water pipe runs along the diagonal of a square paddock. What are the lengths of the sides of the paddock?

- 12 A garden gate is 1.2 metres wide and 1.2 metres high. The gate is strengthened by a diagonal strut.
 - **a** How long is the strut?

B

• Calculate the length of steel needed for the frame of the gate, including the strut.

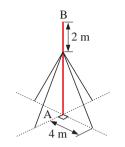

4.8 m

5 m

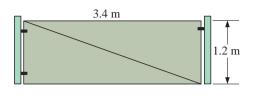
13 A knitting needle is 24 cm long. It just fits across the diagonal of the base of a square tin. How long are the sides of the tin? Answer to the next millimetre.

FURTHER PROBLEM SOLVING

Right angled triangles are used constantly in the building industry for houses, industrial sites, bridges, and more. The Rule of Pythagoras is used to find unknown lengths on these triangles.

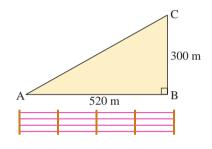

3 A 5 m long ladder leans against a brick wall. If it reaches 4.8 m up the wall, how far are the feet of the ladder from the base of the wall?

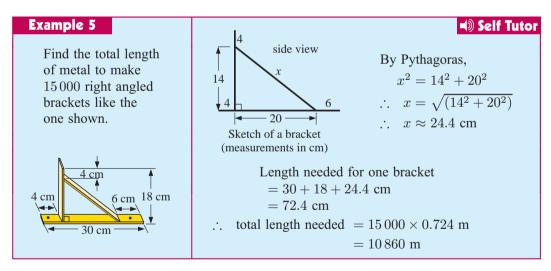
104 THE RULE OF PYTHAGORAS (Chapter 5)


4 A metal gate is 3.4 m wide and 1.2 m high.

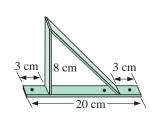
A diagonal support is added for strength to help keep the corners right angled.

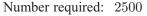
How long is the diagonal support?


5

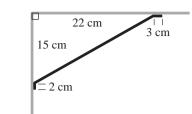


A pole AB is 10 m tall above the ground. At a point 2 m below B, four wires are connected from the pole to the ground.


Each wire is pegged to the ground 4 m from the base of the pole. What is the total length of the wire needed given that a total of 2 m extra is needed for tying?


- 6 On a triangular property a farmer erects a 4 strand wire fence. The fence is along all three sides of the property.
 - **a** Find the length of side AC.
 - **b** Find the perimeter of the property.
 - Find the total length of wire required.
 - **d** If the wire costs \$29.50 for 100 m, find the total cost of the wire for the fence.

7 Find the total length of metal required to make these right angled brackets:

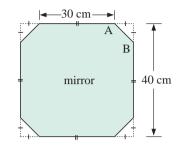

 $\land -12 \text{ cm} \rightarrow \land$ Number required: 8450

cm

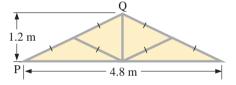
4 cm

16 cm

5 cm

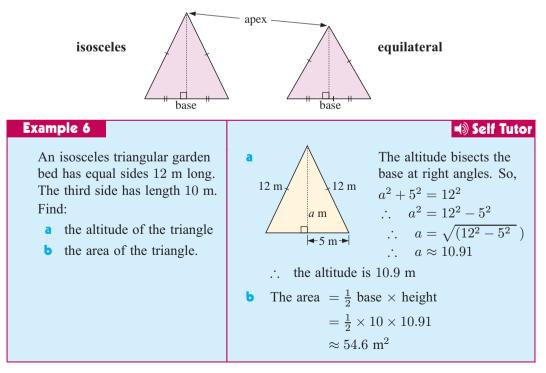


Six steel brackets like the one shown are used to support a shelf for books. The steel weighs 2.4 kg per metre. Find:


- a the length of metal in one bracket
- **b** the total length of metal for the 6 brackets
- the total weight of the 6 brackets.
- A mirror with dimensions as shown has a timber frame. Find:
 - a the length of AB

8

b the total length of timber required to make the frame.

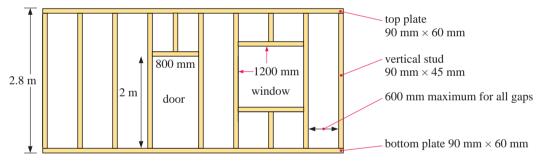

10 Three metal trusses are used to make the roof of a shed. Find:

- a the length of PQ
- **b** the total length of metal to make one truss
- the total length of metal to make all three trusses.

ISOSCELES AND EQUILATERAL TRIANGLES

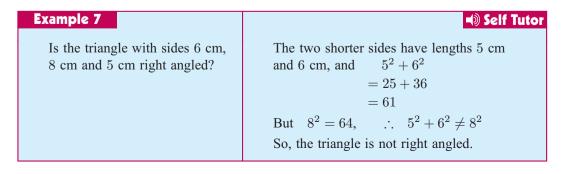
Isosceles triangles have *two* equal sides. Equilateral triangles have *three* equal sides. In both cases, a perpendicular line from the base to the apex *bisects* the base.

Note: Always sketch a diagram of the situation. Show all given lengths and other information.

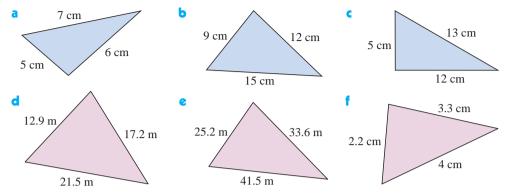

- **11** An equilateral triangle has sides of length 12 cm.
 - **a** Find the length of one of its altitudes.
 - Find the area of the triangle.
- 12 An isosceles triangle has equal sides of length 8 cm and a base of length 6 cm.
 - **a** Find the altitude of the triangle.
 - **b** Find the area of the triangle.
- **13** A new park is an equilateral triangle with sides 200 m. It will be surfaced with instant turf.
 - **a** Find the length of an altitude of the triangle (to 2 d.p.).
 - **b** Find the area of turf needed to grass it.
 - If the turf costs 4.25 per m² fully laid, find the total cost of grassing the park.

TESTING FOR RIGHT ANGLES

In the construction of houses and other buildings it is essential that the corners are 'square'. In other words, they need to meet each other at right angles.

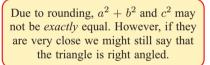

The following diagram shows a typical frame for the wall of a house:

How do the workers make sure that they have right angled corners? One method is to use the Rule of Pythagoras in reverse. We call this the **right angled triangle test**:

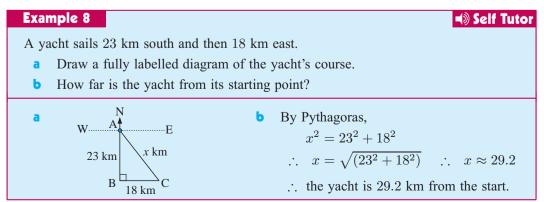


If a triangle has sides of length a, b and c units and $a^2 + b^2 = c^2$, then the triangle is right angled.

EXERCISE 5C


1 The following figures *are not drawn accurately*. Which of the triangles are right angled?

- 2 Colin believes he has cut out a perfect rectangular canvas covering which has adjacent sides 8.6 m and 5.4 m. The opposite sides are equal. He measures a diagonal to be 10.155 m. Is Colin's rectangle right angled?
- **3** Julie has just cut out a triangular sail for her boat. The lengths of the sides are 6.23 m, 3.87 m and 4.88 m. The sail is supposed to be right angled. Is it?



NAVIGATION

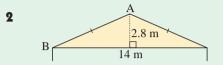
The problems in this section involve navigation and compass bearings, including some problems where we test for right angles. Remember that drawing a diagram of the situation may be very helpful in solving the problem.

EXERCISE 5D

- 1 A yacht sails 9 km due west and then 7 km due south. How far is it from its starting point?
- 2 A cyclist rides 8 km due west and then 10 km due north. How far is he from his starting point?
- **3** A runner is 9 km west and 6 km south of her starting point.
 - **a** How far is she from her starting point?
 - **b** How long would it take her to return to her starting point in a direct line if she can run at 10 km h^{-1} ?

- 4 Two ships X and Y leave port P at the same time. X travels due east at a constant speed of 15 km h⁻¹. Y travels due north at a constant speed of 20 km h⁻¹.
 - **a** How far have X and Y each travelled after three hours?
 - **b** Find the distance between them after three hours.
- 5 Hayato and Yuki are sailing at sea. From a particular buoy they sail for 240 m in one direction, then turn and sail for 100 m in another. They are now 260 m from the buoy. Was the angle they turned a right angle?
- 6 Pirate Captain William Hawk left his hat on Treasure Island. He sailed 18 km northeast through the Forbidden Straight, then 11 km southeast to his home before realising it was missing. If he sent his parrot to fetch the hat, how far did the bird need to fly?

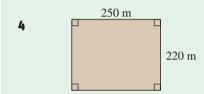
- 7 Town A is 80 km south of town B. Town C is 150 km east of town B.
 - a Find how long it takes to travel directly from A to C by car at 90 km h^{-1} .
 - **b** Find how long it takes to travel from A to C via B in a train travelling at 130 km h^{-1} .
 - **c** Comparing **a** and **b**, which is faster?


8

Two runners set off from town A at the same time. One ran due east to town B while the other ran due south to town C at twice the speed of the first. They arrived at B and C two hours later. If B and C are 60 km apart, find the speed at which each runner travelled.

- 9 Max and Kyle leave home at the same time, both riding their bicycles. Max travels due east at 12 km h⁻¹, while Kyle travels due south at 15 km h⁻¹.
 - a How far have Max and Kyle each travelled after three hours?
 - **b** How far apart are they after three hours?
 - If they start to ride directly towards each other at the same speeds as before, how long will it take for them to meet?

1 A young tree has a 2 m support rope tied to a peg in the ground 1.2 m from its base. How high up the tree is the rope tied?

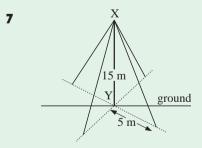


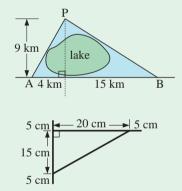
Find the length of the truss AB for the roof structure shown.

2 m

peg

3 A television screen size is advertised as 34 cm. If the screen is 20 cm high, how wide must it be?




A farmer has a paddock which is 250 m long and 220 m wide. She walks along two sides checking the electric fence then returns by walking diagonally across the paddock. How far has she walked?

5 A new industrial park is built at P, 9 km across the lake from the straight road connecting towns A and B. New roads have been made from A to P and B to P to allow quick access to the park for workers from these towns.

Find the distances AP and BP to the nearest 100 m.

• A bracket for hanging flower baskets is shown in the diagram. Find the length of steel needed to make this bracket.

A pole XY is 15 metres tall. Four wires from the top of the pole X connect it to the ground.

Each wire is pegged 5 metres from the base of the pole. Find the total length of wire needed if a total of 2 m extra is needed for tying.

- 8 Mia and Yvette leave home at the same time. Mia walks east at 5 km h⁻¹ and Yvette walks at 4 km h⁻¹ in another direction.
 - **a** How far do they each walk in $1\frac{1}{2}$ hours?
 - **b** If they are now approximately 9.6 km apart, show that Yvette travelled at right angles to Mia.
 - What directions might Yvette have walked in?

ground

REVIEW SET 5B

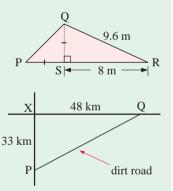
1 A landscaped garden is 25 metres square. Find the length of a path from one corner to the opposite corner.

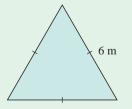
How high is the roof above the walls in the roof structure shown?

ladder

2 m

II | 1.8 m


3 A ladder is 2 m long. It leans against a wall so that it reaches 1.8 m up the wall.


How far from the wall is the foot of the ladder?

A fishing boat leaves port and sails 8 km west then 15 km south. How far must it sail if it returns to port by the shortest distance?

- **5** For the roof structure given:
 - **a** Find the height QS of the roof above the walls.
 - **b** Find the length of the roof truss PQ.
- 6 Two country roads meet at right angles at X. A motorist can travel from P to X to Q on a sealed road, travelling at 90 km h⁻¹.
 - **a i** How far is it from P to X to Q?
 - **ii** How long would it take him (in minutes)?
 - **b** He could also travel in a straight line from P to Q along a dirt road.
 - **i** Find the distance along the dirt road.
 - ii If he can travel at 60 km h^{-1} on the dirt road, how long would it take him to reach Q?
 - Which is the quicker route?
- 7 An equilateral triangle has sides 6 m long.
 - **a** Find the length of a perpendicular from a vertex to the opposite side.
 - **b** Find the area of the triangle.
- 8 Kim has made a rectangular wooden frame for a photograph. It measures 59 cm long and 41 cm wide. The diagonal measures 71.85 cm. Check that the frame is rectangular.

Algebra

Contents:

- A Changing words into symbols
- **B** Generalising arithmetic
- C Converting into algebraic form

6

- **D** Formula construction
- E Number patterns and rules
- F The value of an expression

OPENING PROBLEM

A fencing contractor builds fences made from termite resistant timber. The posts and the rails are identical in size and length.

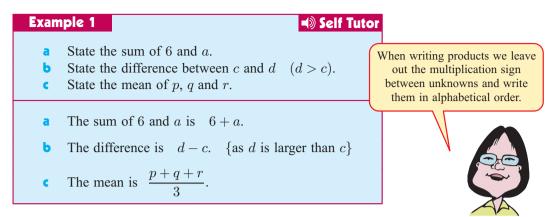
- Can you find how many lengths of timber are needed to make
 - **a** a one-panel fence
 - **c** a three-panel fence
 - a one hundred-panel fence

panel 1 panel 2 panel 3

- **b** a two-panel fence
- **d** a ten-panel fence
- f a one thousand-panel fence?
- Clearly we do not wish to draw fences with large numbers of panels in order to answer **e** and **f** above. How else could we find exact answers to **e** and **f**?

CHANGING WORDS INTO SYMBOLS

In algebra we can convert sentences into algebraic expressions or equations.


We can use letters or *pronumerals* such as n or x to represent unknown numbers.

For example,

Tł	nree times a number,	less 2	is	7 more than the number
becomes	3x	-2	=	x+7.

Many algebraic statements use words such as sum, difference, product, and quotient.

Word	Meaning	Examples
sum	The sum of two or more numbers is obtained by adding them.	4+5, $x+7$, $r+s+t$ are sums.
difference	The difference between two numbers is the larger one minus the smaller one.	8-3, n-11 (if $n > 11$) are differences.
product	The product of two or more numbers is obtained by multiplying them.	$2 \times 7, 4b, pqr$ are products.
quotient	The quotient of two numbers is the first one mentioned divided by the second.	The quotient of a and b is $\frac{a}{b}$.
mean	The mean of a set of numbers is their sum divided by the number of numbers.	The mean of x, y and z is $\frac{x+y+z}{3}.$

EXERCISE 6A

R

1	1 Write expressions for the sum of:	
	a 9 and 2 b 5 and a c m and 3	d d, e and f
2	2 Write expressions for the product of:	
	a 8 and 6 b 6 and p c n and 4	m d b, d and e
3	3 Write expressions for the quotient of:	
	a 6 and 5 b d and 3 c m and 5	5n d $p+q$ and x
4	4 Write expressions for the mean of:	
	a 6 and 10 b 9 and d c k and 4	v d d , e and f
5	5 Write expressions for the difference between:	
	a 5 and 8 b 6 and s if $6 < s$	$\bullet 8 \text{ and } p \text{if} 8 > p$
6	6 Write down algebraic expressions for:	
	a seven times a is subtracted from m b the product of the	roduct of x and the square of y
	c the sum of d and three times e d 5 less	s than a
	<i>e b</i> more than 2 f the pr	roduct of the square of 4 and c
	g the square of the product of a and b h the su	am of the squares of p and q


GENERALISING ARITHMETIC

To find algebraic expressions for many real world situations we first think in terms of numbers.

For example, suppose we are asked to find the total cost of p pens where each pen costs x.

We could first find the total cost of 4 pens where each pen costs \$5. In this case the total cost is $4 \times $5 = 20 .

We multiplied the two quantities, and so the total cost of p pens at x each is $p \times x = px$.

Example 2 Self Tutor
Find: a the cost of x bananas at 30 cents each
b the change from \$50 when buying y books at \$6 each.
a Suppose we were buying 7 bananas at 30 cents each.
The cost of 7 bananas at 30 cents each would be 7×30 cents.
\therefore the cost of x bananas at 30 cents each is $x \times 30 = 30x$ cents.
b Suppose we were buying 5 books at \$6 each.
The change when buying 5 books at \$6 each would be $50 - (5 \times 6)$ dollars.
\therefore the change when buying y books at \$6 each is $50 - (y \times 6)$ dollars
= 50 - 6y dollars.
EXERCISE 6B
 1 Find the total cost (in cents) of buying: a 4 apples at 50 cents each b x apples at 50 cents each

- x apples at c cents each
- **2** Find the total cost (in pounds) of buying:
 - a 6 apples at 20 pence each b y apples at 20 pence each
 - d apples at c pence each
- **3** Find the change from CHF 100 when buying:
 - **a** 6 books at CHF 10 each **b** n books at CHF 10 each
 - n books at CHF p each
- 4 Yuri has €30 in his pocket. How much would he have if:
 - **a** he spends $\in 8$ **b** he spends $\in m$ **c** he is given $\in t$?
- 5 Brian went on a journey to see his friends. He travelled 6 km to see Jonas, then another k km to see Susan. He travelled another n km to see James, then drove the 8 km directly home. How far did he travel on his journey?
- 6 Carlos is now 16 years old. How old will he be in b years time?
- **7** Peta can run at 12 km h^{-1} . How far can she run in h hours?
- 8 You have a 9 m length of string. If you cut 4 lengths of x m from it, what length remains?
- **9** Graham buys *p* pencils and *b* books. Find the total cost in cents, if each pencil costs 60 cents and each book costs 95 cents.
- A cyclist travels at an average speed of 24 km h⁻¹ for 4 hours. How far does the cyclist travel?
 - **b** How far does the cyclist travel if he rides at an average speed of $k \text{ km h}^{-1}$ for h hours?

CONVERTING INTO ALGEBRAIC FORM

Example 3

Self Tutor

a 18 1	into algebraic form: more than a number ble a number		nan a number he sum of a number and 7
b 7 le c dou d The so e	more than a number is the number ess than a number is the number able a number is the number m e sum of a number and 7 is x - double this sum is $2 \times (x + 7)$	er minus 7 nultiplied by 2 + 7,	i.e., $2(x+7)$
Note	e: Any pronumeral, for examp could have been used here.	le, <i>y</i> ,	double sum of the number and 7

EXERCISE 6C

g

- Translate the following into algebraic expressions: 1
 - 8 more than pа
 - d the sum of c and 4 h is divided by 3
- 3 less than x0

g is decreased by 3

- n is increased by 2 C
- f
 - 4 more than 2 times ai.
- the product of 4 and f
 - double p and add 14

Translate the following into algebraic expressions: 2

3 more than a certain number а h

Ь

h

- one half of a number C
- one quarter of a number e
- 1 more than double a number g
- 5 less than a number
- treble a certain number d
- 12 minus a number f
- 6 less than five times a number h

3 Copy and complete:

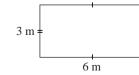
- Two numbers have a sum of 4. If one of them is s then the other is
- Ь Two numbers are in the ratio 1:2. If the smaller one is a then the larger one is
- Two numbers in the ratio 2:3 can be represented by 2c and
- **d** If there are 27 students in a class and b are boys, then there are girls.
- e If the smaller of two consecutive integers is y, then the larger is
- Three consecutive integers in ascending order are x, \ldots, \ldots f.
- Two consecutive odd integers in ascending order are d and 9
- h Three consecutive integers in descending order are a,,
- If the middle integer of three consecutive integers is m, then the other two are i. and
- Two numbers differ by 3. If the smaller one is s then the other is i.

- 4 Write each of the following quantities as an algebraic expression in terms of the given pronumeral:
 - **a** The sum of two numbers is 13. One of the numbers is x. What is the other number?
 - **b** The larger of two consecutive integers is k. What is the smaller integer?
 - \bullet n is the smallest of three consecutive integers. What are the other two integers?
 - **d** The larger of two consecutive odd integers is v. What is the smaller one?
 - The middle integer of three consecutive even integers is *m*. What are the other two integers?
 - f There are s students in a class. If g of them are girls, how many of them are boys?

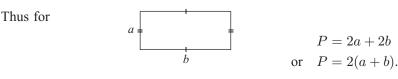
Example 4

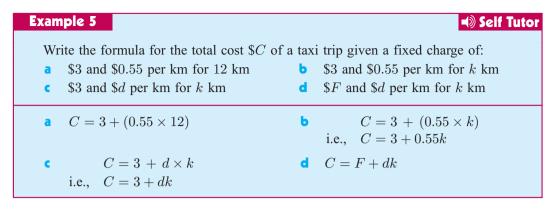
Self Tutor

Translate into an algebraic expression:


- **a** the sum of three consecutive odd numbers, where the smallest is n
- **b** the total value of x 43-cent stamps and (7 x) 75-cent stamps.
- a If n is the smallest number then the others are n+2 and n+4 \therefore sum is n + (n+2) + (n+4).
- The x stamps each costing 43 cents have total value 43x cents.
 The (7-x) stamps each costing 75 cents have total value 75(7-x) cents
 ∴ total value = 43x + 75(7-x) cents.
- **5** Translate into an algebraic expression:
 - **a** the sum of two consecutive whole numbers
 - **b** the sum of two consecutive even numbers
 - the total value of $x \neq 50$ coins and $(x+4) \neq 20$ coins
 - d the total value of $x \in 5$ notes and $(8-x) \in 20$ notes

FORMULA CONSTRUCTION


Formulae are often constructed as the generalisation of numerical observations. To construct a formula, we reduce the problem to a specific numeric situation to understand it, and then generalise the result.


For example,

the perimeter of the rectangle is given by P = 3 + 6 + 3 + 6 metres

- $\therefore P = (2 \times 3) + (2 \times 6)$ metres
- \therefore *P* is double the width plus double the length.

EXERCISE 6D

- 1 Write a formula for the amount $\in A$ in a new savings account given monthly deposits of:
 - **a** \notin 300 over 15 months **b** \notin 300 over *m* months **c** \notin *d* over *m* months
- 2 Write a formula for the amount $\pounds A$ in a bank account if initially the balance was:
 - **a** £3000, and then £200 was deposited each week for 6 weeks
 - **b** £3000, and then £200 was deposited each week for w weeks
 - c £3000, and then $\pounds m$ was deposited each week for w weeks
 - **d** $\pounds P$, and then $\pounds m$ was deposited each week for w weeks.
- 3 Write the formula for the total cost C of hiring a plumber given a fixed call-out fee of:
 - **a** \$60 plus \$50 per hour for 5 hours work
 - **b** \$60 plus \$50 per hour for t hours work
 - **c** \$60 plus \$d per hour for t hours work
 - **d** F plus d per hour for t hours work.

Example 6

а

Self Tutor

Write the formula for the amount A in a person's bank account if initially the balance was:

- **a** \$5000 and \$200 was withdrawn each week for 10 weeks
- **b** \$5000 and \$200 was withdrawn each week for w weeks
- \$5000 and \$x was withdrawn each week for w weeks
- **d** B and x was withdrawn each week for w weeks.

a $A = 5000 - 200 \times 10$ b $A = 5000 - 200 \times w$ i.e., A = 5000 - 200wc $A = 5000 - x \times w$ i.e., $A = B - x \times w$ i.e., A = B - xw

- 4 Write the formula for the amount \$A in Leon's wallet if initially he had:
 - **b** \$300 and he bought x \$6 presents
 - \$300 and he bought x \$b presents

\$300 and he bought 10 \$6 presents

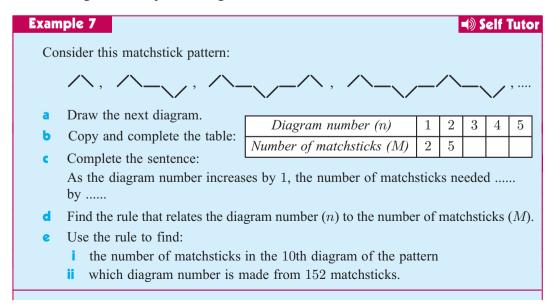
d P and he bought x b presents

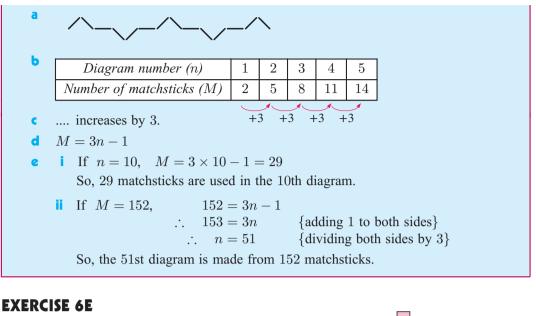
- **5** Write a formula for the capacity, C litres, of a tank if initially the tank held:
 - a 6000 litres and 20 litres per minute for 100 minutes have run out of it through a tap
 - **b** 6000 litres and d litres per minute for 100 minutes have run out of it through a tap
 - c 6000 litres and d litres per minute for m minutes have run out of it through a tap
 - **d** L litres and d litres per minute for m minutes have run out of it.

Ε

NUMBER PATTERNS AND RULES

Consider the pattern of matchstick triangles:


It starts with one triangle made from 3 matchsticks.


The second diagram has two triangles made from 5 matchsticks.

The third diagram has three triangles made from 7 matchsticks, and so on.

These results can be placed in a table:			Number of triangles (t) 1 2 3 4 5 Number of matchsticks (M) 3 5 7 9 11											
				100	mber	oj maici	ISLICKS (IV.	1)	3	9	1	9	11	••••
									/+	2 +	2 +	-2 -	+2	
Notice that	when	t = 1,	M	= 2	2 × 1	+1 = 3								
	when	t = 2,	M	= 2	2×2	+1 = 5								
	when	t = 3,	M	- = 2	2×3	+1 = 7								
	when	t = 4,	M	= 2	2×4	+1 = 9								
	etc.			1										
					Wh	hat part o	f the table	e sho	ows 1	the co	onsta	nt ad	dition	of 2?
				l	– Is t	this wher	e the 2 of	f the	e nun	nber	patte	rn co	mes f	rom?

We see that M = 2t + 1 is the formula which allows us to find the number of matchsticks M for the figure made up of t triangles.

1	a Draw the <i>next two</i> di	iagram	s in the pattern ,	,			,		
	b Copy and complete	ſ	Diagram number (n)	1	2	3	4	5	6
	this table:	t	Number of squares (S) 1	3	5			
	• Which of these possi	ible rul	les fits the given patter	n?					
	S = 2n + 1	ii	$S = \frac{n+1}{2}$	S =	= 2n -	- 1			
	d Use the rule found in	n c to f	find the number of squ	ares wł	nen:				
	n = 11	ii	n = 67						
If	A restaurant table seats 4 If two tables are pushed t a How many people ca	togethe	r, 6 people can be seat	ed. •		•			
If	f two tables are pushed t	togethe an be s	r, 6 people can be seat	ed. •	• •		sed?		
If	 a How many people ca i three tables are b Copy and complete 	togethe an be s	r, 6 people can be seat	four ta	• •		sed?	5	6
If	a How many people ca i three tables are	togethe an be s	r, 6 people can be seat eated if:	four ta	bles a	are us		5	6
If	 a How many people ca i three tables are b Copy and complete 	togethe an be s used	er, 6 people can be seat seated if: <i>Number of tables (n Number of people (F</i>	four ta	bles a	are us		5	6

Copy and complete

e:	Diagram number (n)	1	2	3	4	5	6
	Number of crosses (C)	1	5	9			

- Find the rule which relates the diagram number n to the number of crosses C.
- **d** Use the rule to find:
 - i the number of crosses in the 10th diagram
 - ii the diagram number which is made up from 97 crosses.
- 4 A pattern is formed by starting with a square, then adding another square each time as shown:

We will count the number of triangles shown in each diagram.

- **a** Draw the next diagram in the pattern.
- **b** Copy and complete:

Number of squares (n)	1	2	3	4
Number of triangles (t)	0	4		

- Find the rule which relates the number of squares n to the number of triangles t.
- **d** Use the rule to find:
 - i the number of triangles in a diagram made from 10 squares
 - ii the number of squares needed to make a diagram which shows 56 triangles.

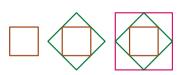
- 5 a Draw the *next two* diagrams in the matchstick pattern.
 - b Copy and complete:

		J			
Diagram number (n)	1	2	3	4	5
Number of matchsticks (M)	4	9			

- Find the rule which relates the diagram number n to number of matchsticks M.
- **d** Use the rule to find:
 - i the number of matchsticks used to make the 30th diagram
 - ii the diagram number which uses 314 matchsticks.

F

THE VALUE OF AN EXPRESSION


In Exercise 6D we found algebraic expressions for many real world situations.

For example, the total cost of buying five apples at a cents each and three bananas at b cents each would be 5a + 3b cents.

If an apple cost 10 cents and a banana cost 15 cents, the total cost would be

 $5 \times 10 + 3 \times 15 = 50 + 45 = 95$ cents.

In this way we can **evaluate** (find the value of) the **expression** for particular **numerical** values of a and b. In this case we substitute a = 10 and b = 15.

You may find it

useful to place

substitutions inside brackets.

To **evaluate** a mathematical expression we find its value for particular numerical substitutions of the pronumerals (unknowns).

For example, when a = -2 and b = -7 then

3a - b= $3 \times (-2) - (-7)$ {replacing a by -2 and b by -7} = -6 + 7= 1

Example 8	Self Tutor
For $a = 3$, $b = 2$ and $c = -4$,	evaluate:
a $2a + 5b$	b $-2c^2$
a $2a + 5b$	b $-2c^{2}$
= $2 \times 3 + 5 \times 2$	= $-2 \times (-4)^{2}$
= $6 + 10$	= -2×16
= 16	= -32

EXERCISE 6F

1 If $a = 4$, $b = 3$, c	a = 6, and $d = 3$, f	find the value of:	
a $a+b$	b 2a	a+2b	d $3c+d$
c - d	f ab	g 3bc	h $2c^2$
2(a+b)	3(c-b)	\mathbf{k} $4a^2$	$(4a)^2$
2 If $m = 5$, $n = 3$,	g = 8, and $h = 4$,	evaluate:	
a $3m+n$	b $11 + 2h$	c $mn-g$	d $3n^2$
${f c}$ $(3n)^2$	f $2h^3$	g $(2h)^3$	h $3m-5n$
$m^2 - 3m$	m(m-3)	k $2(g+h)$	2g+2h
3 If $p = 3$, $q = -2$,	r = -1, and $s = 2$	e, evaluate:	
a q^2	b q^3		d qrs
$ m c$ r^{11}	f $q^2 + s^2$	$\mathbf{g} pq+rs$	h $p^2 + r^2 - 3$
$p^2 - r^2$	(p-r)(p+r)	\mathbf{k} $p+q^2$	$(p+q)^2$

Example 9 If $a = 2$, $b = -3$ and a $\frac{a-b}{c}$	d $c = -5$, evaluate: $\frac{a - c - b}{b - a}$	You should write all negative substitutions in brackets.
a $\frac{a-b}{c}$ $=\frac{2-(-3)}{-5}$	b $\frac{a-c-b}{b-a}$ = $\frac{2-(-5)-(-3)}{-3-2}$	
$= \frac{2+3}{-5}$ $= \frac{5}{-5}$ $= -1$	$= \frac{2+5+3}{-3-2}$ $= \frac{10}{-5}$ $= -2$	

4 If a = 3, b = -2, c = 10, d = 7, e = -3, and f = -5, find the value of: **a** $\frac{c}{f}$ **b** $\frac{c}{b}$ **c** $\frac{a}{e}$ **d** $\frac{e-d}{f}$ e $\frac{a-b}{a+b}$ f $\frac{2c}{-b}$ g $\frac{-3b}{e}$ h $\frac{e-f}{b}$ i $\frac{c+f}{a-b}$ j $\frac{c-f}{-f}$ k $\frac{d-c}{e}$ l $\frac{5e-a}{b}$

5	For	$\begin{array}{c cc} m & n \\ \hline 2 & -2 \end{array}$	$\begin{array}{c c} p \\ -5 \end{array}$	$\begin{array}{c c} q & r \\ 1 & -4 \end{array}$	find the value of:		
	а	$\frac{m}{n}$	b	$\frac{p+q}{r}$	$rac{m+r}{q}$	d	$\frac{p-q}{m}$
	e	$\frac{-5m}{n}$	f	$\frac{2r}{n-m}$	$\mathbf{g} \frac{m^2}{2n}$	h	$\frac{m+n}{m-n}$
	i	$\frac{3m^2}{r}$	j	$\frac{q^2 - p^2}{r}$	$\frac{qr}{4}$	1	$\frac{p-q}{-mq}$

INVESTIGATION

"TO BE OR NOT TO BE" EQUAL

Testing by substitution can help us find whether two different looking algebraic expressions are equal or not.

For example:

2(x+3) and 2x+6 are equal expressions because no matter what value of x is substituted, both expressions are equal for this value of x.

2(x+3) and 2x+3 cannot be equal, because for x=1

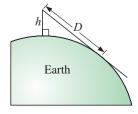
$$2(x+3) = 2(1+3)$$
 whereas $2x+3 = 2 \times 1+3$
= 2×4 = $2+3$
= 8 = 5

One counter example is sufficient to show that two expressions are not equal.

What to do:

Copy and complete the following table of values:

a	b	$a + \frac{b}{4}$	$\frac{a+b}{4}$	$\frac{a}{4} + b$	$\frac{a}{4} + \frac{b}{4}$
8	4				
3	5				
6	-2				

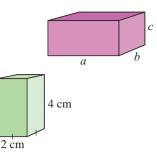

From the table, which of the four expressions are likely to be equal and which are definitely not equal?

- **6** a If G = 3P 7, find G when P = 8.
 - **b** If M = 4x + 3, find M when x = 13.
 - If $A = \frac{4}{3}d + 3$, find A when d = 6.
 - **d** If $T = \frac{3g+2}{4}$, find T when g = 14.
 - If $S = \sqrt{2n+5}$, find S when n = 10.
 - f If P = 2a + 2b, find P when a = 9 and b = 13.
 - **g** If $M = \sqrt{a^2 + b^2}$, find M when a = 4 and b = 3.
- 7 When visiting the USA last year, Jacob noticed that the forecast temperatures for the next day were given in °F rather than in °C.

His travel documents gave the formula $C = \frac{5F - 160}{9}$ to convert °F into °C.

What are the ^oC temperatures when the forecast temperatures are:

- **a** 38° F **b** 65° F **c** 100° F?
- 8 The depth of a well can be measured using the formula $d = 4.9t^2$ metres where t is the time (in seconds) it takes for a stone to hit the bottom.
 - **a** How deep is a well if it takes a stone 3.6 seconds to hit the bottom?
 - **b** How high is a cliff if it takes a stone 7.2 seconds to reach the sea below?
- 9 The formula D = 3.56√h gives the approximate distance (D km) to the horizon which can be seen by a person with eye level h metres above the level of the sea. Find the distance to the horizon when a person's eye level is:


a 5 m above sea level **b** 20 m above sea level.

а

10 The total surface area of a rectangular prism can be found using the formula S = 2(ab + bc + ac).

Find the total surface area of these rectangular prisms: h

2 cm 8 cm

11 If the three sides of a triangle are a, b and c units long we can find the area of the

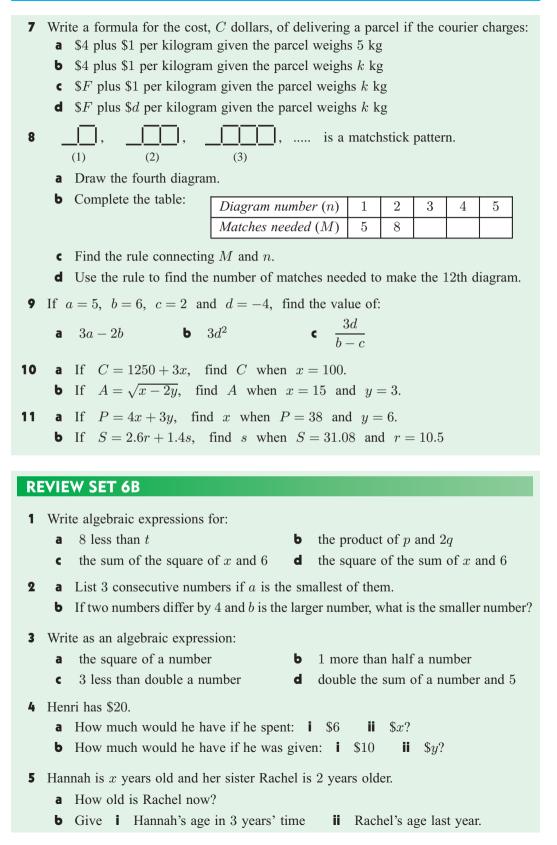
triangle by first finding $s = \frac{a+b+c}{2}$ and then using

5 cm

Heron's formula

 $A = \sqrt{s(s-a)(s-b)(s-c)}$

- 5 cm 3 cm using area $= \frac{1}{2} \times \text{base} \times \text{height}.$ Find the area of
- Use Heron's formula to find the area of the triangle in a. Ь
- Use Heron's formula to find the area of the triangle with sides 5 cm, 6 cm and 7 cm.
- d A triangular paddock has sides 213 m, 318 m and 271 m. Find its area using Heron's formula.


REVIEW SET 6A

- **1** Write expressions for:
 - the sum of a and ba
 - the mean of x and yC
- What number is: 2

4

a 5 less than b

- the product of c and dЬ
- the difference between m and n if m < nd
- Ь 5 more than a?
- Find the total cost of: 3
 - a x oranges at 40 cents each
- *n* books at $\in b$ each Ь
- **a** Jason has £50 and buys five items costing $\pounds n$ each. How much has he left?
 - **b** Chong walks for h hours at an average speed of 5 km h⁻¹. How far does he walk?
- Complete the following: 5
 - **a** Two numbers have a sum of 11. If one of them is a then the other is
 - **b** If x is the smaller of two consecutive *odd* integers, the other integer is
- **6** Find the total value of $y \$ for and $(7 y) \$ coins.

- **6** Find the total mass of x books weighing 2 kg each and twice that number of books weighing 3 kg each.
- 7 Write a formula for the charge, C dollars, made by an electrician:
 - who charges a call-out fee of \$50 plus \$60 for each hour spent, if his work takes a $1\frac{1}{2}$ hours
 - **b** who charges a call-out fee of D plus x for each hour spent, if his work takes t hours.

is a matchstick pattern.

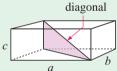

- **a** Draw the 4th diagram.
- **b** Copy and complete the table:

Diagram number (n)	1	2	3	4	5	
Matches needed (M)	2	5				

- Find the rule connecting M and n.
- **d** Use the rule to find:
 - i the number of matches needed to make the 20th diagram
 - ii . the diagram number which uses 122 matches.
- 9 If a = -1, b = 2, c = -3 and d = 4, find the value of:

a
$$8a - c$$
 b $2c^3$ **c** $\frac{8b - d}{a + c}$

10 The length of the diagonal in the rectangular prism а shown is given by $L = \sqrt{a^2 + b^2 + c^2}$. Find the length of the diagonal if a = 2 cm, cb = 6 cm and c = 9 cm. a

b The surface area of the prism is given by A = 2ab + 2bc + 2ac. Find c if a = 5 cm, b = 7 cm, and the surface area is 310 cm².

Length and area

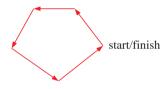
- Perimeter and length
- B Area

Α

- C Surface area
- Problem solving

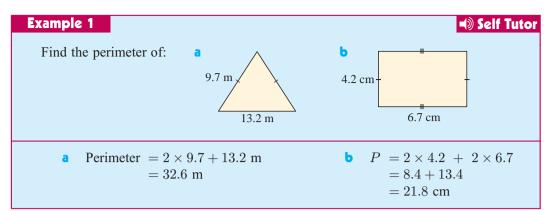
OPENING PROBLEM

A grain silo consists of a concrete cylinder with a conical roof. The entire outside of the silo is to be painted white. The paint costs \notin 70 for each 10 litre can, and each litre covers an area of 12 square metres.


- What must you calculate in order to find the number of cans of paint needed to give the silo two coats of paint?
- How much would the paint cost?
- What other costs would have to be considered to complete the project?

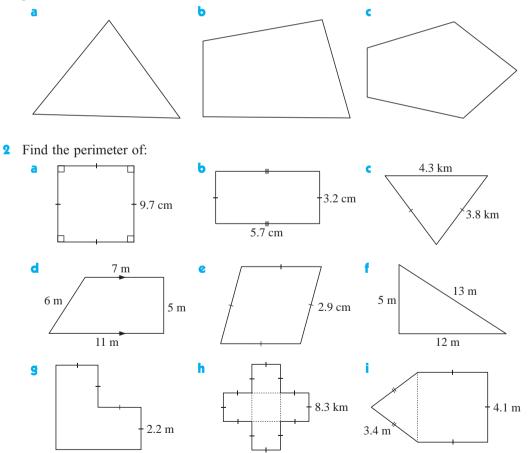
PERIMETER AND LENGTH

The **perimeter** of a figure is the measurement of the distance around its boundary.


One way of thinking about perimeter is to imagine walking around a property. Start at one corner and walk around the boundary. When you arrive back at your starting point the **perimeter** is the distance you have walked.

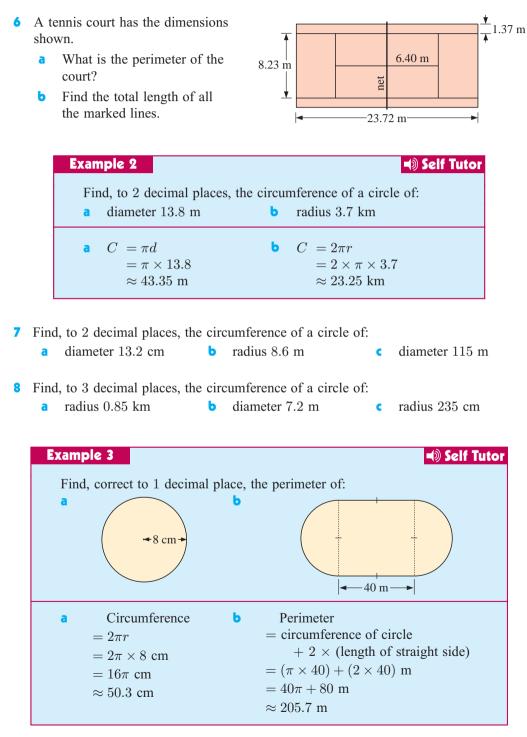
For a **polygon**, the perimeter is obtained by adding the lengths of all sides. For a **circle**, the perimeter has a special name, the **circumference**.

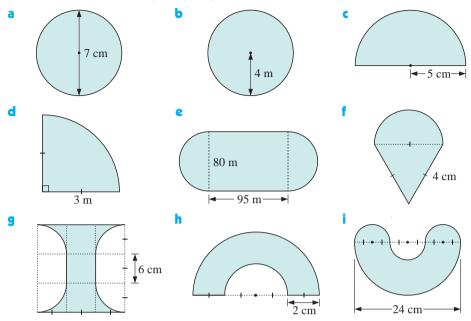
Following is a summary of some perimeter formulae:



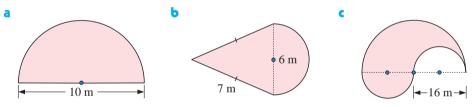
Shape	Formula	Shape	Formula
- square - /	P=4l	rectangle w	P=2l+2w or $P=2(l+w)$
e polygon d c	P = a + b + c + d + e		$C=\pi d$ or $C=2\pi r$

EXERCISE 7A

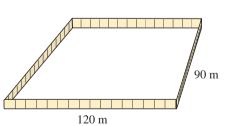

1 Measure with your ruler the lengths of the sides of each given figure and then find its perimeter.


- 3 An equilateral triangular paddock has sides of length 450 m. It is to be fenced with 3 strands of wire where the wire costs \$0.28 per metre. Find:
 - a the perimeter of the paddock b the total length of wire needed
 - the total cost of the wire.

130 LENGTH AND AREA (Chapter 7)


- 4 A rectangular swimming pool is 50 m long and 20 m wide. It has brick paving 3 m wide around it. Find the outer perimeter of the brick paving.
- **5** An athlete runs 10 times around a rectangular housing estate. The estate is 1.08 km by 420 m. How far has the athlete travelled?

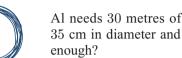
9 Find, correct to 1 decimal place, the perimeter of:


10 Katy's landscape gardening business makes odd shaped lawns which usually include semi-circles. Find the length of the edging material needed to border these lawn designs:

- 11 A housing block is 40 m by 16 m and can be fenced for \$18.75 per metre. Find the cost of the fence.
- 12 You have recently purchased an industrial block of land which is 120 m long and 90 m wide. You decide to use fence panels which are 1.2 m wide to enclose your property. The gate is also made of two of these panels.
 - **a** Find the total perimeter of the block.
 - **b** Find the number of panels required.
 - If each panel costs \$12.25, find the cost of the panelling for the fence.
- **13** The local council needs to build a retaining wall along a 1.5 km long embankment on the high side of a road.

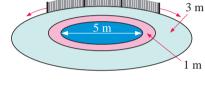
The wall is to be made of old railway sleepers and is three sleepers high.

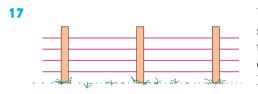
- **a** What total length of sleepers is required?
- **b** If each sleeper weighs (on average) 63 kg and is 2.5 m long, how many tonnes of sleepers are needed?
- If a truck can carry 15 tonnes of sleepers, how many truckloads are needed?



- **14** A triathlon course has 3 stages:
 - a 1.2 km swim
 - an 8.3 km bicvcle ride
 - a 6.3 km run.

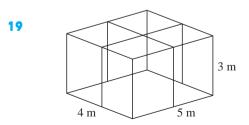
Find.


- a the total distance around the course
- the average speed of a contestant who took b 1 hour 10 minutes to complete the course.

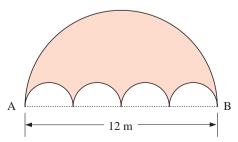


Al needs 30 metres of wire. He has a coil of wire in the shed. It is 35 cm in diameter and is made up of 29 circles of wire. Will this be

16 At Bushby Park there is a 5 m diameter circular pond which is surrounded by a 1 m wide garden bed and then a 3 m wide lawn. A safety fence is placed around the lawn with posts every 3 m and a gateway 1.84 m wide. The gate is wrought iron.


- **a** How many metres of safety fence are needed?
- How many posts are needed?
- If the posts cost \$15.75 and the safety fence costs \$18.35 per metre, calculate the total cost of the fence (excluding the gate).

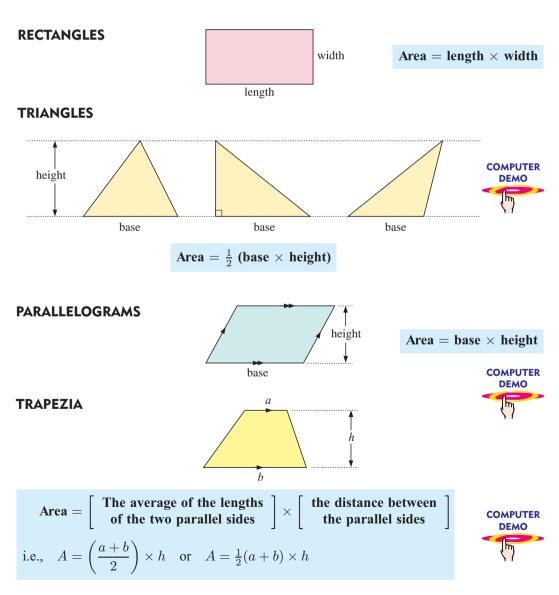
Vincenzo grows vines on a trellis made from 4 strands of wire, as shown. He has 12 rows of trellis, each 150 metres long, and he allows an extra 1 metre of wire for each length for tying. Find the total cost of the wire required given that single strand wire costs 11.8 pence per metre.

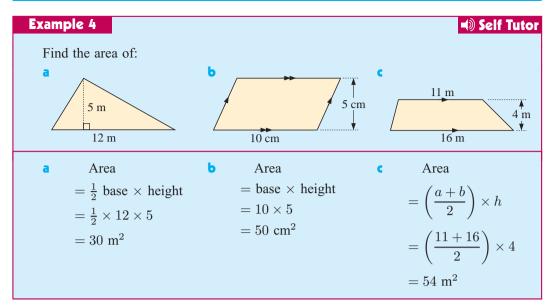

18 Find the total length of ribbon used to tie a box as illustrated. 25 cm extra is required for the knot and bow.

20 Which is the shorter path from A to B: along the 4 semi-circles or along the larger semi-circle?

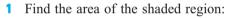
Steel framing for a house extension costs \$8.85 per metre. Find the total cost of the steel necessary to make the framing of the extension illustrated.

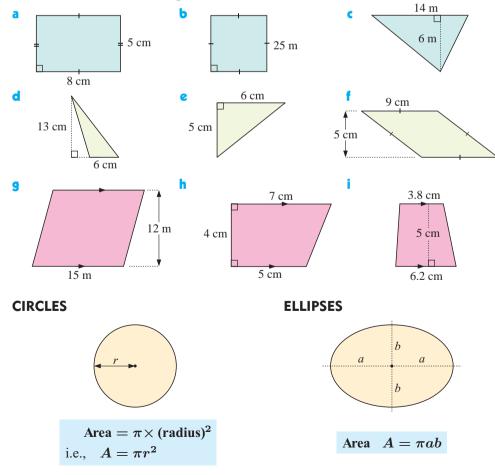
AREA

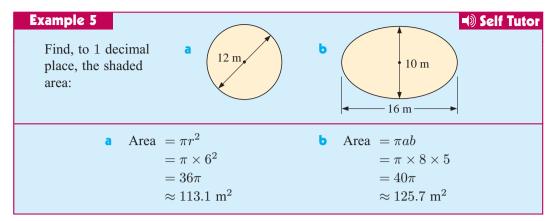

All around us we see surfaces such as walls, ceilings, paths and ovals. All of these surfaces have boundaries that help to define the surface.

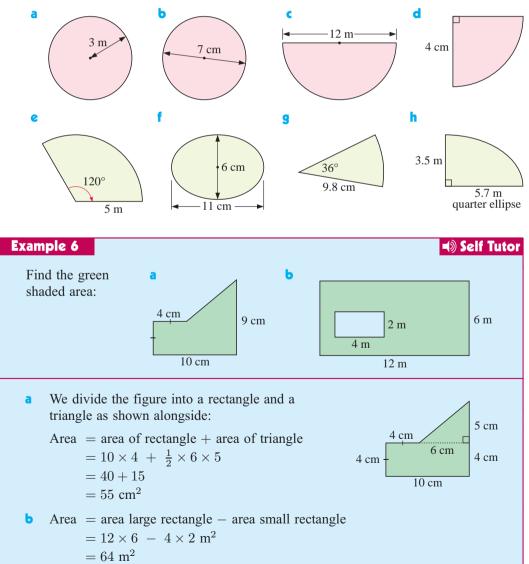

An area is the amount of *surface* within specified boundaries.

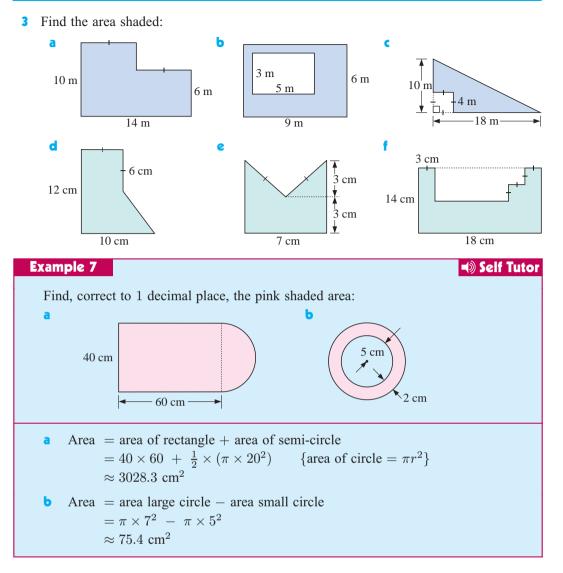
The **area** of the surface of a closed figure is measured in terms of the number of square units it encloses.

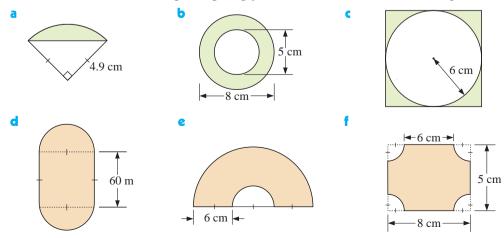

AREA FORMULAE

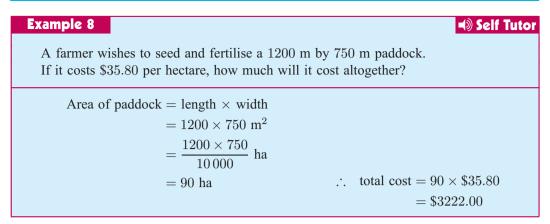

The following area formulae have been used previously:



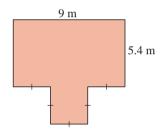

EXERCISE 7B

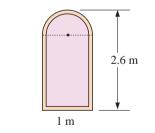





2 Find the area shaded:

4 Find the area of the shaded regions, giving your answers correct to 2 decimal places:



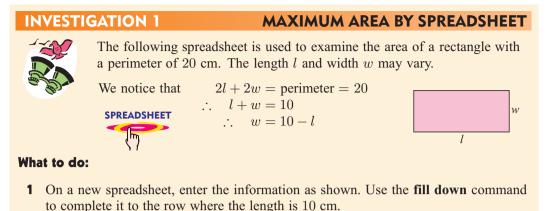

A farmer wishes to spread 150 kg of superphosphate per hectare.

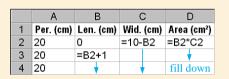
What amount of superphosphate is required to fertilise a 550 m by 300 m paddock?

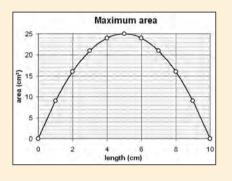
• The diagram shows the dimensions of a courtyard. It is to be paved with 60 cm square tiles. How many tiles would be needed?

- 7 A square tile has an area of 256 cm². How many tiles are needed for a floor $4 \text{ m} \times 2.4 \text{ m}$?
- 8 A gravel path 1 m wide is placed around a circular garden bed of diameter 2 m. Find the area of the path.

A door with dimensions as shown has a timber frame 10 cm wide surrounding a glass panel. Find the area of the glass panel.

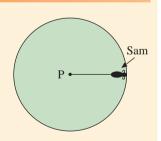

10 A rectangle is 15 cm by 9 cm. If the length of the rectangle is increased by 3 cm, by how much must the width be changed so that the area remains the same?


0

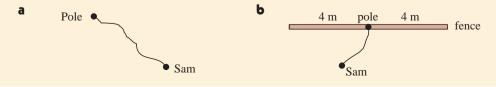

ESTIMATING AREAS

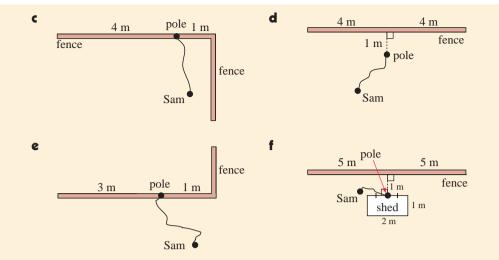
Areas of interaction: Approaches to learning/Human ingenuity

- **2** Describe what happens to the width and area as the length increases.
- **3** Use the **charting** facility to draw a graph of *length* vs *area* as shown alongside.
- **4** What length gives the largest possible area?
- **5** What shape is the rectangle when the area is a maximum?
- 6 Alter the spreadsheet to examine rectangles of perimeter 30 cm. Use smaller changes in length, for example 0.5 cm instead of 1 cm. What is the maximum area now, and what shape is the rectangle?
- 7 Can you draw any conclusions from your observations?



INVESTIGATION 2


When Sam the sheep was tethered to a pole P on the back lawn, he was restricted to eating the grass within a circular region as shown:



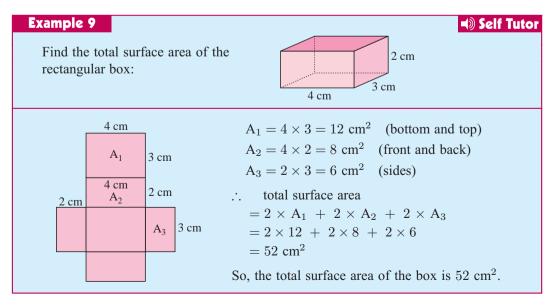
SAM THE SHEEP

What to do:

1 For the following situations, draw scale diagrams with a scale of 1 cm representing 1 m that show the exact region from which Sam may feed. The rope is 3 m long in each case. You *must* use a 'compass' and a ruler.

2 For each of the six situations above, use your scale diagram to calculate the area of grass that Sam can feed on. Use appropriate area formulae.

C

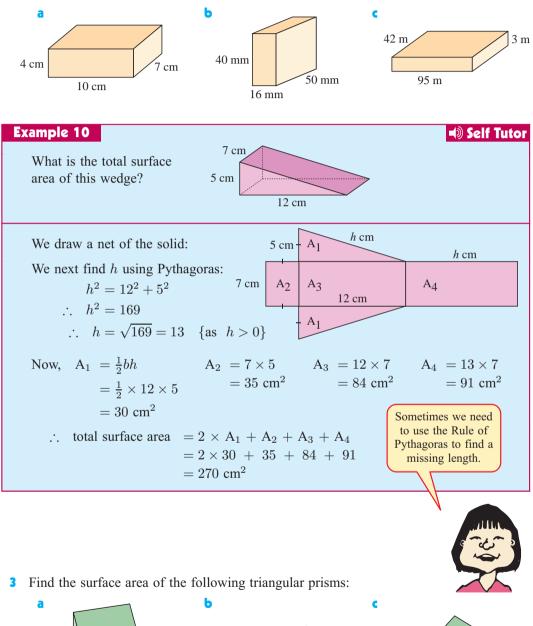

SURFACE AREA

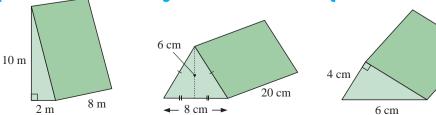
SOLIDS WITH PLANE FACES

The **surface area** of a three-dimensional figure with plane faces is the sum of the areas of the faces.

It is often helpful to draw the **net** of a solid before calculating the total surface area. A net is formed by unfolding the surfaces of the solid to form a two-dimensional figure.

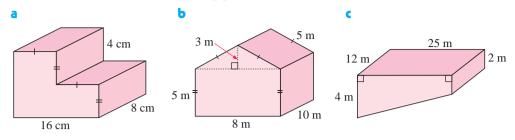
Software that demonstrates nets can be found at http://www.peda.com/poly/


EXERCISE 7C

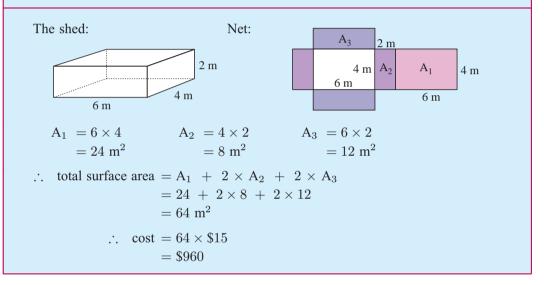

- 1 Find the surface area of a cube with sides:
 - **a** 3 cm

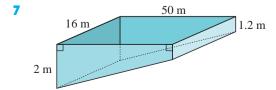
- **c** 9.8 mm
- 2 Find the surface area of the following rectangular prisms:

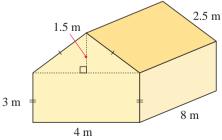
Ь


4.5 cm

9 cm


4 Find the surface area of the following prisms:

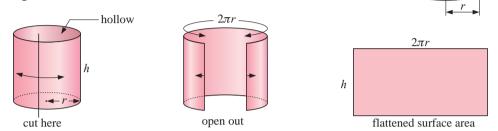

Example 11


Self Tutor

Find the cost of erecting a 6 m by 4 m rectangular garden shed that is 2 m high if the metal sheeting costs \$15 per square metre.

- 5 Find the cost of painting the outside of a rectangular garage 6 m by 3 m by 3 m high if 1 litre of paint costs €9.65 and each litre covers 4 square metres. Assume that the paint can only be bought in whole litres.
- 6 A marquee with the dimensions as shown is made from canvas. Find the total cost of the canvas if it costs \$21.50 per square metre.

The base and walls of the swimming pool shown are to be tiled.

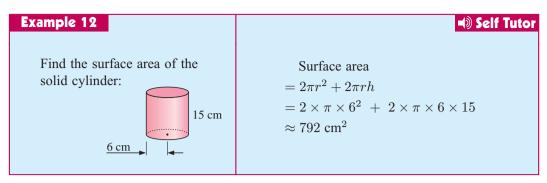

Determine the total area of tiles required.

SOLIDS WITH CURVED SURFACES

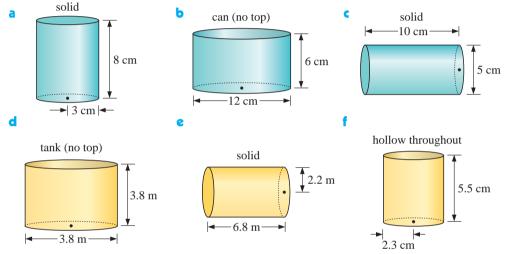
We will consider the outer surface area of two types of object with curved surfaces. These are **cylinders** and **spheres**.

CYLINDERS

Consider the cylinder shown alongside. If the cylinder is cut, opened out and flattened onto a plane, it takes the shape of a rectangle.



h


- **Note:** You can verify that the curved surface produces a rectangle by peeling the label off a cylindrical can and noticing the shape when the label is flattened.
 - The length of the rectangle is the same as the circumference of the cylinder.

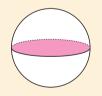
So, for a hollow cylinder,	the outer surface area	A = area of rectangle
	· .	$A = \text{length} \times \text{width}$
	·	$A = 2\pi r \times h$
		$A = 2\pi r h$

Object	Figure	Outer surface area
Hollow cylinder	hollow hollow	$A = 2\pi rh$ (no ends)
Hollow can	hollow h h solid	$A=2\pi rh+\pi r^2$ (one end)
Solid cylinder	solid h solid	$A=2\pi rh+2\pi r^2$ (two ends)

8 Find the outer surface area of the following:

INVESTIGATION 3

SURFACE AREA OF A SPHERE



You will need:

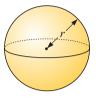
a solid sphere (e.g., orange or foam ball), cord, nail, scissors.

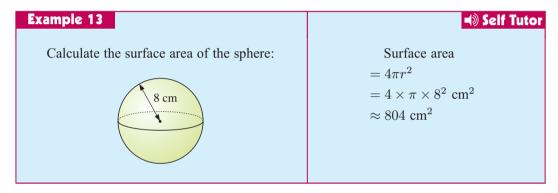
What to do:

- **1** Take your model of a sphere and cut it exactly in half to obtain two hemispheres.
- **2** Insert a nail in the centre of the flat circular surface of one hemisphere and wind a length of cord around the nail in a spiral until the flat surface is completely covered. Cut the length of cord required and put aside.
- **3** Now insert the nail in the centre of the curved surface of the hemisphere. Wind cord around the nail until the curved surface of the hemisphere is completely covered.
- **4** Compare the lengths of the cord in both cases. As measured by the cord, is the area of the curved surface twice the area of the flat circular surface?

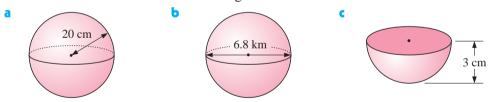
SPHERES

The results from **Investigation 3** suggest that the curved surface of a hemisphere has twice the area of a circle with the same radius. This is in fact true in all cases.

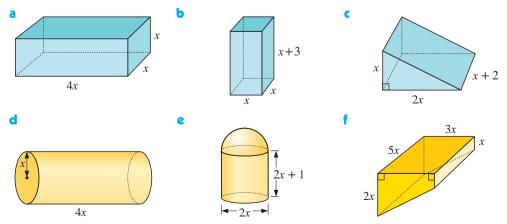

So, for radius r: Area of circle $= \pi r^2$


Area of curved surface of hemisphere $=2\pi r^2$

This leads to the formula:

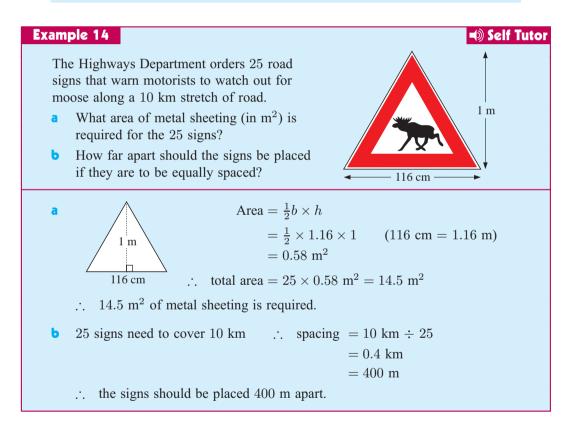

Surface area of a sphere, $A = 4\pi r^2$

Note: The mathematics required to prove this formula is beyond the scope of this course.



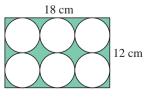
9 Find the total surface area of the following:

10 Find a formula for the surface area A, in terms of x, for the following solids:

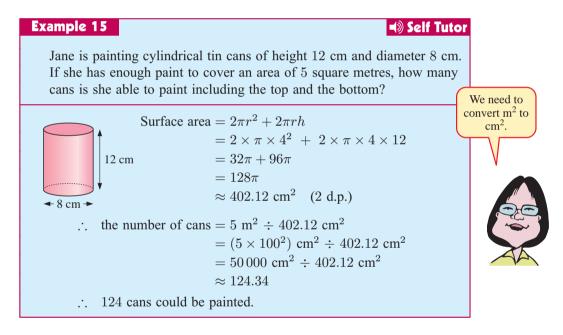

D

PROBLEM SOLVING

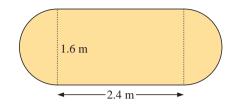
To solve the problems in this section you will need to select and apply the appropriate formulae from any of the previous sections.

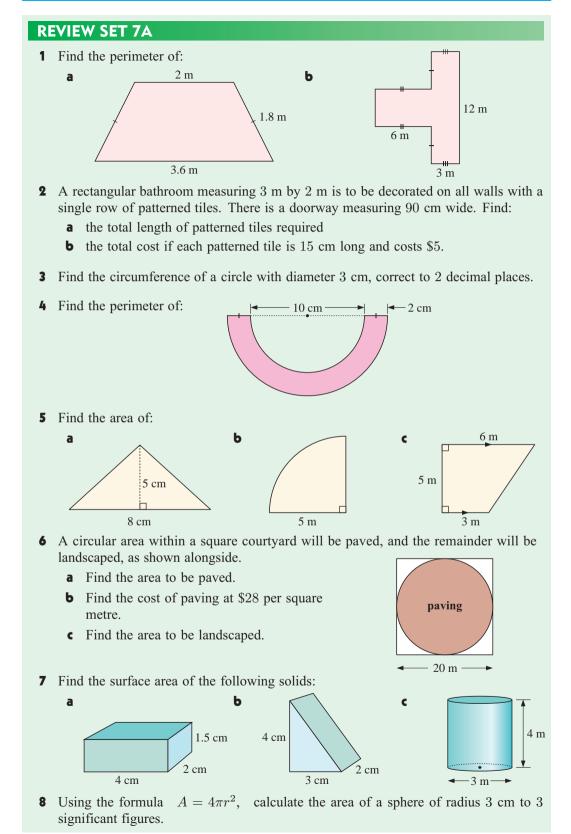

There are simple steps to follow when solving problems:

- Read the question carefully.
- Draw a diagram with the information clearly marked on it.
- Label the unknowns.
- Choose the correct formula or formulae.
- Work step by step through the problem, making sure the units are correct.
- Answer the original question in words.

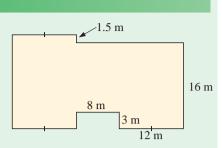

EXERCISE 7D

6 identical metal discs are stamped out of an 18 cm by 12 cm sheet of copper as illustrated. What percentage of the copper is wasted?




2 A rectangular lawn 12 m by 4 m is surrounded by a concrete path which is 1.5 m wide. Find the area of the path.

- 3 A 15 cm by 20 cm rectangle has the same perimeter as a square. Which figure has the greater area? By how much?
- **4** A table-top is shaped as illustrated. A cloth to protect the table-top from stains and heat is cut exactly the same size as the table-top. It is made from fabric 1.6 m wide and costs \$18.40 per metre of length.
 - **a** What length of fabric must be purchased?
 - **b** Calculate the cost of the fabric.
 - Find the area of the cloth.
 - **d** Calculate the amount of fabric that is wasted.
- 5 How many spherical balls of diameter 13 cm can be covered by 20 square metres of material?


- 6 a Determine how much paint is required to paint the outside of a cylindrical tank 6 m long with diameter 8 m if each litre of paint covers 12 square metres.
 - **b** If the paint is bought in 5 litre cans costing \$82.70 each, find the cost of the paint.
- 7 Which has the greater surface area: a cylinder of length 17 cm and radius 9 cm or a sphere of radius 13 cm?
- 8 We commonly use a sphere to model the Earth although it is not a *perfect* sphere. The Earth has a radius of approximately 6400 km.
 - **a** Use the formula for the surface area of a sphere to find the approximate surface area of the Earth.
 - **b** 71% of the Earth's surface is covered by water. Find the area covered by water.

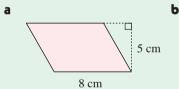
REVIEW SET 7B

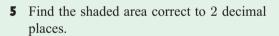
- 1 New guttering is to be installed around the perimeter of the house with floorplan shown.
 - **a** What is the total perimeter of the house?
 - **b** If the guttering costs \$30 per metre installed, find the total cost.

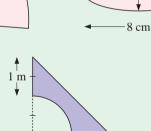
2 Competitors in a mountain-biking race complete four laps of an 8.5 km circuit. If the winning time is 1 h 33 min, find the average speed of the winner.

8.4 cm

40°

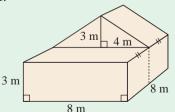

3 A security-conscious man builds himself a round fort of radius 50 m. He surrounds it with a moat 3 m wide. A large dog patrols on the other side of the moat to deter anyone who may attempt to cross the moat. The dog makes 15 complete circuits of the moat every day. How far in km does the dog walk every day? Answer correct to 1 decimal place.



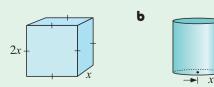

3 cm

2x

4 Find the area of:



C


- **6 a** For the building shown find the surface area of:
 - i all vertical walls
 - **ii** the flat roof section
 - iii the sloping roof sections.
 - **b** Find the number of litres of paint needed to paint the walls if each litre covers 5 square metres.

7 Calculate the surface area of a hemisphere of radius 4 cm.

а

8 Find a formula for the surface area A, in terms of x, of the following solids:

Chapter

Decimals and percentage

- A Decimal numbers
- B Percentage
- Working with percentages

- Unitary method in percentage
- E Percentage increase and decrease
- F Scientific notation (Standard form)

OPENING PROBLEM

Asif bought a car for \$7500. He repaired and refitted the car and then repainted it. This work cost \$2700. Asif then sold the car for \$13800.

- What were Asif's total costs?
- What profit did he make?
- What was his percentage profit on selling the car?

DECIMAL NUMBERS

The number 4.63 is a quick way of writing $4 + \frac{6}{10} + \frac{3}{100}$, which can also be written as an **improper fraction** $\frac{463}{100}$ or as a **mixed number** $4\frac{63}{100}$. Likewise, 14.062 is the quick way of writing $14 + \frac{6}{100} + \frac{2}{1000}$.

Numbers such as 4.63 and 14.062 are commonly called decimal numbers.

 Example 1
 Self Tutor

 a
 Write 5.704 in expanded fractional form.

 b
 Write $3 + \frac{2}{10} + \frac{4}{100} + \frac{1}{10\,000}$ in decimal form.

 a
 5.704 b $3 + \frac{2}{10} + \frac{4}{100} + \frac{1}{10\,000}$

 a
 5.704 b $3 + \frac{2}{10} + \frac{4}{100} + \frac{1}{10\,000}$

 = $5 + \frac{7}{10} + \frac{4}{1000}$ = 3.2401

EXERCISE 8A

1	Writ	e the followi	ng ii	n expan	ded f	racti	onal form:				
	a	3.4	Ь	3.04		C	3.0407	d	5.0018	e	0.0706
2	Writ	e the followi	ng i	n decim	al foi	rm:					
	a	$2 + \frac{4}{10}$			Ь	$\frac{6}{10}$	$+\frac{2}{100}$		c	$\frac{3}{10} + \frac{1}{10}$	<u>5</u> 000
	d	$\frac{8}{100} + \frac{1}{1000}$			e	3 +	$-\frac{2}{10000}$		f	$2 + \frac{1}{100}$	$\frac{1}{10000} + \frac{7}{10000}$
3	Eval	uate:									
	а	6.53 + 4.9			b	12.	87 + 10.76		c	19.08 -	-12.84
	d	3.4 - 0.7			e	13	-6.158		f	0.17 +	0.789 + 2.34
	9	0.307 + 0.0	098		h	6.8	-7.9		i.	0.45 +	0.062 - 0.374
	j	0.648 - 1			k	-0	.713 + 2		- I	-3.3 -	- 4.81

Example 2	Self Tutor
Evaluate: a 24×0.8	b 3.6 ÷ 0.02
	$\{\pm 10 \text{ by shifting decimal 1 place left}\}$
b $3.6 \div 0.02$ = $3.60 \div 0.02$ = $360 \div 2$ = 180	{shift both decimal points the same number of places to the right}

4 Evaluate:

a	25.4×100	b	$0.6 \div 100$	c	$17 \div 0.5$
d	0.4 imes 9	e	0.4 imes 0.09	f	2000×0.7
9	2.4 imes 0.7	h	$1 \div 0.04$	i.	$(0.4)^3$
j.	$300 \times (0.3)^2$	k	$0.48 \div 120$	I.	$0.5075 \div 2.5$
m	$0.5\times0.4+0.1$	n	$0.5+0.4\times0.1$	0	$1.2+2.4\times2+1.9$
р	$1.4 + 1.2^2$	q	$5.5 - 2 \div 0.5$	r	$(5.5-2) \div 0.5$
5	$4.8 + 3.6 \div 3$	t	$6.9 - 5.6 \div 0.7 - 3.1$		

Example 3	Self Tutor					
Jon bought four drinks for \$1.30 each. How much change did he get from a \$10 note?						
	:. change = $$10 - 5.20 = \$4.80					

- **5** Solve the following problems:
 - a Sally has used 30 litres of petrol in the last week. What did it cost her if petrol was selling at 126.9 cents per litre?
 - **b** Sliced ham sells at $\notin 5.60$ per kg. How much would 400 g of ham cost?
 - c Gravel costs \$3.95 per bag. How much would 6 bags cost?
 - **d** The cost of electricity is 53.8 cents per kilowatt for each hour. What would
 - i 400 kilowatts of electricity cost for one hour
 - ii it cost to burn an 80 watt globe for 6 hours?

• At a perfume factory, bottles are filled from large tanks that each hold 2400 litres. How many bottles can be filled from one tank if each bottle holds 60 mL?

152 DECIMALS AND PERCENTAGE (Chapter 8)

- f Norbert Raimes is a professional pastry chef. Each day he mixes 22.5 kg of pastry for use with his various creations. If they require an average 115 g of pastry each, how many items does Norbert make in a day?
- **9** A juicing plant uses machines to crush fruit and then filter out seeds and other solids. The processed juice is collected in a 7000 L vat before bottling. How many 600 mL bottles can be filled from each vat?

- **h** A manufacturer has 160 kg of metal to be made into ball bearings. If each bearing is to have mass 4.5 g, how many can be made?
- **6** Find, giving your answers correct to 2 decimal places where necessary:
 - a $(4.9+7.6) \times 12.3$ b $4.9+7.6 \times 12.3$ c $93 \div 9-6$ d $93 \div (9-6)$ e $\frac{13.27}{6.4+12.8}$ f $\frac{11.4}{3.1} \frac{12.5}{7.7}$ g $\frac{68.7-35.5}{2.8} + 11.3$ h $\frac{6.208-0.97}{16.41+4.232}$

PERCENTAGE

Percentages are comparisons of a portion with the whole amount (which we call 100%).

% reads percent which means out of every hundred . So, 10% means 10 out of every 100 or $\frac{10}{100}$. Likewise, 25% means $\frac{25}{100}$.	For help with fractions on the TI-83, consult the section on page 11.	
So, $x\% = \frac{x}{100}$.		

CONVERTING A PERCENTAGE TO A FRACTION

Example 4		Self Tutor
Express as a fraction in s	implest form: a	40% b 150% c $12\frac{1}{2}\%$
a 40%	b 150%	$12\frac{1}{2}\%$
$=\frac{40}{100}$	$=\frac{150}{100}$	$=\frac{12\frac{1}{2}\times 2}{100\times 2}$
$=\frac{40\div20}{100\div20}$	$=\frac{150\div50}{100\div50}$	$= \frac{25 \div 25}{200 \div 25}$
$=\frac{2}{5}$	$=\frac{3}{2}$	$=\frac{1}{8}$
Calculator:	$=1\frac{1}{2}$	Calculator:
40 a b/c 100 EXE		12 a % 1 a % 2 ÷ 100 EXE

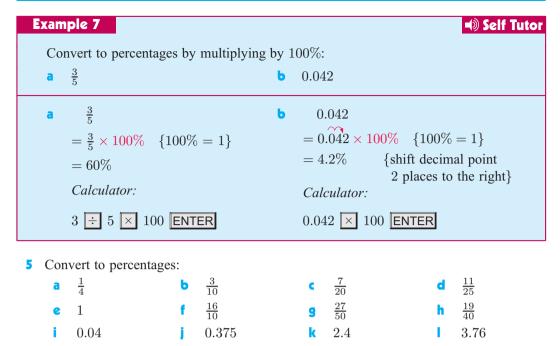
EXERCISE 8B

1 Copy and complete:

a	$6\% = \frac{\Box}{100}$	Ь	$51\% = \frac{\Box}{100}$	c	$27\% = \frac{\Box}{100}$	d	$86\% = \frac{\Box}{100}$
Evn	Express as a fraction in simplest form:						

2 Express as a fraction in simplest form:

a	25%	b	130%	c	65%	d	40%
e	210%	f	100%	9	12%	h	2%
1	$22\frac{1}{2}\%$	j.	2.5%	k	$77\frac{1}{2}\%$	1	$62\frac{1}{4}\%$


CONVERTING A PERCENTAGE TO A DECIMAL

Example 5 Express as a decimal: a 43% b $12\frac{1}{2}\%$	a 43 $= \frac{43}{10}$ $= 0.4$ Calculate	3 <u>0</u> 43	b $12\frac{1}{2}\%$ = $\frac{12.5}{100}$ = 0.125 .00 ENTER	Shifting the decimal point 2 places to the left divides by 100.
 3 Express as a decimal: a 66% b e 180% f i 0.01% j 	: 29% 205% 0.3%	c 50% g 300% k $10\frac{1}{2}\%$	d 75% h 128% l $56\frac{1}{4}\%$	

CONVERTING DECIMALS AND FRACTIONS TO PERCENTAGES

Example 6 Convert to a percentage: a 0.46 b 1.35				a 0.46 = $\frac{46}{100}$ = 46%				b 1.35 $= \frac{135}{100}$ = 135% Remember that $\frac{x}{100} = x\%$.				
4 Wri a e i	te as a percer 0.17 0.04 2.05	ntage b f j	: 0.55 2 3.64		c 9 k	0.09 0.4 0.088	c H	k 1	0.8 3.5 1.409			

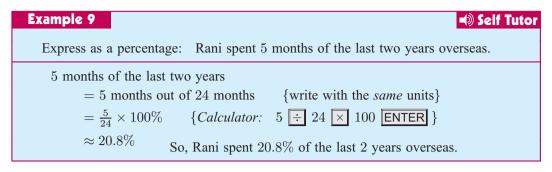
Another method of converting fractions and decimals to percentages is to multiply the fraction or decimal by 100%.

WORKING WITH PERCENTAGES

ONE QUANTITY AS A PERCENTAGE OF ANOTHER

Example 8	Self Tutor
Sarah scored 17 marks out of 20 for her test.	17 out of 20 = $\frac{17}{20}$
Write her mark as a percentage.	$= \frac{17}{20} \times 100\%$ = 85%
	Calculator: $17 \div 20 \times 100$ ENTER

EXERCISE 8C

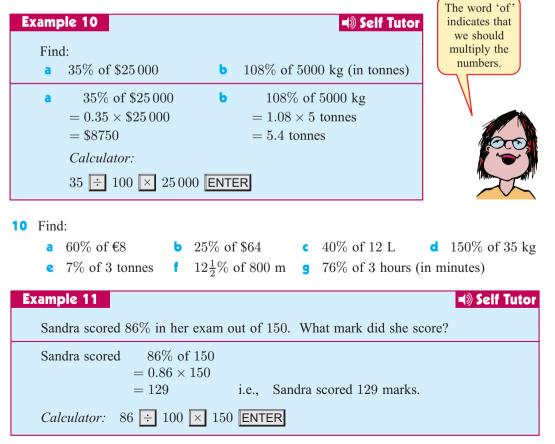

2

- 1 Express as a percentage:
 - 30 cm out of 60 cmа

14 minutes out of 25 minutes Ь

21 kg out of 30 kg

- 36 marks out of 40 marks C
- d On the practice green Tiger sank 13 putts out of 20. Write this as a percentage.
- 3 Mohammed scored 66 marks out of 70 for his chemistry test. What was his percentage?
- 4 Erika was late for her bus 3 days out of 22 last month. What percentage of the days was she on time?
- 5 Phyllis sells new cars. Her sales quota for last month was 35 cars. If she sold 43 cars during the month, write this as a percentage of the quota.


6 Write as a percentage:

а

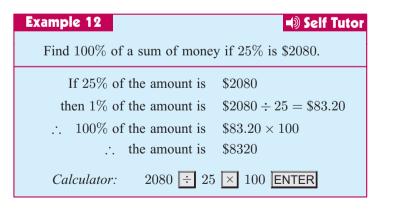
48 cm out of 2 m

- **b** 26 seconds out of 5 minutes
- c 298 g out of 1.4 kg d 9 months out of 2.5 years
- 7 Pierre had €5 in his pocket until he spent 85 euro cents on some sweets. What percentage of his money did Pierre spend?
- 8 Sven walks 475 metres to the underground station, then makes a 3.5 km journey by train. What percentage of the *total* distance travelled was on foot?
- 9 Leah ate 250 grams of cake from a cake weighing 1¹/₂ kg. What percentage of the cake did she eat?

FINDING A PERCENTAGE OF A QUANTITY

156 DECIMALS AND PERCENTAGE (Chapter 8)

- 11 Li scored 75% in her test out of 32. What mark did she score?
- **12** John scored 70% for an examination marked out of 120. How many marks did he actually get?
- 13 A petroleum company claims that cars using their new premium unleaded fuel will travel 112% of the distance travelled on regular unleaded. If Geoff can travel 584 miles on a tank of regular fuel, how far should he be able to travel on the premium unleaded?
- 14 Paula receives $7\frac{1}{2}\%$ of the nett profits on a book she helped to write. If the nett profits this year are £38700, how much will she receive in royalties?



- **15** Nicki is part of a syndicate that owns racehorses. He owns 28% of Peter Pan, who last week won \$18600 in the derby. How much should Nicki receive?
- 16 A restaurant charges 7¹/₂% service on the total bill. If Jack and Jill buy food and wine to the value of €54, how much will they have to pay
 - a for service **b** in total?

UNITARY METHOD IN PERCENTAGE

Michelle and Brigette own a business. Brigette receives 25% of the profits each month. How can Brigette work out the total profit made by the business in a month when her share was \$2080?

The unitary method can be used to solve this problem.

EXERCISE 8D

- **1** Find 100% if:
 - **a** 30% is CHF 48
 - **d** 13% is 416 kg
 - g 22% is 77 L
- b 16% is 2.56 L
 e 87% is £1131
- h 36% is 252 kg
- c 11% is 143 mL
 f 95% is 399 km
- 63% is €1323

Example 13 Find 60% of a sum of money if 14% is ¥ 7280.	If 14% is \mathbf{X} 7 then 1% is $\frac{\mathbf{Y}7}{\mathbf{x}}$ $\therefore 60\%$ is $\mathbf{Y}5$ $\therefore 60\%$ is $\mathbf{Y}3$	$\frac{7280}{14} = \pm 520$ 20×60 Calculator:					
 2 Find: a 40% if 9% is 9 c 6% if 48% is 9 e 90% if 6% is 1 	E630	 b 72% if 6% is 96 kg d 8% if 95% is 1235 mL f 4% if 75% is \$465 					
Example 14 Self Tutor 82% of fans at a basketball match support the Lakers. If there are 24 026 Lakers fans at the match, how many people are in attendance?							
then 1% is $\frac{1}{8}$	$\frac{026}{2}$ fans $\frac{026}{2} = 293$ fans $\times 100 = 29300$	Calculator:					
∴ 29 300 fans atte		$24026 \div 82 \times 100$ ENTER					

- 3 A survey showed that 39% of cars passing through a city intersection had only one occupant. If this was 663 cars, how many cars were surveyed?
- **4** 35% of the proceeds of a concert was given to charity. If \$26425 was given to charity, find the total of the proceeds.
- 5 144 girls attend a country school. If 48% of the students are girls, find the total number of students who attend the school.

PERCENTAGE INCREASE AND DECREASE

If we *increase* an amount by 20% then we have If we *decrease* an amount by 20% then we have the amount + 20% of the amount. the amount - 20% of the amount.

Example 15

Self Tutor

A fruit grower picked 1720 kg of apples last year. This year she expects her crop to be 20% bigger. How many kilograms of apples does she expect to pick this year?

New crop = 1720 + 20% of 1720 kg = $1720 + 0.2 \times 1720$ kg = 1720 + 344 kg = 2064 kg She expects to pick 2064 kg. *Calculator:* 1720 + 0.2 × 1720 ENTER

EXERCISE 8E

- 1 The price of vegetables has risen by 20% because of the dry season. How much does Justine need to spend for tomatoes that usually cost \$3.50 per kilogram?
- 2 Kurt's business is expanding. He has increased the number of staff by 25%. If he previously employed 64 people, how many does he employ now?

- **3** Juliet studied hard and increased her Mathematics marks by 6% from last term's result. If she scored 54 last term, what did she score this term (to the nearest whole mark)?
- **4** In 2005 Su-Lin's salary was \$48000. In 2006 it increased by 35% when she was promoted to manager. What was her salary in 2006?

Example 16	Self Tutor
Stefan grows cherries and expected to harvest damaged 60% of his crop, what weight of cherries	e
New weight = $2000 - 60\%$ of 2000 kg = $2000 - 0.6 \times 2000$ kg = $2000 - 1200$ kg = 800 kg	
He can expect to harvest 800 kg.	
Calculator: 2000 – 0.6 🗙 2000 ENTER	

- 5 Marius found that travelling on the new freeway decreased his travelling time to work by 12%. He used to take 50 minutes to get to work. How long does he take now?
- 6 In a clearance sale, the price of a new car was decreased by 35%. If it would normally cost \$14960, what was the new price?

- 7 If Claudia walked to school following the footpaths, she would walk 920 metres. If she walked across the park she could reduce this distance by 16%. How far would she walk then?
- 8 Every day for 2 months Dimitri walked 5 km. At first he took 80 minutes, but by the end of 2 months he had reduced his time by 24%. How long does he take now?

SCIENTIFIC NOTATION (STANDARD FORM)

Observe the pattern:

$$\begin{array}{c} 10\,000 = 10^{4} \\ -1 \\ 1000 = 10^{3} \\ -1 \\ +10 \\ +10 \\ 100 = 10^{2} \\ -1 \\ 10 = 10^{1} \end{array}$$

As we divide by 10, the **exponent** or **power** of 10 decreases by one. If we continue this pattern, we get: -1

$$\begin{array}{c} \div 10 \\ 1 = 10^{0} \\ -1 \\ \div 10 \\ \frac{1}{10} = 10^{-1} \\ -1 \\ \div 10 \\ \frac{1}{100} = 10^{-2} \\ -1 \\ \div 10 \\ \frac{1}{1000} = 10^{-3}, \text{etc.} \end{array}$$

We can use this pattern to simplify the writing of very large and very small numbers.

For example,

SCIENTIFIC NOTATION

Scientific notation (or **standard form**) involves writing any given number as *a number between* 1 *and* 10, multiplied by a *power of* 10,

i.e., $a \times 10^k$ where $1 \le a < 10$ and k is an integer.

Example 17					Self Tutor
Write in scientific notation:	a	37600	b	0.00086	
a $37600 = 3.76 \times 10000$ = 3.76×10^4		{shift deci left and	-	oint 4 places to th 00}	ne
b $0.00086 = 8.6 \div 10^4$ = 8.6×10^{-4}		{shift dec right and	-	oint 4 places to th 000}	he

- Note: If the original number is > 10, the power of 10 is positive (+).
 - If the original number is < 1, the power of 10 is **negative** (-).
 - If the original number is between 1 and 10, leave it as it is and multiply it by 10⁰.

EXERCISE 8F

2

1 Write the following as powers of 10:

а	100	Ь	1000	c	10	d	100000
e	0.1	f	0.01	9	0.0001	h	100000000
Expi	ess the following	in sc	cientific notation (s	stand	dard form):		
a	387	b	38700	C	3.87	d	0.0387
e	0.00387	f	20.5	9	205	h	0.205
- i	20500	j –	20500000	k	0.000205		

- **3** Express the following in scientific notation (standard form):
 - a The circumference of the Earth is approximately $40\,075$ kilometres.
 - **b** The distance from the Earth to the Sun is 14950000000 m.
 - c Bacteria are single cell organisms, some of which have a diameter of 0.0004 mm.
 - **d** There are typically 40 million bacteria in a gram of soil.
 - The probability that your six numbers will be selected for Lotto on Saturday night is 0.000 000 141 62.
 - f Superfine sheep have wool fibres as low as 0.01 mm in diameter.

Exam	ple 18		Self Tutor
Wi	rite as an ordinary numbe	er:	
a	3.2×10^2	b	5.76×10^{-5}
a	$3.2 imes 10^2$	b	5.76×10^{-5}
	$= 3.20 \times 100$		$= 000005.76 \div 10^5$
	= 320		= 0.0000576

4 Write as an ordinary decimal number:

а	$3 imes 10^2$	b	2×10^3	c	$3.6 imes 10^4$	d	9.2×10^5
e	$5.6 imes10^6$	f	$3.4 imes 10^1$	9	7.85×10^6	h	$9 imes 10^8$

- **5** Write as an ordinary decimal number:
 - b 2×10^{-3}
 - 4.7×10^{-4} 3×10^{-2} d 6.3×10^{-5} а 1.7×10^{0} f e
- **6** Write as an ordinary decimal number:
 - **a** The wavelength of visible light is 9×10^{-7} m.
 - **b** In 2007, the world population was approximately 6.606×10^9 .
 - The diameter of our galaxy, the Milky Way, is 1×10^5 light years.
 - **d** The smallest viruses are 1×10^{-5} mm in size.
 - 1 atomic mass unit is approximately 1.66×10^{-27} kg.

Example 19

Self Tutor

Simplify the following, giving your answer in scientific notation (standard form):

- $(5 \times 10^4) \times (4 \times 10^5)$ **b** $(8 \times 10^5) \div (2 \times 10^3)$ а
- $(5 \times 10^4) \times (4 \times 10^5)$ $(8 \times 10^5) \div (2 \times 10^3)$ Ь а $= 5 \times 4 \times 10^4 \times 10^5$ $=\frac{8\times10^5}{2\times10^3}$ $= 20 \times 10^{4+5}$ $= 2 \times 10^1 \times 10^9$ $=\frac{8}{2} \times 10^{5-3}$ $= 2 \times 10^{10}$ $= 4 \times 10^2$

7 Simplify the following, giving your answer in scientific notation (standard form):

- a $(8 \times 10^3) \times (2 \times 10^4)$
- $(5 \times 10^4) \times (3 \times 10^5)$
- $(6 \times 10^3)^2$
- $(9 \times 10^4) \div (3 \times 10^3)$
- **b** $(8 \times 10^3) \times (4 \times 10^5)$
- d $(2 \times 10^3)^3$
- $(7 \times 10^{-2})^2$
- **h** $(8 \times 10^5) \div (4 \times 10^6)$

SCIENTIFIC NOTATION ON A CALCULATOR

Scientific and graphics calculators are able to display very large and very small numbers in scientific notation.

If you perform $2\,300\,000 \times 400\,000$ your calculator might display 9.2^{11} or $9.2E_{11}$

9.2 ε +11, all of which actually represent 9.2×10^{11} . or

Likewise, if you perform $0.0024 \div 10\,000\,000$ your calculator might display 2.4^{-10}

or 2.4×10^{-10} , which actually represent 2.4×10^{-10} .

162 DECIMALS AND PERCENTAGE (Chapter 8)

8		e each of the ntific notation:	U	as it	would appe	ar on	the d	display	of your	calculator
	a	4650000		Ь	0.0000512			c 5.	99×10^{-1}	-4
	d	3.761×10^{10}		e	49500000			f 0.	000 008	44

in

.

9 Calculate each of the following, giving your answers in scientific notation. The decimal part should be correct to 2 decimal places:

а	$0.06\times0.002\div4000$	Ь	$426\times760\times42000$	C	627000×74000
d	$320\times 600\times 51400$	e	$0.00428\div 120000$	f	$0.026\times0.0042\times0.08$

Numbers which are already represented in scientific notation can be entered into the calculator using EE or EXP.

We enter	4.022×10^4	on a scientific	calculator by	pressing 4.02	22 EE 4	and it will
appear on	the display as	9 <mark>4.022 E 4</mark> or	<mark>4.022⁰⁴.</mark>			
Likewise,	$5.446 imes 10^{-1}$	-11 can be enter	ed as: 5.446	EE 11 +/-	and it will	appear as
5.446 E -	11 or 5.4	446 - ¹¹ .				

Instructions for graphics calculators can be found on page 14.

Example 20	Self Tutor
Use your calculator to find:	
a $(1.42 \times 10^4) \times (2.56 \times 10^8)$ b	$(4.75 \times 10^{-4}) \div (2.5 \times 10^7)$
Instructions are given for the Casio fx-6890G :	Answer:
a 1.42 EXP 4 \times 2.56 EXP 8 EXE	3.6352×10^{12}
▶ 4.75 EXP (-) 4 ÷ 2.5 EXP 7 EXE	1.9×10^{-11}

10 Find, in scientific notation, with decimal part correct to 2 places:

a	$(5.31 \times 10^4) \times (4.8 \times 10^3)$	Ь	$(2.75 \times 10^{-3})^2$	c	$\frac{8.24 \times 10^{-6}}{3 \times 10^4}$
d	$(7.2 \times 10^{-5}) \div (2.4 \times 10^{-6})$	e	$\frac{1}{4.1\times 10^4}$	f	$(3.2\times10^3)^2$

11 For the following give answers in scientific notation correct to 3 significant figures:

- **a** How many millimetres are there in 479.8 kilometres?
- **b** How many seconds are there in one year?
- How many seconds are there in a millennium?
- **d** How many kilograms are there in 0.5 milligrams?

12 If a missile travels at 3600 km h⁻¹, how far will it travel in:

a 1 day **b** 1 week **c** 2 years?

Give your answers in scientific notation with decimal part correct to 2 places. Assume that 1 year = 365.25 days.

13 Light travels at a speed of 3×10^8 metres per second. How far will light travel in:

a 1 minute **b** 1 day

Give your answers in scientific notation with decimal part correct to 2 decimal places. Assume that 1 year = 365.25 days.

c

1 year?

REVIEW SET 8A

1 Write the following in expanded fractional form:										
а	4.2		Ь	4.025		c	4.2005		d	0.0105
Writ	e as	decimal numb	pers:	а	$5 + \frac{1}{10} + $	$\frac{7}{1000}$	Ь	$\frac{4}{100}$	$+\frac{9}{1000}$	
Find	the	value of:								
а	86.	204 - 3.779		Ь	34.7×1	000		c	3×2.1	1
d	5.6	$\div 7$		e	2000×0).09		f	$(0.4)^2$	
How	/ muo	ch did Karl ea	arn if	he wo	orked for 7	7 hour	s and w	as pa	id \$18.2	5 per hour?
5 Kate deposited \$124.95 in a new bank account. The next week she deposited \$132.75, then she withdrew \$103.20 the following week. What was the balance then?										
Use	your	calculator to	find,	correc	et to 2 dec	imal j	places w	here	necessar	ry:
a	58.3	$31 - 1.72 \times 1$	4.9		I	b $\frac{1}{10}$	$\frac{62.97}{6.88-4}$.59		
а	Exp	ress as a fract	ion i	n simp	lest form:					
	i	75%	i	$6\frac{1}{4}$	%	iii	i 120%	6		
b	Exp	ress as a decin	mal:							
	i	25%	i	$6\frac{1}{4}$	%	iii	120 [°]	6		
Conv	vert t	o a percentag	ge:							
а	$\frac{7}{10}$		b	$1\frac{3}{8}$		c	0.53		d	4.03
	a Writt Find a d How Kate then Use a a b Con	 a 4.2 Write as Find the a 86.2 d 5.6 How much Kate depotention Kate depotent	a 4.2 Write as decimal numb Find the value of: a $86.204 - 3.779$ d $5.6 \div 7$ How much did Karl ea Kate deposited \$124.95 then she withdrew \$10 Use your calculator to a $58.31 - 1.72 \times 1$ a Express as a fract i 75% b Express as a decin i 25% Convert to a percentag	a 4.2 b Write as decimal numbers: Find the value of: a $86.204 - 3.779$ d $5.6 \div 7$ How much did Karl earn if Kate deposited \$124.95 in a then she withdrew \$103.20 Use your calculator to find, a $58.31 - 1.72 \times 14.9$ a Express as a fraction in i 75% i b Express as a decimal: i 25% i Convert to a percentage:	a 4.2 b 4.025 Write as decimal numbers: a Find the value of: a $86.204 - 3.779$ b d $5.6 \div 7$ e How much did Karl earn if he wo Kate deposited \$124.95 in a new b then she withdrew \$103.20 the fo Use your calculator to find, correct a $58.31 - 1.72 \times 14.9$ a Express as a fraction in simp i 75% ii $6\frac{1}{4}$ b Express as a decimal: i 25% ii $6\frac{1}{4}$ Convert to a percentage:	a 4.2 b 4.025 Write as decimal numbers: a $5 + \frac{1}{10} + \frac{1}{10} + \frac{1}{10}$ Find the value of: a $86.204 - 3.779$ b 34.7×1 d $5.6 \div 7$ e 2000×0 How much did Karl earn if he worked for 7 Kate deposited \$124.95 in a new bank account then she withdrew \$103.20 the following w Use your calculator to find, correct to 2 dec a $58.31 - 1.72 \times 14.9$ a Express as a fraction in simplest form: i 75% ii $6\frac{1}{4}\%$ b Express as a decimal: i 25% ii $6\frac{1}{4}\%$ Convert to a percentage:	a 4.2 b 4.025 c Write as decimal numbers: a $5 + \frac{1}{10} + \frac{7}{1000}$ Find the value of: a $86.204 - 3.779$ b 34.7×1000 d $5.6 \div 7$ c 2000×0.09 How much did Karl earn if he worked for 7 hour Kate deposited \$124.95 in a new bank account. The then she withdrew \$103.20 the following week. Use your calculator to find, correct to 2 decimal a $58.31 - 1.72 \times 14.9$ b $\frac{1}{10}$ a Express as a fraction in simplest form: i 75% ii $6\frac{1}{4}\%$ iii b Express as a decimal: i 25% ii $6\frac{1}{4}\%$ iii Convert to a percentage:	a 4.2 b 4.025 c 4.2005 Write as decimal numbers: a $5 + \frac{1}{10} + \frac{7}{1000}$ b Find the value of: a $86.204 - 3.779$ b 34.7×1000 d $5.6 \div 7$ e 2000×0.09 How much did Karl earn if he worked for 7 hours and w Kate deposited \$124.95 in a new bank account. The next w then she withdrew \$103.20 the following week. What was Use your calculator to find, correct to 2 decimal places w a $58.31 - 1.72 \times 14.9$ b $\frac{62.97}{16.88 - 4}$ a Express as a fraction in simplest form: i 75% ii $6\frac{1}{4}\%$ iii 120% b Express as a decimal: i 25% ii $6\frac{1}{4}\%$ iii 120% Convert to a percentage:	a 4.2 b 4.025 c 4.2005 Write as decimal numbers: a $5 + \frac{1}{10} + \frac{7}{1000}$ b $\frac{4}{100}$ Find the value of: a $86.204 - 3.779$ b 34.7×1000 c d $5.6 \div 7$ e 2000×0.09 f How much did Karl earn if he worked for 7 hours and was pa Kate deposited \$124.95 in a new bank account. The next week then she withdrew \$103.20 the following week. What was the Use your calculator to find, correct to 2 decimal places where a $58.31 - 1.72 \times 14.9$ b $\frac{62.97}{16.88 - 4.59}$ a Express as a fraction in simplest form: i 75% ii $6\frac{1}{4}\%$ iii 120% b Express as a decimal: i 25% ii $6\frac{1}{4}\%$ iii 120% Convert to a percentage:	a 4.2 b 4.025 c 4.2005 d Write as decimal numbers: a $5 + \frac{1}{10} + \frac{7}{1000}$ b $\frac{4}{100} + \frac{9}{1000}$ Find the value of: a $86.204 - 3.779$ b 34.7×1000 c 3×2.3 d $5.6 \div 7$ e 2000×0.09 f $(0.4)^2$ How much did Karl earn if he worked for 7 hours and was paid \$18.2 Kate deposited \$124.95 in a new bank account. The next week she depotent then she withdrew \$103.20 the following week. What was the balance Use your calculator to find, correct to 2 decimal places where necessar a $58.31 - 1.72 \times 14.9$ b $\frac{62.97}{16.88 - 4.59}$ a Express as a fraction in simplest form: i 75% ii $6\frac{1}{4}\%$ iii 120% b Express as a decimal: i 25% ii $6\frac{1}{4}\%$ iii 120% Convert to a percentage:

9 Adam drank 220 mL of milk from a 600 mL carton. What percentage of the full carton did he drink?

10 An examination paper out of 150 marks was made up of short answer questions and problem solving questions. If the short answer questions were worth 40% of the marks, find how many marks the problem solving questions were worth.

- 11 When 92% of the children at a school ordered lunches from the canteen, 552 lunches were ordered. How many lunches would be ordered if 95% of the students ordered lunches from the canteen?
- 12 Stavros decreased his household water consumption of 326 kL for the year by 10%. What was his new consumption?
- **13** Write in scientific notation: **a** 9 **b** $34\,900$ **c** 0.0075
- **14** Write as an ordinary decimal number:

a 2.81×10^{6} b 2.81×10^{0} c 2.81×10^{-3}

- **15** Simplify, giving your answer in scientific notation:
 - **a** $(6 \times 10^3) \times (7.1 \times 10^4)$ **b** $(2.4 \times 10^6) \div (4 \times 10^2)$

REVIEW SET 8B

1	Write the following in expanded fractional form:								
	а	6.81	b	6.081	c	6.0801		d 6.0081	
2	Write	e as decimal numb	pers:	a	$1 + \frac{4}{10} + \frac{5}{100} - $	$+\frac{6}{10000}$	b	$9 + \frac{1}{100} + \frac{2}{1000}$	
3	Find	the value of:							
	а	46.802 + 20.05		Ь	$25.8\div1000$		c	$0.147 \div 7$	
	d	0.6×1.2		e	$(0.01)^2$		f	300 imes 0.03	

- **a** How many 4 kg packets of birdseed can be packed from 364.8 kg of birdseed?**b** What weight of birdseed remains?
- 5 Alberto had \$25.50. Find how much money was left if he bought 6 cartons of iced coffee costing \$2.35 each.
- **6** Use your calculator to find, correct to 1 decimal place where necesary:

a
$$\frac{31.5}{63.86 \div 4.1}$$
 b $(11.7)^2 - \frac{18.6}{14.7}$
7 a Express as a fraction in simplest form:
i 80% ii 0.2% iii 255%
b Express as a decimal:
i 46% ii $12\frac{1}{2}\%$ iii 105%
8 Convert to a percentage:
a $\frac{2}{5}$ b $1\frac{1}{20}$ c 0.97 d 0.021

9 Leslie has saved \$33 out of the \$60 that she needs for a concert ticket. What percentage of the money has she saved?

- 10 An item is advertised at '15% off the marked price'. If the marked price is ¥3500, how much would you need to pay for the item?
- **11** Julie received a 3% salary increase. If Julie was previously paid £18000 per year, find her new salary.

- 12 When Mount Bold reservoir is 40% full it holds 18472 megalitres of water. How much water would it hold if it was 90% full?
- **13** Write in scientific notation:
 - **a** 263.57 **b** 0.000511 **c** 863400000
- **14** Write as an ordinary decimal number:
 - a 2.78×10^{0} b 3.99×10^{7} c 2.081×10^{-3}
- **15** Simplify, giving your answer in scientific notation:
 - **a** $(8 \times 10^3)^2$ **b** $(3.6 \times 10^5) \div (6 \times 10^{-2})$

HISTORICAL NOTE

WOMEN IN MATHEMATICS

Over the centuries women have made enormous contributions to mathematics, though their part has often been unheralded. Following are brief statements about two women who have been recognised for their achievements:

SOFYA KOVALEVSKAYA (1850 - 1891)

Sofya was born in Moscow in 1850. As a girl she studied three languages, music, art and mathematics. She was a very fast learner, but unfortunately many universities refused to allow women to study mathematics and science. She therefore moved to Heidelberg University in Germany, but even there she had to dress in an unfeminine manner to be accepted by the maledominated mathematics department.

In 1874 she obtained a degree at the University of Gottingen, but as she was a women she was unable to obtain work as a teacher or researcher at any university.

In 1888 she went to Paris to continue her study. Following the death of her husband and a bad lapse in health she wrote hundreds of important mathematical formulae. She became a lecturer at the University of Stockholm and was awarded the Bordin Prize by the French Academy of Sciences on her research on *The rotation of a solid body about a fixed point*. Her work was so impressive the prize money was increased from 3000 francs to 5000 francs.

Unfortunately Sofya died two years later at the age of 41 after being struck down in an influenza epidemic sweeping through Europe.

ÉMILIE DU CHÂTELET (1706 - 1749)

Émilie was born in France in 1706. As a student she learned several languages and was an expert sword fighter. Her main passion in life, however, was the study of science and mathematics. She once entered a cafe which was the gathering place of mathematicians and scientists but was turned away because she was a woman. Undaunted she returned dressed as a man and was admitted.

Émilie is well remembered for her ability to clarify the works of other famous people of her time. Her best known work was her translation of Newton's *Principia Mathematica*. She was highly regarded as a scholar by her peers but was not treated seriously by the upper classes. In fact Frederick the Great of Prussia said, "Without wishing to flatter you, I can assure you that I should never have believed your sex, usually so delightfully gifted with all the graces, capable also of such deep knowledge, minute research, and solid discovery as appears in your fine work." Having done a great deal for the cause of the intellect of women, Émilie died at the young age of 43.

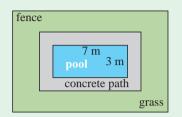
Chapter

Algebraic simplification and expansion

Contents:

A Collecting like terms

- B Product notation
- C The distributive law
- **D** The expansion of (a+b)(c+d)
- The expansion rules
- Perimeters and areas


OPENING PROBLEM

Alf decides to put a 7 m by 3 m rectangular swimming pool in his back yard. A concrete path is to be laid around the pool with a border of lawn planted *double* the width of the path. The whole area needs to be fenced and Alf has 50 m of beautiful and expensive fencing available. What should the dimensions of the pool area be if Alf wants to use all available fencing?

Think about the following:

- What unknown lengths are there in Alf's plan?
- How are the unknown lengths connected?
- If you were to solve the problem using *algebra*, what unknown length would you choose to be represented by the *pronumeral x*?
- What is the *length* of the fence in terms of x?
- Can you find x by *trial and error* substitution, by using a *spreadsheet*, or by *solving an equation*?
- Can you draw a complete dimensioned *plan* of the enclosed pool area?

• If Alf had 68 m of fencing available, how would this affect the answer?

COLLECTING LIKE TERMS

Like terms are algebraic terms which contain the same pronumerals to the same indices.

For example: • 3bc and -2bc are like terms

• $-x^2$ and 5x are **unlike terms** because the indices of x are not the same.

Algebraic expressions can often be simplified by adding or subtracting like terms. This is sometimes called **collecting like terms**.

Consider
$$3x + 2x = \underbrace{x + x + x}_{"3 \text{ lots of } x"} + \underbrace{x + x}_{"2 \text{ lots of } x"}$$

In total we have 5 lots of x, and so 3x + 2x = 5x.

Exan	nple 1		Self Tutor
	1 5/ 1	ssible, by collecting like terms:	
a	3a+4a b	11b - b c $5 + x + 2$ d $2ab + 3ab$	$a 3x^2 + 2x$
a		b $11b - b$ c $5 + x + 2$	
	=7a	$= 11b - 1b = 5 + 2 + x = 10b = 7 + x {5 and 2}$	are like terms}
d	2ab + 3ab = 5ab	• $3x^2 + 2x$ is in simplest form. $\{3x^2 \text{ and } 2x \text{ are unlike terms}\}$	

EXERCISE 9A

1 Simplify, where possible, by collecting like terms:

	Sim	piny, where possib	ie, by	/ conec	ting like t	erms.			
	а	6 + x + 2	Ь	5 + 6 - 6	+a	C	t + 2 - 5	d	b+5+b
	e	d + d + 6	f	q + q	+q	9	3x + x	h	c - 3 + 6 + c
	1	4a + 2a	j.	5y - 3	By	k	4z - 2z	- E	$c^{2} + c^{2}$
	m	3a + 8	n	$x^2 + 4$	x^2	0	12a - 9	p	12a - a
	q	$5v^2 - 2v^2$	r.	3bc +	3bc	S	z + 2z - 4z	t	6b - 5b - 4
2	Sim	olify, where possib	le						
	a	5x - 5x	10.	h	5x - x			5x - 5	
	d	3x - 5x 2xy + yx			ab+3ab		-	0	2
		0					_	3p - p 1 + b +	
	9	3 + 2a + 5a - 6			x + 3x +				
	j	3bc + 2cb			2b - a +				$3n - n^2 + 4n$
	m	8x + 2x - 3x			3m+2m				$b^2 - ab + 2b^2$
	P	8x + 7x - 9		q	4x + 2x	-6x		2y + 9y	y - y
	xam	ple 2							Self Tutor
	с.	1.6 1 .1	1	- 0	F		4	- 0	
	Sim	plify, where possib	ole:	a 3 <i>a</i> -	- 5 <i>a</i>	•	-4x-6x	c -2	b5b
	а	3a-5a		Ь	-4x -	-6x		c	-2b5b
		= -2a			= -10x			=	-2b + 5b
		=-2u			-10x				
		$-2a$ {since $3-5=-$	2}			-4 - 6	6 = -10		3b
			2}			-4 — 6	6 = -10		
3				terms:		-4 - 6	6 = -10		
3		$\{\text{since } 3-5=-$	like	terms: 4 <i>a</i> - 6	{since –		$6 = -10\}$ $-4a + 6a$	=	
3	Simp	{since $3-5 = -$ plify, by collecting 4a + 6a	like b	4a - 6	{since –	c	-4a + 6a	= d	3b -4a - 6a
3	Simp a e	{since $3-5 = -$ plify, by collecting 4a + 6a 7x + x	like b f	4a-6 7x-x	{since –	c g	-4a + 6a $-7x + x$	= d h	3b $-4a - 6a$ $-7x - x$
3	Simp a e i	{since $3-5 = -$ plify, by collecting 4a + 6a 7x + x $3n + n^2$	like b f j	4a - 6 $7x - a$ $-8d - 6$	{since -	c g k	-4a + 6a $-7x + x$ $-8d + 5d$	= d h I	3b $-4a - 6a$ $-7x - x$ $8d - 5d$
3	Simp a e i m	{since $3-5 = -$ plify, by collecting 4a + 6a 7x + x $3n + n^2$ b + 2 - 3b	like b f j n	4a - 6 $7x - x$ $-8d - 2t - 3$	$\begin{cases} \text{since } - \\ \frac{3}{2} $	c 9 k o	-4a + 6a $-7x + x$ $-8d + 5d$ $-6g + g$	d h I P	3b $-4a - 6a$ $-7x - x$ $8d - 5d$ $2m - 7 - 3m$
3	Simp a e i m	{since $3-5 = -$ plify, by collecting 4a + 6a 7x + x $3n + n^2$ b + 2 - 3b	like b f j n	4a - 6 $7x - a$ $-8d - 6$	$\begin{cases} \text{since } - \\ \frac{3}{2} $	c 9 k o	-4a + 6a $-7x + x$ $-8d + 5d$	d h I P	3b $-4a - 6a$ $-7x - x$ $8d - 5d$
-	Simp a e i m q	{since $3-5 = -$ plify, by collecting 4a + 6a 7x + x $3n + n^2$ b + 2 - 3b 2a + 4 - 5a	like b f j n	4a - 6 $7x - x$ $-8d - 2t - 3$	$\begin{cases} \text{since } - \\ \frac{3}{2} $	c 9 k o	-4a + 6a $-7x + x$ $-8d + 5d$ $-6g + g$	d h I P	3b $-4a - 6a$ $-7x - x$ $8d - 5d$ $2m - 7 - 3m$ $4bb$
-	Simp a e i m	{since $3-5 = -$ plify, by collecting 4a + 6a 7x + x $3n + n^2$ b + 2 - 3b 2a + 4 - 5a	like b f j n	4a - 6 $7x - x$ $-8d - 2t - 3$	$\begin{cases} \text{since } - \\ \frac{3}{2} $	c 9 k o	-4a + 6a $-7x + x$ $-8d + 5d$ $-6g + g$	d h I P	3b $-4a - 6a$ $-7x - x$ $8d - 5d$ $2m - 7 - 3m$
-	Simp a e i m q	{since $3-5 = -$ plify, by collecting 4a + 6a 7x + x $3n + n^2$ b + 2 - 3b 2a + 4 - 5a	like b f j n r	4a - 6 $7x - a$ $-8d - 2t - 3$ $-3c - 3c$	$\begin{cases} \text{since } - \\ \frac{3}{2} $	c 9 k o	-4a + 6a $-7x + x$ $-8d + 5d$ $-6g + g$	d h I P	3b $-4a - 6a$ $-7x - x$ $8d - 5d$ $2m - 7 - 3m$ $4bb$
-	Simp a i m q Xamp Simp	{since $3-5 = -$ plify, by collecting 4a + 6a 7x + x $3n + n^2$ b + 2 - 3b 2a + 4 - 5a ple 3	like b f j n r	4a - 6 $7x - a$ $-8d - 2t - 3$ $-3c - 3c$	$\begin{cases} \text{since } - \\ \frac{3}{2} $	c 9 k o s	-4a + 6a $-7x + x$ $-8d + 5d$ $-6g + g$	d h i p t	3b $-4a - 6a$ $-7x - x$ $8d - 5d$ $2m - 7 - 3m$ $4bb$
-	Simp a i m q Simj a	{since $3-5 = -$ plify, by collecting 4a + 6a 7x + x $3n + n^2$ b + 2 - 3b 2a + 4 - 5a plify, by collecting 3x - 4 - 5x - 2	like b f j n r	4a - 6 $7x - a$ $-8d - 2t - 3$ $-3c - 3c$	$\{ \text{since } -$	c 9 k 0 5	$-4a + 6a$ $-7x + x$ $-8d + 5d$ $-6g + g$ $4b - b$ $^{2} - y3y^{2}$	= d h i p t	3b $-4a - 6a$ $-7x - x$ $8d - 5d$ $2m - 7 - 3m$ $4bb$
-	Simp a e i m q Simj a a	{since $3-5 = -$ plify, by collecting 4a + 6a 7x + x $3n + n^2$ b + 2 - 3b 2a + 4 - 5a plify, by collecting 3x - 4 - 5x - 2 3x - 4 - 5x - 2	like b f j r ; like	4a - 6 $7x - a$ $-8d - 2t - 3$ $-3c - 3c$	$\{ \text{since } - \\ \frac{6a}{c} + 5d \\ t - t \\ -5c \\ + -5c $	c g k o s	$-4a + 6a$ $-7x + x$ $-8d + 5d$ $-6g + g$ $4b - b$ $^{2} - y3y^{2}$ $2y^{2} - y3$	$= \frac{d}{h}$ I P t $+ 5y$ $y^2 + 5y$	3b $-4a - 6a$ $-7x - x$ $8d - 5d$ $2m - 7 - 3m$ $4bb$
-	Simp a c i m q Xamp Simp a a	{since $3-5 = -$ plify, by collecting 4a + 6a 7x + x $3n + n^2$ b + 2 - 3b 2a + 4 - 5a plify, by collecting 3x - 4 - 5x - 2 3x - 4 - 5x - 2 = 3x - 5x - 4 - 5x	like b f j r ; like	4a - 6 $7x - a$ $-8d - 2t - 3$ $-3c - 3c$	$\{ \text{since } -$	c 9 k 0 s 2y =	$ \begin{array}{r} -4a + 6a \\ -7x + x \\ -8d + 5d \\ -6g + g \\ 4b - b \end{array} $ $ \begin{array}{r} 2y^2 - y3y^2 \\ 2y^2 - y3 \\ 2y^2 - y + 3y^2 \end{array} $	$= \frac{d}{h}$ I P t $+ 5y$ $3y^{2} + 5y$ $y^{2} + 5y$	3b $-4a - 6a$ $-7x - x$ $8d - 5d$ $2m - 7 - 3m$ $4bb$
-	Simp a e i m q Simp a a	{since $3-5 = -$ olify, by collecting 4a + 6a 7x + x $3n + n^2$ b + 2 - 3b 2a + 4 - 5a ole 3 plify, by collecting 3x - 4 - 5x - 2 3x - 4 - 5x - 2 3x - 4 - 5x - 4 = -2x - 6	like b f j n r g like	4a - 6 $7x - a$ $-8d - 2t - 3$ $-3c - 3c$ terms:	$\{ \text{since } -$	c g k o s 2y =	$-4a + 6a -7x + x -8d + 5d -6g + g 4b - b 2y^{2} - y3y^{2} 2y^{2} - y - 3y^{2} 2y^{2} - y + 3y^{2} 2y^{2} + 3y^{2} - y $	$= \frac{d}{h}$ I P t $+ 5y$ $3y^{2} + 5y$ $y^{2} + 5y$	3b $-4a - 6a$ $-7x - x$ $8d - 5d$ $2m - 7 - 3m$ $4bb$
-	Simp a e i m q Simp a a	{since $3-5 = -$ plify, by collecting 4a + 6a 7x + x $3n + n^2$ b + 2 - 3b 2a + 4 - 5a plify, by collecting 3x - 4 - 5x - 2 3x - 4 - 5x - 2 = 3x - 5x - 4 - 5x	like f j r g like 2 2 like t	4a - 6 $7x - a$ $-8d - 2t - 3$ $-3c - 4$ terms:	$\{ \text{since } -$	c g k o s 2y =	$ \begin{array}{r} -4a + 6a \\ -7x + x \\ -8d + 5d \\ -6g + g \\ 4b - b \end{array} $ $ \begin{array}{r} 2y^2 - y3y^2 \\ 2y^2 - y3 \\ 2y^2 - y + 3y^2 \end{array} $	$= \frac{d}{h}$ I P t $+ 5y$ $3y^{2} + 5y$ $y^{2} + 5y$	3b $-4a - 6a$ $-7x - x$ $8d - 5d$ $2m - 7 - 3m$ $4bb$

 $\{2y^2 \text{ and } 3y^2 \text{ are like terms,} -y \text{ and } 5y \text{ are like terms.}\}$

- **4** Simplify, where possible:
 - а 3a + 1 - 2a - 6
 - d -ab+2ba-5ab
 - -2n+5+3n-6
 - i.
- **b** c b + 4c + 2b
- **h** 2a + 5b 3a 6b
- $2i^2 + 2i 4i^2 3i$ **k** $-a^2 a^3 + a^3 2a^2$ **l** 4x + 2y -x y
- **m** 2xy + y 4xy 2y **n** -3x 5 3x 5
- 3xy + 3 2ab 1
- e 2x 6 + 6 7x f $m^2 5 + 2m^2 4$
 - 4uv 2uv + 2

PRODUCT NOTATION

In algebra we agree:

- to leave out the "×" signs between any multiplied quantities provided that at least one of them is an unknown (letter)
- to write **numerals (numbers) first** in any product
- where products contain two or more letters, we write them in **alphabetical order**.

- For example: 3b is used rather than $3 \times b$ or b3
 - 3bc is used rather than 3cb.

WRITING SUMS AS PRODUCTS

Sums of identical terms can be easily written using product notation.

 $5+5+5+5=4 \times 5$ {4 lots of 5} For example, \therefore $a + a + a + a = 4 \times a = 4a$ {4 lots of a} and likewise b+b+b=3b and x+x+x+x+x=6x.

WRITING PRODUCTS USING INDICES (EXPONENTS)

When the same number is multiplied two or more times we use **index notation** as a quick way of writing the product.

For example, $2 \times 2 \times 2 = 2^3$

and $x \times x \times x \times x \times x = x^5$ where x^5 is read as "x to the fifth".

- **Note:** In 2^3 , the 2 is called the **base** and the 3 is called the **index** or **power** or **exponent**.
 - x^2 is read "x squared" and x^3 is read "x cubed".

SIMPLIFYING ALGEBRAIC PRODUCTS

 $3 \times 2x$ and $a^2 \times 2ab$ are algebraic products.

Algebraic products can often be simplified using these steps:

- **Expand** out any brackets.
- Calculate the **coefficient** of the final product by multiplying all the numbers. ٠
- Simplify the unknowns using index notation where appropriate. The unknowns should • be written in alphabetical order.

P

Example 4	Self Tutor
Simplify: a $a + a + b + b + b$	b $a \times a + b + c + c$
$a \qquad a+a+b+b+b$	b $a \times a + b + c + c$
=2a+3b	$=a^2+b+2c$

Example 5	Self Tutor
Simplify: a $x^2 imes x^3$	b $2a \times 5a^2$
a $x^2 imes x^3$	b $2a imes 5a^2$
$= x \times x \times x \times x \times x$	$= 2 \times a \times 5 \times a \times a$
$= x^{5}$	$= 10a^{3}$

EXERCISE 9B

1	Sim	plify:				
	a	a+b+b+b	b	$a + a \times a + a$	c	$2\times b + b\times b$
	d	$6 \times a + a \times 2$	e	$3 \times a - a \times a$	f	$a \times 2 + a + 3 \times a$
	9	$4\times x\times x-x$	h	$b\times b\times b-b$	i	$3 \times a \times a - a - a$
2	Sim	plify:				
	a	$2 \times x \times x - 3$	Ь	b imes b imes b imes b	C	$a \times a \times a - a \times a$
	d	$6 \times t \times t$	e	$m \times m \times 4 \times m \times m$	f	$4\times y\times y\times 3\times y$
	9	$5\times b\times b-2\times b$	h	$s\times s-s\times s$	i	$3\times a\times b+2\times a\times a$
3	Sim	plify:				
	a	$a^2 \times a$	b	$b imes b^2$	C	$c^2 \times c^2$
	d	$n imes n^3$	e	$6a \times 3b$	f	$5c \times 4a$
	9	$m^2 \times m^3$	h	$k^3 \times k^2$	i	$p^3 imes p^3$

Exa	mple 6		⊣)) S	elf Tut	or
S	implify:	$(x^2)^2$	$(x^2)^2$		
			$= x^2 \times x^2$	1	
			$= x \times x \times$	$\langle x \times x \rangle$	
			$= x^4$		
	ь	$(m^2)^3$	3	c	$(r^3)^2$
	e	$(s^4)^2$			$(3x^3)^2$

4 Simplify: a (a^2)

d

9 i

$(a^2)^2$	b	$(m^2)^3$	c	$(r^3)^2$
$(ab)^2$	e	$(s^4)^2$	f	$(3x^3)^2$
$(2mn)^2$	h	$(3y^2)^3$	i	$(5ab^2)^2$
$(4x^3)^2$	k	$(2m^3)^3$	I.	$(ac)^2 \times 2c^3$

172 ALGEBRAIC SIMPLIFICATION AND EXPANSION (Chapter 9)

Example 7			Self Tutor
Simplify: a $2x \times 5$	b $4x \times 3x^2$	c	$6x^2 \times 5x^2$
a $2x \times 5$	b $4x \times 3x^2$	c	$6x^2 \times 5x^2$
$= 2 \times x \times 5$	$= 4 \times x \times 3 \times x \times x$		$= 6 \times x \times x \times 5 \times x \times x$
= 10x	$= 12x^3$		$=30x^{4}$

With practice, you should be able to do these without the middle step.

5 Simplify the following:

a	$2y \times 3$	b	$6x \times 2x$	c	$3ac \times 4a$	d	$(3d)^2$
e	$2st \times 3st$	f	$a^2 \times 2a^2$	9	$4y \times (2y)^2$	h	$3g \times g \times 4$
- i -	$3a \times (2a)^2$	j	$9b^3 \times 4b^2$	k	$(-x) \times 3x$	\mathbf{I}_{i}	$(-2x) \times x^2$
m	$(-2x) \times (-x)$	n	$(-3x) \times 4x^2$	0	$(-x^2) \times 5x^2$	Р	$4x^2 \times (-2x)$
P	$8x \times (-x^3)$	r	$3x^2 \times (-x)^3$	S	$2d^2 \times (-d)^2$	t	$(3x)^{3}$

THE DISTRIBUTIVE LAW

b

а

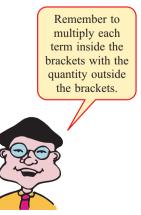
b+c

Consider the large rectangle which has been split into two smaller rectangles:

The large rectangle has area = width \times length = $a \times (b + c)$

and the two smaller rectangles have area $ab \ {\rm and} \ ac$

$$\therefore \quad a(b+c) = ab + ac.$$


This suggests that the factor outside the brackets is multiplied by each term within the bracket.

i.e.,
$$a(b+c) = ab + ac$$
 and $a(b+c+d) = ab + ac + ad$.

This process of removing the brackets in a product is known as expansion, and

a(b+c) = ab + ac is called the **distributive law**.

Example 8	Self Tutor
Expand and simplify: a	5 $(x+4)$ b $4(y-3)$
a $5(x+4)$	b $4(y-3)$
$= 5 \times x + 5 \times 4$	=4(y+-3)
=5x+20	$= 4 \times y + 4 \times (-3)$
	=4y - 12

С

EXERCISE 9C

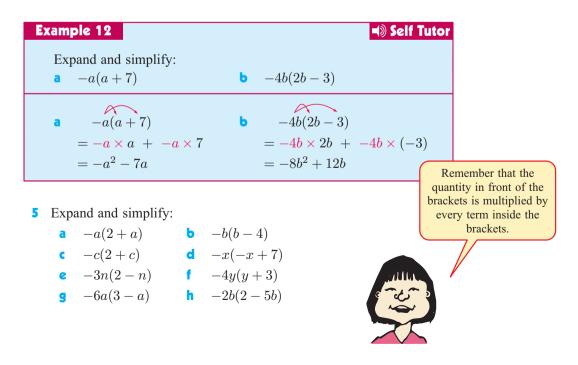
1	Expa	nd and simplify:						
	a	3(x+2)	Ь	4(x - 1)	c	5(a+4)	d	6(a+b)
	e	2(b-4)	f	9(m + 3)	9	3(n-m)	h	2(s-t)
	i.	5(4+x)	j	2(x-y)	k	3(t-7)	- E	7(3+p)
	m	9(b+c)	n	4(x-5)	0	2(6+j)	P	8(q-p)
	q	2(5-k)	r	6(y-z)	S	4(k-5)	t	5(10 - x)

Example 9	() Self Tutor
Expand and simplify:	
a $3(2a+7)$	b $2(3x-4)$
a $3(2a+7)$	b $2(3x-4)$
$= 3 \times 2a + 3 \times 7$	$= 2 \times 3x + 2 \times (-4)$
= 6a + 21	= 6x - 8

2 Expand and simplify:

a	4(3x+1)	Ь	3(2a+7)	c	2(1-2x)	d	6(2-3n)
e	5(2m+n)	f	7(2x-y)	9	3(b+3c)	h	4(2a-b)
1	2(a-6b)	j.	3(5+3d)	k	7(4-2k)	- E	2(b+8a)
m	11(4x+y)	n	2(m-7n)	0	6(3g-2h)	р	3(4+3x)
q	2(3x+z)	r	6(c-3d)	S	5(p+6q)	t	4(3a - bc)

Example 10	Self Tutor
Expand and simplify:	
a $2y(3y+5)$	b $2x(3-2x)$
a $2y(3y+5)$	b $2x(3-2x)$
$= 2y \times 3y + 2y \times 5$ $= 6x^2 + 10x$	$= 2x \times 3 + 2x \times (-2x)$ $= 6\pi - 4\pi^2$
$= 6y^2 + 10y$	$= 6x - 4x^2$


3 Expand and simplify:

a	a(a+4)	Ь	b(3-b)	c	c(3c+1)	d	d(5-4d)
e	a(2b+c)	f	$g(g^2 - 1)$	9	$a^2(7-2a)$	h	3x(2x-3)
i.	2x(5-x)	j	3x(5-x)	k	$4a^2(a-3)$	1	7n(4+2n)
m	(3x-2)x	n	(4+2x)x	0	pq(q-p)	р	$ab^2(b-1)$
q	$m^2n(3+n)$	r.	ab(2b-a)	S	5p(1-4pq)	t	$(7k^2 + 2l)l$
u	$(3a^2 - 5)b^2$	V	2xy(x+6y)	w	$(3-4x^2)xy$	X	$(4t^2 - 3s)s$

Example 11	الله Self Tutor
Expand and simplify:	
a $-4(x+3)$	b $-3(2x-4)$ c $-(3-2x)$
a $-4(x+3)$ = $-4 \times x + -4 \times 3$ = $-4x - 12$	$\{-4 \text{ is multiplied by } x \text{ and by } 3.\}$
b $-3(2x-4)$ = $-3 \times 2x + -3 \times (-4)$ = $-6x12$ = $-6x + 12$	4) $\{-3 \text{ is multiplied by } 2x \text{ and by } -4.\}$
$ \begin{array}{c} -(3-2x) \\ = -1(3-2x) \\ = -1 \times 3 + -1 \times (-2x) \\ = -3 + 2x \end{array} $	$\{-1 \text{ is multiplied by } 3 \text{ and by } -2x.\}$

4 Expand and simplify:

a	-3(x+1)	b	-2(x+3)	c	-5(x-2)	d	-6(3-x)
e	-(a+4)	f	-(x-2)	9	-(6-x)	h	-(3x+2)
1	-5(3-x)	J	-9(3x - 4)	k	-2(5-2c)	- E	-(x-9)

Example 13
Expand and simplify:
a
$$3(x+5)+2(4-x)$$
 b $5(3-x)-2(x+1)$
a $3(x+5)+2(4-x)$
 $= 3 \times x + 3 \times 5 + 2 \times 4 + 2 \times (-x)$
 $= 3x + 15 + 8 - 2x$
 $= 3x - 2x + 15 + 8$
 $= x + 23$
b $5(3-x) - 2(x+1)$
 $= 5 \times 3 + 5 \times (-x) + -2 \times x + -2 \times 1$
 $= 15 - 5x - 2x - 2$
 $= 15 - 2 - 5x - 2x$
 $= 13 - 7x$

6 Expand and simplify:

a	4(x+1) + 2(x+2)
c	5(x-1) + 2(x-3)

- 5(x-1) + 2(x-3)
- $alref{3}(m+2) 2(m-6)$
- 2(x+1) 2(2x+3)9(x-2) + 3(7-4x)
- -4(2n-3) 3(3n-5)
- m 7(x-1) + 2(2x+3) 11x

b 4(x+2) + 4(x+2)d 2(2x-3) + 3(2-x)f 2(m-1) - 5(m+2)**h** 8(2+x) - (5x+3)9(2-5x)-2(3x+2)7(3y-4) + 5(1-2y)n 5(3t-2) - 2(3t-1) + 3

Self Tutor

Example 14

Expand and simplify: a $4-2(x+3)$	b $8-3(2y-1)$
a $4 - 2(x + 3)$	b $8-3(2y-1)$
=4 + -2(x+3)	=8 + -3(2y - 1)
$=4 + -2 \times x + -2 \times 3$	$= 8 + -3 \times 2y + -3 \times (-1)$
= 4 - 2x - 6	= 8 - 6y + 3
= -2x - 2	= 11 - 6y

7 Expand and simplify:

b 5-4(2x+1) **c** 9-6(2x-4) **e** 5-3(2-5x) **f** 12-(3+4x)a 4x - (1 + 2x)**d** 9x - (6 - 2x)**h** x - 7 + 2(3 - 4x) **i** 7x + 5 - 3(2 - 3x)5 - 6(2 + 3x)**k** 5x - (3 - 4x) + 4 **l** 7 - 3(8 - 4x)8 - (5 - 2x)

Exam	ple 1 5 🔹 🔊 Self Tutor
	pand and simplify: (-1, 2) + 2 + (2, -2)
a	a(a+2) + 2a(3a-2) b $y(3y-1) - 3y(2y-5)$
a	a(a+2) + 2a(3a-2)
	$= \mathbf{a} \times \mathbf{a} + \mathbf{a} \times 2 + \mathbf{2a} \times \mathbf{3a} + \mathbf{2a} \times (-2)$
	$=a^2+2a+6a^2-4a$
	$=7a^2-2a$
Ь	y(3y-1) - 3y(2y-5)
	$= y \times 3y + y \times (-1) + -3y \times 2y + -3y \times (-5)$
	$= 3y^2 - y - 6y^2 + 15y$
	$= 14y - 3y^2$

8 Expand and simplify:

- a 3(x+2) + 4x(x-1)**b** a(a-2) - a(4+a)**d** $x(x^2+1) - 3x^2(1-2x)$ 2(p+q) - 3(q-p)
- $x^2(x-8) 3x(2+x^2)$
- f 6(a-b+3) 2(2+a-3b)

Example 16	Self Tutor
Expand and simplify:	
a $3(x^2 + 4x - 5)$	b $2a(a^2 - 3a + 1)$
a $3(x^2 + 4x - 5)$	b $2a(a^2 - 3a + 1)$
$= 3 \times x^2 + 3 \times 4x + 3 \times (-5)$	$= 2a \times a^2 + 2a \times (-3a) + 2a \times 1$
$=3x^2+12x-15$	$=2a^3-6a^2+2a$
$=3x^2+12x-15$	$=2a^3-6a^2+2a$

9 Expand and simplify:

Algebra is a powerful tool in mathematical problem solving.

Algebra can help us to describe problems in general terms and often gives us an insight into why something works.

"THINK OF A NUMBER"

What to do:

1 Play the following 'think of a number' game with a partner:

Think of a number. Add 4. Double the result. Subtract 2. Halve the result. Subtract your original number.

Repeat the game choosing different numbers. You should find that the answer is always 3. Why is this so?

2 Algebra can provide an insight into why the answer to this game is always 3. Let x represent the starting number.

Copy and complete the following argument by writing down each step in terms of x:

Think of a number:		x
Add 4	gives	x+4
Double the result	gives	$2(x+4) = \dots + \dots$
Subtract 2	gives	$\ldots + \ldots - 2 = \ldots + \ldots$
Halve the result	gives	$\frac{1}{2}(\dots + \dots) = \dots + \dots$
Subtract your original number	gives	$\dots + \dots - x = \dots$

3 Try the following 'think of a number' game:

Think of a number. Double it. Add 8. Halve the result. Subtract 4.

What is your answer? Repeat the game using different numbers.

- 4 For the game above, let x be the starting number. Use algebra to show how the game works.
- **5** Make up your own 'think of a number' game. Test it with algebra before you try it on others.

THE EXPANSION OF (a+b)(c+d)

Products like (a + b)(c + d) can be expanded by **repeated use** of the **distributive law**.

For example,

$$(x+3)(x+2) (1) = (x+3)x + (x+3)2 (2) = x(x+3) + 2(x+3) (3) (1)$$

$$= x^2 + 3x + 2x + 6 \tag{4}$$

$$=x^2 + 5x + 6$$

Compare: $\Box(x+2)$ = $\Box \times x + \Box \times 2$

Notice that the distributive law for bracket expansion was used three times: once to get line (2) and twice to get line (4).

Example 17	Self Tutor
Expand and simplify by repeated use $(1, 1)$	
a $(x+5)(x+4)$	b $(x-2)(2x-1)$
a $(x+5)(x+4)$	b $(x-2)(2x-1)$
= (x+5)x + (x+5)4	= (x-2)2x + (x-2)(-1)
=x(x+5) + 4(x+5)	=2x(x-2) - (x-2)
$= x^{2} + 5x + 4x + 20$ $= x^{2} + 9x + 20$	$= 2x^2 - 4x - x + 2$ = 2x ² - 5x + 2
-x + 9x + 20	-2x - 5x + 2

EXERCISE 9D

1 Expand and simplify by repeated use of the distributive law:

a	(x+1)(x+4)	Ь	(a+3)(a+2)	c	(c+1)(c-4)
d	(a-2)(a-5)	e	(w+x)(y+z)	f	(p+q)(a+b)
9	(x-1)(3x+2)	h	(1-x)(2x+3)	1 I.	(2x+5)(x-3)
j	(3x-2)(x+4)	k	(4x-3)(3x-5)	- E	$(x-1)(x^2+5)$

Example 18	Self Tutor
Expand using the distributive law re	epeatedly: a $(x+5)^2$ b $(x-5)^2$
a $(x+5)^2$	b $(x-5)^2$
= (x+5)(x+5)	= (x-5)(x-5)
= (x+5)x + (x+5)5	= (x-5)x + (x-5)(-5)
=x(x+5) + 5(x+5)	= x(x-5) - 5(x-5)
$=x^2+5x+5x+25$	$=x^2 - 5x - 5x + 25$
$=x^2+10x+25$	$=x^2 - 10x + 25$

2 Expand using repeated use of the distributive law:

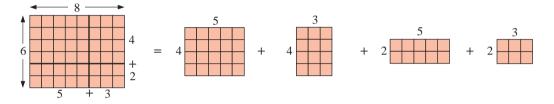
a	$(x+2)^2$	b	$(x-2)^2$	c	$(5+x)^2$	d	$(5-x)^2$
e	$(2x+3)^2$	f	$(2x - 3)^2$	9	$(a + b)^2$	h	$(a-b)^2$
i.	$(x-6)^2$	j	$(11+z)^2$	k	$(3-5x)^2$	1	$(2+7x)^2$

Example 19	Self Tutor
Use the distributive law to expand and simplify: $(x+2)(x^2+2x-3)$	$(x+2)(x^{2}+2x-3)$ $= (x+2)x^{2} + (x+2)2x + (x+2)(-3)$ $= x^{2}(x+2) + 2x(x+2) - 3(x+2)$ $= x^{3}+2x^{2}+2x^{2}+4x-3x-6$ $= x^{3}+4x^{2}+x-6$

3 Use the distributive law to expand and simplify:

a
$$(x+2)(x^2+2x+4)$$

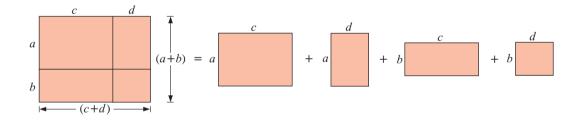
$$(x-3)(x^2-2x+1) (x^2-2x-4)(3x-5) (2x-5)(3-x^2+x)$$


$$(x^2 - 2x - 4)(3x - 5)$$

$$(2x-5)(3-x^2+x)$$

- **b** $(x+1)(2x^2-x+3)$
- d $(x^2 x + 3)(x + 5)$
- f $(3x^2 + 2x + 1)(2x 7)$
- h $(x+8)(x^2+1-3x)$

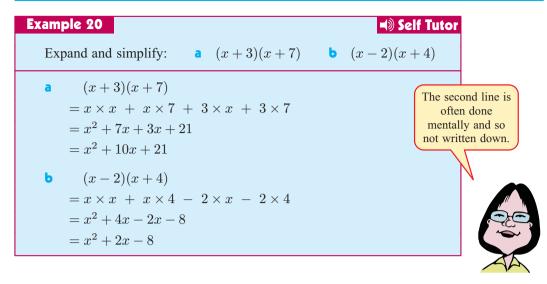
THE EXPANSION RULES


Consider the following rectangle which is 8 units long and 6 units wide.

Comparing the total number of squares on each side of the = sign, we notice that:

 $(4+2)(5+3) = 4 \times 5 + 4 \times 3 + 2 \times 5 + 2 \times 3.$

We generalise this result by considering a rectangle with sides (a + b) and (c + d).



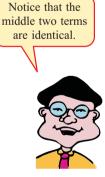
The original rectangle has area = (a+b)(c+d). {length × width} The sum of the areas of the smaller rectangles = ac + ad + bc + bd.

$$\therefore \quad (a+b)(c+d) = ac+ad+bc+bd.$$

This expansion rule is called the **FOIL** rule as:

$$(a+b)(c+d) = ac + ad + bc + bd$$

outers Firsts Outers Inners Lasts


EXERCISE 9E

1 Use the rule (a + b)(c + d) = ac + ad + bc + bd to expand, and then simplify if possible:

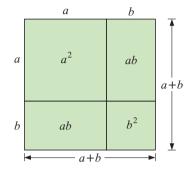
a	(p+q)(x+y)	b $(q+r)(s+t)$	c $(x+3)(x+6)$
d	(x+4)(x+2)	e $(a+5)(a+1)$	f $(y+6)(y+5)$
9	(b+3)(b-3)	h $(x-5)(x+3)$	(x+8)(x-4)
J	(x-1)(x+4)	(k+4)(k-3)	(x+2)(x-6)
m	(x+5)(x-2)	(x-3)(x-6)	• $(z-9)(2z-3)$
р	(3n-1)(n+2)	q $(x-7)(2x+5)$	(3x+5)(4x-3)

PERFECT SQUARES

Example 21		Self Tutor	are
Expand and simplify:			
a $(x+7)^2$	b	$(3x-2)^2$	
a $(x+7)^2$	b	$(3x-2)^2$	
= (x+7)(x+7)		=(3x-2)(3x-2)	
$=x^2+7x+7x+49$		$=9x^2 - 6x - 6x + 4$	
$=x^2 + 14x + 49$		$=9x^2 - 12x + 4$	

2 Expand and simplify using the rule (a+b)(c+d) = ac + ad + bc + bd:

a	$(x+1)^2$	b	$(x+3)^2$	c	$(x - 3)^2$	d	$(x - 8)^2$
e	$(4+y)^2$	f	$(4 - y)^2$	9	$(3x+1)^2$	h	$(3x-1)^2$
1	$(1+2a)^2$	j	$(1-2a)^2$	k	$(a + b)^2$	- E	$(a-b)^2$
m	$(4x+1)^2$	n	$(3x-4)^2$	•	$(8x - 3)^2$	P	$(6x+3)^2$


The expressions in question 2 are known as **perfect squares**.

Perfect squares have form $(a + b)^2$ or $(a - b)^2$, and because we see them often in algebraic expressions we use the following rule for writing down their expansions:

$$(a+b)^2 = a^2 + 2ab + b^2$$

This rule is easily established by repeated use of the distributive law.

 $(a+b)^2 = a^2+2ab+b^2$ can be demonstrated using areas.

The following is a useful way of remembering the perfect square rules:

(a +	$(-b)^2$	=	a^2	+	2ab	+	b^2
1	1		square of		twice product		square of
1st term	2nd term		first term		of 2 terms		2nd term

Example 22	Self Tutor
Expand and simplify: a $(x+6)^2$	b $(2x+5)^2$
a $(x+6)^2$	b $(2x+5)^2$
$=x^2$ + 2 × x × 6 + 6 ²	$= (2x)^2 + 2 \times 2x \times 5 + 5^2$
$=x^2+12x+36$	$=4x^2+20x+25$

3 Expand and simplify using the rule $(a+b)^2 = a^2 + 2ab + b^2$:

a	$(c+d)^2$	Ь	$(x+y)^2$	c	$(p+q)^2$	d	$(a+2)^2$
e	$(x+7)^2$	f	$(x+9)^2$	9	$(3a+1)^2$	h	$(1+2b)^2$
÷.	$(2x+5)^2$	i	$(6+5x)^2$	k	$(x^2+2)^2$	- E	$(x + x^2)^2$

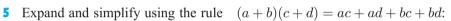
Self Tutor
b $(3x-7)^2$
b $(3x-7)^2$
$=(3x+-7)^2$
$= (3x)^2 + 2 \times 3x \times (-7) + (-7)^2$
$=9x^2 - 42x + 49$

182 ALGEBRAIC SIMPLIFICATION AND EXPANSION (Chapter 9)

- 4 Expand and simplify using the rule $(a+b)^2 = a^2 + 2ab + b^2$:
 - **a** $(m-n)^2$ **b** $(p-q)^2$ **c** $(c-d)^2$ **d** $(h-2)^2$ **e** $(3-n)^2$ **f** $(6-x)^2$ **g** $(2x-5)^2$ **h** $(7-2z)^2$ **i** $(3x-2)^2$ **j** $(4-3a)^2$ **k** $(2x-3y)^2$ **i** $(x^2-3)^2$

DIFFERENCE OF TWO SQUARES

Example 24


Self Tutor

Notice that the

middle two terms

add to zero!

Expand and simplify using	(a+b)(c+d) = ac + ad + bc + bd:
a $(x+3)(x-3)$	b $(2x-5)(2x+5)$
a $(x+3)(x-3)$	b $(2x-5)(2x+5)$
= $x^2 - 3x + 3x - 9$	$4x^2 + 10x - 10x - 25$
$ = x^2 - 3x + 3x - 9 = x^2 - 9 $	$= 4x^2 + 10x - 10x - 25$ $= 4x^2 - 25$

-		-			
a	(x+1)(x-1)	Ь	(a-2)(a+2)	c	(b+5)(b-5)
d	(c-3)(c+3)	e	(4+x)(4-x)	f	(7-x)(7+x)
9	(1+y)(1-y)	h	(8-b)(8+b)	- i	(2x+3)(2x-3)
j.	(4a-5)(4a+5)	k	(2+3x)(2-3x)	- E	(1-6y)(1+6y)

In question 5 above we noticed that when we expand expressions of the form (a+b)(a-b)we get $a^2 - ab + ab - b^2 = a^2 - b^2$

Since a^2 and b^2 are perfect squares, $a^2 - b^2$ is called the **difference of two squares**.

In general,

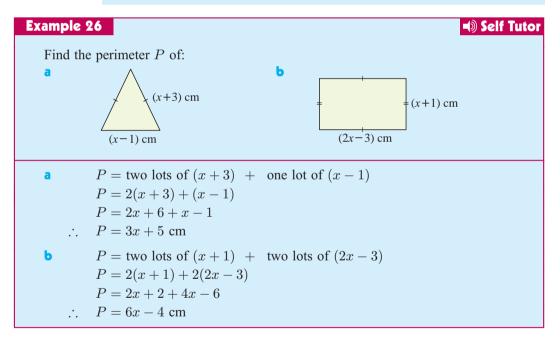
$$(a+b)(a-b) = a^2 - b^2.$$

Example 25 Self Tutor
Expand and simplify using the rule $(a+b)(a-b) = a^2 - b^2$:
a $(x+3)(x-3)$ b $(2x-5)(2x+5)$
a $(x+3)(x-3)$ b $(2x-5)(2x+5)$
$= (x)^2 - (3)^2 = (2x)^2 - (-5)^2$
$=x^2-9$ $=4x^2-25$

• Expand and simplify using the rule $(a+b)(a-b) = a^2 - b^2$:

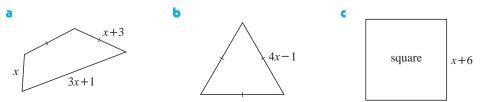
a	(y+1)(y-1)	b $(b+2)(b-2)$	c	(a-7)(a+7)
d	(x-4)(x+4)	e (6-b)(6+b)	f	(5-x)(5+x)
9	(8+a)(8-a)	h $(2+3y)(2-3y)$	- i	(7-2a)(7+2a)
j	(3x+1)(3x-1)	k $(5-3y)(5+3y)$	I.	(-x+2)(-x-2)

7 Expand and simplify using the appropriate expansion rule:

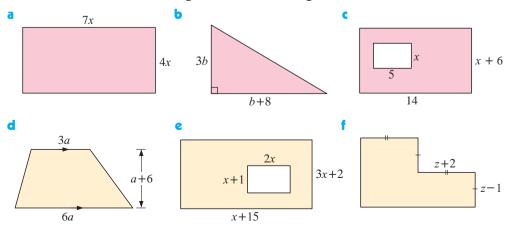

а	(x+7)(x-3)	Ь	(x+3)(x+5)	c	$(x+4)^2$
d	(3-x)(5-x)	e	(1-x)(x-3)	f	$(x - 11)^2$
9	(a+8)(a-8)	h	$(h+9)^2$	i	(2x+13)(2x-13)
j.	(x+3)(2x-5)	k	$(3x+5)^2$	I.	(m+n)(m-n)
m	(3x-2)(x+5)	n	$(5x-2)^2$	0	(7x+1)(7x-1)
P	(4x+1)(5-x)	q	$(3-2r)^2$	r	(-2+3x)(4x-3)

PERIMETERS AND AREAS

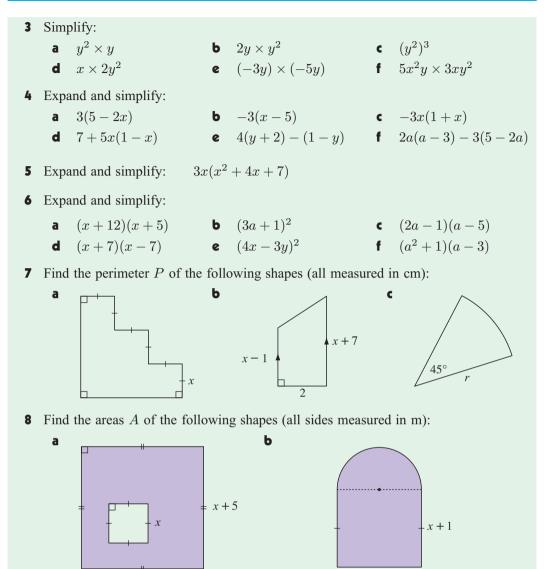
Sometimes in problem solving we are required to find perimeters and areas in terms of one or more variables.


Reminder:

- The **perimeter** of a closed figure is the distance around its boundary.
- The **area** of a closed figure is the number of square units contained within the boundary.


EXERCISE 9F

1 Find the perimeter P of the following if all measurements are in cm:



2 Find the area A of the shaded regions if all sides are given in m:

REVIEW SET 9A		
1 Simplify where possible, by	collecting like terms:	
a $2x + 5x$	b $7-7y$	c $x+y-2x$
d $4a + ab$	e $3xy + 7xy$	f $3x^2 + 2 - 2x^2 - 2$
g $4a-a$	h $5y^22y^2$	$x^{2} + x^{2} + x^{2}$
2 Simplify:		
a $c+d+d+d$	b $c \times d \times d \times d$	c $3 \times d + c \times d$
3 Simplify:		
a $x imes x^3$	b $4x^2 \times 2x^2$ e $(-3x) \times (-2x)$	c $(x^2)^3$
d $3x imes y^2$	e $(-3x) imes (-2x)$	f $2ab^2 \times 5a^2$
4 Expand and simplify:		
a $4(y+2)$	b $2(8a-3b)$	
d $-2(x+1)$	e $7(x+1) - 3(x-1)$	f $5-4(y+2)-y$
5 Expand and simplify: $2x(x)$	$x^2 - 5x + 6$)	
6 Expand and simplify:		
a $(x-6)(x+3)$	b $(2y-1)^2$	c $(3a-2)(4a-5)$
d $(2x+11)(2x-11)$		f $(a^2 + a - 2)(a + 5)$
7 Find the perimeter P of the		
a	b 3 <i>x</i> + 5	с С
x + 4	x + 2	
$\frac{x-1}{x-1}$		← 2 <i>x</i> →
8 Find the area A of the follow	ving shapes if all measuremen	nts are in cm:
a 3 <i>a</i> + 5	b	
	2	$\rightarrow 2x$
	2 – 3	
REVIEW SET 9B		
1 Simplify where possible, by $2\pi - 2\pi$	•	
a $3q-3q$ d $ab+7ab$	b $a + 5a - 4a$ e $y^2 - y^2 + y^2$	c $q - p + 3q$ f $2a^27a^2$
	- 9 9 9	• 200 TU

- **2** Simplify:
 - a a+b+a+b
- **b** $b \times b \times b \times c$
- c $c \times d 5 \times c$

4x

Chapter

Statistics

A Terminology for the study of statistics

- B Quantitative (numerical) data
- C Grouped discrete data
- **D** Frequency histograms
- Measuring the centre
- F Cumulative data
- G Measuring the spread
- H Box-and-whisker plots
- Statistics from technology

HISTORICAL NOTE

- Florence Nightingale (1820-1910), the famous "lady with the lamp", developed and used graphs to represent data relating to hospitals and public health.
- Today about 92% of all nations conduct a census at regular intervals. The UN gives assistance to developing countries to help them with census procedures, so that accurate and comparable worldwide statistics can be collected.

OPENING PROBLEM

Kelly grows pumpkins and wishes to investigate the effect of an organic fertiliser on the number of pumpkins harvested.

She hopes that the fertiliser will significantly increase the number of pumpkins harvested per plant.

In identical soils she has planted many seeds in two patches, one using the fertiliser and the other not. All other factors such as watering have been kept the same for both patches.

Random plants are selected and the number of pumpkins counted. The results are:

Without fertiliser

With fertiliser

$4\ 7\ 8\ 3\ 9$	$8\ 6\ 5\ 9\ 7$	$8\ 7\ 8\ 4\ 6$	$8\ 10\ 4\ 10\ 15$	$4 \ 9 \ 7 \ 11 \ 10$	$8\ 8\ 6\ 10\ 10$
$7\ 6\ 8\ 6\ 7$	$6\ 6\ 7\ 8\ 8$	$4\ 7\ 7\ 7\ 3$	$9\ 5\ 9\ 6\ 7$	$5\ 7\ 7\ 9\ 8$	$6\ 5\ 7\ 8\ 7$
$5\ 5\ 8\ 9\ 7$	$4\ 9\ 6\ 9\ 7$		$2\ 6\ 9\ 7\ 10$	$6\ 8\ 7\ 10\ 8$	

For you to consider:

- Can you state clearly the problem that Kelly wants to solve?
- How has Kelly tried to make a fair comparison?
- How could Kelly have made sure that her selection was at random?
- What is the best way of organising this data?
- What are suitable methods for displaying the data?
- Are there any abnormally high or low results, and how should they be treated?
- How can she best indicate the most typical yield per plant?
- How can we best indicate the spread of the data?
- Can a satisfactory conclusion be made?

TERMINOLOGY FOR THE STUDY OF STATISTICS

STATISTICS

Statistics is the art of solving problems and answering questions by collecting and analysing data.

The facts or pieces of information we collect are called **data**. Data is the plural of the word *datum*, which means a single piece of information.

A list of information is called a **data set** and because it is not in an organised form it is called **raw data**.

THE STATISTICAL METHOD

The process of statistical enquiry (or investigation) includes the following steps:

- *Step 1:* Examining a problem which may be solved using data and posing the correct question(s).
- Step 2: Collecting data.
- Step 3: Organising the data.
- Step 4: Summarising and displaying the data.
- Step 5: Analysing the data, making a conclusion in the form of a conjecture.
- Step 6: Writing a report.

VARIABLES

There are two types of variables that we commonly deal with:

• A **categorical variable** is one which describes a particular quality or characteristic. It can be divided into **categories**. The information collected is called **categorical data**.

Examples of categorical variables are:

Getting to school:the categories could be train, bus, car and walking.Colour of eyes:the categories could be blue, brown, hazel, green, and grey.

• A quantitative variable is one which has a numerical value, and is often called a numerical variable. The information collected is called numerical data.

Quantitative variables can be either discrete or continuous.

A **quantitative discrete variable** takes exact number values and is often a result of **counting**.

Examples of discrete quantitative variables are:

The number of people in a household:the variable could take the values 1, 2, 3, ...The score out of 30 for a test:the variable could take the values 0, 1, 2, 3, ..., 30.

A **quantitative continuous variable** takes numerical values within a certain continuous range. It is usually a result of **measuring**.

Examples of quantitative continuous variables are:

- *The weight of* the variable could take any positive value on the number *newborn babies:* line but is likely to be in the range 0.5 kg to 7 kg.
- *The heights of* the variable would be measured in centimetres. A student *Year 10 students:* whose height is recorded as 145 cm could have exact height anywhere between 144.5 cm and 145.5 cm.

CENSUS OR SAMPLE

The two types of data collection are by census or sample.

A **census** is a method which involves collecting data about every individual in a *whole population*.

The individuals in a population may be people or objects. A census is detailed and accurate but is expensive, time consuming, and often impractical.

A sample is a method which involves collecting data about a *part of the population* only.

A sample is cheaper and quicker than a census but is not as detailed or as accurate. Conclusions drawn from samples always involve some error.

A sample must truly reflect the characteristics of the whole population. It must therefore be **unbiased** and **sufficiently large**.

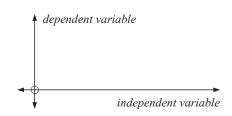
A **biased sample** is one in which the data has been unfairly influenced by the collection process and is not truly representative of the whole population.

EXERCISE 10A

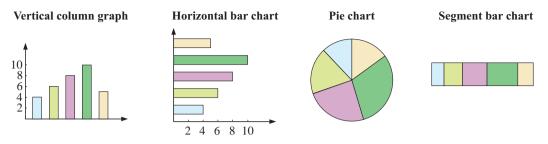
- 1 Classify the following variables as either categorical or numerical:
 - a the time taken to travel to school
 - **b** the number of cousins a person has
 - voting intention at the next election
 - **d** the number of cars in a household
 - e the speed of cars on a particular stretch of highway
 - f favourite type of apple
 - **g** town or city where a person was born
 - **h** the weight of three-year-old children
- 2 Write down the possible categories for the following categorical variables:
 - a gender
 - hair colour

- favourite football code
- d type of fuel used in a car

- **3** For each of the following possible investigations, classify the variable as categorical, quantitative discrete or quantitative continuous:
 - a the number of goals scored each week by a hockey team
 - **b** the weights of the members of a basketball team
 - c the most popular TV station
 - d the number of kittens in each litter
 - e the number of bread rolls bought each week by a family
 - f the pets owned by students in your class
 - **g** the number of leaves on a rose plant stem
 - h the number of hours of daylight each day in winter
 - i the number of people who die from heart attacks each year in a given city
 - j the amount of rainfall in each month of the year
 - **k** the countries of origin of refugees
 - the reasons people use public transport
 - **m** the stopping distances of cars doing $80 \text{ km} \text{ h}^{-1}$
 - **n** the number of cars passing through an intersection per hour
 - the pulse rates of a group of hockey players at rest
- 4 State whether a census or a sample would be used for these investigations:
 - a the reasons for people using taxis
 - **b** the heights of the basketballers at a particular school
 - c finding the percentage of people in a city who suffer from asthma
 - d the resting pulse rates of members of your favourite sporting team
 - e finding the country of origin of immigrants
 - f the amount of daylight each month where you live
- **5** Discuss any possible bias in the following situations:
 - a Only Year 12 students are interviewed about changes to the school uniform.
 - **b** Motorists stopped in peak hour are interviewed about traffic problems.
 - c Real estate agents are interviewed about the prices of houses.
 - **d** A 'who will you vote for' survey at an expensive city restaurant.


STATISTICAL GRAPHS

Two variables under consideration are usually linked by one being *dependent* on the other.


For example, the total cost of a dinner depends on the number of guests present.

We say that *the total cost of a dinner* is the **dependent variable**, and *the number of guests present* is the **independent variable**.

In general, when we draw **graphs** involving two variables, the *independent variable* is placed on the **horizontal axis** and the *dependent variable* is placed on the **vertical axis**. An exception to this is when we draw a horizontal bar chart.

Acceptable graphs to display categorical data are:

For categorical data, the **mode** is the category which occurs most frequently. In the graphs above, the mode is the green category.

INTERNET STATISTICS

There are thousands of sites worldwide which display statistics for everyone to see. Sites which show statistics that are important on a global scale include:

- <u>www.un.org</u> for the United Nations
- <u>www.who.int</u> for the World Health Organisation

GRAPHING STATISTICS USING A COMPUTER PACKAGE

Click on the icon to obtain a graphing package for statistics. Experiment with the different types of graphs it can produce. Enter some data of your own and print the results.

- At a school, children were randomly chosen and asked to nominate their favourite fruit. The following data was collected:
 - **a** What are the variables in this investigation?
 - **b** What is the dependent variable?
 - What is the sample size?
 - **d** If we are trying to find out the favourite fruit of children, is the sample unbiased?
 - If we are only interested in the favourite fruit of 368 children within the school, is the sample unbiased?
 - f What is the mode?
 - **9** Using the computer package, construct a vertical column graph to illustrate the data.

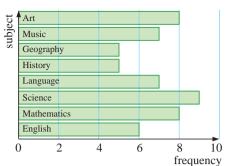
Type of fruit	Frequency
Apple	20
Banana	24
Grapes	3
Orange	11
Mandarin	10
Nectarine	7
Pear	2
Peach	3

- **7** 55 randomly selected Year 10 students were asked to nominate their favourite subject studied at school. The results of the survey are displayed in the bar chart shown.
 - **a** What are the variables in this investigation?
 - What are the dependent and independent variables?
 - What is the mode?
 - **d** What given information indicates that the sample was unbiased?
 - e If there are 173 Year 10 students at the school, is the sample size sufficient?
 - f Construct a pie chart for the data. If possible, use a spreadsheet.
- 8 Warren read the following report from the local paper:

OUR CHANGING POPULATION

A spokesperson from the Statistics Bureau reported today that the number of persons per household has reached an all time low. Some of the reasons suggested for this decline were: women having fewer children and at a later stage in their lives because they want to establish their careers, more couples choosing not to have children at all, and it being more expensive than at any time previously to raise children.

In the past large families were common. It was cheaper to raise children as the 'necessities' of life were basic compared with the current times. Few married women had paid employment outside the home.


Whilst there have been fluctuations in family size over the last hundred years, such as the 'baby boom' following World War II, it is now seen as unlikely that we will ever return to the large families of the past.

Warren decided to put this statement to the test in his local town of Boodernut. He applied for and received census data from the Statistics Bureau, a copy of which is given alongside.

- a Find the population sizes of the town in:
 - i 1935 ii 1960
 - 1985

Private household size of Boodernut								
Number of	Year							
persons	1935	1935 1960 1985						
1	9	8	69					
2	68	177	184					
3	73	162	248					
4	109	374	162					
5+	178	283	38					
Totals								

- Prepare a table of percentages for the town's population data (correct to 1 decimal place).
- Using the data, write a brief discussion and conclusion which compares the changes in the household sizes over the 1935 to 1985 period.

B QUANTITATIVE (NUMERICAL) DATA

Recall that:

A **quantitative variable** is one which has a numerical value, and is often called a **numerical variable**. The information collected is called **numerical data**.

Quantitative variables can be either discrete or continuous and they each have an appropriate way to organise and display the data collected for them.

A quantitative discrete variable takes exact number values and is often a result of counting.

Some examples are:

- *The number of pets* the variable could take the values of 0, 1, 2, 3, 4, *in a household:*
- Shoe size: the variable could take the values of 3, $3\frac{1}{2}$, 4, $4\frac{1}{2}$, 5, $5\frac{1}{2}$,

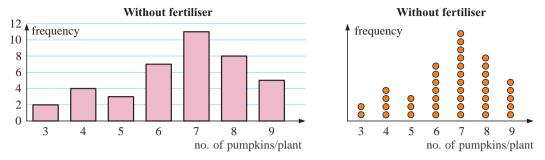
A **quantitative continuous variable** takes numerical values within a certain continuous range. It is usually a result of **measuring**.

Some examples are:

•	<i>The weight of</i> <i>Year</i> 10 <i>students:</i>	the variable could take any positive value from about 40 kg to 120 kg. Theoretically the variable could take any value on the number line but is very unlikely to take a value outside the range given.
•	The time taken	the variable could take any value from about 1 minute to 80

• *The time taken* the variable could take any value from about 1 minute to 80 minutes.

ORGANISATION AND DISPLAY OF DISCRETE DATA


In the **Opening Problem**, the quantitative discrete variable is: *the number of pumpkins per plant*.

To organise the data a **tally-frequency table** could be used. We count the data systematically and use a '|' to indicate each data value. We use \ddagger to represent 5.

Below is the table for *Without fertiliser*:

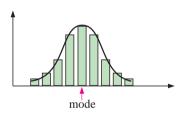
Number of pumpkins/plant	Tally	Frequency
3		2
4		4
5		3
6	HH	7
7	₩ ₩	11
8	HH	8
9	##	5

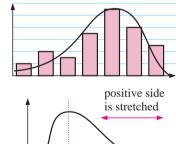
A column graph or dot plot could be used to display the results.

DISCUSSION

Are there any advantages or disadvantages in using a dot plot rather than a column graph?

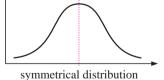
From both graphs we can make observations and calculations such as:


- 7 pumpkins per plant is the mode of the Without fertiliser data since this is the value which occurred most frequently.
- 5% of the plants had fewer than 4 pumpkins on them.


DESCRIBING THE DISTRIBUTION OF THE DATA SET

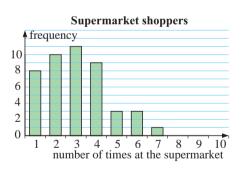
The mode of a data set is the most frequently occurring value(s). Many data sets show symmetry or partial symmetry about the mode.

If we place a curve over the column graph we see that this curve shows symmetry. We say that we have a symmetrical distribution.

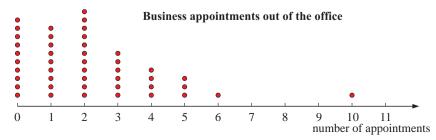

For the Without fertiliser data we have the distribution alongside. It is said to be **negatively skewed** because, by comparison with the symmetrical distribution, it has been 'stretched' on the left (or negative) side of the mode.

So, we have:

Outliers are data values that are either much larger or much smaller than the general body of data. Outliers appear separated from the body of data on a frequency graph.


negative side

is stretched


For example, in the data set: 3, 1, 7, 6, 8, 18, 2, 6, 7, 7, the data value 18 is an outlier. Some outliers are genuine and must be included in an analysis of the whole data set. However, other outliers may not reflect the truth and should not be considered. These may be due to human error or some other factor.

EXERCISE 10B

- 1 State whether these quantitative (or numerical) variables are discrete or continuous:
 - a the time taken to run 1500 metres
 - **b** the maximum temperature reached on a March day
 - the weight of cargo taken on a ship
 - **d** the time taken for a battery to run down
 - the number of trips made by a taxi
 - f the number of people in a theatre
 - g the number of minutes spent sending text messages per day
- **2** 20 students were asked "How many TV sets do you have in your household?" and the following data was collected: 2 1 0 3 1 2 1 3 4 0 0 2 2 0 1 1 0 1 0 1
 - **a** What is the variable in this investigation?
 - **b** Is the data discrete or continuous? Why?
 - Construct a dot plot to display the data. Use a heading for the graph, and add an appropriate scale and label to each axis.
 - **d** How would you describe the distribution of the data? Is it symmetrical, positively skewed or negatively skewed? Are there any outliers?
 - What percentage of the households had no TV sets?
 - f What percentage of the households had three or more TV sets?
- 3 A randomly selected sample of shoppers was asked, 'How many times did you shop at a supermarket in the past week?' A column graph was constructed for the results.
 - a How many shoppers gave data in the survey?
 - How many of the shoppers shopped once or twice?
 - What percentage of the shoppers shopped more than four times?
 - **d** Describe the distribution of the data.

4 Employees of a company were asked to record the number of times they left the company office on business appointments during one week. The following dot plot was constructed from the data:

- **a** What is the variable in this investigation?
- **b** Explain why the data is discrete numerical data.
- What percentage of the employees did not leave the office?
- **d** What percentage of the employees left the office more than 5 times?
- e What was the most frequent number of business appointments out of the office?
- f Describe the distribution of the data.
- **9** How would you describe the data value '10'?
- 5 The number of toothpicks in a box is stated as 50 but the actual number of toothpicks has been found to vary. To investigate this, the number of toothpicks in a box was counted for a sample of 60 boxes:

50 52 51 50 50 51 52 49 50 48 51 50 47 50 52 48 50 49 51 50 49 50 52 51 50 50 52 50 53 48 50 51 50 50 49 48 51 49 52 50 49 49 50 52 50 51 49 52 52 50 49 50 49 51 50 50 51 50 53 48

- **a** What is the variable in this investigation?
- **b** Is the data continuous or discrete numerical data?
- Construct a frequency table for this data.
- **d** Display the data using a bar chart.
- Describe the distribution of the data.
- What percentage of the boxes contained exactly 50 toothpicks?
- Revisit the **Opening Problem** on page **188**. Using the *With fertiliser* data:
 - a Organise the data in a tally-frequency table.
 - **b** Draw a column graph of the data.
 - Are there any outliers?
 - d Is the data skewed?
 - What evidence is there that the fertiliser increases the number of pumpkins per plant?
 - f Can it be said that the fertiliser will increase the farmer's pumpkin crop and therefore her profits?

In situations where there are lots of different numerical values recorded, it may not be practical to use an ordinary tally-frequency table, or to display the data using a dot plot or column graph.

For example, a local hardware store is concerned about the number of people visiting the store at lunch time.

Over 30 consecutive week days they recorded data.

The results were:

37, 30, 17, 13, 46, 23, 40, 28, 38, 24, 23, 22, 18, 29, 16, 35, 24, 18, 24, 44, 32, 54, 31, 39, 32, 38, 41, 38, 24, 32

In situations like this, grouping the data into **class intervals** is appropriate.

It seems sensible to use class intervals of length 10 in this case.

The tally-frequency table is:

Number of people	Tally	Frequency
10 to 19	##	5
20 to 29	HH III	9
30 to 39	HH HH I	11
40 to 49		4
50 to 59		1
	Total	30

STEM-AND-LEAF PLOTS

A **stem-and-leaf plot** (often called a stem-plot) is a way of writing down the data in groups and is used for small data sets. It shows actual data values and gives a visual comparison of frequencies.

For numbers with two digits, the first digit forms part of the **stem** and the second digit forms a **leaf**.

For example, for the data value 17, 1 is recorded on the stem, and the 7 is a leaf value.

The **stem-and-leaf plot** is:

The ordered stem-and-leaf plot is:

Stem	Leaf St	em	Leaf
1	73868	1	36788
2	384329444	2	233444489
3	70852192882	3	01222578889
4	6041	4	0146
5	4 Note: 1 7 means 17	5	4

The ordered stemplot arranges all data from smallest to largest.

Notice the following features:

- all the actual data is shown
- the minimum (smallest) data value is 13
- the maximum (largest) data value is 54
- the 'thirties' interval (30 to 39) occurred most often, and is the modal class.

EXERCISE 10C

 The data set below is the test scores (out of 100) for a Science test for 50 students.

92	29	78	67	68	58	80	89	92
69	66	56	88	81	70	73	63	55
67	64	62	74	56	75	90	56	47
59	64	89	39	51	87	89	76	59
72	80	95	68	80	64	53	43	61
71	38	44	88	62				

- Construct a tally and frequency table for this data using class intervals 0 9, 10 19, 20 29,, 90 100.
- **b** What percentage of the students scored 80 or more for the test?

- What percentage of students scored less than 50 for the test?
- Copy and complete the following: More students had a test score in the interval than in any other interval.
- 2 a Draw a stem-and-leaf plot using stems 2, 3, 4, and 5 for the following data: 29, 27, 33, 30, 46, 40, 35, 24, 21, 58, 27, 34, 25, 36, 57, 34, 42, 51, 50, 48
 - **b** Redraw the stem-and-leaf plot from **a** so that it is ordered.
- **3** For the ordered stem-and-leaf plot given, find:

Stem	Leaf	a	the minimum value
0	137	b	the maximum value
1	Leaf 1 3 7 0 3 4 7 8 8 9 0 0 1 2 2 3 5 5 6 8 9	C	the number of data with a value greater than 25
2	00122355689	d	the number of data with a value of at least 40
3	$2\ 4\ 4\ 5\ 8\ 9$	e	the percentage of the data which is less than 15.
4	0		

4 A test score out of 60 marks is recorded for a group of 45 students:

34	37	44	51	53	39	33	58	40	42	43	43	47	37	35
41	43	48	50	55	44	44	52	54	59	39	31	29	44	57
45	34	29	27	18	49	41	42	37	42	43	43	45	34	51

a Construct a stem-and-leaf plot for this data using 0, 1, 2, 3, 4, and 5 as the stems.

- **b** Redraw the stem-and-leaf plot so that it is ordered.
- What advantage does a stem-and-leaf plot have over a frequency table?
- **d** What is the **i** highest **ii** lowest mark scored for the test?
- If an 'A' is awarded to students who scored 50 or more for the test, what percentage of students scored an 'A'?
- f What percentage of students scored less than half marks for the test?
- **g** Describe the distribution of the data.

D

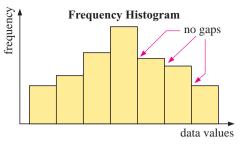
FREQUENCY HISTOGRAMS

A **continuous numerical variable** can theoretically take any value on part of the number line. A continuous variable often has to be **measured** so that data can be recorded.

Examples of continuous numerical variables are:

The height of Year the variable can take any value from about 100 cm to 200 cm. *10 students:*

The speed of carsthe variable can take any value from 0 km h^{-1} to the fastest speedon a stretch ofthat a car can travel, but is most likely to be in the range 30 km h^{-1}highway:to 240 km h^{-1}.

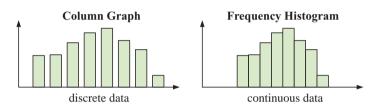

ORGANISATION AND DISPLAY OF CONTINUOUS DATA

When data is recorded for a continuous variable there are likely to be many different values. This data is therefore organised using **class intervals**. A special type of graph called a **frequency histogram** is used to display the data.

A histogram is similar to a column graph but, to account for the continuous nature of the variable, the 'columns' are joined together.

An example is given alongside:

The **modal class**, which is the class of values that appears most often, is easy to identify from a histogram.



SUMMARY OF COLUMN GRAPHS AND FREQUENCY HISTOGRAMS

Column graphs and frequency histograms both have the following features:

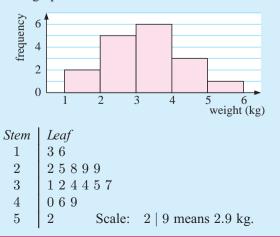
- on the vertical axis we have the frequency of occurrence
- on the **horizontal axis** we have the range of scores
- column widths are equal and the height varies according to frequency.

Histograms have no gaps between the columns because they are used for continuous data.

Example 1

Self Tutor

The weights of parcels sent on a given day from a post office were, in kilograms: 2.9, 4.0, 1.6, 3.5, 2.9, 3.4, 3.2, 5.2, 4.6, 3.1, 2.8, 3.7, 4.9, 3.4, 1.3, 2.5, 2.2 Organise the data using a frequency table and graph the data.


The data is *continuous* since the weight could be any value from 0.1 kg up to 6 kg. The lowest weight recorded is 1.3 kg and the highest is 5.2 kg so we will use class intervals of 1 kg. The class interval 2 - < 3 includes all weights from 2 kg up to, but not including, 3 kg.

Weight (kg)	Frequency
1 - < 2	2
2 - < 3	5
3 - < 4	6
4 - < 5	3
5 - < 6	1

A stemplot could also be used to organise the data:

Note: The modal class is (3 - < 4) kg as this occurred most frequently.

A frequency histogram is used to graph this continuous data.

EXERCISE 10D

- Weight (kg)Frequency75 < 80280 < 85585 < 90890 < 95795 < 1005100 < 1051
- 1 A frequency table for the weights of a volleyball squad is given below.
 - **a** Explain why 'weight' is a continuous variable.
 - Construct a frequency histogram for the data. The axes should be carefully marked and labelled, and you should include a heading for the graph.
 - What is the modal class? Explain what this means.
 - **d** Describe the distribution of the data.
- 2 A school has conducted a survey of 50 students to investigate the time it takes for them to travel to school. The following data gives the travel times to the nearest minute:

16	8	10	17	25	34	42	18	24	18	45	33	40
3	20	12	10	10	27	16	37	45	15	16	26	16
14	18	15	27	19	32	6	12	14	20	10	16	
21	25	8	32	46	14	15	20	18	8	10	25	

- a Is travel time a discrete or continuous variable?
- **b** Construct an ordered stemplot for the data using stems 0, 1, 2,
- Describe the distribution of the data.
- d Copy and complete:

"The modal travelling time was between and minutes."

- **3** For the following data, state whether a frequency histogram or a column graph should be used and draw the appropriate graph.
 - a Most appealing car colour:

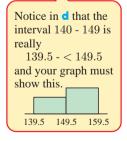
Colour	white	red	blue	black	other
Frequency	47	44	31	23	18

b The number of students in classes:

Number of students	21	22	23	24	25	26	27
Frequency	1	4	7	9	15	8	2

• The time taken to make a pizza (to the nearest min):

Time (min)	5	6	7	8	9	10	11
Frequency	1	2	3	7	10	8	5


d The heights of 25 netball players (to the nearest cm):

Height (cm)	140 - 149	150 - 159	160 - 169	170 - 179	180 - 189
Frequency	2	3	7	9	4

• 45 swimmers have 'best times':

Time (sec)	50 - < 60	60 - < 70	70 - < 80	80 - < 90	90 - < 100
Frequency	8	23	7	4	3

4 A plant inspector takes a random sample of ten week old plants from a nursery and measures their height to the nearest mm.

The results are shown in the table alongside.

- a Represent the data on a frequency histogram.
- **b** How many of the seedlings are 40 mm or more?
- What percentage of the seedlings are between 60 and 79 mm?
- d The total number of seedlings in the nursery is 857. Estimate the number of seedlings which measure: i less than 100 mm ii between 40 and 99 mm.

height (mm)	frequency
20 - 39	4
40 - 59	17
60 - 79	15
80 - 99	8
100 - 119	2
120 - 139	4

E

MEASURING THE CENTRE

We can get a better understanding of a data set if we can locate the **middle** or **centre** of the data and get an indication of its **spread**. Knowing one of these without the other is often of little use.

There are *three statistics* that are used to measure the **centre** of a data set. These are: the **mean**, the **median** and the **mode**.

THE MEAN

The mean of a data set is the statistical name for the arithmetic average.

mean =
$$\frac{\text{the sum of all data values}}{\text{the number of data values}}$$

or $\overline{x} = \frac{\sum x}{n}$ {where $\sum x$ is the sum of the data values}

The mean gives us a single number which indicates a centre of the data set. It is not necessarily a member of the data set.

For example, a mean test mark of 67% tells us that there are several marks below 67% and several above it. 67% is at the centre, but it does not mean that one of the students scored 67%.

THE MEDIAN

The **median** is the *middle value* of an ordered data set.

An ordered data set is obtained by listing the data, usually from smallest to largest.

The median splits the data in halves. Half of the data are less than or equal to the median and half are greater than or equal to it.

For example, if the median mark for a test is 67% then you know that half the class scored less than or equal to 67% and half scored greater than or equal to 67%.

Note: For an odd number of data, the median is one of the data.

For an **even number** of data, the median is the average of the two middle values and may not be one of the original data.

Here is a rule for finding the median:

If there are n data values, find the value of $\frac{n+1}{2}$. The median is the $\left(\frac{n+1}{2}\right)$ th data value.

For example:

If
$$n = 13$$
, $\frac{13+1}{2} = 7$, so the median = 7th ordered data value.

If n = 14, $\frac{14+1}{2} = 7.5$, so the median = average of 7th and 8th ordered data values.

THE MODE

The mode is the most frequently occurring value in the data set.

Example 2 Self Tutor The number of heavy transport vehicles using a road over a 13-day period 4 6 3 2 7 8 3 5 5 7 6 6 4. For this data set, find: is the mean **b** the median **c** the mode. а $mean = \frac{4+6+3+2+7+8+3+5+5+7+6+6+4}{13} - \frac{13}{13} sum of the data$ sum of the data 13 data values а $=\frac{66}{13}$ ≈ 5.08 trucks The ordered data set is: 2334455666778 {as $n = 13, \frac{n+1}{2} = 7$ } Ь \therefore median = 5 trucks 6 is the score which occurs the most often \therefore mode = 6 trucks C

For the heavy transport vehicle data of **Example 2**, how are the measures of the middle affected if on the 14th day the number of trucks was 7?

We expect the mean to *increase* because the new data value is greater than the old mean.

In fact, new mean
$$=\frac{66+7}{14}=\frac{73}{14}\approx 5.21$$
 trucks

The new ordered data set would be: 23344556667778

two middle scores

$$\therefore$$
 median $=\frac{5+6}{2}=5.5$ trucks

This new data set has two modes, 6 and 7 trucks, and we say that the data set is **bimodal**.

- **Note:** If a data set has three or more modes, we do not use the mode as a measure of the middle.
 - Consider the data: 42567453547635865• 0 The dot plot of this data is: 0 0 • 0 0 For this data the mean. median and mode are all 5. 7 1 2 3 Δ 5 6 8

Equal or approximately equal values of the mean, mode and median *may* indicate a *symmetrical distribution* of data. However, we should always check using a graph before calling a data set symmetric.

EXERCISE 10E

- 1 Find the i mean ii median iii mode for each of the following data sets:
 - **a** 12, 17, 20, 24, 25, 30, 40
 - **b** 8, 8, 8, 10, 11, 11, 12, 12, 16, 20, 20, 24
 - **c** 7.9, 8.5, 9.1, 9.2, 9.9, 10.0, 11.1, 11.2, 11.2, 12.6, 12.9
 - **d** 427, 423, 415, 405, 445, 433, 442, 415, 435, 448, 429, 427, 403, 430, 446, 440, 425, 424, 419, 428, 441
- 2 Consider the two data sets:
 Data set A:
 5, 6, 6, 7, 7, 7, 8, 8, 9, 10, 12

 Data set B:
 5, 6, 6, 7, 7, 7, 8, 8, 9, 10, 20
 - a Find the mean for both *Data set A* and *Data set B*.
 - **b** Find the median of both *Data set A* and *Data set B*.
 - Explain why the mean of *Data set A* is less than the mean of *Data set B*.
 - d Explain why the median of *Data set A* is the same as the median of *Data set B*.
- 3 The selling price of nine houses are:
 \$158000, \$290000, \$290000, \$1.1 million, \$900000, \$395000, \$925000, \$420000, \$760000
 - a Find the mean, median and modal selling prices.
 - **b** Explain why the mode is an unsatisfactory measure of the middle in this case.
 - c Is the median a satisfactory measure of the middle of this data set?
- 4 The following raw data is the daily rainfall (to the nearest millimetre) for the month of February 2007 in a city in China:

0, 4, 1, 0, 0, 0, 2, 9, 3, 0, 0, 0, 8, 27, 5, 0, 0, 0, 0, 8, 1, 3, 0, 0, 15, 1, 0, 0

- a Find the mean, median and mode for the data.
- **b** Give a reason why the median is not the most suitable measure of centre for this set of data.
- Give a reason why the mode is not the most suitable measure of centre for this set of data.
- **d** Are there any outliers in this data set?
- On some occasions outliers are removed because they are not typical of the rest of the data and may be errors in observation and/or calculation. If the outliers in this data set were accurately found, should they be removed before finding the measures of the middle?

- **5** A basketball team scored 38, 52, 43, 54, 41 and 36 points in their first six matches.
 - a What is the mean number of points scored for the first six matches?
 - What score will the team need to shoot in the next match so that they maintain the same mean score?
 - The team scores only 20 points in the seventh match. What is the mean number of points scored for the seven matches?
 - **d** The team scores 42 points in their eighth and final match. Will this increase or decrease their previous mean score? What is the mean score for all eight matches?

Self Tutor

Example 3

The mean of five scores is 12.2. What is the sum of the scores? Let S = sum of scores $\therefore \frac{S}{5} = 12.2$ $\therefore S = 12.2 \times 5 = 61$ \therefore the sum of the scores is 61.

- **6** The mean of 12 scores is 8.8. What is the sum of the scores?
- 7 While on a camping holiday, Daffyd drove an average of 325 km per day for a period of 7 days. How far did Daffyd drive in total while on holiday?
- 8 The mean monthly sales for a CD store are \$216000. Calculate the total sales for the store for the year.
- **9** Over a semester, Jamie did 8 science tests. Each was marked out of 30 and Jamie averaged 25. However, when checking his files, he could only find 7 of the 8 tests. For these he scored 29, 26, 18, 20, 27, 24 and 29. Determine how many marks out of 30 he scored for the eighth test.
- 10 On the first four days of her holiday, Benita drove an average of 424 kilometres per day. On the next three days she drove an average of 544 kilometres per day.
 - a What is the total distance that Benita drove in the first four days?
 - **b** What is the total distance that Benita drove in the next three days?
 - What is the mean distance Benita travelled per day over the seven day period?

DISCUSSION

Which of the measures of the middle is more affected by the presence of an outlier? Develop at least two examples to show how the measures of the middle can be altered by outliers.

MEASURES OF THE CENTRE FROM OTHER SOURCES

When the same data appears several times we often summarise the data in table form.

Consider the data in the given table:

We can find the measures of the centre directly from the table.

The mode

There are 14 of data value 6 which is more than any other data value. The mode is therefore 6.

Data value	Frequency	Product
3	1	$1 \times 3 = 3$
4	2	$2 \times 4 = 8$
5	4	$4 \times 5 = 20$
6	14	$14 \times 6 = 84$
7	11	$11 \times 7 = 77$
8	6	$6 \times 8 = 48$
9	2	$2\times9=18$
Total	40	258

The mean

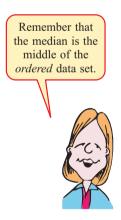
Adding a 'Product' column to the table helps to add all scores.

For example, there are 14 data of value 6 and these add to $14 \times 6 = 84$.

So, mean
$$=\frac{258}{40}=6.45$$

The median

There are 40 data values, an even number, so there are *two middle* data values.


As the sample size n = 40, $\frac{n+1}{2} = \frac{41}{2} = 20.5$

 \therefore the median is the average of the 20th and 21st data values.

In the table, the blue numbers show us accumulated values.

Data Value	Freq	uency
3	1	1 -
4	2	3 -
5	4	7 -
6	14	21
7	11	32
8	6	
9	2	
Total	40	

one number is 3
3 numbers are 4 or less
7 numbers are 5 or less
21 numbers are 6 or less
32 numbers are 7 or less

We can see that the 20th and 21st data values (in order) are both 6's.

$$median = \frac{6+6}{2} = 6$$

Notice that we have a skewed distribution for which the mean, median and mode are nearly equal. This is why we need to be careful when we use measures of the middle to call distributions symmetric.

Each student in a class of 20 is assigned a number between 1 and 10 to indicate					Number of students
	umber be or her fit		licate	5	1
				6	2
Cal	culate the			7	4
		b median		8	7
		c mode		9	4
of t	he scores	8.		10	2
				Total	20
a	Score	Number of students	Product		The mean score
	5	1	$5 \times 1 = 5$		total of scores
	6	2	$6 \times 2 = 12$	=	=10001013000000000000000000000000000000
	7	4	$7 \times 4 = 28$		
	8	7	$8 \times 7 = 56$:	$=\frac{157}{20}$
	9	4	$9 \times 4 = 36$		
	10	2	$10 \times 2 = 20$:	= 7.85
	Total	20	157		
Ь	There ar	e 20 scores, and so th	e median is the	average	of the 10th and 11th.
	Score	Number of Students	7		
	5	1	1st stud	ent	
	6	2		l 3rd stu	dent
	7	4			1 7th student
	8	7 🗕	· · · · · · · · · · · · · · · · · · ·	·	1th, 12th,
	9	4	13th, 14	th stude	nt STATISTICS PACKAGE
	10	2			
	The 10th	n and 11th students bo	oth scored 8	media	n = 8.
		1 (1 (1 (· · · · · · · · · · · · · · · · · · ·		ighest frequency is 7.

11 The table given shows the results when 3 coins were tossed simultaneously 40 times. The number of heads appearing was recorded.

Number of heads	Number of times occurred
0	6
1	16
2	14
3	4
Total	40

Calculate the: **a** mode **b** median **c** mean.

12 The following frequency table records the number of text messages sent in a day by 50 fifteen-year-olds.

а

0

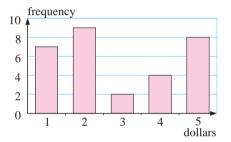
No. of messages	Frequency
0	2
1	4
2	7
3	4
4	2
5	0
6	1
7	8
8	13
9	7
10	2

For this data, find the:

i mean ii median iii mode.

- Construct a column graph for the data and show the position of the measures of centre (mean, median and mode) on the horizontal axis.
- c Describe the distribution of the data.
- **d** Why is the mean smaller than the median for this data?
 - Which measure of centre would be the most suitable for this data set?
- **13** The frequency column graph alongside gives the value of donations for an overseas aid organisation, collected in a particular street.
 - a Construct a frequency table from the graph.
 - **b** Determine the total number of donations.
 - For the donations find the:
 - i mean ii median iii mode.
 - d Which of the measures of central tendency can be found easily from the graph only?
- 14 Families at a school in Canada were surveyed and the number of children in each family recorded. The results of the survey are shown alongside.
 - a Calculate the:
 - i mean ii mode iii median.
 - If the average Canadian family has 2.2 children, how does this school compare to the national average?

Number of children	Frequencies
1	5
2	28
3	15
4	8
5	2
6	1
Total	59


- The data set is skewed. Is the skewness positive or negative?
- **d** How has the skewness of the data affected the measures of the middle?

Sometimes it is useful to know the number of scores that lie above or below a particular value. In such situations it is convenient to construct a **cumulative frequency distribution table** and a **cumulative frequency graph** to represent the data.

The cumulative frequency gives a *running total* of the scores up to a particular value.

Example 5 The data shown gives the weights of 80 male Weight (w kg) frequency basketball players. $65 \le w < 70$ 1 Construct a cumulative frequency а $70 \leq w < 75$ 2 distribution table. $75 \leq w < 80$ 8 Represent the data on a cumulative Ь $80 \leq w < 85$ 16 frequency graph. $85 \leq w < 90$ 21Use your graph to estimate the: C $90 \leq w < 95$ 19median weight н $95 \leq w < 100$ 8 3 number of men weighing less than 84 kg $100 \le w < 105$ ii. $105 \leq w < 110$ 1 number of men weighing more than 93 kg. $110 \leqslant w < 115$ 1 a ve v this is 1+2this is 1+2+8, etc.

78

79

80

this 48 means that there are 48 players who weigh less than 90 kg

Ь **Cumulative frequency graph** of basketballers' weights 90 cumulative frequency 80 C 70 60 56 50 40.5 40 30 20 10 0 80 83 90⁹² 70 100 110 120 weight (kg) median is $\approx 88 \text{ kg}$

The median is the aver-

н

STATISTICS

PACKAGE

- age of the 40th and 41st weights. Call it 40.5. Reading from the graph, the median ≈ 88 kg.
- ii 👘 There are 20 men who weigh less than 83 kg.
- There are 80 - 56 = 24men who weigh more than 92 kg.

Self Tutor

	$65 \leqslant u$
	$70 \leqslant u$
	$75 \leqslant u$
	$80 \leqslant u$
	$85 \leqslant u$
	$90 \leq u$

Weight (w kg)	frequency	cumulativ frequency
$65 \leqslant w < 70$	1	1
$70 \leqslant w < 75$	2	3 🔺
$75 \leqslant w < 80$	8	11 🔸
$80 \leqslant w < 85$	16	27
$85 \leqslant w < 90$	21	48 🔸
$90 \leqslant w < 95$	19	67
$95 \leqslant w < 100$	8	75

3

1

1

 $100 \le w < 105$

 $105 \leq w < 110$

 $110 \leqslant w < 115$

EXERCISE 10F

1 The following data shows the lengths, in centimetres, of 40 salmon caught in a lake during a fishing competition.

 30
 26
 38
 28
 27
 31
 38
 34
 40
 24
 33
 30
 36
 38
 32
 35
 32
 36
 27
 35

 36
 37
 29
 31
 33
 40
 34
 37
 44
 38
 36
 34
 33
 31
 38
 35
 36
 33
 33
 28

- a Construct a cumulative frequency table for salmon lengths, x cm, using the intervals: $24 \le x < 27$, $27 \le x < 30$, etc.
- **b** Draw a cumulative frequency graph.
- **c** Use **b** to find the median length.
- d Use the original data to find its median and compare your answer with c. Comment!
- 2 In an examination the following scores were achieved by a group of students:

Draw a cumulative frequency graph of the data and use it to find:

- a the median examination mark
- **b** how many students scored less than 75 marks
- how many students scored between 60 and 80 marks
- d how many students failed, given that the pass mark was 55
- the credit mark, given that the top 16% of students were awarded credits.

Score	frequency			
$10 \leqslant x < 20$	2			
$20 \leqslant x < 30$	6			
$30 \leqslant x < 40$	4			
$40 \leqslant x < 50$	8			
$50 \leqslant x < 60$	12			
$60 \leqslant x < 70$	27			
$70 \leqslant x < 80$	34			
$80 \leqslant x < 90$	18			
$90 \leqslant x < 100$	9			

3 The following frequency distribution was obtained by asking 50 randomly selected people the size of their shoes.

Shoe size	5	$5\frac{1}{2}$	6	$6\frac{1}{2}$	7	$7\frac{1}{2}$	8	$8\frac{1}{2}$	9	$9\frac{1}{2}$	10
frequency	2	0	1	4	6	12	11	7	3	2	2

Draw a cumulative frequency graph of the data and use it to find:

- the median shoe size
- **b** how many people had a shoe size of: **i** 7 or more **ii** $8\frac{1}{2}$ or less.
- 4 In a cross-country race, the times (in minutes) of 160 competitors were recorded as follows:

Draw a cumulative frequency graph of the data and use it to find:

- a the median time
- the approximate number of runners whose time was not more than 32 minutes
- the approximate time in which the fastest 40 runners completed the course.

Times (min)	frequency
$20 \leqslant t < 25$	18
$25\leqslant t<30$	45
$30 \leqslant t < 35$	37
$35 \leqslant t < 40$	33
$40 \leqslant t < 45$	19
$45\leqslant t<50$	8

G

MEASURING THE SPREAD

Knowing the middle of a data set can be quite useful, but for a more accurate picture of the data set we also need to know its spread.

For example, 2, 3, 4, 5, 6, 7, 8, 9, 10 has a mean value of 6 and so does 4, 5, 5, 6, 6, 6, 7, 7, 8. However, the first data set is more widely spread than the second one.

Three commonly used statistics that indicate the spread of a set of data are the

• range • interquartile range • standard deviation.

Note that the discussion of standard deviation will be left until the IB Studies Diploma course.

THE RANGE

The **range** is the difference between the **maximum** (largest) data value and the **minimum** (smallest) data value.

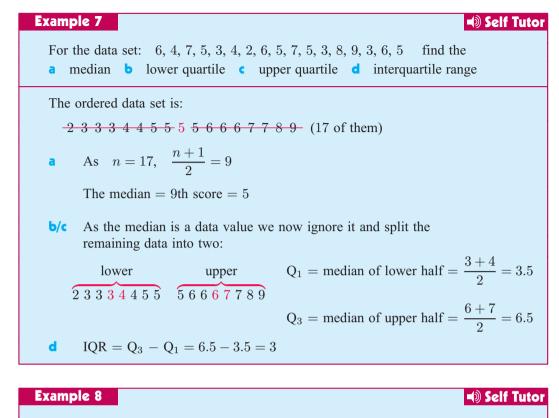
range = maximum data value - minimum data value

THE UPPER AND LOWER QUARTILES AND THE INTERQUARTILE RANGE

The median divides an ordered data set into halves, and these halves are divided in half again by the **quartiles**.

The middle value of the lower half is called the **lower quartile**. One quarter, or 25%, of the data have values less than or equal to the lower quartile. 75% of the data have values greater than or equal to the lower quartile.

The middle value of the upper half is called the **upper quartile**. One quarter, or 25%, of the data have values greater than or equal to the upper quartile. 75% of the data have values less than or equal to the upper quartile.


The interquartile range is the range of the middle half (50%) of the data.

```
interquartile range = upper quartile – lower quartile
```

The data set is thus divided into quarters by the lower quartile (Q_1) , the median (Q_2) , and the upper quartile (Q_3) .

So, the interquartile range,

 $IQR = Q_3 - Q_1.$

For the data set: 11, 6, 7, 8, 13, 10, 8, 7, 5, 2, 9, 4, 4, 5, 8, 2, 3, 6 find

the median **b** the lower quartile

c the upper quartile **d** the interquartile range

The ordered data set is:

а

a As
$$n = 18$$
, $\frac{n+1}{2} = 9.5$
 \therefore median = $\frac{9\text{th value} + 10\text{th value}}{2} = \frac{6+7}{2} = 6.5$
b/c As the median is not a data value we split the data into two:
lower upper
2 2 3 4 4 5 5 6 6 7 7 8 8 8 9 10 11 13
 \therefore Q₁ = 4, Q₃ = 8
d IQR = Q₃ - Q₁
= 8 - 4
= 4
Note: Some computer packages (for example,
MS Excel) calculate quartiles in a different
way from this example.

EXERCISE 10G

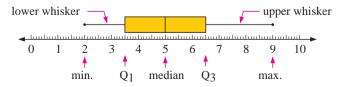
- **1** For each of the following data sets, make sure the data is ordered and then find:
 - the median
- ii. the upper and lower quartiles
- the range
- iv the interquartile range.
- **a** 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 11, 11, 11, 12, 12
- **b** 11, 13, 16, 13, 25, 19, 20, 19, 19, 16, 17, 21, 22, 18, 19, 17, 23, 15
- 23.8, 24.4, 25.5, 25.5, 26.6, 26.9, 27, 27.3, 28.1, 28.4, 31.5
- 2 The times spent (in minutes) by 24 people in a queue at a supermarket, waiting to be served at the checkout, were:

1.4 5.2 2.4 2.8 3.4 3.8 2.2 1.5 $0.8 \ 0.8 \ 3.9 \ 2.3 \ 4.5 \ 1.4 \ 0.5$ 0.11.6 4.8 1.9 0.2 3.6 5.2 2.7 3.0

- a Find the median waiting time and the upper and lower quartiles.
- **b** Find the range and interguartile range of the waiting time.
- Copy and complete the following statements:
 - i "50% of the waiting times were greater than minutes."
 - . "75% of the waiting times were less than minutes."
 - "The minimum waiting time was minutes and the maximum waiting time was minutes. The waiting times were spread over minutes."
- Stem | Leaf 2 $0\ 1\ 2\ 2$ 3 $0\ 0\ 1\ 4\ 4\ 5\ 8$ 4 0234669 511458

3

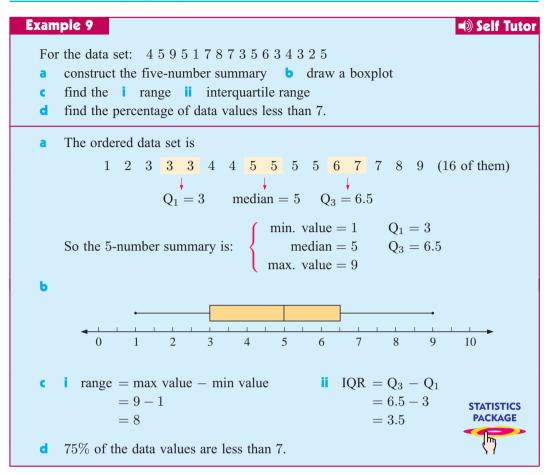
For the data set given, find:

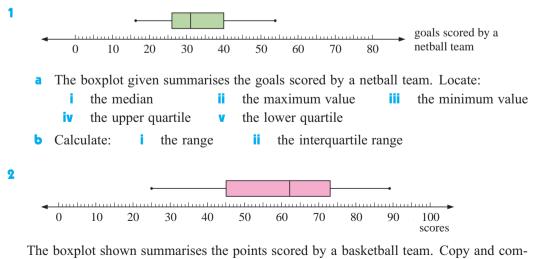

- the minimum value а
- the median C
- the upper quartile e
- the interquartile range. Q
- Ь the maximum value
- d the lower quartile
- the range f

BOX-AND-WHISKER PLOTS

A **box-and-whisker plot** (or simply a **boxplot**) is a visual display of some of the descriptive statistics of a data set. It shows:

- the minimum value
- the upper quartile (Q_3)
- the lower quartile (Q_1) the median (Q_2)
- the maximum value
- These five numbers form what is known as the five-number summary of a data set.


Here is the boxplot for Example 7:


The rectangular box represents the 'middle' half of the data set.

The lower whisker represents the 25% of the data with smallest values. The upper whisker represents the 25% of the data with greatest values.

EXERCISE 10H

plete the following statements about their results:

- a The highest score was points. b The lowest score was points.
- Half of the scores were greater than or equal to points.

- **d** The top 25% of the scores were at least points.
- e The middle half of the scores were between and points.
- f Find the range of the data set.
- **g** Find the interquartile range of the data set.
- **3** For the following data sets:
 - i construct a 5-number summary
- draw a boxplot

find the interquartile range

iv

- find the range
- **a** 5, 5, 10, 9, 4, 2, 8, 6, 5, 8, 6, 7, 9, 6, 10, 3, 11
- **b** 7, 0, 4, 6, 8, 8, 9, 5, 6, 8, 8, 8, 9, 8, 1, 8, 3, 7, 2, 7, 4, 5, 9, 4
- ⁴ The weight, in kilograms, of a particular brand of bags of firewood is stated to be 20 kg. However, some bags weigh more than this and some weigh less. A sample of bags is carefully weighed, and the measurements are given in the ordered stem-and-leaf plot shown.
 - a Locate the median, upper and lower quartiles, and maximum and minimum weights for the sample.
 - **b** Draw a boxplot for the data.
 - **c** Find: **i** the interquartile range **ii** the range.
 - **d** Copy and complete the following statements about the distribution of weights for the bags of firewood in this sample:
 - Half of the bags of firewood weighed at least kg.
 - ii $\dots \%$ of the bags had a weight less than 20 kg.
 - iii The weights of the middle 50% of the bags were spread over kg.
 - iv The lightest 25% of the bags had a weight of kg or less.
 - Is the distribution of weights in this sample symmetrical, or positively or negatively skewed?

PARALLEL BOXPLOTS

Parallel boxplots enable us to make a *visual comparison* of the distributions of two sets of data and their descriptive statistics (median, range and interquartile range).

Parallel boxplots could be horizontal or vertical.

Example 10

An office worker has the choice of travelling to work by car or bus and has collected data giving the travel times from recent journeys using both of these types of transport. He is interested to know which type of transport is the quickest to get him to work and which is the most reliable.

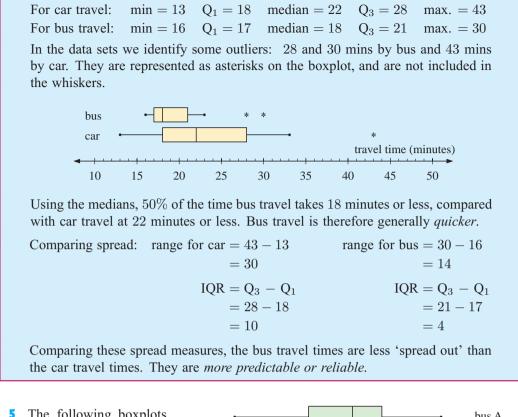
Car travel times (min): 13, 14, 18, 18, 19, 21, 22, 22, 24, 25, 27, 28, 30, 33, 43 *Bus travel times (min):* 16, 16, 16, 17, 17, 18, 18, 18, 20, 20, 21, 21, 23, 28, 30

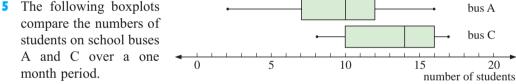
Prepare parallel boxplots for the data sets and use them to compare the two methods of transport for speed and reliability.

 Stem
 Leaf

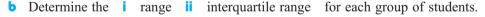
 18
 8

 19
 5 7 7 8 8 9

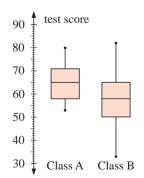

 20
 1 1 1 2 2 5 6 8


 21
 0 1 1 2 4 6

 22
 3


 $20 \mid 5$ represents 20.5 kg

Self Tutor


a Find the 5-number summaries for the students on both buses.

6 Two classes have completed the same test. Boxplots have been drawn to summarise and display the results. They have been drawn on the same set of axes so that the results can be compared.

a In which class was:

- i the highest mark ii the lowest mark
- iii there a larger spread of marks?
- Find: i the range of marks in class Bii the interquartile range for class A.

- If the top 50% of class B passed the test, what percentage of class A passed?
- **d** Describe the distribution of marks in: **i** class A **ii** class B.
- Copy and complete: The students in class generally scored higher marks. The marks in class were more varied.

7 The heights (to the nearest centimetre) of boys and girls in a Year 10 class in Norway are as follows:

Boys 165 171 169 169 172 171 171 180 168 168 166 168 170 165 171 173 187 181 175 174 165 167 163 160 169 167 172 174 177 188 177 185 167 160

Girls 162 171 156 166 168 163 170 171 177 169 168 165 156 159 165 164 154 171 172 166 152 169 170 163 162 165 163 168 155 175 176 170 166

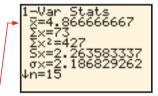
- a Find the five-number summary for each of the data sets.
- **b** Compare and comment on the distribution of the data.

HOW MANY TROUT ARE IN THE LAKE?

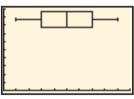
LINKS click here

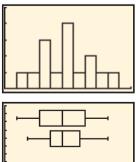
Areas of interaction: Environments/Human ingenuity

STATISTICS FROM TECHNOLOGY


GRAPHICS CALCULATOR

A graphics calculator can be used to find descriptive statistics and to draw some types of graphs.


Consider the data set: 5 2 3 3 6 4 5 3 7 5 7 1 8 9 5


No matter what brand of calculator you use you should be able to:

- Enter the data as a list.
- Enter the statistics calculation part of the menu and obtain the descriptive statistics like these shown. x is the mean

• Obtain a box-and-whisker plot such as:

These screen dumps are from a TI-83.

- Obtain a vertical barchart if required.
- Enter a second data set into another list and obtain a side-by-side boxplot for comparison with the first one.

Instructions for these tasks can be found at the front of the book in the **Graphics Calculator Instructions** section.

EXERCISE 10I

- 1 For your calculator enter the data set: 5 2 3 3 6 4 5 3 7 5 7 1 8 9 5 and obtain the mean and the 5-number summary. This is the first example above and you should check your results from it.
- **2** Obtain the boxplot for question **1**.
- **3** Obtain the vertical bar chart for question **1**.
- 4 Enter the data set: 9 6 2 3 5 5 7 5 6 7 6 3 4 4 5 8 4 into a second list. Find the mean and 5-number summary. Now create a side-by-side boxplot for both sets of data.

COMPUTER PACKAGE

Various statistical packages are available for computer use, but many are expensive and often not easy to use. Click on the icon to use the statistics package on the CD.

Enter data set 1:5 2 3 3 6 4 5 3 7 5 7 1 8 9 5Enter data set 2:9 6 2 3 5 5 7 5 6 7 6 3 4 4 5 8 4

Examine the side-by-side column graphs.

Click on the Box & whisker tab to view the side-by-side boxplots.

Click on the Statistics tab to obtain the descriptive statistics.

Select Print... from the File menu to print all of these on one sheet of paper.

5 Enter the Opening Problem data, placing the *Without fertiliser* data in Set 1 and the *With fertiliser* data in Set 2. Print the page of graphs, boxplots and descriptive statistics.

6	Enter these grouped	Set 1:	Value	Frequency	Set 2:	Value	Frequency
	continuous data sets:		11.6	1		11.5	1
			11.7	3		11.6	8
			11.8	16		11.7	17
			11.9	28		11.8	31
			12.0	11		11.9	16
			12.1	7		12.0	8
			12.2	9		12.1	10
			1			12.2	3

Examine the graphs, boxplots and descriptive statistics for each and print the results.

REVIEW SET 10A

1 A randomly selected sample of small businesses has been asked, "How many full-time employees are there in your business?". A column graph has been constructed for the results.

- a How many small businesses gave data in the survey?
- **b** How many of the businesses had only one or two full-time employees?
- What percentage of the businesses had five or more full-time employees?
- **d** Describe the distribution of the data.

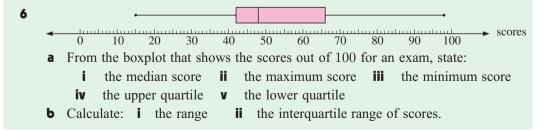
2 A class of 20 students was asked "How many children are there in your household?" and the following data was collected:

 $1 \quad 2 \quad 3 \quad 3 \quad 2 \quad 4 \quad 5 \quad 4 \quad 2 \quad 3 \quad 8 \quad 1 \quad 2 \quad 1 \quad 3 \quad 2 \quad 1 \quad 2 \quad 1 \quad 2$

a What is the variable in the investigation?

- **b** Is the data discrete or continuous? Why?
- Construct a dot plot to display the data showing a heading for the graph, a scale and clearly labelled axes.
- **d** How would you describe the distribution of the data? Is it symmetrical, or positively or negatively skewed? Are there any outliers?
- **3** The test score out of 40 marks was recorded for a group of 30 students:
 25
 18
 35
 32
 34
 28
 24
 39
 29
 33

 2 34
 39
 31
 36
 35
 36
 33
 35
 40


 26
 25
 20
 18
 9
 40
 32
 23
 28
 27
 - **a** Construct a stem-and-leaf plot for this data using 0, 1, 2, 3 and 4 as the stems.
 - **b** Redraw the stem-and-leaf plot so that it is ordered.
 - What advantage does the stem-and-leaf plot have over a frequency table?
 - **d** What was the **i** highest **ii** lowest mark scored for the test?
 - If an 'A' was awarded to students who scored 36 or more for the test, what percentage of students scored an 'A'?
- **4** A frequency table for the masses of eggs in a carton marked '50 g eggs' is given below.

Mass (g)	Frequency
48 - < 49	1
49 - < 50	1
50 - < 51	16
51 - < 52	4
52 - < 53	3

- a Explain why 'mass' is a continuous variable.
- **b** Construct a frequency histogram for the data. The axes should be carefully marked and labelled, and you should include a heading for the graph.
- What is the modal class? Explain what this means.

c the median

- **d** Describe the distribution of the data.
- **5** For the following data set showing the number of points scored by a rugby team, find:
 - **a** the mean **b** the mode
 - **d** the range **e** the upper and lower quartiles **f** the interquartile range.
 - 28, 24, 16, 6, 46, 34, 43, 16, 36, 49, 30, 28, 4, 31, 47, 41, 26, 25, 20, 29, 42

REVIEW SET 10B

1 Find the **a** mean **b** median **c** mode for the following data set: 13 16 15 17 14 13 13 15 16 14 16 14 15 15 15 13 17 14 12 14

- 2 The data alongside is the scores (out of 100) for a Mathematics examination for 45 students.
 58 31 80 69 70 71 82 91 94 60 68 58 90 83 72 75 65 76 69 66 64 57 58 77 92 94 49 61 66 91 64 53 89 91 78 61 74 82 97 70 82 66 55 45 63
 - **a** Construct a stem-and-leaf plot for this data using 3, 4, to 9 as the stems.
 - **b** Redraw the stem-and-leaf plot so that it is ordered.
 - What advantages does a stem-and-leaf plot have over a frequency table?
 - **d** What is the **i** highest **ii** lowest mark scored for the examination?
 - If an 'A' was awarded to students who scored 85 or more for the examination, what percentage of students scored an 'A'?
 - f Would you describe this distribution as:
 - i symmetric ii skewed iii neither symmetric nor skewed?
- 3 The given table shows the distribution of scores for a Year 10 spelling test in Australia.
 - a Calculate the: i mean ii mode iii median iv range of the scores
 - **b** The average score for all Year 10 students across Australia in this spelling test was 6.2. How does this class compare to the national average?

Score	Frequency
6	2
7	4
8	7
9	12
10	5
Total	30

1

3

9

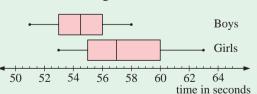
10

16

4

5

2


• The data set is skewed. Is the skewness positive or negative?

4 In a one month period at a particular hospital the lengths of newborn babies were recorded. The results are shown in the table given.

- **a** Represent the data on a frequency histogram.
- **b** How many babies are 52 cm or more?
- What percentage of babies have lengths in the interval $50 \text{ cm} \le l < 53 \text{ cm}$?
- **d** Construct a cumulative frequency distribution table.
- e Represent the data on a cumulative frequency graph.
- **f** Use your graph to estimate the:

i median length ii number of babies with length less than 51.5 cm.

5 The given parallel boxplots represent the 100-metre swim times for the members of a swimming squad.

 $48 \leq l < 49$

 $49 \leqslant l < 50$

 $50 \leq l < 51$

 $51 \leq l < 52$

 $52 \leq l < 53$

 $53 \leq l < 54$

 $54 \leq l < 55$

 $55 \leq l < 56$

- Copy and complete the following:
- **a** Comparing the median swim times for girls and boys shows that, in general, the swim seconds faster than the
- **b** The range of the girls' swim times is seconds compared to the range of seconds for the boys.
- The fastest 25% of the boys swim faster than% of the girls.
- **d** $\dots \%$ of the boys swim faster than 60 seconds whereas $\dots \%$ of the girls swim faster than 60 seconds.

Chapter

Equations

Contents:

- A Solution by inspection or trial and error
- **B** Maintaining balance
- C Formal solution of linear equations
- Equations with a repeated unknown
- **E** Fractional equations
- F Unknown in the denominator
- **G** Forming equations
- Problem solving using equations
- Finding an unknown from a formula
- J Formula rearrangement

Many problems in mathematics can be solved by using **equations**. We convert the worded problem into an algebraic equation, then follow a formal procedure to **solve** the equation and hence find the solution to the problem.

Algebraic equations are mathematical sentences which indicate that two expressions have the same value. They always contain the "=" sign.

For example, 5x - 2 = 7 is an equation.

The symbol = is read as 'equals' or 'is equal to'.

LINEAR EQUATIONS

A **linear equation** is an equation which contains a pronumeral which is not raised to any power other than 1.

For example, 3x + 4 = 2, $\frac{2}{3}x + 1 = 6$, and $\frac{x - 1}{4} = 8$ are all linear equations whereas $x^2 + 5x = 7$, $\frac{3}{x} = x^3$, and $\sqrt{x} = 8$ are not linear equations. OPENING PROBLEM • Could these equations be solved easily by 'trial and error' methods?

A 7x + 5 = 35 **B** 14x + 7 = x + 1 **C** $\frac{3x + 1}{2} - \frac{x - 4}{7} = 2$ • Consider the equation 7x + 5 = 35. When x = 1, 7x + 5 = 12. When x = 2, 7x + 5 = 19. When x = 3, 7x + 5 = 26. When x = 4, 7x + 5 = 33. When x = 5, 7x + 5 = 40.

So if 7x + 5 = 35, x must be between 4 and 5. How can we find the exact value of x?

DISCUSSION

Discuss various methods for finding exact solutions when solving algebraic equations.

SIDES OF AN EQUATION

The **left hand side** (LHS) of an equation is on the left of the = sign. The **right hand side** (RHS) of an equation is on the right of the = sign.

> For example, 3x + 7 = 13LHS RHS

THE SOLUTIONS OF AN EQUATION

The solutions of an equation are the values of the pronumeral which make the equation true, i.e., make the left hand side (LHS) equal to the right hand side (RHS).

In the example 3x + 7 = 13 above, the only value of the pronumeral x which makes the equation true is x = 2.

Notice that when
$$x = 2$$
, LHS = $3x + 7$
= $3 \times 2 + 7$
= $6 + 7$
= 13
= RHS \therefore LHS = RHS

Simple linear equations involving one unknown may often be solved by: • inspection or

• trial and error.

However, many equations become too difficult to solve mentally. Later in the chapter we will therefore develop a formal method to assist us with this task.

SOLUTION BY INSPECTION OR TRIAL AND ERROR

Example 1		Self Tutor
Solve by inspection: a	b + 7 = -2 b $13 - x = 7$	c $\frac{x}{5} = -2$
a $b+7 = -2$	b $13 - x = 7$ c	$\frac{x}{5} = -2$
but $-9+7 = -2$ $\therefore b = -9$	but $13 - 6 = 7$ $\therefore x = 6$	but $\frac{-10}{5} = -2$
		$\therefore x = -10$

EXERCISE 11A

1 Solve by inspection:

 $\mathbf{\Lambda}$

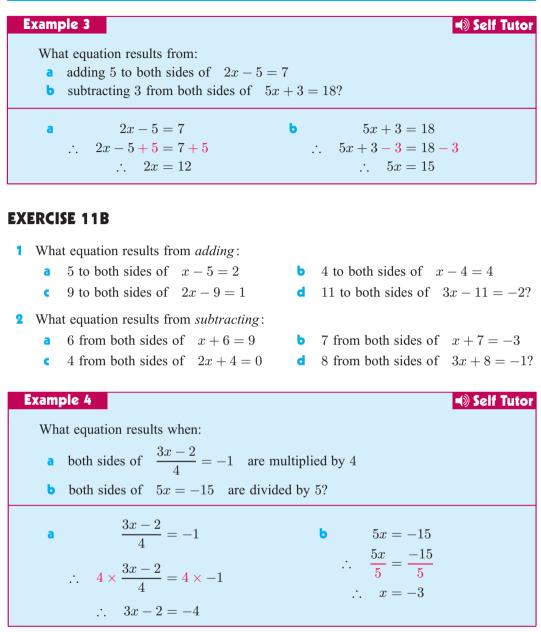
2011	• of moperation.						
a	n + 4 = 13	Ь	x + 2 = -6	c	t + 5 = 3	d	x + 3 = 7
e	5 + x = 0	f	y - 11 = 2	9	10 - a = 4	h	9 - b = 0
i.	x - 7 = -4	i	a - 6 = -5	k	$\frac{x}{2} = 4$	I.	$\frac{x}{3} = -5$
m	$\frac{y}{-3} = -6$	n	$\frac{15}{a} = 3$	0	$\frac{18}{b} = -3$	p	4a = 36
q	$y \times 5 = -15$	r	-4x = -20	s	-8b = 24	t	2a = -12

Example 2 \checkmark Self TutorThe solution of the equation 3x - 7 = -4 is one of the integers -1, 1, or 3.Find the solution by trial and error.We substitute each possible solution into the LHS until it equals the RHS -4.When x = -1, when x = 1, when x = 3, 3x - 73x - 7

- $3x 7 \qquad 3x 7 \qquad 3$
- **2** The solution of each of the following equations is one of the given possibilities. Find the solution by trial and error.
 - **a** 3y + 7 = 13 {-2, 0, or 2} **b** 1 - 3b = -8 {2, 3, or 4} **c** $\frac{x - 4}{2} = -3$ {-2, 1, or 10} **d** $\frac{6 - a}{2} = 5$ {4, -2, or -4}

3 Which of the following equations are:

C	true for <i>exactly one</i> val true for <i>all</i> values of x true for <i>all</i> values of x		D	true for <i>two</i> v <i>never</i> true	alues of x
a	x + 2 = 9	Ь	x - x = 0	c	4x = 20
d	$x^2 = 16$	e	$x \times 1 = x$	f	x - x = 2
9	17 - 2x = 9	h	x + 3 = x	1	$\frac{x}{2} = 12$
i	3x + 4x = 7x	k	$x^2 = x$	1	$\frac{x}{x} = 1$


B

MAINTAINING BALANCE

The **balance** of an equation is maintained provided we perform the same operation on **both sides** of the equals sign. We can compare equations to a set of scales.

Adding to, subtracting from, multiplying by, and dividing by the same quantity on **both sides** of an equation will maintain the **balance** or **equality**.

3 What equation results from *multiplying* both sides of:

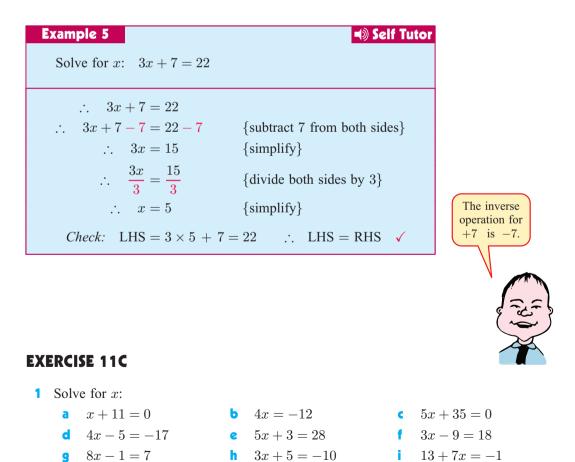
a x = -2 by 4 **b** 3x = -1 by 6 **c** $\frac{x}{3} = 4$ by 3 **d** $\frac{x}{9} = -1$ by 9 **e** $\frac{x}{-8} = -2$ by -8**f** $\frac{x}{-5} = 4$ by -5?

4 What equation results from *dividing* both sides of:

a 6x = 12 by 6 **b** -3x = 30 by -3 **c** 8x + 8 = 0 by 8 **d** 6x - 12 = 24 by 6 **e** 3(x + 2) = -12 by 3 **f** -5(x - 1) = -25 by -5?

FORMAL SOLUTION OF LINEAR EQUATIONS

When we use the "=" sign between two algebraic expressions we have an equation which is in balance. We have already seen that whatever we do to one side of the equation, we must do the same to the other side to **maintain the balance**.


Compare the balance of weights:

14 = 3x + 5

i.

In this section we perform operations on both sides of each equation in order to **isolate the unknown**. We consider how the expression has been **built up** and then **isolate the unknown** by using **inverse operations** in **reverse order**.

4x - 7 = -13

-3 = 2x + 9

Example 6		
		Self Tutor
Solve for x : $11 - 5x =$	26	
11 - 5x = 26		
11 000 20		n hath aideal
$\therefore 11 - 5x - 11 = 20$ $\therefore -5x = 15$	$5-11$ {subtract 11 from	n both sides}
$\therefore \frac{-5x}{-5} = \frac{15}{-5}$	$\frac{5}{5}$ {divide both side	es by -5 }
$\therefore x = -3$	3 {simplify}	
Check: LHS = 11	$-5 \times -3 = 11 + 15 = 26$	\therefore LHS = KHS \checkmark
2 Solve for x :		
a $8 - x = -3$	b $-4x = 22$	3 - 2x = 11
d $6 - 4x = -8$	3 - 7x = -4	
g $15 = 3 - 2x$	h $24 - 3x = -9$	
13 = -1 - 7x	k $-21 = 3 - 6x$	23 = -4 - 3x
Example 7	🔊 Self T	utor
Solve for x: $\frac{x}{3} + 2 = -$	9	
$\frac{3}{3} + 2 = -$	2	Remember that $\frac{x}{3}$ is
$\frac{x}{2} + 2 = -2$		really $x \div 3$ and the
J		inverse operation of $\div 3$ is $\times 3$.
$\therefore \frac{x}{3} + 2 - 2 = -2 - 2$	{subtract 2 from both sides	}
$\therefore \frac{x}{3} = -4$	[simplify]	
$\cdots \overline{3} - 4$	\smpmy}	
$\therefore \frac{x}{2} \times 3 = -4 \times 3$	{multiply both sides by 3}	
0		
$\therefore x = -12$		
<i>Check:</i> LHS = $-\frac{12}{3} + 2 =$	$= -4 + 2 = -2 = $ RHS. \checkmark	

3 Solve for x:

a
$$\frac{x}{4} = 7$$

b $\frac{2x}{5} = -6$
c $\frac{x}{2} + 3 = -5$
d $\frac{x}{4} - 2 = -5$
e $\frac{x-1}{3} = 6$
f $\frac{x+5}{6} = -1$
g $4 = \frac{2+x}{3}$
h $-1 + \frac{x}{3} = 7$

Example 8 Solve for <i>x</i> :	$\frac{4x+3}{5} = -2$
$\frac{4x+3}{5} = -2$	
$\therefore 5 \times \frac{(4x+3)}{5} = -2 \times 5$	{multiply both sides by 5}
$\therefore 4x + 3 = -10$	{simplify}
$\therefore 4x + 3 - 3 = -10 - 3$	{subtract 3 from both sides}
$\therefore 4x = -13$	{simplify}
$\therefore \frac{4x}{4} = -\frac{13}{4}$	{divide both sides by 4}
$\therefore x = -3\frac{1}{4}$	{simplify}

4 Solve for x:

a	$\frac{2x+11}{3} = 0$	Ь	$\frac{1}{2}(3x+1) = -4$	c	$\frac{1+2x}{5} = 7$
d	$\frac{1-2x}{5} = 3$	e	$\frac{1}{4}(1-3x) = -2$	f	$\frac{1}{4}(5-2x) = -3$

EQUATIONS WITH A REPEATED UNKNOWN

Equations where the unknown appears more than once need to be solved systematically. Generally, we:

- Expand any brackets
- Collect like terms
- Use inverse operations to isolate the unknown while at the same time maintaining the balance of the equation.

Example 9	Self Tutor
Solve for x: $5(x+1) - 2x =$	-7
5(x+1) - 2x = -7	
$\therefore 5x + 5 - 2x = -7$	{expand brackets}
$\therefore 3x+5 = -7$	{collect like terms}
$\therefore 3x + 5 - 5 = -7 - 5$	{subtract 5 from both sides}
$\therefore 3x = -12$	{simplify}
$\therefore \frac{3x}{3} = \frac{-12}{3}$	{divide both sides by 3}
$\therefore x = -4$	{simplify}

EXERCISE 11D

- **1** Solve for x:
 - **a** 3(x-2) x = 12
 - 5(x-3) + 4x = -6
- **2** Solve for x:
 - a 3(x+2) + 2(x+4) = -1
 - 4(x-3) 2(x-1) = -6
 - 2(3+2x) + 3(x-4) = 8

- **b** 4(x+2) 2x = -16
- **d** 2(3x+2) x = -6
- f -2(4x+3) + 2x = 12
- **b** 5(x+1) 3(x+2) = 11
- **d** 3(3x+1) 4(x+1) = 14
- f 4(5x-3) 3(2x-5) = 17

When the unknown appears on more than one side of the equation, remove it from one side. Aim to do this so the unknown is left with a **positive** coefficient.

Example 10 Self Tutor Solve for *x*: 5x + 2 = 3x - 55x + 2 = 3x - 5 $\therefore \quad 5x + 2 - 3x = 3x - 5 - 3x$ {subtract 3x from both sides} $\therefore \quad 2x + 2 = -5$ {simplify} $\therefore 2x + 2 - 2 = -5 - 2$ {subtract 2 from both sides} $\therefore 2x = -7$ {simplify} $\therefore \frac{2x}{2} = \frac{-7}{2}$ {divide both sides by 2} $\therefore x = -3\frac{1}{2}$ {simplify}

3 Solve for x:

a	5x + 2 = 3x + 14	b	8x + 7 = 4x - 5	c	7x + 3 = 2x + 9
d	3x - 8 = 5x - 2	e	x - 3 = 5x + 11	f	3 + x = 15 + 4x

Example 11Solve for x:15	5-2x=11+x (1) Self Tutor
15 - 2x = 11 + x $\therefore 15 - 2x + 2x = 11 + x + 2x$ $\therefore 15 = 11 + 3x$ $\therefore 15 - 11 = 11 + 3x - 11$ $\therefore 4 = 3x$	{add 2x to both sides} {simplify} {subtract 11 from both sides} {simplify}
$\therefore \frac{4}{3} = \frac{3x}{3}$ $\therefore x = 1\frac{1}{3}$	{divide both sides by 3} {simplify}

4 Solve for x:

a	6 + 2x = 15 - x	b	3x + 7 = 15 - x	C	5+x = 11 - 2x
d	17 - 3x = 4 - x	e	8 - x = x + 6	f	9 - 2x = 3 - x

SUMMARY

Step 1:	If necessary, expand any brackets and collect like terms.
Step 2:	If necessary, remove the unknown from one side of the equation. Aim to
	do this so the unknown is left with a positive coefficient.
Step 3:	Use inverse operations to isolate the unknown and maintain balance.
Step 4:	Check that your solution satisfies the equation, $i.e.$, LHS = RHS.

- **5** Solve for *x*:
 - **a** 2(x+4) x = 8
 - **c** 3(x+2) x = 12
 - $\bullet \quad 4(2x-1) + 9 = 3x$
 - **g** 3x 2(x+1) = -7
 - i 5x 4(4 x) = x + 12

k
$$3(x-6) + 7x = 5(2x-1)$$

- **b** 5(2-3x) = -8-6x
- **d** 2(x+1) + 3(x-4) = 5

$$11x - 2(x - 1) = -5$$

h 8 - (2 - x) = 2x

$$4(x-1) = 1 - (3-x)$$

$$3(2x-4) = 5x - (12-x)$$

FRACTIONAL EQUATIONS

More complicated fractional equations can be solved by:

- writing all fractions with the **lowest common denominator** (LCD) and then
- equating numerators.

To solve equations involving fractions, we make the denominators the same so that we can equate the numerators.

Example 12 \checkmark Self TutorSolve for x: $\frac{x}{3} = \frac{2}{5}$ $\frac{x}{3} = \frac{2}{5}$ has LCD of 15 \therefore $\frac{x \times 5}{3 \times 5} = \frac{2 \times 3}{5 \times 3}$ {to achieve a common denominator} \therefore 5x = 6{equating numerators} \therefore $x = 1\frac{1}{5}$ {divide both sides by 5}

EXERCISE 11E

1	Solve for x: a $\frac{x}{2} = \frac{2}{5}$ b $\frac{7}{2} = \frac{x}{4}$ e $\frac{1}{9} = \frac{5x}{2}$ f $\frac{2x}{3} = \frac{1}{7}$	c $\frac{5x}{2} = \frac{2}{3}$ d $\frac{1}{4} = \frac{x}{7}$ g $\frac{3}{4} = \frac{x}{5}$ h $\frac{2x}{3} = \frac{7}{2}$
Ex	ample 13 Solve for x: $\frac{2x+3}{4} = \frac{x-2}{3}$	Self Tutor
	$\frac{2x+3}{4} = \frac{x-2}{3}$	has LCD of 12
	$\therefore \frac{3 \times (2x+3)}{3 \times 4} = \frac{4 \times (x-2)}{4 \times 3}$	{to achieve a common denominator}
	$\therefore 3(2x+3) = 4(x-2)$	{equating numerators}
	$\therefore 6x + 9 = 4x - 8$	{expanding brackets}
	$\therefore 6x + 9 - 4x = 4x - 8 - 4x$	{subtracting $4x$ from both sides}
	$\therefore 2x + 9 = -8$	{simplifying}
	$\therefore 2x + 9 - 9 = -8 - 9$	{subtracting 9 from both sides}
	$\therefore 2x = -17$	{simplifying}
	$\therefore \frac{2x}{2} = -\frac{17}{2}$	{dividing both sides by 2}

2 Solve for x:

5

a	$\frac{2x+3}{5} = \frac{1}{2}$	b	$\frac{x+6}{2} = \frac{x}{3}$	c	$\frac{2x-11}{7} = \frac{3x}{5}$
d	$\frac{x+4}{2} = \frac{2x-3}{3}$	e	$\frac{3x+2}{2} = \frac{x-1}{4}$	f	$\frac{1-x}{2} = \frac{x+2}{3}$
9	$\frac{x+5}{2} = 1-x$	h	$\frac{2x+7}{3} = x+4$	i	$\frac{2x+9}{2} = x-8$

UNKNOWN IN THE DENOMINATOR

If the unknown appears as part of the denominator, we still solve by:

- writing the equations with the lowest common denominator (LCD)
- and then equating numerators.

 $\therefore x = -8\frac{1}{2}$

EXERCISE 11F

1 Solve for *x*:

a	$\frac{3}{x} = \frac{1}{5}$	b	$\frac{3}{x} = \frac{2}{3}$	c	$\frac{2}{7} = \frac{5}{x}$	d	$\frac{4}{9} = \frac{1}{x}$
e	$\frac{1}{2x} = \frac{4}{3}$	f	$\frac{7}{3x} = -4$	9	$\frac{4}{5x} = 3$	h	$-5 = \frac{2}{3x}$

Example 14 Solve for x : $\frac{3x}{x}$	4) Self Tutor $-1 = -2$
$\frac{3x+1}{x-1} = \frac{-2}{1}$	has LCD of $x - 1$
$\therefore \frac{3x+1}{x-1} = \frac{-2 \times (x-1)}{1 \times (x-1)}$	{to achieve a common denominator}
$\therefore 3x+1 = -2(x-1)$	{equating numerators}
$\therefore 3x+1 = -2x+2$	{expanding brackets}
$\therefore 3x + 1 + 2x = -2x + 2 + 2x$	{adding $2x$ to both sides}
$\therefore 5x+1=2$	{simplifying both sides}
$\therefore 5x+1-1=2-1$	{subtracting 1 from both sides}
$\therefore 5x = 1$	{dividing both sides by 5}
$\therefore x = \frac{1}{5}$	

2 Solve for x:

а	$\frac{3x-11}{4x} = -2$	Ь	$\frac{2x+7}{x-4} = -1$	c	$\frac{2x+1}{x-4} = 4$
d	$\frac{2x}{x+4} = 3$	e	$\frac{-3}{2x-1} = 5$	f	$\frac{4x+1}{x+2} = -3$

Example 15 Solv	The for x : $\frac{x}{2} = \frac{5}{x}$	If $x^2 = k$ then $x = \pm \sqrt{k}$ (k > 0).
$\frac{x}{2} = \frac{5}{x}$	has LCD of $2x$	
$\therefore \frac{x \times x}{2 \times x} = \frac{5 \times 2}{x \times 2}$	{to get a common denominator}	
$\therefore x^2 = 10$ $\therefore x = \pm \sqrt{10}$	{equating numerators}	

3 Solve for x: a $\frac{x}{3} = \frac{4}{x}$ b $\frac{x}{6} = \frac{6}{x}$ c $\frac{1}{x} = \frac{x}{3}$ d $\frac{x}{7} = \frac{7}{x}$ e $\frac{2}{x} = \frac{x}{5}$ f $\frac{7}{x} = \frac{x}{5}$ g $\frac{x}{2} = \frac{8}{x}$ h $\frac{x}{5} = \frac{-2}{x}$ FORMING EQUATIONS

Algebraic equations are mathematical sentences which indicate that two expressions have the same value. They always contain the "=" sign.

Many problems we are given are stated in words. Before we can solve a worded problem, we need to translate the given statement into a mathematical equation. We then solve the equation to find the solution to the problem.

The following steps should be followed:

- Step 1: Decide what the unknown quantity is and choose a pronumeral such as x to represent it.
- Step 2: Look for the operation(s) involved in the problem. For example,

Statement	Translation
decreased by	subtract
more than	add
double	multiply by 2
halve	divide by 2

Step 3: Form the equation with an "=" sign. These phrases indicate equality:"the answer is", "will be", "the result is", "is equal to", or simply "is"

	ple 16 anslate into an equation: "When a number is added to "Twice a certain number is		utor
a	In words "a number" "a number is added to 6" "the result is"	Indicates We let x be the number 6+x 6+x =	In the following exercise, you do not have to set out your answers like those given in the example.
b	<i>In words</i> "a certain number" "twice a certain number" "7 more than the number" "is"	So, $6 + x = 15$ <i>Indicates</i> Let x be the number 2x x + 7 So, $2x = x + 7$	

With practice you will find that you can combine the steps, but you should note:

- the mathematical sentence you form must be an accurate translation of the information
- for these types of problems, you must have only one pronumeral in your equation.

EXERCISE 11G

- 1 Translate into linear equations, but *do not solve*:
 - **a** When a number is increased by 6, the answer is 13.
 - **b** When a number is decreased by 5, the result is -4.
 - A number is doubled and 7 is added. The result is 1.
 - **d** When a number is decreased by 1 and the resulting number is halved, the answer is 45.
 - Three times a number is equal to 17 minus the number.
 - **f** Five times a number is 2 more than the number.

Example 17

Self Tutor

Translate into an equation: "The sum of 2 consecutive even integers is 34."

Let the smaller even integer be x.

- \therefore the next even integer is x+2.
- So, x + (x + 2) = 34 is the equation.

2 Translate into equations, but *do not solve*:

- **a** The sum of two consecutive integers is 33.
- **b** The sum of 3 consecutive integers is 102.
- The sum of two consecutive odd integers is 52.
- **d** The sum of 3 consecutive odd integers is 69.

Example 18

Self Tutor

Apples cost 13 cents each and oranges cost 11 cents each.

If I buy 5 more apples than oranges and the total cost of the apples and oranges is \$2.33, write a linear equation involving the total cost.

Type of fruit	Number of pieces of fruit	Cost per piece of fruit	Total cost
oranges	x	11 cents	11x cents
apples	x+5	13 cents	13(x+5) cents
			233 cents

From the table we know the total cost, and so 11x + 13(x + 5) = 233.

- **3** Write an equation for each of the following:
 - a Oranges cost 25 pence each and apples cost 30 pence each. If I buy 5 more oranges than apples, the total cost will be £4.55.
 (Let the pronumeral a represent the number of apples.)
 - Isaac is going to boarding school. He buys school shirts at €35 each and trousers at €49 each. Altogether he buys 9 items, and their total cost is €357. (Let the number of shirts be s.)
 - Jessica has a collection of old 2-cent and 5-cent stamps with a total value of \$2.24. She has 7 more 5-cent stamps than 2-cent stamps. (Let the pronumeral f represent the number of 5-cent stamps.)

PROBLEM SOLVING USING EQUATIONS

PROBLEM SOLVING METHOD

- Identify the unknown quantity and allocate a pronumeral to it.
- Decide which operations are involved.
- Translate the problem into a linear equation and check that your translation is correct.
- Solve the linear equation by isolating the pronumeral.
- Check that your solution does satisfy the original problem.
- Write your answer in sentence form.

Example 19

Self Tutor

The sum of 3 consecutive even integers is 132. Find the smallest integer.

Let x be the smallest even integer \therefore the next is x + 2 and the largest is x + 4. So, x + (x + 2) + (x + 4) = 132 {their sum is 132} $\therefore 3x + 6 = 132$ {simplifying} $\therefore 3x + 6 - 6 = 132 - 6$ {subtract 6 from both sides} $\therefore 3x = 126$ $\therefore \frac{3x}{3} = \frac{126}{3}$ $\therefore x = 42$ \therefore the smallest integer is 42.

EXERCISE 11H

- 1 When a number is trebled and then decreased by 5, the answer is 19. Find the number.
- 2 If two consecutive integers have a sum of 173, find the numbers.
- 3 If three consecutive integers add to 108, find the smallest of them.

Example 20

If twice a number is subtracted from 11, the result is 4 more than the number. What is the number?

Self Tutor

Self Tutor

Let x be the number,

LHS algebraic expression is 11 - 2xRHS algebraic expression is x + 4.

- 4 When a number is subtracted from 35, the result is 11 more than the number. Find the number.
- 5 When a number is increased by 4 and the result is halved, the answer is equal to the original number. Find the number.
- When one-third of a number is subtracted from one-half of a number, the answer is 14. Find the number.

Example 21

Cans of sardines come in two sizes. Small cans cost \$2 each and large cans cost \$3 each. If 15 cans of sardines are bought for a total of \$38, how many small cans were purchased?

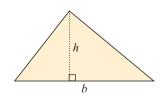
Tablas							
Table: Size (Cost per can	Number bought	Value			
	small	\$2	x	2x			
	large	\$3	15-x	3(15-x)			
			15	\$38			
So, $2x + 3(15 + 3)$	(-x) = 3	38					
$\therefore 2x + 45$	-3x = 3	38 {e	expanding brackets	}			
∴ 45	-x = 3	38 {s	simplifying}				
\therefore 45 - x -	-45 = 3	$38 - 45$ {s	subtract 45 from be	oth sides}			
$\therefore -x = -7$							
\therefore $x = 7$ So, 7 small cans were bought.							

- 7 I have 36 coins in my pocket, all of which are 5-cent or 10-cent coins. If their total value is \$3.20, how many 5-cent coins do I have?
- 8 Bananas cost 95 cents each whereas apples cost 35 cents each. If I buy 4 more bananas than apples and the total bill is \$10.30, how many bananas did I buy?
- **9** Containers of soup come in two sizes; 250 g at \$2.95 and 500 g at \$4.50. If I buy a total of 12 containers and they cost me \$43.15, how many 500 g containers did I buy?

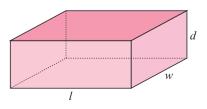
FINDING AN UNKNOWN FROM A FORMULA

A formula is an equation which connects two or more variables.

If we wish to find the value of one of the variables in a formula and we know the value(s) of the remaining variables, we **substitute** into the formula and **solve** the resulting equation.


Example 22

 $A = \frac{1}{2}bh$ is the formula for finding the area, A, of a triangle given its base b and height h. Find the height of a triangle of base 12 cm and area 60 cm².

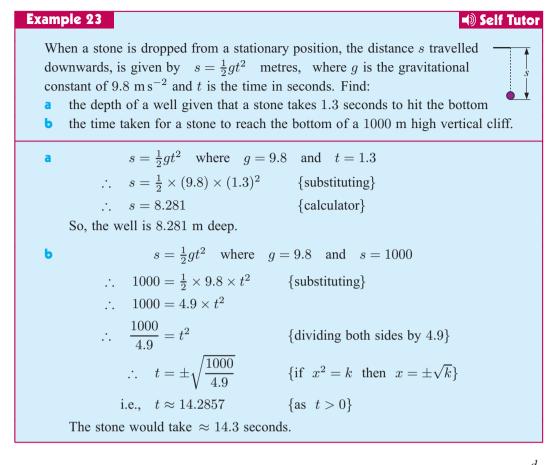

$$b = 12 \text{ and } A = 60 \quad \therefore \quad 60 = \frac{1}{2} \times 12 \times h$$

$$\therefore \quad 60 = 6h$$

$$\therefore \quad \frac{60}{6} = h \qquad \{\text{dividing both sides by } 6\}$$

$$\therefore \quad h = 10$$

So, the height is 10 cm.


EXERCISE 111

- 1 The area of a triangle with base b and height h is given by the formula $A = \frac{1}{2}bh$. Find:
 - a the base if the area is 84 cm² and the height is 12 cm
 - **b** the height if the area is 1 m^2 and the base is 2 m.
- 2 The volume of a rectangular box is given by the formula V = lwd where l is its length, w is its width, and d is its depth. Find:
 - a its length if its width is 8 cm, its depth is 3 cm and its volume is 168 cm³
 - its depth if its volume is 945 cm³, its length is 9 cm and its width is 15 cm.

Self Tutor

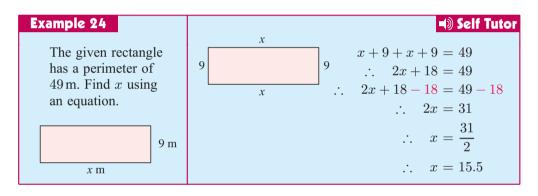
3 The average speed s for an object travelling a distance d in time t is given by $s = \frac{d}{t}$.

- a Find the distance travelled by a cyclist whose average speed over a 4 hour period was 23 kilometres per hour (km h⁻¹).
- **b** Find the time taken to ride a horse 42 km at an average speed of 15 km h^{-1} .
- 4 The velocity v (in m s⁻¹) of an object dropped from a stationary position is calculated using the formula $v^2 = 2gs$ where g is the gravitational constant of 9.8 m s⁻² and s is the distance fallen. Find:
 - a the velocity (in metres per second) of a boy when he hits the ground after falling from a branch of a tree 8 m above the ground
 - **b** the distance fallen by a base jumper who has reached a velocity of 50 metres per second before opening his parachute.
- 5 The cost of running a train between two cities is given by the formula C = wt + ds where

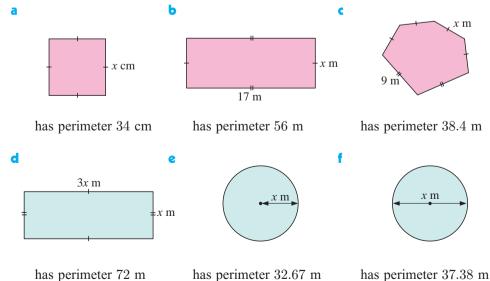
w = wages per hour d = fuel cost per km per hour t = hours of journey s = speed of train (in km h⁻¹). Find the travelling time of a train if the total cost is \$18000, the wages cost \$2400 per hour, the fuel cost is \$60 per km per hour, and the speed of the train is 180 km h⁻¹.

© iStockphoto

- 6 The volume of a cone is given by the formula $V = \frac{1}{3}\pi r^2 h$ where r is the base radius and h is the height. Find:
 - **a** the height of a cone of radius 8 cm and volume 240 cm^3
 - b the radius of the base of a cone of volume 96 cm³ and height 16 cm.

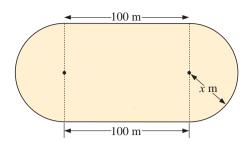

7

h


A butcher had 80 kg of steak. He sold 60 kg at a certain price per kg and then sold the remainder at half price.

His total revenue from the sale of the steak was \$560. What was the full price per kg?

8 Work colleagues pay €24 each to attend a Christmas luncheon and their employer pays a fixed booking charge of €50. If the total bill was €722, how many attended the luncheon?



? Find x given that:

10 An athletics track is to have a boundary fence of 400 m.

If the straights are to have length 100 m, find what value x, the radius of the *bends*, must have.

FORMULA REARRANGEMENT

For the formula D = xt + p we say that D is the **subject**. This is because D is expressed in terms of the other variables, x, t and p.

We can rearrange formulae to make one of the other variables the subject.

We **rearrange** formulae using the same processes we use to solve equations. Anything we do to one side we must also do to the other.

Example 25 Make y the subject of 2x + 3y = 12. 2x + 3y = 12 $\therefore 3y = 12 - 2x$ {subtract 2x from both sides} $\therefore y = \frac{12 - 2x}{3}$ {divide both sides by 3} $\therefore y = \frac{12}{3} - \frac{2x}{3} = 4 - \frac{2}{3}x$

EXERCISE 11J

1 Make y the subject of:

a	3x + 5y = 9	Ь	4x + 3y = 18	C	4x - y = 8
d	7x + 2y = 42	e	2x + 3y = 12	f	5x - 3y = -60

2 Make x the subject of:

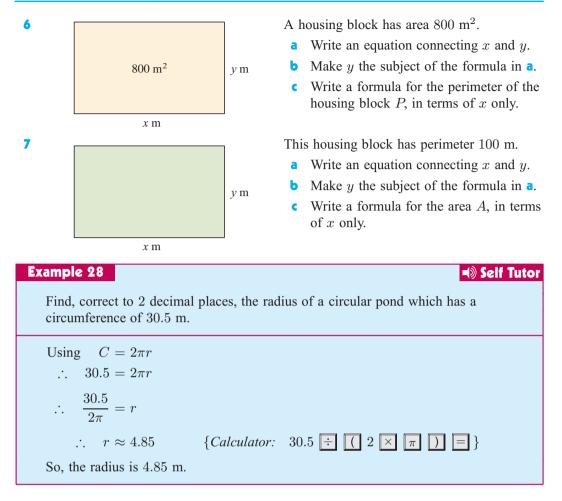
aa + x = bbxy = zc2x + p = qd3x + 2y = reax + by = cfy = mx + cg7 + px = qha + bx = ci7 = p + qx

Example 26Make y the subject of x = 5 - cy.x = 5 - cy $\therefore x + cy = 5 - cy + cy$ {add cy to both sides} $\therefore x + cy - x = 5 - x$ {subtract x from both sides} $\therefore cy = 5 - x$ {subtract x from both sides} $\therefore cy = 5 - x$ {subtract x from both sides} $\therefore cy = 5 - x$ {divide both sides by c} $\therefore cy = \frac{5 - x}{c}$ {divide both sides by c}

3 Make y the subject of:

a	mx - y = c	b	a - 3y = b	C	p - 5y = q
d	5 - ay = b	e	p - qy = r	f	p = q - ry

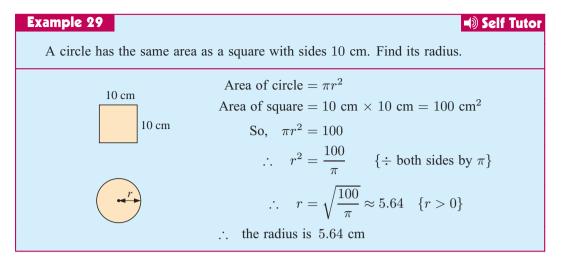
Example 27		Self Tutor
Make z the subject	$c = \frac{m}{z}$	
of $c = \frac{m}{z}$.	$c \times z = \frac{m}{z} \times z$	{multiply both sides by z }
	$\therefore cz = m$	
	$\therefore \frac{cz}{c} = \frac{m}{c}$	$\{$ divide both sides by $c\}$
	$\therefore z = \frac{m}{c}$	


4 Make z the subject of:

a	$yz = \frac{4}{x}$	$\frac{y}{z} = x$		$\frac{5}{w} =$	
d	$\frac{z}{3} = \frac{y}{z}$	$\frac{x}{z} = \frac{z}{y}$	f	$\frac{w}{z} =$	$\frac{z}{p-q}$

5 Make:

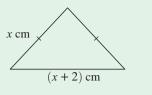
- **a** m the subject of F = ma **b** r
- l the subject of V = ldh
- b the subject of $A = \frac{bh}{2}$


b r the subject of $C = 2\pi r$ **d** M the subject of $D = \frac{M}{V}$ **f** R the subject of $I = \frac{PRT}{100}$

8 Kirsten has a piece of string 90 cm long which she shapes into a circle. Find the diameter of the circle correct to the nearest mm.

- **9** The wheel on a barrow is 28 cm in diameter.
 - **a** Find the circumference of the wheel to the nearest mm.
 - **b** Through how many revolutions must the wheel turn if the barrow is wheeled 200 m?
- 10 A satellite has a circular orbit 800 km above the surface of the Earth. The radius of the Earth is 6400 km and the satellite must complete exactly 14 orbits in one day.
 - a What is the circumference of the satellite's orbit, to the nearest km?
 - **b** How fast must it be moving?

- **11** A circular playing field has an area of 4300 m^2 . Find its radius.
- **12** A circle has the same area as a square with sides 15 cm. Find its radius.
- **13** A cylindrical tank has base radius 1.5 m and total surface area 42.4 m². Find its height.

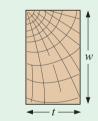

REVIEW SET 11A

- **1** The solution of the equation 2x 1 = 13 is one of the integers 6, 7, or -7. Find the solution by trial and error.
- **2** What equation results from adding -5 to both sides of 3x + 5 = 17?

3	Solve for <i>x</i> :	а	9 + 2x = -11	b	$\frac{3-2x}{7} = -5$
4	Solve for x:	a	$\frac{x}{5} = \frac{4}{7}$	b	$\frac{4x+5}{3} = \frac{x}{2}$
5	Solve for <i>x</i> :	а	$\frac{1}{3x} = 5$	b	$\frac{x+6}{3-2x} = -1$

- **6** Translate into linear equations but *do not solve* :
 - **a** When a number is increased by 11 and the result is doubled, the answer is 48.
 - **b** The sum of three consecutive integers is 63.
- 7 When 7 times a certain number is decreased by 11, the result is 31 more than the number. Find the number by solving an equation.
- 8 I have 25 coins consisting of 5-cent and 50-cent pieces. If the total value is \$7.10, how many 5-cent coins do I have?
- **9** The velocity $(v \text{ m s}^{-1})$ of a ball falling from a stationary position is given by $v^2 = 2gs$ where s is the distance fallen in metres and $g = 9.8 \text{ m s}^{-2}$. Find:
 - **a** the velocity of the ball after falling 25 m
 - **b** the distance fallen when the velocity reaches 40 m s^{-1} .

10 Find x given that the perimeter of the triangle is 56 cm.



- **11** a Make y the subject of 5x 3y = 15.
 - **b** Make d the subject of $C = \pi d$.

REVIEW SET 11B

1	Is the equation 3.	x - 2 = 3x + 6 true:	
	A for all values	s of x B never	C for exactly one value of x ?
2	What equation resu	alts from dividing both	sides of $4x + 8 = 12$ by 4?
3	Solve for x: a	$\frac{2x}{3} + 11 = -2$ b	3(2x-1) + 9 = 2(x+7)
4	Solve for x: a	$\frac{x}{2} = \frac{3}{8}$ b	$\frac{1-3x}{4} = \frac{x-2}{2}$
5	Solve for x: a	$\frac{5}{3x} = \frac{3}{2}$ b	$\frac{2x+1}{3} - \frac{4-x}{6} = -2$

- 6 Translate into linear equations, but *do not solve*.
 - **a** Four times a number is equal to the number plus 15.
 - **b** The sum of two consecutive odd integers is 36.
- **7** Five more than a certain number is nine less than three times the number. Find the number.

8

The strength S of a wooden beam is given by $S = 200w^2t$ units, where w cm is its width and t cm is its thickness. Find:

- a the strength of a beam of width 16 cm and thickness 4 cm
- **b** the width of a 5 cm thick beam of strength 60 000 units.
- **9** Make V the subject of $D = \frac{M}{V}$.
- **10** a Make y the subject of 6x + 5y = 20.
 - **b** Make r the subject of $C = 2\pi r$.
- 11 The surface area of a sphere is given by the formula $A = 4\pi r^2$. If the surface area of a sphere is 250 cm², find its radius correct to 2 decimal places.

Chapter

Ratios and rates

- A Ratio
- B Simplifying ratios
- C Equal ratios
- D The unitary method for ratios
- **E** Using ratios to divide quantities
- F Scale diagrams
- G Rates
- H Rate graphs
- I Travel graphs

OPENING PROBLEMS

Problem A

Jason, Wei and Pauline invest \$20000, \$30000 and \$40000 respectively to start an

advertising business. At the end of the first year they split the profits in the same ratio as their investments. If the total profit is \$180,000, how much should each receive?

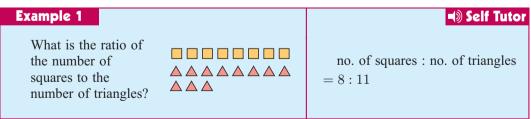
Problem B

Sev's car consumes petrol at the rate of 8.4 litres per hundred kilometres.

- **a** What does the given rate mean?
- **b** How much petrol would he need to travel 350 km?

RATIO

A ratio is a way of comparing two quantities.


If we have 6 apples and 4 bananas, the ratio of the number of apples to the number of bananas is 6 to 4.

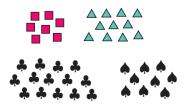
We write this as	apples : bananas $= 6:4$
Notice that	bananas : apples $= 4:6$

If measurements are involved we must use the same units for each quantity.

For example, the ratio of lengths shown is

20:7	{20 mm	: 7 mm}	and not	2:7.
------	--------	---------	---------	------

EXERCISE 12A


- **a** Find the ratio of squares to triangles in: 1
 - **b** Find the ratio of **A**s to **A**s in:

7 mm

2 cm

Example 2	Self Tutor
Write as a ratio, without simplifying your answa Jack has \$5 and Jill has 50 cents.b Mix 200 mL of cordial with 1 L of water.	ver:
a Jack : Jill = \$5 : 50 cents	{write in the correct order}
= 500 cents : 50 cents	{write in the same units}
= 500 : 50	{express without units}
b cordial : water = $200 \text{ mL} : 1 \text{ L}$	{write in the correct order}
= $200 \text{ mL} : 1000 \text{ mL}$	{write in the same units}
= $200 : 1000$	{express without units}

- **2** Write as a ratio, without simplifying your answer:
 - \$8 is to \$3 а
- 3 L is to 7 Lb
- $\pounds 3$ is to 50 pence
- 9 km is to 150 m g
- e 500 mL is to 3 L
- h
 - 12 m is to 8 km
- 35 kg is to 45 kgC f 400 m is to 2.5 km 4 h is to 40 min

SIMPLIFYING RATIOS

If we have 6 apples and 4 bananas, we have 3 apples for every 2 bananas.

So, 6:4 is the same as 3:2.

We say that 6:4 and 3:2 are equal ratios.

Notice that to get from 6:4 to 3:2 we can divide each number in the first ratio by 2.

Also, to get from 3:2 to 6:4 we can multiply each number in the first ratio by 2.

To simplify a ratio we can multiply or divide each part by the same non-zero number.

Example 3	Self Tutor
Express 45 : 10 in simplest form.	45:10 = $45 \div 5:10 \div 5$ {5 is the HCF of 45 and 10} = $9:2$

R

d

EXERCISE 12B

1 Express as a ratio in simplest form:

а	6:8	b	8:4	c	4:12	d	9:15
e	3:6	f	14:8	9	8:16	h	18:24
1	125:100	1	2:4:6	k	1000:50	1	6:12:24

Example 4	Self Tutor	
Express 0.4 : 1.4 in simplest form.	0.4 : 1.4 = 0.4 × 10 : 1.4 × 10 = 4 : 14 = 4 ÷ 2 : 14 ÷ 2 = 2 : 7	DEMO

2 Express as a ratio in simplest form:

a	0.5:0.2	b	0.3:0.7	c	0.6:0.4	d	0.4:0.2
e	0.7:1.2	f	0.03:0.12	9	2:0.5	h	0.05:1

Example 5	Self Tutor
Write $2\frac{1}{2}:\frac{1}{2}$ as a ratio in simplest form.	$2\frac{1}{2}:\frac{1}{2} = \frac{5}{2}:\frac{1}{2} = \frac{5}{2} \times 2:\frac{1}{2} \times 2 = 5:1$

3 Express as a ratio in simplest form:

a	$\frac{1}{3}:\frac{2}{3}$	b	$\frac{3}{4}:\frac{1}{4}$	c	$1\frac{1}{2}:\frac{1}{2}$	d	$1\frac{1}{2}:2\frac{1}{2}$
e	$1\frac{1}{3}:\frac{2}{3}$	f	$\frac{3}{4}:1\frac{1}{2}$	9	$6:1\frac{1}{2}$	h	$\frac{1}{2}:\frac{1}{3}:\frac{1}{4}$

USING A CALCULATOR TO SIMPLIFY RATIOS

You can sometimes use your calculator to simplify ratios, but remember that you must still be able to perform the process by hand.

Instructions can be found in the General Calculator Instructions section on page 11.

- **4** Use your calculator to simplify the ratios:
 - **a** $\frac{1}{3}:\frac{1}{2}$ **b** $1\frac{1}{3}:2\frac{1}{2}$ **c** $\frac{2}{3}:3\frac{1}{4}$ **d** $1\frac{3}{10}:1\frac{2}{3}$
- **5** Write the following comparisons as ratios in simplest form. Compare the first quantity mentioned with the second quantity mentioned.
 - a a shirt costing €64 to another shirt costing €32
 - **b** a rockmelon of mass 3 kg to a watermelon of mass 9 kg

- c the height of a 1.5 m shrub to the height of a 6 m tree
- **d** a wetsuit costing \$175 to a wetsuit costing \$250
- e the top speed of a car which is 150 km h^{-1} to the top speed of a formula one car which is 350 km h^{-1}

6 cm

- f a log of length 4 m to a stick of length 10 cm
- g the height of an insect which is 2 mm to the height of a rat which is 10 cm.

Find the ratio of:

- a shorter side of A : shorter side of B
- **b** longer side of A : longer side of B
- **c** area of A : area of B **d** area of B : area of A

5 cm

Extension

- 7 A gardener spends 16 hours on a job. He spends $\frac{1}{4}$ of the time mowing lawns,
 - $\frac{3}{8}$ of the time weeding, $\frac{1}{4}$ of the time edging, and $\frac{1}{8}$ of the time sweeping up.
 - a Find the ratio of the time spent mowing to the time spent weeding.
 - **b** Find the ratio of the time spent mowing to the time spent sweeping up.
 - Find the ratio of the time spent edging to the time spent weeding.
 - **d** What time was spent on each activity?

EQUAL RATIOS

3:4=6:x

Self Tutor

10 cm

Ratios are **equal** if they can be expressed in the same simplest form.

Sometimes we need to find one quantity given the ratio and the other quantity. To do this we use equal ratios.

Example 6

The masses of two house bricks are in the ratio of 3:4. If the smaller brick has mass 6 kg, what is the mass of the larger brick?

If the larger brick has mass x kg, then we can write 3: 4 = 6: x

To go from 3 to 6 we multiply by 2

 $\therefore \quad 4 \times 2 = x \quad \text{also} \\ \therefore \quad x = 8$

So the larger brick has mass 8 kg.

EXERCISE 12C

1 Find x if:

d

Q

- **a** 2:3=8:x **b** 1:4=x:12
 - 4:3=x:21 **e** 5:7=25:x
 - 5:12 = 40:x **h** 7:10 = x:80
- f 6: 11 = x: 77i 4: 5 = x: 45

3:2=15:x

Example 7	Self Tutor
Find \Box if: a $3:5=6:\Box$	b $15:20 = \Box:16$
a $3:5=6:\square$ $\therefore \square=5 \times 2$ $\therefore \square=10$	b $15:20 = 15 \div 5:20 \div 5$ = 3:4 $\therefore 3:4 = \Box:16$ $\therefore \Box = 3 \times 4 = 12$

2 Find \Box if:

a	$4:5=12:\square$	Ь	$3:9=\Box:18$	C	$2:3=10:\square$
d	$5:10 = \Box:18$	e	$16:4=12:\square$	f	$21:28 = 12:\square$

Example 8	Self Tutor
The ratio of walkers to guides on the Milford Track walk was 9 : 2. How many guides were needed if there were 27 walkers?	Let the number of guides be x. walkers : guides = $27 : x$ $\therefore 9 : 2 = 27 : x$ $\therefore x = 2 \times 3$ $\therefore x = 6$ $\therefore 6$ guides were needed.

- 3 A recipe for tomato soup uses tomatoes and onions in the ratio 7 : 2. If 21 kg of tomatoes are used, how many kilograms of onions are needed?
- 4 An orchard has apple trees and pear trees in the ratio 5 : 3. If there are 180 pear trees, how many apple trees are there?
- 5 A car cleaning service increases the cost of a \$15 'standard clean' to \$18. The \$25 'deluxe clean' is increased in the same ratio as the 'standard'. How much does a 'deluxe clean' cost now?

• Concrete is mixed in a ratio of premix to cement of 6 : 1. If I have 540 kg of premix, how much cement do I need?

- **7** The mass of two bags is in the ratio 7 : 12. The bigger bag has a mass of 48 kg.
 - a Find the mass of the smaller bag.
 - **b** Find the combined mass of the bags.
- 8 The ratio of the masses of Fido to Sammy is 6 : 17. Fido has a mass of 12 kg. What is the mass of Sammy?

The ratio of the volume of a small suitcase to that of a larger suitcase is 4:7. The volume of the smaller case is $120\,000$ cm³. The aeroplane will not take luggage whose volume is greater than $250\,000$ cm³. Will the larger piece of luggage be accepted?

THE UNITARY METHOD FOR RATIOS

Some ratio problems are easily handled using the unitary method.

Consider Example 8 where

walkers : guides =
$$27 : x$$

i.e., $9 : 2 = 27 : x$

The unitary method is:

	,	
	9 parts is	27
÷.	1 part is	$27 \div 9 = 3$
•.	2 parts is	$3 \times 2 = 6$

 \therefore 6 guides were needed.

Self Tutor

Example 9

The ratio of Pam's height to Sam's height is 7 : 6. If Pam is 1.63 m tall, how tall is Sam?

Let Sam's height be x m. or Let Sam's height be x m. Pam : Sam = 7:6Pam : Sam = 7 : 61.63: x = 7:6 \therefore 1.63 : x = 7 : 6· · . $\therefore \quad \frac{x}{1.63} = \frac{6}{7}$ So, 7 parts is 1.63 m 1 part is $1.63 \div 7$ m · . 6 parts is $1.63 \div 7 \times 6$ m $\therefore x = \frac{6}{7} \times 1.63$.**`**. Sam's height is ≈ 1.40 m. $\therefore x \approx 1.40$ Sam's height is ≈ 1.40 m. .**.**.

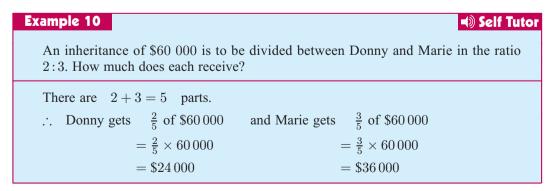
EXERCISE 12D

Use the *unitary method* to solve these problems.

- 1 The ratio of Bob's weight to Colin's weight is 6 : 7. If Bob weighs 83.7 kg, how much does Colin weigh?
- 2 If Kayo and Sally split their profits in the ratio of 5 : 4 respectively and Kayo gets \$23672, how much does Sally get, to the nearest dollar?

Jack's lawn is on average 8.3 cm high. The ratio of height of Jack's lawn to Henri's lawn is 1:1.13. Find the average height of Henri's lawn (to 2 dec. places).

- 4 The ratio of water to alcohol in a bottle of wine is 15 : 2. If there are 662 mL of water in the bottle, what is the quantity of alcohol in the bottle?
- **5** The masses of two strawberries are in the ratio 7:9. If the smaller one weighs 9.3 grams, what is the mass of the larger one?



• A block of land is divided in the ratio 6:11 and the larger portion is 875 m². Find, to the nearest whole number, the area of the smaller block.

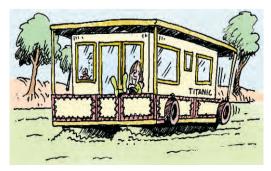
E USING RATIOS TO DIVIDE QUANTITIES

Quantities can be divided in a particular ratio by considering the **number of parts** the whole is to be divided into.

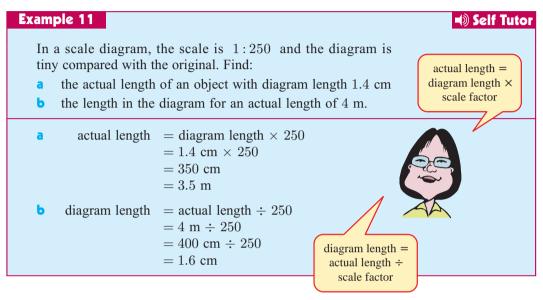
You could also use the *unitary method* to solve the following problems.

EXERCISE 12E

1 What is the total number of parts represented by the following ratios?


	a 2:	3	b	4:1	c	7:9	d	12:5
	e 10	: 3	f	3:16	9	7:4	h	9:10
2	Divide a	-		string in the fol 4:1		ng ratios: 3:2		7:13
	d 1:	1	0	4:1	C	3:2	a	1:15
3	Divide: a $$50$ in the ratio $1:4$				b €35 in the r	atio	3:4	
		 90 kg 	in t	he ratio $4:5$				

- 4 Lottery winnings of $400\,000$ are to be divided in the ratio 5:3. Find the larger share.
- **5** The ratio of girls to boys in a school is 5 : 4. If there are 918 students at the school, how many are girls?
- My block of land is 1500 m². It is divided into house and garden in the ratio 7 : 8. How many m² is my garden?


When planting early lettuces, the ratio of success to failure (due to frosts and bugs) is 5 : 2. If I plant 56 early lettuces, how many will succeed and how many will fail?

- 8 A man leaves 200 000 euros to his sons Aleksi and Kristo in the ratio of their ages when he dies. Aleksi is 4 years older than Kristo. When the father dies, Aleksi is 62.
 - a How old is Kristo?
 - **b** How much does Aleksi inherit (to the nearest euro)?
 - How much does Kristo inherit (to the nearest euro)?
- 9 Divide an inheritance of $\pounds 36\,000$ in the ratio 3:5:10.
- **10** The ratio of flour : sugar : cocoa in a cake recipe is 2 : 1.5 : 0.5. If 10 kg of flour is used, how much:
 - a sugar b cocoa is used?
- At the moorings on a river, there are yachts, motorboats, houseboats and rowboats. The ratio of yachts : motorboats : houseboats is 4:5:3. If there are 50 watercraft on the river and two of them are rowboats, how many are:
 - a yachts **b** motorboats
 - c houseboats?

SCALE DIAGRAMS

Scale diagrams are used to accurately display objects such as buildings when it is impossible to draw the object to its actual size. Architects frequently draw house and building plans 'to scale' so all of the lengths are shown *in proportion* to their real sizes.

EXERCISE 12F

- 1 Find the actual length of a large object given:
 - **a** a scale of 1:200 and a diagram representation of 3.1 cm
 - **b** a scale of 1:150 and a diagram representation of 4.6 cm
 - **c** a scale of 1:750 and a diagram representation of 13 mm.

2 Find the scale diagram length of a large object given:

- **a** a scale of 1:500 and an actual length of 46 m
- **b** a scale of 1:250 and an actual length of 7.2 m
- **c** a scale of 1:125 and an actual length of 14 m.
- **3** Draw a scale diagram of:
 - **a** a 24 m by 16 m rectangle using a scale of 1:400
 - **b** a 115 m by 87 m rectangle using a scale of 1:1600.
- 4 The scale of a map is $1:250\,000$.
 - a Find the actual distance between two towns which are 11 cm apart on the map.
 - **b** Find the distance on the map between two villages which are 9 km apart.
- 5 Two cities are 300 km apart, from centre to centre. On a map they are 15 cm apart. Find the map's scale in the form 1: n.
- **6** The scale on a map is $1:500\,000$. An area on the map is 12 cm^2 . Find the actual area in km².

RATES

G

We use rates nearly every day. Here are some examples:

- Jack works in a car wash at a service station. He earns £7.50 per hour.
- Jack's mother drives him to work, being careful not to go over the speed limit of 50 kilometres per hour.
- While she is at the service station, Jack's mother fills the car with petrol which costs 124.4 cents per litre.

Each of these statements uses a rate.

Notice that each quantity is measured with two different units, separated by 'per'.

- Jack's rate of pay is 7.50 pounds *per* hour.
- His mother's rate of travel or speed is below 50 kilometres per hour.
- The petrol's **price** or **unit cost** is 124.4 cents *per* litre.

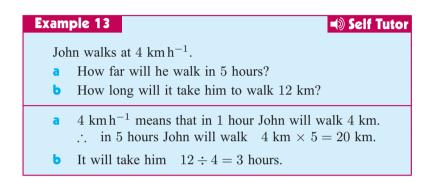
A rate is a comparison of two quantities of different kinds (and units).

Other examples are:

- An infection rate for an illness is five people per 1000 people in the population.
- A mobile telephone call costs 5 yen per 30 seconds.

Self Tutor

Example 12


- **a** Complete: Pumpkins cost \$5 for 10 kg. This is a rate of \$..... per kg.
- What measurements are connected by the following rate? Fertiliser should be used at a rate of 60 grams per m².
- **a** This is a rate of 50 cents per kg or \$0.50 per kg.
- **b** Grams are used to measure *mass*. m^2 are used to measure *area* \therefore the rate measures *mass* per *area*.

EXERCISE 12G

- 1 Complete the following rate statements.
 - **a** 20 metres of pipe costing \$40 is a rate of per metre.
 - **b** A waiter who works six hours and earns \$90 is being paid at a rate of per hour.
 - A two litre bottle of soft drink costing \$3.60 is a rate of per litre.
 - **d** A tanker pumping 1000 litres of water in five minutes is working at a rate of per minute.

- 2 Name the two measurements which are connected in the following rates, e.g., cost, time, mass, volume, length, etc.
 - **a** Walnuts are \$12 per kilogram.
 - **b** A medicine dosage is five millilitres per day.
 - The rainfall is measured in millimetres per year.
 - **d** A paint formula is in millilitres per litre.
 - A hire car company charges \$2.50 per kilometre.

- 3 A plumber charges \$30 per hour to do a job. How much will the plumber charge to do a job which lasts:
 - **a** 6 hours **b** 18 hours?
- 4 My car uses 8.5 L of petrol per 100 km travelled.
 - a If I travel 400 km, how many litres of petrol will my car use?
 - **b** If petrol costs 93.9 pence per litre, how much will the petrol cost for my trip?
 - If I took another trip and used 25.5 L of petrol, how much would the petrol for this trip cost?
- **5** The local postal centre is able to handle 245 parcels every hour.
 - a How many parcels could it handle in:
 - \mathbf{i} 4 hours \mathbf{i} 2.5 hours \mathbf{i} an 8 hour day?
 - **b** If a major consignment of 2536 parcels came, how long would it take the postal centre to handle them?
- 6 Our best cricket batsman has a strike rate of 4.8 runs per over.
 - a How many runs would she expect to make in a game where she batted for:
 - \mathbf{i} 6 overs \mathbf{i} 15 overs \mathbf{i} 4.5 overs?
 - **b** If she scored a century (100 runs) at the rate of 4.8 runs per over, how many overs would she have faced?
- 7 Tracy is to paint her house walls with two coats. The total area of the walls is 120 m^2 .
 - a If she can paint at a rate of 18 m² per hour, how long would it take her to finish painting with no stops?
 - **b** If paint covers 14 m² per litre, how many litres of paint are needed?
 - The paint costs \$85 per 4 L can. What will be the total cost of paint needed?

- 8 Paquita's Video Rental hires "new release" DVDs at a rate of \$7 per night, while "old" DVDs are hired at \$4 per week.
 - a If Georgio hires a "new release" DVD for three nights, how much does it cost him?
 - b Ian hires two "old" DVDs for four nights. What does this cost him?
 - How much will it cost Gabriella to hire one "new release" and four "old" DVDs for three nights?

d If Paquita offers a special deal of \$30 for *any* five DVDs for a week, should Gabriella take this special deal instead of her original plan? Explain your answer.

SPEED

A common rate we use is speed, which indicates how fast something is travelling.

Average speed is distance travelled compared with time taken.

So,

avaraga speed -	distance travelled	014	in symbols,	s = D
average speed =	time taken	01	in symbols,	$S = \overline{T}$

Example 14	Self Tutor
A car travels 450 km in 5 hours.	Rate $= \frac{450 \text{ km}}{5 \text{ h}}$
Express this as a rate.	= 90 km per hour

Notice that rates have units. In the above example $\frac{km}{h} = km h^{-1}$ which is km per hour.

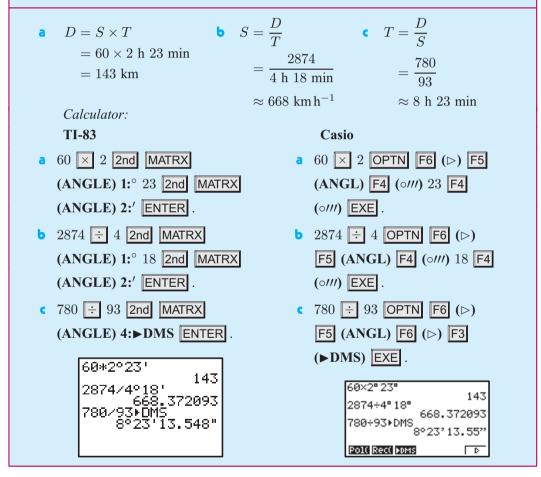
Example 15	Self Tutor
Convert 60 km h ^{-1} into m s ^{-1} .	60 km h^{-1} $= \frac{60 \text{ km}}{1 \text{ hour}}$ $= \frac{60 \times 1000 \text{ m}}{1 \times 60 \times 60 \text{ sec}}$ $\approx 16.7 \text{ m s}^{-1}$

It is useful to remember the conversion $1 \text{ m s}^{-1} = 3.6 \text{ km h}^{-1}$

- 9 Use the conversion $1 \text{ ms}^{-1} = 3.6 \text{ km} \text{ h}^{-1}$ to convert:
 - **a** 100 km h^{-1} into m s⁻¹ **b** 20 m s^{-1} into km h⁻¹
- **10 a** A cyclist travels 75 km in 5 hours. Express this as a rate.
 - **b** A snail crawls 4.2 m in 2 hours. Express this as a rate.

By rearranging the formula for average speed, we can calculate distances travelled or times taken.

 $D = S \times T$


 $T = \frac{D}{S}$

If we wish to find *D*, we use

If we wish to find T, we use

Example 16

- **a** A car travels at 60 km h⁻¹ for 2 hours and 23 minutes. How far does it travel?
- **b** An aeroplane travels 2874 km in 4 hours and 18 minutes. Calculate its speed.
- A train travelled a distance of 780 km at a speed of 93 km h⁻¹. How long did the journey take?

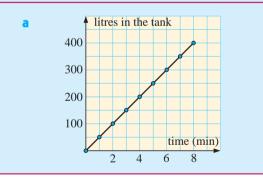
- **11** a If I walk at 5 km h^{-1} , how far will I walk in 3 hours?
 - **b** How far will a car travelling at 80 km h⁻¹ travel in $1\frac{3}{4}$ hours?
 - A train travels at 80 km h⁻¹. How far will it travel in 30 minutes?
 - **d** A cyclist cycled at 20 km h⁻¹ for $2\frac{1}{2}$ hours. How far did the cyclist travel?
 - A spacecraft travels 9000 km in 45 minutes.
 Calculate the average speed of the spacecraft in km h⁻¹.

Self Tutor

- f A train travels at a speed of 120 km h^{-1} for 3 hours and 25 minutes. Calculate the distance travelled by the train.
- **g** A marathon runner runs 42.2 km in 2 hours and 10 minutes. Calculate her average speed to the nearest km h⁻¹.

RATE GRAPHS

If we have measurements of two related quantities we can plot them on a graph. The rate at which one measurement changes with respect to the other can be found from the slope of the graph.


Example 17

A tank is being filled with water. The table following shows the number of litres in the tank as time increases.

Number of minutes	0	1	2	3	4	5	6	7	8
Number of litres	0	50	100	150	200	250	300	350	400

a Graph the data with *Number of minutes* on the horizontal axis.

b Complete: The rate of change is litres per minute.

b 50 litres enter the tank each minute.So, the rate of change is 50 L per min.

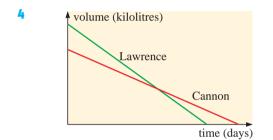
- Note: The plotted points should be joined with line segments in this case. For example, after $1\frac{1}{2}$ minutes 75 L of water has been added.
 - The rate of filling is **constant** and this is shown by the straight line.
 - The slope of the graph is $\frac{400-0}{8-0} = 50$ L per min.

EXERCISE 12H

1 A pool is being filled with water at a constant rate. The following table shows the number of litres of water in the pool as time increases.

Number of minutes	0	1	2	3	4	5
Number of litres	0	200	400	600	800	1000

Self Tutor


h A rocket travels 1768 km at a speed of 340 km h^{-1} . How long does it take the rocket to travel this distance?

- a Graph the data with *Number of minutes* on the horizontal axis.
- **b** Complete: The rate of change is litres per minute.

2 Construct a table and draw a rate graph for the statement:

"The rate at which the pool is filling (from empty) is 40 L per minute."

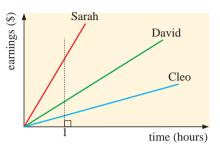
- **3** The earnings in dollars of three workers is plotted on the graph shown.
 - **a** Who is earning at the:
 - highest rate
 - lowest rate?
 - Explain how you can use the dotted line on the graph to answer **a**.

- 5 Nindi, Syd and Mae were drinking large glasses of water.
 - **a** Who finished first?
 - Who finished last?
 - Who drank their glass of water without stopping? How can you tell?
 - **d** Who had the longest rest in the middle? How can you tell?
- The graph shows the change in temperature in Darwin between 8 am and midnight.

Use the graph to answer the following questions:

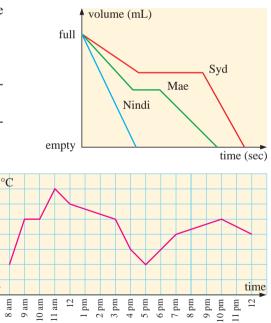
- a At what rate (degrees per hour) did the temperature rise from 8 am to 9 am?
- **b** What happened from 9 am to 10 am?
- When did the temperature rise the fastest?
- **d** What was the maximum temperature?
- For how many hours was the temperature rising?
- f Between what times was the temperature dropping the quickest?

temperature


36 35

34

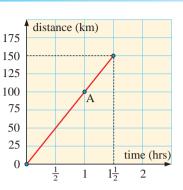
33


32 31

30

The water levels in the Cannon and Lawrence reservoirs this summer are decreasing due to the continuing drought.

- a In which reservoir is the water level falling faster? Explain.
- **b** Which reservoir had more water in it at the start of the summer? Explain.

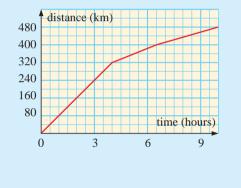


TRAVEL GRAPHS

Suppose a car travels 150 kilometres in 1.5 hours.

Average speed = $\frac{\text{distance}}{\text{time}}$ = $\frac{150}{1.5}$ = 100 km h⁻¹

Notice that the point A on the graph indicates we have travelled 100 km in one hour.

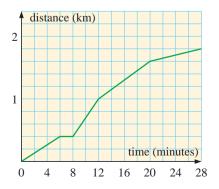


Self Tutor

Example 18

The graph alongside indicates the distance a homing pigeon travelled from its point of release until it reached its home. Use the graph to determine:

- a the total length of the flight
- **b** the time taken for the pigeon to reach home
- c the time taken to fly the first 200 km
- d the time taken to fly from the 240 km mark to the 400 km mark
- e the average speed for the first 4 hours
- **a** Length of flight is 480 km.



b Time to reach home is 10 hours.

- **c** Time for first 200 km is $2\frac{1}{2}$ hours.
- d It takes 3 hours to fly 240 km. It takes 6¹/₂ hours to fly 400 km.
 ∴ it takes 3¹/₂ hours to fly from 240 km to 400 km.
- In the first 4 hours it flies 320 km \therefore average speed = $\frac{320}{4} = 80 \text{ km h}^{-1}$.

EXERCISE 12I

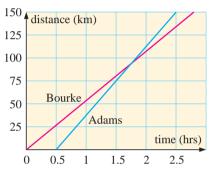
- The graph alongside shows the distance Frances walks to work. Use the graph to determine:
 - Jse the graph to determine
 - a the distance to work
 - **b** the time taken to get to work
 - c the distance walked after
 - 12 minutes 12 minutes
 - d the time taken to walk i 0.4 km ii 1.3 km
 - the average speed for the whole distance.

262 RATIOS AND RATES (Chapter 12)

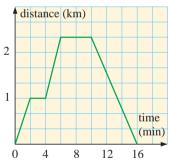
2 Two cyclists took part in a handicap time trial. The distance-time graph indicates how far each has travelled.

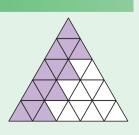
Use the graph to find:

- a the handicap time given to cyclist B
- **b** the distance travelled by each cyclist
- how far both cyclists had travelled when A caught B
- d how long it took each cyclist to travel 80 km
- e how much faster A completed the time trial than B
- f the average speed of each cyclist.
- 3 The Adams and Bourke families live next door to each other in Melbourne. They are going to their favourite beach along the Great Ocean Road, 150 km from where they live.
 - a Who left first?
 - Who arrived first?
 - Who travelled fastest?
 - d How long after the first family left did they pass each other on the road?
 - e How long had the second family been driving when they passed the first family?
 - f Approximately how far from Melbourne is this "passing point"?
- Amy drives from home to the supermarket. She draws a graph which can be used to explain her journey.
 The vertical axis shows her distance from home in kilo-2 metres. The horizontal axis measures the time from when she left home in minutes.
 - **a** When did she stop for the red traffic light?
 - **b** How long did the light take to change?
 - How long did she spend at the supermarket?
 - **d** How far away is the supermarket from her home?
 - When was her rate of travel (speed) greatest?


REVIEW SET 12A

1 a Find the ratio of the coloured area : total area in the given diagram.

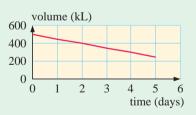

40 distance (km) A B 40 time (hours)


1

n

2

b Write 750 mL is to 2 litres as a ratio in simplest form.

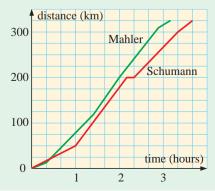

- **2** a Express 96 : 72 as a ratio in simplest form.
 - **b** Express 0.4:0.9 as a ratio in simplest form.
 - Express the ratio $3:2\frac{1}{2}$ in simplest form.
- 3 A farm has 6000 animals. 2500 are sheep and the rest are cattle. Find the ratio of the number of: a sheep : total number of animals b sheep : cattle.
- 4 $3:8 = \square:40$. Find the missing number.
- **5** The ratio of girls to boys in a sports club is 4:5. If there are 20 girls, how many boys are there?
- 6 If two families share the cost of buying 75 kg of meat in the ratio 7 : 8, how much meat should each family receive?
- 7 If $\notin 3200$ is divided in the ratio 3:5, what is the smaller share?
- 8 a Find the real length of a large object given a scale of 1:500 and a diagram representation of 5.2 cm.
 - **b** Find the scale diagram length of an object given a scale of 1 : 200 and an actual length of 23 m.
- **9** Avril is paid at the rate of \$18.60 per hour.
 - **a** How much is she paid if she works 8 hours?
 - **b** How much is she paid if she works $2\frac{1}{2}$ hours?
- **10** Ben drives at a steady speed for 8 hours and covers a distance of 760 km. His car uses 65 L of petrol. Find:
 - **a** his average speed $(\operatorname{km} \operatorname{h}^{-1})$
- **b** the petrol consumption (in km L^{-1})
- 11 Convert 210 metres per minute into kilometres per hour, using $1 \text{ m s}^{-1} = 3.6 \text{ km h}^{-1}$.
- **12** Water is leaking out of a water tank. The graph shows how much water remains in the tank at the end of every day for five days:
 - **a** How much water is in the tank to start with?
 - **b** Copy and complete the following statements:
 - In two days, the water remaining in the tank is kilolitres. This is a loss of kilolitres.

The rate at which the water is leaking is kilolitres per day.

II In five days the water remaining in the tank is kilolitres. This is a loss of kilolitres.

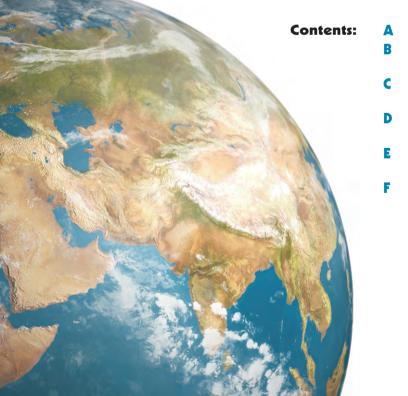
The rate at which the water is leaking is kilolitres per day.

- **c** Is the water leaking at a constant rate? Explain your answer.
- **d** If no water is added to the tank, when will the tank be empty?


REVIEW SET 12B

а

- 1 Write as a ratio in simplest form:
 - 25 g is to 60 g **b** 45 seconds is to 1.5 minutes.
- **2** Express as a ratio in simplest form:
 - **a** 6:9:15 **b** 0.2:0.5 **c** $\frac{1}{2}:\frac{1}{3}$
- **3** Cube A has sides 3 cm in length and cube B has sides 5 cm in length. Find the ratio of:
 - **a** length of side of B : length of side of A
 - $\boldsymbol{b} \quad \text{area of one face of } A: \text{area of one face of } B$
 - volume of A : volume of B
- **4** Ming-na has a box of chocolates. 15 have soft centres and the rest have hard centres. If the ratio of soft centres : hard centres is 5 : 3, how many have hard centres?
- **5** The ratio of cordial to water in a glass is 3 : 20. If there are 250 mL of water in the glass, how many mL of cordial are there?
- A fruit grower plants apricot trees and peach trees in the ratio 4 : 5. If he plants a total of 3600 trees, how many of each type did he plant?
- 7 If $21\,000$ Yen is divided in the ratio 1:2:4, what is the largest share?
- **8** The scale on a map of England is $1:400\,000$.
 - **a** Find the actual distance between Liverpool and Manchester, which are 12.5 cm apart on the map.
 - **b** Find the distance on the map between Birmingham and Coventry, which are 27.6 km apart.
- **9** Water from a hose will fill a 2 L bucket in 10 seconds. How long will it take to fill a 12 L tank?
- **10** Construct a table and draw a rate graph for the statement: 'A tank contains 800 L of water and it empties at a rate of 25 L per minute.'
- 11 An Olympic runner takes 10.2 seconds to run 100 metres. Use the conversion $1 \text{ m s}^{-1} = 3.6 \text{ km h}^{-1}$ to calculate his speed in km h⁻¹.
- **12** The graph shows the distance travelled by two families between Vienna and Salzburg.


Use the graph to find:

- a the distance from Vienna to Salzburg
- **b** how much quicker the Mahler family completed the trip than the Schumann family
- the average speed for each family over the first two hours
- **d** the average speed for the Schumanns over the whole trip.

Chapter

Algebraic factorisation

- Common factors
- Factorising with common factors
- Factorising expressions with four terms

- Factorising quadratic trinomials
- E Factorisation of ax^2+bx+c $(a \neq 1)$
- F Difference of two squares factorising

When an expression is written as a **product** of its **factors**, it is said to have been **factorised**. For example, $3x + 15 = 3 \times (x + 5)$ where the factors are 3 and (x + 5).

Notice that 3(x+5) = 3x + 15 using the **distributive law**, and so **factorisation** is really the **reverse** process to **expansion**.

COMMON FACTORS

Numbers can be expressed as products of **factors**. A **prime number** has only two different factors, the number itself and 1. Some prime numbers are 2, 3, 5, 7, 11,

1 is not a prime number.

Factors that are prime numbers are called **prime factors**. Prime factors of any number can be found by repeated division.

For example:

$$\frac{42}{21}$$

$$\overline{7}$$

$$1 \qquad \therefore 42 = 2 \times 3 \times 7$$

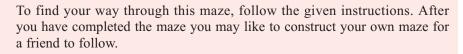
COMMON FACTORS AND HCF

Notice that 2 and 3 are factors of both 24 and 42. They are called **common factors**. Obviously 6, which is 2×3 , would be a common factor as well.

A common factor is a number that is a factor of two or more other numbers.

The **highest common factor (HCF)** is the largest factor that is common to two or more numbers.

To find the highest common factor of a group of numbers it is often best to express the numbers as products of prime factors. Then the common prime factors can be found and multiplied to give the HCF.


Example 1	Find the highest common factor of 36 and 81.
So, $2 \begin{vmatrix} 36 \\ 2 \\ 18 \\ 3 \\ 9 \\ 3 \\ 3 \\ 1 \end{vmatrix}$	$36 = 2 \times 2 \times 3 \times 3 \text{and} 3 \begin{array}{ c c c } 81 & 81 = 3 \times 3 \times 3 \times 3 \\ 3 & 27 \\ 3 & 9 \\ 3 & 3 \\ 1 \end{array} \therefore \text{HCF} = 3 \times 3 = 9$

We can use the same technique to find the **highest common factor** of a group of algebraic products.

Exam	ple 2		⊲) Se	lf Tuto	or
Find a	the highest common facto $8a$ and $12b$		b $4x^2$ and $6xy$		
a	$8a = 2 \times 2 \times 2 \times a$ $12b = 2 \times 2 \times 3 \times b$ $\therefore \text{ HCF} = 2 \times 2$ = 4		$4x^2 = 2 \times 2 \times x$ $6xy = 2 \times 3 \times x$ $\therefore \text{HCF} = 2 \times x$ = 2x		Write each term as a product of its factors !
EXERCI	SE 13A				CC
1 Find a d	the highest common factor 45 and 63 80 and 120	r of: b e	25 and 45 49 and 91	c f	36 and 48 81 and 108
2 Find a d g	I the missing factor: $3 \times \Box = 6a$ $2x \times \Box = 8x^2$ $-a \times \Box = ab$	e	$3 \times \Box = 15b$ $\Box \times 2x = 2x^{2}$ $\Box \times a^{2} = 4a^{3}$		$2 \times \Box = 8xy$ $\Box \times 5x = -10x^{2}$ $3x \times \Box = -9x^{2}y$
3 Find a d g	the highest common factor 2a and $612k$ and $7k25x$ and $10x$	r of t b e h	the following: 5c and $8c3a$ and $12a24y$ and $32y$	c f i	8r and $275x$ and $15x36b$ and $54d$
4 Find a d g j	I the HCF of the following: 23ab and $7aba^2 and a3b^2 and 9b3pq and 6pq^215a$, $20ab$ and $30b$	b e h	abc and $6abc9r and r^3dp^2 and pd2a^2b and 6ab12wxz$, $12wz$, $24wxyz$	c f i l	36 <i>a</i> and 12 <i>ab</i> 3 <i>q</i> and <i>qr</i> 4 <i>r</i> and 8 r^2 6 <i>xy</i> and 18 x^2y^2 24 p^2qr , 36 pqr^2

ACTIVITY

ALGEBRAIC COMMON FACTOR MAZE

Instructions:

- **1** You are permitted to move horizontally or vertically but not diagonally.
- **2** Start at the starting term, 12. A move to the next cell is only possible if that cell has a factor in common with the one you are presently on.
- **3** Try to get to the exit following the rules above.

1			_	0		0	-	0	1
	6m	2a	3	$9c^2$	3c	c^2	8	$2p^2$	
	4m	mn	6n	5c	25	5m	12	4p	
	8y	xy	2	6a	5a	mn	$6n^2$	7	
	7y	21	3z	5x	3y	y^2	3p	<i>p</i> -	- exit
	ab	7a	yz	xy	15x	xy	p^2	7	
	17	pq	3q	q^2	63	7b	b^2	6	
	12	5	10	10b	12	y^2	9b	3b	
	6a	a^2	5a	3a	4x	xy	2x	x^2	

Example 3

Find the HCF of 3(x+3) and (x+3)(x+1).

$$3(x+3) = 3 \times (x+3)$$

$$(x+3)(x+1) = (x+3) \times (x+1)$$

HCF =
$$(x + 3)$$

$$(x+3)(x+1) = (x+3) \times (x+3)$$

$$\therefore \quad \text{HCF} = (x+3)$$

start

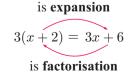
- **5** Find the HCF of:

 - a 5(x+2) and (x+8)(x+2)b $2(x+5)^2$ and 6(x+9)(x+5)c 3x(x+4) and $x^2(x+2)$ d $6(x+1)^2$ and 2(x+1)(x-2)e $2(x+3)^2$ and 4(x+3)(x-7)f 4x(x-3) and $6x(x-3)^2$

Self Tutor

FACTORISING WITH COMMON FACTORS R

Factorisation is the process of writing an expression as a product of its factors.

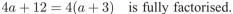

Factorisation is the reverse process of expansion.

In **expansions** we have to *remove brackets*, whereas in **factorisation** we have to *insert* brackets.

Notice that 3(x+2) is the product of two factors, 3 and x+2.

The brackets are essential as:

3(x+2) multiplies 3 by the whole of x+2, whereas in 3x + 2 only the x is multiplied by 3.

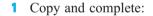

To factorise an algebraic expression involving a number of terms we look for the HCF of the terms and write it down in front of a set of brackets. We then find the contents of the brackets.

For example, $5x^2$ and 10xy have HCF of 5x.

So,
$$5x^2 + 10xy = 5x \times x + 5x \times 2y$$

= $5x(x+2y)$

FACTORISE FULLY


Notice that 4a + 12 = 2(2a + 6) is not fully factorised as (2a + 6) still has a common factor of 2 which could be removed. Although 2 is a common factor it is not the HCF. The HCF is 4 and so

Note: All factorisations can be checked by expansion.

Self Tutor Example 4 Fully factorise: **a** 3a + 6**b** ab-2bc3a + 6Ь ab - 2bcа $= a \times b - 2 \times b \times c$ = **3** \times a + **3** \times 2 = b(a - 2c) {HCF is b} = 3(a+2) {HCF is 3}

EXERCISE 13B

- $4x^2 8x = 4x(x ...)$
- **2** Copy and complete:
 - **a** $4x + 16 = 4(\dots + \dots)$

- a 2x + 4 = 2(x + ...)b 3a 12 = 3(a ...)c 15 5p = 5(... p)d 18x + 12 = 6(... + 2)

f
$$2m + 8m^2 = 2m(\dots + 4m)$$

- **b** $10 + 5d = 5(\dots + \dots)$

With practice the middle line is

not necessary.

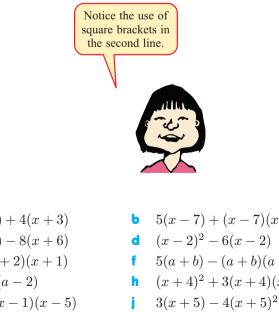
3 Fully factorise:

a	3a+3b	Ь	8x - 16	C	3p + 18	d	28 - 14x
e	7x - 14	f	12 + 6x	9	ac + bc	h	12y - 6a
i	5a + ab	j.	bc - 6cd	k	7x - xy	1	xy + y
m	a + ab	n	xy - yz	0	3pq + pr	P	cd-c

270 ALGEBRAIC FACTORISATION (Chapter 13)

Example 5 Fully factorise: a $8x^2 +$	- $12x$ b $3y^2 - 6xy$					
a $8x^2 + 12x$ = $2 \times 4 \times x \times x + 3 \times$ = $4x(2x+3)$ {HCF	$4 \times x \qquad \qquad b \qquad 3y^2 - 6xy \\ = 3 \times y \times y - 2 \times 3 \times x \times y$					
4 Fully factorise: a $x^2 + 2x$ d $14x - 7x^2$ g $x^2y + xy^2$ j $a^3 + a^2 + a$ Example 6	b $5x - 2x^2$ c $4x^2 + 8x$ e $6x^2 + 12x$ f $x^3 + 9x^2$ h $4x^3 - 6x^2$ i $9x^3 - 18xy$ k $2a^2 + 4a + 8$ l $3a^3 - 6a^2 + 9a$					
Fully factorise: $-2a + 6ab$ -2a + 6ab = 6ab - 2a $= 2 \times 3 \times a \times b - 2 \times a = 2a(3b - 1)$	{Rewrite with $6ab$ first. Why?} {a {as $2a$ is the HCF}					
5 Fully factorise: a $-9a + 9b$ d $-7c + cd$ g $-5x + 15x^2$	b $-3 + 6b$ c $-8a + 4b$ e $-a + ab$ f $-6x^2 + 12x$ h $-2b^2 + 4ab$ i $-a + a^2$					
Example 7Image: Self TutorFully factorise: $-2x^2 - 4x$ $-2x^2 - 4x$ $= -2 \times x \times x + -2 \times 2 \times x$ $= -2 \times (x + 2)$ {as HCF is $-2x$ }						
6 Fully factorise: a $-6a - 6b$	b $-4 - 8x$ c $-3y - 6z$					

d -9c - cd **e** -x - xy **f** $-5x^2 - 20x$ **g** $-12y - 3y^2$ **h** $-18a^2 - 9ab$ **i** $-16x^2 - 24x$


Example 8	Self Tutor
Fully factorise:	
a $2(x+3) + x(x+3)$	b $x(x+4) - (x+4)$
a $2(x+3) + x(x+3)$	has HCF of $(x + 3)$
= (x+3)(2+x)	
b $x(x+4) - (x+4)$	
=x(x+4) - 1(x+4)	has HCF of $(x + 4)$
= (x+4)(x-1)	

- 7 Fully factorise:
 - a 2(x-7) + x(x-7)
 - 4(x+2) x(x+2)
 - a(b+4) (b+4)
 - a(m+n) b(m+n)

b a(x+3) + b(x+3)**d** x(x+9) + (x+9) $f \quad a(b+c) + d(b+c)$

h x(x+3) - x - 3

Example 9	Self Tutor
Fully factorise $(x - x)$	(x+2) + 3(x-1)
(x-1)(x+2) -	+3(x-1) has HCF of $(x-1)$
= (x-1)[(x+2)]	+3]
= (x-1)(x+5)	

- 8 Fully factorise:
 - a (x+3)(x-5) + 4(x+3)
 - (x+6)(x+4) 8(x+6)
 - $(x+2)^2 (x+2)(x+1)$
 - **g** $3(a-2)^2 6(a-2)$
 - x(x-1) 6(x-1)(x-5)
- **b** 5(x-7) + (x-7)(x+2)**b** 5(x-1) + (x-1)(x+2) **d** $(x-2)^2 - 6(x-2)$ **f** 5(a+b) - (a+b)(a+1)**h** $(x+4)^2 + 3(x+4)(x-1)$

FACTORISING EXPRESSIONS WITH FOUR TERMS

Some four-termed expressions do not have an overall common factor, but can be factorised by *pairing* the four terms.

For example,

$\underline{ab+ac} + \underline{bd+dc}$ = (b+c)(a+d)

= a(b+c) + d(b+c) {factorising each pair separately} (b+c)(c+d) {removing common factor (b+c) {removing common factor (b+c)}

- Note: Many 4-termed expressions cannot be factorised using the method above.
 - Sometimes it is necessary to reorder the terms before using the method above.

Example 10	Self Tutor
Factorise: a $3ab + d + 3ad + b$	b $x^2 + 2x + 5x + 10$
a $3ab + d + 3ad + b$ = $3ab + b + 3ad + d$ {reorder}	b $x^2 + 2x + 5x + 10$ = $x(x+2) + 5(x+2)$
= b(3a+1) + d(3a+1) = (3a+1)(b+d)	= (x+2)(x+5)

EXERCISE 13C

Factorise:

1

a	3a+3+ab+b	Ь	6d + ac + ad + 6c	c	ab+6+2b+3a
d	mn + 3p + np + 3m	e	$x^2 + 3x + 6x + 18$	f	$x^2 + 8x + 3x + 24$
9	$3x^2 + 3x + x + 1$	h	$3x^2 + 6x + 4x + 8$	i.	$10x^2 + 5x + 6x + 3$

Example 11 Self Tutor **b** $x^2 + 3x - x - 3$ a $x^2 + 3x - 4x - 12$ Factorise: $\underbrace{x^2 + 3x}_{-4x - 12} - 4x - 12$ **b** $x^2 + 3x - x - 3$ а = x(x+3) - 4(x+3)= x(x+3) - (x+3)= (x+3)(x-4)= x(x+3) - 1(x+3)= (x+3)(x-1)

2 Factorise:

a	$x^2 + 4x - 5x - 20$	Ь	$x^2 - 7x + 3x - 21$	c	$x^2 - 3x + 2x - 6$
d	$x^2 - 6x - 3x + 18$	e	$x^2 + 7x - 9x - 63$	f	$2x^2 + x - 6x - 3$
9	$3x^2 + 2x - 12x - 8$	h	$4x^2 - 3x - 8x + 6$	i.	$9x^2 + 4x - 9x - 4$

FACTORISING QUADRATIC TRINOMIALS

A quadratic trinomial is an algebraic expression of the form $ax^2 + bx + c$ where x is a variable and a, b, c are constants where $a \neq 0$.

In this exercise we will consider a = 1 only.

Recall that:	(x+2)(x+5)	$= x^2 +$	-5x+2x	+	10	{using FOIL}
		the 'firsts'	the sum of the 'outers' and 'inners'		the product of the 'lasts'	
So,	(x+2)(x+5)	Ľ	um of 2 and 3	-	+ [product o	f 2 and 5]

This shows that, if we want to factorise a quadratic trinomial such as $x^2 + 7x + 10$ into (x + ...)(x + ...) we must find two numbers (to go into the vacant places) which have a sum of 7 and a product of 10.

 x^2 (x+a)(x+b)+In the general case, (a+b)x+ab= the coefficient the constant term of x is the sum is the product of of a and ba and b

EXERCISE 13D

1 Find two numbers which have:

> product 10 and sum 7 а Ь product 16 and sum 10 d C

- product -14 and sum 5 e
- product -18 and sum -3Q
- product 12 and sum 8
- product 30 and sum 11
- f product -21 and sum -4
- h product -30 and sum 7

Example 12 Self Tutor Factorise: $x^2 + 11x + 24$ We need to find two numbers with sum 11 and product 24. Pairs of factors of 24: Factor product 1×24 2×12 4×6 3×8 Factor sum $\overline{25}$ 1411 10this one The numbers we want are 3 and 8. Most of the time we $x^2 + 11x + 24$ can find these two So. numbers mentally. = (x+3)(x+8)

Note: Only the last two lines of the previous example need to be shown in your working.

2 Factorise: a $x^2 + 5x + 4$ **b** $x^2 + 7x + 10$ $x^2 + 10x + 21$ $x^2 + 12x + 20$ f $x^2 + 9x + 18$ **d** $x^2 + 15x + 54$ g $x^2 + 14x + 24$ h $x^2 + 15x + 36$ $x^2 + 19x + 48$ Example 13 Self Tutor The sum is negative but the product is Factorise: $x^2 - 7x + 12$ positive, so both numbers must be negative. sum = -7 and product = 12 \therefore numbers are -3 and -4So, $x^2 - 7x + 12$ = (x-3)(x-4)**3** Factorise: **a** $x^2 - 5x + 4$ **b** $x^2 - 4x + 3$ **c** $x^2 - 5x + 6$ f $x^2 - 16x + 48$ $x^2 - 15x + 56$ **d** $x^2 - 13x + 22$ h $x^2 - 25x + 24$ $x^2 - 15x + 36$ $x^2 - 16x + 28$ Example 14 Self Tutor **a** $x^2 - 2x - 15$ **b** $x^2 + x - 6$ Factorise: The product is negative, so the sum = -2 and product = -15а numbers are \therefore numbers are -5 and +3opposite in sign. So, $x^2 - 2x - 15$ =(x-5)(x+3)**b** sum = 1 and product = -6 \therefore numbers are -2 and +3So, $x^2 + x - 6$ = (x-2)(x+3)**4** Factorise: a $x^2 - 8x - 9$ $x^2 - x - 6$ **b** $x^2 + 4x - 21$ $x^2 + 5x - 24$ f $x^2 - 11x - 12$ **d** $x^2 - 3x - 18$ $x^2 - 3x - 28$ $x^2 + 3x - 54$ h $x^2 + x - 56$ $x^2 - x - 20$ $x^2 - 2x - 63$ $x^2 + 7x - 60$

5 Factorise:

a	$a^2 - 7a + 12$	Ь	$b^2 - b - 6$	c	$c^2 - 7c + 6$
d	$d^2 + 4d + 4$	e	$e^2 - e - 20$	f	$f^2 + 13f + 36$
9	$g^2 - 6g + 9$	h	$h^2 - 10h + 9$	1	$i^2 - 9$
j	$j^2 - 25$	k	$k^2 - 100$	1	$l^2 - 625$
m	$2x^2 - 8$	n	$3x^2 - 27$	0	$4x^2 - 1$

E FACTORISATION OF ax^2+bx+c $(a \neq 1)$

In the previous section we revised techniques for factorising quadratic expressions in the form $ax^2 + bx + c$ where a = 1.

For example: $x^2 + 5x + 6 = (x+3)(x+2)$

Factorising a quadratic expression such as $3x^2 + 11x + 6$ is more complicated because the coefficient of x^2 is not 'one' and is not a common factor.

We need to develop a method for factorising this type of quadratic expression.

Two methods for factorising $ax^2 + bx + c$ where $a \neq 1$ are commonly used.

These are: • trial and error • 'splitting' the *x*-term

TRIAL AND ERROR

For example, consider the quadratic
$$3x^2 + 13x + 4$$
.
Since 3 is a prime number, $3x^2 + 13x + 4 = (3x)(x)(x)$

To fill the gaps we seek two numbers with a product of 4 and the sum of the inners and outers being 13x.

As the product is 4 we will try 2 and 2, 4 and 1, and 1 and 4.

$$(3x+2)(x+2) = 3x^2 + 6x + 2x + 4$$
 fails

$$(3x+4)(x+1) = 3x^2 + 3x + 4x + 4$$
 fails

$$(3x+1)(x+4) = 3x^2 + 12x + x + 4$$
 is successful
So, $3x^2 + 13x + 4 = (3x+1)(x+4)$

Now, if a and c are not prime in $ax^2 + bx + c$ there can be many possibilities. For example, consider $8x^2 + 22x + 15$.

By simply using trial and error the possible factorisations are:

(8x+5)(x+3)	\times	(4x+5)(2x+3)	\checkmark	this is correct
(8x+3)(x+5)	×	(4x+3)(2x+5)	×	
(8x+1)(x+15)	×	(4x+15)(2x+1)	×	
(8x+15)(x+1)	\times	(4x+1)(2x+15)	×	

As you can see, this process can be very tedious and time consuming.

FACTORISATION BY 'SPLITTING' THE x-term

Using the distributive law to expand we see that

$$(2x+3)(4x+5) = 8x^2 + 10x + 12x + 15 = 8x^2 + 22x + 15$$

We will now *reverse* the process to factorise the quadratic expression $8x^2 + 22x + 15$.

Notice that:

$8x^2 + 22x + 15$	
$=8x^2 + 10x + 12x + 15$	{'splitting' the middle term}
$= (8x^2 + 10x) + (12x + 15)$	{grouping in pairs}
= 2x(4x+5) + 3(4x+5)	{factorising each pair separately}
=(4x+5)(2x+3)	{completing the factorisation}

But how do we correctly 'split' the middle term? That is, how do we determine that 22x must be written as +10x + 12x?

When looking at $8x^2 + 10x + 12x + 15$ we notice that $8 \times 15 = 120$ and $10 \times 12 = 120$ and also 10 + 12 = 22.

So, in $8x^2 + 22x + 15$, we are looking for two numbers such that their *sum* is 22 and their *product* is $8 \times 15 = 120$. These numbers are 10 and 12.

Likewise in $6x^2 + 19x + 15$ we seek two numbers with sum 19 and product $6 \times 15 = 90$.

These numbers are 10 and 9. So, $6x^2 + 19x + 15$ = $6x^2 + 10x + 9x$

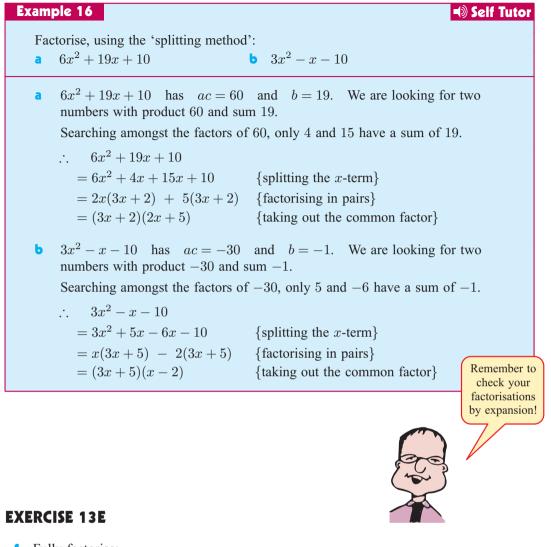
$$= 6x^{2} + 10x + 9x + 15$$

= (6x² + 10x) + (9x + 15)
= 2x(3x + 5) + 3(3x + 5)
= (3x + 5)(2x + 3)

Rules for splitting the *x*-term:

The following procedure is recommended for factorising $ax^2 + bx + c$:

Step 1: Find ac and then the factors of ac which add to b.


- Step 2: If these factors are p and q, replace bx by px + qx.
- *Step 3:* Complete the factorisation.

Example 15

Self Tutor

Show how to split the middle term of the following so that factorisation can occur: **a** $3x^2 + 7x + 2$ **b** $10x^2 - 23x - 5$

- a In 3x² + 7x + 2, ac = 6 and b = 7. We are looking for two numbers with a product of 6 and a sum of 7. These are 1 and 6.
 So, the split is 7x = x + 6x.
- **b** In $10x^2 23x 5$, ac = -50 and b = -23. We are looking for two numbers with a product of -50 and a sum of -23. These are -25 and 2. So, the split is -23x = -25x + 2x.

Fully factorise:
, , , , , , , , , , , , , , , , , , ,

- a $2x^2 + 7x + 3$
- **d** $3x^2 + 8x + 4$
- $8x^2 + 10x + 3$
- $6x^2 + 19x + 3$

2 Fully factorise:

- a $2x^2 3x 5$ d $2x^2 + 3x - 2$ g $5x^2 - 16x + 3$
- $2x^2 9x + 9$
- m $3x^2 + 10x 8$
- **p** $2x^2 + x 21$
- $9x^2 15x + 4$

e $3x^2 + 11x + 6$ h $21x^2 + 17x + 2$ k $10x^2 + 11x + 3$

b $2x^2 + 11x + 5$

b $3x^2 + x - 2$ **e** $2x^2 + 13x - 7$ **h** $11x^2 - 8x - 3$ **k** $3x^2 - 11x + 10$ **n** $2x^2 + 17x - 9$ **q** $15x^2 + x - 2$

 $12x^2 + 31x - 30$

- c $7x^2 + 9x + 2$ f $3x^2 + 7x + 4$
- $6x^2 + 7x + 1$
 - $14x^2 + 17x + 5$
 - c $3x^2 5x 2$ f $5x^2 - 9x - 2$
 - $3x^2 7x 6$
 - $5x^2 + 13x 6$
 - $2x^2 + 9x 18$
 - $15x^2 44x 3$
 - **u** $8x^2 + 19x 15$

DIFFERENCE OF TWO SQUARES FACTORISING

We can factorise expressions such as $x^2 - 9$ using the sum and product method. For example:

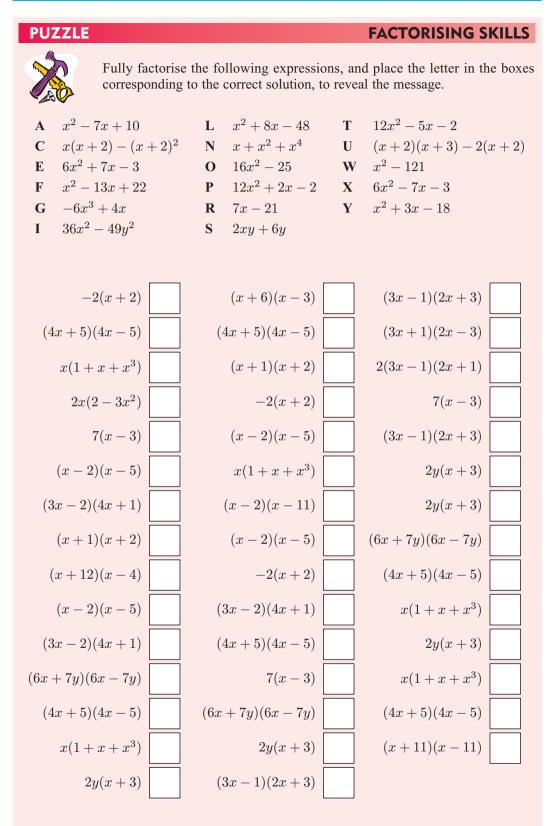
 $x^2 - 9 = (x+3)(x-3)$ as +3 and -3 have sum of 0 and product of -9.

However, if we notice that:

 $(a+b)(a-b) = a^2 - ab + ab - b^2 = a^2 - b^2$ {using FOIL}

then in general:

 $a^2 - b^2 = (a + b)(a - b)$


Note: $a^2 - b^2$, where one squared term is subtracted from another, is known as "the difference of two squares".

F	The fully factorise: $x^{2} - 4$ $x^{2} - 4$ $x^{2} - 4$ $x^{2} - 4$ $x^{2} - 2^{2}$ $(x + 2)(x - 2)$	b $1-25y$ b $1-2$ $=1^{2}-$	$5y^2$ $(5y)^2$	Write each term as a perfect square.
	= (x+2)(x-2)	= (1 +	5y)(1-5y)	
EXER	CISE 13F			
1 F	ully factorise:			
	a $a^2 - b^2$	b $p^2 - q^2$	$ ext{ } ext{ } q^2 - p^2$	d m^2-x^2
	$x^2 - 25$	f $x^2 - 81$	g $a^2 - 9$	h $4x^2 - 1$
	$4x^2 - 9$	$9y^2 - 16$	$ 64 - x^2 $	$16 - 9a^2$
	$x^2 - 100$	$x^2 - 169$	• $9x^2 - 4y^2$	$ ho 1 - t^2$
	q $9-y^2$	$121u^2 - 4v^2$	$x^2 - 1$	$49a^2 - 400$
RE	VIEW SET 13A			
1	Find the highest com	non factor of:		
	a $3x$ and 6	b 10 <i>a</i> and	l 15a C	cd and cd^2
2	Find the HCF of: a $3(x+1)$ and	(x+1)(x-4)	b $(x-2)^2$ and	1 2(x-2)(x-5)
3	Fully factorise: a $ab+b$	b $3x^2 - 6$	бх с	$-4c - 12c^2$

4 Fully factorise: a 3(x-y) - 2x(x-y)5 Factorise: a $x^2 - 4x - 7x + 28$ b $6x^2 + 9x - 4x - 6$ 6 Factorise: a $x^2 + 10x + 16$ b $x^2 - x - 6$ c $x^2 - 16$ 7 Fully factorise: a $2x^2 + 9x + 7$ b $6x^2 - 19x + 15$ c $25x^2 - 1$

REVIEW SET 13B

1	Find the highest common factor of:
	a $12y$ and $16y$ b $2d$ and d^3 c ab^2 and a^2b
2	Find the HCF of: a $2x(5-x)$ and $x^2(5-x)$ b $(x+2)^2$ and $5(x-4)(x+2)$
3	Fully factorise: b $8a^2 - 6a$ c $xy^2 - xy$
4	Fully factorise: a $a(2-x) - 3(2-x)$ b $(x+y)(x-y) - 3(x+y)$
5	Factorise: a $x^2 - 7x + 6x - 42$ b $2x^2 - 8x - x + 4$
6	Factorise: a $x^2 - 2x - 24$ b $x^2 - 11x + 24$ c $x^2 - 49$
7	Fully factorise: a $2x^2 + 3x + 1$ b $3x^2 - 7x - 6$ c $9x^2 - 4$

Chapter

Congruence and similarity

- A Congruence of figures
- **B** Congruent triangles
- **C** Similarity
- D Similar triangles
- Problem solving with similar triangles

4

CONGRUENCE AND SIMILARITY

Two figures are **congruent** if they are identical in every respect, apart from position.

Two figures are **similar** if one figure is an enlargement of the other.

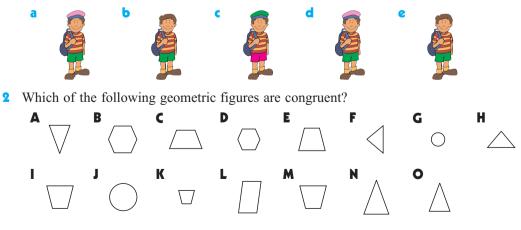
OPENING PROBLEM

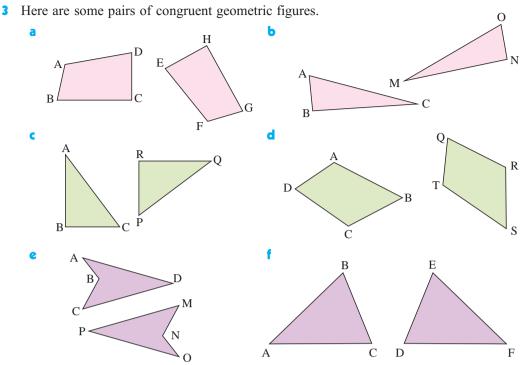
If a group of people were each asked to draw triangle ABC in which $A\widehat{B}C = 40^{\circ}$, $B\widehat{C}A = 65^{\circ}$ and $C\widehat{A}B = 75^{\circ}$, would every person draw an identical triangle? In other words, if each triangle was cut out with a pair of scissors, would they match perfectly when placed on top of each other?

The question arises: "What information is sufficient to draw a unique triangle?"

You should find that:

- knowing the lengths of its three sides is sufficient
- knowing the size of its three angles is not sufficient.

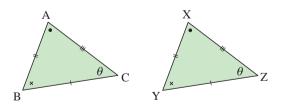



CONGRUENCE OF FIGURES

In mathematics we use the term **congruent** to describe things which have the same shape and size. The closest we get to congruence in humans is identical twins.

EXERCISE 14A

1 Which of the following figures are congruent?



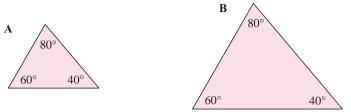
For each pair:

- **i** Identify the side in the second figure corresponding to the side AB in the first figure.
- Identify the angle in the second figure corresponding to \widehat{ABC} in the first figure.
- B

CONGRUENT TRIANGLES

Two triangles are **congruent** if they are identical in every respect except for position.

If one triangle was cut out with scissors and placed on the top of the other, they would match each other perfectly.


The above triangles are congruent.

We write $\triangle ABC \cong \triangle XYZ$, where \cong reads *"is congruent to"*.

Note: When writing the congruence statement above, we label the vertices that are in corresponding positions in the same order, i.e., we write $\triangle ABC \cong \triangle XYZ$ but not $\triangle YXZ$ or $\triangle ZYX$, etc.


We have already seen how triangles being equiangular (having all three angles equal) is *not* a test for congruence.

For example, these triangles are equiangular but clearly triangle B is much larger than triangle A.

If we are given two sides and a non-included angle, more than one triangle can be drawn.

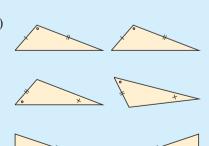
For example, triangles **C** and **D** have two equal sides and the same non-included angle, but they are *not* the same triangle.

DEMO

One and only one triangle can be drawn if we are given:

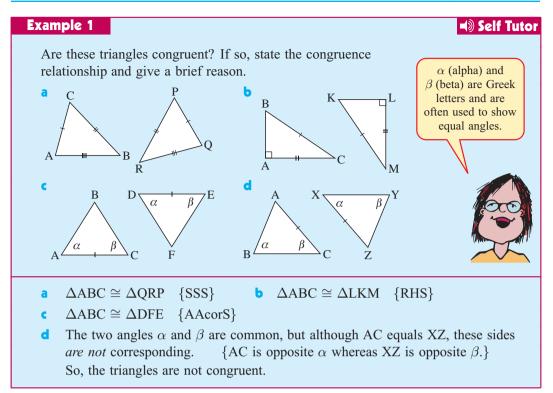
- two sides and the *included* angle between them
- one angle is a right angle, the hypotenuse, and one other side
- two angles and a side.

There are, however, four acceptable tests for the congruence of two triangles.

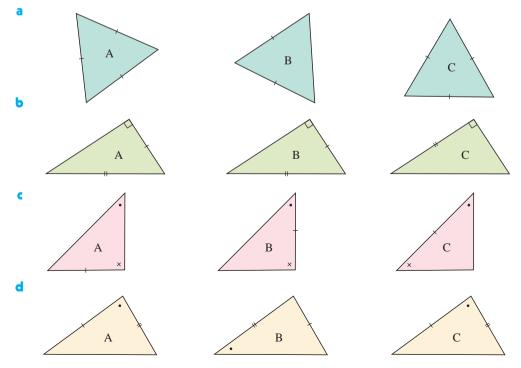

TESTS FOR TRIANGLE CONGRUENCE

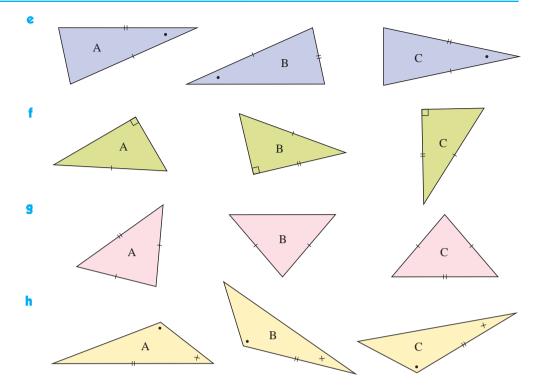
Two triangles are congruent if one of the following is true:

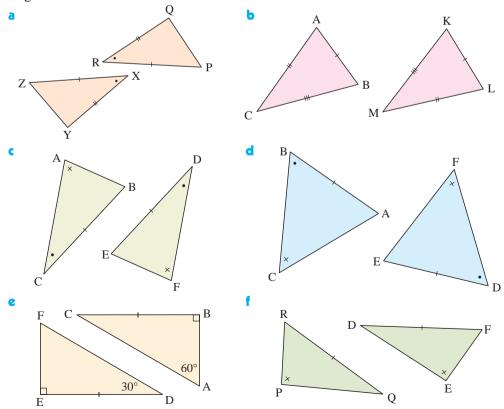
• All corresponding sides are equal in length. (SSS)

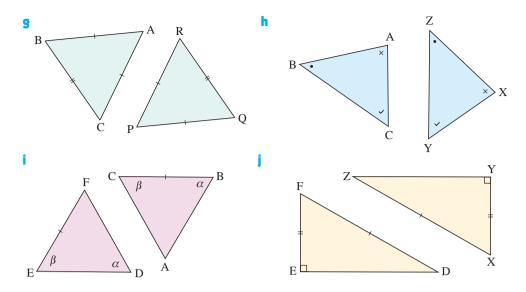


• Two angles and a pair of **corresponding sides** are equal. (AAcorS)

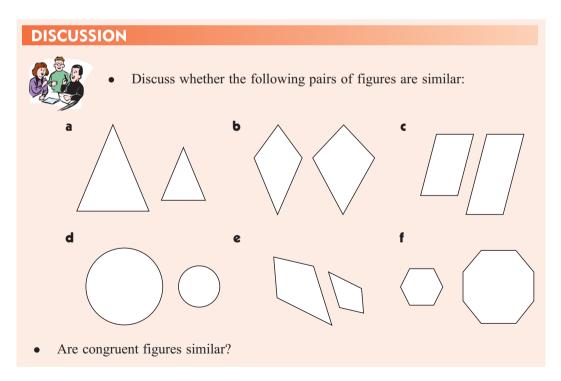

• For right angled triangles, the hypotenuses and one pair of sides are equal. (**RHS**)


The information we are given will help us decide which test to use to prove two triangles are congruent. The diagrams in the following exercise are sketches only and **are not** drawn to scale. However, the information on them is **correct**.

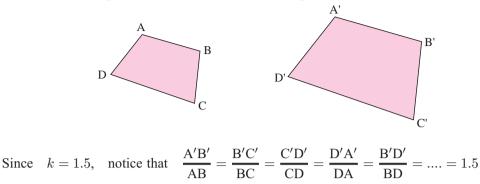

EXERCISE 14B


1 In each set of three triangles, two are congruent. The diagrams are *not* drawn to scale. State which pair is congruent, together with a reason (SSS, SAS, AAcorS or RHS).

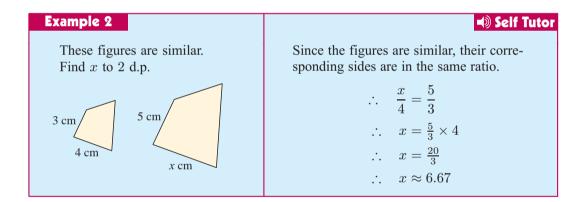
2 Are the following pairs of triangles congruent? If so, state the congruence relationship and give a brief reason.



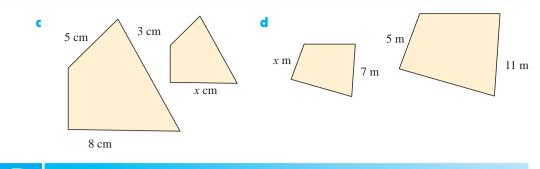
C


SIMILARITY

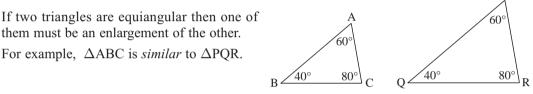
Two figures are **similar** if one is an enlargement of the other (regardless of orientation).


If two figures are similar then their corresponding sides are *in proportion*. This means that the lengths of sides will be increased (or decreased) by the same ratio from one figure to the next. This ratio is called the **enlargement factor**.

Consider the enlargement below for which the enlargement factor k is 1.5.

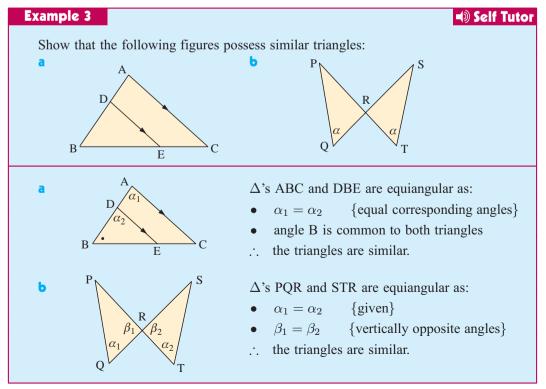

Angle sizes do not change under enlargements. So, if two figures are similar then:

- the figures are equiangular, and
- the corresponding sides are *in proportion*.


EXERCISE 14C

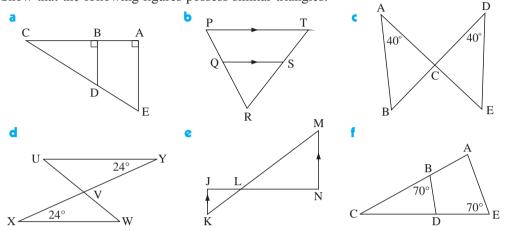
1 Solve for *x*: x: 6 = 2: 15x:5=7:31x: 8 = 9: 102а Ь **2** Find x given that the figures are similar: Ь a 4 cm 4 cm 3 cm 5 cm 7 cm x cm 6 cm x cm



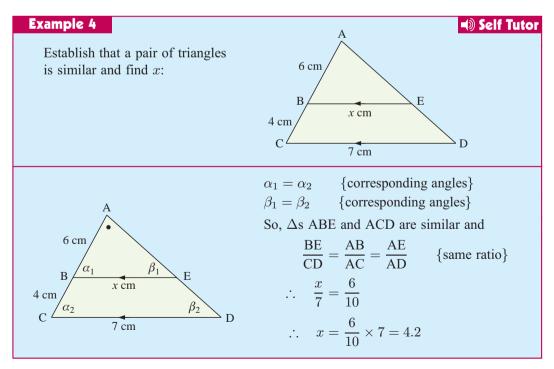

SIMILAR TRIANGLES

If two triangles are equiangular then they are **similar**. Similar triangles have corresponding sides in the same ratio.

To establish that two triangles are similar, we need to show that they are equiangular or that their sides are in proportion.



Remember: If two angles of one triangle are equal in size to two angles of the other triangle then the remaining angle of each triangle is equal.

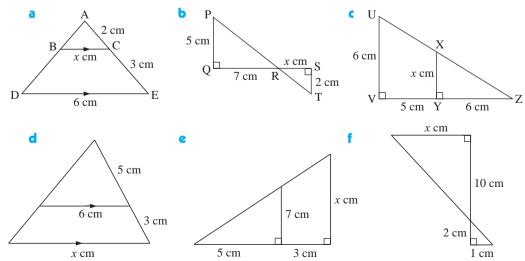

EXERCISE 14D

1 Show that the following figures possess similar triangles:

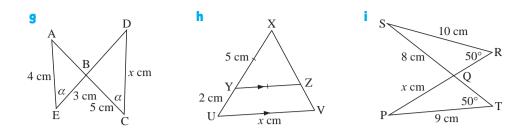
FINDING SIDE LENGTHS

Once we have established that two triangles are similar, we may use the fact that corresponding sides are in the same ratio to find unknown lengths.

When solving similar triangle problems, it may be useful to use the following method, written in the context of the example above:

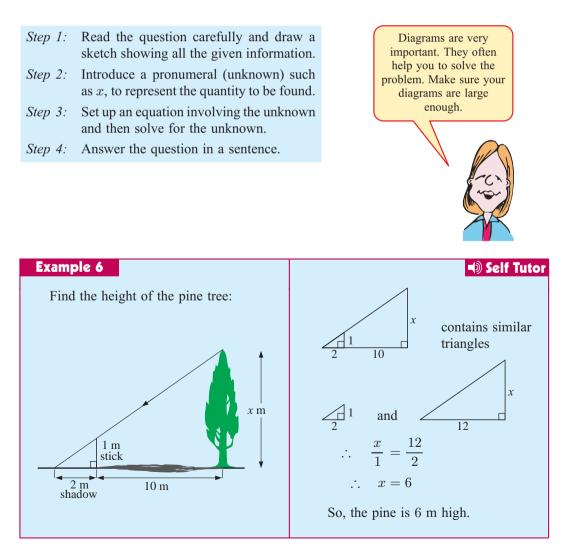

- Step 1: Label equal angles.
- *Step 2:* Put the information in table form, showing the equal angles and the sides opposite these angles.
- *Step 3:* Since the triangles are equiangular, they are similar.
- *Step 4:* Use the columns to write down the equation for the ratio of the corresponding sides.
- Step 5: Solve the equation.

α	β	•	
-	6	x	small Δ
-	10	7	large Δ


from which $\frac{6}{10} = \frac{x}{7}$ $\therefore x = 4.2$

Example 5 Establish that a pair of triangles is similar, then find x if BD = 20 cm:	$12 \text{ cm}/\alpha$	A x cm	E	(x+2) cm	Tutor
$B = \begin{bmatrix} 12 \text{ cm} \\ x \text{ cm} \\ \beta \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\ \beta \\ \bullet \end{bmatrix} = \begin{bmatrix} 12 \text{ cm} \\$	$\begin{array}{c} \vdots & \frac{x}{2} \\ \vdots & 12(x) \\ \vdots & 12x \\ \vdots & \vdots \end{array}$	β $x+2$ 20 are equiar $\frac{x+2}{20} = \frac{4}{1}$ $+2) = 2$ $+24 = 2$ $24 = 8$ $\therefore x = 3$	$ \frac{x}{2} \{s \\ 0x \\ 0x \\ x $	small Δ large Δ d hence sim ame ratio}	nilar.

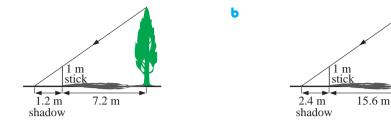
2 In the following, establish that a pair of triangles is similar, then find x:



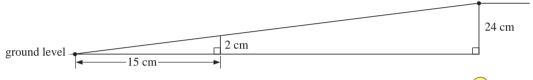
Ξ

PROBLEM SOLVING WITH SIMILAR TRIANGLES

The properties of similar triangles have been known since ancient times. But even with the technologically advanced measuring instruments available today, similar triangles are important for finding heights and distances which would otherwise be difficult to measure.

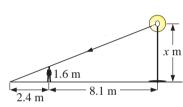


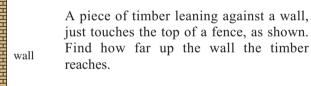
EXERCISE 14E


a

4

1 Find the height of the pine tree:


2 A ramp is built to enable wheel-chair access to a building that is 24 cm above ground level. The ramp has a constant slope of 2 in 15, which means that for every 15 cm horizontally it rises 2 cm. Calculate the length of the base of the ramp.
building



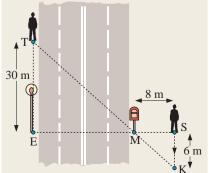
3 A boy who is 1.6 m tall casts a 2.4 m shadow when he stands 8.1 m from the base of an electric light pole. How high above the ground is the light globe?

timber

3 m

- 5 At the same time as the shadow cast by a 30 cm long ruler is 45 cm long, Rafael's shadow is 264 cm long.
 - **a** Draw a fully labelled sketch of the situation.

2 m

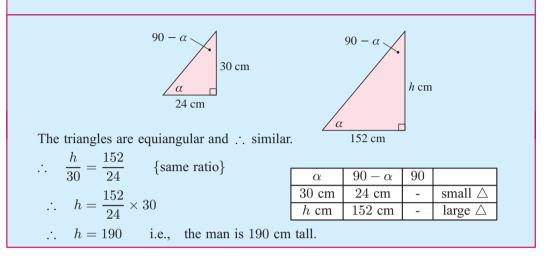

1.6 m fence

- **b** Find Rafael's height.
- 6 There is an electric light post E on one side of a straight road, and a mail box M directly opposite on the other side of the road.

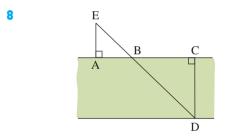
Taj walks 30 metres along the road away from E to point T.

Kanvar is 8 metres away from M at point S, so that E, M, and S are in a straight line. Kanvar walks 6 m parallel to the road in the opposite direction to Taj, to K. Now T, M and K are in a straight line.

a Explain why triangles TEM and KSM are similar.



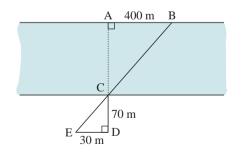
• Find the width of the road.


Example 7

Self Tutor

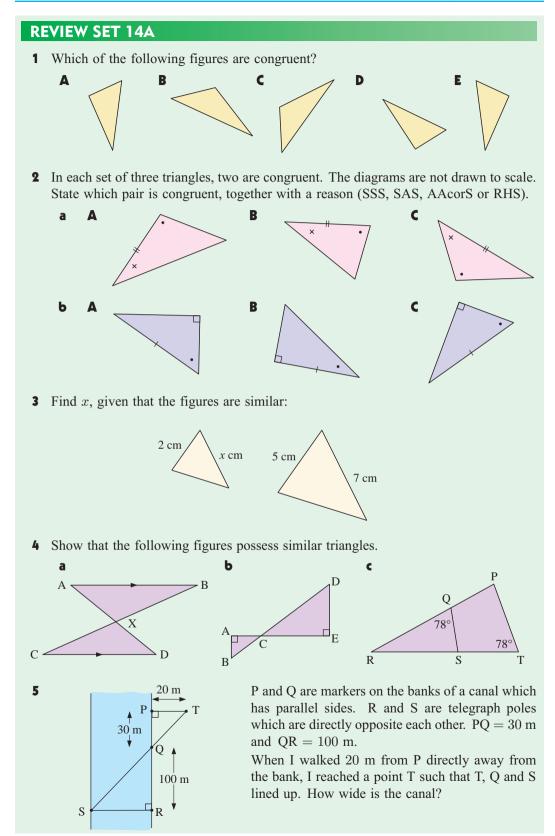
When a 30 cm ruler is stood vertically on the ground it casts a 24 cm shadow. At the same time a man casts a shadow of length 152 cm. How tall is the man?

7 A father and son are standing side-by-side. How tall is the son if the father is 1.8 m tall and casts a shadow 3.2 m long, while his son's shadow is 2.4 m long?



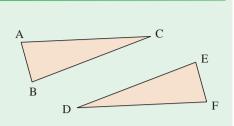
A, B, C and D are pegs on the bank of a canal which has parallel straight sides. C and D are directly opposite each other. AB = 30 m and BC = 140 m.

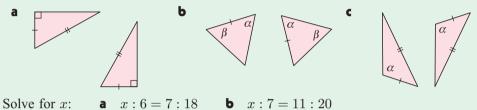
When I walk from A directly away from the bank, I reach a point E, 25 m from A, where E, B and D line up. How wide is the canal?


9 An engineer was asked to construct a bridge across a river. He noticed that if he started at C and walked 70 m away from the river to D and 30 m parallel to the river to E, then C and E formed a straight line with a statue at B.

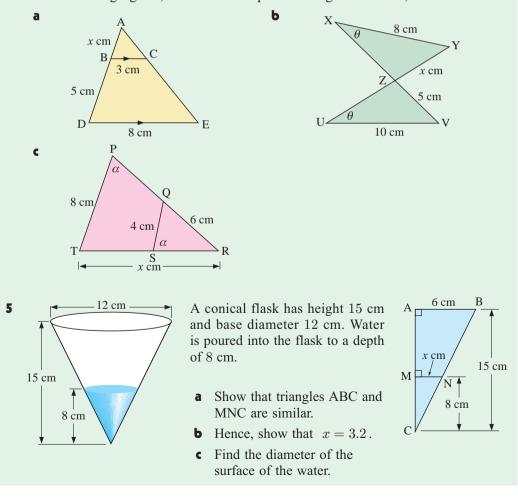
Determine the length of the bridge to be built to span the river if it must extend 40 m from the river bank in both directions.

10 A young girl is standing near a building. The end of her 3.5 m shadow, the top of her head, and the top of the 28 m tall building are in a straight line. If she is 1.5 m tall, how far is she from the building?




REVIEW SET 14B

3


- **1** In this pair of congruent figures:
 - **a** Identify the side in the second figure corresponding to the side AB in the first figure.
 - **b** Identify the angle in the second figure corresponding to \widehat{ABC} in the first figure.

2 Are these triangles congruent? If so, state the congruence relationship and give a brief reason.

4 In the following figures, establish that a pair of triangles is similar, then find x:

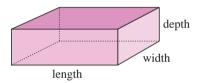
Volume and capacity

- **Contents:**
- A Volume
- **B** Capacity
- **C** Problem solving

6

OPENING PROBLEM

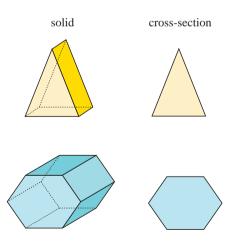
23 mm of rain falls on a relatively flat roof of a house. The roof is rectangular and measures 18 m by 15 m. 95% of the water runs into a tank.


- **a** How much water (in m³) is collected by the roof?
- **b** How much water runs into the tank?
- The tank has a radius of 3 m, and before the rain fell the water level was 1.2 m above the base. What will be the new water level after the rain?

The volume of a solid is the amount of space it occupies.

VOLUME FORMULAE

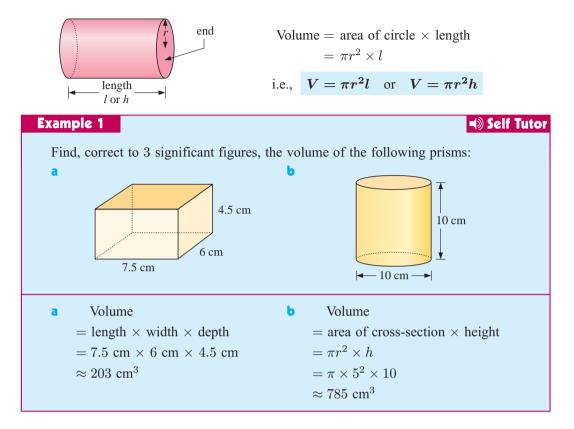
RECTANGULAR PRISM (BOX)

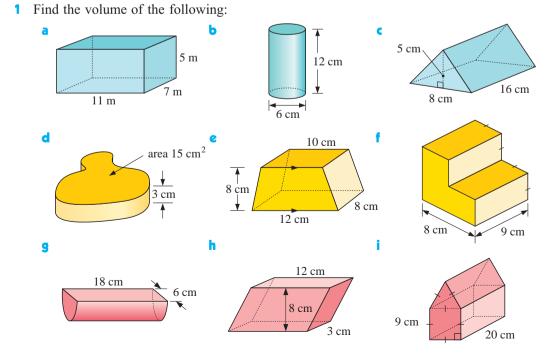


Volume = length \times width \times depth

SOLIDS OF UNIFORM CROSS-SECTION

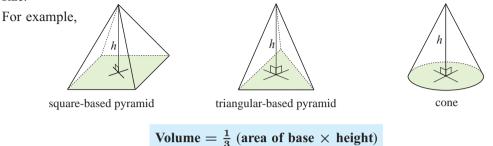
Notice in the triangular prism alongside, that vertical slices parallel to the front triangular face will all be the same size and shape as that face. We say that solids like this are solids of *uniform cross-section*. The cross-section in this case is a triangle.


Another example is the hexagonal prism shown opposite.

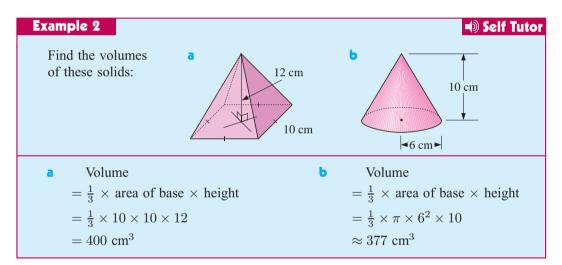

For any solid of uniform cross-section:

Volume = area of cross-section \times length

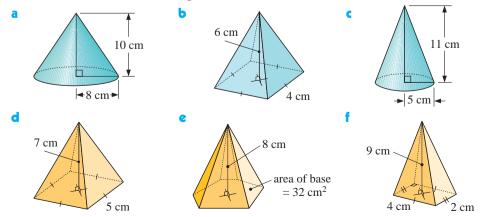
In particular, for a cylinder, the cross-section is a circle and so:



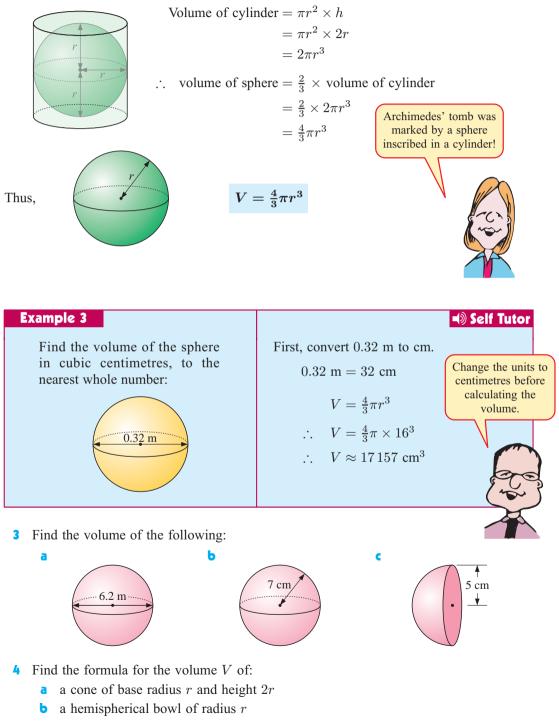
EXERCISE 15A



PYRAMIDS AND CONES

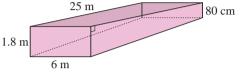

These **tapered solids** have a flat base and come to a point called the **apex**. They **do not** have identical cross-sections. The cross-sections always have the same shape, but not the same size.

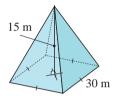
- **Note:** This formula may be demonstrated using water displacement. Compare tapered solids with solids of uniform cross-section with identical bases and the same heights.
 - For example: a cone and a cylinder
 - a square-based pyramid and a square-based prism.



2 Find the volume of the following:

SPHERES

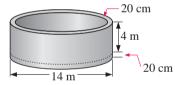

The Greek philosopher **Archimedes** was born in Syracuse in 287 BC. Amongst many other important discoveries, he found that the volume of a sphere is equal to two thirds of the volume of the smallest cylinder which encloses it.



c a cylinder of radius r and height 3r.

PROBLEM SOLVING

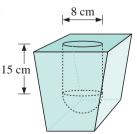
- 5 In the town square, there is a fountain in the middle of a circular pond. The pond is 6 metres in diameter. A concrete wall 30 cm wide and 60 cm high is built around the edge of the pond.
 - **a** Draw a plan view of the situation.
 - **b** Find the area of the top of the wall.
 - Find the volume of concrete required for the wall.
- 6 A swimming pool has dimensions shown alongside.
 - a Find the area of a trapezium-shaped side.
 - **b** Determine the volume of water required ¹. to fill the pool.



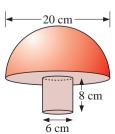
7

9

The conservatory for tropical plants at the Botanic gardens is a square-based pyramid with sides 30 metres long and height 15 metres. Calculate the volume of air in this building.


- A concrete tank has an external diameter of 14 m and an internal height of 4 m. The walls and base of the tank are 20 cm thick.
 - a Find the volume of concrete in the base.
 - **b** Find the volume of concrete in the walls.
 - Find the total volume of concrete required.
 - **d** Find the cost of the concrete at \$145 per m³.

If each person in a classroom must have at least 5 cubic metres of air, how many people could occupy a classroom 8 m by 6 m by 3.2 m?


- **10** How many spherical fishing sinkers with diameter 1 cm could be made by melting a rectangular block of lead 20 cm by 5 cm by 6 cm and casting the molten product?
- The inner part of a glass vase is shaped as a cylinder with diameter 8 cm and depth 15 cm, and with a hemi-spherical base.

Find the volume of water that the vase can hold.

12 A garden ornament is shaped like a mushroom. The base is a cylinder 8 cm high and 6 cm in diameter. The top of the mushroom is

20 cm in diameter. What volume of concrete is needed to make 50 mushrooms?

13 5 upright cylindrical steel posts protect the plate glass window of a store that sells computers. The posts are 90 cm high and 12 cm in diameter. If the steel weighs 7.8 grams cm⁻³, find the weight of the posts in kg.

- **14** Spherical hollow glass baubles for a Christmas tree have internal diameter 4.9 cm and external diameter 5.0 cm. Find the volume of glass in each bauble.
- 15 A conical heap of garden soil is dumped on a flat surface. If the diameter of the heap equals its height, and its volume is 1.5 m^3 , how high is the heap?

INVESTIGATION 1 THE SURFACE AREA AND VOLUME OF A SPHERE

What effect does doubling the radius of a sphere have on sprits surface area and volume? We can investigate this effect using a spreadsheet.

What to do:

1 Click on the icon to load the spreadsheet.

We begin with *Sphere 1* which has a radius of 2 cm. In cells C2 and D2 are the surface area and volume of this sphere. Click on these cells and check that the formulae are correct:

```
Surface area = 4\pi r^2 Volume = \frac{4}{2}\pi r^3
```

2 For *Sphere 2*, we will *double* the radius, so in B3, enter =B2*2.

For C3, fill the formula from C2 down.

For D3, fill the formula from D2 down.

3 We now check the ratios of surface areas and volumes for *Spheres 1* and *2*.

In E3, enter =C3/C2. In F3, enter =D3/D2.

By what factor is the *surface area* increased when the radius of the sphere is *doubled*? By what factor is the *volume* increased when the radius of the sphere is *doubled*?

- **4** Confirm your observations by doubling the radius another three times. Highlight the formulae in Row 3 and **fill down** to Row 6. Were your suspicions correct?
- **5** What do you think the effect on surface area and volume would be if the radius was *tripled* each time?

Change the formula in B3 to =B2*3 and fill down to Row 6.

By what factor is the *surface area* increased when the radius of the sphere is *trebled*?

By what factor is the volume increased when the radius of the sphere is trebled?

- **6** If the radius of a sphere is increased by a factor of 'k', by what factor will the:
 - a surface area be increased b volume be increased?
- 7 Ask your teacher to help you prove your assertions in 6 algebraically.

INVESTIGATION 2 MAXIMUM VOLUME BY GRAPHICS CALCULATOR

The Post Office decides that it will not handle any rectangular boxes for which the sum length + width + depth exceeds 120 cm.

A distributor of packaged goods uses rectangular boxes with square bases. He wants to know which shaped box to use that will satisfy the restriction on dimensions and give him the greatest possible volume.

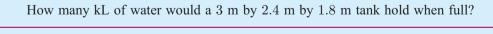
Suppose we let the base be x cm by x cm and the depth be y cm.

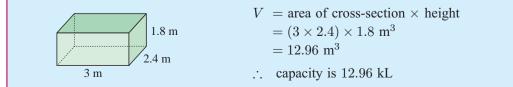
What to do:

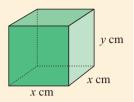
- 1 Write down a formula for y in terms of x.
- **2** Write down a formula for the volume of the box in terms of x.
- **3** From **2** you should have found that $V = 120x^2 2x^3$. Enter the function $Y_1 = 120X^2 2X^3$ into a graphics calculator.
- 4 Set up a **table** that calculates the volume of the box for values of x from 0, 1, 2, ... 60.
- **5** Scroll through the **table** and find the greatest volume of the box. Hence find the dimensions of the box of greatest volume.
- Check your maximum volume by drawing a graph of Y₁ = 120X² 2X³.
 Remember to change the window settings as necessary.
- 7 If the Post Office increased the total maximum length from 120 cm to 130 cm, use your graphics calculator to find the new shape for maximum volume.
- **8** A box must have base x cm by 2x cm. What are the dimensions of the box of maximum volume if its length + width + depth ≤ 140 cm?

CAPACITY

Self Tutor

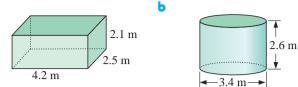

The **capacity** of a container is the amount of a material (solid or fluid) that it can contain.

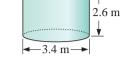

Reminder:


B

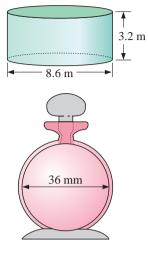
1 L = 1000 mL 1 kL = 1000 L = 1000 000 mL1 ML = 1000 kL = 1000 000 L $1 \text{ mL} \equiv 1 \text{ cm}^3$ $1 \text{ L} \equiv 1000 \text{ cm}^3$ $1 \text{ kL} \equiv 1 \text{ m}^3$

Example 4


C

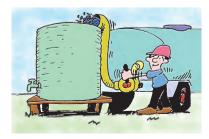

EXERCISE 15B

a

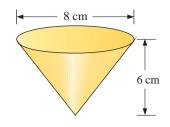

5

Find the capacity (in kL) of the following tanks: 1

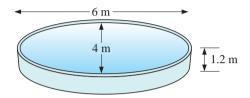
- **2** A new perfume in a 36 mm (internal) diameter spherical bottle comes on to the market.
 - a Calculate the capacity of the bottle in mL.
 - **b** If the bottle costs \$25 and the bottle and its contents cost \$105, how much does the perfume cost per mL?



- Which container of orange juice would give the better value: 3
 - Α a cylindrical bottle of diameter 16 cm and height 19.9 cm costing \$5.75 or
 - B a rectangular cask measuring 20 cm by 15 cm by 10 cm costing \$4.50?
- 4 A roof has surface area of 110 m^2 and one night 12 mm of rain falls on the roof. All the water goes into a tank of base diameter 4 m.
 - a Find the volume of water which falls on the roof.
 - **b** How many kL of water enter the tank?
 - By how much will the water level rise in the tank?


A motor car has a rectangular prism petrol tank 48 cm by 56 cm by 20 cm. If the car consumes petrol at an average rate of 8.7 litres per 100 km, how far could it travel on a full tank of petrol?

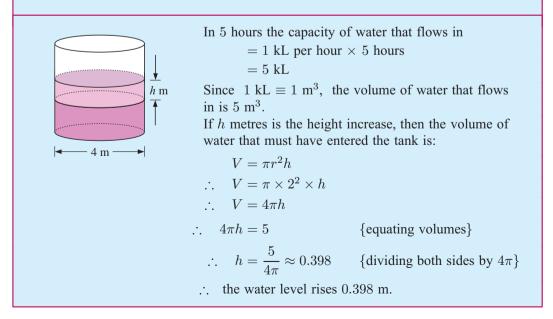
- **6** Water is pumped into a cylindrical tank at 80 L per minute. The base diameter of the tank is 2.4 m and the height is 4 m.
 - a Find the volume of the full tank.
 - Convert 80 L min⁻¹ into m³ min⁻¹.
 - How long will it take to fill the tank? C
- 7 A hemispherical bowl has internal diameter 18 cm. How many litres of water could it contain?



306 VOLUME AND CAPACITY (Chapter 15)

8 A cone has diameter 8 cm and height 6 cm. How many litres of water could it contain?

- 9 How many cylindrical bottles 12 cm high and with 6 cm diameter could be filled from a tank containing 125 L of detergent?
- 10 An elliptical swimming pool with dimensions as shown is filled to a depth of 1.2 metres. Find the number of kilolitres of water needed.



- 11 An industrial funnel is a cone with radius 20 cm and height 50 cm. Fuel is pumped into the funnel at a rate of 3 L min⁻¹, and it then passes through a pipe to a tank 40 cm by 50 cm by 80 cm.
 - **a** Find the capacity of the funnel in kL.
 - **b** If the pipe becomes blocked, how long will the attendant have to realise and shut off the pump before the funnel overflows?
 - How long will it take to fill the tank?

Example 5

Self Tutor

Water pours into a cylindrical tank of diameter 4 m at a constant rate of 1 kL per hour. By how much does the water level rise in 5 hours (to the nearest mm)?

- 12 2 litres of tomato soup is poured into a rectangular plastic box which has a 20 cm by 12 cm base. To what height does the soup rise?
- **13** 38 mm of rain fell overnight onto a flat roof 30 m by 20 m. If 90% of the water went into an empty cylindrical tank of base diameter 6 m, by how much did the water level rise?

PROBLEM SOLVING

In this section you will need to select and apply the appropriate formula from any of the previous sections to solve problems.

There are simple steps to follow when solving problems:

- Read the question carefully.
- Draw a diagram with the information clearly marked on it.
- Label the unknowns.
- Choose the correct formula or formulae.
- Work step by step through the problem, making sure the units are correct.
- Answer the original question in words.

Example 6

Self Tutor

Notice in **b**

that we used the *unrounded*

volume from a.

Sand from a quarry pours out from a giant hose and forms a conical heap on the ground. The heap has a base diameter of 25 m and a height of 8.9 m.

- **a** Find the volume of sand in the heap to the nearest m^3 .
- **b** Find the total mass (to the nearest 10 tonne) of the sand given that 1 m³ of it weighs 2.35 tonnes.

The diameter is 25 m, so r = 12.5. The height is 8.9 m, so h = 8.9.

a Volume $= \frac{1}{3}\pi r^{2}h$ $= \frac{1}{3} \times \pi \times 12.5^{2} \times 8.9$ ≈ 1456.259 $\approx 1456 \text{ m}^{3}$

Total mass = number of m³

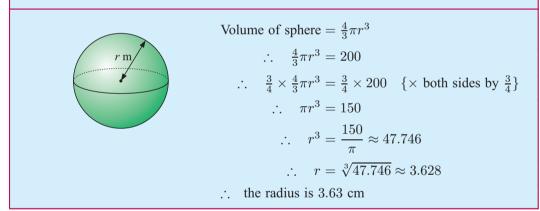
 \times weight per m³ $\approx 1456.259 \times 2.35$

≈ 3422.209

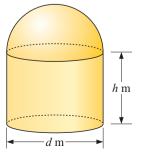
≈ 3422.209 ≈ 3420 tonne

Ь

EXERCISE 15C

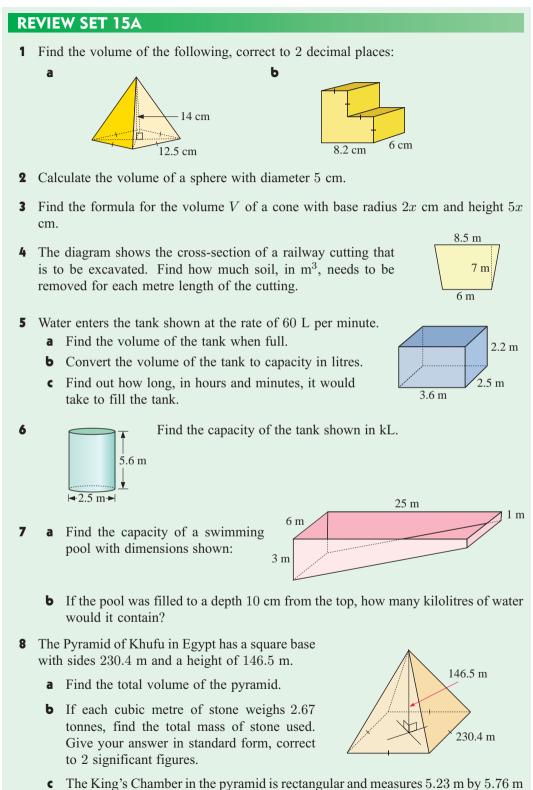

- **1** A conical heap of salt is 3.5 metres in diameter and 4.2 metres high. Find:
 - a the volume of the heap of salt
 - **b** the total mass of salt given that 1 m³ weighs 769 kg
 - the total value of the salt given that 1 kg is worth $\notin 0.85$ retail price.

308 VOLUME AND CAPACITY (Chapter 15)

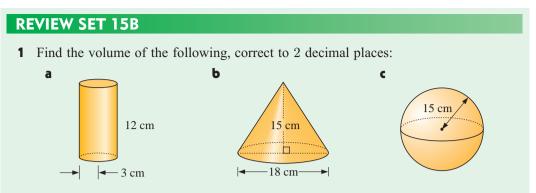

- **2** A cylindrical tank contains oil to a depth of 1.5 m. If it has a diameter of 2 m, how many 1.2 L bottles could be filled from the tank?
- **3** A rectangular house 15 m by 6 m is surrounded by a concrete path which is 2 m wide. Find:
 - a the area of the path
 - b the cost of paving the path with concrete to a depth of 10 cm if the concrete costs \$165 per cubic metre.
- 4 Reinforced rubber tubing has dimensions as shown:
 - **a** Find the area of one end of the tube.
 - Hence find the volume of rubber needed to make 25 m of tube.
 - If the reinforced rubber weighs 140 kg per m³, find the weight of a 25 m roll of tubing.

Example 7

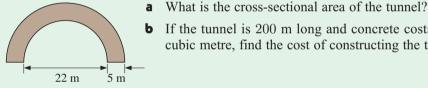
A sphere has a volume of 200 cm³. Find its radius.

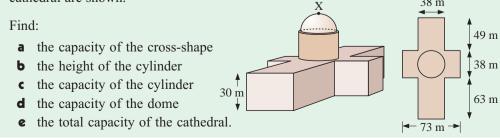


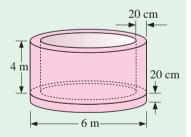
- **5** A spherical ball has a volume of 350 cm³. Find its radius.
- 6 A cylindrical tin can has base radius 6 cm and a volume of 905 cm^3 . Find its height.
- 7 A conical heap of sand has diameter twice its height. How high is the heap if its volume is 3 m³?
- 8 A grain silo is made up of a cylinder with a hemispherical top as shown.
 - a Find the capacity of the silo if the diameter is 12 m and the height is 15 m.
 - Find the height if the diameter is 12 m and the capacity is 2500 kL.
 - Find the diameter if the height is 15 m and the capacity is 1800 kL.



3 cm


The King's Chamber in the pyramid is rectangular and measures 5.23 m by 5.76 m by 6.25 m. Find the capacity of the chamber, correct to 3 significant figures.


- 2 Calculate the volume of a square based pyramid with base 8 cm long and height 12 cm.
- Find the formula for the volume V3 of the triangular prism shown:
- 4 After a heavy rain it was found that the water level in a cylindrical tank had risen by 45 cm. If the radius of the tank was 1.2 m, find the volume of water collected.


area $2x^2$ cm²

A semi-circular tunnel with dimensions shown is made of concrete. 5

- **b** If the tunnel is 200 m long and concrete costs \$120 per cubic metre, find the cost of constructing the tunnel.
- 6 A cylindrical tank made of concrete has an *external* diameter of 6 m and an *internal* height of 4 m. The walls and base of the tank are 20 cm thick.
 - **a** Find the volume of concrete in the base.
 - **b** Find the volume of concrete in the walls.
 - Find the total volume of concrete required.
 - **d** Find the *capacity* of the tank.
- 7 St Paul's Cathedral in London is cross-shaped with a cylinder and a hemi-spherical dome on top as shown. The cylinder has a diameter of 38 m and the dome has a diameter of 32 m. Point X is 85 m above the floor. Some other dimensions of the cathedral are shown. 38 m

length 5x cm

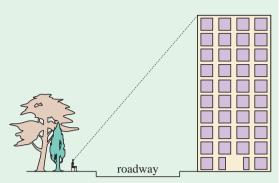
Trigonometry

A Labelling sides of a right angled triangle

6

- **B** Trigonometric ratios
- C Using the sine ratio
- D Using the cosine ratio
- **E** Using the tangent ratio
- F Problem solving with trigonometry
- **G** Bearings

OPENING PROBLEM



Candice is sitting on a park bench and looking up to the top of a tall building on the other side of the road.

She wonders what the building's height would be. She is not allowed to go to the top of the building for safety reasons.

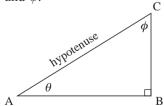
Things to think about and discuss:

• How can she find with reasonable accuracy the height of the building?

- What measurements need to be made so that a calculation can be done?
- What instruments might she use to get accurate measurements?
- What accuracy can she expect from the calculations she makes?
- What assumptions would she be making?

Notice that in the **Opening Problem** we are dealing with a right angled triangle. There is a convention for labelling the sides of a right angled triangle.

A LABELLING SIDES OF A RIGHT ANGLED TRIANGLE For the right angled triangle with angle θ : • the hypotenuse (HYP) is the longest side • the opposite (OPP) side is opposite θ

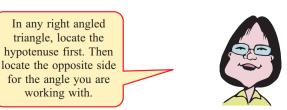

• the **adjacent (ADJ)** side is adjacent to θ .

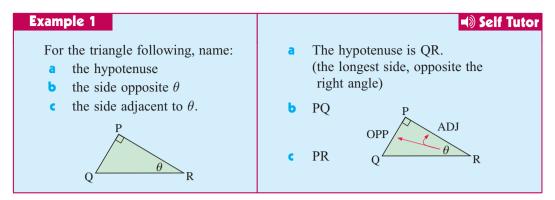
Given a right angled triangle ABC with angles of θ and ϕ :

For angle θ , BC is the **opposite side** AB is the **adjacent side**.

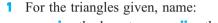
ADJ

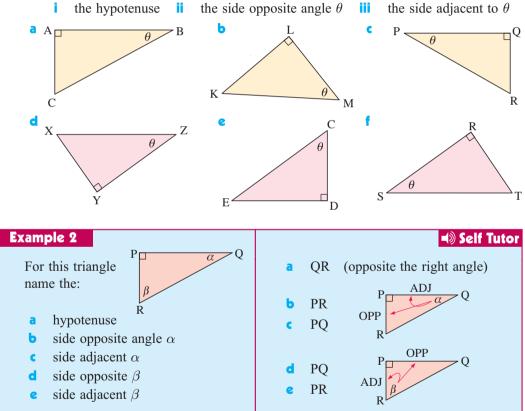
For angle ϕ , AB is the **opposite side** BC is the **adjacent side**.

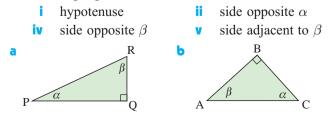



 θ is theta

 ϕ is phi


 α is alpha


 β is beta



EXERCISE 16A

2 For the triangle given, name the:

iii side adjacent to α

RATIO OF SIDES OF RIGHT ANGLED TRIANGLES INVESTIGATION

OPP ADJ In this investigation we will find the ratios $\overline{\mathrm{HYP}}$,

HYP

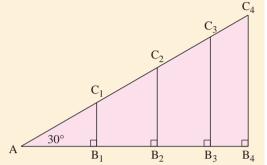
OPP

ADJ

П

 \overline{B}_4

B₃


and

in a series of triangles which are enlargements of each other.

What to do:

1 Consider four right angled triangles ABC where \measuredangle CAB is 30° in each case but the sides vary in length.

By accurately measuring to the nearest millimetre, complete a table like the one following:

C

Г

 B_1

 B_2

7	Triangle	AB	BC	AC	$\frac{AB}{AC}$	$\frac{BC}{AC}$	$\frac{BC}{AB}$	
	1							Convert all fractions to 2 decimal places.
	2							PRINTABLE
	3							WORKSHEET
	4							C_4

- **2** Repeat **1** for the set of triangles alongside.
- **3** What have you discovered from **1** and **2**?

 $\frac{AB}{AC} = \frac{ADJ}{HYP}, \qquad \frac{BC}{AC} = \frac{OPP}{HYP}$ $\frac{BC}{AB} = \frac{OPP}{ADJ}.$ Notice that and

From the Investigation you should have discovered that:

For a fixed angled right angled triangle, the ratios	$\frac{\text{OPP}}{\text{HYP}},$	ADJ HYP	and	$\frac{\text{OPP}}{\text{ADJ}}$	are		
constant no matter how much the triangle is enlarged.							

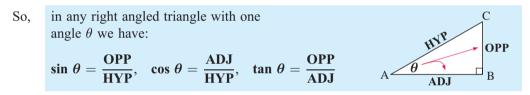
Α

B

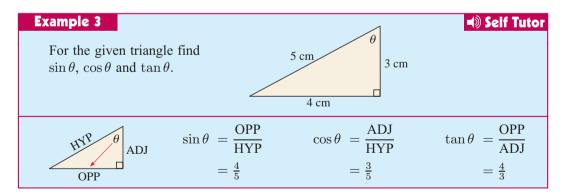
TRIGONOMETRIC RATIOS

Trigonometry is the study of the connection between the lengths of sides and the sizes of angles of triangles.

In this course we consider only right angled triangles.

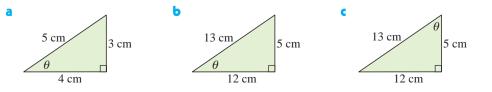

Some uses of trigonometry are in:

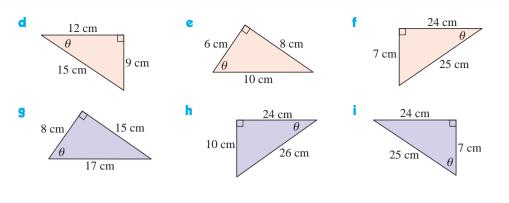
- navigation
- finding heights and distances for inaccessible objects
- building and construction (architecture)
- defence.


TRIGONOMETRIC RATIOS

For a particular angle of a right angled triangle the ratios $\frac{OPP}{HYP}$, $\frac{ADJ}{HYP}$ and $\frac{OPP}{ADJ}$ are fixed.

These ratios have the traditional names **sine**, **cosine** and **tangent** respectively. We abbreviate them to **sin**, **cos** and **tan**.



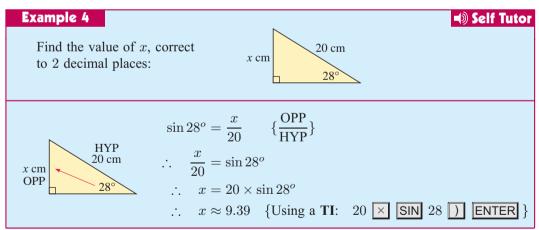

We can use these ratios to find unknown sides and angles of right angled triangles.

EXERCISE 16B

1 Find in the right angled triangles, not drawn to scale, $\mathbf{i} \sin \theta = \mathbf{i} \cos \theta$ iii $\tan \theta$:

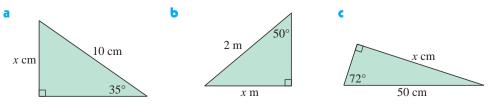
USING THE SINE RATIO

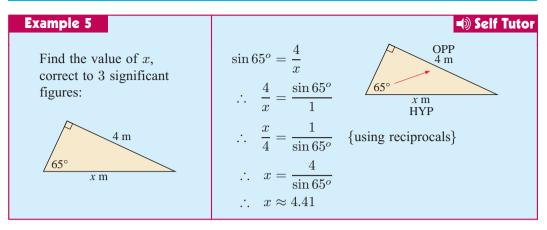
Trigonometry can be used to find either unknown sides or unknown angles in a triangle.


Warning!

Always check that your calculator is set to **degrees**. Press **MODE** and scroll down to Degree in the display.

FINDING SIDES



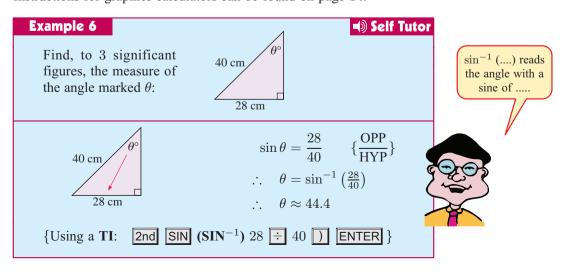

 $\sin \theta = \frac{\text{OPP}}{\text{HYP}}$

EXERCISE 16C

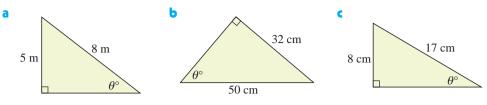
1 Find the value of x, giving your answer correct to 2 decimal places:

2 Find the value of x, giving your answer correct to 3 significant figures:

FINDING ANGLES

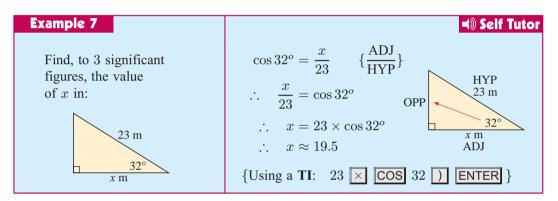

Angles can be found using inverse functions.

For example, if $\sin x = \frac{7}{11}$, then $x = \sin^{-1}\left(\frac{7}{11}\right)$

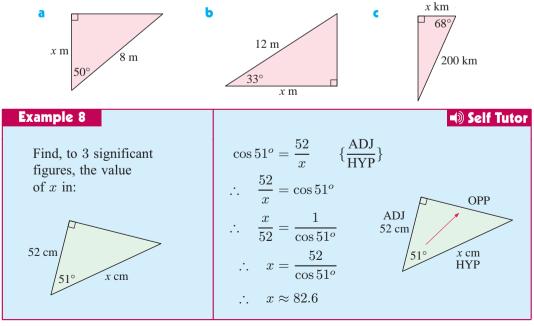

 $x = \sin^{-1}\left(\frac{7}{11}\right)$ is read as: x is the angle whose sine is $\frac{7}{11}$.

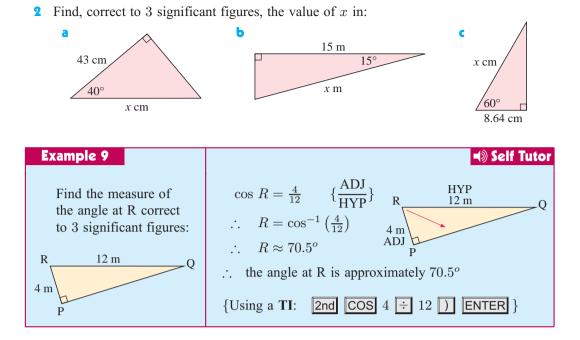
The inverse function may be 2nd F, INV, 2nd or SHIFT, depending on your calculator. calculator

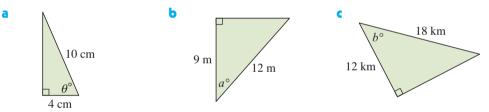
To find $\sin^{-1}\left(\frac{7}{11}\right)$ we may need to press **2nd SIN** (**SIN**⁻¹) 7 \div 11 **) ENTER**. Instructions for graphics calculators can be found on page 14.


3 Find, correct to 3 significant figures, the value of θ :

USING THE COSINE RATIO

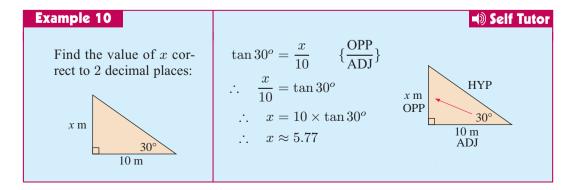

Recall that:


 $\cos\,\theta=\frac{\rm ADJ}{\rm HYP}$


EXERCISE 16D

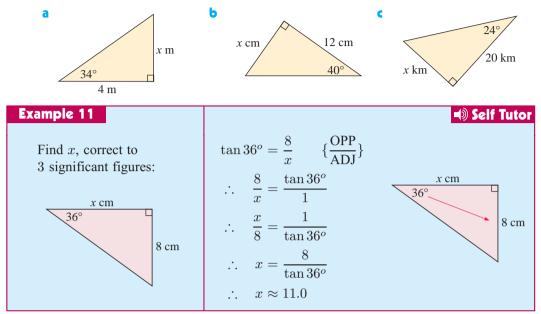
1 Find, correct to 3 significant figures, the value of x in:

3 Find, correct to 3 significant figures, the unknown angle in:

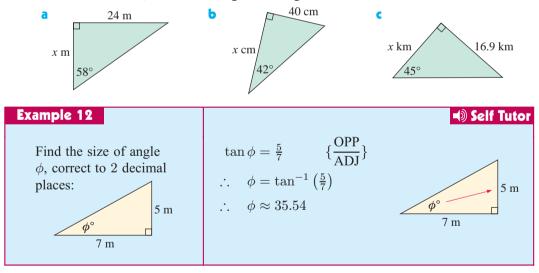

USING THE TANGENT RATIO

The tangent ratio,

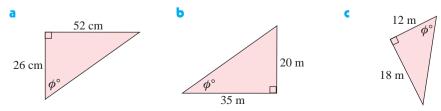
$$an heta = rac{ ext{OPP}}{ ext{ADJ}}$$


can also be used to find unknown lengths of sides

and unknown angles.

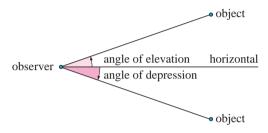


EXERCISE 16E


1 Find the value of x, giving your answer correct to 2 decimal places:

2 Find the value of x, correct to 3 significant figures:

3 Find the size of the angle marked ϕ , correct to 2 decimal places:

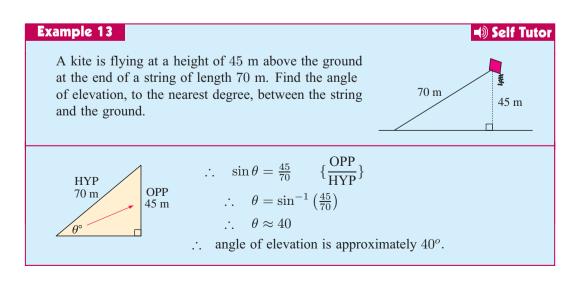

F PROBLEM SOLVING WITH TRIGONOMETRY

In the previous exercises we have practised using trigonometry to find unknown sides and angles in right angled triangles. We can now use these skills to solve problems.

PRELIMINARIES

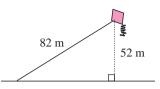
Problem solving with trigonometry often involves the use of **angles of elevation** or **depression**.

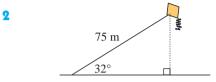
When an object is **higher** than an observer, the **angle of elevation** is the angle from the horizontal **up** to the object.



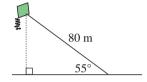
When an object is **lower** than an observer, the **angle of depression** is the angle from the horizontal **down** to the object.

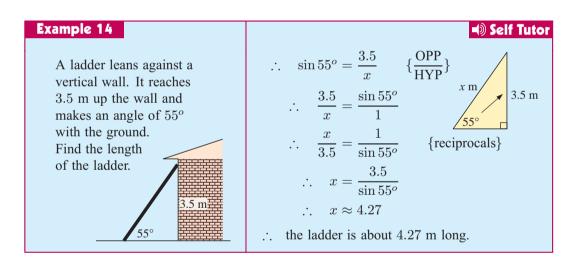
THE PROBLEM SOLVING STEPS

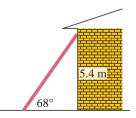

To solve problems involving trigonometry, follow these steps:

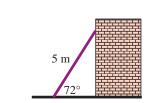

- If a diagram is not given, draw a diagram to illustrate the situation.
- Mark on the diagram the unknown angle or side that needs to be calculated. Often x is used for a length and θ for an angle.
- Check any assumptions about horizontal lines, vertical lines or right angles.
- Write an equation between an angle and two sides of the triangle using the correct trigonometric ratio.
- Solve for the unknown.
- Write your answer in sentence form.

EXERCISE 16F

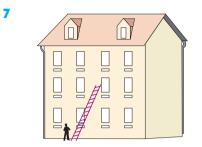

1 A kite is flying at a height of 52 m above ground at the end of a string which is 82 m long. Find the angle of elevation between the string and the ground.




A kite is flying on the end of a 75 m long string. If the string makes an angle of 32° with the ground, how far horizontally is the kite from the end of the string?


3 A kite string is pinned to the ground. The string makes an angle of 55° with the ground and is 80 m long. How high is the kite above the ground?

4 A ladder leans against a vertical wall. It reaches 5.4 m up the wall and makes an angle of 68° with the ground. Find the length of the ladder.



5

A ladder is 5 m long and makes an angle of 72° with the ground. How far up the wall does it reach (to the nearest cm)?

6 A 5 m ladder leaning against a wall has its base 2.7 m from the foot of the wall. Find the angle between the ladder and the ground.

A window cleaner has a 6 m long ladder.

For safety reasons the greatest angle the ladder is allowed to make with the ground is 70° .

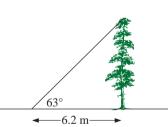
What distance up the wall can the ladder reach?

23.8 km

 θ°

8 A highway climbs at a constant rate up a mountain pass.

After travelling 23.8 km, a car has ascended 1371 metres. What is the angle of incline (θ^o) ?


1371 m

11

37°

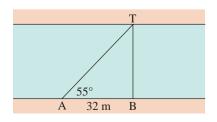
10 When the sun is at an angle of elevation of 63°, a tree casts a shadow of length 6.2 m.Find the height of the tree.

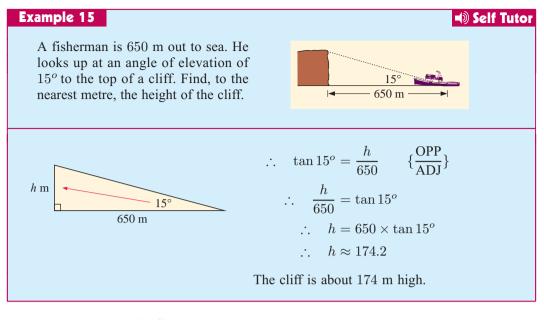
A driver travels 1.5 km up a long steady incline

which is angled at 12° to the horizontal. How far has the driver climbed vertically?

A tree 38 m high casts a shadow. The angle of elevation from the end of the shadow to the top of the tree is 37° .

Find the length of the shadow to the nearest 10 cm.

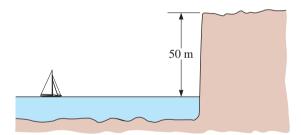

12 A surveyor needs to measure the width of a river.


He finds a point B directly opposite a tree T, on the bank on the other side of the river. He then moves 32 m along the bank at right angles to BT to a point A.

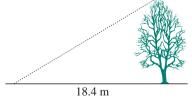
38 m

With a theodolite he measures angle BAT as 55° .

Calculate the width of the river to the nearest metre.

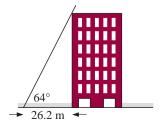


65° |←______


13

Tim, whose eyes are 1.4 metres above ground level, stands 15 m from the base of a statue. If he looks up to the top of the statue, the angle of elevation is 65° . Find the height of the statue.

14 The top of a vertical cliff is 50 m above sea level. From the clifftop, the angle of depression of a boat straight out to sea is 15°. How far is the boat from the foot of the cliff (to the nearest metre)?

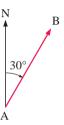


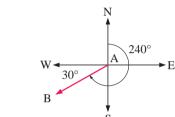
15 If an 11.8 m high tree casts a shadow of length 18.4 m, find the angle of elevation of the sun.

16 A building contractor needs to know the height of a building. The building casts a 26.2 m shadow when the angle of elevation of the sun is 64°.

How high is the building?

BEARINGS


G

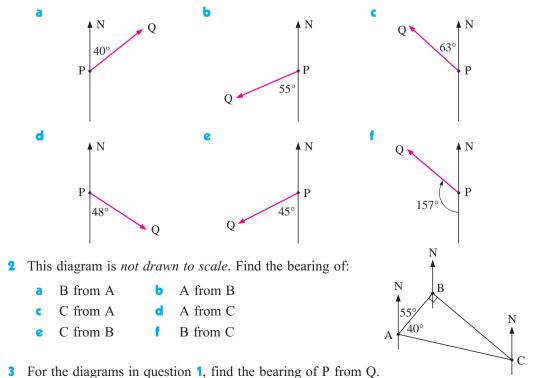

THREE FIGURE BEARINGS

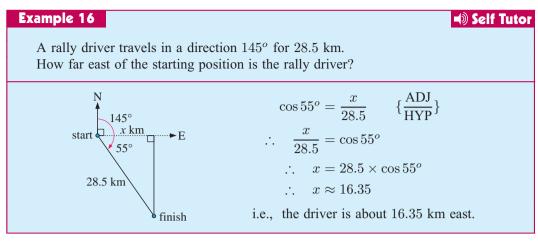
A bearing is a direction from one map point to another.

Bearings are measured using **clockwise** rotations from the **true north** direction and so angles between 0° and 360° are used.

Examples:

West Scuth South West State South West State Sta


This bearing is represented by 030° .

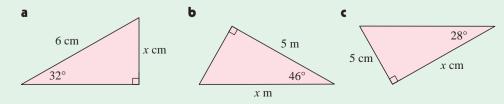

This bearing is represented by 240° .

This bearing is represented by 325° .

EXERCISE 16G

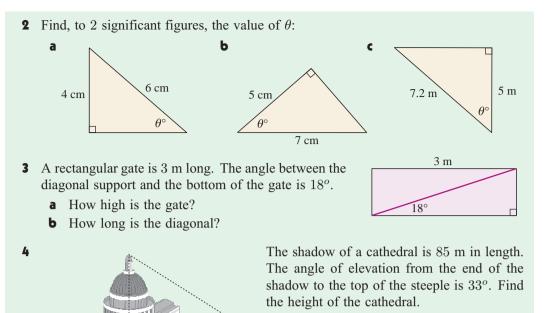
1 Write the bearing of Q from P in these diagrams which are **not drawn to scale**.

- 4 An athlete ran for 2¹/₂ hours in a direction 064° at a speed of 14 km h⁻¹.
 - **a** Draw a fully labelled diagram of the situation.
 - **b** Find the distance travelled by the athlete.
 - Find how far east of the starting point the athlete is.
- **5** A is 40 km due north of B and C is 100 km due east of B.
 - a Draw a diagram of the situation.
 - **b** Find the distance between A and C.
 - Find the bearing of C from A.
- A canoeist paddles due west for 1.5 km. He then turns due south and covers a further 800 m.
 - a Draw a diagram of the situation.
 - **b** How far is he from his starting point?
 - In what direction must he travel to return to his starting point?

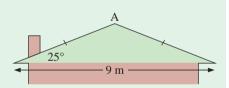


HOW FAR AWAY IS THE MOON AND HOW LARGE IS IT?

Areas of interaction: Human ingenuity


REVIEW SET 16A

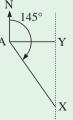
1 Find the value of x, giving your answer correct to 2 decimal places:

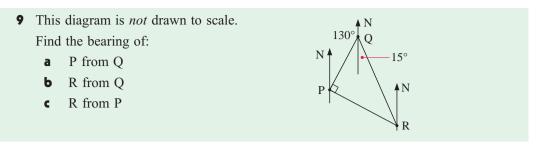


5 The pitch of the roof of a house is the angle between the ceiling and the roof. The pitch of the roof alongside is 25°. How high is the highest point, A, above the ceiling?

• For safety reasons, the angle of the loading ramp at the back of a truck must be no greater than 25°. If the tray of the truck is 1.13 m above the ground, what is the shortest length that the ramp may be?

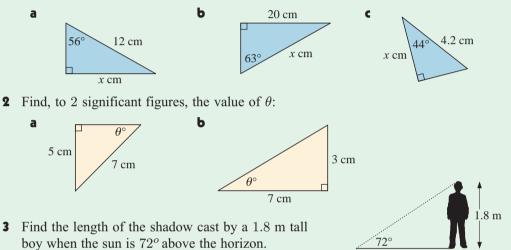
33


Two cyclists depart from A at the same time. X cycles in a direction 145° for two hours at a speed of 42 km per hour. Y cycles due East and at the end of the two hours is directly North of X.


85 m

- **a** How far did X travel in 2 hours?
- **b** How far did Y travel in 2 hours?
- Determine the average speed at which Y has travelled.
- A tree-feller notices that the shadow cast by a tree is 13.2 m when the angle of elevation of the sun is 42°.

The tree is 12 m from the house. If the tree is cut at ground level and it falls directly towards the house, will it miss the house?



REVIEW SET 16B

1 Find the value of x, giving your answer correct to 2 decimal places:

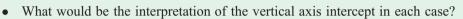
- 4 An aeroplane takes off at a constant angle of 22° . When it has flown 500 m, what is its altitude to the nearest metre?
- 5 A farmer has an isosceles triangle shaped paddock which has equal angles of 62° and a base of 360 m. He decides to divide the paddock in two, with a fence from the apex to the midpoint of the base. Find the length of the new fence.
- 6 A boat has an anchor rope of length 48 m. Due to the ocean current the boat drifts so that the rope makes an angle of 52° with the surface of the water. Find the depth of the water at the position where the anchor lies on the bottom.
- Two cars leave point S at the same time. Car X travels due east at 72 km h⁻¹, and car Y travels due north. After an hour the cars are 84.9 km apart.
 - a Calculate the average speed of car Y.
 - **b** Find the bearing of Y from X.
- **8** Three towns P, Q and R are such that Q lies 10.8 km southeast of P and R lies 15.4 km southwest of P.
 - **a** Draw a labelled diagram of the situation.
 - **b** Find the distance from R to Q.
 - Find the bearing of Q from R.

Chapter

Coordinates and lines

- A Plotting points on the Cartesian Plane
- **B** Distance between two points
- **C** Midpoints
- D Gradient (or slope)
- E Linear relationships
- F Linear functions
- G Finding equations of straight lines
- H Graphing lines
- Points on lines
- J Other line forms
- K Parallel and perpendicular lines
- L Using gradients

OPENING PROBLEM



Joachim and Stefanie live in two towns which are 60 km apart. They decide to meet somewhere between the towns. Stefanie leaves Balen and rides her bike at a constant speed of 18 km h^{-1} towards Herstal. Joachim leaves 30 minutes later from Herstal and rides at a

constant speed of 24 km h^{-1} towards Balen.

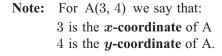
Things to think about:

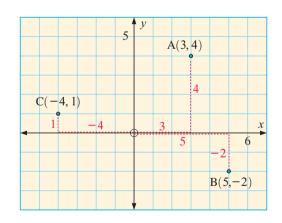
- Can you write an equation for the distance travelled by each rider in terms of the time variable t hours?
- Can you graph each equation?
- Would each graph be linear?

- If the graphs are linear, what would be your interpretation of their gradients?
- What can be found from the point of intersection of the graphs?
- Can you use the graphs to find how far apart Joachim and Stefanie will be 30 minutes after Joachim has left Herstal?

PLOTTING POINTS ON THE CARTESIAN PLANE

To plot the point A(3, 4):


- start at the origin O
- move right along the x-axis 3 units
- then move upwards 4 units.

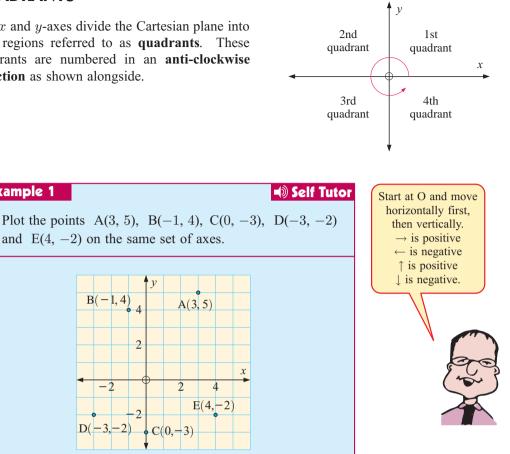

To plot the point B(5, -2):

- start at the origin O
- move right along the x-axis 5 units
- then move downwards 2 units.

To plot the point C(-4, 1):

- start at the origin O
- move left along the x-axis 4 units
- then move upwards 1 unit.

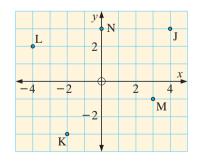
The *x*-coordinate is always given first. It indicates the movement away from the origin in the horizontal direction.



QUADRANTS

Example 1

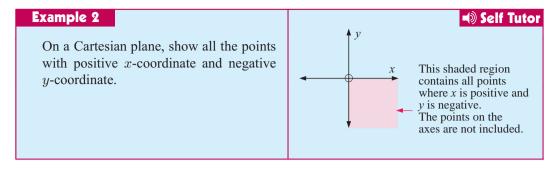
The x and y-axes divide the Cartesian plane into four regions referred to as quadrants. These quadrants are numbered in an anti-clockwise direction as shown alongside.



EXERCISE 17A

1 State the coordinates of the points J, K, L, M and N:

D(· 3.


-2

2 On the same set of axes plot the following points:

a	P(2, 1)	b	Q(2, -3)	C	R(-3, -1)	d	S(-2, 3)
e	T(-4, 0)	f	U(0, -1)	9	V(-5, -3)	h	W(4, -2)

3 State the quadrant in which each of the points in question 2 lies.

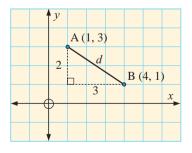
- On different sets of axes show all points with: 4
 - x-coordinate equal to -2а
 - x-coordinate equal to 0 C
 - negative *x*-coordinate e
 - negative x and y-coordinates Q
- y-coordinate equal to -3Ь
- y-coordinate equal to 0 d
- f positive *y*-coordinate
- h positive x and negative y-coordinates

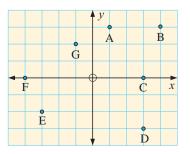
C

y = x

- 5 On separate axes plot the following sets of points:
 - **a** $\{(0, 0), (1, -1), (2, -2), (3, -3), (4, -4)\}$
 - **b** $\{(-2, 3), (-1, 1), (0, -1), (1, -3), (2, -5)\}$
 - Are the points collinear?
 - Do any of the following rules fit the set of points?
 - **B** y = 2x 1**A** y = 2x + 1y = -2x - 1D
 - **E** x + y = 0

DISTANCE BETWEEN TWO POINTS

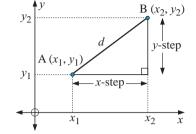

Consider the points A(1, 3) and B(4, 1). We can join the points by a straight line segment of length d units. Suppose we draw a right angled triangle with hypotenuse AB and with sides parallel to the axes.


- It is clear that $d^2 = 3^2 + 2^2$ {Pythagoras' Rule} $d^2 = 13$ $\therefore d = \sqrt{13}$ $\{as \ d > 0\}$
- the distance from A to B is $\sqrt{13}$ units.

EXERCISE 17B

B

- If necessary, use Pythagoras' Rule to 1 find the distance between:
 - а A and B **b** C and D
 - F and C F and A C d
 - G and F A and D e f
 - E and G **b** E and D q


2 By plotting points and using Pythagoras' Rule, find the distance between:

a P(3, 4) and Q(1, 2) **b** R(0, -3) and S(-2, 0) **c** T(-2, 6) and U(3, -3)

THE DISTANCE FORMULA

To avoid drawing a diagram each time we wish to find a distance, a **distance formula** can be developed.

Consider the points $A(x_1, y_1)$ and $B(x_2, y_2)$. In going from A to B, the x-step $= x_2 - x_1$, and y-step $= y_2 - y_1$.

Self Tutor

Now, using Pythagoras' Rule,

$$(AB)^2 = (x \text{-step})^2 + (y \text{-step})^2$$

 $\therefore AB = \sqrt{(x \text{-step})^2 + (y \text{-step})^2}$
 $\therefore d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

If A(x₁, y₁) and B(x₂, y₂) are two points in a plane, then the distance between these points is given by $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ or $d = \sqrt{(x-\text{step})^2 + (y-\text{step})^2}$

Example 3

Find the distance between A(-2, 1) and B(3, 4).

 $A(-2, 1) \quad B(3, 4)$ $\uparrow \quad \uparrow \quad \uparrow \quad \uparrow$ $x_1 \quad y_1 \quad x_2 \quad y_2$ $AB = \sqrt{(3 - 2)^2 + (4 - 1)^2}$ $= \sqrt{5^2 + 3^2}$ $= \sqrt{25 + 9}$ $= \sqrt{34} \text{ units}$ The d save

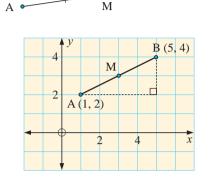
The distance formula saves us having to graph the points each time we want to find a distance.

3 Find the distance between the following pairs of points:

- **a** A(8, 1) and B(5, 3)
- **c** O(0, 0) and K(-2, 4)
- e G(0, -3) and H(0, 5)
- **g** R(4, -1) and S(-2, 3)
- **b** C(-2, 5) and D(6, 5)
- **d** E(8, 0) and F(2, 0)
- f I(-3, 0) and J(0, -1)
- **h** W(-5, -2) and Z(-3, -3)

MIDPOINTS

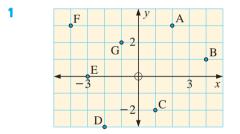
B


If point M is halfway between points A and B then M is the **midpoint** of AB.

Consider the points A(1, 2) and B(5, 4).

It is clear from the diagram alongside that the midpoint M of AB is (3, 3).

We notice that: $\frac{1+5}{2} = 3$ and $\frac{2+4}{2} = 3$.


- So, the x-coordinate of M is the average of the x-coordinates of A and B,
- and the *y*-coordinate of M is the *average* of the y-coordinates of A and B.

In general, if $A(x_1, y_1)$ and $B(x_2, y_2)$ are two points then the **midpoint** M of AB has coordinates

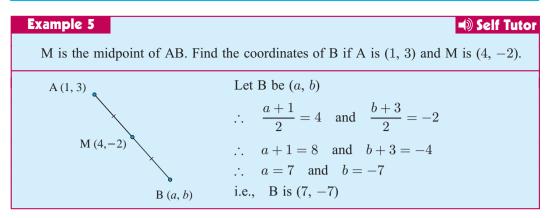
$$\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2}
ight)$$

EXERCISE 17C

Use this diagram only to find the coordinates of the midpoint of the line segment:

	Г
B	С
G	F
	B
	G

Example 4

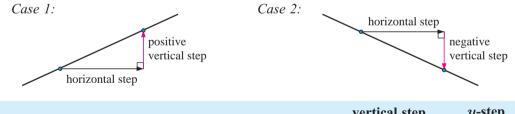

Self Tutor

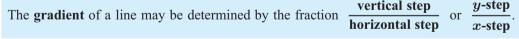
Find the coordinates of the midpoint of AB for A(-1, 3) and B(4, 7).

x-coordinate of midpoint	y-coordinate of midpoint
$=\frac{-1+4}{2}$	$=\frac{3+7}{2}$
$=\frac{3}{2}$	=5
$=1\frac{1}{2}$ \therefore	the midpoint of AB is $(1\frac{1}{2}, 5)$

2 Find the coordinates of the midpoint of the line segment joining the pairs of points:

a	(6, 3) and $(4, 1)$	Ь	(0, -1) and $(4, 1)$
C	(-2, 0) and $(0, 4)$	d	(-3, -2) and $(-3, 5)$
e	(-1, 4) and $(5, 1)$	f	(6, -2) and $(-2, 3)$
9	(1, -4) and $(-2, 1)$	h	(-5, -3) and $(-1, 4)$


- 3 M is the midpoint of AB. Find the coordinates of B for:
 - **a** A(2, 3) and M(-1, 1)
 - **c** A(-4, 2) and M(-1, 3)
- **b** A(-3, 2) and M(0, 0)**d** A(4, 0) and M(2, -1)
 - **e** A(2, -3) and M($\frac{1}{2}$, 0) **f** A(5, 1) and M(2, -2)


GRADIENT (OR SLOPE)

When looking at line segments drawn on a set of axes, it is clear that different line segments are inclined to the horizontal at different angles. Some appear to be *steeper* than others.

The gradient or slope of a line is a measure of its steepness.

If we choose any two distinct (different) points on the line, the **horizontal step** and **vertical step** between them may be determined.

Note: • In *Case 1*, both steps are positive and so the gradient is positive.

• In Case 2, the steps are opposite in sign and so the gradient is negative.

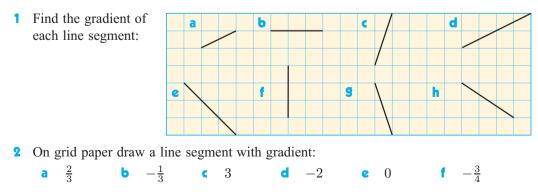
Lines like

are forward sloping and have positive gradients.

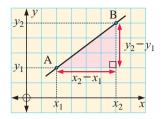
Lines like

are backward sloping and have negative gradients.

Have you ever wondered why gradient is measured by y-step divided by x-step rather than x-step divided by y-step?


Perhaps it is because horizontal lines have no gradient and zero (0) should represent this. Also, as lines become steeper we would want their numerical gradients to increase.

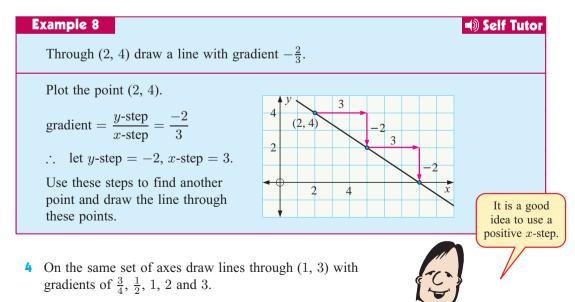
Note:


- The gradient of a horizontal line is 0, since the vertical step (i.e., the numerator) is 0.
- The gradient of a **vertical** line is **undefined**, since the horizontal step (i.e., the denominator) is 0.

EXERCISE 17D

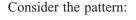
THE GRADIENT FORMULA

If A is (x_1, y_1) and B is (x_2, y_2) then the gradient of AB is $\frac{y_2 - y_1}{x_2 - x_1}$.


Example 7	Self Tutor
Find the gradient of the	the line through $(3, -2)$ and $(6, 4)$.
(3, -2) (6, 4)	gradient = $\frac{y_2 - y_1}{x_2 - x_1}$
x_1 y_1 x_2 y_2	$=rac{42}{6-3}$
	$=\frac{6}{3}$
	=2

3 Find the gradient of the line segment joining the following pairs of points:

- **a** (2, 1) and (5, 2)


- (-5, 4) and (4, 0)
- **b** (5, 3) and (2, 2)c (2, -2) and (4, 1)d (7, 2) and (-3, 2)e (-6, -2) and (-6, -4)f (5, -1) and (-3, -3)

 - **h** (0, -5) and (-2, -3)

5 On the same set of axes draw lines through (-1, 2)with gradients of 0, $-\frac{1}{2}$, -1 and -3.

LINEAR RELATIONSHIPS

 2^{nd}

etc.

A table of values can be created connecting the diagram number n to the number of points P.

• 1 st

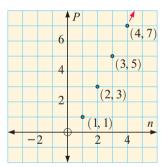
n	1	2	3	4
P	1	3	5	7

4th

It is clear that each new diagram contains two more points than the previous one.

The **rule** or **equation** which connects n and P in this example is P = 2n - 1. You can easily check this by **substituting** n = 1, 2, 3, 4, ... etc to find P.

ľ

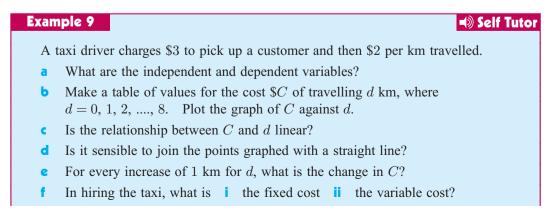

For example, if n = 4, $P = 2 \times 4 - 1 = 8 - 1 = 7$ \checkmark

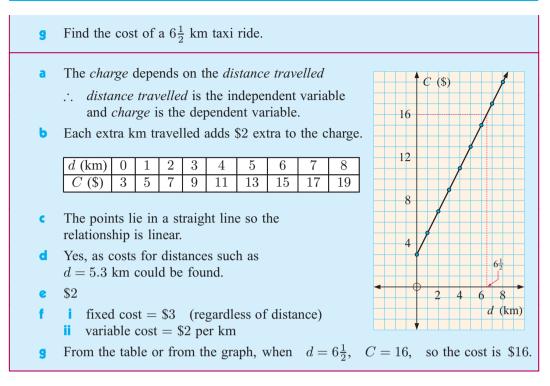
We say that: • n is the **independent variable**

• P is the **dependent variable** as its values depend on n.

When we graph relationships like this one:

the *independent variable* is placed on the *horizontal axis* and the *dependent variable* is placed on the *vertical axis*.




Note:	•	If $n = -1$, $P = 2 \times -1 - 1$ = -3
		but $(-1, -3)$ is meaningless for this example. Why?
	•	If $n = 1\frac{1}{2}$, $P = 2 \times \frac{3}{2} - 1$
		= 3 - 1
		=2
		but $(1^{1}, 2)$ is also magningless.

but $(1\frac{1}{2}, 2)$ is also meaningless. Why?

Can you see why this set of points should not be connected by a straight line?

If the graph connecting two variables consists of points on a straight line, then the relationship between the variables is **linear**. The points are said to be **collinear**.

EXERCISE 17E

- 1 For a one-day tour, a tour company charges \$200 for the use of a bus, plus \$25 for each passenger.
 - a What are the independent and dependent variables?
 - **b** Construct a table and draw a graph of the charge C against the number of passengers p, where p = 0, 1, 2, 3, ..., 10.
 - Is the relationship linear?
 - **d** Is it sensible to join the points with a straight line?
 - e For each extra passenger, what will be the increase in charge?
 - f i What is the fixed charge? ii What is the variable charge?
- 2 150 g blocks of chocolate can be bought for €2.30 each.
 - **a** Copy and complete the table:

Number of blocks n	0	1	2	3	4	5	6	7	8
Cost in euros C									

- Plot the graph of C against n.
- What are the independent and dependent variables?
- **d** Is the relationship between C and n linear?
- e Is it sensible to join the points graphed with a straight line?
- **f** For each extra block of chocolate bought, what is the change in C?
- **9** Find the cost of 5 blocks of chocolate.
- h How many blocks of chocolate could be bought for $\notin 20.70?$

- Leopold has 25 litres of soup. The customers in his restaurant receive 400 mL of soup in each serve.
 - **a** Make a table of values for the volume of soup (V litres) remaining after Leopold has served n bowls of soup (n = 0, 1, 2, ..., 8), and plot the graph of V against n.
 - **b** What are the independent and dependent variables?
 - **c** Is the relationship between V and n linear?
 - **d** Is it sensible to join the points graphed with a straight line?
 - For each serve of soup, what is the change in V?
 - f What volume of soup remains after Leopold has served 7 customers?
 - **g** How many customers have been served soup if there are 21.4 litres of soup remaining?
- 4 Elizabeth is travelling from London to New York to visit her cousins. She looks at the international weather report and sees that the temperatures are given in degrees Fahrenheit (°F). She is only familiar with degrees Celsius (°C), however, so she needs to know how to convert degrees Fahrenheit into degrees Celsius.

	Draw a set of axes as shown, using a scale of 1 cm represents 10°C on the horizontal axis and 1 cm represents 20°F on the vertical axis. What are the independent and dependent variables?	250 - 200 - 150 - 100 -	temperature in °F
c	There is a linear relationship between ^o F and ^o C. The boiling point of water is 100 ^o C or 212 ^o F. The freezing point of water is 0 ^o C or 32 ^o F. Mark these points on your graph and join them with a straight line.	50 - -50 -50 - -100 -	temperature in °C

- **d** Extend your graph if necessary to find the point where the number of degrees Celsius equals the same number of degrees Fahrenheit. What is the temperature?
- e Elizabeth saw that the maximum temperatures were:
 - i 35° F on Monday ii 25° F on Tuesday.

Convert these temperatures to ^oC.

f Use your graph to copy and complete the following chart:

Temperature ^o F					20	10	0
Temperature ^{o}C	10	20	30	40			

Consider the equation y = 2x + 1.

We can choose any value we like for x and use our equation to find the corresponding value for y. The y values depend on the x values, so x is the independent variable and y is the dependent variable.

For example, $y = 2 \times 2 + 1$

= 4 + 1

Self Tutor

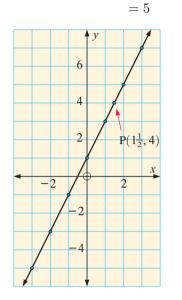
Table of values:

x	-3	-2	-1	0	1	2	3
y	-5	-3	-1	1	3	5	7

For example, $y = 2 \times -3 + 1$ = -6 + 1

= -5

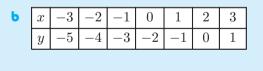
From this table we plot the points (-3, -5), (-2, -3), (-1, -1), (0, 1), etc.

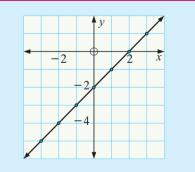

The tabled points are collinear and we can connect them with a straight line.

When
$$x = 1\frac{1}{2}$$
, $y = 2 \times 1\frac{1}{2} + 1$
= 3 + 1
= 4

This shows that $(1\frac{1}{2}, 4)$ also lies on the line.

In fact there are infinitely many points which make up the continuous straight line with equation y = 2x + 1.





Example 10

Consider the equation y = x - 2.

- **a** What are the independent and dependent variables?
- **b** Construct a table of values using x = -3, -2, -1, 0, 1, 2 and 3.
- C Draw the graph of y = x 2.
- a x is the independent variable. y is the dependent variable.

EXERCISE 17F

- **1** For the following equations:
 - i State the independent and dependent variables.
 - ii Construct a table of values where the independent variable values are from -3 to 3.

C

Plot the graph.

342 COORDINATES AND LINES (Chapter 17)

- **a** y = x **b** y = 3x **c** $y = \frac{1}{3}x$ **d** y = -3x **e** y = 2x + 1 **f** y = -2x + 1 **g** $y = \frac{1}{2}x + 3$ **h** $y = -\frac{1}{2}x + 3$
- 2 Arrange the graphs 1a, 1b and 1c in order of steepness. What part of the equation controls the degree of steepness of a line?
- **3** Compare the graphs of **1b** and **1d**. What part of the equation controls whether the graph is forward sloping or backward sloping?
- 4 Compare the graphs of **1b**, **1e** and **1g**. What part of the equation controls where the graph cuts the *y*-axis?

INVESTIGATION 1

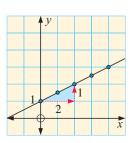
GRAPHS OF THE FORM y = mx + c

The use of a graphics calculator or suitable graphing package is recommended for this investigation.

What to do:

- 1 On the same set of axes graph the family of lines of the form y = mx:
 - **a** where $m = 1, 2, 4, \frac{1}{2}, \frac{1}{5}$ **b** where $m = -1, -2, -4, -\frac{1}{2}, -\frac{1}{5}$
- 2 What are the slopes of the lines in question 1?
- **3** What is your interpretation of m in the equation y = mx?
- 4 On the same set of axes, graph the family of lines of the form y = 2x + c where c = 0, 2, 4, -1, -3.
- 5 What is your interpretation of c for the equation y = 2x + c?

G FINDING EQUATIONS OF STRAIGHT LINES


The equation of a line is an equation which connects the x and y values for every point on the line.

In the above investigation we established that:

y = mx + c is the equation of a line with gradient m and y-intercept c.

This is known as the gradient-intercept form.

For example:

The illustrated line has

gradient =
$$\frac{y\text{-step}}{x\text{-step}} = \frac{1}{2}$$

and the y-intercept is 1

$$\therefore$$
 its equation is $y = \frac{1}{2}x + 1$.

EXERCISE 17G

- **1** Find the equations of the lines with:
 - a gradient 4 and y-intercept -1
 - c gradient -3 and y-intercept 0
- b gradient 2 and y-intercept 3
-) **d** gradient -5 and y-intercept $\frac{1}{2}$.
- 2 Find the gradient and *y*-intercept of each of the following:
 - **a** y = 2x 3 **b** y = -x **c** y = 6 - x **d** $y = \frac{1}{2}x + 1$ **e** 2y = 3x **f** x = 2y + 1 **g** 2x - 3y = 9**h** 3x + 4y = 12

We are not always given both the gradient and y-intercept of a line. For example, consider the illustrated line which has gradient $\frac{1}{2}$ and passes through the point (2, 3). Suppose (x, y) is any point on the line. The gradient between (2, 3) and (x, y) is $\frac{y-3}{x-2}$. Equating gradients gives us $\frac{y-3}{x-2} = \frac{1}{2}$ {gradient formula} $\therefore y - 3 = \frac{1}{2}(x-2)$ {multiplying both sides by (x-2)} $\therefore y - 3 = \frac{1}{2}x - 1$ {expanding the brackets} $\therefore y = \frac{1}{2}x + 2$ {adding 3 to both sides}

Another way of finding the equation is to use the gradient-intercept form y = mx + c. Since $m = \frac{1}{2}$, $y = \frac{1}{2}x + c$ But (2, 3) lies on this line, so $3 = \frac{1}{2}(2) + c$

.
$$c = 2$$
 and we hence find $y = \frac{1}{2}x + 2$.

to find the equation of a line we need to know:

• the gradient

..

• the coordinates of any **point** on the line.

Example 11

Method 1:

So,

Self Tutor

Find the equation of the line with slope $\frac{3}{5}$ which passes through (-2, 4).

Equating gradients,

$$\frac{y-4}{x-(-2)} = \frac{3}{5}$$

$$\therefore \quad y-4 = \frac{3}{5}(x+2)$$

$$\therefore \quad y-4 = \frac{3}{5}x + \frac{6}{5}$$

$$\therefore \quad y = \frac{3}{5}x + \frac{6}{5} + 4$$

$$\therefore \quad y = \frac{3}{5}x + 5\frac{1}{5}$$

Method 2: Let the equation be y = mx + c $\therefore \quad y = \frac{3}{5}x + c$ But (-2, 4) lies on the line $\therefore \quad 4 = \frac{3}{5}(-2) + c$ $\therefore \quad 4 + \frac{6}{5} = c$ $\therefore \quad c = 5\frac{1}{5}$ \therefore the equation is $y = \frac{3}{5}x + 5\frac{1}{5}$

- **3** Find the equation of the line through:
 - (1, -2) having a gradient of 3 а
 - (5, -2) having a gradient of -3C
 - (-2, 8) having a gradient of $-\frac{1}{4}$ 0
 - (1, 6) with gradient $\frac{2}{3}$ 9
 - (8, 0) with gradient $-\frac{1}{4}$ i.
 - (-2, -4) with gradient 3 k

Example 12

- **b** (-4, -1) having a gradient of -2
- **d** (5, 2) having a gradient of $\frac{1}{3}$
- f (7, -3) having a gradient of 0
- **h** (-5, 4) with gradient $\frac{3}{5}$
- (8, -2) with gradient $-\frac{3}{4}$
- (5, -1) with gradient -5

Self Tutor

Find the equation of the line which passes through the points A(-1, 5) and B(2, 3).

The gradient of the line is	$\frac{3-5}{2-(-1)} = \frac{-2}{3}$	
\therefore using point A the equation is	$\frac{y-5}{x-(-1)} = -\frac{2}{3}$ {or	$\frac{y-3}{x-2} = -\frac{2}{3}$
	$\therefore y-5 = -\frac{2}{3}(x+1)$	using point B}
	$\therefore y-5 = -\frac{2}{3}x - \frac{2}{3}$	
	$\therefore y = -\frac{2}{3}x + 5 - \frac{2}{3}$	Check that you get the same final
	$\therefore y = -\frac{2}{3}x + 4\frac{1}{3}$	answer using point B instead of A.

Find the equation of the line which passes through the points: 4

- A(1, 5) and B(3, 7)bC(0, 4) and D(-2, 3)E(-3, -2) and F(5, -2)dG(-3, 3) and H(6, 0)P(4, -1) and Q(-1, -2)fR(-2, -3) and S(-5, -6)а C
- e

- **5** Find the equation of the line:
 - **a** which has gradient $\frac{1}{2}$ and cuts the y-axis at 3
 - **b** which is parallel to a line with gradient 2, and passes through the point (-1, 4)
 - which cuts the x-axis at 5 and the y-axis at -2
 - d which cuts the x axis at -1, and passes through (-3, 4)

FINDING THE GRADIENT FROM THE EQUATION OF THE LINE

From equations of lines such as $y = \frac{1}{3}x + \frac{2}{3}$ and y = 5 - 2x, we can easily find the gradient by looking at the coefficient of x.

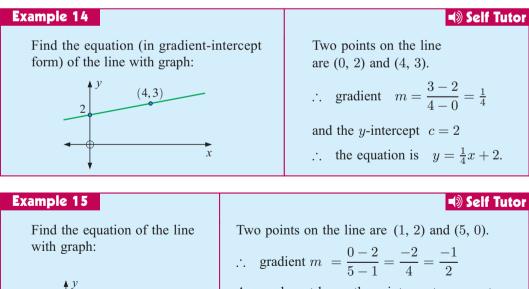
However, some lines may be given in the form Ax + By = C, called **general form**. We can rearrange equations in general form to find the gradient.

Example 13	Self Tutor
Find the gradient of the line	2x + 5y = 17.
2x + 5y = 17	
$\therefore 5y = 17 - 2x$	{subtracting $2x$ from both sides}
$\therefore y = \frac{17}{5} - \frac{2x}{5}$	$\{$ dividing both sides by $5\}$
$\therefore y = -\frac{2}{5}x + \frac{17}{5}$	and so the gradient is $-\frac{2}{5}$.

6 Find the gradient of the line with equation:

a	y = 4x + 5	b	y = 1 - 3x	C	y = 0
d	x = 2	e	$y = \frac{4x - 5}{3}$	f	6x + y = 4
9	4x - 5y = 3	h	4x + 5y = 4	1	6x - 2y = 1
j	3x + 4y = 7	k	Ax - By = C	1	Ax + By = C

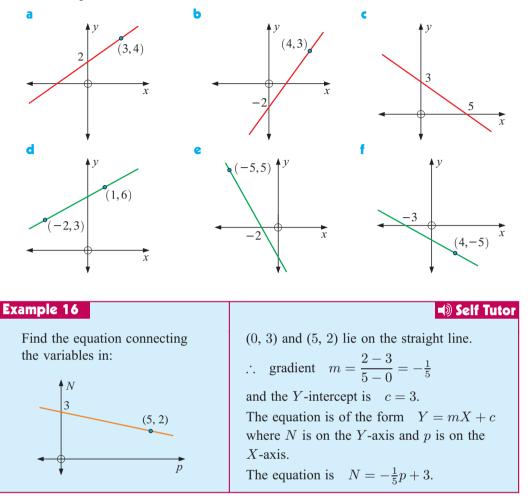
EQUATIONS FROM GRAPHS

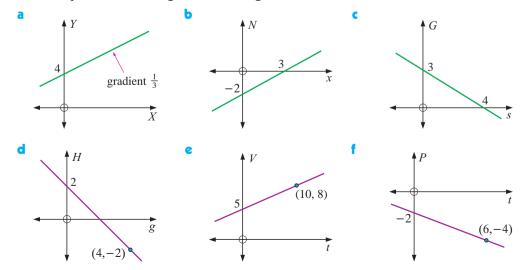

(1, 2)

5

X

If a graph contains sufficient information then we can determine its equation.


Remember that we must have at least one point and we must be able to determine its gradient.

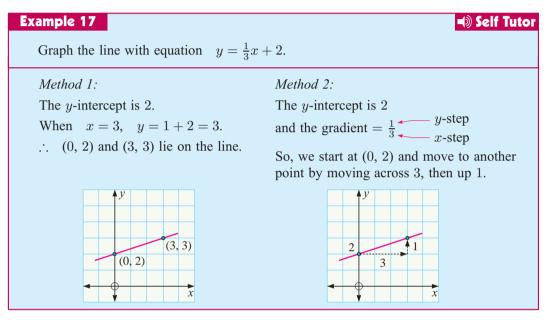

As we do not know the y-intercept we equate

gradients:
$$\frac{y-2}{x-1} = -\frac{1}{2}$$
$$\therefore \quad y-2 = -\frac{1}{2}(x-1)$$
$$\therefore \quad y = -\frac{1}{2}x + \frac{1}{2} + 2$$
$$\therefore \quad y = -\frac{1}{2}x + 2\frac{1}{2}$$

7 Find the equations of the illustrated lines:

8 Find the equation connecting the variables given:

Η


GRAPHING LINES

It is useful to be able to accurately graph straight lines from their equations.

GRAPHING FROM THE GRADIENT-INTERCEPT FORM

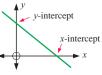
Lines with equations given in the gradient-intercept form are easily graphed by finding two points on the graph, one of which is the *y*-intercept.

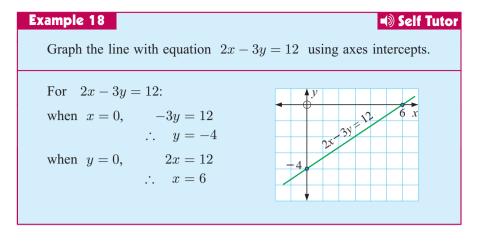
The other can be found by substitution or using the gradient.

EXERCISE 17H

1 Draw the graph of the line with equation:

a	y = 2x + 3	Ь	$y = \frac{1}{2}x - 3$	C	y = -x + 5
d	y = -4x - 2	e	$y = -\frac{1}{3}x$	f	y = -3x + 4
9	$y = \frac{3}{4}x$	h	$y = \frac{1}{3}x - 1$	i,	$y = -\frac{3}{2}x + 2$


- 2 a The line with equation y = 2x 1 is reflected in the x-axis. Graph the line and draw its image. Find the equation of the reflected line.
 - **b** The line with equation $y = \frac{1}{2}x + 2$ is reflected in the y-axis. Graph the line and draw its image. Find the equation of the reflected line.


GRAPHING FROM THE GENERAL FORM

Remember that the form Ax + By = C is called the **general form** of a line.

The easiest way to graph lines in general form is to use axes intercepts.

The x-intercept is found by letting y = 0. The y-intercept is found by letting x = 0.

3 Use axes intercepts to draw sketch graphs of:

a	2x + y = 4	b	3x + y = 6	C	3x - 2y = 12
d	3x + 4y = 12	e	x - y = 2	f	x + y = -2
9	2x - 3y = -9	h	4x + 5y = 20	i.	5x - 2y = -10

- a i Graph the line with equation 3x + 2y = 1 and show that (-1, 2) lies on it.
 ii If the line with equation 3x + 2y = 1 is rotated clockwise about the point (-1, 2) through an angle of 90°, find the equation of the rotated line.
 - **b** Graph the line with equation 3x 5y = 15. If the line is rotated anticlockwise about the origin through an angle of 180° , find the equation of this new line.

POINTS ON LINES

A point lies on a line if its coordinates satisfy the equation of the line.

This is a very basic and important concept, but is often overlooked or forgotten.

For example: (2, 3) lies on the line 3x + 4y = 18 as $3 \times 2 + 4 \times 3 = 6 + 12 = 18$ (4, 1) does not lie on the line as $3 \times 4 + 4 \times 1 = 12 + 4 = 16$.

EXERCISE 17I

4

- **a** Does (3, 4) lie on the line with equation 5x + 2y = 23?
 - **b** Does (-1, 4) lie on the line with equation 3x 2y = 11?
 - Does $(5, -\frac{1}{2})$ lie on the line with equation 3x + 8y = 11?

2 Find k if:

- **a** (2, 5) lies on the line with equation 3x 2y = k
- **b** (-1, 3) lies on the line with equation 5x + 2y = k.

To satisfy an equation is to make the equation true for a given substitution.

- **3** Find *a* given that:
 - **a** (a, 3) lies on the line with equation y = 2x 11
 - **b** (a, -5) lies on the line with equation y = 4 x
 - (4, a) lies on the line with equation $y = \frac{1}{2}x + 3$
 - **d** (-2, a) lies on the line with equation y = 4 2x.

OTHER LINE FORMS

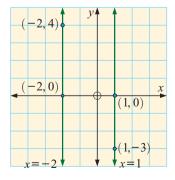
SPECIAL LINES

TWO SPECIAL CASES (HORIZONTAL AND VERTICAL LINES)

Lines parallel to the x-axis and lines parallel to the y-axis are special cases. If their equations are written in general form, then the coefficient of either x or y is zero.

INVESTIGATION 2

What to do:


- **1** Using graph paper, plot the following sets of points on the Cartesian plane. Rule a line through each set of points.
- a (3, 4), (3, 2), (3, 0), (3, -2), (3, -4)
- **b** (6, -1), (6, -3), (6, 1), (6, 5), (6, 3)
- **c** (0, -5), (0, -2), (0, 1), (0, 4), (0, -3)
- **d** (-3, -1), (5, -1), (-1, -1), (4, -1), (0, -1)
- **e** (-2, 6), (-2, -3), (-2, 0), (-2, -2), (-2, 2)
- **f** (4, 0), (0, 0), (7, 0), (-1, 0), (-3, 0)
- **2** Can you state the gradient of each line? If so, what is it?
- 3 Can you state the *y*-intercept of each line? If so, what is it?
- 4 How are these lines different from other lines previously studied?
- **5** Can you state the equation of each line?

VERTICAL LINES

The vertical line x = a (where a is a constant) is one such special line.

A sketch of the vertical lines x = -2 and x = 1 is shown alongside.

For all points on a vertical line, regardless of the value of the y-coordinate, the value of the x-coordinate is always the same.

All **vertical** lines have equations of the form x = a. The gradient of a vertical line is **undefined**.

HORIZONTAL LINES

The horizontal line y = b (where b is a constant) is the other special line.

A sketch of the horizontal lines y = -3 and y = 2 is shown alongside.

For all points on a horizontal line, regardless of the value of the x-coordinate, the value of the y-coordinate is always the same.

(-1,2) (0,2)	y=2
	x
(0,-3)	(4,-3)

All **horizontal** lines have equations of the form y = b. The gradient of a horizontal line is **zero**.

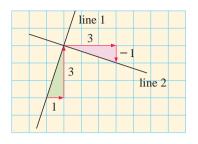
EXERCISE 17J


1 Identify as either a vertical or horizontal line and hence plot the graph of:

a y = 6 **b** x = -3 **c** x = 2 **d** y = -4

- **2** Identify as either a vertical or horizontal line:
 - a a line with zero gradient b a line with undefined gradient
- **3** Find the equation of:
 - a the x-axis b the y-axis
 - **c** a line parallel to the *x*-axis and three units below it
 - **d** a line parallel to the *y*-axis and 4 units to the right of it
- **4** Find the equation of:
 - **a** the line with zero gradient that passes through (-1, 3)
 - **b** the line with undefined gradient that passes through (4, -2).

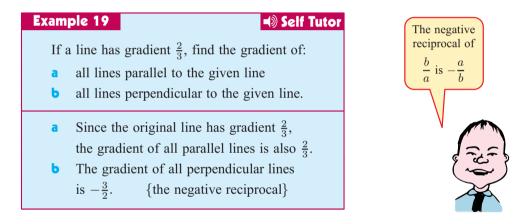
K PARALLEL AND PERPENDICULAR LINES


PARALLEL LINES

Notice that the given lines are parallel and both of them have a gradient or slope of 3. In fact:

- if two lines are **parallel**, then they have **equal gradient**, and
- if two lines have equal gradient, then they are parallel.

PERPENDICULAR LINES


Notice that *line 1* and *line 2* are perpendicular.

Line 1 has gradient $\frac{3}{1} = 3$ *Line 2* has gradient $\frac{-1}{3} = -\frac{1}{3}$

We see that the gradients are *negative reciprocals* of each other and their product is $3 \times -\frac{1}{3} = -1$.

For lines which are not horizontal or vertical:

- if the lines are perpendicular then their gradients are negative reciprocals
- if the gradients are **negative reciprocals** then the lines are **perpendicular**.

EXERCISE 17K

1 Find the gradient of all lines perpendicular to a line with a gradient of:

a	$\frac{1}{2}$	b	$\frac{2}{5}$	C	3	d	7
e	$-\frac{2}{5}$	f	$-2\frac{1}{3}$	9	-5	h	-1

2 The gradients of two lines are listed below. Which of the line pairs are perpendicular?

a	$\frac{1}{3}, 3$	b	5, -5	C	$\frac{3}{7}, -2\frac{1}{3}$	d	$4, -\frac{1}{4}$
e	$6, -\frac{5}{6}$	f	$\frac{2}{3}, -\frac{3}{2}$	9	$\frac{p}{q}, \frac{q}{p}$	h	$\frac{a}{b}, -\frac{b}{a}$

Example 20

Self Tutor

Find a given that the line joining A(2, 3) to B(a, -1) is parallel to a line with gradient -2.

gradient of AB = -2 $\therefore \frac{-1-3}{a-2} = -2$ $\therefore \quad \frac{-4}{a-2} = \frac{-2}{1}$ $\therefore \quad \frac{-4}{a-2} = \frac{-2}{1} \left(\frac{a-2}{a-2} \right)$ {achieving a common denominator} $\therefore -4 = -2(a-2)$ $\therefore -4 = -2a + 4$ $\cdot 2a = 8$ $\therefore a = 4$

{parallel lines have equal gradient}

{gradient formula}

{equating numerators}

- **3** Find a given that the line joining:
 - **a** A(-1, 5) to B(3, a) is parallel to a line with gradient 2
 - **b** C(a, -4) to D(5, -1) is parallel to a line with gradient $\frac{1}{3}$
 - E(2, a) to F(a, 1) is parallel to a line with gradient $\frac{2}{5}$.

Example 21

Self Tutor

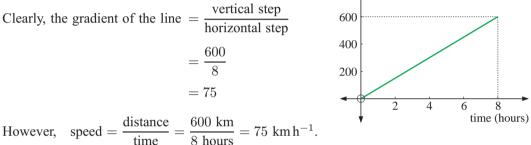
Find t given that the line joining D(-1, -3) to C(1, t) is perpendicular to a line with gradient 2.

gradient of DC = $-\frac{1}{2}$ {perpendicular to line of gradient 2} $\therefore \frac{t--3}{1} = -\frac{1}{2}$ {equating gradients} $\therefore \quad \frac{t+3}{2} = \frac{-1}{2} \qquad \text{{simplifying}}$ $\therefore \quad t+3 = -1$ {equating numerators} $\therefore t = -4$

- 4 Find t given that the line joining:
 - **a** A(2, -4) to B(-3, t) is perpendicular to a line with gradient $1\frac{1}{4}$
 - **b** C(t, -2) to D(1, 4) is perpendicular to a line with gradient $\frac{2}{3}$
 - P(t, -2) to Q(1, t) is perpendicular to a line with gradient $-\frac{1}{4}$.

5 Given the points A(1, 4), B(-1, 0), C(6, 3) and D(t, -1), find t if:

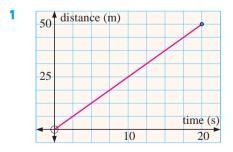
- **a** AB is parallel to CD
- AB is perpendicular to CD
- **b** AC is parallel to DB
- d AD is perpendicular to BC


USING GRADIENTS

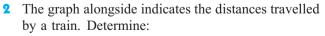
distance (km)

In real life gradients occur in many situations, and can be interpreted in a variety of ways.

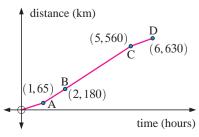
For example, the sign alongside would indicate to motor vehicle drivers that there is an uphill climb ahead.

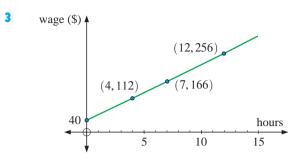

Consider the situation in the graph alongside where a motor vehicle travels at a constant speed for a distance of 600 km in 8 hours.

So, in a graph of distance against time, the gradient can be interpreted as the speed.

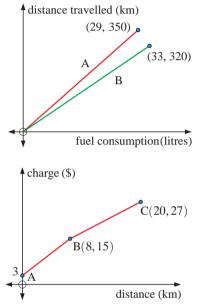

In the following exercise we will consider a number of problems where gradient can be interpreted as a rate.

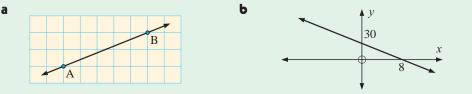
EXERCISE 17L




The graph alongside indicates the distances and corresponding times as Inge swims freestyle over 50 metres.

- a Find the gradient of the line.
- Interpret the gradient found in a.
- Is the speed of the swimmer constant or variable? What evidence do you have for your answer?


- a the average speed for the whole trip
- **b** the average speed from
 - i A to B ii B to C
- the time interval over which the speed was greatest.


The graph alongside indicates the wages paid to taxi drivers.

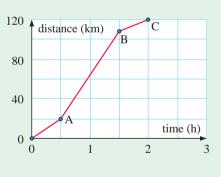
- a What does the intercept on the vertical axis mean?
- Find the gradient of the line. What does this gradient mean?
- C Determine the wage for working:
 i 6 hours
 ii 15 hours.
- **d** If no payment is made for not working, but the same payment shown in the graph is made for 8 hours' work, what is the new rate of pay?
- The graphs alongside indicate the fuel consumption and distance travelled at speeds of 60 km h⁻¹ (graph A) and 90 km h⁻¹ (graph B).
 - a Find the gradient of each line.
 - What do these slopes mean?
 - If fuel costs \$1.24 per litre, how much more would it cost to travel 1000 km at 90 km h⁻¹ compared with 60 km h⁻¹?
- **5** The graph alongside indicates the courier charge for different distances travelled.
 - **a** What does the value at A indicate?
 - Find the gradients of the line segments AB and BC. What do these gradients indicate?
 - If a straight line segment was drawn from A to C, find its gradient. What would this gradient mean?

REVIEW SET 17A

- Plot the following points on the number plane: A(1, 3) B(-2, 0) C(-2, -3) D(2, -1)
- 2 Find the distance between the following sets of points:
 - **a** P(4, 0) and Q(0, -3) **b** R(2, -5) and S(-1, -3)
- **3** Find the coordinates of the midpoint of the line segment joining A(8, -3) and B(2, 1).
- 4 Find the gradients of the lines in the following graphs:

- **5** A company manufactures saws. The set-up costs for the plant and machinery are \$2000. The total cost \$C to produce x saws is given by C = 2000 + 4x dollars.
 - **a** What are the independent and dependent variables?
 - **b** Make a table of values for the cost C of producing x saws, where x = 0, 100, 200, 300, 400, and plot the graph of C against x.
 - Is the relationship linear?

6 For the rule y = 3x + 2:

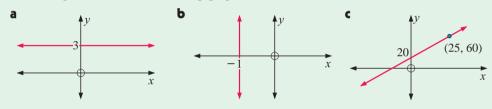

- **d** What does the value of C when x = 0 represent?
- What will it cost to make 650 saws?

x	0	1	2	3	4
y					

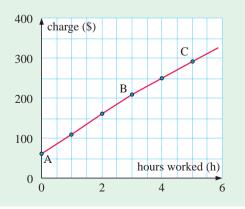
- **a** copy and complete the table
- **b** plot the points on the table and draw a straight line through them.
- 7 Find the equation of the line with gradient -2 and y-intercept 3.
- 8 Find the gradient and y-intercept of the line x = 1 3y.
- **9** Find the equation of the line with gradient $\frac{2}{3}$ which passes through (-3, 4).
- **10** Use axes intercepts to draw a sketch graph of 3x 2y = 6.
- **11** Find k if (-3, -1) lies on the line 4x y = k.
- **12** Find the equation of the line with zero gradient that passes through (5, -4).
- **13** Find t given that the line joining A(3, 4) and B(1, t) is parallel to a line with gradient $\frac{3}{5}$.
- **14** The graph alongside shows the distance travelled by a train over a 2 hour journey between two cities.
 - **a** Find the average speed from:
 - i O to A ii A to B iii B to C
 - **b** Compare your answers to **a** with the gradients of the line segments:

i OA **ii** AB **iii** BC

• Find the average speed for the whole journey.



REVIEW SET 17B


а

- **1** On different sets of axes, show all points with:
 - x-coordinates equal to -3 **b** y-coordinates equal to 5
 - c positive x-coordinates and negative y-coordinates
- **2** Find the distance between V(-5, -3) and W(-2, 6).
- **3** If M(1, -1) is the midpoint of AB, and A is (-3, 2), find the coordinates of B.

- **4** Find the gradient of the line segment joining:
 - **a** (5, -1) and (-2, 6) **b** (5, 0) and (5, -2)
- 5 Jacques sells vacuum cleaners. Each week he is paid a basic salary of €150 plus €25 for each vacuum cleaner that he sells.
 - **a** What are the independent and dependent variables?
 - **b** Construct a table and draw a graph of income I against vacuum cleaners sold v, where $v = 0, 1, 2, 3, \dots, 8$.
 - Is the relationship linear?
 - **d** Is it sensible to join the points with a straight line?
 - For each vacuum sold, what will be the increase in income?
 - f i What is the fixed income? ii What is the variable income?
 - **g** Find Jacques' income in a week when he sells 5 vacuum cleaners.
- 6 From a table of values, plot the graph of the line with equation $y = \frac{1}{2}x 1$.
- 7 Find the equations of the following graphs:

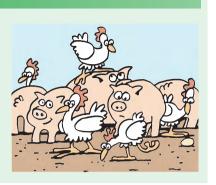
- 8 Find the equation of the line with gradient 4 and y-intercept -2.
- **9** Find the gradient and *y*-intercept of the line with equation:
 - **a** y = 5x 7 **b** $y = 6 \frac{3}{2}x$ **c** y = 10x
- **10** Find the gradient of the line with equation 4x + 3y = 5.
- **11** Find the equation of the line through (1, -5) with gradient $\frac{1}{3}$.
- **12** a Find the gradient of the line with equation y = 2x 3.
 - **b** Find the equation of the line perpendicular to y = 2x-3 which passes through (4, 1).
- **13** The graph alongside shows the amount charged by a plumber according to the time he takes to do a job.
 - **a** What does the value at A indicate?
 - **b** Find the gradients of the line segments AB and BC. What do these gradients indicate?
 - If a straight line segment was drawn from A to C, what would be its gradient? What would this gradient mean?

Simultaneous linear equations

Chapter

The point of intersection of linear graphs

- Simultaneous equations
- Algebraic methods for solving simultaneous equations
- **Problem solving**
- Using a graphics calculator to solve simultaneous equations

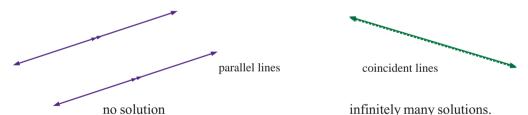

OPENING PROBLEM

A farmer has only hens and pigs in an enclosure. He said to his daughter Susan, "You know we have only hens and pigs. I counted 48 heads altogether and 122 legs.

Can you tell me how many of each animal type we have?"

It was too dark for Susan to go out and count them, but she thought for a while and gave the correct answer. What answer did she obtain, and how did she do it?

Doing the work in this chapter should make it easier for you to solve this and other similar problems.

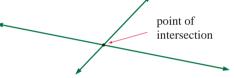

Let us consider the graphs of two straight lines which are not parallel. These lines will meet somewhere. The point where they meet is called the **point of intersection**.

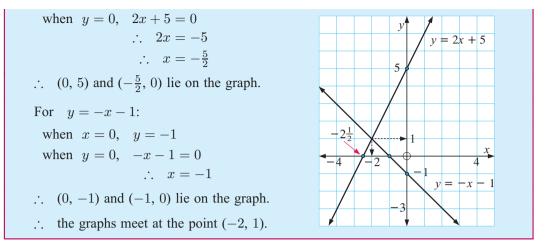
Notice that the point of intersection is the only point common to both lines.

If (a, b) is the point of intersection then (a, b) satisfies the equations of both lines.

At the point of intersection we have the **simultaneous solution** of **both equations**, since this point *satisfies both equations at the same time*.

Note that not all line pairs meet at one point. Two other situations can occur:


THE POINT OF INTERSECTION OF LINEAR GRAPHS


Example 1

Self Tutor

Find the point of intersection of the lines with equations y = 2x + 5 and y = -x - 1.

For y = 2x + 5: when x = 0, y = 5

EXERCISE 18A

1 Find the point of intersection of the following pairs of lines by drawing the graphs of the two lines on the same set of axes:

a	y = x	Ь	y = x - 4	C	y = 2x + 3
	y = 4 - x		y = -3x		y = x + 3
	y = -3x + 1 $y = -x - 1$		y = 5 - 2x $y = x - 1$		y = -5x - 3 $y = -2x + 3$

2 Find the simultaneous solution of the following pairs of equations using graphical methods:

y = x - 2 $y = 3x + 6$	y = x + 1 $y = 7 - x$	y = 5 - x $y = x + 4$
y = -x - 2 $y = 6x - 9$	y = 3x + 2 $y = 2x + 3$	y = 5x + 1 $y = 2x - 5$

INVESTIGATION 1

USING A COMPUTER TO FIND WHERE GRAPHS MEET

Click on the icon to run the graphing package.

Type in y = 3x + 2 and click on PLOT.

Now type in y = 5 - x and click on PLOT.

Now click on Intersect. Move the cursor near the point of intersection and click.

Your answer should be $\left(\frac{3}{4}, 4\frac{1}{4}\right)$. For a fresh start click on CLEAR ALL.

What to do:

- 1 Show that the point of intersection of y = 2x + 1 and y = 7 5x is at about (0.857, 2.714).
- **2** Plot the graphs of 2x+3y=5 and 3x-4y=10. Find the point of intersection of the two lines.

SIMULTANEOUS EQUATIONS

If we have two equations and we wish to make both equations true at the same time, we require values for the variables which satisfy both equations. These values are the simultaneous solution to the pair of equations.

In this course we will consider linear simultaneous equations containing two unknowns. There are infinitely many points (x, y) which satisfy the first equation. Likewise, there are infinitely many points which satisfy the second equation. In general, however, only one point satisfies both equations at the same time.

For example, consider the simultaneous equations $\begin{cases} x+y=9\\ 2x+3y=21 \end{cases}$

If x = 6 and y = 3 then:

B

- i.e., the first equation is satisfied • x + y = (6) + (3) = 9 \checkmark
- 2x + 3y = 2(6) + 3(3) = 12 + 9 = 21 \checkmark i.e., the second equation is satisfied.

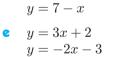
So, x = 6 and y = 3 is the solution to the simultaneous equations $\begin{cases} x + y = 9 \\ 2x + 3y = 21 \end{cases}$

The solutions to linear simultaneous equations can be found by trial and error, but this can be quite tedious. They may also be found graphically as in Section A, but this can be slow and also inaccurate if the solutions are not integers.

We thus consider an **algebraic** method for finding the simultaneous solution.

Example 2 Self Tutor Find the simultaneous solution to the following pair of equations: $y = 2x - 1, \quad y = x + 3$ If y = 2x - 1 and y = x + 3, then 2x - 1 = x + 3 {equating y's} 2x - 1 - x = x + 3 - x {subtract x from both sides} $\therefore x-1=3$ {simplify} $\therefore \quad x = 4 \qquad \{ \text{add 1 to both sides} \\ \text{and so} \quad y = 4 + 3 \qquad \{ \text{using} \quad y = x + 3 \}$ {add 1 to both sides} $\therefore y = 7$ Always check So, the simultaneous solution is x = 4 and y = 7. your solution in both In y = 2x - 1, $y = 2 \times 4 - 1 = 8 - 1 = 7$ \checkmark Check: equations. In y = x + 3, y = 4 + 3 = 7 \checkmark

EXERCISE 18B


1 Find the simultaneous solution to the following pairs of equations using an algebraic method:

a	y = x - 2 $y = 3x + 6$	$ y = x \\ y = 2 $	x+2 2x-3	c	y = 6x - 6 $y = x + 4$		
d	y = 2x + 1 $y = x - 3$	• y = 5 y = 5	5x+2 3x-2	f	y = 3x - 7 $y = 3x - 2$		
9	y = 3x + 2 $y = 2x + 3$		3x + 1 $3x + 5$	i	y = 5x - 2 $y = 10x - 4$		
Exam	ple 3				Self Tutor		
Fine	d the point of intersectio	n of the two	lines $y = 2x$	c + 5 at	nd $y = -x - 1$.		
The	e lines meet when						
	2x + 5 = -x	-1	{equating g	y's}			
	$\therefore 2x + 5 + x = -x$	-1 + x	$\{add x\}$				
	$\therefore 3x + 5 - 5 = -1 - 5 \qquad { subtract 5 from both sides }$						
	$\therefore 3x = -6$		{collect lik	te terms	}		
	$\therefore x = -2$		{divide bot	.1 . 1	1 0)		

y = 5 - x $d \quad y = x - 4$

 $\begin{array}{cc} \therefore & y = -4 + 5 \\ \therefore & y = 1 \end{array}$

2 Use an algebraic method to find the point of intersection of:

y = 3 - 2xf y = 4x + 6y = 6 - 2x

THE COINS PROBLEM

y = 2x - 5

So, the lines meet at (-2, 1).

INVESTIGATION 2

y = x + 4

y = -2x - 4

a

In my pocket I have 8 coins. They are \$1 and \$2 coins, and their total value is \$11.

Thus, $y = 2 \times (-2) + 5$ {using y = 2x + 5}

b y = x + 1

How many of each type of coin do I have?

What to do:

1 Copy and complete the following table:

Number of \$1 coins	0	1	2	3	4	5	6	7	8
Value of \$1 coins									
Number of \$2 coins	8	7							
Value of \$2 coins									
Total value of coins									

- **2** Use the table to find the solution to the problem.
- **3** Suppose I have x\$1 coins and y\$2 coins in my pocket.
 - **a** By considering the total number of coins, explain why x + y = 8.
 - **b** By considering the total value of the coins, explain why x + 2y = 11.
- 4 You should have found that there were five \$1 coins and three \$2 coins.
 - **a** Substitute x = 5 and y = 3 into x + y = 8. What do you notice?
 - **b** Substitute x = 5 and y = 3 into x + 2y = 11. What do you notice?
- 5 My friend has 12 coins in her pocket. They are all either £1 or £2. If the total value of her coins is £17, how many of each type does she have? Can you find the solution by algebraic means?

C ALGEBRAIC METHODS FOR SOLVING SIMULTANEOUS EQUATIONS

SOLUTION BY SUBSTITUTION

The method of solution by substitution is used when at least one equation is given with either x or y as the subject of the formula, or if it is easy to make x or y the subject.

Example 4


Solve simultaneously, by substitution: $y = 9 - x$ 2x + 3y = 21	We substitute 9-x for y in the
$y = 9 - x \dots (1)$ $2x + 3y = 21 \qquad \dots (2)$ Since $y = 9 - x$, then $2x + 3(9 - x) = 21$ $\therefore 2x + 27 - 3x = 21$ $\therefore 27 - x = 21$ $\therefore x = 6$	other equation.
When $x = 6$, $y = 9 - 6$ {substituting $x = 6$ into (1)} $\therefore y = 3$ Solution is: $x = 6$, $y = 3$. Check: (1) $3 = 9 - 6 \checkmark$ (2) $2(6) + 3(3) = 12 + 9 = 12$	21 √

Example 5

Self Tutor

Self Tutor

Solve simultaneously, by substitution:2y - x = 2
x = 1 + 8y2y - x = 2..... (1)x = 1 + 8y..... (2)Substituting (2) into (1) gives

EXERCISE 18C

1 Solve simultaneously, using substitution:

y = 3 + x 5x - 2y = 0	y = x - 2 $x + 3y = 6$	y = 5 - x $4x + y = 5$
y = 2x - 1 3x - y = 6	y = 3x + 4 $2x + 3y = 12$	y = 5 - 2x $5x - 2y = 8$

2 Use the substitution method to solve simultaneously:

$\begin{aligned} x &= y + 2\\ 3x - 2y &= 9 \end{aligned}$	$\begin{array}{l} x=-1+5y\\ x=3-5y \end{array}$	$\begin{aligned} x &= 6 - 3y\\ 3x - 3y &= 2 \end{aligned}$
$\begin{aligned} x &= 1 - 2y\\ 2x + 3y &= 4 \end{aligned}$	$\begin{aligned} x &= -4 - 2y\\ 2y - 3x &= 8 \end{aligned}$	$\begin{aligned} x &= -y - 8\\ 2x - 4y &= 5 \end{aligned}$

- **3** a Try to solve by substitution: y = 2x + 5 and y = 2x + 7.
 - **b** What is the simultaneous solution for the equations in **a**? Explain your answer.
- **4** a Try to solve by substitution: y = 4x + 3 and 2y = 8x + 6.
 - **b** How many simultaneous solutions do the equations in **a** have? Explain your answer.

SOLUTION BY ELIMINATION

In many problems which require the simultaneous solution of linear equations, each equation will be of the form ax+by=c. Solution by substitution is often tedious in such situations and the method of **elimination** of one of the variables is preferred.

One method is to make the coefficients of x (or y) the same size but opposite in sign and then add the equations. This has the effect of eliminating one of the variables.

Self Tutor

Example 6

Solve simultaneously, by elimination: 4x + 3y = 2(1) x - 3y = 8(2)

Notice that coefficients of y are the same size but opposite in sign. We **add** the LHS's and the RHS's to get an equation which contains x only.

4x + 3y = 2
+ x - 3y = 8
$5x = 10$ {adding the equations}
$\therefore x = 2 \qquad \{ \text{dividing both sides by 5} \}$
Substituting $x = 2$ into (1) gives $4(2) + 3y = 2$
$\therefore 8+3y=2$
$\therefore 3y = -6$
$\therefore y = -2$
The solution is $x = 2$ and $y = -2$.
<i>Check:</i> in (2): (2) $- 3(-2) = 2 + 6 = 8 \checkmark$

5 What equation results when the following are added vertically?

6

a	3x + 4y = 6 $8x - 4y = 5$	b	2x - y = 7 $-2x + 5y = 5$	C	7x - 3y = 2 $2x + 3y = 7$
d	6x - 11y = 12 $3x + 11y = -6$	e	-7x + 2y = 5 $7x - 3y = 6$	f	2x - 3y = -7 $-2x - 8y = -4$
Solv	e the following using the m	etho	d of elimination:		
а	5x - y = 4 $2x + y = 10$	b	3x - 2y = 7 $3x + 2y = -1$	C	-5x - 3y = 14 $5x + 8y = -29$
d	4x + 3y = -11 $-4x - 2y = 6$	e	2x - 5y = 14 $4x + 5y = -2$	f	-6x - y = 17 $6x + 5y = -13$

In problems where the coefficients of x (or y) are **not** the **same size** or **opposite in sign**, we may first have to **multiply** each equation by a number.

Example 7 Self Tutor
Solve simultaneously, by elimination: $3x + 2y = 7$ 2x - 5y = 11
3x + 2y = 7 (1) $2x - 5y = 11$ (2)
We can eliminate y by multiplying (1) by 5 and (2) by 2.
$\therefore 15x + 10y = 35$
$\frac{4x - 10y = 22}{10}$
\therefore 19x = 57 {adding the equations}
$\therefore x = 3 \qquad \{ \text{dividing both sides by } 19 \}$
Substituting $x = 3$ into equation (1) gives
3(3) + 2y = 7
$\therefore 9+2y=7$
$\therefore 2y = -2$
$\therefore y = -1$
So, the solution is: $x = 3, y = -1$.
Check: $3(3) + 2(-1) = 9 - 2 = 7$ \checkmark $2(3) - 5(-1) = 6 + 5 = 11$ \checkmark

7 Give the equation that results when both sides of the equation:

a 2x + 5y = 1 are multiplied by 5

- **c** x 7y = 8 are multiplied by 3 **d** 5x + 4y = 9 are multiplied by -2

Example 8	Self Tutor
Solve by elimination: $3x + 4y = 14$ 4x + 5y = 17	
3x + 4y = 14 $4x + 5y = 17$	
To eliminate x , multiply both sides of	
(1) by 4: $12x + 16y = 56$ (2) by -3: $-12x - 15y = -51$ y = 5	
Substituting $y = 5$ into (2) gives 4x + 5(5) = 17 $\therefore 4x + 25 = 17$ $\therefore 4x = -8$	
0	ck: $3(-2) + 4(5) = (-6) + 20 = 14 \checkmark$ $4(-2) + 5(5) = (-8) + 25 = 17 \checkmark$

WHICH VARIABLE TO ELIMINATE

There is always a choice whether to eliminate x or y, so our choice depends on which variable is easier to eliminate.

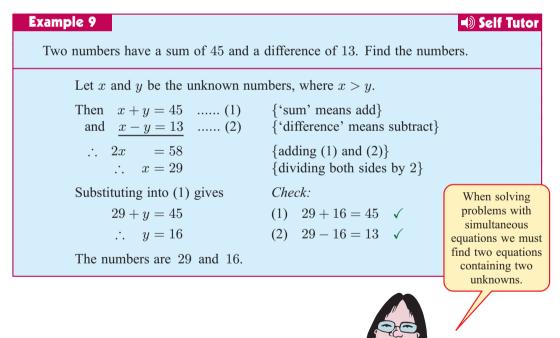
In **Example 8**, try to solve by multiplying (1) by 5 and (2) by -4. This eliminates y rather than x. The final solution should be the same.

8 Solve the following using the method of elimination:

а	2x + y = 8 $x - 3y = 11$	b	3x + 2y = 7 $x + 3y = 7$		5x - 2y = 17 $3x - y = 9$
	2x + 3y = 13 $3x + 2y = 17$		4x - 3y = 1 $2x + 5y = 7$	f	2x + 5y = 14 5x - 3y + 27 = 0
	7x - 2y = 20 $4x + 3y = -1$	h	3x - 2y = 5 5x - 3y = 8		2x - 7y - 18 = 0 3x - 5y - 5 = 0

- **9** Use the method of elimination to attempt to solve:
 - **b** 3x + 4y = 62x - y = 3а Comment on your results. 6x + 8y = 74x - 2y = 6

- **b** 3x y = 4 are multiplied by -1
- e -3x 2y = 2 are multiplied by 6 f 4x 2y = 3 are multiplied by -4


PROBLEM SOLVING

Many problems can be described mathematically by a **pair of linear equations**, or two equations of the form ax + by = c, where x and y are the two variables (unknowns).

We have already seen an example of this in Investigation 2 on page 361.

Once the equations are formed, they can then be solved simultaneously and thus the original problem solved. The following method is recommended:

- Step 1: Decide on the two unknowns; call them x and y, say. Do not forget the units.
- Step 2: Write down **two** equations connecting x and y.
- Step 3: Solve the equations simultaneously.
- Step 4: Check your solutions with the original data given.
- Step 5: Give your answer in sentence form.
- **Note:** The form of the original equations will help you decide whether to use the substitution method, or the elimination method.

EXERCISE 18D

- 1 The sum of two numbers is 72 and their difference is 40. Find the numbers.
- **2** Find two numbers whose sum is 30 and half their difference is 7.
- **3** The larger of two numbers is three times the smaller number, and their difference is 34. Find the two numbers.

Example 10

Self Tutor

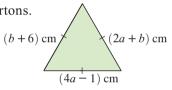
When shopping in Jamaica, 5 coconuts and 14 bananas cost me \$8.70, and 8 coconuts and 9 bananas cost \$9.90. Find the cost of each coconut and each banana.

Let each coconut cost x cents and each banana cost u cents. $\therefore 5x + 14y = 870$ (1) 8x + 9y = 990 (2) **Note:** The units must be the same on both sides of each equation, i.e., cents. To eliminate x, we multiply (1) by 8 and (2) by -5. $\therefore \quad 40x + 112y = 6960 \quad \dots \quad (3) \\ -40x - 45y = -4950 \quad \dots \quad (4)$ 67y = 2010 {adding (3) and (4)} \therefore y = 30 {dividing both sides by 67} Substituting in (2) gives $8x + 9 \times 30 = 990$ $\therefore 8x = 990 - 270$ $\therefore 8x = 720$ $\therefore x = 90$ {dividing both sides by 8} Check: $5 \times 90 + 14 \times 30 = 450 + 420 = 870$ $8 \times 90 + 9 \times 30 = 720 + 270 = 990$ Thus coconuts cost 90 cents each and bananas cost 30 cents each.

- 4 Three pieces of fish and two serves of chips cost a total of $\pounds 8.10$, whereas five pieces of fish and three serves of chips cost a total of $\pounds 13.25$. Find the cost of each piece of fish and each serve of chips.
- **5** Seven cups of coffee and four muffins cost a total of €25.30, whereas two cups of coffee and three muffins cost a total of €9.55. Find the cost of each item.

Example 11

Self Tutor


In my pocket I have only 5-cent and 10-cent coins. How many of each type of coin do I have if I have 24 coins altogether and their total value is \$1.55?

Let x be the number of 5-cent coins and y be the number of 10-cent coins.

 \therefore x + y = 24 (1) {the total number of coins} and 5x + 10y = 155 (2) {the total value of coins}

Multiplying (1) by -5 gives $\begin{array}{r}
-5x - 5y = -120 \quad \dots \quad (3) \\
\underline{5x + 10y = 155} \\
\hline & 5y = 35 \\
\hline & y = 7 \\ \end{array}$ (adding (3) and (2)) $\begin{array}{r}
& y = 7 \\
\hline & (dividing both sides by 5) \\
\end{array}$ Substituting into (1) gives $x + 7 = 24 \\
\hline & x = 17 \\
\end{array}$ Check: $17 + 7 = 24 \quad \checkmark \\
5 \times 17 + 10 \times 7 = 85 + 70 = 155 \quad \checkmark \\$ Thus I have 17 five cent coins and 7 ten cent coins.

- Margaret saves 50-cent and 10-cent coins. She has 56 of these coins and their total value is \$17.60. How many of each coin type does she have?
- 7 André and Michelle have €65.25 between them. André's money is two thirds of Michelle's amount. How much money does each have?
- 8 Milk is sold in either 600 mL or 1 L cartons. A supermarket manager ordered 79.8 litres of milk and received 93 cartons. How many of each size carton did the manager receive?
- 9 Given that the triangle alongside is equilateral, find *a* and *b*.

10 A rectangle has perimeter 56 cm. If 4 cm is taken from the length and added to the width, the rectangle becomes a square. Find the dimensions of the original rectangle.

E USING A GRAPHICS CALCULATOR TO SOLVE SIMULTANEOUS EQUATIONS

Simultaneous equations can be solved using a graphics calculator. This is done by drawing graphs of the equations, and then finding their point of intersection.

When using a graphics calculator it is often necessary to rearrange linear equations of the form Ax + By = C so that y is the **subject** of the formula.

For example, if 2x + 5y = 11, we need to rearrange it into the form $y = \dots$

Example 12	Self Tutor
Rearrange $2x + 5y = 11$ to n	nake y the subject.
2x + 5y = 11 $\therefore 2x + 5y - 2x = 11 - 2x$ $\therefore 5y = 11 - 2x$	$\{taking 2x from both sides\}$
$\therefore y = \frac{11 - 2x}{5}$	{dividing both sides by 5}

EXERCISE 18E

- 1 Rearrange to make y the subject of the formula:
 - a5x + y = 10b4x + y = 8c2x + y = 12d2x + 3y = 6e4x + 3y = 12f7x + 3y = 10g2x + 9y = -7h11x + 8y = 88i16x + 5y = 40

Example 13 Rearrange 3x - 5y = 13 to make y the subject. 3x - 5y = 13 $\therefore 3x - 5y - 3x = 13 - 3x$ {taking 3x from both sides} $\therefore -5y = 13 - 3x$ {taking 3x from both sides} $\therefore -5y = 13 - 3x$ {dividing both sides by -5} Note: This could also be written as $y = \frac{3x - 13}{5}$. Why?

2 Rearrange to make y the subject of the formula:

a	5x - y = 5	Ь	2x - y = 3	C	9x - y = 18
d	2x - 3y = 7	e	4x - 3y = 5	f	6x - 5y = 20
9	3x - 7y = 14	h	8x - 11y = 3	1	11x - 9y = 33

Suppose we wish to solve 3x + y = 11 and x + 2y = 12 simultaneously. We first rearrange them so that y is the subject. This gives us y = 11 - 3x and $y = \frac{12 - x}{2}$.

We are now ready to graph the lines and find where they intersect. Instructions for doing this on a graphics calculator can be found on page **22**.

You should find the solution is x = 2, y = 5.

If you are using a **Casio fx-9860G** you can also solve these equations using the **simultaneous** equation solver.

3 Use a graphics calculator to find the point of intersection of:

a	2x + y = 30 $x - 3y = 22$	b	$\begin{aligned} x - y &= -19\\ 2x + 3y &= -13 \end{aligned}$	$\begin{aligned} x + 2y &= 39\\ 3x - 2y &= 45 \end{aligned}$
	2x + 3y = 35 $3x - y = -30$		3x - 2y = 59 $3x + 5y = 10$	4x + 5y = 23 $3x - 7y = 157$

- **4** Use a graphics calculator to solve these problems:
 - a When he went on safari, Morgan saw giraffes and ostriches. He counted 39 heads and 114 legs. How many giraffes and how many ostriches did he see?
 - **b** A carpenter is making chairs with 4 legs, and stools with 3 legs. He has 23 seats and 86 legs which can be used for stools and chairs. If he uses all of the legs and seats, how many of each item does he make?
 - 3 apples and 5 oranges cost a total of \$6.20 whereas 7 apples and 4 oranges cost a total of \$7.95. What is the cost of one apple and one orange?

- **d** Jorg had 23 pieces of timber that were either 1.5 metres or 4 metres long. In total he had 64.5 metres of timber. How many of each length did he have?
- Kim bought 4 CDs and 3 DVDs for a total cost of RM109.85. Li paid the same prices for her CDs and DVDs as Kim. She bought 3 CDs and 2 DVDs for a total cost of RM77.40. Find the cost of each of these items.
- f 17 small bags of potatoes and 13 large bags weigh a total of 99 kg, whereas 15 small bags and 21 large bags weigh a total of 135 kg. Find the weight of each size of bag.

REVIEW SET 18A

- 1 Find the point of intersection of the following pairs of lines by drawing graphs of the two lines on the same set of axes:
 - **a** y = 2xy = x - 2**b** y = 2x - 4y = 1 - 3x
- **2** Find the simultaneous solution of y = 6x-5 and y = 2x+3 using an algebraic method.
- **3** Solve simultaneously, by substitution: y 5x = 8 and y = 3x + 6.
- **4** Try to solve 2x + 4y = 2 and x = 1 2y simultaneously. Interpret your result.
- **5** Solve the following using the method of elimination: 3x+2y=4 and 2x-y=5.
- 6 adult tickets and 5 student tickets for the theatre cost \$168, whilst 2 adult tickets and 3 student tickets cost \$72. Find the cost of each type of ticket.
- 7 Carmel has 21 coins in total. There are 50 pence coins and 20 pence coins and their total value is £8.40. How many of each type of coin does Carmel have?

REVIEW SET 18B

- 1 Find the point of intersection of the following pairs of lines by drawing graphs of the two lines on the same set of axes:
 - **a** y = -x + 5y = 3x + 1**b** y = -2x + 1y = 2x - 5
- **2** Find the simultaneous solution of y = 3x + 4 and y = -2x 6 using an algebraic method.
- **3** Solve simultaneously, by substitution: y = 3x 4 and 2x y = 8.
- 4 Try to solve x 2y = 5 and x 2y = 7 simultaneously. Interpret your result.
- **5** Solve the following using the method of elimination: 3x 2y = 3 and 4x + 3y = 4.
- The larger of two numbers is 2 more than three times the smaller number. If their difference is 12, find the numbers.
- **7** 3 sausages and 4 chops cost \$12.40, and 5 sausages and 3 chops cost \$11.50. Find the cost of each item.

Chapter

Probability

- Probability by experiment
- Theoretical probability
- C Expectation
- Probabilities from tabled data

9

- Representing combined events
- F Probabilities from lists and diagrams
- G Multiplying probabilities
- H Using tree diagrams
- Sampling with and without replacement
- J Mutually exclusive and nonmutually exclusive events
- K Independent events

INTRODUCTION

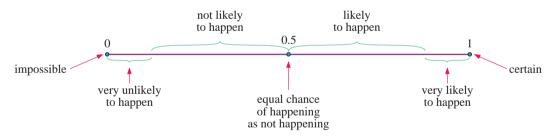
Consider these statements:

- "The Wildcats will probably win over the Lions on Friday."
- "It is unlikely that lightning will prevent play in the golf tournament."
- "I have a 50-50 chance of arriving tomorrow."

Each of these statements indicates a likelihood or chance of a particular event happening.

We can indicate the likelihood of an event happening in the future by using a percentage.

0% indicates we believe the event will not occur.100% indicates we believe the event is certain to occur.


All events can therefore be assigned a percentage between 0% and 100% (inclusive).

A number close to 0% indicates the event is **unlikely** to occur, whereas a number close to 100% means that it is **highly likely** to occur.

In mathematics, we usually write probabilities as either decimals or fractions rather than percentages. However, as 100% = 1, comparisons or conversions from percentages to fractions or decimals are very simple.

An impossible event which has 0% chance of happening is assigned a probability of 0. A certain event which has 100% chance of happening is assigned a probability of 1. All other events can be assigned a probability between 0 and 1.

The number line below shows how we could interpret different probabilities:

The assigning of probabilities is usually based on either:

- observing the results of an experiment (experimental probability), or
- using arguments of symmetry (theoretical probability).

PROBABILITY

To find the probability that an event will happen we use:

 $P(\text{event happens}) = \frac{\text{number of ways the event can happen}}{\text{total number of possible outcomes}}$

For example:

a coin has two sides ("heads", H and "tails", T) on which it could land. • It is equally likely to land on either side when flipped into the air.

 \therefore P("heads") = $\frac{1}{2}$ one way of getting an H two possible outcomes H or T

Note: We could also use a decimal (0.5) or a percentage (50%), but a fraction is the usual representation.

- A bag contains 4 red and 2 blue balls. One ball is selected at random.
 - $\therefore P(\text{red ball}) = \frac{4}{6}$ any one of 4 red balls could be selected there are 6 balls which could be selected

 - **Note:** We could reduce this fraction to $\frac{2}{3}$, but we often leave it as $\frac{4}{6}$ to relate to the context of 4 balls out of 6.

PROBABILITY BY EXPERIMENT

TERMINOLOGY

We should use suitable language to help us describe what we are doing and the results we expect and get.

- The **number of trials** is the total number of times the experiment is repeated.
- The **outcomes** are the different results possible for one trial of the experiment.
- The **frequency** of a particular outcome is the number of times that this outcome is • observed.
- The **relative frequency** of an outcome is the frequency of that outcome divided by the • total number of trials.

For example, when tossing a tin can in the air we notice that in 150 tosses it comes to rest on an end 29 times. We say:

- the number of trials is 150 and the outcomes are ends and sides
- the frequency of *ends* is 29 and the frequency of *sides* is 121
- the relative frequency of $ends = \frac{29}{150} \approx 0.193$ and • the relative frequency of $sides = \frac{121}{150} \approx 0.807$

EXPERIMENTAL PROBABILITY

Sometimes the only way of finding the probability of a particular event occurring is by experiment.

Tossing a tin can is one such example. The probability of a can of this shape coming to rest on its end is the relative frequency found by experimentation.

We say that: The estimated experimental probability is the relative frequency of the outcome.

We write: Experimental $P(end) \approx 0.193$

The larger the number of trials, the more confident we are that the experimental probability obtained is accurate.

Example 1	Self Tutor
e e	n if it falls heads 96 times in 200 tosses an it was rolled 300 times, a <i>six</i> occurred
 Experimental P(getting a head) = relative frequency of getting a head = ⁹⁶/₂₀₀ = 0.48 	b Experimental P(rolling a <i>six</i>) = relative frequency of rolling a <i>six</i> = $\frac{54}{300}$ = 0.18

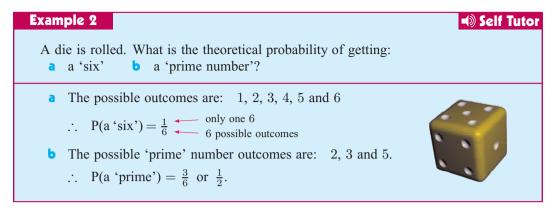
EXERCISE 19A

- 1 Find the experimental probability of rolling *an odd number* with a die if *an odd number* occurred 33 times when the die was rolled 60 times.
- 2 Clem fired 200 arrows at a target and hit the target 168 times. Find the experimental probability of Clem hitting the target.
- 3 Ivy has free-range hens. Out of the first 123 eggs that they laid she found that 11 had double-yolks. Calculate the experimental probability of getting a double-yolk egg from her hens.
- 4 Jackson leaves for work at the same time each day. Over a period of 227 working days, on his way to work he had to wait for a train at the railway crossing on 58 days. Calculate the experimental probability that Jackson has to wait for a train on his way to work.
- **5** Ravi has a circular spinner marked P, Q and R on 3 equal sectors. Find the experimental probability of getting a Q if the spinner was twirled 417 times and finished on Q on 138 occasions.
- Each time Claude shuffled a pack of cards before a game, he recorded the suit of the top card of the pack.

His results for 140 games were 34 Hearts, 36 Diamonds, 38 Spades and 32 Clubs.

Find the experimental probability that the top card of a shuffled pack is:

a a Heart **b** a Club or Diamond.


B

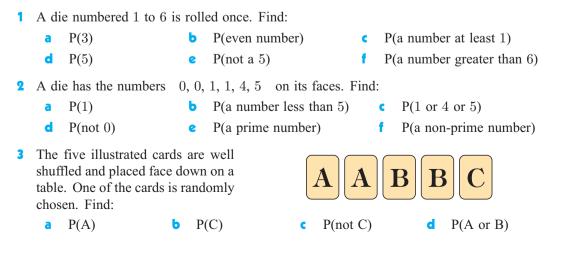
THEORETICAL PROBABILITY

The theoretical probability of an event happening is based on what we expect to occur.

Remember that: $P(\text{event happens}) = \frac{\text{number of ways the event can happen}}{\text{total number of possible outcomes}}$

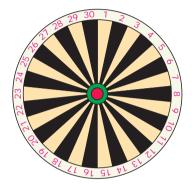
Self Tutor

Example 3


A bag contains 1 yellow, 2 green and 5 blue beads. One bead is chosen at random. Find the probability that it is:
a yellow b not yellow.
a P(yellow) = 1/(1+2+5) = 1/8 {1 in 8 beads are yellow}
b P(not yellow) = 2+5/8 = 7/8 {7 in 8 are not yellow}

Note: "not yellow" is the **complementary** event to "yellow" and so their probabilities must add to 1. Either "yellow" or "not yellow" *must* occur.

For any event E with **complementary** event E', P(E) + P(E') = 1 or P(E') = 1 - P(E).


In some situations it is easier to find P(E') than to find P(E). Once we have found P(E') we can then easily find P(E).

EXERCISE 19B

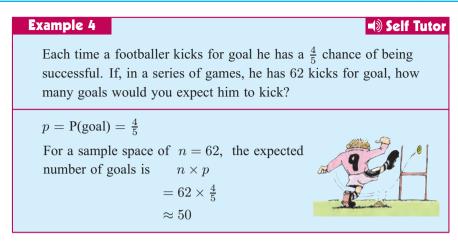
376 PROBABILITY (Chapter 19)

- 4 A bag contains 10 beads. 5 are white, 2 are red, 1 is blue, 1 is green and 1 is black. A bead is taken at random from the bag. Find:
 - a P(white) b P(blue) c P(not black).
- **5** A letter is randomly chosen from GENEVA.
 - **a** Find the probability that it is: **i** an E **ii** a Z.
 - **b** Given that the letter chosen first is a G and it is removed, what is the probability that a second randomly chosen letter is a vowel?
- 6 A dart board has 30 sectors, numbered 1 to 30. A dart is thrown towards the bulls-eye and misses in a random direction. Determine the probability that the dart hits:
 - a a multiple of 5
 - **b** a number between 7 and 13 inclusive
 - **c** a number greater than 18
 - **d** 15
 - e a multiple of 7
 - f an even number that is a multiple of 3.

7 What is the probability that a randomly chosen person has his or her next birthday:

- **a** on a Tuesday **b** on a weekend **c** in July **d** in January or February?
- 8 A square game board is divided into sixteen smaller squares. Fourteen of the squares are painted as shown.
 - a What colour(s) should the remaining squares be painted so that the probability of landing on red is $\frac{3}{8}$ and it is impossible to land on black?
 - What colour(s) should the remaining squares be painted so that the probability of landing on red is $\frac{5}{16}$ and the probability of landing on yellow is $\frac{1}{8}$?

red	yellow	red	blue
white	red	white	blue
red	blue	white	red
white	yellow	?	?


EXPECTATION

The probability of an event can be used to predict the number of times the event will occur in a number of trials.

For example, when rolling an ordinary die, the probability of rolling a '4' is $\frac{1}{6}$.

If we roll the die 120 times, we expect $120 \times \frac{1}{6} = 20$ of the outcomes to be '4's.

Suppose the probability of an event occurring is p. If the trial is repeated n times, the **expectation** of the event, or the number of times we expect it to occur, is np.

EXERCISE 19C

- 1 In a particular region in Africa, the probability that it will rain on any one day is 0.177. On how many days of the year would you expect it to rain?
- **2** a If 2 coins are tossed, what is the chance that they both fall heads?
 - **b** If the 2 coins are tossed 300 times, on how many occasions would you expect them to both fall heads?
- **3** A certain type of drawing pin, when tossed 400 times, landed on its back 144 times.
 - a Estimate the probability that it will land on its back if it is tossed once.
 - **b** If the drawing pin is tossed 72 times, how many "backs" would you expect?
- 4 A bag contains 5 red and 3 blue discs. A disc is chosen at random and then replaced. This is repeated 200 times. How many times would you expect a red disc to be chosen?
- **5** A die has the numbers 0, 1, 2, 2, 3 and 4 on its faces. The die is rolled 600 times. How many times might we expect a result of:
 - **a** 0

i.

- **c** 1, 2 or 3
- not a 4?
- 6 A charity fundraiser gets a licence to run the following gambling game: A die is rolled and the returns to the player are given in the 'pay table' alongside. To play the game \$4 is needed. A result of '6' wins \$10, so in fact you are ahead by \$6 if you get a '6' on the first roll.

2

b

Result	Wins
6	\$10
4, 5	\$4
1, 2, 3	\$1

- a What are your chances of playing one game and winning:
 - \$10 **ii** \$4 **iii** \$1?
- **b** Your *expected* return from throwing a 6 is $\frac{1}{6} \times \$10$. What is your expected return from throwing:
 - **i** a 4 or 5 **ii** a 1, 2 or 3 **iii** a 1, 2, 3, 4, 5 or 6?
- What is your expected *result* at the end of one game? Remember to include the cost of playing the game.
- **d** What is your expected result at the end of 100 games?

Remember that

PROBABILITIES FROM TABLED DATA

If we are given a table of frequencies then we use **relative frequencies** to estimate the probabilities of the events.

relative frequency =	frequency
relative frequency –	number of trials .

Example 5				🔊 Self Tu	ito
 people to discover what brand of shoe use. The results are shown in the table a Based on these results, what is the oprobability of a community member i Brite ii Cleano? 	probability of a community member using: i Brite ii Cleano?			Frequency 27 22 20 11 poor? Why?	
a We start by calculating the relative frequency for each brand.					
Experimental P(Brite) = 0.275	Brand	Frequency	Relativ	ve Frequency	
	Shine	27	(0.3375	
Experimental P(Cleano)	Brite	22		1.2750	

= 0.250 b Poor, as the sample size is

very small.

Brand	Frequency	Relative Frequency	
Shine	27	0.3375	
Brite	22	0.2750	
Cleano	20	0.2500	
No scuff	11	0.1375	
		•	

EXERCISE 19D

- 1 A marketing company was commissioned to investigate brands of products usually found in the bathroom. The results of a soap survey are given below:
 - a How many people were randomly selected in this survey?
 - Calculate the relative frequency of use of each brand of soap.
 - Using the results obtained by the marketing company, what is the experimental probability that the soap used by a randomly selected person is:

Brand	Freq	Relative Frequency
Silktouch	125	
Super	107	
Just Soap	93	
Indulgence	82	
Total		

Just Soap

Indulgence

Silktouch?

- 2 Two coins were tossed 489 times and the *number of heads* occurring at each toss was recorded. The results are shown opposite:
 - a Copy and complete the table given.
 - **b** Estimate the chance of the following events occurring:
 - i 0 heads ii 1 head iii 2 heads.

Outcome	Freq	Rel Freq
0 heads	121	
1 head		
2 heads	109	
Total		

- 3 At the Annual Show the toffee apple vendor estimated that three times as many people preferred red toffee apples to green toffee apples.
 - a If 361 people wanted green toffee apples, estimate how many wanted red.
 - **b** Copy and complete the table given.
 - Estimate the probability that the next customer will ask for:
 - i a green toffee apple ii a red toffee apple.
- 4 The tickets sold for a tennis match were recorded as people entered the stadium. The results are shown:
 - a How many tickets were sold in total?
 - **b** Copy and complete the table given.
 - If a person in the stadium is selected at random, what is the probability that the person bought a Concession ticket?
- 5 The results of a local Council election are shown in the table. It is known that 6000 people voted in the election.
 - a Copy and complete the table given.
 - **b** What is the chance that a randomly selected person from this electorate voted for a female councillor?

eople entered the stadium. The				
Ticket Type	Freq	Rel F	req	
Adult	3762		1	

1084

389

Councillor	Freq	Rel Freq
Mr Tony Trimboli	2167	
Mrs Andrea Sims	724	
Mrs Sara Chong	2389	
Mr John Henry		
Total		

Concession

Child

Total

REPRESENTING COMBINED EVENTS

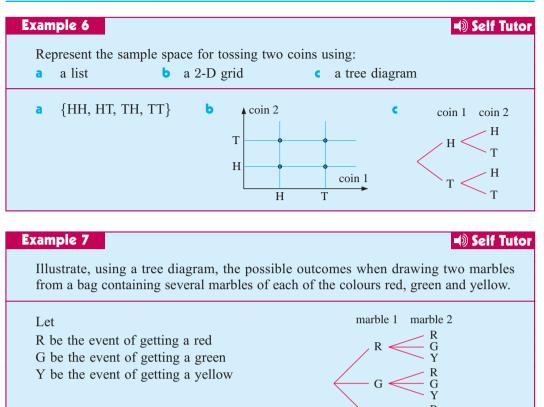
The possible outcomes for tossing two coins are listed below:

two heads

head and tail

tail and head

two tails

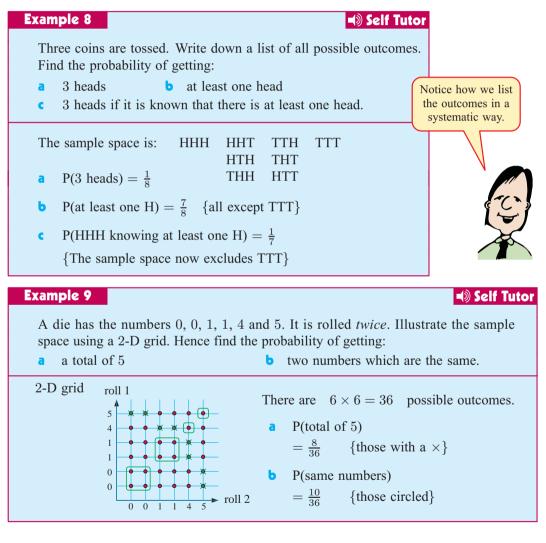

These results are the combination of two events: tossing coin 1 and tossing coin 2. If H represents a 'head' and T a 'tail', the sample space of possible outcomes is HH, HT, TH and TT.

A sample space is the set of all possible outcomes of an experiment.

Possible ways of representing sample spaces are:

- listing them
- using a 2-dimensional grid
- using a tree diagram
- using a Venn diagram

Colour	Freq	Rel Freq
Green	361	
Red		
Total		


EXERCISE 19E

- **1** List the sample space for the following:
 - a twirling a square spinner labelled A, B, C, D
 - **b** the sexes of a 2-child family
 - the order in which 4 blocks A, B, C and D can be lined up
 - d the 8 different 3-child families.
 - e spinning a coin i twice ii three times iii four times.
- **2** Illustrate on a 2-dimensional grid the sample space for:
 - a rolling a die and tossing a coin simultaneously
 - **b** rolling two dice
 - c rolling a die and spinning a spinner with sides A, B, C, D
 - d twirling two square spinners: one labelled A, B, C, D and the other 1, 2, 3, 4.
- 3 Illustrate on a tree diagram the sample space for:
 - a tossing a 5-cent and 10-cent coin simultaneously
 - **b** tossing a coin and twirling an equilateral triangular spinner labelled A, B and C
 - c twirling two equilateral triangular spinners labelled 1, 2 and 3 and X, Y and Z
 - d drawing two tickets from a hat containing a number of pink, blue and white tickets.
 - *e* drawing two beads from a bag containing 3 red and 4 blue beads.

4 Draw a Venn diagram to show a class of 20 students where 7 study History and Geography, 10 study History, 15 study Geography, and 2 study neither subject.

From the methods of showing sample spaces in the previous section, we can find the probabilities of combined events.

EXERCISE 19F

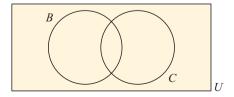
- **a** List all possible orderings of the letters O, D and G.
 - **b** If these three letters are placed at random in a row, what is the probability of:
 - spelling DOG II O appearing first III O not appearing first
 - iv spelling DOG or GOD?

382 PROBABILITY (Chapter 19)

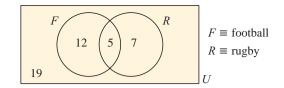
2 The Venn diagram shows the sports played by boys at the local high school.

A student is chosen at random. Find the probability that he:

- plays football а
- plays football or rugby C
- plays neither of these sports e
- f plays football, given that he is in at least one team
- plays rugby, given that he plays football. Q
- 3 Draw the grid of the sample space when a 10-cent and a 50-cent coin are tossed simultaneously. Hence determine the probability of getting:


Ь

two tails


Ь

- а two heads
- exactly one head d at least one head C
- A coin and a pentagonal spinner with sectors 1, 2, 3, 4 and 5 are tossed and spun respectively.
 - **a** Draw a grid to illustrate the sample space of possible outcomes.
 - **b** How many outcomes are possible?
 - Use your grid to determine the chance of getting:
 - i. a head and a 4 . a tail and an odd number
 - an even number a tail or a 3 iv
- 5 List the six different orders in which Alex, Bodi and Kek may sit in a row. If the three of them sit randomly in a row, determine the probability that:
 - Alex sits in the middle а
- Alex sits at the left end Ь
- Alex sits at the right end C
- Bodi and Kek are seated together d
- **a** List the 8 possible 3-child families, according to the gender of the children. 6 For example, BGB means "the first is a boy, the second is a girl, and the third is a boy".
 - **b** Assuming that each of these is equally likely to occur, determine the probability that a randomly selected 3-child family consists of:
 - i. all boys
 - boy, then girl, then girl
 - a girl for the eldest V
- 7 In a class of 24 students, 10 take Biology, 12 take Chemistry, and 5 take neither Biology nor Chemistry. Find the probability that a student picked at random from the class takes:
 - a Chemistry but not Biology
 - **b** Chemistry or Biology.

- all girls
- iv two girls and a boy
- vi at least one boy

8 a List, in systematic order, the 24 different orders in which four people P, Q, R and S may sit in a row.

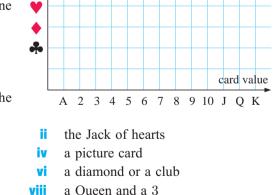
plays exactly one of these sports

plays both codes

- **b** Hence, determine the probability that when the four people sit at random in a row:
 - P sits on one end
 - **ii** Q sits on one of the two middle seats
 - **III** P and Q are seated together
 - **iv** P, Q and R are seated together, not necessarily in that order.
- **9** A pair of dice is rolled.
 - **a** Show that there are 36 members in the sample space of possible outcomes by displaying them on a grid.
 - **b** Hence, determine the probability of a result with:
 - one die showing a 4 and the other a 5
 - **ii** both dice showing the same result
 - iii at least one of the dice showing a result of 3

Ь

- iv either a 4 or 6 being displayed
- **v** both dice showing even numbers
- vi the sum of the values being 7.

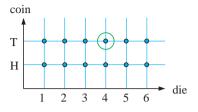


- 10 60 married men were asked whether they gave their wife flowers or chocolates for their last birthday. The results were: 26 gave chocolates, 21 gave flowers, and 5 gave both chocolates and flowers. If one of the married men was chosen at random, determine the probability that he gave his wife:
 - a flowers but not chocolates
- neither chocolates nor flowers
- c chocolates or flowers
- 11 List the possible outcomes when four coins are tossed simultaneously. Hence determine the probability of getting:
 - a all heads
 - d at least one tail
- exactly one head

two heads and two tails

- c more tails than heads
- **12 a** Copy and complete the grid alongside for the sample space of drawing one card from an ordinary pack.
 - **b** Use your grid to determine the probability of getting:
 - a Queen
 - a spade
 - ▼ a red 7
 - vii a King or a heart

longside suit


13 The medical records for a class of 28 children show whether they had previously had measles or mumps. The records show 22 have had measles, 13 have had measles and mumps, and 27 have had measles or mumps. If one child from the class is selected at random, determine the probability that he or she has had:

a measles **b** measles but not mumps **c** neither mumps nor measles.

С

MULTIPLYING PROBABILITIES

Consider tossing a coin and rolling a die simultaneously. We have already seen how to display the possible outcomes on a grid:

When asked "What is the probability of getting a tail and a 4?" we get an answer of $\frac{1}{12}$, since there are 12 possible outcomes but only one with the property that we want.

But
$$P(tail) = \frac{1}{2}$$
 and $P(a '4') = \frac{1}{6}$ and $\frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$

This suggests that $P(tail and a '4') = P(tail) \times P('4')$,

i.e., we **multiply** the separate probabilities.

In general:

If A and B are two events then $P(A \text{ and } B) = P(A) \times P(B)$.

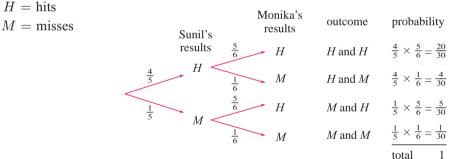
Example 10	Self Tutor
Sunil has probability $\frac{4}{5}$ of hitting a target If they both fire simultaneously at the tar a they both hit it	
a P(both hit)	b P(both miss)
= P(Sunil hits and Monika hits)	= P(Sunil misses and Monika misses)
$=$ P(Sunil hits) \times P(Monika hits)	$= P(Sunil misses) \times P(Monika misses)$
$=\frac{4}{5}\times\frac{5}{6}$	$=\frac{1}{5}\times\frac{1}{6}$
$=\frac{2}{3}$	$=\frac{1}{30}$

EXERCISE 19G

- 1 Janice and Lee take set shots at a netball goal from 3 m. From past experience, Janice throws a goal on average 2 times in every 3 shots, whereas Lee throws a goal 4 times in every 7. If they both shoot for goals, determine the probability that:
 - **a** both score a goal

- **b** both miss
- **c** Janice goals but Lee misses
- 2 When a nut was tossed 400 times it finished on its edge 84 times and on its side for the rest. Use this information to estimate the probability that when two identical nuts are tossed:

- a they both fall on their edges
- they both fall on their sides.


- Tei has probability $\frac{1}{3}$ of hitting a target with an arrow, while See has probability $\frac{2}{5}$. If they both fire at the target, determine the probability that:
 - both hit the target а
 - both miss the target
 - C Tei hits the target and See misses
- d Tei misses the target and See hits
- 4 A certain brand of drawing pin was tossed into the air 600 times. It landed on its back 243 times and on its side λ for the remainder. Use this information to estimate the probability that:
 - a one drawing pin, when tossed, will fall on its i back **side**
 - **b** two drawing pins, when tossed, will both fall on their backs
 - two drawing pins, when tossed, will both fall on their sides.

USING TREE DIAGRAMS

Tree diagrams can be used to illustrate sample spaces, provided that the alternatives are not too numerous.

Once the sample space is illustrated, the tree diagram can be used for determining probabilities.

Consider **Example 10** again. The tree diagram for this information is:

Notice that:

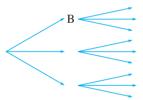
- The probabilities for hitting and missing are marked on the branches.
- There are *four* alternative paths and each path shows a particular outcome.
- All outcomes are represented and the probabilities of each outcome are obtained by **multiplying** the probabilities along that path.

Example 11

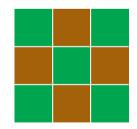
Stephano is not having much luck lately. His car will only start 90% of the time and his motorbike will only start 70% of the time.

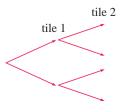
- Draw a tree diagram to illustrate this situation. a
- Ь Use the tree diagram to determine the chance that:
 - both will start Stephano has no choice but to use his car. 11

Self Tutor


a $C = \text{car starts}$ $M = \text{motorbike starts}$								
motorbil	outcome probability e							
car 0.7 M	$C \text{ and } M \qquad 0.9 \times 0.7 = 0.63$							
0.9 C M'	$C \text{ and } M' 0.9 \times 0.3 = 0.27$							
0.1 0.7 M	<i>C</i> ' and <i>M</i> $0.1 \times 0.7 = 0.07$							
0.3 M'	C' and M' $0.1 \times 0.3 = 0.03$							
	total 1.00							
b i P(both start) ii	P(car starts, but motorbike does not)							
= P(C and M)	= P(C and M')							
= 0.9 imes 0.7	= 0.9 imes 0.3							
= 0.63	= 0.27							

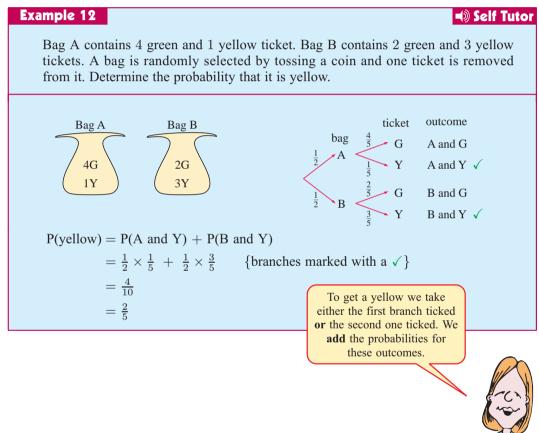
EXERCISE 19H


1 Suppose this spinner is spun twice:

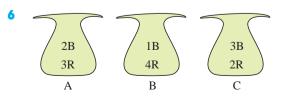


a Copy and complete the branches on the tree diagram shown.

- **b** What is the probability that blue appears on both spins?
- What is the probability that yellow appears on both spins?
- **d** What is the probability that different colours appear on both spins?
- What is the probability that blue appears on *either* spin?
- 2 In a particular board game there are nine tiles: five are green and the remainder are brown. The tiles start face down on the table so they all look the same.
 - a If a player is required to pick a tile at random, determine the probability that it is:
 - i green i brown.
 - Suppose a player has to pick two tiles in a row, replacing the first and shuffling them before the second is selected. Copy and complete the tree diagram illustrating the possible outcomes.
 - Using **b**, determine the probability that:
 - both tiles are green
 - **ii** both tiles are brown
 - tile 1 is brown and tile 2 is green
 - iv one tile is brown and the other is green.


3 The probability of rain tomorrow is estimated to be $\frac{1}{4}$. If it does rain, Rising Tide will start favourite with probability $\frac{2}{5}$

of winning. If it is fine he has a 1 in 20 chance of winning.

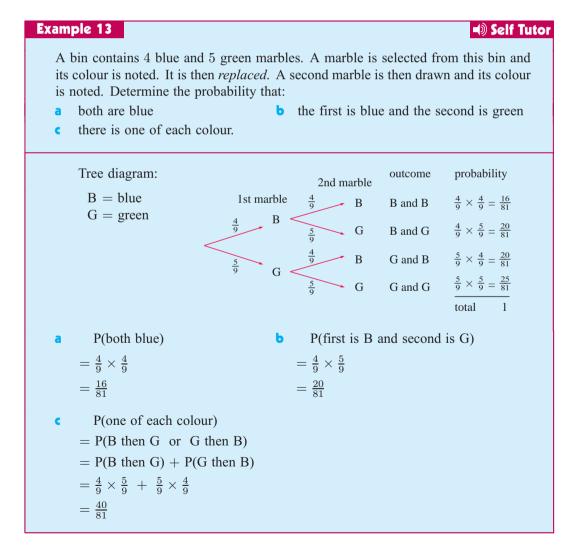

- a Display the sample space of possible results on a tree diagram.
- **b** Determine the probability that Rising Tide will win tomorrow.

4 Machine A makes 60% of the bottles produced at a factory. Machine B makes the rest. Machine A spoils 3% of its product, while Machine B spoils 4%. Determine the probability that the next bottle inspected at this factory will be spoiled.

5 Bag A contains 2 blue and 3 red discs and Bag B contains 5 blue and 1 red disc. A bag is chosen at random (by the flip of a coin) and one disc is taken at random from it. Determine the probability that the disc is red.

Three bags contain different numbers of blue and red marbles. A bag is selected using a die which has three A faces, two B faces, and one C face.

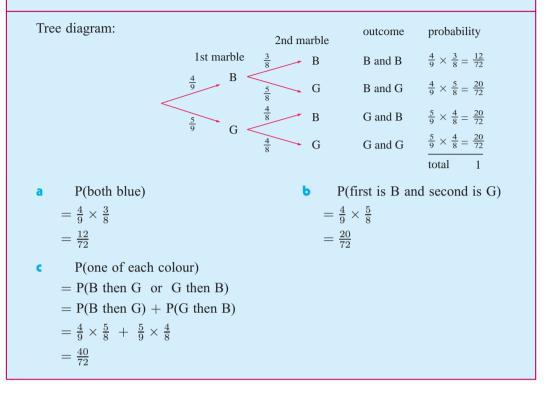
One marble is selected randomly from the chosen bag. Determine the probability that it is: **a** blue **b** red.


SAMPLING WITH AND WITHOUT REPLACEMENT

Sampling is the process of selecting an object from a large group of objects and inspecting it for some particular feature. The object is then either **put back** (sampling **with replacement**) or **put to one side** (sampling **without replacement**).

Sometimes the inspection process makes it impossible to return the object to the large group. Such processes include:

- Is the chocolate hard- or soft-centred? Bite it or squeeze it to see.
- Does the egg contain one or two yolks? Break it open and see.
- Is the object correctly made? Pull it apart to see.


The sampling process is used for Quality Control in industrial processes.

Example 14

Self Tutor

Consider **Example 13** again, but on this occasion the first marble is not replaced before the second is drawn. What are the probabilities now?

EXERCISE 191

- 1 A box contains 6 red and 3 yellow tickets. Two tickets are drawn at random (the first being *replaced* before the second is drawn). Draw a tree diagram to represent the sample space and use it to determine the probability that:
 - a both are red

- **b** both are yellow
- **c** the first is red and the second is yellow **d** one is red and the other is yellow
- **2** 7 tickets numbered 1, 2, 3, 4, 5, 6 and 7 are placed in a hat. Two of the tickets are taken from the hat at random *without replacement*. Determine the probability that:
 - a both are odd b both are even
 - **c** the first is even and the second is odd **d** one is even and the other is odd
- 3 Sadi has a bag of 8 sweets which are all identical in shape. 5 have orange centres and 3 have lemon centres. She selects one sweet at random, eats it, and then takes another, also at random. Determine the probability that:
 - a both sweets had lemon centres b both sweets had orange centres
 - the first had an orange centre and the second had a lemon centre
 - **d** the first had a lemon centre and the second had an orange centre

Add your answers to **a**, **b**, **c** and **d**. Explain why the answer must be 1.

4 A cook selects an egg at random from a carton containing 7 ordinary eggs and 5 double-yolk eggs. She cracks the egg into a bowl and sees whether it has two yolks or not. She then selects another egg at random from the carton and checks it.

Let S represent "a single yolk egg" and D represent "a double yolk egg".

- **a** Draw a tree diagram to illustrate this sampling process.
- **b** What is the probability that both eggs had two yolks?
- What is the probability that both eggs had only one yolk?

Freda selects a chocolate at random from a box containing 8 hard-centred and 11 soft-centred chocolates. She bites it to see whether it is hard-centred or not. She then selects another chocolate at random from the box and checks it.

Let H represent "a hard-centred chocolate" and S represent "a soft-centred chocolate".

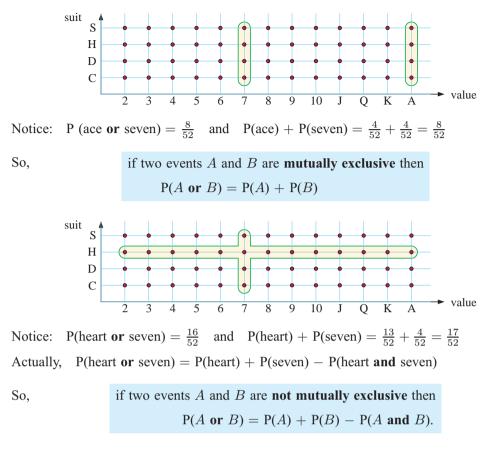
- a Draw a tree diagram to illustrate this sampling process.
- **b** What is the probability that both chocolates have hard centres?
- What is the probability that both chocolates have soft centres?
- A sporting club runs a raffle in which 200 tickets are sold. There are two winning tickets which are drawn at random, in succession, without replacement. If Adam bought 8 tickets in the raffle, determine the probability that he:
 - a wins first prize b does not win first prize
 - wins second prize *given that* he did not win first prize.

MUTUALLY EXCLUSIVE AND NON-MUTUALLY EXCLUSIVE EVENTS

Suppose we select a card at random from a normal pack of 52 playing cards. Consider carefully these events:

Event X: the card is a heart *Event Y:* the card is an ace *Event Z:* the card is a 7

Notice that:


5

- X and Y have a common outcome: the Ace of hearts
- X and Z have a common outcome: the 7 of hearts
- Y and Z do not have a common outcome.

When considering a situation like the one above:

- if two events have no common outcomes we say they are **mutually** exclusive or disjoint
- if two events have common outcomes they are not mutually exclusive.

EXERCISE 19J

1 An ordinary die with faces 1, 2, 3, 4, 5 and 6 is rolled once. Consider these events:

A:	getting a 1	B:	getting a 3
----	-------------	----	-------------

- C: getting an odd number D: getting an even number
- E: getting a prime number F: getting a result greater than 3.

a List all possible pairs of events which are mutually exclusive.

b Find:

1	P(B or D)	ii -	P(D or E)		P(A or E)
iv	P(B or E)	V	P(C or D)	vi	P(A or B or F)

2 A coin and an ordinary die are tossed simultaneously.

- **a** Draw a grid showing the 12 possible outcomes.
- **b** Find the probabilities of getting: **i** a 'head' and a 5 **ii** a 'head' or a 5
- **c** Check that: P(H or 5) = P(H) + P(5) P(H and 5).
- **3** Two ordinary dice are rolled.
 - **a** Draw a grid showing the 36 possible outcomes.
 - **b** Find the probability of getting: **i** a 3 and a 4 **ii** a 3 or a 4
 - **c** Check that: P(3 or 4) = P(3) + P(4) P(3 and 4)

Κ

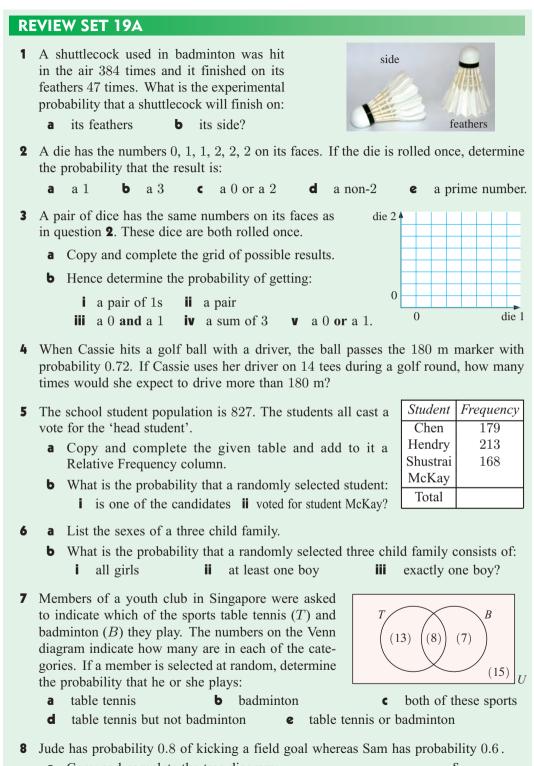
INDEPENDENT EVENTS

Two events are **independent** if one event does not affect the outcome of the other event.

Examples of independent events are:

- rolling a '6 with a die' and getting a 'head with a coin'
- choosing a 'red bead from a bag' and 'a blue bead from a second bag'
- choosing a '7 from a pack of cards' and 'it is raining'.

If events A and B are independent then $P(A \text{ and } B) = P(A) \times P(B).$


EXERCISE 19K

- 1 A die is numbered 2, 3, 3, 3, 4, 5. This die is rolled and an ordinary coin is tossed. Find the probabilities of getting:
 - a a 2 and a tail b a 3 and a head c at least 3, and a head
- **2** A die numbered 1 to 6 is rolled twice. Without using a 2-dimensional grid, find:
 - a P(a 6 and a 6) b P(at least 3 and a 4 in that order)
 - **c** P(at least 3 both times) **d** P(a 3 and a 4 in either order)
- 3 In Milford Sound in New Zealand it rains on average 328 days a year. Determine the probability of not getting rain on:
 - a two successive days b three successive days.
- 4 If a coin is tossed 4 times, what is the probability of getting the sequence:
 - a HTHT b THTH c HHTT?
- 5 A business has three photocopiers, and the probabilities of them malfunctioning on any one day are 5%, 10%, and 14% respectively. What is the probability that on any given day:
 - a all function b none function c at least one functions?
- When two shooters fire at a target they hit it 90% and 80% of the time respectively. If they both fire simultaneously at a target, what is the chance that:
 - a both hit it b both miss it c only one hits it?

WHAT ARE YOUR SURVIVAL PROSPECTS?

Areas of interaction: Environments/Health and social education

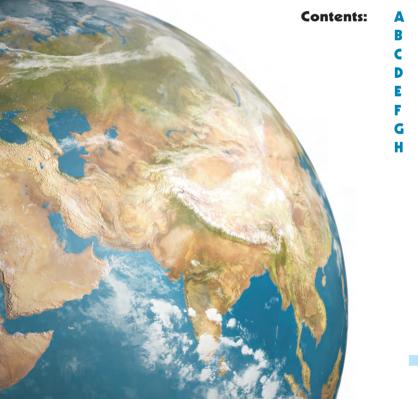
0.8 J <

- **a** Copy and complete the tree diagram:
 - J is the event 'Jude kicks a goal'
 - S is the event 'Sam kicks a goal'.

- **b** If they both have a kick for goal, what is the likelihood that:
 - i they both fail to kick a goal ii at least one of them kicks a goal?

REVIEW SET 19B

- **1** When spinning two coins, what is:
 - **a** the probability of spinning two heads
 - **b** the expectation of spinning two heads from 88 spins?
- **2** A die is numbered 1, 2, 2, 2, 3, 3. This die is rolled and a coin is tossed. Find the probability of getting:
 - **a** a 3 and a 'tail' **b** a 'head' and at least a 2?
- **3** If a pair of dice like the one in question **2** are rolled once only:
 - a draw a 2-dimensional grid to display the possible outcomes
 - **b** hence, find the chance of getting:
 - i a pair of 3s ii a 1 and a 2 iii a 1 or a 3
- **4 a** What is meant by saying that 'two events are independent'?
 - **b** Give an example of two events which are:
 - i independent ii not independent.
- **5** A biased coin falls heads 60% of the time. If the coin is tossed 3 times, what is the likelihood (probability) that it falls:
 - a HHH b TTT c THT?

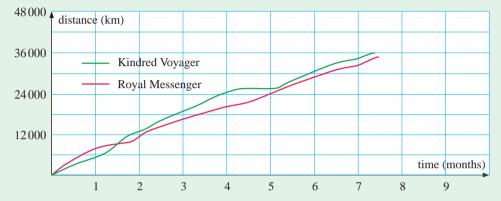

6 An ordinary die and a coin are tossed simultaneously.

- **a** Draw a grid which shows all possible outcomes.
- **b** Find the probability of getting:
 - i a tail and a 2 ii a tail or a 2.
- Check that: P(T or 2) = P(T) + P(2) P(T and 2).
- 7 A bag contains 4 red beads and 3 green beads. Two beads are randomly selected from the bag *without replacement*.
 - **a** Draw a fully labelled tree diagram showing possible outcomes and assign probabilities to its branches.
 - **b** What is the probability of getting:
 - i two green beads ii one of each colour?
- 8 In a group of 42 students, 27 study Science and 28 study French. 3 study neither of these two subjects.
 - **a** Display this information on a Venn diagram.
 - **b** If a student is randomly selected from the group, determine the probability the student studies:
 - i both Science and French ii Science or French
 - iii Science, but not French iv exactly one of Science or French.

Functions, graphs and notation

Chapter

Graphical interpretation

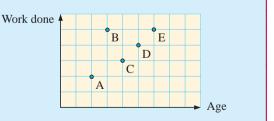

- Interpreting line graphs
- Conversion graphs
- D Time series data
- E Step graphs
- F Mappings
- G Functions
- H Function notation

OPENING PROBLEM

Graphs show information about what has happened in the past. They are sometimes useful in helping us predict what might happen in the future.

For example, the following graph shows the progress of two yachts in a 'round-the-world' challenge, starting and finishing in Plymouth, England. The total length of the race is 48 000 km.

- How can you describe the progress of the two vessels from the graph?
- Can you suggest what it means when there are horizontal stretches on the graph?
- Can you predict how long it will take to finish the race? Can you predict who will win?

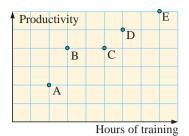

GRAPHICAL INTERPRETATION

Graphs are of little use to us if we are unable to interpret them. We need to understand how they are constructed and be able to identify any trends in the data.

Example 1

The given graph shows the ages and work done by 5 employees.

- a Which person is the oldest?
- Who has done the most work?
- Who has done the least work?



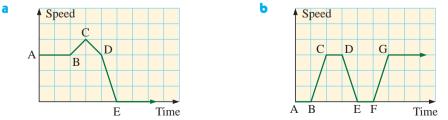
Self Tutor

- **a** E has the largest value on the age axis \therefore E is the oldest.
- B and E are the highest on the work done axis.
 B and E have done the most work.
- A is the lowest on the work done axis.
 ∴ A has done the least work.

EXERCISE 20A

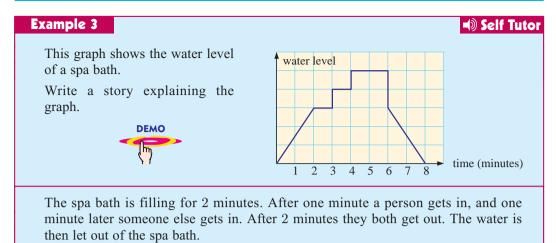
- 1 The given graph shows productivity for various hours of training for five employees.
 - a Who received the most hours of training?
 - Who is the most productive?
 - c Are there employees with equal productivity?
 - **d** Comment on the general trend of this graph.

2 The workers of five factories were surveyed on their average hours of sleep. The results were graphed with the number of industrial accidents.

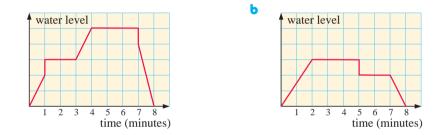

nber	of i	ndus	trial	accio	lents		
A							
		В	С				
				D			
						Е	
	nber A	A	A	A	A B C	A B C	D

Average hours of sleep

- **a** Which factory had the most accidents?
- **b** Which factory had employees with the least number of hours of sleep?
- Did any factories have the same number of accidents?
- **d** Comment on the relationship between average hours of sleep and the number of industrial accidents.


Example 2	Self Tutor
Josie delivers letters and parcels in her 'Pick up and deliver' business.	Speed
The graph shows a short time interval dur- ing her day.	A
Write a short story which could describe what has happened in this interval.	C D Time
Josie is travelling at a constant speed.	{shown by AB}
She slows to a stop.	{shown by BC}
She delivers a parcel.	{shown by CD, no speed}
She then increases speed to her usual rate.	{shown by DE}
She resumes her normal constant speed.	{shown by E}

3 After examining **Example 2**, write a short story about one of Josie's delivery intervals for:



4 Make up a story of your own similar to **Example 2** and draw the corresponding graph.

398 FUNCTIONS, GRAPHS AND NOTATION (Chapter 20)

5 Write a story for each of the following graphs showing the water level in a spa bath:

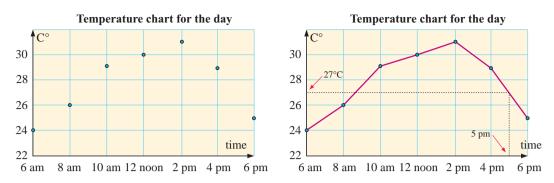
6 Draw graphs to illustrate the following stories:

- **a** A spa bath is run for 3 minutes. A boy gets in and stays in for 2 minutes, then his brother gets in. They both get out after a further 3 minutes. The spa bath is emptied and this takes 2 minutes.
- A spa bath is run for 2 minutes. Two people get in and after 3 minutes one gets out. After 2 minutes the other person gets out and the spa bath is emptied, taking 2 minutes.
- B

a

INTERPRETING LINE GRAPHS

LINE GRAPHS


Line graphs are used to show variations between two quantities.

- An upward sloping line (as we look from left to right) indicates an increasing quantity.
- A downward sloping line indicates a decreasing quantity.

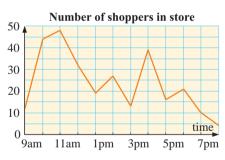
The following two graphs display the same information.

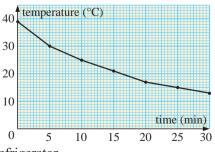
The first is a **dot graph** or **dot plot** which shows the temperatures at hourly intervals during a 12 hour period, from 6 am to 6 pm.

The second is a **line graph** where the dots are connected by straight lines.

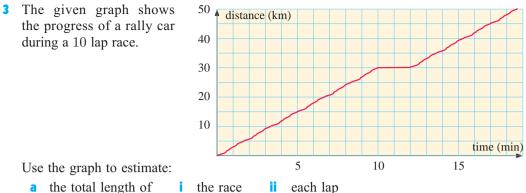
In reality, the lines between the dots would almost certainly not be straight, but because we do not have more accurate data, the straight lines give an **estimate** of what happened.

From both graphs we can read off information such as:


- The highest temperature recorded for the day was at 2 pm.
- The lowest temperature recorded was at 6 am.
- The temperature increased from 6 am to 2 pm and then decreased until 6 pm.
- The temperature at 8 am was 26° C.


For this particular information, the line graph is more useful than the point graph because **in-between values** can be **estimated**.

For example, the temperature at 5 pm can be estimated as 27° C (as shown by the dotted line on the line graph).

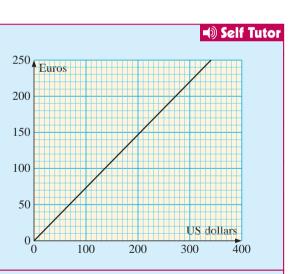

EXERCISE 20B

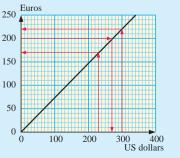
- Managers of a retail store conduct a customer count to help them decide how to roster sales staff. The results are shown in the line graph:
 - At what time was there the greatest number of people in the store?
 - At what time was there the lowest number of people in the store?
 - **c** Describe what happened in the store between 3 pm and 4 pm.
 - **d** Use the graph to estimate the number of people in the store at 9.30 am.
 - What is wrong with this graph?
- 2 When a bottle of soft drink was placed in a refrigerator, its temperature was measured at 5-minute intervals and the results were graphed. From the graph:
 - a determine the temperature of the liquid when it was first placed in the refrigerator
 - b find how long it took for the temperature to drop to 20°C
 - c find the temperature after 10 minutes in the refrigerator
 - **d** find the fall in temperature during **i** the first 15 minutes **ii** the next 15 minutes.

400 FUNCTIONS, GRAPHS AND NOTATION (Chapter 20)

11 each lap

- the time required for each lap Ь
- the number of laps completed before the car went into the pits for new tyres and C more fuel
- **d** the time the car spent in the pits
- the overall average speed of the car for the whole race. e


CONVERSION GRAPHS


Conversion graphs are line graphs which enable us to convert from one quantity to another.

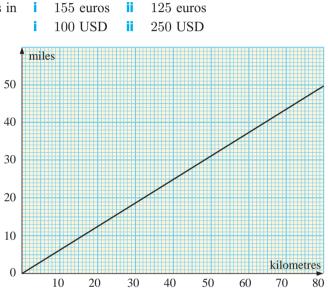
Example 4

The graph alongside shows the relationship between US dollars and euros on a particular day. Determine:

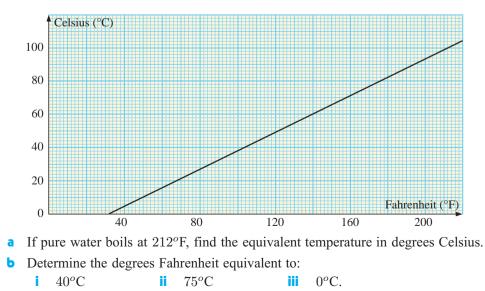
- a the number of US dollars in 200 euros
- **b** the number of euros in 300 USD
- whether a person with 230 USD could afford to buy an item valued at 175 euros.
- 200 euros is equivalent to 270 USD. а
- Ь 300 USD is equivalent to 220 euros.
- C 230 USD is equivalent to 170 euros. : cannot afford to buy the item.

CURRENCY TRENDS

ACTIVITY


Over a period of a month, collect the currency conversions which compare the euro to the currency of another country. These are available from the daily newspaper or from the internet. If using the internet, search for 'currency conversion'.

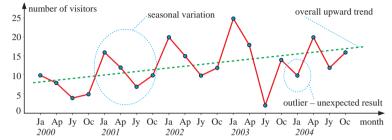
Graph your results, updating your graph each day.


EXERCISE 20C

- **1** Use the currency conversion graph in **Example 4** to estimate:
 - a the number of US dollars in
 - the number of euros in
- 2 The graph shows the relationship between distances measured in miles and kilometres. Convert:
 - a i 45 km to miles ii 28 km to miles

i 48 miles to km**ii** 30 miles to km.

3 Fahrenheit and Celsius (Centigrade) are two different ways of measuring temperature. The graph below shows how to convert from one unit of measure to the other.



TIME SERIES DATA

Data that is collected over time and at regular intervals is often referred to as **time series** data.

This data is usually presented on a **line graph** with time intervals on the horizontal axis and the variable being measured on the vertical axis.

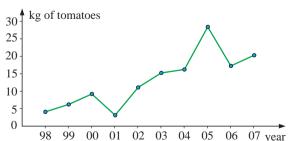
For example, the following graph shows the number of tourists at Hawkins Farmstay over a five year period from 2000 to 2005 recorded at 3 month intervals.

A time series is used to identify trends or patterns in the data over a period of time.

These trends fall into three main types:

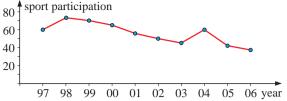
- short-term variations where the graph changes over a short time span
- long-term variations such as seasonal fluctuations
- **overall trends** where the general shape of the graph may be increasing, decreasing or staying approximately the same over the whole time span.

From the Hawkins Farmstay graph we note that the total number of visitors is increasing overall.


However, there are clear seasonal variations as nearly every year there are more visitors in January and less in July.

There is a short term variation shown here with the data in January 2004. How could this be explained?

A time series graph may show **outliers**. They are data values that do not fit the identifying patterns. On the graph they are either above or below the expected pattern. In the graph above, January 2004 would be an outlier, because January usually has the greatest number of visitors for the year.


EXERCISE 20D

- 1 The time series graph alongside shows the number of kilograms of tomatoes produced from Sam's glasshouse each year over a 10-year period.
 - a What is the overall trend for the number of kgs of tomatoes that Sam's glasshouse is producing?

- **b** Identify any outliers and give an explanation as to what may have caused them.
- Predict how many kgs of tomatoes that Sam will have in 2008. How accurate do you think your prediction will be?

2 This data shows the percentage of students in a school who participated in sport on a regular basis over a ten year period.

- a What long-term trend does this graph show?
- **b** Identify one outlier and explain what might have happened.
- What health concerns may arise in future as a result of the trend shown?
- 3 The data below shows the total rainfall per month in my backyard over a year:

Month	J	F	М	А	М	J	J	А	S	0	Ν	D
Rainfall (mm)	10	29	4	5	25	35	40	32	24	14	10	6

- **a** Draw a line graph of this data.
- **b** Describe any patterns you notice about the rainfall and explain each of them.
- c Identify any outliers and attempt to explain them.
- 4 Heather's school bus was supposed to arrive at 7.30 am each day. It was always late so Heather decided to record the minutes it was late over a month. She wanted to see if there were any patterns in order to predict if she could sleep in on some days. Her results are as follows:

- **a** Draw a line graph of this data.
- **b** Identify any patterns that you see. Write a story that may explain one of these.
- On which days do you think Heather could sleep in, and for how long?

STEP GRAPHS

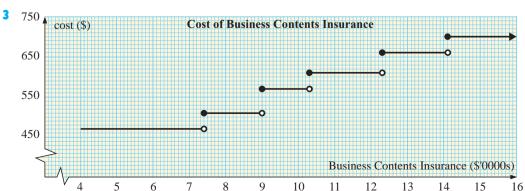
A step graph is another form of a line graph. It shows distinct steps where the graph 'jumps'.

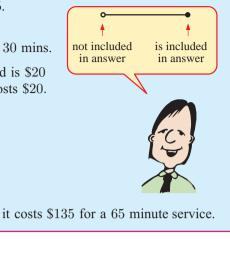
Example 5

Frank and Shirley have a TV repair service and their charges are as shown in the given graph.

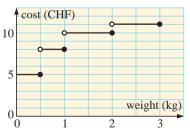
- a Use the graph to find the cost of a repair service taking 38 minutes.
- Find the maximum length of a service costing \$75.
- If the call out fee is \$35, how much do they charge for each 15 minutes or part thereof?

d Without extending the graph, find the cost of a 65 minute service.


- a For > 30 mins but ≤ 45 mins it costs \$95.
 ∴ a 38 minute service costs \$95.
- **b** For a \$75 service, the maximum period is 30 mins.
- C The gap between each step is the same and is \$20
 ∴ each extra 15 mins (or part thereof) costs \$20.
- $\begin{array}{c|cccc} \textbf{d} & Time & Cost(\$) \\ & 0 & 35 \\ & 0 < t \leqslant 15 & 55 \\ & 15 < t \leqslant 30 & 75 \\ & 30 < t \leqslant 45 & 95 \\ & 45 < t \leqslant 60 & 115 \\ & 60 < t \leqslant 75 & 135 \end{array}$

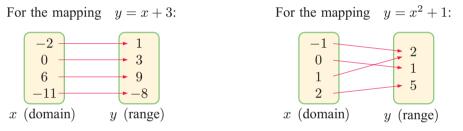

EXERCISE 20E

- 1 The graph shows Car Parking Fees for Tom's Car Parking Service.
 - **a** Find the cost of parking for:
 - $1\frac{1}{2}$ hours $1\frac{1}{2}$ hours
 - 5 hours 3 mins.
 - What is the most time a car can be parked for:i \$4 ii \$16?
 - What is the range of times a car can be parked for \$12?
- 2 A business in Switzerland frequently sends small parcels to the UK. The rates are given by the step graph alongside.


· · .

- a Find the cost of sending a parcel weighing:i 325 grams ii 1.2 kg.
- What is the heaviest parcel that could be sent for CHF10?
- Write out the information given in the graph in table form.

The graph gives the cost of insuring the assets of a business including furniture, photocopiers, computers, and so on.

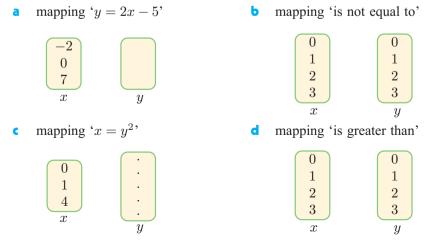

- a Find the cost of insuring the assets for: i \$65000 ii \$106000.
- **b** What is the range in the value of assets which could be insured for a cost of \$660?

F MAPPINGS	ļ
A mapping is used to map the members or elements of one set called the domain,	
onto the members of another set called the range .	

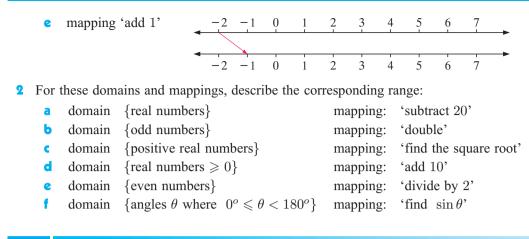
In particular we can define:

- The domain of a mapping is the set of elements which are to be mapped.
- The **range** of a mapping is the set of elements which are the result of mapping the elements of the domain.

Consider these two mappings:

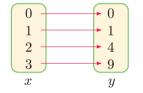


y = x + 3 or 'add 3 onto x' is called a **one-one** mapping because every element in the domain maps onto one and only one element in the range.


 $y = x^2 + 1$ or 'square x and then add 1' is called a **many-one** mapping because more than one element in the domain maps onto the same element in the range.

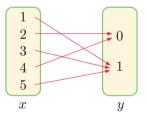
EXERCISE 20F

1 Copy and complete the following 'sets and mappings' diagrams, and state whether the mapping is one-one, many-one, one-many or many-many.

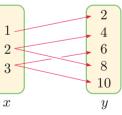

406 FUNCTIONS, GRAPHS AND NOTATION (Chapter 20)

FUNCTIONS

We can also use set notation to describe mappings.

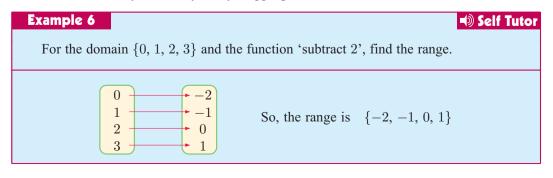

For example, consider the set $\{0, 1, 2, 3\}$ under the mapping 'square the number'.

 $\begin{cases} 0, 1, 2, 3 \} & \text{maps onto} \quad \{0, 1, 4, 9 \} \\ \text{We say that:} \quad \{0, 1, 2, 3\} & \text{is the domain and} \\ \{0, 1, 4, 9 \} & \text{is the range.} \end{cases} \\ \text{We could write this mapping as} \quad x \mapsto x^2 \\ \end{cases}$

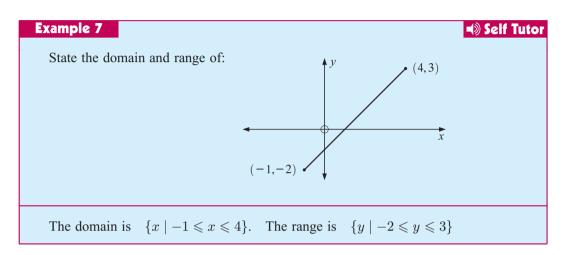

This is a one-one mapping, and is an example of a *function*.

A **function** is a mapping in which each element of the domain maps onto *exactly one* element of the range.

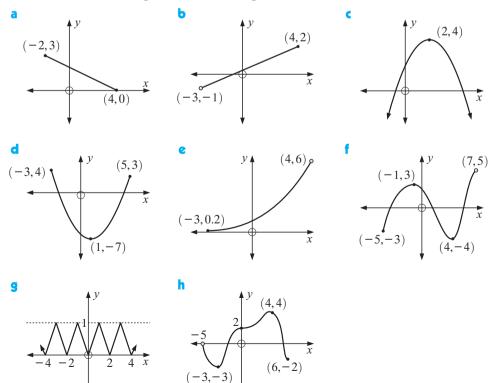
С


is an example of a **many-one** function

is an example of a **one-many** mapping. This is **not a function**

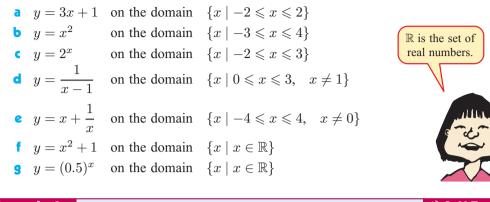

Note: • Functions can only be one-one or many-one mappings.

• One-many and many-many mappings are *not* functions.



EXERCISE 20G

- 1 Find the range for the functions with domain D:
 - **a** $D = \{-1, 0, 2, 7, 9\},$ function: 'add 3'.
 - **b** $D = \{-2, -1, 0, 1, 2\}$, function: 'square and then divide by 2'.
 - $D = \{x \mid -2 < x < 2\}$, function: 'multiply x by 2 then add 1'.
 - d $D = \{x \mid -3 \leq x \leq 4\}$, function: 'cube x'.



2 Find the domain and range for the following functions:

3 For each of these functions:

use a graphics calculator to help sketch the function find the range.

Example 8

Self Tutor

Find the function which connects the following domains and ranges:

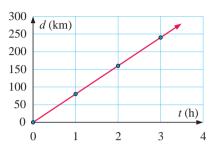
i.

ii.

- **a** $D = \{1, 2, 3, 4, 5\}, R = \{5, 6, 7, 8, 9\}$ **b** $D = \{0, 1, 2, 3, 4\}, R = \{4, 7, 10, 13, 16\}$ The *y*-values are increasing Ь а xyxy $1 \longrightarrow 5$ $0 \rightarrow 4$ by 3 as the x-values increase $2 \rightarrow 6$ 1 - 7 by 1. $3 \rightarrow 7$ 2 - 10 This suggests y = 3x + k3 - 13 4 ---- 8 But, when x = 0, y = 4 $5 \rightarrow 9$ 4 --- 16 $\therefore 4 = 3(0) + k$ The function is u = x + 4 $\therefore k=4$ as 4 is added to each x value So, y = 3x + 4, $x \in D$. to get the *y*-value,
 - i.e., y = x + 4, $x \in D$.

4 Find the function which connects the following domains and ranges:

a $D = \{0, 1, 2, 3\}, R = \{5, 6, 7, 8\}$ b $D = \{2, 3, 4, 5\}, R = \{9, 10, 11, 12\}$ c $D = \{1, 2, 3, 4, 5\}, R = \{5, 4, 3, 2, 1\}$ d $D = \{1, 2, 3, 4, 5\}, R = \{1, 4, 9, 16, 25\}$ e $D = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}, R = \{0, 1, 4, 9, 16\}$ f $D = \{0, 1, 4, 9, 16, 25\}, R = \{0, 1, 2, 3, 4, 5\}$ g $D = \{1, 2, 3, 4, 5\}, R = \{3, 5, 7, 9, 11\}$ h $D = \{1, 2, 3, 4, 5\}, R = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}\}$ i $D = \{2, 3, 4, 5, 6\}, R = \{-1, 2, 5, 8, 11\}$ j $D = \{3, 4, 5, 6, 7\}, R = \{1, 2, 5, 10, 17\}$ k $D = \{0, 1, 2, 3, 4, 5\}, R = \{1, 2, 5, 10, 17\}$ m $D = \{1, 2, 3, 4, 5\}, R = \{40, 37, 34, 31, 28\}$


FUNCTION NOTATION

Consider the relationship between the distance travelled by a car, d km, and the time taken, t hours. The distance the car travelled was recorded each hour, and tabulated and graphed as shown:

t (hours)	0	1	2	3
<i>d</i> (km)	0	80	160	240

An equation connecting d and t is $d = 80t$ for $t \ge 0$.
We say the distance travelled is a function of the time taken.

We could write d as f(t) or d = f(t). read as a 'function of t' or 'f of t'

As the graph of d against t is a straight line, we have an example of a linear function. In this case f(t) = 80t.

If we wish to find the distance travelled after 5 hours, we substitute t = 5 into this function. We write $f(5) = 80 \times 5 = 400$,

and since d = f(t), we find the distance d = 400 km.

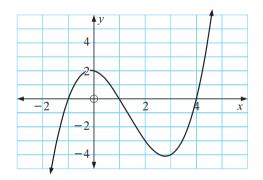
Other letters such as g, h, F, etc. are also used to represent functions.

If we are considering two different functions we use two different letters to represent them.

- Note: $f(x) = x^2 + 1$ can also be represented by $f: x \mapsto x^2 + 1$.
 - $f(2) = 2^2 + 1 = 4 + 1 = 5$

means that 2 in the domain is mapped onto 5 in the range and the graph of the function contains the point (2, 5).

Exan	nple 9	Self Tutor
	$\begin{array}{ll} f(x)=5x+2 & \text{and} \\ f(6) \end{array}$	$g(x) = x^2 - 1$ find and interpret: b $g(-3)$
a	f(6) = 5(6) + 2 = 30 + 2 = 32	This means that 6 is mapped onto 32 and $(6, 32)$ lies on the graph of the function f .
b	$g(-3) = (-3)^2 - 1 = 9 - 1 = 8$	This means that -3 is mapped onto 8 and $(-3, 8)$ lies on the graph of the function g .

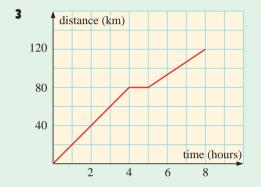

EXERCISE 20H

1 a If f(x) = 3x - 7, find and interpret f(5). b If $g(x) = x - x^2$, find and interpret g(3). c If $H(x) = \frac{2x + 5}{x - 1}$, find and interpret H(4).

410 FUNCTIONS, GRAPHS AND NOTATION (Chapter 20)

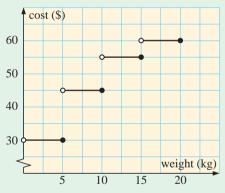
2	a	If	f(x) = 5 - 4x, find:	i.	f(0)	ii	f(3)	iii	f(-4)	iv	f(100)
	b	If	$E(x) = 2^x$, find:	i.	E(0)	ii	E(1)		E(5)	iv	E(-2)
	c	If	$h(x) = \frac{x}{x-3}$, find:	i	h(2)	ii	h(5)	iii	h(10)	iv	h(-7)
3	a	If	$f(x) = 5 - x^2$, find:	i.	f(4)			ii	x when	f(z)	x) = 1.
	b	If	$g(x) = 3^x$, find:	i,	g(4)			ii	a when	g(a	$u)=\frac{1}{9}.$
	C	If	$m(x) = x^2 - 3$, find:	i,	x when	m	(x) = 0	ii.	x when	m(x) = 1.
	d	If	f(x) = 3x + 5 and g(x) = 3x + 5	<i>x</i>) =	$=x^2$, fin	nd x	when	f(x)	=g(x).		

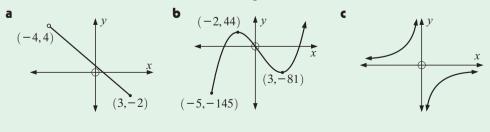
- 4 The value of a car t years after purchase is given by $V(t) = 35\,000 3000t$ euros.
 - **a** Find V(0) and interpret its meaning.
 - **b** Find V(3) and interpret its meaning.
 - Find t when V(t) = 5000 and explain what this represents.
- 5 Sketch the graph of y = f(x) where f(x) = 2x 1 on the domain $\{x \mid -3 \leq x \leq 1\}$. State the range of this function.
- Sketch the graph of y = g(x) where g(x) = 2^{-x} on the domain {x | -2 ≤ x ≤ 2}. State the range of this function.
- 7 The graph of a function is given alongside. Use the graph to:
 - a find f(2)
 - **b** estimate x, to 1 decimal place, when f(x) = -3.



REVIEW SET 20A

- **1** Five hockey clubs were surveyed on their players' average hours of general fitness training and the number of injuries to players during matches.
 - **a** Which club had the lowest number of injuries?
 - **b** Which club's players had the lowest number of hours of fitness training?
 - Write a sentence describing the general trend of the graph.

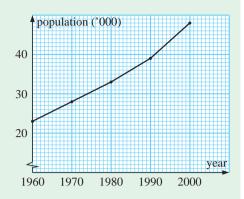

- **2** The graph alongside shows the price of a minerals exploration stock on the Australian share market during the course of a day.
 - **a** At what time was the price highest?
 - b i When was the price lowest?ii Estimate the day's lowest price.
 - During which time interval did the price rise by the greatest amount?



The graph shows a typical day's journey for Miguel on his long-distance cycling tour.

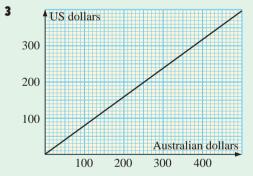
- a How far did Miguel cycle?
- b How long did he take to ride the:i first 40 kmii last 40 km?
- If Miguel set out at 9 am, what time did he stop for lunch?
- **d** Find Miguel's average speed for the:
 - i whole trip ii first 4 hours.
- 4 The graph shows the charges according to weight of a parcel delivery company.
 - **a** What is the company's minimum charge?
 - **b** What is the charge for a parcel weighing 10.2 kg?
 - Andrea used the company to send two parcels to the same address, two weeks apart. The parcels weighed 7.5 kg and 4 kg. How much would she have saved if she had combined the items in one parcel?

5 For these functions, find the domain and range:

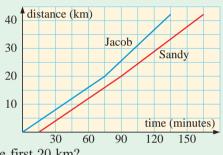


6 a If f(x) = 5x + 2, find and interpret f(-3). b If $f(x) = 4 - x^2$, find: i f(2) ii f(-5).

c If $f(x) = 2^x$, find: **i** f(5) **ii** x when $f(x) = \frac{1}{8}$.


REVIEW SET 20B

- **1** The graph shows the population of a city over the period 1960-2000.
 - **a** Use the graph to estimate the population in:
 - **i** 1960 **ii** 1985
 - **b** Estimate the year when the population passed 40 000.
 - During which decade did the population grow by the largest amount?



2 The graph shows the journeys of two competitors in a marathon.

- **a** Use the graph to estimate the length in kilometres of a marathon race.
- **b** Because there were so many runners in the event, not everyone was able to start at the same time. If Jacob started at 8.15 am, what time did Sandy start?
- How long did each of the runners take to complete the course?
- d What was Jacob's average speed over the first 20 km?

4 The graph shows the quarterly turnover of a department store. Identify *two* trends in the data and offer a possible explanation for them.

The graph alongside shows the relationship between Australian dollars and US dollars on a particular day. Determine:

- **a** the number of US dollars in 400 Australian dollars
- **b** the number of Australian dollars in 100 US dollars
- whether a person with 150 Australian dollars could buy an item valued at 125 US dollars.

- **5** Use a graphics calculator to sketch the function $y = x^2 4$ on the domain $\{x \mid -2 \leq x \leq 3\}$ and find its range.
- **6** Find the function with domain $\{1, 2, 3, 4, 5\}$ and range $\{-1, 3, 7, 11, 15\}$.
- 7 If $G(x) = \frac{2x-1}{x+3}$, find and interpret G(2).

Chapter

Geometry

Contents:

- **A** Angle properties
- **B** Triangles
- **C** Isosceles triangles
- Angles of a quadrilateral
- E Polygons
- F The exterior angles of a polygon
- G Nets of solids

OPENING PROBLEM

Jason and Hugo construct timber-framed panels for a new house.

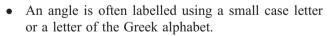
For you to consider:

- If a frame is pentagonal in shape, what is the sum of the interior angles of the frame?
- If the pentagonal frame has two right angles for its base, and the remaining three angles are of equal size, what size must the remaining angles be?

• If two sides of a triangular frame are equal in length, and the angle between them is 110°, what are the sizes of the other two angles of the frame?

VOCABULARY

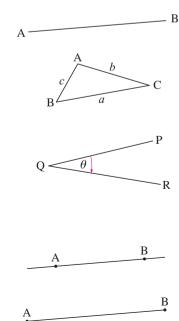
It is assumed that you are familiar with these words used in geometry:


point	line	shape	vertex	edge	angle	parallel
triangle	quadrilateral	polygon	pentagon	hexagon	octagon	solid
prism	cube	cuboid	pyramid	cylinder	cone	sphere

If you have forgotten, click on any word and the meaning will appear.

NOTATION

You should remember that:

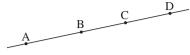

- Points or vertices are labelled by capital letters.
- Lines or edges are labelled by a small case letter.

Three point notation is also often used. For example, the illustrated angle is θ or PQR or \angle PQR.

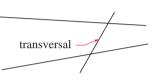
LINE TERMINOLOGY

- Line AB is the endless straight line passing through the points A and B.
- Line segment AB is the part of the straight line AB that connects A with B.

• **Concurrent lines** are three or more lines that all pass through a common point.



• **Perpendicular lines** intersect at right angles.


• A **transversal** is a line which crosses over two other lines.

• **Collinear points** are points which lie in a straight line.

• **Parallel lines** are lines which never intersect. Arrow heads indicate parallelism.

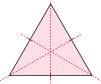
TYPES OF ANGLES

Revolution	Straight Angle	Right Angle
One complete turn. One revolution = 360° .	$\frac{1}{2} \text{ turn.}$ 1 straight angle = 180°.	$\frac{1}{4} \text{ turn.}$ 1 right angle = 90°.
Acute Angle	Obtuse Angle	Reflex Angle
Less than a $\frac{1}{4}$ turn. An acute angle has size between 0^o and 90^o .	Between $\frac{1}{4}$ turn and $\frac{1}{2}$ turn. An obtuse angle has size between 90° and 180°.	Between $\frac{1}{2}$ turn and 1 turn. A reflex angle has size between 180° and 360°.

TYPES OF TRIANGLES

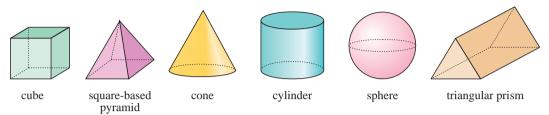
Three sides of different lengths.

One angle a right angle.

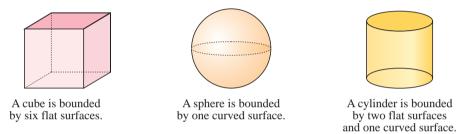

right angled

isosceles

Two sides are equal. (Notice the line of symmetry.)

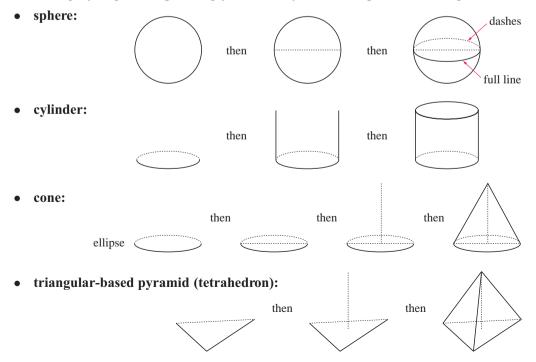

Three sides are equal. (Notice the 3 lines of symmetry.)

SOLIDS

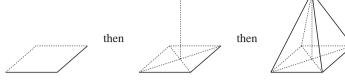

A solid is a body which occupies space. It has three dimensions.

The diagrams below show a collection of solids.

Each solid shape shown has the three dimensions: *length*, *width* and *height*.

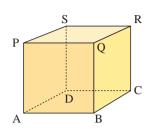


The boundaries of a solid are called **surfaces**. These surfaces may be flat surfaces (or parts of planes), curved surfaces, or a mixture of both.



Dashed lines represent the boundaries that you would not really be able to see if you looked at the solid because they are hidden behind it. They remind us that the diagram is of a three-dimensional object.

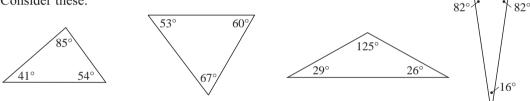
Here are step-by-step drawings to help you to draw your own diagrams of some special solids:


• square-based pyramid:

A solid with plane faces has vertices and edges.

For example, for this solid:

C is a vertex AP is an edge BCRQ is a face.



THEOREMS

Discoveries in geometry may be made by drawing accurate figures and then making precise measurements of sizes of angles and lengths of sides.

For example, if we draw a series of triangles of various sizes and shapes and on each occasion measure the interior angles we may discover an important fact about all triangles.

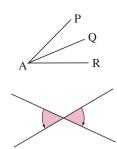
Consider these:

Using a protractor, check that all of the angles are correctly measured. From an investigation like this, we may propose that:

"The sum of the interior angles of any triangle is 180°."

FASCINATING GEOMETRY IN MOTION

Click on the icon to examine:


ANGLE PAIRS

- Two angles with sizes which add to 90° are called **complementary angles**.
- Two angles with sizes which add to 180° are called **supplementary angles**.

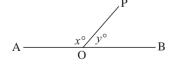
• Two angles which have the same vertex and share a common arm are called **adjacent angles**.

 $P\widehat{A}Q$ and $Q\widehat{A}R$ are adjacent angles.

• For intersecting lines, angles which are directly opposite each other are called **vertically opposite angles**.

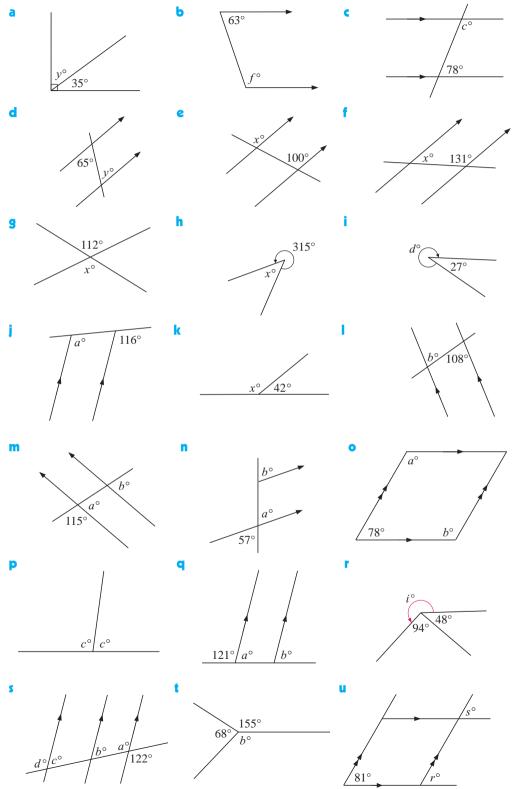
ANGLE PROPERTIES (Theorems)

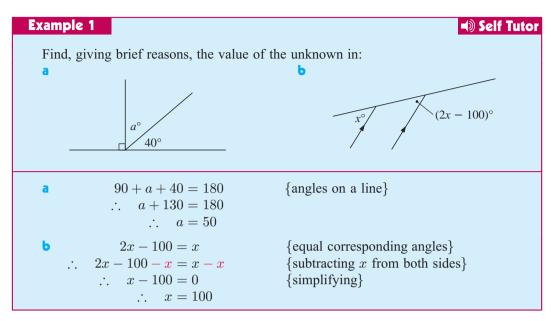
Title	Theorem	Figure
Angles at a point	The sum of the sizes of the angles at a point is 360°.	$a^{\circ}b^{\circ}$ $a^{\circ}c^{\circ}$ $a+b+c=360$
Adjacent angles on a straight line	The sum of the sizes of the angles on a line is 180°. The angles are supplementary.	$\frac{a^{\circ}/b^{\circ}}{a+b=180}$
Adjacent angles in a right angle	The sum of the sizes of the angles in a right angle is 90°. The angles are complementary.	$b^{\circ}_{\square a^{\circ}}$ $a+b=90$
Vertically opposite angles	Vertically opposite angles are equal in size.	a°
Corresponding angles	When two <i>parallel</i> lines are cut by a third line, then angles in corresponding positions are equal in size.	$\frac{a^{\circ}}{b^{\circ}}$ $a = b$
Alternate angles	When two <i>parallel</i> lines are cut by a third line, then angles in alternate positions are equal in size.	$ \begin{array}{c c} & a^{\circ} \\ & & b^{\circ} \\ & & a = b \end{array} $


Title	Theorem	Figure
Co-interior angles (also called allied angles)	When two <i>parallel</i> lines are cut by a third line, then co-interior angles are supplementary.	a°
Angles of a triangle	The sum of the interior angles of a triangle is 180°. GEOMETRY PACKAGE	$a^{\circ} \qquad b^{\circ}$ $a+b+c=180$
Exterior angle of a triangle	The size of the exterior angle of a triangle is equal to the sum of the interior GEOMETRY package	c = a + b
Angles of a quadrilateral	The sum of the interior angles of a quadrilateral is 360°. GEOMETRY PACKAGE	$a^{\circ} \qquad b^{\circ} \qquad c^{\circ} \qquad d^{\circ}$ $a + b + c + d = 360$

EXERCISE 21A

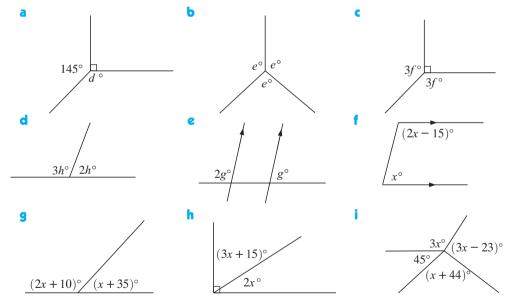
- **1** Use the figure illustrated to answer the following questions:
 - AB is a fixed line and OP can rotate about O between OA and OB.
 - a If x = 136, find y.
 - **b** If y = 58, find x.
 - What is x if y is 39?
 - **d** If x is 0, what is y?
 - e If x = 81, find y.
 - f If x = y, what is the value of each?
- **2** Find the complement of:
 - **a** 25^{o} **b** 63^{o} **c** x^{o} **d** $(90-y)^{o}$

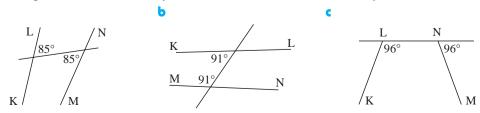

 x^o


- **3** Find the supplement of:
 - **a** 89° **b** 117°

d $(180-x)^o$ e $(90+a)^o$

4 Find the values of the unknowns, giving brief reasons. You should **not** need to set up an equation.



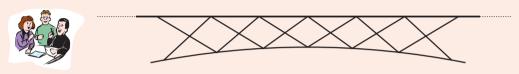

Some angle finding problems are neatly done by setting up and solving equations.

5 Find, giving brief reasons, the value of the unknown in:

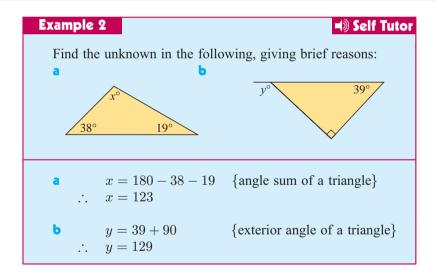
a

• State whether KL is parallel to MN, giving a brief reason for your answer. Note that these diagrams are sketches only and have not been drawn accurately.

B

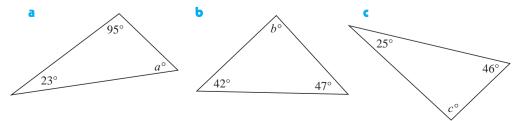

TRIANGLES

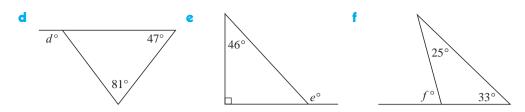
A **triangle** is a polygon which has three sides.

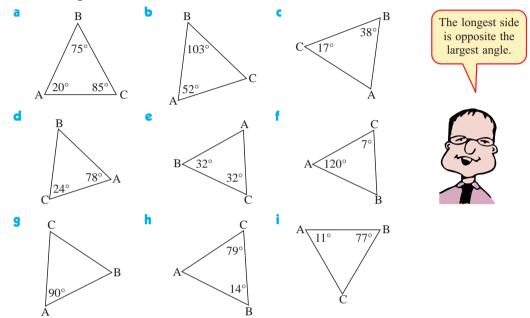

All triangles have the following properties:

- The sum of the interior angles of a triangle is 180° .
- Any exterior angle is equal to the sum of the interior opposite angles.
- The longest side is opposite the largest angle.
- The triangle is the only **rigid** polygon.

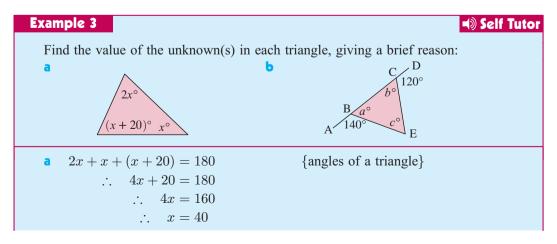
DISCUSSION



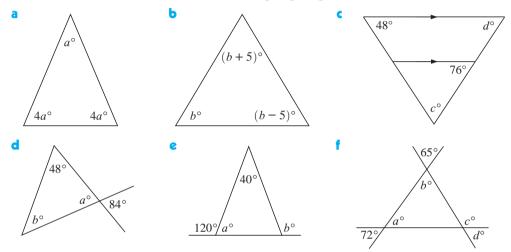

Bridges and other specialised structures often have triangular supports rather than rectangular ones. The reason for this is that "*the triangle is the only rigid polygon*". What is meant by "rigid polygon"? Is the statement true?


EXERCISE 21B

1 Find the unknown in the following, giving brief reasons:



2 To try to trick you, the following triangles are *not* drawn to scale. State the longest side of each triangle.



- 3 State whether the following statements are *true* or *false*:
 - a The sum of the angles of a triangle is equal to two right angles.
 - **b** A right angled triangle can contain an obtuse angle.
 - The sum of two angles of a triangle is always greater than the third angle.
 - **d** The two smaller angles of a right angled triangle are supplementary.
 - A concave triangle is impossible.

Ь

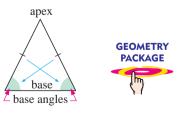
- a = 180 140 = 40 {angles on a line} Likewise b = 180 - 120 = 60But a + b + c = 180 {angles of a triangle} $\therefore 40 + 60 + c = 180$ $\therefore 100 + c = 180$ $\therefore c = 80$
- 4 Find the values of the unknowns in each triangle, giving a brief reason for each answer:

5 The three angles of a scalene triangle are x^{o} , $(x - 12)^{o}$ and $(2x + 6)^{o}$. What are the sizes of these angles?

ISOSCELES TRIANGLES

An isosceles triangle is a triangle in which two sides are equal in length.

The angles opposite the two equal sides are called the **base angles**.

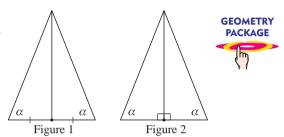

The vertex where the two equal sides meet is called the **apex**.

THE ISOSCELES TRIANGLE THEOREM

In an isosceles triangle:

- base angles are equal
- the line joining the apex to the midpoint of the base bisects the vertical angle and meets the base at right angles.

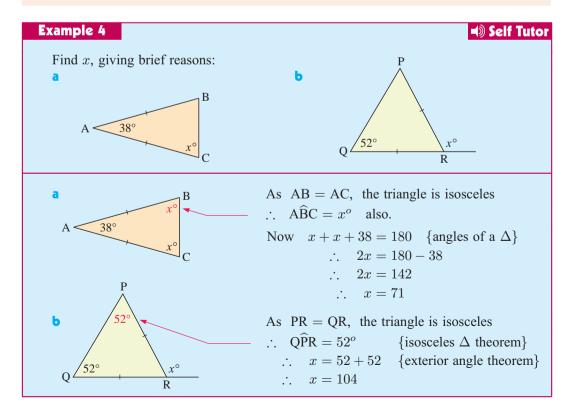
We can prove that the line joining the apex to the midpoint of the base bisects the vertical angle and meets the base at right angles, using congruent triangles.



CONVERSES

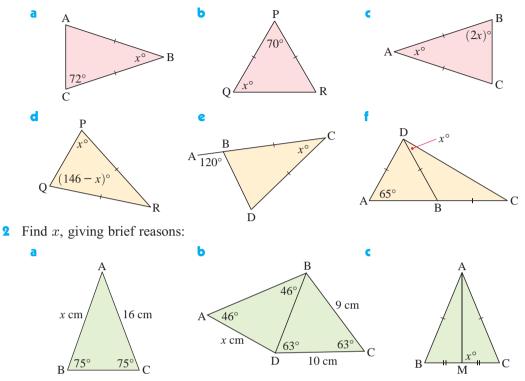
With many theorems there are converses which we often use in problem solving.

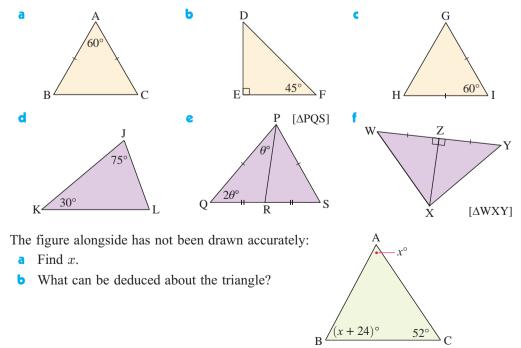
- *Converse 1:* If a triangle has two equal angles then it is isosceles.
- *Converse 2:* The angle bisector of the apex of an isosceles triangle bisects the base at right angles.
- *Converse 3:* The perpendicular bisector of the base of an isosceles triangle passes through its apex.
- To prove *Converse 1*, Sam tries to use Figure 1 and triangle congruence.
 Will he be successful?
 Why or why not? Could Sam be successful using Figure 2?
- Can you prove *Converse 2* using triangle congruence?



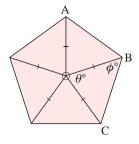
DISCUSSION

What does the word *converse* mean?


Can you find any other converses to the isosceles triangle theorem?

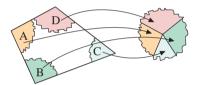

EXERCISE 21C

4


1 Find x, giving reasons:

Classify the following inaccurately drawn triangles as equilateral, isosceles or scalene. The information marked on them is correct.

- 5 Because of its symmetry, a regular pentagon can be made up of five isosceles triangles.
 - **a** Find the size of angle θ at the centre O.
 - **b** Hence, find ϕ .
 - Hence, find the measure of one interior angle such as $A\widehat{B}C$.

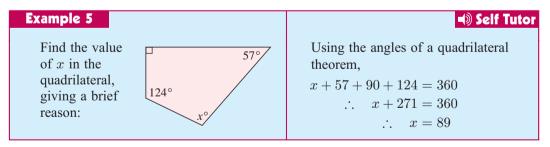


6 Repeat question 5 but use a regular decagon. Remember that a decagon has 10 sides.

ANGLES OF A QUADRILATERAL

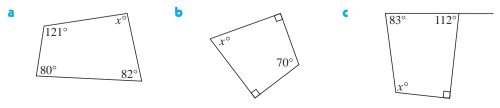
A **quadrilateral** is a plane figure with four straight sides.

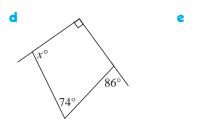
Suppose a quadrilateral is drawn on a piece of paper.

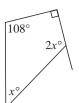


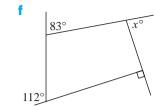
The above demonstration shows us that:

If the four angles are torn off and reassembled at a point, we notice that the angle sum must be 360° .

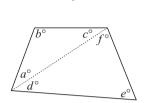


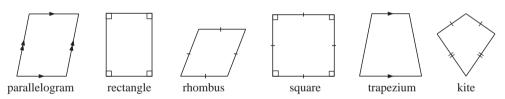

The sum of the angles of a quadrilateral is 360° , i.e., $a^\circ b^\circ d^\circ a + b + c + d = 360$.




EXERCISE 21D

1 Find, with reasons, the value of x in:




- **2** a Find a+b+c and d+e+f.
 - **b** What is b + (c + f) + e + (a + d)?
 - What does **b** enable us to deduce?

SPECIAL QUADRILATERALS

We will consider six special quadrilaterals:

- A parallelogram is a quadrilateral which has opposite sides parallel.
- A rectangle is a parallelogram with four equal angles of 90° .
- A **rhombus** is a quadrilateral in which all sides are equal i.e., an equilateral quadrilateral.
- A square is a rhombus with four equal angles of 90° .
- A trapezium is a quadrilateral which has a pair of parallel opposite sides.
- A kite is a quadrilateral which has two pairs of equal adjacent sides.

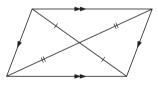
The following properties of quadrilaterals are useful:

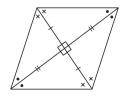
PARALLELOGRAM

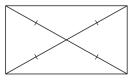
In any parallelogram:

- o opposite sides are equal in length
- opposite angles are equal in size
- diagonals bisect each other.

RHOMBUS


In any rhombus:


- opposite sides are parallel
- opposite angles are equal in size
- diagonals bisect each other at right angles
- diagonals bisect the angles at each vertex.

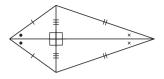

RECTANGLE

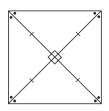
In any rectangle:

- opposite sides are equal in length
- diagonals are equal in length
- diagonals bisect each other.

KITE

In any kite:

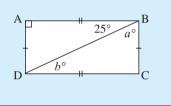

- two pairs of adjacent sides are equal
- the diagonals are perpendicular
- one diagonal splits the kite into two isosceles triangles.


SQUARE

In any square:

• opposite sides are parallel

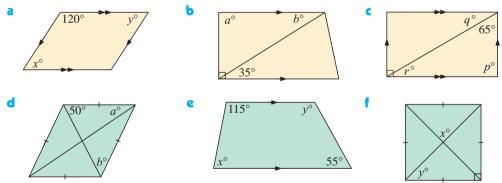
- all sides are equal in length
- all angles are right angles
- diagonals bisect each other at right angles
- diagonals bisect the angles at each vertex.



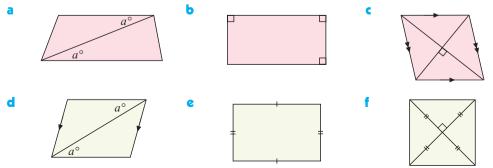
Self Tutor

Example 6

Classify the quadrilateral, and find the values of the variables.



Since opposite	s	sides	are	equa	l we	have a
parallelogram.						


Also, one angle is a right angle,

 \therefore the quadrilateral is a rectangle.

- Thus a + 25 = 90 {as ABC also measures 90° } $\therefore a = 65$ and b = 25 {ABD and CDB are equal angles as $AB \parallel DC$ }
- **3** Find the value of the unknowns in:

4 Using the information given in the diagrams, name the following quadrilaterals, giving brief reasons for your answer.

What to do:

DISCUSSION

PROPERTIES OF QUADRILATERALS

1 Copy and complete the following by answering "yes", "sometimes", or "at least 1 pair".

Property	Square	Rhombus	Rectangle	Parallelogram
opposite sides parallel				
opposite sides equal				
opposite angles equal				
all sides equal				
all angles equal				
diagonals equal				
diagonals bisect each other				
diagonals meet at right angles				
diagonals bisect the angles at the vertices				

- 2 Discuss the following questions in a group. You may find the completed table in question 1 helpful in justifying your answer.
 - **a** Is a rectangle a quadrilateral?
 - Is a rhombus a parallelogram?
 - Is a square a rectangle?
 - **g** Is a parallelogram a rectangle?
- **b** Is a rectangle a square?
- **d** Is a rhombus a square?
- **f** Is a square a rhombus?

POLYGONS

A **polygon** is any plane figure with straight sides.

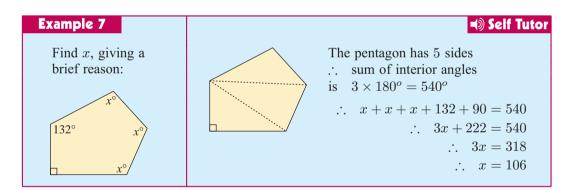
Triangles and quadrilaterals are the simplest types of polygons.

INVESTIGATION 1 ANGLES OF AN *n*-SIDED POLYGON Image: What to do: 1 Draw any pentagon (5-sided polygon) and label one of its vertices A. Draw in all the diagonals from A.

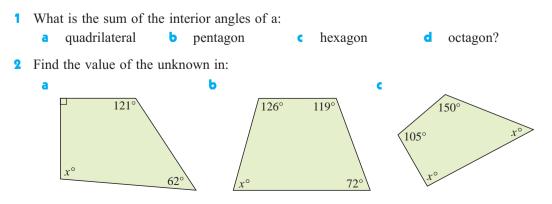
2 Repeat 1 for a hexagon, a heptagon (7-gon), an octagon,, etc., drawing diagonals from one vertex only.

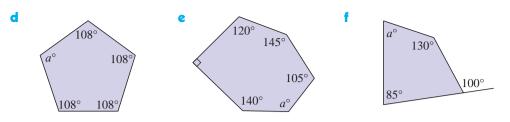
3 Copy and complete the following table:

Polygon	Number	Number of	Number of	Angle sum
	of sides	diagonals from A	triangles	of polygon
quadrilateral pentagon hexagon octagon 20-gon	4	1	2	$2 \times 180^{\circ} = 360^{\circ}$

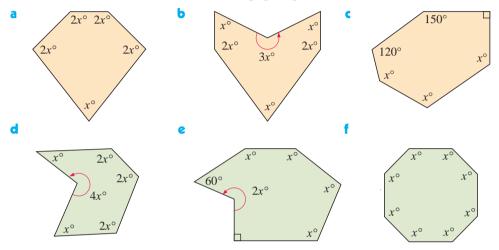

Note:

- The sum of the angles of a pentagon is $3 \times 180^{\circ}$, since we formed 3 triangles.
- The sum of the angles of a hexagon is $4 \times 180^{\circ}$, since we formed 4 triangles.
- The sum of the angles of any polygon can be found by dividing the polygon into triangles.
- **4** Copy and complete the following statement:


"The sum of the sizes of the interior angles of any n-sided polygon is \times 180°."


You should have discovered the following fact about polygons:

The sum of the sizes of the interior angles of any *n*-sided polygon is $(n-2) \times 180^{\circ}$.



EXERCISE 21E

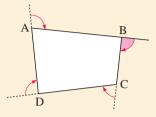
3 Find the value of x in each of the following, giving a reason:

- 4 A pentagon has three right angles and two other equal angles.What is the size of each of the two equal angles?
- **5** Find the size of each interior angle within a regular:
 - a pentagon b hexagon c octagon d decagon
- **6** The sum of the angles of a polygon is 1800°. How many angles has the polygon?
- 7 Joanna has found a truly remarkable polygon which has interior angles with a sum of 2060°. Comment on Joanna's finding.
- 8 Copy and complete the following table for regular polygons:

Regular polygon	Number of sides	Number of angles	Size of each angle
equilateral triangle			
square			
pentagon			
hexagon			
octagon			
decagon			

- **9** Copy and complete:
 - the sum of the angles of an *n*-sided polygon is
 - the size of each angle θ , of a regular *n*-sided polygon, is $\theta = \dots$

THE EXTERIOR ANGLES OF A POLYGON


INVESTIGATION 2

EXTERIOR ANGLES OF A POLYGON

The shaded angle is said to be an exterior angle of quadrilateral ABCD at vertex B.

The purpose of this investigation is to find the sum of all exterior angles of a polygon.

What to do:

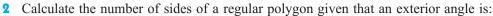
- 1 In the school grounds, place four objects on the ground no more than 10 m apart, forming the vertices of an imaginary quadrilateral. Start at one vertex, and looking towards the next vertex, walk directly to it and turn to face the next vertex. Measure the angle that you have turned through.
- **2** Repeat this process until you are back to where you started from, and turn in the same way to face your original direction of sight, measuring each angle that you turn through.
- **3** Through how many degrees have you turned from start to finish?
- **4** Would your answer in **3** change if an extra object was included to form a pentagon?
- **5** Write a statement indicating what you have learnt about the sum of the exterior angles of any polygon.

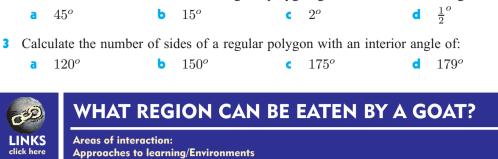
From the investigation, you should have discovered that:

"the sum of the exterior angles of any polygon is always 360°".

This fact is useful for finding the size of an interior angle of a regular polygon.

Example 8	Self Tutor
A regular polygon has 15 sides. Calculate the size of each interior angle.	
For a 15-sided polygon, each exterior angle is $360^{\circ} \div 15 = 24^{\circ}$ \therefore each interior angle is $180^{\circ} - 24^{\circ} = 156^{\circ}$	

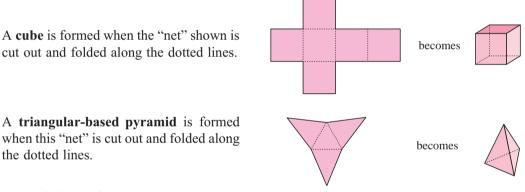

EXERCISE 21F

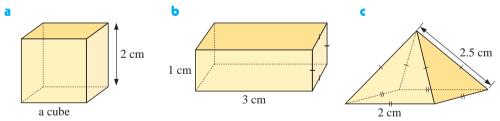

1 Calculate the size of each interior angle of these regular polygons:

0

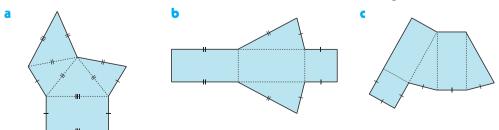
- with 5 sides а
- with 8 sides h
- with 10 sides C

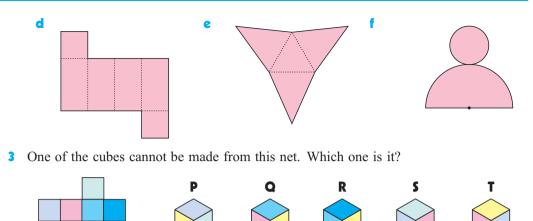
- with 20 sides d
- with 100 sides
- with *n* sides



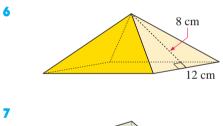

NETS OF SOLIDS

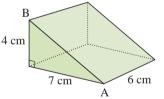
A net is a two-dimensional shape which may be folded or shaped to form a solid.




EXERCISE 21G

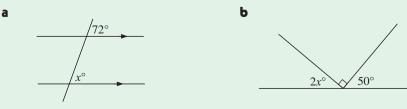
1 Draw a net, with lengths clearly marked, of the following 3-dimensional solids:

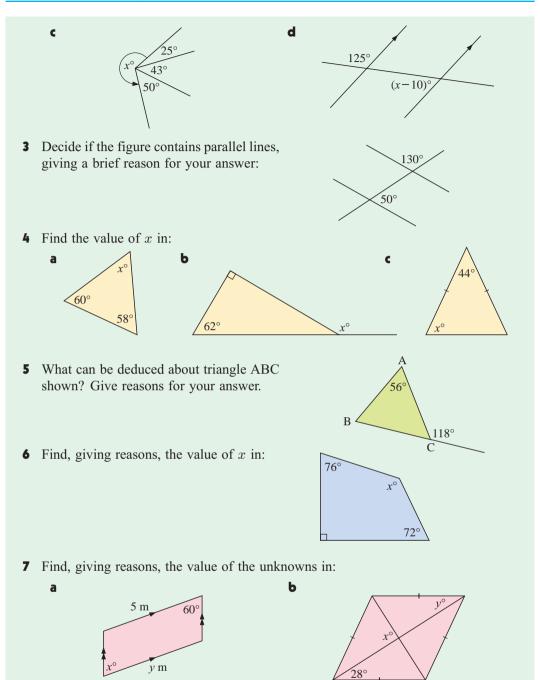



2 Draw and name the solids which would be formed from the following nets:

- **a** Sketch a net of a cube with sides 1.2 cm.
 - **b** What is the surface area of the cube?
- **5** a Sketch a cuboid with sides 10 cm, 8 cm and 5 cm.
 - What is the surface area of the cuboid?

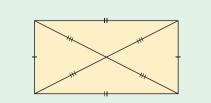
This pyramid has a square base 12 cm by 12 cm.

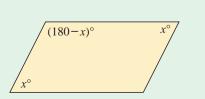

- a Sketch the net of the solid.
- **b** Find the surface area of the solid.

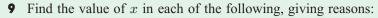

This triangular prism has a 6 cm by 7 cm base, and a height of 4 cm.

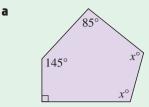
- a Find the length of AB to 2 decimal places.
- **b** Draw the net of the solid.
- Find the surface area of the solid.

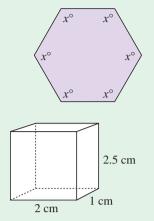
REVIEW SET 21A


- **1** Draw a freehand sketch of:
 - a a reflex angle PQR
- **b** an acute angle ABC
- 2 Find the value of the unknown, giving reasons for your answer:

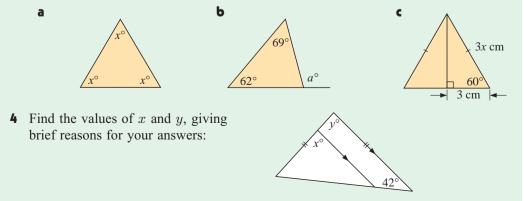


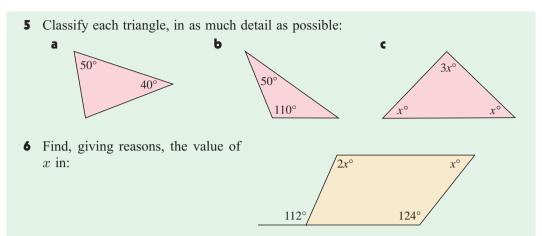

8 Using the information given in the diagrams, name the following quadrilaterals, giving brief reasons for your answer.


b

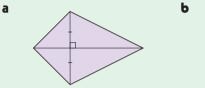

а

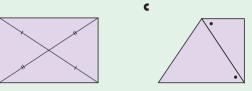
10 Draw a net with lengths clearly marked for the 3-dimensional solid shown:

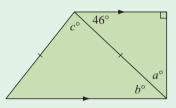

REVIEW SET 21B


- **1** a Find the complement of: i 35° ii x° b Find the supplement of: i 72° ii $(90 - x)^{\circ}$
- **2** State the values of the unknowns in each figure, giving a brief reason for each answer:

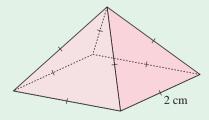
b



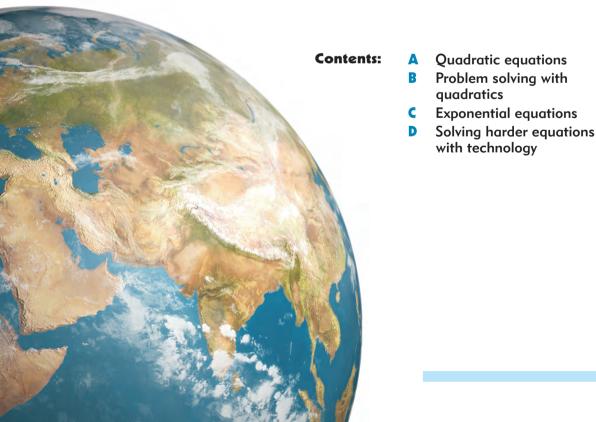

3 Find the value of the unknown in each figure, giving a brief reason for your answer:



7 Classify each quadrilateral given below. The diagrams are not drawn accurately but the information on them is correct.

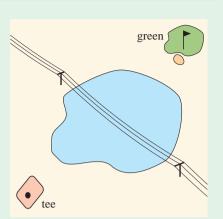

8 Find the values of the unknowns in:

9 The sum of the sizes of the interior angles of any *n*-sided polygon is $(n-2) \times 180^{\circ}$. Use this formula to complete the following table:


Polygon	Number of sides	Sum of angles
pentagon		
hexagon		
octagon		

10 Draw a net with lengths clearly marked for the 3-dimensional solid shown:

Quadratic and other equations


OPENING PROBLEM

During a golf tournament, Sergio needs to hit his tee shot on a par 4 hole over a lake as shown.

His caddy tells him that he must hit the ball 205 m to clear the lake, and he knows the hole is 240 m 'as the crow flies' from the tee.

Sergio hits his shot and watches it sail directly towards the hole over the lake. However, the ball hits a power line and falls into the water. Sergio is entitled to play another ball from the tee without being penalised any strokes, but unfortunately his next shot is nowhere near as good.

The commentators view a video tape of the first shot and are able to obtain these measurements:

Horizontal distance $(x m)$ from the tee	25	50	75	100	125
Height (h m) of the ball above the ground	17.5	30	37.5	40	37.5

A relationship is found connecting the *horizontal distance* the ball travels and the *height* of the golf ball above the ground. The relationship is $h = 0.8x - 0.004x^2$.

Consider the following questions:

- Can the commentators use this relationship to determine where Sergio's ball would have landed?
- Would his ball have cleared the lake if it had not hit the power line?

QUADRATIC EQUATIONS

Equations of the form ax + b = 0 are called **linear equations** and usually have *one* solution. For example, 3x - 2 = 0 is a linear equation (a = 3, b = -2) and has the solution $x = \frac{2}{3}$.

Equations of the form $ax^2 + bx + c = 0$ are called **quadratic equations** and may have *two*, *one* or *zero* solutions.

Here are some simple quadratic equations which clearly show the truth of this statement:

Equation	$ax^2 + bx + c = 0$ form	a	b	с	Solutions	No. of solutions
$x^2 - 4 = 0$	$x^2 + 0x - 4 = 0$	1	0	-4	x = 2 or $x = -2$	two
$(x-2)^2 = 0$	$x^2 - 4x + 4 = 0$	1	-4	4	x = 2	one
$x^2 + 4 = 0$	$x^2 + 0x + 4 = 0$	1	0	4	none as x^2 is always ≥ 0	zero

Now consider the example $x^2 + 3x - 10 = 0$.

If
$$x = 2$$
, $x^2 + 3x - 10$ and if $x = -5$, $x^2 + 3x - 10$
= $2^2 + 3 \times 2 - 10$ = $(-5)^2 + 3 \times (-5) - 10$
= $4 + 6 - 10$ = $25 - 15 - 10$
= 0 = 0

x = 2 and x = -5 both satisfy the equation $x^2 + 3x - 10 = 0$, so we say that they are both solutions.

But, how do we find these solutions without using trial and error?

One method is to use factorisation and the Null Factor law.

THE NULL FACTOR LAW

When the product of two (or more) numbers is zero, then at least one of them must be zero. So, if ab = 0 then a = 0 or b = 0.

EXERCISE 22A

1 Discuss solutions to the following equations:

a $5x = 0$	Ь	3y = 0	c $p imes 7=0$	d	$q \times -3 = 0$
e -4r = 0	f_	pq = 0	g 7xy = 0	h	pqr = 0
$x^2 = 0$	j	$a^2 = 0$	k wxyz = 0	1	$x^2y = 0$

To use the **Null Factor** law when solving equations, we must have one side of the equation *equal to zero*.

STEPS FOR SOLVING QUADRATIC EQUATIONS

- Step 1: If necessary, rearrange the equation so one side is zero.
- Step 2: Fully factorise the other side (usually the LHS).
- Step 3: Use the Null Factor law.
- *Step 4:* Solve the resulting simple equations.
- Step 5: Check at least one of your solutions.

Example 1	Self Tutor
Solve for x : a $5x(x+2) = 0$	b $(x+4)(x-1) = 0$
a $5x(x+2) = 0$ $\therefore 5x = 0 \text{ or } x+2 = 0$ $\therefore x = 0 \text{ or } x = -2$ $\therefore x = 0 \text{ or } -2$	{Null Factor law} {solving linear equations}
b $(x+4)(x-1) = 0$ $\therefore x+4 = 0 \text{ or } x-1 = 0$ $\therefore x = -4 \text{ or } x = 1$ $\therefore x = -4 \text{ or } 1$	{Null Factor law} {solving linear equations}

- **2** Solve for x:
 - **a** x(x+2) = 0
 - d
 - g

Self Tutor

Example 2

Solve for x: $x^2 = 3x$

 $x^2 = 3x$ $\therefore x^2 - 3x = 0$ $\therefore x(x-3) = 0$ $\therefore x = 0$ or x - 3 = 0 $\therefore x = 0$ or x = 3 $\therefore x = 0 \text{ or } 3$

{rearranging equation so RHS = 0} {factorising the LHS} {Null Factor law}

ILLEGAL CANCELLING

Let us reconsider the equation $x^2 = 3x$ from Example 2. We notice that there is a common factor of x on both sides.

However, if we cancel x from both sides, we will have $\frac{x^{2^{1}}}{x^{1}} = \frac{3x^{1}}{x^{1}}$ and thus finish with x = 3.

Consequently, we will 'lose' the solution x = 0.

From this example we conclude that:

We must never cancel a variable that is a common factor from both sides of an equation unless we know that the factor cannot be zero.

3 Solve for x:

$ x^2 = 2x $	b $x^2 -$ e $2x^2 -$ h $3x^2 =$	-8x = 0	c $x^2 = 4x$ f $9x^2 + 2x = 0$ i $4x^2 = 8x$
Example 3			Self Tutor
Solve for x : $x^2 + 3x = 28$	3		
$x^2 + 3x =$	28		
$\therefore x^2 + 3x - 28 =$	0	{rearranging so	$RHS = 0\}$
$\therefore (x+7)(x-4) =$	0	$\{sum = +3 \text{ an} \\ gives +7 \text{ and } \}$	d product = -28 -4}
\therefore $x+7=0$ or $x-4=$	0	{Null Factor law	v}
$\therefore x =$	-7 or 4	{solving linear of	equations}

4 50	Ive for x:		
a	$x^2 - 1 = 0$	b $x^2 - 4 = 0$	$9x^2 - 1 = 0$
d	$4x^2 - 9 = 0$	$(x-3)^2 = 0$	f $(x+7)^2 = 0$
9	$(3x+1)^2 = 0$	h $(4x-5)^2 = 0$	$(7x+3)^2 = 0$
5 So	lve for x:		
a	$x^2 + 4x + 3 = 0$	b $x^2 - 4x + 3 = 0$	$x^2 + 5x + 4 = 0$
d	$x^2 - 5x + 4 = 0$	$x^2 + 9x + 8 = 0$	$f x^2 + 7x + 10 = 0$
9	$x^2 + 2x + 1 = 0$	h $x^2 - 2x + 1 = 0$	$x^2 + 6x + 9 = 0$
i i	$x^2 - 4x + 4 = 0$	$x^2 - 6x + 9 = 0$	$x^2 + 10x + 25 = 0$
n	$x^2 + 11x = -28$	$x^2 - 2x = 15$	• $x^2 - 4x = 12$
p	$x^2 - 24 = 10x$	q $x^2 + 16 = 8x$	$x^2 + x = 30$
\$	$x^2 = 2x + 24$	$x^2 = -4x + 21$	u $x^2 = 2x + 35$

B PROBLEM SOLVING WITH QUADRATICS

Many problems when converted to algebraic form result in a quadratic equation.

We use factorisation and the Null Factor law to solve these equations.

PROBLEM SOLVING METHOD

- Carefully read the question until you understand it. A rough sketch may be useful.
- Decide on the **unknown** quantity, calling it x, say.
- Find an equation which connects x and the information you are given.
- Solve the equation using factorisation and the Null Factor law.
- Check that any solutions satisfy the original problem.
- Write your answer to the question in sentence form.

Example 4

Solve for m

Self Tutor

The sum of a number and its square is 30. Find the number.

Let the number be x. So, $x + x^2 = 30$ {the number plus its square is 30} $\therefore x^2 + x = 30$ {rearranging} $\therefore x^2 + x - 30 = 0$ {rearranging so RHS = 0} $\therefore (x + 6)(x - 5) = 0$ {factorising} $\therefore x = -6$ or x = 5 \therefore the numbers are -6 and 5. Check: If x = -6, we have $-6 + (-6)^2 = -6 + 36 = 30$ \checkmark If x = 5, we have $5 + 5^2 = 5 + 25 = 30$ \checkmark

EXERCISE 22B

- 1 The sum of a number and its square is 12. Find the number.
- **2** The sum of a number and its square is 72. Find the number.
- 3 If a number is subtracted from its square, the result is 56. What is the number?
- 4 If a number is subtracted from its square, the result is 110. What is the number?
- **5** a Two numbers have a sum of 9. If one of them is x, what is the other number?
 - **b** If the sum of the squares of the numbers in **a** is 45, find the numbers.
- **a** Two numbers have a sum of 16. If one of them is x, what is the other number?
 - **b** If the sum of the squares of the numbers in **a** is 130, find the numbers.

Example 5

Self Tutor

A rectangle has length 3 cm greater than its width. If it has an area of 28 cm^2 , find the dimensions of the rectangle.

If x cm is the width, then (x + 3) cm is the length $\therefore x(x + 3) = 28$ {width × length = area} $\therefore x^2 + 3x = 28$ {expanding} $\therefore x^2 + 3x - 28 = 0$ {RHS = 0} $\therefore (x + 7)(x - 4) = 0$ {factorising LHS} $\therefore x + 7 = 0$ or x - 4 = 0 {Null Factor law} $\therefore x = -7$ or 4 $\therefore x = 4$ {lengths must be positive} \therefore the rectangle is 4 cm × 7 cm.

- 7 A rectangle has length 3 cm greater than its width.
 - a If its width is x cm, what is its length?
 - **b** If it has an area of 130 cm², find the dimensions of the rectangle.
- 8 A rectangle has length 6 cm greater than its width. If it has an area of 112 cm², find the dimensions of the rectangle.
- **9** A rectangular enclosure is made from 48 m of fencing.
 - a If the width is x m, what is the length?
 - **b** The area enclosed is 128 m^2 . Find the dimensions of the enclosure.
- 10 A rectangular enclosure is made from 38 m of fencing. The area enclosed is 70 m². Find the dimensions of the enclosure.
- **11** A triangle has a base which is 3 cm longer than its altitude.
 - **a** Find its altitude if its area is 44 cm^2 .
 - **b** Find its altitude if its area is 90 cm².

Example 6 Self Tutor A baker making cakes finds that his profit per hour, P, is given by the relationship $P = 20x - x^2$ where x is the number of cakes made per hour. How many cakes must the company make per hour in order to make: \$0 per hour profit **b** \$84 per hour profit? а Let P = 0а $20x - x^2 = 0$ $\therefore \quad x(20-x) = 0$ {factorising} x = 0 or 20 - x = 0{Null Factor law} $\therefore x = 0 \text{ or } 20$ i.e., when 0 or 20 cakes per hour are made. Ь Let P = 84 $20x - x^2 = 84$ $\therefore -x^2 + 20x - 84 = 0$ {RHS = 0} $\therefore x^2 - 20x + 84 = 0 \qquad \{\text{multiplying both sides by } -1\}$ $\therefore (x-6)(x-14) = 0 \qquad \text{{factorising}}$ {Null Factor law} x - 6 = 0 or x - 14 = 0 $\therefore x = 6 \text{ or } 14$ i.e., when 6 or 14 cakes per hour are made.

Does it seem strange to you that there could be two answers to **Example 6**, part **b**?

To discover why this is so, we need to draw the graph of the profit equation $P = 20x - x^2$.

We could use a graphing package or graphics calculator to do this.

Many real life profit equations do have quadratic form as in the above example. The profits increase as the number of items made increases, but after a while, more items are made than can be sold. This is why their profit starts decreasing until ultimately they make a loss.

- 12 A small business makes surfboards and finds that its profit, \$P per hour, is given by the formula P = 75x 5x² where x is the number of surfboards made per hour. When does the business make:
 a \$0 profit per hour
 b \$250 profit per hour?
- 13 A manufacturer makes high quality ice-skates. The profit \$P per day is given by the formula P = 72x 3x² where x is the number of pairs of skates made per day. When does the manufacturer make:
 a \$420 profit per day b no profit per day?
- 14 When a cricket ball is hit directly upwards, its height h above the ground is given by h = 30t 5t² metres, where t is the time in seconds after the ball is hit. When is the ball at a height of: a 0 m b 25 m above the ground?
- 15 When a tennis ball is hit directly upwards, its height h above the ground is given by h = 1 + 16t 2t² metres, where t is the time in seconds after the ball is hit. When is the ball at a height of: a 15 m b 33 m above the ground?

EXPONENTIAL EQUATIONS

An **exponential equation** is an equation in which the unknown occurs as part of the index or exponent.

For example: $2^x = 8$ and $30 \times 3^x = 7$ are both exponential equations.

Note that if $2^x = 8$, then $2^x = 2^3$. Thus x = 3 is a solution, and is in fact the only solution to this equation.

In general:

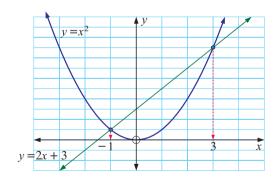
If $a^x = a^k$ then x = k. So, if the base numbers are the same, we can equate indices.

Example 7	Self Tutor	
Solve for x : a $2^x = 16$	b $3^{x+2} = \frac{1}{27}$	
a $2^x = 16$ $\therefore 2^x = 2^4$ $\therefore x = 4$	b $3^{x+2} = \frac{1}{27}$ $\therefore 3^{x+2} = \frac{1}{3^3}$ $\therefore 3^{x+2} = 3^{-3}$ $\therefore x+2 = -3$ $\therefore x = -5$	Once we have the same base we can then equate the indices.

EXERCISE 22C

1	Write	as pow	vers	of 2:													
	а	4	b	8		C	1	d	16	•	e	$\frac{1}{2}$	f	32		9	$\frac{1}{4}$
2	Write	as pow	vers	of 3:													
	а	3	b	9		C	27	d	1	•	e	$\frac{1}{3}$	f	$\frac{1}{9}$		9	$\sqrt{3}$
3	Write	as pow	vers	of 5:													
	а	25	b	5		C	1	d	125	•	e	$\frac{1}{25}$	f	0.2			
4	Solve	e for x :															
	a	$3^{x} = 3$			b	3°	x = 9		c	2^a	<i>r</i> =	16		d	$3^{x} =$	= 1	
	e	$2^x = \frac{1}{2}$			f	3°	$x = \frac{1}{3}$		9	2^a	<i>v</i> =	$\frac{1}{4}$		h	3^{x+}	·1 =	= 9
	1	$2^{x-2} =$	$\frac{1}{8}$		j	3°	$x+1 = \frac{1}{9}$		k	2^a	r + 1	= 32		I.	2^{1-}	2x	$=\frac{1}{4}$

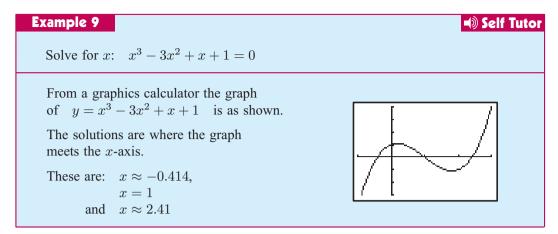
Example 8 Solve for x : a $4^x = 8$	b $9^{x-2} = \frac{1}{3}$	Remember to use the index laws correctly!
a $4^x = 8$ $\therefore (2^2)^x = 2^3$	b $9^{x-2} = \frac{1}{3}$ $\therefore (3^2)^{x-2} = 3^{-1}$	
$\therefore 2^{2x} = 2^3$ $\therefore 2x = 3$:. $3^{2(x-2)} = 3^{-1}$:. $2x - 4 = -1$	
$\therefore x = \frac{3}{2}$	$\therefore 2x = 3$ $\therefore x = \frac{3}{2}$	


5 Solve for x:

а	$9^x = 27$	b	$4^x = \frac{1}{2}$	c	$9^x = \frac{1}{27}$	d	$36^x = \frac{1}{6}$
e	$4^x = \frac{1}{16}$	f	$25^x = \frac{1}{5}$	9	$8^{x+1} = 16$	h	$8^{2-x} = \frac{1}{64}$
1	$4^{2x+1} = \frac{1}{2}$	j	$9^{x+3} = 3$	k	$(\frac{1}{2})^{x-1} = 4$	Т	$(\frac{1}{3})^{x-2} = 9$
m	$8^x = 4^{-x}$	n	$(\frac{1}{4})^{1-x} = 32$	0	$(\frac{1}{7})^x = 49$	p	$(\frac{1}{2})^{x+1} = 64$

SOLVING HARDER EQUATIONS WITH TECHNOLOGY

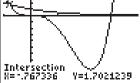
Consider the equation $x^2 = 2x + 3$. Solving algebraically, if $x^2 = 2x + 3$ then $x^2 - 2x - 3 = 0$ $\therefore (x+1)(x-3) = 0$ $\therefore x = -1 \text{ or } 3$

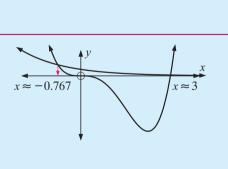

To solve this equation graphically, we graph $y = x^2$ and y = 2x + 3 on the same set of axes. Notice that the graphs meet at points which have x-coordinates -1 and 3.

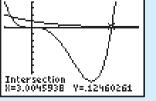
So, to solve f(x) = g(x) we graph y = f(x) and y = g(x) and write down the x-coordinates where the two graphs meet.

In particular, to solve f(x) = 0 we could graph y = f(x) and observe where it meets the x-axis y = 0.

Instructions for graphing functions, finding their x-intercepts, and finding where two functions intersect can be found starting on page 21.


EXERCISE 22D


- 1 Use a graphics calculator to find all solutions of the equation:



Solve for x: $x^4 - 3x^3 = (0.5)^x$

The graphs of $y = x^4 - 3x^3$ and $y = (0.5)^x$ alongside were obtained using a graphics calculator. The solutions are the x-coordinates where the two graphs meet. So, $x \approx -0.767$ or $x \approx 3.00$

Self Tutor

- Note: In Example 10, we could have written the equation as $x^4 3x^3 (0.5)^x = 0$ and found the *x*-intercepts as before.
- 2 Use a graphics calculator to solve these equations. Include a sketch graph in your answer.
 - a $x^2 = 2x + 1$ b $\frac{x^3}{3} = 2x - 1$ c $\frac{x^4}{3} - x^3 = 5 - x$ d $2^x = x^2$ e $3^x = 5x + 2$ f $x + \frac{1}{x} = 3$ g $x^2 = 3^{-x}$ h $x^2 - \frac{1}{x} = 2^x$ i $\frac{x^4}{3} - x^3 = 2^x$

3 Solve simultaneously:

- **a** $y = x^2 3x + 7$ and y = x + 5 **b** $y = x^2 - 5x + 2$ and y = x - 7 **c** $y = -x^2 - 2x + 4$ and y = x + 8**d** $y = -x^2 + 4x - 2$ and y = 5x - 6
- 4 Find the coordinates of the point(s) of intersection of these functions:
 - **a** $y = x^2 2x + 8$ and y = x + 6 **b** $y = -x^2 + 3x + 9$ and y = 2x - 3 **c** $y = -x^2 + 4x + 7$ and y = 5x - 4**d** $y = x^2 - 5x + 9$ and y = 3x - 7

REVIEW SET 22A

- 1 Solve for x: a 3x(x-2) = 0 b (x-3)(x+4) = 0 c $-(x-3)^2 = 0$ 2 Solve for x: a $2x - x^2 = 0$ b $5x^2 + 10x = 0$ c $4x^2 = 12x$ 3 Solve for x: a $x^2 - 25 = 0$ b $(2x-1)^2 = 0$ 4 Solve for x: a $x^2 + 5x - 6 = 0$ b $x^2 + 6x + 9 = 0$ c $x^2 - 2x = 15$
- 5 a Two numbers have a sum of 11. If one of them is x, what is the other number?b If the sum of the squares of the numbers in a is 61, find the numbers.
- A rectangle has length 5 cm greater than its width. If its area is 104 cm², find the dimensions of the rectangle.
- 7 A bicycle manufacturer finds that its profit, P per day, is given by the formula $P = 80x 4x^2$ where x is the number of bicycles made per day. How many bicycles does the manufacturer make for:
 - a \$300 profit per day b no profit per day?

- 8 Solve for x:
 - a $5^x = 25$

a $3^x = \frac{1}{9}$

9 Solve for x:

b $5^{x+1} = \frac{1}{25}$ **c** $5^x = 1$

10 Use a graphics calculator to solve the equation $2^x = 3 - x$. Include a sketch graph in your answer.

b $9^{2-x} = \frac{1}{27}$

REVIEW SET 22B

1 Solve for x:

a x(1-5x) = 0 **b** (x-2)(x-7) = 0 **c** $(3+2x)^2 = 0$

2 Solve for x:

a
$$x^2 - 6x = 0$$
 b $8x^2 - 6x = 0$ **c** $25x^2 = 5x$

3 Solve for x:

a
$$9-x^2=0$$
 b $(4x+3)^2=0$

- 4 Solve for x:
 - **a** $x^2 7x + 12 = 0$ **b** $4x^2 + 4x + 1 = 0$ **c** $x^2 + 3x = 18$
- 5 If a number is subtracted from its square, the result is 20. What is the number?
- The base of a triangle is 3 cm longer than its height. The area of the triangle is 20 cm². Find the height.
- 7 When a ball is hit directly upwards, its height h above the ground is given by $h = 1 + 21t 3t^2$ metres, where t is the time in seconds after the ball is hit. When is the ball at a height of:
 - **a** 31 metres **b** 1 metre above the ground?
- 8 Solve for *x*:
 - **a** $3^x = 81$ **b** $3^{2x-1} = \frac{1}{3}$ **c** $3^x = \frac{1}{27}$
- **9** Solve for x:
 - **a** $4^x = \frac{1}{8}$ **b** $125 = \frac{1}{5^x}$

10 Use a graphics calculator to solve the equation $x^3 = \frac{1}{x}$. Include a sketch graph in your answer.

Finance

Contents:

- A Profit and loss
- B Percentage profit and loss
- C Discount
- D Using a multiplier
- E Chain percentage problems
- F Simple interest
- G Compound interest
- H Foreign exchange

OPENING PROBLEM

Liam makes timber furniture. He calculates the cost of the timber and other hardware items such as glue, screws and doorknobs that he uses. He also adds the cost of wages for making the furniture. He is then able to list the 'cost per item' as shown.

Item	Cost
dining table	\$670
chair	\$105
small table	\$150
dresser	\$860
cupboard	\$126

Liam adds a mark up for profit on each item. He marks up

the tables by 50%, chairs by 40%, and dressers and cupboards by 60%. He then adds on a Goods and Services Tax (GST) of 10% to determine the final selling price of the item.

Consider the following:

- 1 Find:
 - **a** his profit on each item
 - **b** the GST exclusive price of each item
 - the GST inclusive price of each item.
- **2** Find Liam's profit if he sells:
 - **a** two small tables and a cupboard
 - **b** a dining table, 6 chairs and a dresser.

- **3** Find Liam's profit as a percentage of his cost if he sells a dining table, 6 chairs and a dresser.
- 4 Liam offers a 15% discount for orders over \$3000. How much would a customer pay if he ordered the items in **2b**?

PROFIT AND LOSS

We use money nearly every day, so we need to understand profit, loss and discount.

Profit is an example of an increase.

Loss and discount are examples of a decrease.

A profit occurs if the selling price is *higher* than the cost price.
Profit = selling price - cost price
A loss occurs if the selling price is *lower* than the cost price.
Loss = cost price - selling price

EXERCISE 23A.1

- 1 Giovanna makes cakes for her 'Home-made Cakes' shop. If a cake costs €2.10 to make and she sells it for €3.70, find her profit or loss on the sale.
- 2 Alain knitted a jumper which he sold for \$135. He calculated that the cost of the jumper, including his time spent, was \$160. Find his profit or loss on the sale.

- Brad bought an old car for £600. He spent £1038 restoring it and sold it for £3500. Find his profit or loss on the sale.
- Julie bought a house for €170 000. She spent €6000 having the house repainted, €7800 on new carpets, and €2040 on curtains. A year later she sold the house for €189 000. Find her profit or loss on the sale.
- 5 At the start of summer, Joe bought 200 beach umbrellas at \$25 each to sell from his beach-side café. Unfortunately for Joe it was not a very hot summer. He only sold 128 umbrellas at \$39 each. Find his profit or loss on the sale of umbrellas for that summer.

MARK UP AND MARK DOWN

If a purchase price is **marked up** then it is increased, and a *profit* will be made.

If a purchase price is **marked down** then it is decreased, and a *loss* will be made.

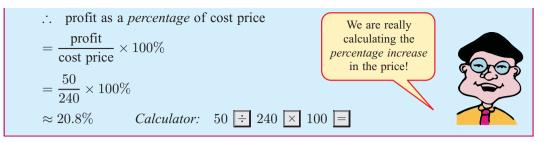
Example 1Self TutorA camera is purchased for €650 and is marked up by 20%.Marked up by 20%.Find: a the profitb the selling price.
a Profit = 20% of cost price = 20% of ϵ 650 = $\frac{20}{100} \times \epsilon$ 650 = ϵ 130 b Selling price = cost price + profit = ϵ 650 + ϵ 130 = ϵ 780
Calculator: 20 \div 100 \times 650 \equiv
Example 2 Self Tutor
 A pair of board shorts was bought for \$35. They were marked down by 20% and sold in an end-of-summer clearance. Find: a the loss b the selling price.
a Loss b Selling price $= 20\%$ of cost price $= \cos t$ price $- \cos t$ = 20% of \$35 $= $35 - 7
$= \frac{20}{100} \times \$35 = \$28$ $= \$7$ Calculator: 20 \div 100 \times 35 =

EXERCISE 23A.2

- **1** Find **i** the profit **ii** the selling price for the following items:
 - **a** a shirt is purchased for \$20 and marked up 10%
 - **b** a DVD player is purchased for \$250 and marked up 80%
 - c a rugby ball is purchased for $\pounds 50$ and sold at a 15% profit
 - **d** a house is purchased for $$255\,000$ and sold at a 21% profit.

Find **i** the loss **ii** the selling price for the following items:

- a cap is purchased for €25 and marked down 20% as it is shop-soiled
- a necklace is purchased for £325 and marked down 35% as the shop is closing down
- a skateboard is purchased for \$90 and is sold at a 20% loss in a stock-clearance
- d a car is purchased for €12600 and sold at a 16% loss as the car dealer has too many used cars.
- 3 A contractor buys his materials from a wholesaler and sells them at a 12% mark up. For one particular job the materials cost him \$920. What profit does he make on the materials?
- 4 Phuong bought a cupboard for \$140. She marked it down by 15% as the paintwork was scratched. What was:
 - a her loss
- **b** her selling price?


PERCENTAGE PROFIT AND LOSS

Sometimes it is important for a retailer to express profit or loss as a **percentage of the cost price**.

Profit and loss correspond to a percentage increase or decrease in the price respectively.

Example 3Self TutorA bicycle was bought for \$240 and sold for \$290.Find the profit as a percentage of cost price.Profit = selling price - cost price= \$290 - \$240= \$50

Self Tutor

EXERCISE 23B

a

- 1 A handbag bought for €125 was then sold for €160. Find the profit as a percentage of the cost price.
- **2** A 25 m roll of carpet was bought wholesale for \$435. If the whole roll is sold at \$32.50 per metre, find:
 - the selling price **b** the profit
 - **c** the profit as a percentage of the wholesale (cost) price.
- Rosa bought a box of tomatoes for \$19.60. There were 14 kg of tomatoes in the box. She sold the tomatoes in her shop in 1 kilogram bags for \$2.45 each.
 - a How much did 1 kg of tomatoes cost Rosa?
 - **b** What was her profit per kilogram?
 - Find her profit as a percentage of her cost price.

Example 4

Monika bought shares in Woolworths at $\notin 21.00$ per share but was forced to sell them at $\notin 18.60$ each. Find:

- a her loss per share b the loss per share as a percentage of the cost price.
- a Loss
 b Loss as a percentage of the cost price
 = €21.00 €18.60
 = €2.40
 ∴ the loss made was €2.40 per share.
 b Loss as a percentage of the cost price
 = loss/cost price × 100%
 = €2.40 × 100%
 ≈ 11.4%
 Calculator: 2.4 ÷ 21 × 100 =
- 4 At the end of winter JK's Ski Centre has a clearance sale. If a pair of skis costing €800 is marked down to €720, find:
 - a the loss made on the sale
 - b the loss as a percentage of the cost price.

- 5 An amateur flying club pays \$38200 for a second hand plane, but because of financial difficulties they are soon forced to sell it for \$27500.
 - **a** Find the loss on this sale.
 - Express this loss as a percentage of the cost price.

DISCOUNT

- Sue bought a concert ticket for \$55 but was unable to go to the concert. She sold the ticket to a friend for \$40, as that was the best price she could get. Find:
 - a her loss b her loss as a percentage of her cost price.
- 7 A newly married couple purchased a two-bedroom unit for $\pounds 126\,000$. They spent another $\pounds 14\,300$ putting in a new kitchen and bathroom. Two years later they had twins and were forced to sell the unit so they could buy a bigger house. Unfortunately, due to a down-turn in the market they received only $\pounds 107\,500$ for the sale. What was:
 - a the total cost of the unit b the loss on the sale
 - the loss as a percentage of their total costs?

A **discount** is a **reduction** in the marked price of an item.

When retail stores advertise a **sale**, they take a **percentage off** the **marked price** of most goods. This price reduction is a discount.

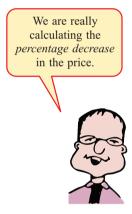
Discounts are often given to tradespeople as encouragement to buy goods at a particular store.

Example 5			Self Tutor
	erchant offers a tourist the sp elling for 250 dirham.	ecial discour	nt of 25% for a brass tray
Find the:	a discount	Ь	sale price.
a Discour	nt = 25% of 250 dirham = 0.25×250 dirham = $62\frac{1}{2}$ dirham	Ь	Sale price = original price - discount = $250 - 62\frac{1}{2}$ = $187\frac{1}{2}$ dirham
Calculo	<i>utor:</i> 25 ÷ 100 🔀 250 📔	=	

EXERCISE 23C

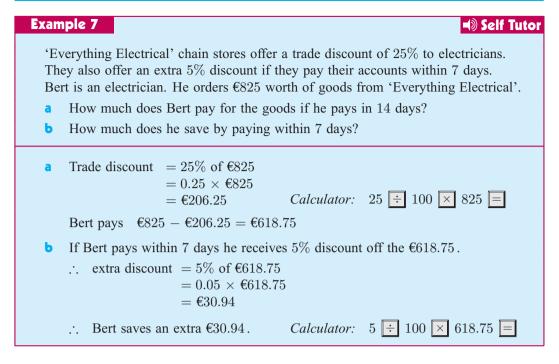
- 1 Find the discount given on the following items, and hence find the sale price:
 - a a vacuum cleaner marked at $\in 130$ and discounted 20%
 - **b** a glass vase marked at \$68 and discounted 35%
 - c an electric fan marked at £28 and discounted $22\frac{1}{2}\%$.

- 2 An electrician buys supplies worth \$186 but is given a 14% discount. How much does he save with the discount?
- A discount sports warehouse offers 8% discount to anyone paying in cash. Joachim pays for a €96 pair of shoes in cash. How much does he actually pay?
- 4 A candlemaker buys 22 kg of beeswax priced at \$15 per kg. Due to the size of her order she is given a 12¹/₂% discount. What does she actually pay for the wax?



Example 6

Self Tutor


Fereshta buys a hijab marked at €85 but only pays €69.70. What percentage discount was she given?

Discount = €85 - €69.70= €15.30 \therefore % discount = $\frac{\text{discount}}{\text{marked price}} \times 100\%$ = $\frac{€15.30}{€85} \times 100\%$ = 18%So, Fereshta was given 18% discount. Calculator: 15.3 \div 85 \times 100 =

- 5 Kathryn purchased a DVD marked at \$24.80 but actually paid \$20.46. What percentage discount was she given?
- Andre saw a piano advertised for sale at €13875 after being discounted from €19990. Calculate the percentage discount.
- 7 An employee at a shoe store buys a pair of sandals worth €48 but is only charged €39.36.
 What employee discount did she receive?
- 8 Helga buys a dress marked down from \$180 to \$126. What percentage discount was given?

- Ingrid is a painter. She purchased \$1020 of paint and brushes and was given a trade discount of 25%. She was given an extra 3% discount for paying within 7 days.
 - a Find Ingrid's trade discount.
 - Find how much she paid for the paint and brushes for paying within 7 days.

- 10 Carlo is a plumber. He ordered €3270 of plumbing supplies and received 30% trade discount. He received an extra 5% discount for paying cash.
 - a Find Carlo's trade discount.
 - **b** Find how much Carlo saved by paying cash.
- 11 Louise works in a store that sells fine china. As an employee, she is allowed 10% discount off items that she purchases from the store. During a '20% off' sale, Louise purchases a dinner set marked at €870.
 - **a** Find the sale price of the dinner set.
 - b Find: i Louise's employee's discountii the price that Louise pays.
 - What percentage discount off the marked price of €870 did Louise actually receive?

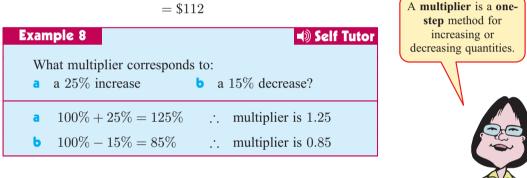
USING A MULTIPLIER

In Susan's Casualwear business she buys items at a certain price and has to increase this price by 40% to make a profit and pay tax.

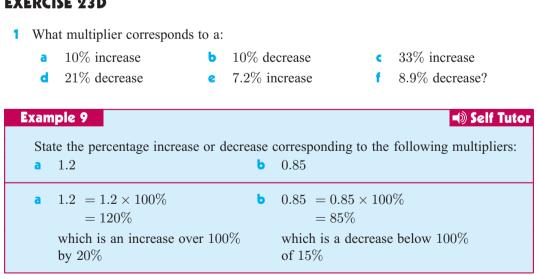
Suppose she buys a pair of slacks for \$80. At what price should she mark them for sale?

One method is to find 40% of \$80 and add this on to \$80,

40% of $\$80 = \frac{40}{100} \times \$80 = \$32$


So, the marked price would be \$80 + \$32 = \$112.

This method needs two steps.

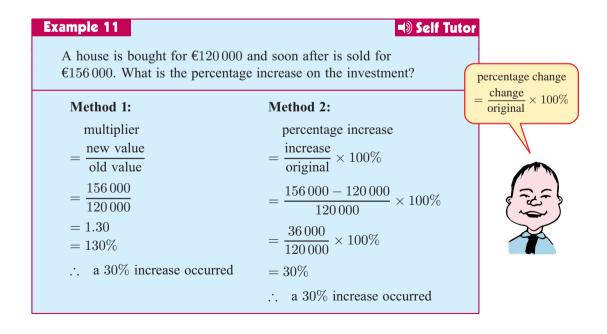

A one-step method is to use a multiplier.

Increasing by 40% is the same as multiplying by 100% + 40% or 140%.

So. $\$80 \times 140\% = \80×1.4

EXERCISE 23D

2 For the following multipliers, state the corresponding percentage increase or decrease:


a	1.3	b	1.25	C	0.94	d	0.86
e	1.47	f	0.68	9	2.5	h	0.4

Exam	nple 10		Self Tutor
a	Increase \$860 by 7%.	b Decrease £1200 by 22%.	
a	New amount = 107% of \$860 = 1.07 × \$860 = \$920.20	{to increase by 7%, multiply by 107%}	
ь	New amount = 78% of £1200 = 0.78 × £1200 = £936	{to decrease by 22%, multiply by 78%}	

3 Calculate the following:

a	increase $\$80$ by 6%	Ь	increase £68 by 20%	C	increase 50 kg by 14%
d	decrease $\in 27$ by 15%	e	decrease $\pounds780$ by 16%	f	decrease $35 \text{ m by } 10\%$

- a Jason was being paid a wage of €25 per hour. His employer agreed to increase his wage by 4%. What is Jason's new wage per hour?
 - At the school athletics day Sadi increased her previous best javelin throw of 29.5 m by 8%. How far did she throw the javelin?
 - Giuseppe thinks that the 2.5 m high hedge around his garden needs to be trimmed. If he reduces the height by 30%, how high will it be?

- **5** Find the percentage change that occurs when:
 - **a** \$80 increases to \$120
 - € €95 reduces to €80

b \pounds 9000 decreases to \pounds 7200

8 m reduces to 6.5 m

- d €90 increases to €118
- 16 kg increases to 20 kg
- 6 A block of land is bought for €75000 and sold later for €110000. Calculate the percentage increase in the investment.

f

- 7 A share trader buys a parcel of shares for \$4250 and sells them for \$3800. Calculate the percentage decrease in the investment.
- 8 Claude found that after the Christmas season his weight had increased from 85 kg to 91 kg. What percentage increase in weight was this?
- 9 Frederik left a wet piece of timber, originally 3.80 m long, outside to dry. In the sun it shrank to a length of 3.72 m. What percentage reduction was this?
- 10 Shelley was originally farming 250 ha of land. However, she now farms 270 ha. What percentage increase is this?

Self Tutor

CHAIN PERCENTAGE PROBLEMS

We can use the multiplier more than once within a problem to change the value of a quantity.

Example 12

Increase 3500 by 10% and then decrease the result by 14%.

Increasing by 10% has a multiplier of 110% = 1.1Decreasing by 14% has a multipler of 86% = 0.86So, the final amount $= $3500 \times 1.1 \times 0.86$

= \$3311

EXERCISE 23E

- **a** Increase \$2000 by 20% and then by 20%.
 - **b** Increase $\notin 3000$ by 10% and then decrease by 15%.
 - **c** Decrease $\notin 4000$ by 9% and then decrease by 11%.
 - **d** Decrease \notin 5000 by 6% and then increase by 10%.
- 2 True or false?

"If we increase an amount by a certain percentage and then decrease by the same percentage, we get back to the original value."

Example 13

Self Tutor

A 1.25 L soft drink is bought by a deli for 0.80. The deli owner adds 60% mark up then 15% goods tax. What price does the customer pay (to the nearest 5 cents)?

A 60% mark up means we multiply by 160% = 1.6A 15% goods tax indicates we multiply by a further 115% = 1.15 \therefore cost to customer $= \$0.80 \times 1.6 \times 1.15$ = \$1.472 $\approx \$1.45$ {to the nearest 5 cents}

- 3 Hamji buys a wallet for \$35 to be sold in his shop. He adds 60% for profit and also adds 12¹/₂% goods tax. What price will he write on the sales tag?
- 4 Super Sneakers are bought by a sports shop owner for £175. They are marked up by 45% in order for profit to be made. When these items prove very popular a further 20% mark up is made. A goods tax of 8% is applied at the point of sale. What does the customer pay?
- 5 An electric coffee maker costs a retail shop €85. In order to make a profit, a 65% mark up is made. As the item does not sell, two months later the price is reduced by 20%. When it is sold a value added tax (VAT) of 17.5% is added. What is the price paid by the customer to the nearest euro?

APPRECIATION

When the value of an item such as a house or investment increases, we say it **appreciates** in value. You may have noticed that the prices of everyday goods and services also appreciate over time due to **inflation**.

Example 14	Self Tutor
An investment of $\$600000$ attracts interest rates of 6.8%, 7.1% and 3 successive years. What is it worth at the end of this period?	6.9% over
A 6.8% increase uses a multiplier of 106.8% = 1.068 A 7.1% increase uses a multiplier of 107.1% = 1.071 A 6.9% increase uses a multiplier of 106.9% = 1.069 ∴ final value = $\$600000 \times 1.068 \times 1.071 \times 1.069$ = $\$733651$	

- 6 A motorcycle today costs £3750. The inflation rates over the next four years are predicted to be 3%, 4%, 5% and 5%. If this occurs, what is the expected cost of the motorcycle at the end of this period?
- 7 If the rate of inflation is expected to remain constant at 3% per year for the next 5 years, what would you expect a €35000 car to cost in 5 years' time?

- 8 An investment of \$30 000 is left to accumulate interest over a 4-year period. During the first year the interest paid was 8.7%. In successive years the rates paid were 8.4%, 7.6% and 5.9%. Find the value of the investment after 4 years.
- **9** Jian invests \$34,000 in a fund which accumulates interest at 8.4% per annum. If the money is left in the fund for a 6-year period, what will be its maturing value?

Example 15

Self Tutor

Over a three year period the value of housing increases by 6%, decreases by 5%, and then increases by 8%. What is the overall effect of these changes?

Let x be the original value of a house.

 \therefore value after one year = $x \times 1.06$

value after two years = $x \times 1.06 \times 0.95$ {5% decrease} value after three years = $x \times 1.06 \times 0.95 \times 1.08$ {8% increase} = $x \times 1.08756$ $\approx x \times 108.76\%$

So, an 8.76% increase has occurred.

- **10** What is the overall effect of:
 - a increases of 8%, 9% and 12% over three consecutive years
 - **b** decreases of 3%, 8% and 6% over three consecutive years
 - c an increase of 5% over four consecutive years?
- 11 Joshua's wages increase by 3.2%, 4.8% and 7.5% over three consecutive years. What is his overall percentage increase over this period?
- 12 Jasmin's income increases by 11%, decreases by 7%, increases by 2%, and then increases by 14% over four consecutive years. What is her overall percentage increase for this four year period?

SIMPLE INTEREST

 $\{6\% \text{ increase}\}\$

Whenever money is lent, the person lending the money is known as the **lender** and the person receiving the money is known as the **borrower**. The amount borrowed from the lender is called the **principal**.

The lender usually charges a fee called **interest** to the borrower. This fee represents the cost of using the other person's money. The borrower has to repay the principal borrowed plus the interest charged for using that money.

The amount of interest charged on a loan depends on the **principal**, the **time** the amount is borrowed for, and the **interest rate**.

There are two common ways of calculating interest. These are: •

- simple interest
- compound interest.

SIMPLE INTEREST

Under this method, interest is calculated on the initial amount borrowed for the entire period of the loan.

Suppose \$4000 is borrowed at 7% per annum for 3 years.

The interest payable for 1 year = 7% of \$4000

$$=\frac{1}{100} \times $4000$$

:. the interest payable for 3 years $=\frac{7}{100} \times \$4000 \times 3$

i.e.,
$$I = $4000 \times 0.07 \times 3$$

From examples like this one we construct the simple interest formula:

I = Crn	where	<i>I</i> is the simple interest
		C is the principal or amount borrowed
		r is the flat rate of interest per annum
		n is the time or duration of the loan in years .

Example 16

Self Tutor

Calculate the simple interest on a \$6000 loan at a rate of 8% p.a. over 4 years. Hence find the total amount to be repaid.

C = 6000	Now	I = Crn	
$r = 8 \div 100 = 0.08$	<i>.</i>	$I = 6000 \times 0.08 \times 4$	
n = 4	<i>.</i>	I = \$1920	
The total amount to be repaid is	\$6000	0 + \$1920	p.a. 1 per al
	= \$7920	0	per a

p.a. reads *per annum* or *per year*.

EXERCISE 23F

- 1 Calculate the simple interest on a loan of:
 - **a** \$2000 at a rate of 6% p.a. over 4 years
 - **b** £9600 at a rate of 7.3% p.a. over a 17 month period
 - $$30\,000$ at a rate of 6.8% p.a. over a 5 year 4 month period
 - **d** €7500 at a rate of 7.6% p.a. over a 278 day period.
- **2** Which loan charges less simple interest?
 - \$2500000 at a rate of 7% p.a. for 4 years, or
 - $\frac{1}{2}2500\,000$ at a rate of 6.75% p.a. for $4\frac{1}{2}$ years

We can use the same simple interest formula to find the other three variables C, r, and n.

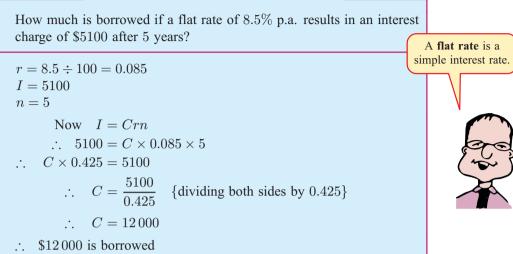
Self Tutor

FINDING THE ORIGINAL VALUE (C)

Example 17

 $r = 8.5 \div 100 = 0.085$ I = 5100n = 5Now I = Crn $\therefore 5100 = C \times 0.085 \times 5$ $C \times 0.425 = 5100$ $\therefore \quad C = \frac{5100}{0.425}$ $\{$ dividing both sides by $0.425\}$ $\therefore C = 12\,000$ \therefore \$12000 is borrowed

- **3** How much is borrowed if a flat rate of 6% p.a. results in an interest charge of $\pounds900$ after 4 years?
- 4 How much is borrowed if a flat rate of 9% p.a. results in an interest charge of €6561 after 3 years?
- 5 An investor wants to earn \$3500 in 8 months. How much would he need to invest given that the current interest rates are $7\frac{3}{4}\%$ for a flat rate?


FINDING THE RATE (r)

Example 18

If you wanted to earn \$5000 in interest on a 4 year loan of \$17000, what flat rate of interest would you need to charge?

I = 5000	Now $I = Crn$
n = 4	$\therefore 5000 = 17000 \times r \times 4$
C = 17000	$\therefore 68000r = 5000$
	$\therefore r = \frac{5000}{68000} \{\text{dividing both sides by } 68000\}$
	\therefore $r \approx 0.0735$
∴ you would ne	ed to charge a flat rate of 7.35% p.a.

- 6 What flat rate of interest must be charged if you want to earn:
 - \$800 after 5 years on \$6000 **b** $\in 1000$ after 20 months on $\in 8800$?
- 7 What rate of simple interest would need to be charged on a loan of $\pounds 20\,000$ if you wanted to earn £3000 in interest over 2 years?

Self Tutor

A student wants to buy a car costing \$3500 in 18 months' time. She has already saved \$3000 and deposits this in an account that pays a flat rate of interest.

What flat rate of interest must the account pay to enable the student to reach her target?

FINDING THE DURATION OF A LOAN (n)

Example 19

Self Tutor

How long would it take to earn interest of \$4000 on a loan of \$15000 if a flat rate of 7.5% p.a. is charged?

I = 4000	Now $I = Crn$
C = 15000	$\therefore 4000 = 15000 \times 0.075 \times n$
$r = 7.5 \div 100 = 0.075$	$\therefore 4000 = 1125n$
	$\therefore n \approx 3.56$

So, it would take 3 years 7 months to earn the interest.

- **9** How long would it take to earn interest of:
 - **a** \$3000 on a loan of \$10000 at a flat rate of 8% p.a.
 - **b** \$82440 on a loan of \$229000 at a flat rate of 6% p.a.?
- 10 If you deposited \$8000 in an investment account that paid a flat rate of 7.25% p.a., how long would it take to earn \$1600 in interest?

ACTIVITY SIMPLE INTEREST		T CALCULATOR
X	Click on the icon to obtain a simple interest calculator.	SIMPLE
	What to do:	
	Check the answers to Examples 16 to 19.	< <mark>'''</mark> }

CALCULATING REPAYMENTS FOR SIMPLE INTEREST LOANS

Whenever money is borrowed, it has to eventually be repaid along with the interest charges. The repayment of the amount owed (principal plus interest) is normally done by making regular (usually equal) payments over the length of the loan. These may be weekly, fortnightly, monthly, or at other time intervals.

The regular payment made is calculated by dividing the total amount to be repaid by the number of repayment periods:

```
regular payment = \frac{\text{total to be repaid}}{\text{number of repayments}}
```

Self Tutor

Example 20

Calculate the monthly repayments on a loan of $$15\,000$ at 7% p.a. flat rate over 4 years.

Step 1:	Calculate the interest on the loan.	
	$C = 15000 \qquad \text{Now} I = Crn$ $r = 7 \div 100 = 0.07 \qquad \therefore I = 15000 \times 0.07 \times 4$ $n = 4 \qquad \therefore \text{interest} = \4200	
Step 2:	Calculate the total amount to be repaid.	
	total repayment = $$15000 + 4200 principal interest	
	= \$19 200	
Step 3:	Repayments are made each month. So, in 4 years we have $4 \times 12 = 48$ months.	
Step 4:	Monthly repayment = $\frac{\$19200}{48} = \400	

- **11** Calculate the monthly repayments on a loan of \notin 9500 at 7.5% p.a. flat rate over 4 years.
- 12 A loan of \$24000 at a flat rate of 6.5% p.a. is repaid quarterly (4 times a year) over 6 years. Calculate the amount of each repayment.
- 13 Sam obtains a loan of $\pounds 6000$ for 4 years at a flat rate of 8.5% p.a. If payments on the loan are made every 6 months, calculate the size of each repayment.
- 14 Thierry pays \$330.65 per month for $3\frac{1}{2}$ years for a loan of \$11000. How much interest will he pay for this loan?

G

COMPOUND INTEREST

If you bank \$1000, then you are actually lending the money to the bank. The bank in turn uses your money to lend to other people. While banks pay you interest to encourage your custom, they charge interest to borrowers at a higher rate. That way the banks make a profit.

If you leave the money in the bank for a period of time, the interest is automatically added to your account and so the principal is increased. The next lot of interest will then be calculated on the higher principal. This creates a **compounding** effect on the interest as you are getting **interest on interest**.

After year	Interest paid	Value
0		\$1000.00
1	6% of \$1000.00 = \$60.00	1000.00 + 60.00 = 1060.00
2	6% of $1060.00 = 63.60$	1060.00 + 63.60 = 1123.60
3	6% of $1123.60 = 67.42$	1123.60 + 67.42 = 1191.02

Consider an investment of \$1000 with interest of 6% p.a. paid each year and compounded.

We can use **chain percentage increases** to calculate the account balance after 3 years.

Each year, the account balance is 106% of its previous value.

:. future value after 3 years = $1000 \times 1.06 \times 1.06 \times 1.06$ = $1000 \times (1.06)^3$

In this section we are only interested in one interest payment per year.

= \$1191.02

Did you notice that

Example 21

Self Tutor

5000 is invested at 8% p.a. compound interest with interest calculated annually.

- **a** What will it amount to after 3 years?
- **b** Find the interest earned.

 a The multiplier is 108% = 1.08
 ∴ value after 3 years = \$5000 × (1.08)³ = \$6298.56

b Interest earned = \$6298.56 - \$5000 = \$1298.56

EXERCISE 23G

- **1** Find the final value of a compound interest investment of:
 - **a** \$2500 after 3 years at 6% p.a. with interest calculated annually
 - **b** $\pounds 4000$ after 4 years at 7% p.a. with interest calculated annually
 - **c** €8250 after 4 years at 8.5% p.a. with interest calculated annually.
- **2** Find the total interest earned for the following compound interest investments:
 - a €750 after 2 years at 6.8% p.a. with interest calculated annually
 - **b** \$3350 after 3 years at 7.25% p.a. with interest calculated annually
 - $\pounds 12500$ after 4 years at 8.1% p.a. with interest calculated annually.

- 3 Xiao Ming invests 12000 Yuan into an account which pays 7% p.a. compounded annually. Find:
 - a the value of her account after 2 years
 - **b** the total interest earned after 2 years.
- **4** Kiri places \$5000 in a fixed term investment account which pays 5.6% p.a. compounded annually.
 - a How much will she have in her account after 3 years?
 - **b** What interest has she earned over this period?
- 5 Nindi invests 30 000 rupee in an account which pays 5.2% p.a. interest compounded annually.
 - a How much will he have in his account after 7 years assuming no withdrawals?
 - **b** How much interest will he earn?
- 6 Which investment would earn you more interest on an 8000 peso investment for 5 years:
 - one which pays 8% p.a. simple interest or
 - one which pays 7.5% p.a. compound interest?

COMPOUND INTEREST CALCULATOR

Click on the icon to load a **compound interest calculator** which can be used to check your answers to **Exercise 23G**.

A SPREADSHEET FOR COMPOUND INTEREST

ΑCTIVITY

The purpose of this activity is to construct a spreadsheet for finding the annual growth of an amount of money which is earning interest at a given rate each year. The spreadsheet must show the final amount at the end of each year and the amount of interest earned each year.

Consider the original example in this section where 1000 is invested at a rate of 6% p.a. over several years.

What to do:

- 1 Click on the icon to open a new spreadsheet. Type in cell A1 *After year*, in cell B1 *Interest paid* and in cell C1 *Account balance*. In cell D1 type *Interest rate (%)*.
- **2** In A2 type 0. In A3 type the formula =A2+1. Highlight A3 and fill down to A12.
- **3** In cell C2 type 1000 and in D2 type 6.
- 4 In B3 type = $D^2/100 \times C2$. In C3 type =C2+B3.
- **5** Highlight cells C3 and B3 and fill both down to row 12.
- 6 Set the number of decimal places in columns 2 and 3 to reflect your currency. For example, if you use dollars, euros or pounds, set these cells to 2 decimal places so that you round to the nearest cent or penny.

	Α	В	С	D
1	After year	Interest paid	Account balance	Interest rate (%)
2	0		1000.00	6
3	1	60.00	1060.00	
4	2	63.60	1123.60	
5	3	67.42	1191.02	
6	4	71.46	1262.48	
7	5	75.75	1338.23	
8	6	80.29	1418.52	
9	7	85.11	1503.63	
10	8	90.22	1593.85	
11	9	95.63	1689.48	
12	10	101.37	1790.85	

Your spreadsheet should now look like:

- 7 Replace the 6 in D2 by 7 and explain what data the spreadsheet calculates.
- 8 Replace the 1000 in C2 by 22 500 and the 7 in D2 by 5.5 and explain what the data in the spreadsheet calculates.
- 9 Use only your spreadsheet to calculate the final value and the total interest earned on a \$12750 investment at 6.8% p.a. for 5 years. Hint: In D7 type =C7-C2.

FOREIGN EXCHANGE

When you are in another country you need to use the **currency** or money system of that country. This means that you must exchange your money for the equivalent amount of the local currency. The equivalent amount is found using **exchange rates**.

Exchange rates show the relationship between the values of currencies. They are published daily in newspapers, in bank windows, and on the internet at various bank and travel agency sites.

Suppose you are a citizen of the European Union (EU) and you want to know how much each currency is worth compared with **one euro**.

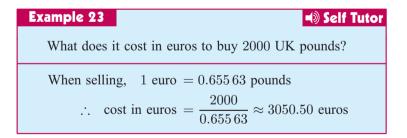
The following is a table of exchange rates. Note that it is an example only since exchange rates change constantly.

Country	Currency Name	Symbol	Value of EU euros (€)			
Country		29.11001	Buying	Selling		
Singapore	Dollar	\$SG	2.0675	1.9848		
Japan	Yen	¥	158.317	151.984		
China	Yuan	元	10.0372	9.6357		
United Kingdom	Pound	£	0.68295	0.65563		
Australia	Dollar	\$AUD	1.5927	1.5291		
USA	Dollar	\$US	1.3462	1.2923		

You can see that there are different rates for **buying and selling** euros. This ensures that the bank or money exchange makes a profit on the transaction. In addition, some exchange places will also charge commission.

BUYING AND SELLING EUROS

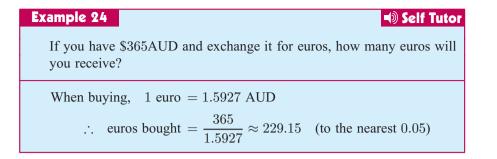
SELLING


• How much foreign currency will you receive by selling euros? Use the selling exchange rate and the formula:

Foreign currency bought = euros sold \times selling exchange rate

Example 22 🚽 🗐 Example 22
Convert 500 euros into United Kingdom pounds.
When selling, 1 euro = 0.65563 pounds \therefore UK currency bought = 500×0.65563 pounds
≈ 327.80 pounds

• How many euros do you need to purchase foreign currency? Use the selling exchange rate and the formula:


Cost in euros = $\frac{\text{foreign currency bought}}{\text{selling exchange rate}}$

BUYING

• You have **currency from another country** and want to change it to **euros**. You are **buying** euros, so we use the **buying exchange rate** and the formula:

 $Euros bought = \frac{foreign \ currency \ sold}{buying \ exchange \ rate}$

EXERCISE 23H

In questions 1 to 4, suppose you are a citizen of the EU and use the currency table on page 470.

1 You have 400 euros to spend in each of four countries. How much local money can be purchased in:

а	the UK	Ь	Singapore	c USA	d Japan?
---	--------	---	-----------	-------	----------

- 2 What will it cost you in euros to purchase:
 - a \$950 US b \$5000 SG c 380 Yuan d 7000 Yen?
- 3 Calculate the cost in euros to purchase:
 - a a plate of noodles for 9 Singapore dollars
 - **b** a suit marked at \$265 US **c** a camera for 21 000 Yen

4 How much in euros would you expect in exchange for:

- a 20000 Yen b \$300 SG c \$150 AUD d \$417 US?
- **5** Obtain current exchange rates using the daily newspaper or the internet over a 5-day period. What do you notice?
- 6 Construct a table of exchange rates for your country's currency, and use it to redo questions 1 to 4 wherever possible.

HOW MUCH CAN I SAVE BY NOT SMOKING?

Areas of interaction: Environments/Health and social education

REVIEW SET 23A

- **a** What multiplier corresponds to:
 - i a 13% decrease ii a 10.9% increase?
 - For the following multipliers, state the percentage increase or decrease occurring:
 i 3.5
 ii 0.73

2 a Increase \$2500 by 16%. **b** Decrease 65 kg by 10%.

- 3 Sam buys a bicycle for €225 and sells it for €385 after repainting it. What is Sam's:
 a profit
 b percentage profit?
- 4 Yuka purchases a shirt for $\frac{1}{3400}$ and marks it up 35% for sale. What is:
 - **a** the selling price **b** the profit?
- 5 Moira bought a car for £4500 but had to sell it for £4000 a few weeks later. What was her:
 - **a** loss **b** percentage loss?
- **6** A store has an item for \$80 and discounts it by 15%. Find:
 - **a** the discount **b** the sale price.
- 7 Barbara purchased a coin collection for \$1200. Two years later it was valued at \$2150. Calculate the percentage increase in the value of the investment.
- 8 A publisher sells a book for \$20 per copy to a retailer. The retailer marks up the price by 75% and then adds 10% for a goods tax.

What price does the customer pay?

- **9** The annual rate of inflation is predicted to be 3% next year, then 3.5% in the year after that. What will be the cost in two years' time of an item that currently costs \$50 if the cost rises in line with inflation?
- **10** How much is borrowed if a flat rate of 8% p.a. results in an interest charge of \$3600 after 3 years?
- **11** A person wants to earn \$3000 interest on an investment of \$17000 over 3 years. What is the minimum flat rate that will achieve this target?
- **12** How long would it take to earn \$5000 interest on an investment of \$22500 at a flat rate of 9.5% p.a.?
- **13** a Calculate the simple interest on a \$6000 loan at a rate of 8.5% p.a. over 3 years.
 - **b** Calculate the monthly repayments.
- 14 Find the final value of a compound interest investment of 20000 after 3 years at 7.5% p.a. with interest calculated annually.
- **15** Which of the following would earn more interest on a \$7500 investment for 4 years:
 - 9% p.a. simple interest calculated annually or
 - 8% p.a. compounded interest calculated annually?

REVIEW SET 23B

- **1 a** What multiplier corresponds to: **i** a 10% increase **ii** an 11.7% decrease?
 - b For these multipliers, state the percentage increase or decrease occurring:
 i 1.037 ii 2 iii 0.938
- **2** a Increase £3625 by 8%. **b** Decrease 387 km by 1.8%.
- 3 Jason bought a tennis racquet for \$185 and sold it soon after for \$140. What was Jason's: a loss b percentage loss?
- **4** Pancho bought a car for 2000 pesos, improved it mechanically then sold it for a 30% profit. What was his:
 - a selling price **b** profit?
- 5 A furniture store bought a chair for €380, marked it up by 35% and then discounted it by 15%. What was:
 - **a** the marked-up price **b** the discounted price?
- A company cut its advertising budget by 12%. If the company previously spent \$80 000 on advertising, what was the new advertising budget?
- 7 A superannuation fund reports a decrease in value of 4% in year 1, an increase of 8% in year 2, and a 4% decrease in year 3. What was the overall percentage increase or decrease of the fund over the period?
- 8 A toaster is sold to a retailer for €38. The retailer marks it up by 40%, discounts it by 15%, and then sells it to a customer after adding on 16% VAT. What did the customer pay?
- **9** For the next three years the annual inflation rate is predicted to be 3.2%, 4.1% and 4.8%. If this occurs, what should be the value of a house currently at \$325 000?
- **10** What simple interest is earned on an investment of \$6500 for 4 years at 6.8% p.a.?
- 11 How much is borrowed if a flat rate of 7.2% p.a. results in an interest charge of \$216 after 2¹/₂ years?
- 12 How long would it take for a loan of €45000 to earn €15120 interest at a rate of 8% p.a. simple interest?
- **13** An investment of \$25000 is made for 4 years at 8.2% p.a. compounded yearly. Find:
 - **a** the final value of the investment **b** the interest earned.
- 14 Hector has a £15 000 loan for 4 years at 7.5% p.a. simple interest. Calculate:
 - **a** the amount of simple interest **b** the monthly repayments.
- **15** €8000 is invested for 10 years at 8% p.a. compounded interest. Find:
 - **a** the final value of the investment **b** the amount of interest earned
 - c the simple interest rate needed to be paid for the same return on the investment.

Quadratic functions

- **Contents:**
- A Graphs of quadratic functions
- **B** Axes intercepts
- C The axis of symmetry
- Quadratic modelling

OPENING PROBLEM

A cannonball fired vertically upwards from ground level has height H metres given by the relationship $H = 36t - 3t^2$, where t is the time in seconds after firing.

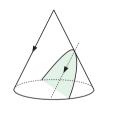
Consider the following:

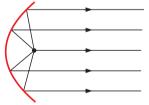
- 1 If we sketch a graph of the height H against the time t after firing, what shape would result?
- **2** How long would it take for the cannonball to reach its maximum height?
- **3** What would be the maximum height reached?
- 4 How long would the person who fired the cannonball have to clear the area?

GRAPHS OF QUADRATIC FUNCTIONS

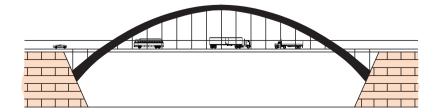
The graphs of all quadratic functions are **parabolas**. The parabola is one of the *conic sections*.

Conic sections are curves which can be obtained by cutting a cone with a plane. The Ancient Greek mathematicians were fascinated by conic sections.


You may like to find the conic sections for yourself by cutting an icecream cone.


Cutting parallel to the side produces a parabola, as shown in the diagram.

There are many examples of parabolas in everyday life:


The name parabola comes from the Greek word for **thrown** because when an object is thrown, its path makes a parabolic shape.

Parabolic mirrors are used in car headlights, heaters, radar discs and radio telescopes because of their special geometric properties.

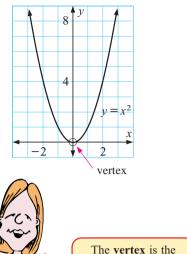
Below is a single span parabolic bridge. Other suspension bridges, such as the Golden Gate bridge in San Francisco, also form parabolic curves.

12

8

4

2


THE SIMPLEST QUADRATIC FUNCTION

The simplest quadratic function is $y = x^2$. Its graph can be drawn from a table of values.

x	-3	-2	-1	0	1	2	3
y	9	4	1	0	1	4	9

Notice that:

- The curve is a **parabola** and it opens upwards.
- There are no negative y values, i.e., the curve does not go below the x-axis.
- The curve is symmetrical about the y-axis because, for example, when x = -3, $y = (-3)^2 = 9$ and when x = 3, $y = 3^2 = 9$.
- The curve has a **turning point** or **vertex** at (0, 0).

point where the graph is at its maximum or minimum.

Self Tutor

х

2

Example 1

Draw the graph of $y = x^2 + 2x - 3$ from a table of values from x = -3 to x = 3.

Consider $f(x) = x^2 + 2x - 3$

Now,
$$f(-3) = (-3)^2 + 2(-3) - 3$$

= 9 - 6 - 3
= 0

We can do the same for the other values of x.

Tabled values are:

x	-3	-2	-1	0	1	2	3
y	0	-3	-4	-3	0	5	12

EXERCISE 24A

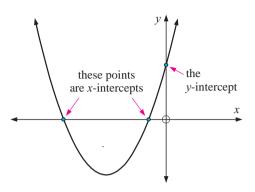
- 1 From a table of values for x = -3, -2, -1, 0, 1, 2, 3 draw the graph of:
 - a $y = x^2 2x + 1$ b $y = -2x^2 + 4$ c $y = x^2 + x + 4$ d $y = -x^2 - 4x - 4$ e $y = 2x^2 + 3x$ f $y = -x^2 + 4x - 9$
- 2 What is the effect on the graph of the sign in front of the x^2 term in the equations in 1?

From the graphs drawn in this exercise you can see that a parabola may:

- cut the x-axis in two places (two x-intercepts)
- touch the x-axis (one x-intercept) or
- lie entirely above or entirely below the x-axis (no x-intercepts).

B

AXES INTERCEPTS


Given the equation of any curve:

An *x*-intercept is a value of x where the graph meets the *x*-axis.

A y-intercept is a value of y where the graph meets the y-axis.

x-intercepts are found by letting y be 0 in the equation of the curve.

y-intercepts are found by letting x be 0 in the equation of the curve.

THE y-INTERCEPT OF A QUADRATIC FUNCTION

You will have noticed that for a quadratic function of the form $y = ax^2 + bx + c$, the *y*-intercept is the constant term *c*. This is because any curve cuts the *y*-axis when x = 0.

For example,

if $y = x^2 - 2x - 3$ and we let x = 0then $y = 0^2 - 2(0) - 3$ $\therefore y = -3$ (the constant term)

EXERCISE 24B

1 For the following functions state the *y*-intercept:

a	$y = x^2 + 3x + 3$	b	$y = x^2 - 5x + 2$	c	$y = 2x^2 + 7x - 8$
d	$y = 3x^2 - x + 1$	e	$y = -x^2 + 3x + 6$	f	$y = -2x^2 + 5 - x$
9	$y = 6 - x - x^2$	h	$y = 8 + 2x - 3x^2$	i.	$y = 5x - x^2 - 2$

INVESTIGATION

x-INTERCEPTS OF A QUADRATIC

GRAPHING PACKAGE

What to do:

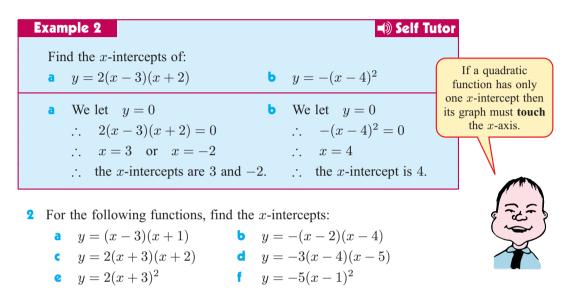
1 For the following quadratic functions, use your graphing package or graphics calculator to:

i draw the graph ii find the x-intercepts (if any exist)

a
$$y = x^2 - 3x - 4$$
 b $y = -x^2 + 2x + 8$ c $y = 2x^2 - 3x$
d $y = -2x^2 + 2x - 3$ e $y = (x - 1)(x - 3)$ f $y = -(x + 2)(x - 3)$
g $y = 3(x + 1)(x + 4)$ h $y = 2(x - 2)^2$ i $y = -3(x + 1)^2$

2 From your observations in question **1**:

- **a** State the x-intercepts of a quadratic function of the form $y = a(x \alpha)(x \beta)$.
- **b** What do you notice about the x-intercepts of quadratic functions in the form $y = a(x \alpha)^2$? What else do you notice?

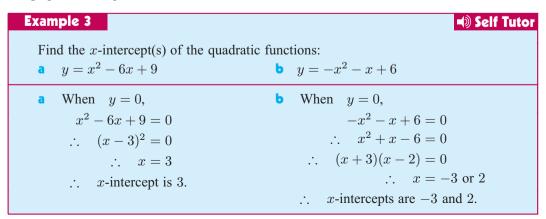

THE x-INTERCEPTS OF A QUADRATIC FUNCTION

You should have noticed that for a quadratic function of the form $y = a(x - \alpha)(x - \beta)$, the x-intercepts are α and β . This is because any curve cuts the x-axis when y = 0.

So, if we substitute y = 0 into the function we get $a(x - \alpha)(x - \beta) = 0$

 \therefore $x = \alpha$ or β {by the Null Factor law, since $a \neq 0$ }

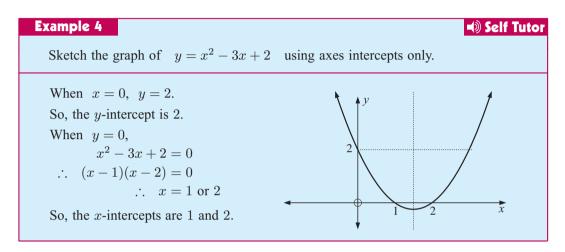
This suggests that x-intercepts are easy to find when the quadratic is in **factorised** form.



FACTORISING TO FIND *x*-INTERCEPTS

For any quadratic function of the form $y = ax^2 + bx + c$, the *x*-intercepts can be found by solving the equation $ax^2 + bx + c = 0$.

You will recall from **Chapter 22** that quadratic equations may have *two solutions*, *one solution* or *no solutions*.


These solutions correspond to *two x-intercepts*, *one x-intercept* or *no x-intercepts* found when the graphs of the quadratic functions are drawn.

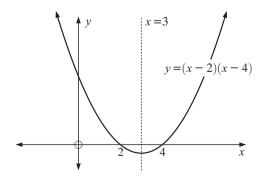
480 QUADRATIC FUNCTIONS (Chapter 24)

- **3** For the following functions find the *x*-intercepts:
 - a $y = x^2 9$ b $y = 2x^2 - 6$ c $y = x^2 + 7x + 10$ d $y = x^2 + x - 12$ e $y = 4x - x^2$ f $y = -x^2 - 6x - 8$ g $y = -2x^2 - 4x - 2$ h $y = 4x^2 - 24x + 36$ i $y = x^2 - 4x + 1$ j $y = x^2 + 4x - 3$ k $y = x^2 - 6x - 2$ l $y = x^2 + 8x + 11$

4 Check your answers to 3 using technology.

5 Sketch the quadratic functions using axes intercepts:

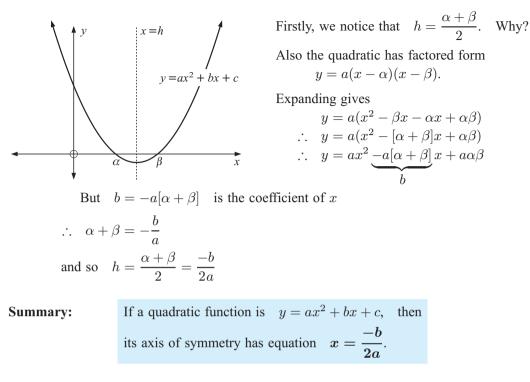
а	y = (x+1)(x-3)	Ь	y = -(x-1)(x-3)	C	$y = x^2 - 2x$
d	$y = x^2 + 3x$	e	$y = -x^2 + 6x - 5$	f	$y = x^2 + 6x + 5$
9	$y = x^2 - 6x + 8$	h	$y = x^2 + 6x + 8$	i	$y = 4x^2 - 1$
j	$y = -9x^2 + 4$	k	$y = -2x^2 + 7x + 4$	1	$y = 3x^2 - x - 2$


C

THE AXIS OF SYMMETRY

The axis of symmetry of a quadratic function is a vertical line.

If the quadratic function cuts the x-axis twice, the axis of symmetry cuts the x-axis midway between the x-intercepts.


How do we quickly find the equation of the axis of symmetry if the quadratic function is given in the form $y = ax^2 + bx + c$?

The following argument is one of several that can be used to find the equation.

Suppose the quadratic cuts the x-axis at α and β and has an axis of symmetry x = h.

Self Tutor

It can be shown that this equation is correct regardless of whether the quadratic function has x-intercepts or not.

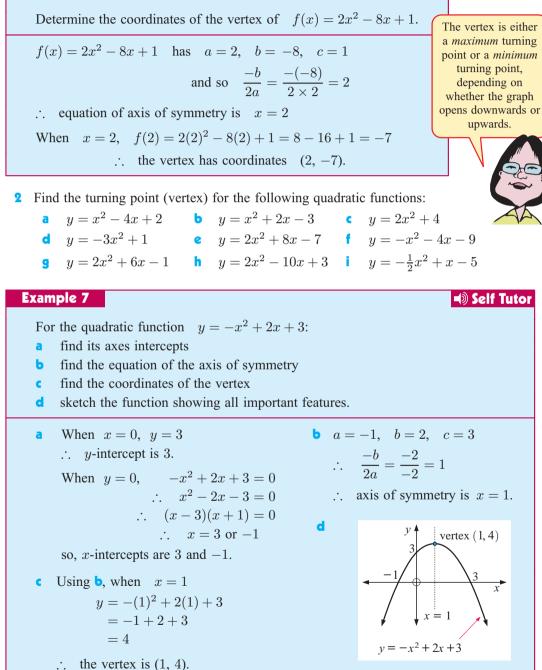
Example 5

Find the equation of the axis of symmetry of
$$y = 2x^2 + 3x + 1$$
.
 $y = 2x^2 + 3x + 1$ has $a = 2$, $b = 3$, $c = 1$
 \therefore axis of symmetry has equation $x = \frac{-b}{2a} = \frac{-3}{2 \times 2}$ i.e., $x = -\frac{3}{4}$

EXERCISE 24C

1 Determine the equation of the axis of symmetry of:

a	$y = x^2 + 4x + 1$	Ь	$y = 2x^2 - 6x + 3$	C	$y = 3x^2 + 4x - 1$
d	$y = -x^2 - 4x + 5$	e	$y = -2x^2 + 5x + 1$	f	$y = \frac{1}{2}x^2 - 10x + 2$
9	$y = \frac{1}{3}x^2 + 4x$	h	$y = 100x - 4x^2$	Т.	$y = -\frac{1}{10}x^2 + 30x$


TURNING POINT OR VERTEX

The turning point (or vertex) of any parabola is the point at which the function has a

maximum value (for a < 0) or, a **minimum value** (for a > 0)

Example 6

As the turning point lies on the axis of symmetry, its x-coordinate will be $x = \frac{-b}{2a}$. The y-coordinate can be found by substituting for x into the function.

To check the answers to Example 7, consult the graphics calculator section Working with Functions on page 21.

Self Tutor

- **3** For each of the following quadratic functions find :
 - i the axes intercepts ii the equation of the axis of symmetry
 - the coordinates of the vertex **iv** and hence sketch the graph.
- 4 Check your answers to 3 using a graphics calculator.

QUADRATIC MODELLING

If the relationship between two variables is a quadratic function, then its graph will be either

 $\int \int f$ or $\int \int f$ and the function will have a minimum or maximum value.

The process of finding the maximum or minimum value of a function is called **optimisation**. Optimisation is a very useful tool when looking at such issues as:

• maximising profits • minimising costs • maximising heights reached etc.

Example 8

Self Tutor

The height H metres, of a rocket t seconds after it is fired, is given by $H(t) = -5t^2 + 80t$, $t \ge 0$.

- a How long does it take for the rocket to reach its maximum height?
- **b** What is the maximum height reached by the rocket?
- How long does it take for the rocket to fall back to Earth?

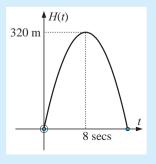
a For
$$H(t) = -5t^2 + 80t$$
, $a = -5$ \therefore shape is

The maximum height is reached when $t = \frac{-b}{2a} = \frac{-80}{2(-5)} = 8$

 \therefore the maximum height is reached after 8 seconds.

b
$$H(8) = -5(8)^2 + 80(8)$$

= -320 + 640


$$= 320$$

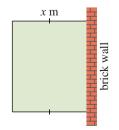
:. the maximum height reached is 320 m.

C The rocket falls back to Earth when H(t) = 0

 $\therefore -5t^2 + 80t = 0$ $\therefore 5t^2 - 80t = 0$ $\therefore 5t(t - 16) = 0 \qquad {factorising}$

 \therefore t=0 or t=16

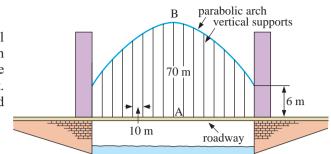
 \therefore the rocket falls back to Earth after 16 seconds.

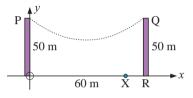

EXERCISE 24D

Use the equation of the axis of symmetry to help answer questions 1, 2 and 3.

- 1 The height H metres, of a ball hit vertically upwards, is given by $H(t) = -2t^2 + 24t$, where t is the time in seconds after it is hit.
 - a How long does it take for the ball to reach its maximum height?
 - **b** What is the maximum height reached by the ball?
 - How long does it take for the ball to hit the ground?
- 2 A skateboard manufacturer finds that the cost per skateboard \$C of making x skateboards per day is given by $C(x) = x^2 24x + 244$.
 - **a** How many skateboards should be made per day to minimise the cost of production per skateboard?
 - **b** What is the minimum cost?
 - What is the cost to the company if no skateboards are made in a day?
- 3 The driver of a car travelling downhill on a road applies the brakes. The speed s of the car in km h⁻¹, t seconds after the brakes were applied, is given by $s(t) = -4t^2 + 12t + 80$.
 - a How fast was the car travelling when the driver applied the brakes?
 - **b** After how many seconds was the speed of the car 88 km h⁻¹? Can you explain your answer?
 - After how many seconds did the car reach its maximum speed?
 - **d** What was the maximum speed reached?

Use technology to answer questions 4, 5 and 6.


- 4 The hourly profit (€P) obtained from operating a fleet of n taxis is given by
 P(n) = -2n² + 84n 45.
 - a What number of taxis gives the maximum hourly profit?
 - **b** What is the maximum hourly profit?
 - How much money is lost per hour if no taxis are on the road?
- 5 The temperature $T^{o}C$ in a greenhouse t hours after dusk (7.00 pm) is given by $T(t) = \frac{1}{4}t^2 5t + 30$, where $t \leq 20$.
 - a What was the temperature in the greenhouse at dusk?
 - **b** At what time was the temperature at a minimum?
 - What was the minimum temperature?
- A vegetable gardener has 40 m of fencing to enclose a rectangular garden plot where one side is an existing brick wall. If the width is x m as shown:
 - a Show that the area enclosed is given by $A = -2x^2 + 40x \text{ m}^2$.
 - Find x such that the vegetable garden has maximum area.


• What is the maximum area?

Extension:

7 AB is the longest vertical support of a bridge which contains a parabolic arch. The vertical supports are 10 m apart. The arch meets the vertical end supports 6 m above the road.

- If axes are drawn on the diagram of the bridge above, with the x-axis being the road and the *y*-axis being AB, find the equation of the parabolic arch in the form $u = ax^2 + c.$
- Ь Hence, determine the lengths of all other vertical supports.
- 8 Two towers OP and RQ of a suspension bridge are 50 m high and 60 m apart. A cable is suspended between P and Q and approximates the shape of a parabola under its own weight.

- The maximum sag in the middle of the cable is 20 m.
 - Find the coordinates of the vertex of the parabola.
- **b** Hence, find the equation of the parabola.
- How high is the cable directly above X, given that XR = 10 m?

WHAT IS THE STRONGEST ARCH?

Areas of interaction: INKS click here

a

a

Approaches to learning/Environments/Human ingenuity

REVIEW SET 24A

a $y = 2x - x^2$

- 1 Draw the graph of $y = x^2 3x + 2$ using a table of values from x = -2 to x = 5.
- State the *y*-intercepts of the following quadratics: 2

$$y = x^2 - 4x + 1$$
 b $y = -x^2 + 9$ **c** $y = 2x^2$

 $x^{2} + 5x + 2$

c $y = (2x - 3)^2$

3 State the *x*-intercepts of the following quadratics:

4 Find the *x*-intercepts of the following quadratics:

$$y = (x+5)(x-1)$$
 b $y = -2(x+1)(x-7)$

- $u = 3x^2 + 9x 54$
- Sketch these quadratic functions using axes intercepts: 5

a
$$y = (x+2)(x-1)$$
 b $y = -2x^2 - x + 1$

6 Use the formula $x = \frac{-b}{2a}$ to determine the equation of the axis of symmetry of $y = -x^2 - 2x + 5.$

b $y = x^2 - x - 12$

- 7 Determine the coordinates of the vertex of $f(x) = x^2 4x 8$.
 - **a** For the quadratic function $y = x^2 5x + 4$ find:
 - i the axes interceptsii the equation of the axis of symmetryiii the coordinates of the vertex.
 - **b** Hence sketch the graph.
- **9** The height h metres, of a jet of water is given by $h = -3t^2 + 24t + 1$, where t is the time in seconds after the jet started.
 - a How long does the jet take to reach its maximum height?
 - **b** What is the maximum height of the water?
 - How long does it take for the water to reach the ground?

REVIEW SET 24B

8

- 1 Draw the graph of $y = x^2 + 3x + 1$ using a table of values from x = -4 to x = 1.
- **2** For the following functions, state the *y*-intercepts:
 - **a** $y = x^2 + 6x + 9$ **b** $y = 3 x^2$ **c** $y = 3x^2 + 11x 4$
- **3** For the following functions, state the *x*-intercepts:
 - **a** y = (x+1)(x-4) **b** $y = -3(x-1)^2$ **c** y = (2x-1)(x+7)
- 4 For the following functions, find the x-intercepts: a $y = x^2 + 7x$ b $y = x^2 - 6x + 9$ c $y = 2x^2 - x - 1$

5 Sketch these quadratic functions using axes intercepts: **a** y = (x-1)(x-6) **b** $y = -x^2 + 4x - 4$

- 6 Use the formula $x = \frac{-b}{2a}$ to determine the equation of the axis of symmetry of $y = 3x^2 + 6x + 1$.
- 7 Determine the coordinates of the vertex of $f(x) = x^2 3x 10$.
- 8 a For the quadratic function $y = -x^2 2x + 8$ find:
 - i the axes intercepts ii the equation of the axis of symmetry
 - iii the coordinates of the vertex.
 - **b** Hence sketch the graph.
- **9** Use technology to answer this question:

The height H metres of a cannonball t seconds after it is fired into the air is given by $H(t) = -4t^2 + 16t + 9$.

- a Find the time taken for the cannonball to reach its maximum height.
- **b** What is the maximum height reached by the cannonball?
- How long does it take for the cannonball to fall back to Earth?

Click on the icon to access this printable chapter

Transformation geometry

- Reflection
- **B** Rotation

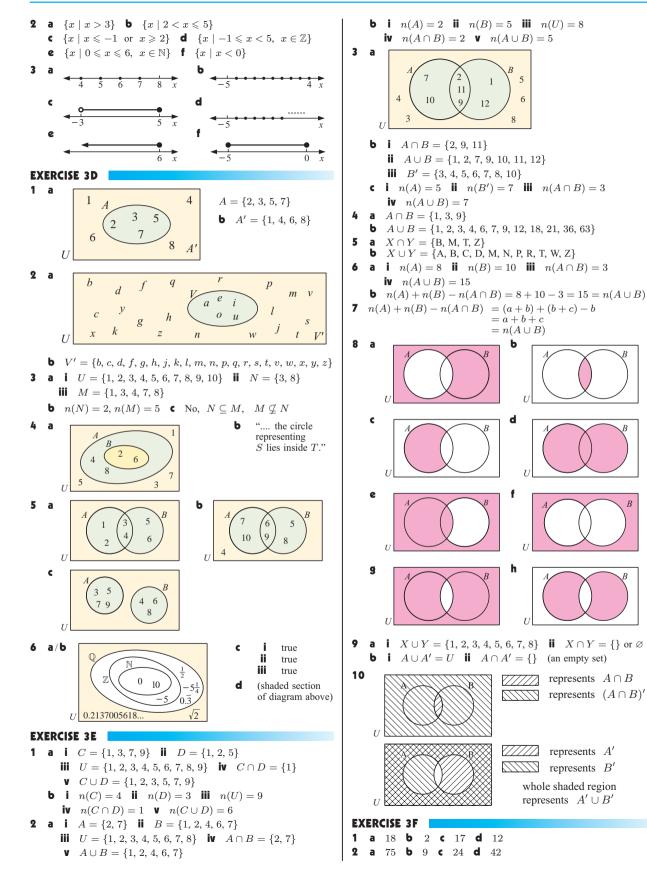
Α

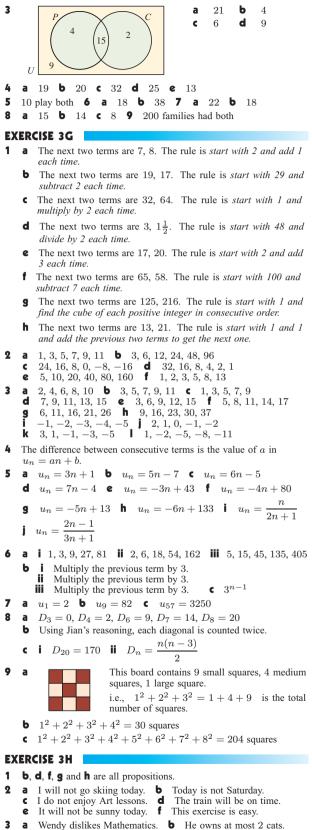
- C Translation
- D Enlargement

Sine and cosine rules

- A Obtuse angles
- B Area of a triangle using sine
- **C** The sine rule
- D The cosine rule
- Problem solving with the sine and cosine rules

490 ANSWERS


EX	ERCISE 1A
1	a 16 238 kWh b 35 624 kWh
2	a 4772 kWh b 6308 kWh
3	a 94 b 121.5 c 37.5 d 46.5 e 23.5 f 56
4	a $\frac{1}{5}$ b $\frac{3}{5}$ c $\frac{9}{10}$
5	a 70 km h^{-1} b 25 km h^{-1} c 75 km h^{-1}
6	a 4500 rpm b 2750 rpm c 2500 rpm d 4200 rpm
7	a 38.5°C b 36.8°C c 40.2°C d 39.7°C
-	
EX	ERCISE 1B
1	a cm b mm c km d m e mm f cm
3	a 52 000 m b 1150 mm c 165 cm d 6300 mm
	e 62 500 cm f 8 100 000 mm
4	a 4.8 m b 5.4 cm c 5.28 km d 2 m e 5.8 km f 7 km
5	a 42100 m b 2.1 m c 7.5 cm d 1.5 km e 185 cm
3	f 425 mm g 280 000 cm h 16.5 m i 250 000 mm
6	a 7000 mg b 0.007 kg c 0.58 kg d 580 000 g
-	i 0.023 cg j 24 cg k 3000 000 mg j 0.0065 kg
	i 0.02 g j 24 cg k 3 000 000 mg l 0.0065 kg
7	a 2000 mL b 0.45 L c 1200 W d 20 mL e 0.2 cL f 350 L g 0.45 dL h 0.04 sec i 2 kW
8	5.3 km 9 12.375 km 10 6 km 11 256 666 lengths
	4 13 80 light bulbs 14 50 000 stamps 15 5 g
16	100 spoonfuls 17 1.56 tonnes 18 3000 strides
EX	ERCISE 1C
1	a cm ² b m ² c ha d m ² e km ² f mm ²
2	a 0.23 cm^2 b 36000 m^2 c 0.0726 m^2
	d 7600000 mm^2 e 0.853 ha f 35400000 cm^2
	g 1354 mm^2 h 4320000 cm^2 i 4820 mm^2
	j 3000000 m^2 k 70 ha l 6600000 m^2 m 6.6 km^2
	n 500 cm^2 o 0.0025 m^2 p 0.052 cm^2
	q $720000000000\mathrm{mm}^2$
3	a 1000 cm^2 b 240 cm^2 c 1.2 cm^2 d 80000 m^2
3 4	
4	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles
4 EX	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles
4	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles
4 EX 1	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³
4 EX 1 2	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers
4 EX 1 2	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers ERCISE 1E
4 EX 1 2 EX 1	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles EERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers EERCISE 1E a ML b mL c kL d L
4 EX 1 2 EX	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers ERCISE 1E
4 EX 1 2 EX 1	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL
4 EX 1 2 EX 1 2	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54 000 mL f 0.058 34 kL a 13 750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L
4 EX 1 2 EX 1 2 3	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54 000 mL f 0.058 34 kL a 13 750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL
4 EX 1 2 EX 1 2 3	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54 000 mL f 0.058 34 kL a 13 750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L
4 EX 1 2 EX 1 2 3 7 8	 a 1000 cm² b 240 cm² c 1.2 cm² d 80 000 m² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm³ b 86 cm³ c 0.3 m³ d 124 000 mm³ e 0.3 cm³ f 3700 000 cm³ a 7.5 m³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54 000 mL f 0.058 34 kL a 13 750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m³ c 7320 L
4 EX 1 2 EX 1 2 3 7 8 EX	 a 1000 cm² b 240 cm² c 1.2 cm² d 80 000 m² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm³ b 86 cm³ c 0.3 m³ d 124 000 mm³ e 0.3 cm³ f 3700 000 cm³ a 7.5 m³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54000 mL f 0.058 34 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m³ c 7320 L
4 EX 1 2 EX 1 2 3 7 8	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54 000 mL f 0.058 34 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m ³ c 7320 L ERCISE 1F a 3.2 kg b 1870 kg c 0.047 835 kg d 4.653 g
4 EX 1 2 EX 1 2 3 7 8 EX	 a 1000 cm² b 240 cm² c 1.2 cm² d 80 000 m² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm³ b 86 cm³ c 0.3 m³ d 124 000 mm³ e 0.3 cm³ f 3700 000 cm³ a 7.5 m³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54 000 mL f 0.058 34 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m³ c 7320 L ERCISE 1F a 3.2 kg b 1870 kg c 0.047 835 kg d 4.653 g
4 EX 1 2 EX 1 2 3 7 8 EX	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54 000 mL f 0.058 34 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m ³ c 7320 L ERCISE 1F a 3.2 kg b 1870 kg c 0.047 835 kg d 4.653 g e 2830 000 g f 63 200 g g 0.074 682 t h 1700 000 000 mg i 91.275 kg a 150 000 sweets b i 5.136 t ii \$2311.20
4 EX 1 2 EX 1 2 3 7 8 EX 1	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54 000 mL f 0.058 34 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m ³ c 7320 L ERCISE 1F a 3.2 kg b 1870 kg c 0.047 835 kg d 4.653 g e 2830 000 g f 63 200 g g 0.074 682 t h 1700 000 000 mg i 91.275 kg a 150 000 sweets b i 5.136 t ii \$2311.20
4 EX 1 2 EX 1 2 3 7 8 EX 1 2	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54 000 mL f 0.058 34 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m ³ c 7320 L ERCISE 1F a 3.2 kg b 1870 kg c 0.047 835 kg d 4.653 g e 2830 000 g f 63 200 g g 0.074 682 t h 1700 000 000 mg i 91.275 kg a 150 000 sweets b i 5.136 t ii \$2311.20
4 EX 1 2 EX 1 2 3 7 8 EX 1 2 3	a 1000 cm^2 b 240 cm^2 c 1.2 cm^2 d 80000 m^2 a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm^3 b 86 cm^3 c 0.3 m^3 d 124000 mm^3 e 0.3 cm^3 f 3700000 cm^3 a 7.5 m^3 b 47400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54000 mL f 0.05834 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m^3 c 7320 L ERCISE 1F a 3.2 kg b 1870 kg c 0.047835 kg d 4.653 g e 2830000 g f 63200 g g 0.074682 t h 17000000000 mg i 91.275 kg a 150000 sweets b i 5.136 t ii $\$2311.20$ a 9000 cm^3 b $72000 \text{ cm}^3 = 72 \text{ L}$ c 72 kg d 33.3 kg e 120.9 kg
4 EX 1 2 EX 1 2 3 7 8 EX 1 2 3 EX	a 1000 cm^2 b 240 cm^2 c 1.2 cm^2 d 80000 m^2 a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm^3 b 86 cm^3 c 0.3 m^3 d 124000 mm^3 e 0.3 cm^3 f 3700000 cm^3 a 7.5 m^3 b 47400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54000 mL f 0.05834 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 3.2 kg b 1870 kg c 0.047835 kg d 4.653 g e 2830000 g f 63200 g g 0.074682 t h 17000000000 mg i 91.275 kg a 150000 sweets b i 5.136 t ii $\$2311.20$ a 9000 cm^3 b $72000 \text{ cm}^3 = 72 \text{ L}$ c 72 kg d 33.3 kg e 120.9 kg
4 EX 1 2 EX 1 2 3 7 8 EX 1 2 3	a 1000 cm^2 b 240 cm^2 c 1.2 cm^2 d 80000 m^2 a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm^3 b 86 cm^3 c 0.3 m^3 d 124000 mm^3 e 0.3 cm^3 f 3700000 cm^3 a 7.5 m^3 b 47400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54000 mL f 0.05834 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m^3 c 7320 L ERCISE 1F a 3.2 kg b 1870 kg c 0.047835 kg d 4.653 g e 2830000 g f 63200 g g 0.074682 t h 17000000000 mg i 91.275 kg a 150000 sweets b i 5.136 t ii $$2311.20$ a 9000 cm^3 b $72000 \text{ cm}^3 = 72 \text{ L}$ c 72 kg d 33.3 kg e 120.9 kg ERCISE 1G a 300 minutes b 4320 minutes c 3780 minutes
4 EX 1 2 EX 1 2 3 7 8 EX 1 2 3 EX 1	a 1000 cm^2 b 240 cm^2 c 1.2 cm^2 d 80000 m^2 a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm^3 b 86 cm^3 c 0.3 m^3 d 124000 mm^3 e 0.3 cm^3 f 3700000 cm^3 a 7.5 m^3 b 47400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54000 mL f 0.05834 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m^3 c 7320 L ERCISE 1F a 3.2 kg b 1870 kg c 0.047835 kg d 4.653 g e 2830000 g f 63200 g g 0.074682 t h 17000000000 mg i 91.275 kg a 150000 sweets b i 5.136 t ii $$2311.20$ a 9000 cm^3 b $72000 \text{ cm}^3 = 72 \text{ L}$ c 72 kg d 33.3 kg e 120.9 kg ERCISE 1G a 300 minutes b 4320 minutes c 3780 minutes
4 EX1 2 EX1 2 3 7 8 EX1 2 3 EX1 2 3 EX1 2	a 1000 cm^2 b 240 cm^2 c 1.2 cm^2 d 80000 m^2 a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm^3 b 86 cm^3 c 0.3 m^3 d 124000 mm^3 e 0.3 cm^3 f 3700000 cm^3 a 7.5 m^3 b 47400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54000 mL f 0.05834 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m^3 c 7320 L ERCISE 1F a 3.2 kg b 1870 kg c 0.047835 kg d 4.653 g e 2830000 g f 63200 g g 0.074682 t h 17000000000 mg i 91.275 kg a 150000 sweets b i 5.136 t ii $\$2311.20$ a 9000 cm^3 b $72000 \text{ cm}^3 = 72 \text{ L}$ c 72 kg d 33.3 kg e 120.9 kg ERCISE 1G a 300 minutes b 4320 minutes c 3780 minutes a 52 days b 16 days c 1095.75 days d 0.25 days
4 EX 1 2 EX 1 2 3 7 8 EX 1 2 3 EX 1	a 1000 cm^2 b 240 cm^2 c 1.2 cm^2 d 80000 m^2 a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm^3 b 86 cm^3 c 0.3 m^3 d 124000 mm^3 e 0.3 cm^3 f 3700000 cm^3 a 7.5 m^3 b 47400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54000 mL f 0.05834 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m^3 c 7320 L ERCISE 1F a 3.2 kg b 1870 kg c 0.047835 kg d 4.653 g e 2830000 g f 63200 g g 0.074682 t h 17000000000 mg i 91.275 kg a 150000 sweets b i 5.136 t ii $$2311.20$ a 9000 cm^3 b $72000 \text{ cm}^3 = 72 \text{ L}$ c 72 kg d 33.3 kg e 120.9 kg ERCISE 1G a 300 minutes b 4320 minutes c 3780 minutes
4 EX1 2 EX1 2 3 7 8 EX1 2 3 EX1 2 3 EX1 2	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54000 mL f 0.058 34 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m ³ c 7320 L ERCISE 1F a 3.2 kg b 1870 kg c 0.047 835 kg d 4.653 g e 2830 000 g f 63200 g g 0.074 682 t h 1700 000 000 mg i 91.275 kg a 150 000 sweets b i 5.136 t ii \$2311.20 a 9000 cm ³ b 72 000 cm ³ = 72 L c 72 kg d 33.3 kg e 120.9 kg ERCISE 1G a 300 minutes b 4320 minutes c 3780 minutes a 52 days b 16 days c 1095.75 days d 0.25 days a 2100 seconds b 11940 seconds c 432 000 seconds d 777 600 seconds
4 EX 1 2 EX 1 2 3 7 8 EX 1 2 3 EX 1 2 3	 a 1000 cm² b 240 cm² c 1.2 cm² d 80 000 m² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm³ b 86 cm³ c 0.3 m³ d 124 000 mm³ e 0.3 cm³ f 3700 000 cm³ a 7.5 m³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54 000 mL f 0.058 34 kL a 13 750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m³ c 7320 L ERCISE 1F a 3.2 kg b 1870 kg c 0.047 835 kg d 4.653 g e 2830 000 g f 63 200 g g 0.074 682 t h 1700 000 000 mg i 91.275 kg a 150 000 sweets b i 5.136 t ii \$2311.20 a 9000 cm³ b 72 000 cm³ = 72 L c 72 kg d 33.3 kg e 120.9 kg ERCISE 1G a 300 minutes b 4320 minutes c 3780 minutes a 77 600 seconds a 5 h 8 min b 7 h 11 min 10 sec c 4 h 5 min d 2 h 35 min
4 EX 1 2 EX 1 2 3 7 8 EX 1 2 3 EX 1 2 3 4	a 1000 cm ² b 240 cm ² c 1.2 cm ² d 80 000 m ² a 2100 chickens b 100 rectangles ERCISE 1D a 8650 mm ³ b 86 cm ³ c 0.3 m ³ d 124 000 mm ³ e 0.3 cm ³ f 3700 000 cm ³ a 7.5 m ³ b 47 400 sinkers ERCISE 1E a ML b mL c kL d L a 3760 mL b 47.32 kL c 3500 L d 423 mL e 54000 mL f 0.058 34 kL a 13750 bottles b 9 tanks 4 8 full glasses 5 1.8 L 6 200 g a 110.5 L b 0.036 mL c 1296 L d 24 kL e 0.015 L f 0.936 kL a 25 mL b 3200 m ³ c 7320 L ERCISE 1F a 3.2 kg b 1870 kg c 0.047 835 kg d 4.653 g e 2830 000 g f 63200 g g 0.074 682 t h 1700 000 000 mg i 91.275 kg a 150 000 sweets b i 5.136 t ii \$2311.20 a 9000 cm ³ b 72 000 cm ³ = 72 L c 72 kg d 33.3 kg e 120.9 kg ERCISE 1G a 300 minutes b 4320 minutes c 3780 minutes a 52 days b 16 days c 1095.75 days d 0.25 days a 2100 seconds b 11940 seconds c 432 000 seconds d 777 600 seconds


7		4 min						- - - -	. 40		
9 10		5 pm				3.4	o pm	a	9.48 am		
EX	ERCI	SE 1H									
1	a 0	957 t	110		$1600 \\ 0002$	d	1425	e	0800 f	01	06
2	a 1	1.40 ar	n b	3.46 a	m C				7.00 pm		
3	e 8						^		8.40 pn	1	
•		Depa			lling Ti			Arriva			
	a	055			20 mir	-		1140			
	Ь	07.			55 mir	1		1405			
	¢.	093			6 min			1027			
	d	122	-		23 mir			1652			
	e	201	12	8 h	35 mir	1	0447	(nex	t day)		
1 2 3 4 6 7 8 9 12	a 3 a i a 5 4 a 5 4 a 1 a 0 4 c 1 a 0 4 c 1 4 can 4.3 VIEW a 2 a i a 0 0 e 0 2 a 2 2 a 2 2 a 2 2 a 2 2 3 3 4 4 3 3 4 4 3 5 5 4 4 5 5 6 4 4 5 5 6 4 4 5 5 6 4 7 5 6 4 7 5 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6000 mg 6000 00 6.6 kW 9.5 cm ³ 1.25 kL 1.56 cm ³ 1.25 kL 1.56 cm ³ 1.56 cm ³ 1.56 cm ³ 2.5 kL 1.56 cm ³ 2.5 kL 1.56 cm ³ 2.5 kL 2.5 kL	Vh i g b 00 L 1 00 L 1 2 b 2 b 2 b 2 b 2 b 3 f 5 a 113 1 118 a km i b 0. 5 ML b 0	75.5 0.023 2500 J 64 000 5 cm ² 8 m ³ 6 mL 0.056 g 0 h 24 39.2° i 265 25 t c f 800 0.55 kJ	cm ii kg c dL 5 7) cm ² c 1 20 min 1 C min 1 C mm i : 168) mL 5 5	ii 0 0.5 5 km C 1 00 00 0.45 14 11 11	.32 m 126 kg 1 2.5 km 00 cm ³ kg C a 17 180 cn d L 6	g d 1 ² 250 731 n b 0.15		nL ■ 3 4 am	trips
8	e 1	8 000 c 9 90	cm ³	0.02	5 m^3						
12		10 day						1.0	·		
13								0 b	7.45 a		
13	а	2.45 pi	un U	1.59 2	4111	• a	105	0 0	1.40 8		
PU	ZZLE										
VO	IIAR	E GOO		ONVE	RTING	FRO		JE UN	NIT TO A	NOT	HER
10	0 1 110	L 000	Dini	.01112		, , , , , , , , , , , , , , , , , , , ,	5111 01	12 01			TILIC
EX	ERCI	SE 2A									
1	a 8	3 b	8 C	26	d -8	e	-26	5 f	-8 9	- 1	8
	h 2	26	40	-14	k	-14	4	40 I	n 14	n	-40
2				c –	-48 d	4	8 e	63	f -6	3	
3	a -	-63 i -36 k	36	c –	-27 d		-27	e –	72 f	48	
4	9 - a 6	5 b	-6 (-6	d (5 e	5	81 f -	22 -5 9	5 - 5	
		5 i -	$\frac{1}{3}$ j	$-\frac{1}{3}$	k – - 1	$\frac{1}{3}$	$\frac{1}{3}$		-		
5	a 1	LO b	2 C	$^{-8}$	d 6	e	6	f 24			
6	a a	37 b	43	c 3	d 24	1 e	6		9 g	12	
_		10	6 j	16	k 20		2				_
7			13 3 k	C 1 16	d 9 -2	e	69	f 9	g 4	3 h	7
8					d 92						
9	a 5	5 b	3 C	$\frac{1}{2}$ d	5	e '	7 f	7 9	18	h :	L
10	а	438	b 87	4 C	33 c				53 f		
	9	-6 k	∎ —8	3 i	-8						

EXERCISE 2B REVIEW SET 2A a 9 b -23 c -21 d -9 e -1 f $\frac{12}{13}$ b $\frac{11}{16}$ c $\frac{5}{8}$ d $\frac{17}{30}$ e $4\frac{3}{7}$ f $2\frac{1}{6}$ g $3\frac{1}{2}$ h $6\frac{1}{6}$ 3 **b** 27 c 2 3 a 4 b 64 c 1 $\frac{4}{11}$ b $\frac{1}{6}$ c $\frac{1}{9}$ d $\frac{5}{8}$ e $1\frac{3}{4}$ f $1\frac{1}{10}$ g $1\frac{5}{6}$ h $2\frac{2}{21}$ $2\frac{1}{10}$ **b** $1\frac{9}{20}$ **c** $3\frac{7}{8}$ **5** 2.56 kg **6 a** 81 **b** 40 **a** $\frac{1}{9}$ **b** $\frac{2}{7}$ **c** $1\frac{1}{2}$ **d** $4\frac{2}{3}$ **e** $1\frac{1}{7}$ **f** $\frac{1}{2}$ **g** $6\frac{1}{4}$ **h** $2\frac{10}{27}$ $36 = 2^2 \times 3^2$ b $242 = 2 \times 11^2$ 8 a $\frac{1}{27}$ b $\frac{9}{16}$ c -23 а a $\frac{6}{7}$ b $\frac{11}{16}$ c $\frac{2}{3}$ d $\frac{1}{10}$ e $1\frac{2}{3}$ f $3\frac{5}{9}$ g $\frac{4}{9}$ h $1\frac{7}{20}$ 2^{-4} **10** a 78125 b b^5 c x^{12} **11** a 4 b $\frac{1}{2}$ 5 a $5\frac{8}{35}$ b $\frac{81}{256}$ c $2\frac{1}{2}$ d $\frac{2}{5}$ e 12 f $1\frac{1}{11}$ g $4\frac{2}{3}$ **REVIEW SET 2B** a 8 b 19 c 15 d -27 e -36 f -8 $\frac{1}{2}$ i $1\frac{1}{6}$ j $\frac{3}{5}$ k $2\frac{3}{5}$ l $\frac{1}{10}$ m 11 n $1\frac{1}{4}$ o $4\frac{2}{5}$ 6 b -5 c 20 3 a 8 b 0 c 9 2 а **a** $\frac{4}{15}$ **b** \$45 **c** \$272.00 **d** $\frac{2}{9}$ **e** $\frac{1}{4}$ **7** 100 sweets 6 **a** $6\frac{1}{12}$ **b** $3\frac{1}{3}$ **c** $2\frac{3}{4}$ **5 a** $\frac{1}{5}$ **b** 208 km **a** $\frac{8}{15}$ **b** $\frac{13}{21}$ **c** $\frac{19}{56}$ **d** $\frac{5}{12}$ **e** $\frac{3}{5}$ **f** $\frac{8}{21}$ **g** $\frac{12}{35}$ **a** 343 **b** 225 **7 a** $42 = 2 \times 3 \times 7$ **b** $144 = 2^4 \times 3^2$ **h** $2\frac{7}{10}$ **i** $4\frac{1}{8}$ **j** $4\frac{5}{28}$ **k** $1\frac{6}{11}$ а $\frac{1}{36}$ **b** $\frac{2}{3}$ **c** $2\frac{7}{9}$ **9** n=3**a** 6561 **b** 1 **c** y^{15} 11 **a** 5 **b** $\frac{1}{2}$ 10 EXERCISE 2C a 8 b 27 c 32 d 125 e 540 f 1176 g 2925 EXERCISE 3A 1 **h** 4400 **1 a i** $7 \in A$ **ii** $17 \notin A$ **b** n(A) = 92 **a** $50 = 2 \times 5^2$ **b** $98 = 2 \times 7^2$ **c** $108 = 2^2 \times 3^3$ 2 $M_3 = \{3, 6, 9, 12, 15, 18, 21, 24, \ldots\}$ **d** $360 = 2^3 \times 3^2 \times 5$ **e** $1128 = 2^3 \times 3 \times 47$ **f** $784 = 2^4 \times 7^2$ $F_8 = \{1, 2, 4, 8\}, n(F_8) = 4$ **4** a Fahran $\notin B$ **b** n(B) = 3**g** $952 = 2^3 \times 7 \times 17$ **h** $6500 = 2^2 \times 5^3 \times 13$ **a** {6, 12, 18, 24,} **b** {11, 22, 33, 44,} **c** {1, 3} **3** a $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, $2^5 = 32$, $2^6 = 64$ **d** $\{1, 3, 9\}$ **e** $\{1, 2, 3, 4, 6, 8, 12, 24\}$ **b** $3^1 = 3$, $3^2 = 9$, $3^3 = 27$, $3^4 = 81$ **f** {1, 2, 4, 8, 16, 32} **g** {1, 3} **c** $5^1 = 5$, $5^2 = 25$, $5^3 = 125$, $5^4 = 625$ **a** i {2, 3, 5, 7, 11, 13, 17, 19} ii $n(P_{20}) = 8$ **d** $7^1 = 7$, $7^2 = 49$, $7^3 = 343$ **b** i {31, 37, 41, 43, 47} ii n(Y) = 5**c i** 3 **ii** 2 **iii** 7, 11 **iv** 2, 3, 5 4 **a** n = 5 **b** n = 8 **c** n = 127 a 6 has factors 1, 2, 3 and 6, i.e., it has more than two factors **a** n=3 **b** n=6 **c** n=10 **6** 3 7 5 so it is a composite number. 8 **a** 1 **b** -1 **c** 1 **d** -1 **e** 1 **f** -1 **g** -1-27 i -27 j 27 k -36 l 64 **b** $\{2, 3, 5, 7, 11\}$ **c** $\{4, 6, 8, 9, 10, 12\}$ h a 256 b 625 c -243 d 2401 e 512 f 117649 9 **d** $\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ $-117\,649 \ \textbf{h} \ 1.795\,856\,326 \ \textbf{i} \ -0.005\,487\,423\,935$ EXERCISE 3B $-325\,687.9871$ 10 a $0.\overline{1}$ b $0.\overline{1}$ c 0.0625 d 0.06251 a true b true c true d true e false f false 0.012345679 f 0.012345679 g 1 h 1 **q** true **h** true 2 a, b, c, d, f, g, h are rational; e is irrational So, $a^{-b} = \frac{1}{a^b}$ and $a^0 = 1$, $a \neq 0$. **a** $0.\overline{7} = \frac{7}{9}$ **b** $0.\overline{41} = \frac{41}{99}$ **c** $0.\overline{324} = \frac{12}{37}$ **b** $\frac{1}{2}$ **c** $\frac{1}{6}$ **d** $\frac{1}{8}$ **e** $\frac{1}{4}$ **f** $\frac{1}{9}$ **g** 11 a $\frac{1}{4}$ 4 0.527 can be written as $\frac{527}{1000}$, and 527, 1000 are integers 10 $\frac{1}{81}$ $i \frac{1}{27} j \frac{1}{100\,000}$ Let $x = 0.\overline{9} = 0.99999...$ h $\therefore 10x = 9.99999 \dots = 9 + x$ **12** a 3 b $\frac{5}{2}$ c $\frac{3}{4}$ d 12 e $\frac{7}{2}$ f i.e., 9x = 9 so x = 1 which is an integer that can $\frac{16}{81}$ **i** $\frac{8}{27}$ **j** $3\frac{1}{2}$ h be written as $\frac{1}{1}$ which is rational. 13 a 10^3 b 10^6 c 10^{-3} d 10^{-8} **6** a e.g., $\sqrt{2} + (-\sqrt{2}) = 0$ which is rational 14 a 2^3 b 2^{-3} c 3^2 d 3^{-2} e 5^3 f 5^{-3} g 2^5 **b** e.g., $\sqrt{2} \times \sqrt{50} = \sqrt{100} = 10$ which is rational **h** 2^{-5} **i** 3^4 **j** 3^{-4} **k** 5^{-2} **l** 2^0 or 3^0 or 5^0 **7 a** $S = \{1, 2, 3, 4, 6, 12\}$ **b** $S' = \{5, 7, 8, 9, 10, 11\}$ **15** a p = 2, q = 1, r = 1 b p = 2, q = 1, r = 2**c** Every element of S is also in $U \therefore S \subseteq U$. **c** p = 2, q = -2, r = 2 **d** p = 1, q = 0, r = 3**d** $P = \{2, 3, 5, 7, 11\}$ **e** $P' = \{1, 4, 6, 8, 9, 10, 12\}$ **e** p = -6, q = 1, r = -3 **f** p = 2, q = 1, r = -1f Every element of P' is also in $U \therefore P' \subseteq U$. **g** p = -3, q = -2, r = 2 **h** p = 0, q = 0, r = 08 $E' = \{ \text{odd integers} \}$ 9 $E' = \{ 0, \mathbb{Z}^- \}$ **10** $P' = \{1, \text{ composites}\}$ p = -3, q = 1, r = 2 p = 0, q = -1, r = -1**k** p = 2, q = 2, r = -2 **l** p = -2, q = 3, r = -3**11 a** The empty set \emptyset has no elements, so every element of \emptyset is also in every other set, so $\emptyset \subseteq$ any other set. EXERCISE 2D $i \ \emptyset, \{a\} \ ii \ \emptyset, \{a\}, \{b\}, \{a, b\}$ 1 a 16 b 16 c 19683 d 3125 e x^6 f a^4 g n^{10} h b^8 $\blacksquare \ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}$ a 2 b 27 c 625 d 256 e x^3 f y^3 g a h b^4 2 EXERCISE 3C **a** 64 **b** 531441 **c** 262144 **d** 1000000000 **e** x^6 3 **a** The set of all values of real x such that x is greater than 4. f x^{15} g a^{20} h b^{24} The set of all values of real x such that x is less than or equal Ь a a^7 b n^8 c a^4 d a^6 e b^5 f a^{18} g a^{n+5} to 5. **h** b^8 **i** b^3 **j** m^{14} **k** a^{10} **l** g^{11} **c** The set of all values of real y such that y lies between 0 and 8. 5 a 2 b 5 c 8 d 10 e 15 f 3 g 4 h 10 The set of all values of real x such that x lies between 1 and i 3 j 2 k 2 l $\frac{1}{2}$ m $\frac{1}{4}$ n $\frac{1}{2}$ o $\frac{1}{2}$ 4 or is equal to 1 or 4. The set of all values of real t such that t lies between 2 and 7. 6 a 8 b 9 c 8 d $\frac{1}{9}$ e $\frac{1}{16}$ e f The set of all values of real n such that n is less than or equal 7 a $2\frac{1}{4}$ b $\frac{4}{9}$ c $\frac{25}{36}$ d $1\frac{11}{25}$ e $1\frac{1}{2}$ f $\frac{2}{3}$ g 64 h $\frac{4}{9}$

to 3 or n is greater than 6.

492 ANSWERS

d My brother is shorter than me.

4

5

6

8

9

- а The train will be late today and I will miss the first lesson. b There is hot weather forecast and we will go to the beach. c I will go to the cafe and I will go to the cinema.
- We will have eggs for breakfast or we will have porridge for а breakfast
- h We will play tennis or we will ride horses.
- x is a factor of 8 or x is a factor of 12. C

а	q T F	F T	<u>µ</u> ¬($\frac{[\neg q)}{T}$ F	b	p T T F F	q T F T F	$p \land$ T F F F	. q	¬(p		
c	p T T F F	q T F T F	<mark>∽p</mark> F F T T	<mark>−q</mark> F T F T	$ \begin{array}{c} \neg q \lor \neg p \\ F \\ T \\ T \\ T \\ T \end{array} $		d	p T T F F	q T F T F	¬q F T F T F	<i>p</i> ∧ F T F	$\neg q$
_					1 1.	_						

- 7 а q: I will go to the beach
 - b q: He is the best mathematician in the class.

а $\neg (p \lor q)$ \boldsymbol{n} $\neg p \land \neg q$ q $\neg p$ $\neg q$ $p \vee q$ Т F F F Т

these two columns are identical

 $\therefore \neg p \land \neg q$ is logically equivalent to $\neg (p \lor q)$.

b	p	q	$\neg p$	$\neg q$	$\neg p \vee \neg q$	$p \wedge q$	$\neg (p \land q)$
	Т	Т	F	F	F	Т	F
	Т	F	F	Т	Т	F	Т
	F	Т	Т	F	Т	F	Т
	F	F	Т	Т	Т	F	Т

these two columns are identical

b $A' = \{1, 4\}$

 $\therefore \neg p \lor \neg q$ is logically equivalent to $\neg (p \land q)$.

- а It will not be sunny today or I will not go to the beach.
- b I will not go shopping and I will not go to the cinema.
- c I dislike football or I dislike basketball.
- d I dislike skiing or I like swimming.
- I will not walk to school and I will not cycle to school.
- f It will rain today and it will snow today.

REVIEW SET 3A

- 1 а $F_{12} = \{1, 2, 3, 4, 6, 12\}$ **b i** $4 \in F_{12}$ **ii** $9 \notin F_{12}$ c $n(F_{12}) = 6$
- 2 **a** $P = \{23, 29\}$ **b** n(P) = 2
- 2 a i true ii false iii true iv true
- **b ii**, **iii** and **iv** are all rational.
- **a** $F = \{1, 2, 5, 10\}$ 4
 - **b** Every element of F is also in U. \therefore $F \subseteq U$
 - **c** $E = \{2, 4, 6, 8, 10\}$ **d** $E' = \{1, 3, 5, 7, 9\}$

e
$$O = \{1, 3, 5, 7, 9\}$$
 f $E' = O$

a $\{x \mid x < 3, x \in \mathbb{R}\}$ b $\{x \mid x \ge -1, x \in \mathbb{R}\}$ 5

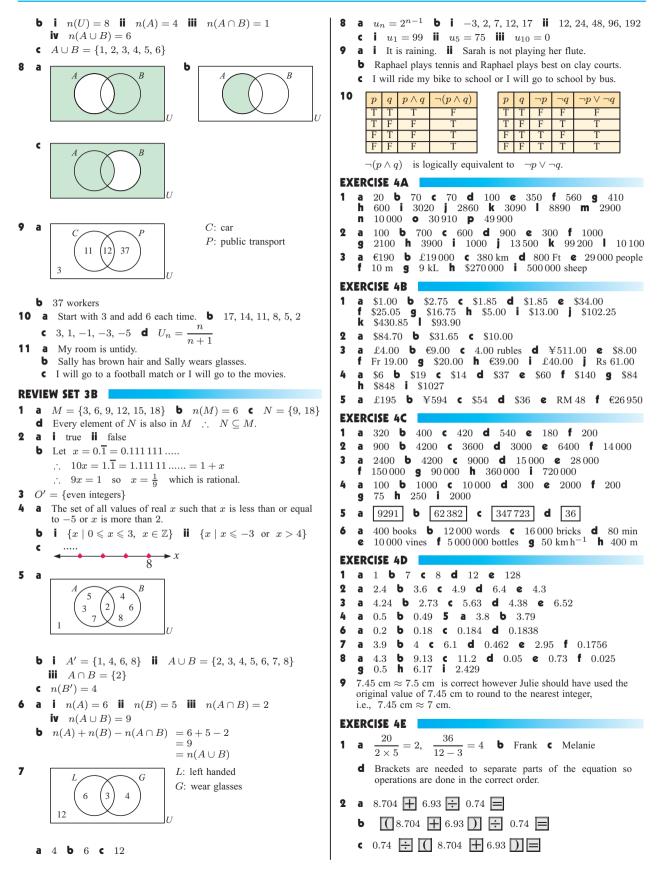
4

 $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ ii $A = \{1, 2, 3, 4\}$

 $\{x \mid -2 \leqslant x < 5, \ x \in \mathbb{R}\}$ C

- 3

2 5


1 D

 $B = \{1, 5, 6\}$

6 а

7 а

- No student in my class snores. C

3 a 2.6 b 6.5 c 101.0	3
4 a 396.89 b 1.19 c 2767.70 d 202.33 e 50.15 f 1.99	
5 a \$78.53 b \$399.23 c \approx 19 min 43 sec d CHF 31.39	5
EXERCISE 4F	7
1 a 42 b 6.24 c 0.046 d 0.25 e 440 f 2100	
g 31000 h 10.3 i 1 j 1.0 k 264000 l 0.03764	8
m 3699 n 0.0076 o 30000 p 70	9
2 a i 30 000 people ii 26 000 people b 26 000 people	RE
3 2549 people 4 probably 133 000 5 \$1850 6 \$190	1
7 \$40 625	5
EXERCISE 4G	8
1 a 3 min 34 sec b 6 h 55 min 21 sec c 4 h 50 min 6 sec	
d 5.383 min e 1.30 h f 8 h 21 sec	
g 4 weeks 5 days 20 hours h 2.75 days	
2 1038 3 184.6 km h ⁻¹	RE
REVIEW SET 4A	1
1 a 3580 b 3600 c 4000	5
2 a 390 km b 4 kL c 70 000 sheep	6
3 a \$13.70 b £14 4 a €160 b RM 70	
5 a 600 b 24000 c 50	7
6 a 2800 tiles b 3024 tiles	8
c 224 tiles less than the actual number	EX
7 83 metres per minute 8 a 29 b 28.9 c 28.91 9 a 3.1 b 3.14 10 a 42.54 b 2.02 c 0.07	1
9 a 3.1 b 3.14 10 a 42.54 b 2.02 c 0.07 11 \$3000 12 a 40000 people b 44000 people	2
13 2.7242 hours	
	3
REVIEW SET 4B	
1 a 4610 b 4600 c 5000	4
2 a 700 km b 20 000 tonnes c 160 000 people	5
3 a \$69.75 b €173 4 a ¥156 b \$96	6
5 a 540 b 800 c 50 6 2000 minutes ($\approx 33 \text{ h } 20 \text{ min}$)	
7 a 55 b 55.0 c 55.04 8 a 0.727 b 0.17	EX
9 a 4.60 b 2286.76 10 11 hours 37 minutes 11 a Rs 6000000 b Rs 5700000 12 a 2040 b 12.4	1
11 a Rs 6 000 000 b Rs 5 700 000 12 a 2040 b 12.4 13 8 hours 28 minutes 4 seconds	1.
8 hours 28 minutes 4 seconds	2
EXERCISE 5A	
1 a 5 cm b 8.6 cm c 9.4 cm d 8.1 cm e 13.6 cm f 11.2 cm e 8.4 cm h 16.4 cm i 21.5 cm	3
f 11.2 cm g 8.4 cm h 16.4 cm i 21.5 cm 2 44.0 cm 3 a 10.28 m b i 61.7 m ii 64 m 4 145.1 cm	-
5 a 5.7 cm b 8.7 cm c 9.6 cm d 8.3 cm e 13.2 cm	n 5 8
5 a 5.7 cm b 8.7 cm c 9.6 cm b 8.5 cm b 15.2 cm	•
6 a 5.86 m 7 a 0.86 m b 1.81 m	EX
8 a 48.2 cm b 100.3 cm c \$2.31	1
EXERCISE 5B	
1 a 9.43 m b 7.52 m 2 a 5.88 m b 2.72 m	2
3 1.4 m 4 3.61 m 5 37.8 m	
6 a 600.3 m b 1420.3 m c 5681.3 m d \$1676 7 a 1103.1 m b 4274.3 m	3
8 a 31.6 cm b 189.8 cm c 4.55 kg	
9 a 7.07 cm b 148.3 cm	
10 a 2.68 m b 14.05 m c 42.15 m	4
11 a 10.4 cm b 62.4 cm ² 12 a 7.42 cm b 22.25 cm ²	
13 a 173.21 m b 17.321 m^2 c $\$73.612.16$	5
EXERCISE 5C	EX
EXERCISE 5C 1 a no b yes c yes d yes e no f no	1
EXERCISE 5C	EX 1 2
EXERCISE 5C 1 a no b yes c yes d yes e no f no	1

3	а	10.8 km	Ь	1.08 hours	(1	hour	5	minutes))
---	---	---------	---	------------	----	------	---	----------	---

- **a** X: 45 km, Y: 60 km **b** 75 km
- Wes, since $240^2 + 100^2 = 260^2$ **6** 21.1 km
- **a** $1 h 53 \frac{1}{3} min$ **b** 1 h 46 min
- train from A to C via B is faster
- 3: 13.4 km h⁻¹ and C: 26.8 km h⁻¹
- **a** Max: 36 km, Kyle: 45 km **b** 57.6 km **c** 2 h 8 min 4 sec

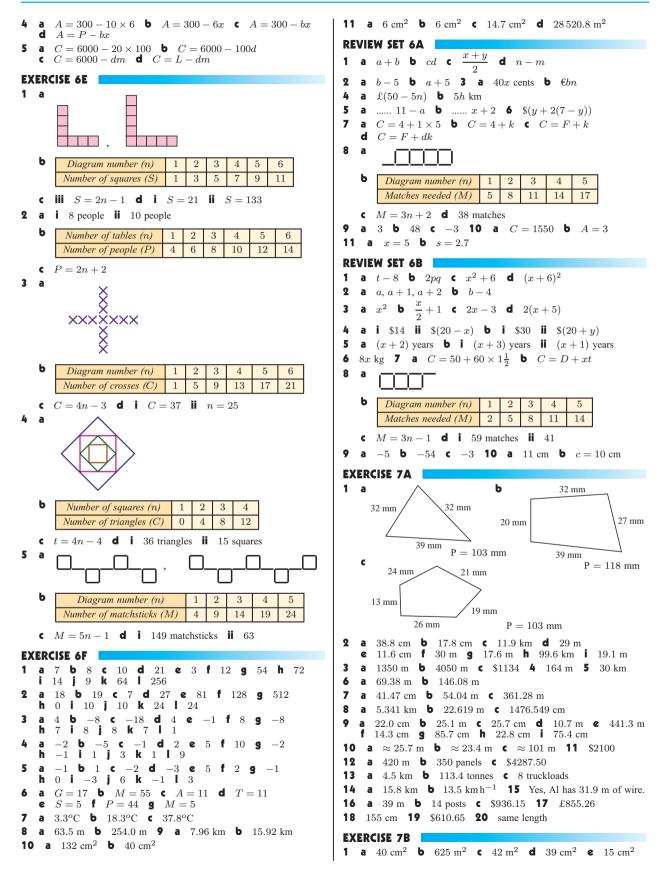
IEW SET 5A

- .6 m **2** 7.54 m **3** 27.5 cm **4** 803.0 m
- AP = 9.8 km, BP = 17.5 km 6 75 cm 7 65.2 m
- Mia: 7.5 km. Yvette: 6 km
 - $7.5^2 + 6^2 \approx 9.6^2$, i.e., Mia and Yvette travelled at right angles to each other.
 - either north or south

IEW SET 5B

- 35.4 m **2** 3.44 m **3** 0.87 m **4** 17 km 5.31 m **b** 7.50 m
- **i** 81 km **ii** 54 min **b i** 58.2 km **ii** 58.2 min
- P to X to Q at 90 km h^{-1} is quicker
- **a** 5.20 m **b** 15.6 m²
- $59^2 + 41^2 \approx 71.85^2$ \therefore the frame is rectangular

RCISE 6A


- **a** 9+2 **b** 5+a **c** m+3n **d** d+e+f
- **a** 8×6 **b** 6p **c** 4mn **d** bde
- **a** $\frac{6}{5}$ **b** $\frac{d}{3}$ **c** $\frac{m}{5n}$ **d** $\frac{p+q}{x}$

- **a** $\frac{6+10}{2}$ **b** $\frac{9+d}{2}$ **c** $\frac{k+4v}{2}$ **d** $\frac{d+e+f}{3}$
- **a** 8-5 **b** s-6 **c** 8-p
- a m-7a b xy^2 c d+3e d a-5 e 2+b f 16c**g** $(ab)^2$ **h** $p^2 + q^2$

RCISE 6B

1 a 200 cents b 50x cents c cx cents 2 a £1.20 b £0.20y c £ $\left(\frac{cd}{100}\right)$ 3 a CHF 40 b CHF (100 - 10n) c CHF (100 - np) 4 a €22 b €(30 - m) c €(30 + t) 5 (14 + k + n) km 6 (16 + b) years 7 12h km 8 (9 - 4x) m 9 (60p + 95b) cents 10 a 96 km b kh km EXERCISE 6C 1 a p + 8 b g - 3 c n + 2 d c + 4 e x - 3 f 4f g $\frac{h}{3}$ h 2a + 4 i 2p + 14 2 a x + 3 b x - 5 c $\frac{x}{2}$ d 3x e $\frac{x}{4}$ f 12 - x g 2x + 1 h 5x - 6
3 a CHF 40 b CHF $(100 - 10n)$ c CHF $(100 - np)$ 4 a $\in 22$ b $\in (30 - m)$ c $\in (30 + t)$ 5 $(14 + k + n)$ km 6 $(16 + b)$ years 7 $12h$ km 8 $(9 - 4x)$ m 9 $(60p + 95b)$ cents 10 a 96 km b kh km EXERCISE 6C 1 a $p + 8$ b $g - 3$ c $n + 2$ d $c + 4$ e $x - 3$ f $4f$ g $\frac{h}{3}$ h $2a + 4$ i $2p + 14$ 2 a $x + 3$ b $x - 5$ c $\frac{x}{2}$ d $3x$ e $\frac{x}{4}$ f $12 - x$
3 a CHF 40 b CHF $(100 - 10n)$ c CHF $(100 - np)$ 4 a $\in 22$ b $\in (30 - m)$ c $\in (30 + t)$ 5 $(14 + k + n)$ km 6 $(16 + b)$ years 7 $12h$ km 8 $(9 - 4x)$ m 9 $(60p + 95b)$ cents 10 a 96 km b kh km EXERCISE 6C 1 a $p + 8$ b $g - 3$ c $n + 2$ d $c + 4$ e $x - 3$ f $4f$ g $\frac{h}{3}$ h $2a + 4$ i $2p + 14$ 2 a $x + 3$ b $x - 5$ c $\frac{x}{2}$ d $3x$ e $\frac{x}{4}$ f $12 - x$
4 a $\in 22$ b $\in (30 - m)$ c $\in (30 + t)$ 5 $(14 + k + n)$ km 6 $(16 + b)$ years 7 $12h$ km 8 $(9 - 4x)$ m 9 $(60p + 95b)$ cents 10 a 96 km b kh km EXERCISE 6C 1 a $p + 8$ b $g - 3$ c $n + 2$ d $c + 4$ e $x - 3$ f $4f$ g $\frac{h}{3}$ h $2a + 4$ i $2p + 14$ 2 a $x + 3$ b $x - 5$ c $\frac{x}{2}$ d $3x$ e $\frac{x}{4}$ f $12 - x$
5 $(14 + k + n)$ km 6 $(16 + b)$ years 7 $12h$ km 8 $(9 - 4x)$ m 9 $(60p + 95b)$ cents 10 a 96 km b kh km EXERCISE 6C 1 a $p + 8$ b $g - 3$ c $n + 2$ d $c + 4$ e $x - 3$ f $4f$ g $\frac{h}{3}$ h $2a + 4$ i $2p + 14$ 2 a $x + 3$ b $x - 5$ c $\frac{x}{2}$ d $3x$ e $\frac{x}{4}$ f $12 - x$
8 $(9-4x)$ m 9 $(60p+95b)$ cents 10 a 96 km b kh km EXERCISE 6C 1 a $p+8$ b $g-3$ c $n+2$ d $c+4$ e $x-3$ f 4f g $\frac{h}{3}$ h $2a+4$ i $2p+14$ 2 a $x+3$ b $x-5$ c $\frac{x}{2}$ d $3x$ e $\frac{x}{4}$ f $12-x$
EXERCISE 6C 1 a $p+8$ b $g-3$ c $n+2$ d $c+4$ e $x-3$ f $4f$ g $\frac{h}{3}$ h $2a+4$ i $2p+14$ 2 a $x+3$ b $x-5$ c $\frac{x}{2}$ d $3x$ e $\frac{x}{4}$ f $12-x$
1 a $p+8$ b $g-3$ c $n+2$ d $c+4$ e $x-3$ f $4f$ g $\frac{h}{3}$ h $2a+4$ i $2p+14$ 2 a $x+3$ b $x-5$ c $\frac{x}{2}$ d $3x$ e $\frac{x}{4}$ f $12-x$
g $\frac{h}{3}$ h $2a + 4$ i $2p + 14$ 2 a $x + 3$ b $x - 5$ c $\frac{x}{2}$ d $3x$ e $\frac{x}{4}$ f $12 - x$
2 a $x+3$ b $x-5$ c $\frac{x}{2}$ d $3x$ e $\frac{x}{4}$ f $12-x$
2 a $x+3$ b $x-5$ c $\frac{x}{2}$ d $3x$ e $\frac{x}{4}$ f $12-x$
2 4
g $2x + 1$ h $5x - 6$
3 a $4-s$ b $2a$ c $3c$ d $27-b$ girls
e $y+1$ f $x, x+1, x+2$ g $d+2$
h $a, a - 1, a - 2$ i $m - 1$ and $m + 1$ j $s + 3$
4 a $13-x$ b $k-1$ c $n+1, n+2$ d $v-2$
e $m-2, m+2$ f $s-g$
5 a $x + (x+1)$ b $x + (x+2)$ c $\$(50x + 20(x+4))$ d $€(5x + 20(8-x))$
EXERCISE 6D

- : 300m C A = dm
- **a** $A = 3000 + 200 \times 6$ **b** A = 3000 + 200wA = 3000 + mw **d** A = P + mw
- $C = 60 + 50 \times 5$ **b** C = 60 + 50t **c** C = 60 + dt**d** C = F + dt

f 45 cm^2 **g** 180 m^2 **h** 24 cm^2 **i** 25 cm^2 **3** a 0.66 b 0.29 c 0.5 d 0.75 e 1.8 f 2.05 g 3 h 1.28 i 0.0001 j 0.003 k 0.105 l 0.5625 **2** a 28.3 m^2 b 38.5 cm^2 **c** 56.5 m^2 d 12.6 cm^2 e 26.2 m^2 f 51.8 cm^2 g 30.2 cm^2 h 15.7 m^2 a 17% b 55% c 9% d 80% e 4% f 200% 40% h 350% i 205% j 364% k 8.8% l 140.9% **3** a 112 m^2 b 39 m^2 c 74 m^2 d 84 cm^2 e 31.5 cm^2 9 a 25% b 30% c 35% d 44% e 100% f 160%g 54% h 47.5% i 4% j 37.5% k 240% l 376% **4** a 6.85 cm^2 **b** 39.63 cm^2 **c** 30.90 cm^2 **d** 6427.43 m^2 e 113.10 cm² f 36.86 cm² EXERCISE 8C **5** 2475 kg **6** 160 tiles **7** 375 tiles **8** 9.42 m^2 **1** a 50% b 56% c 90% d 70% **2** 65% **3** 94.3% **9** 1.85 m^2 **10** The width must be reduced by 1.5 cm. 4 86.4% 5 122.9% 6 a 24% b 8.67% c 21.3% d 30% **7** 17% **8** 11.9% **9** 16.7% **a** €4.80 **b** \$16 **c** 4.8 L **d** 52.5 kg **e** 0.21 tonnes **1** a 54 cm^2 b 121.5 cm^2 c 576.24 mm^2 10 f 100 m g ≈ 137 minutes **a** 276 cm^2 **b** 6880 mm^2 **c** 8802 m^2 **11** 24 **12** 84 marks **13** ≈ 654 miles **14** £2902.50 a $\approx 198~{\rm m}^2$ b $\approx 496~{\rm cm}^2$ c $\approx 148~{\rm cm}^2$ **15** \$5208 **16 a** €4.05 **b** €58.05 **a** 576 cm² **b** 384 m² **c** ≈ 823 m² **5** €173.70 **6** \$2537 **7** 1011.3 m² EXERCISE 8D **a** 207.3 cm² **b** 339.3 cm² **c** 196.3 cm² **d** 56.7 m² **e** 124.4 m² **f** 79.5 cm² **1** a CHF 160 b 16 L c 1300 mL d 3200 kg e £1300 f 420 km g 350 L h 700 kg i €2100 **9** a 5026.5 cm² b 145.3 km^2 **c** 84.8 cm^2 2 a \$520 b 1152 kg c €78.75 d 104 mL e 210 kg **f** \$24.80 **10** a $A = 18x^2$ b $A = 6x^2 + 12x$ **c** $A = 5x^2 + 6x + x\sqrt{5}(x+2)$ **d** $A = 10\pi x^2$ **3** 1700 cars **4** \$75500 **5** 300 students e $A = 7\pi x^2 + 2\pi x$ f $A = (39 + 5\sqrt{10})x^2$ EXERCISE 8E **1** \$4.20/kg **2** 80 people **3** 57 **4** \$64800 **5** 44 minutes 6 \$9724 7 772.8 m 8 60.8 minutes **3** The square has the larger area, by 6.25 cm^2 . EXERCISE 8F **4** a 4 m b \$73.60 c $\approx 5.85 \text{ m}^2$ d $\approx 0.549 \text{ m}^2$ **5** 376 balls 1 a 10^2 b 10^3 c 10^1 d 10^5 e 10^{-1} f 10^{-2} **6 a** ≈ 20.9 L (assuming base is also painted) **b** \$413.50 $g 10^{-4} h 10^{8}$ 7 Sphere has greater surface area $(2123.7 \text{ cm}^2 \text{ compared to } 1470.3 \text{ cm}^2)$ **a** 3.87×10^2 **b** 3.87×10^4 **c** 3.87×10^0 **d** 3.87×10^{-2} 2 e 3.87×10^{-3} f 2.05×10^{1} g 2.05×10^{2} h 2.05×10^{-1} i 2.05×10^4 j 2.05×10^7 k 2.05×10^{-4} **a** 4.0075×10^4 km **b** 1.495×10^{11} m **c** 4×10^{-4} mm 3 **d** 4×10^7 bacteria **e** 1.4162×10^{-7} **f** 1×10^{-2} mm **a** 300 **b** 2000 **c** 36000 **d** 920000 **e** 5600000 f 34 g 7850000 h 90000000 **a** 0.03 **b** 0.002 **c** 0.00047 **d** 0.000063 **e** 1.7 f 0.00095 g 0.349 h 0.000007**a** 0.0000009 m **b** 6606000000 **c** 100000 light years 6 **d** 0.00001 mm **e** 0.000.....00166 kg 26 zeros a 1.6×10^8 b 3.2×10^9 c 1.5×10^{10} d 8×10^9 7 e 3.6×10^7 f 4.9×10^{-3} g 3×10^1 h 2×10^{-1} 4.65⁰⁶ b 5.12⁻⁰⁵ c 5.99⁻⁰⁴ d 3.761¹⁰ а 4.95^{07} f 8.44^{-06} e 9 a 3×10^{-8} b 1.36×10^{10} c 4.64×10^{10} d 9.87×10^{9} e 3.57×10^{-8} f 8.74×10^{-6} 10 a 2.55×10^{8} b 7.56×10^{-6} c 2.75×10^{-10} d 3×10^1 e 2.44×10^{-5} f 1.02×10^7 **11** a 4.80×10^8 mm b 3.16×10^7 seconds **c** 3.16×10^{10} seconds **d** 5×10^{-7} kg **12** a 8.64×10^4 km b 6.05×10^5 km c 6.31×10^7 km 13 a $1.8\times10^{10}~\text{m}$ b $2.59\times10^{13}~\text{m}$ c $9.47\times10^{15}~\text{m}$ REVIEW SET 8A **a** $4 + \frac{2}{10}$ **b** $4 + \frac{2}{100} + \frac{5}{1000}$ **c** $4 + \frac{2}{10} + \frac{5}{10000}$ **d** $\frac{1}{100} + \frac{5}{10000}$ **2** a 5.107 b 0.049 3 a 82.425 b $34\,700$ c 6.3 d 0.8 e 180 f 0.164 \$127.75 **5** \$154.50 **6 a** 32.68 **b** 5.12 **h** $\frac{1}{50}$ **i** $\frac{9}{40}$ **j** $\frac{1}{40}$ **k** $\frac{31}{40}$ **l** $\frac{249}{400}$

7 a i $\frac{3}{4}$ ii $\frac{1}{16}$ iii $1\frac{1}{5}$ b i 0.25 ii 0.0625 iii 1.2

for the cylinder). 8 a $\approx 5.15 \times 10^8 \text{ km}^2$ b $\approx 3.65 \times 10^8 \text{ km}^2$ **REVIEW SET 7A**

EXERCISE 7D

 $1 \approx 21.5\%$ **2** 57 m²

 $f 189 \text{ cm}^2$

EXERCISE 7C

2

2

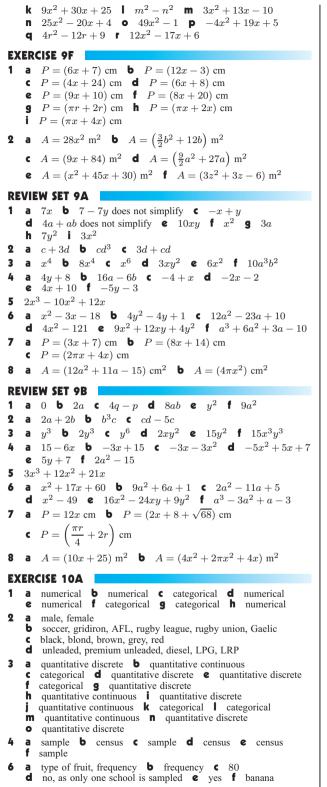
4

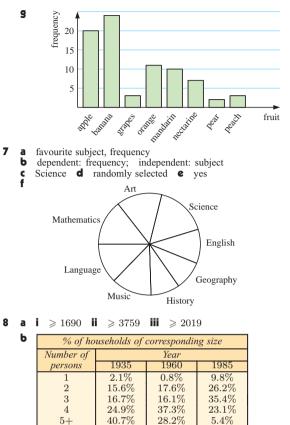
 a 9.2 m b 42 m **2** a 9.1 m b \$305 **3** 9.42 cm 41.7 cm **5** a 20 cm^2 **b** 19.6 m^2 **c** 22.5 m^2 **a** $\approx 314 \text{ m}^2$ **b** $\approx \$8796$ **c** $\approx 85.8 \text{ m}^2$ a 34 cm^2 b 36 cm^2 c $\approx 51.8 \text{ m}^2$ **8** 113 cm^2

REVIEW SET 7B

1	а	105 m b	\$3	150 2	21.	$9 \text{ km} \text{h}^{-1}$	3	5.0 km
4	а	$40 {\rm cm}^2$ b	24	4.6 cm^2	c	$18.8~{ m cm}^2$	5	1.21 m^2
6	а	i 120 m ²	ii	32 m^2	iii	40 m^2	Ь	24 L
7	\approx	151 cm ² 8	а	A = 1	$6x^2$	b $A =$	6π	r^2

EXERCISE 8A


1 a $3 + \frac{4}{10}$ **b** $3 + \frac{4}{100}$ **c** $3 + \frac{4}{100} + \frac{7}{10000}$ **d** $5 + \frac{1}{1000} + \frac{8}{10000}$ **e** $\frac{7}{100} + \frac{6}{10000}$ 2 a 2.4 b 0.62 c 0.305 d 0.081 e 3.0002 f 2.0107 3 a 11.43 b 23.63 c 6.24 d 2.7 e 6.842 f 3.299 g 0.3168 h -1.1 i 0.138 j -0.352 k 1.287 l -8.11 а n 0.54 o 7.9 p 2.84 q 1.5 r 7 s 6 t -4.25 **a** \$38.07 **b** €2.24 **c** \$23.70 **d** i \$215.20 ii ≈ 25.8 cents **e** 40000 bottles $\mathbf{f} \approx 196$ items $\mathbf{g} = 11\,666$ bottles $\mathbf{h} = 35\,555$ bearings 6 a 153.75 b 98.38 c 4.33 d 31 e 0.69 f 2.05 g 23.16 h 0.25 EXERCISE 8B **1** a $6\% = \frac{6}{100}$ b $51\% = \frac{51}{100}$ c $27\% = \frac{27}{100}$ d $86\% = \frac{86}{100}$ **2** a $\frac{1}{4}$ b $1\frac{3}{10}$ c $\frac{13}{20}$ d $\frac{2}{5}$ e $2\frac{1}{10}$ f 1 g $\frac{3}{25}$

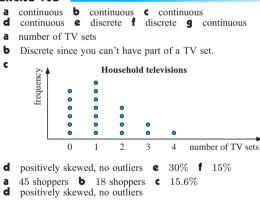

498 ANSWERS

8 a 70% b 137.5% c 53% d 403% 9 36.7% 10 90 marks 11 570 lunches 12 293.4 kL **13** a 9×10^{0} b 3.49×10^{4} c 7.5×10^{-3} **14 a** 2810000 **b** 2.81 **c** 0.00281 **15** a 4.26×10^8 b 6×10^3 **REVIEW SET 8B 1 a** $6 + \frac{8}{10} + \frac{1}{100}$ **b** $6 + \frac{8}{100} + \frac{1}{1000}$ **c** $6 + \frac{8}{100} + \frac{1}{10000}$ **d** $6 + \frac{8}{1000} + \frac{1}{10000}$ **2** a 1.4506 b 9.012 3 a 66.852 b 0.0258 c 0.021 d 0.72 e 0.0001 f 9 **4** a 91 whole packets **b** 0.8 kg **5** \$11.40 6 a 2.0 b 135.6 **a** i $\frac{4}{5}$ ii $\frac{1}{500}$ iii $2\frac{11}{20}$ **b** i 0.46 ii 0.125 iii 1.05 7 8 a 40% b 105% c 97% d 2.1% 9 55% **10** ¥2975 **11** £18540 **12** 41562 megalitres **13** a 2.6357×10^2 b 5.11×10^{-4} c 8.634×10^8 **14** a 2.78 b 39900000 c 0.002081 **15** a 6.4×10^7 b 6×10^6 EXERCISE 9A **1** a 8+x b 11+a c t-3 d 2b+5 e 2d+6**f** 3q **g** 4x **h** 2c+3 **i** 6a **j** 2y **k** 2z **l** $2c^2$ **m** 3a + 8 does not simplify **n** $5x^2$ • 12a - 9 does not simplify **p** 11a **q** $3v^2$ **r** 6bcs -z + b - 4**2** a 0 b 4x c 5x-5 does not simplify d 3xy e 4ab**f** $2p^2$ **g** 7a-3 **h** 6x **i** 6b-3 **j** 5bc **k** 3b+2a $1 n^2 + 7n$ m 7x n 0 o $3b^2 + ab$ p 15x - 9 q 0 ∎ 10*y* **3** a 10a b -2a c 2a d -10a e 8x f 6x g -6x**h** -8x **i** $3n + n^2$ does not simplify **j** -13d **k** -3d**i** 3d **m** 2-2b **n** -2t **o** -5g **p** -m-7**q** 4-3a **r** 2c **s** 3b **t** 5b**4** a a-5 b 5c+b c 3xy-2ab+2 d -4ab e -5x**f** $3m^2 - 9$ **g** n-1 **h** -a-b **i** 2uv+2 **j** $-2i^2 - i$ **k** $-3a^2$ **l** 5x + y **m** -2xy - y **n** -6x - 10EXERCISE 9B **a** a + 3b **b** $a^2 + 2a$ **c** $2b + b^2$ **d** 8a **e** $3a - a^2$ **f** 6a **g** $4x^2 - x$ **h** $b^3 - b$ **i** $3a^2 - 2a$ **a** $2x^2 - 3$ **b** b^4 **c** $a^3 - a^2$ **d** $6t^2$ **e** $4m^4$ **f** $12y^3$ **g** $5b^2 - 2b$ **h** 0 **i** $3ab + 2a^2$ a a^3 b b^3 c c^4 d n^4 e 18ab f 20ac g m^5 **h** k^5 i p^6 a a^4 b m^6 c r^6 d a^2b^2 e s^8 f $9x^6$ g $4m^2n^2$ h $27y^6$ i $25a^2b^4$ j $16x^6$ k $8m^9$ l $2a^2c^5$ **5** a 6y b $12x^2$ c $12a^2c$ d $9d^2$ e $6s^2t^2$ f $2a^4$ **g** $16y^3$ **h** $12q^2$ **i** $12a^3$ **j** $36b^5$ **k** $-3x^2$ **l** $-2x^3$ **m** $2x^2$ **n** $-12x^3$ **o** $-5x^4$ **p** $-8x^3$ **q** $-8x^4$ r $-3x^5$ s $2d^4$ t $27x^3$ EXERCISE 9C **1** a 3x + 6 b 4x - 4 c 5a + 20 d 6a + 6b e 2b - 8**f** 9m + 27 **g** 3n - 3m **h** 2s - 2t **i** 20 + 5x **j** 2x - 2y**k** 3t - 21 **l** 21 + 7p **m** 9b + 9c **n** 4x - 20 **o** 12 + 2j**p** 8q-8p **q** 10-2k **r** 6y-6z **s** 4k-20 **t** 50-5x**2** a 12x + 4 b 6a + 21 c 2 - 4x d 12 - 18n**i** 2a + 4 **i** 3a + 21 **g** 2 - 4x **i** 12 - 10h**i** 2a - 12b **j** 14x - 7y **g** 3b + 9c **h** 8a - 4b**i** 2a - 12b **j** 15 + 9d **k** 28 - 14k **l** 2b + 16a**m** 44x + 11y **n** 2m - 14n **o** 18g - 12h **p** 12 + 9x**q** 6x + 2z **r** 6c - 18d **s** 5p + 30q **t** 12a - 4bc**3** a $a^2 + 4a$ b $3b - b^2$ c $3c^2 + c$ d $5d - 4d^2$ e 2ab + ac f $g^3 - g$ g $7a^2 - 2a^3$ h $6x^2 - 9x$ i $10x - 2x^2$ j $15x - 3x^2$ k $4a^3 - 12a^2$ l $28n + 14n^2$

m $3x^2 - 2x$ **n** $4x + 2x^2$ **o** $pq^2 - p^2q$ **p** $ab^3 - ab^2$ **q** $3m^2n + m^2n^2$ **r** $2ab^2 - a^2b$ **s** $5p - 20p^2q$ **t** $7k^2l + 2l^2$ **u** $3a^2b^2 - 5b^2$ **v** $2x^2y + 12xy^2$ **W** $3xy - 4x^3y$ **X** $4st^2 - 3s^2$ **a** -3x-3 **b** -2x-6 **c** -5x+10 **d** -18+6x**i** -3x + 2 **g** -6 + x **h** -3x - 2**i** -15 + 5x **j** -27x + 36 **k** -10 + 4c **l** -x + 9**a** $-2a - a^2$ **b** $-b^2 + 4b$ **c** $-2c - c^2$ **d** $x^2 - 7x$ 5 e $-6n+3n^2$ f $-4y^2-12y$ g $-18a+6a^2$ h $-4b+10b^2$ **a** 6x + 8 **b** 8x + 16 **c** 7x - 11 **d** x **e** m + 18**f** -3m - 12 **g** -2x - 4 **h** 3x + 13 **i** -3x + 3**j** -51x + 14 **k** -17n + 27 **l** 11y - 23 **m** -1 **n** 9t - 57 **a** 2x - 1 **b** 1 - 8x **c** 33 - 12x **d** 11x - 6**e** 15x - 1 **f** 9 - 4x **g** -7 - 18x **h** -7x - 1**i** 16x - 1 **j** 2x + 3 **k** 9x + 1 **l** 12x - 17**a** $4x^2 - x + 6$ **b** -6a **c** 5p - q **d** $7x^3 - 3x^2 + x$ $e -2x^3 - 8x^2 - 6x$ f 4a + 14**a** $3a^2 + 9a + 3$ **b** $3b^2 - 9b + 6$ **c** $8c^2 - 12c - 28$ **d** $-d^3 - 2d^2 + d$ **e** $2e^3 + 6e^2 - 10e$ **f** $6a^3 - 9a^2 + 3a$ **g** $-12x^3 - 6x^2 + 15x$ **h** $-4b^3 - 10b^2 + 2b$ $-35y^3 + 7y^2 - 21y$ EXERCISE 9D **1** a x^2+5x+4 b a^2+5a+6 c c^2-3c-4 d $a^2-7a+10$ **e** wy + wz + xy + xz **f** ap + bp + aq + bq **g** $3x^2 - x - 2$ **h** $-2x^2 - x + 3$ **i** $2x^2 - x - 15$ **j** $3x^2 + 10x - 8$ k $12x^2 - 29x + 15$ l $x^3 - x^2 + 5x - 5$ **2** a $x^2 + 4x + 4$ b $x^2 - 4x + 4$ c $x^2 + 10x + 25$ **d** $x^2 - 10x + 25$ **e** $4x^2 + 12x + 9$ **f** $4x^2 - 12x + 9$ **g** $a^2 + 2ab + b^2$ **h** $a^2 - 2ab + b^2$ **i** $x^2 - 12x + 36$ $z^2 + 22z + 121$ k $25x^2 - 30x + 9$ l $49x^2 + 28x + 4$ **a** x^3+4x^2+8x+8 **b** $2x^3+x^2+2x+3$ **c** x^3-5x^2+7x-3 **d** $x^3 + 4x^2 - 2x + 15$ **e** $3x^3 - 11x^2 - 2x + 20$ f $6x^3 - 17x^2 - 12x - 7$ g $-2x^3 + 7x^2 + x - 15$ **h** $x^3 + 5x^2 - 23x + 8$ EXERCISE 9E **1** a px + py + qx + qy b qs + qt + rs + rt c $x^2 + 9x + 18$ d $x^2 + 6x + 8$ e $a^2 + 6a + 5$ f $y^2 + 11y + 30$ g $b^2 - 9$ **h** $x^2 - 2x - 15$ **i** $x^2 + 4x - 32$ **j** $x^2 + 3x - 4$ **k** $k^2 + k - 12$ **l** $x^2 - 4x - 12$ **m** $x^2 + 3x - 10$ **n** $x^2 - 9x + 18$ **o** $2z^2 - 21z + 27$ **p** $3n^2 + 5n - 2$ **q** $2x^2 - 9x - 35$ **r** $12x^2 + 11x - 15$ **a** $x^2 + 2x + 1$ **b** $x^2 + 6x + 9$ **c** $x^2 - 6x + 9$ 2 **d** $x^2 - 16x + 64$ **e** $y^2 + 8y + 16$ **f** $y^2 - 8y + 16$ **g** $9x^2 + 6x + 1$ **h** $9x^2 - 6x + 1$ **i** $4a^2 + 4a + 1$ \mathbf{j} $4a^2 - 4a + 1$ **k** $a^2 + 2ab + b^2$ **l** $a^2 - 2ab + b^2$ **m** $16x^2 + 8x + 1$ **n** $9x^2 - 24x + 16$ **o** $64x^2 - 48x + 9$ **p** $36x^2 + 36x + 9$ **a** $c^2 + 2cd + d^2$ **b** $x^2 + 2xy + y^2$ **c** $p^2 + 2pq + q^2$ **d** $a^2 + 4a + 4$ **e** $x^2 + 14x + 49$ **f** $x^2 + 18x + 81$ **g** $9a^2 + 6a + 1$ **h** $4b^2 + 4b + 1$ **i** $4x^2 + 20x + 25$ **j** $25x^2 + 60x + 36$ **k** $x^4 + 4x^2 + 4$ **l** $x^4 + 2x^3 + x^2$ **a** $m^2 - 2mn + n^2$ **b** $p^2 - 2pq + q^2$ **c** $c^2 - 2cd + d^2$ **d** $h^2 - 4h + 4$ **e** $n^2 - 6n + 9$ **f** $x^2 - 12x + 36$ **g** $4x^2 - 20x + 25$ **h** $4z^2 - 28z + 49$ **i** $9x^2 - 12x + 4$ **j** $9a^2 - 24a + 16$ **k** $4x^2 - 12xy + 9y^2$ **l** $x^4 - 6x^2 + 9$ **a** $x^2 - 1$ **b** $a^2 - 4$ **c** $b^2 - 25$ **d** $c^2 - 9$ **e** $16 - x^2$ 5 f $49 - x^2$ g $1 - y^2$ h $64 - b^2$ i $4x^2 - 9$ j $16a^2 - 25$ **k** $4 - 9x^2$ **l** $1 - 36y^2$ **a** $y^2 - 1$ **b** $b^2 - 4$ **c** $a^2 - 49$ **d** $x^2 - 16$ **e** $36 - b^2$ f $25-x^2$ g $64-a^2$ h $4-9y^2$ i $49-4a^2$ j $9x^2-1$ **k** $25 - 9y^2$ **l** $x^2 - 4$ **a** $x^2 + 4x - 21$ **b** $x^2 + 8x + 15$ **c** $x^2 + 8x + 16$ 7 **d** $x^2 - 8x + 15$ **e** $-x^2 + 4x - 3$ **f** $x^2 - 22x + 121$

g a^2-64 **h** $h^2+18h+81$ **i** $4x^2-169$ **j** $2x^2+x-15$

EXERCISE 10B

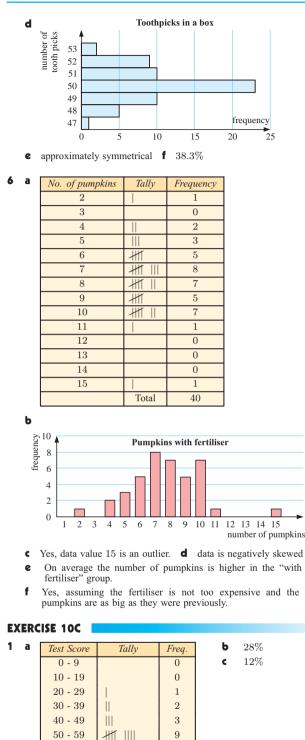

1

9

3

C

Totals


1


1

1

- **4 a** the number of business appointments out of the office each day **b** You can only have whole appointments **c** 22.2% **d** 4.449
 - **b** You can only have whole appointments. **c** 22.2% **d** 4.44% **e** 2 appointments **f** positively skewed with an outlier
 - **g** Data value 10 is an outlier.
- **5 a** number of toothpicks in a box **b** discrete

No. of toothpicks	Tally	Freq.
47		1
48	1	5
49	HT HT	10
50	***	23
51	HT HT	10
52		9
53		2

13

8 10

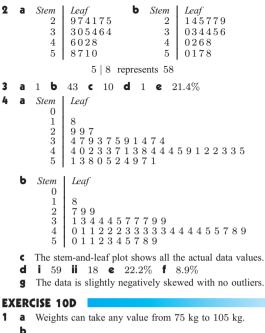
4

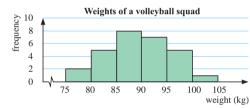
50

60 - 69

70 - 79

80 - 89

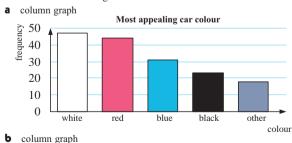

90 - 100

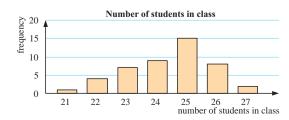

HT HT

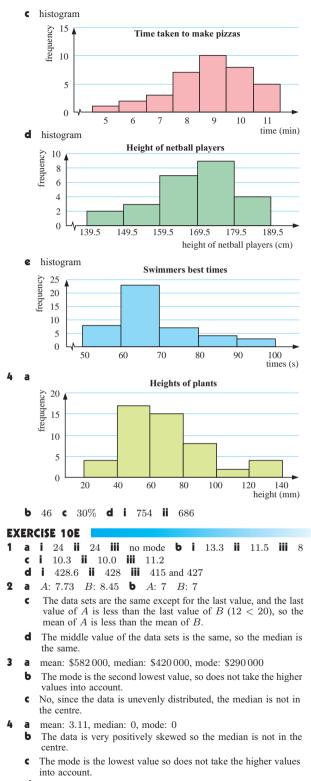
₩ |||

##

Total

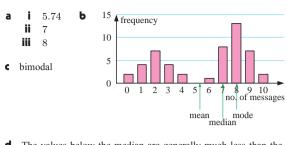

- **C** The modal class is (85 < 90) kg as this occurred the most frequently.
- **d** approximately symmetrical with no outliers
- a continuous numerical

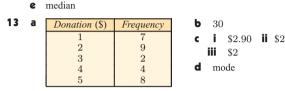

b Stem | Leaf


2

3

- c positively skewed
- **d** The modal travelling time was between 10 and 20 minutes.



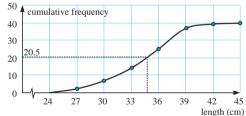


- **d** yes, 15 and 27 **e** No, they should be included.
- **a** 44 **b** 44 **c** 40.6 **d** increase mean to 40.75
- 6 105.6 7 2275 km 8 \$2592000 9 27
- **10 a** 1696 km **b** 1632 km **c** 475.4 km

5

d The values below the median are generally much less than the median, so the mean value is less than the median.

- **14 a i** 2.61 **ii** 2 **iii** 2
 - **b** This school has more children per family than the average Canadian family.
 - c positively skewed
 - **d** The positive skewness makes the value of the mean larger than the mode or the median.

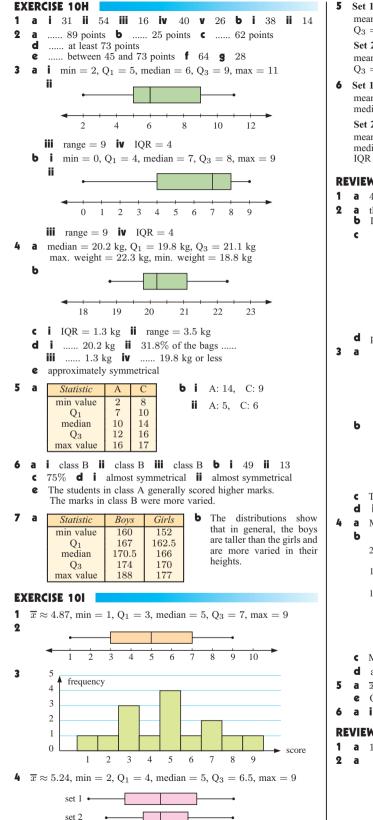

EXERCISE 10F

19

1 a	Salmon lengths (cm)	Freq.	Cum. Freq.
	$24 \leq x < 27$	2	2
	$\begin{array}{c} 27 \leqslant x < 30\\ 30 \leqslant x < 33 \end{array}$	5	7 14
	$33 \leqslant x < 36$	11	25^{14}
	$36 \leqslant x < 39$	12	37
	$39 \leqslant x < 42$	2	39
	$42 \leqslant x < 45$	1	40

Ь

Cumulative frequency graph of lengths of salmon


- median $\approx 35 \text{ cm}$
- **d** Median is 34. The graph indicates a steady increase from one interval point to the next, however this is not necessarily the case.
- **2** a 71 b 77 c 61 students d 26 students e 84
- **3** a $7\frac{1}{2}$ **b** i 43 people ii 43 people
- **4 a** 32.5 mins **b** 77 runners **c** 27.5 mins

EXERCISE 10G

- **1 a** i 9 ii $Q_1 = 7, Q_3 = 10$ iii 7 iv 3
- **b** i 18.5 ii $Q_1 = 16, Q_3 = 20$ iii 14 iv 4
 - **c** i 26.9 ii $Q_1 = 25.5, Q_3 = 28.1$ iii 7.7 iv 2.6
- **2** a median = 2.35, $Q_1 = 1.4$, $Q_3 = 3.7$
 - **b** range = 5.1, IQR = 2.3
 - c i greater than 2.35 minutes ii less than 3.7 minutes
 iii The minimum waiting time was 0.1 minutes and the maximum waiting time was 5.2 minutes. The waiting times were spread over 5.1 minutes.

3 a 20 b 58 c 40 d 30 e 49 f 38 g 19

502 ANSWERS

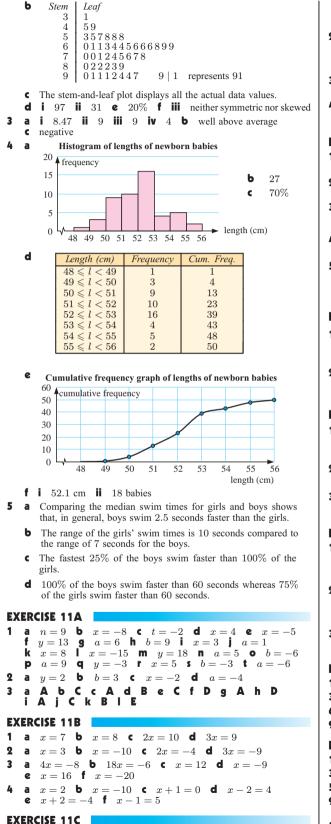
2

0 1

4

5

6


10

```
mean = 6.625, mode = 7, min = 3, Q_1 = 6, median = 7,
    Q_3 = 8, max = 9, range = 6, IOR = 2
    Set 2
    mean = 7.7, mode = 7, min = 2, Q_1 = 6, median = 8,
    Q_3 = 9, max = 15, range = 13, IQR = 3
6 Set 1
   mean = 11.936, mode = 11.9, min = 11.6, Q_1 = 11.8,
   median = 11.9, Q_3 = 12, max = 12.2, range = 0.6, IQR = 0.2
    Set 2
    mean = 11.84, mode = 11.8, min = 11.5, Q_1 = 11.7,
   median = 11.8, Q_3 = 11.9, max = 12.2, range = 0.7,
    IQR = 0.2
REVIEW SET 10A
   a 49 b 15 c 26.5\% d positively skewed
   а
       the number of children in the household
       Discrete, since you cannot have part of a child.
    b
    c
                      Children in a household
         requency
               0
                   0
               õ
                   õ
               0
                   0
               0
                   0
                       C
                                                  number of
                   2
                       3
                           4
                               5
                                        7
                                            8
                                                  children
       positively skewed, one outlier at 8
    d
   а
         Stem
                Leaf
           0
                9
            1
                88
            \mathbf{2}
                58492650387
            3
                52493491656352
            4
                00
                           4 0 represents 40
    b
         Stem
                Leaf
            0
                Q
            1
                88
                02345567889
            \mathbf{2}
            3
                12233445556699
                00
                            4 0 represents 40
            4
    c
       The stem-and-leaf plot displays all the actual data values.
       i 40 ii 9 e 20%
    d
   а
       Mass can be any decimal of a gram.
    b
                      Histogram of masses of eggs
       20
          ♦ frequency
       15
       10
        5
                                                        mass (g)
        0
               48
                    49
                          50
                               51
                                    52
                                         53
                                               54
                                                    55
    c Modal class is 50 \text{ g} - < 51 \text{ g}. This class has the most eggs.
    d
       approximately symmetrical
      \overline{x} \approx 29.6 b 16 and 28 c 29 d 45
   а
       Q_1 = 22, Q_3 = 41.5 f 19.5
    e
       i 48 ii 98 iii 15 iv 66 v 42 b i 83 ii 24
   а
REVIEW SET 10B
      14.55 b 14.5 c 14 and 15
   а
   а
         Stem
                Leaf
           3
                1
            4
                95
                887835
            5
            6
                9085964164163
            7
                012567840
            8
                023922
```

9

14024117

9 | 1 represents 91

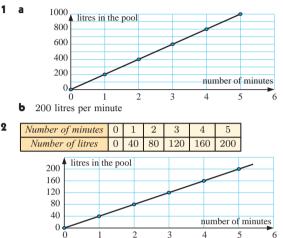
1 a x = -11 b x = -3 c x = -7 d x = -3

e $x = 5$ f $x = 9$ g $x = 1$ h $x = -5$ i $x = j$ j $x = 3$ k $x = -1\frac{1}{2}$ l $x = -6$ 2 a $x = 11$ b $x = -5\frac{1}{2}$ c $x = -4$ d $x = 3\frac{1}{2}$ e $x = 1$ f $x = 11$ g $x = -6$ h $x = 11$ i $x = -\frac{1}{2}$ j $x = -2$ k $x = 4$ l $x = -9$ 3 a $x = 28$ b $x = -15$ c $x = -16$ d $x = -12$ e $x = 19$ f $x = -11$ g $x = 10$ h $x = 24$ 4 a $x = -5\frac{1}{2}$ b $x = -3$ c $x = 17$ d $x = -7$ e $x = 3$ f $x = 8\frac{1}{2}$ EXERCISE 11D 1 a $x = 9$ b $x = -12$ c $x = 1$ d $x = -2$ e $x = \frac{1}{2}$ a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = \frac{1}{2}$ a $x = 6$ b $x = -3$ c $x = 1\frac{1}{5}$ d $x = -3$	
j $x = 3$ k $x = -1\frac{1}{2}$ l $x = -6$ 2 a $x = 11$ b $x = -5\frac{1}{2}$ c $x = -4$ d $x = 3\frac{1}{2}$ e $x = 1$ f $x = 11$ g $x = -6$ h $x = 11$ i $x = -\frac{1}{2}$ j $x = -2$ k $x = 4$ l $x = -9$ 3 a $x = 28$ b $x = -15$ c $x = -16$ d $x = -12$ e $x = 19$ f $x = -11$ g $x = 10$ h $x = 24$ 4 a $x = -5\frac{1}{2}$ b $x = -3$ c $x = 17$ d $x = -7$ e $x = 3$ f $x = 8\frac{1}{2}$ EXERCISE 11D 1 a $x = 9$ b $x = -12$ c $x = 1$ d $x = -2$ e $x = 1$ f $x = -3$ 2 a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = \frac{1}{2}$ f $x = 1$	
2 a $x = 11$ b $x = -5\frac{1}{2}$ c $x = -4$ d $x = 3\frac{1}{2}$ e $x = 1$ f $x = 11$ g $x = -6$ h $x = 11$ i $x = -\frac{1}{2}$ j $x = -2$ k $x = 4$ l $x = -9$ 3 a $x = 28$ b $x = -15$ c $x = -16$ d $x = -12$ e $x = 19$ f $x = -11$ g $x = 10$ h $x = 24$ 4 a $x = -5\frac{1}{2}$ b $x = -3$ c $x = 17$ d $x = -7$ e $x = 3$ f $x = 8\frac{1}{2}$ EXERCISE 11D 1 a $x = 9$ b $x = -12$ c $x = 1$ d $x = -2$ e $x = 1$ f $x = -3$ 2 a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = \frac{1}{2}$	$x = 2\frac{2}{3}$
e $x = 1$ f $x = 11$ g $x = -6$ h $x = 11$ i $x = -\frac{1}{2}$ j $x = -2$ k $x = 4$ l $x = -9$ 3 a $x = 28$ b $x = -15$ c $x = -16$ d $x = -12$ e $x = 19$ f $x = -11$ g $x = 10$ h $x = 24$ 4 a $x = -5\frac{1}{2}$ b $x = -3$ c $x = 17$ d $x = -7$ e $x = 3$ f $x = 8\frac{1}{2}$ EXERCISE 11D 1 a $x = 9$ b $x = -12$ c $x = 1$ d $x = -2$ e $x = 1$ f $x = -3$ 2 a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = 1$ f $x = 1$	$r = 2\frac{2}{3}$
i $x = -\frac{1}{2}$ j $x = -2$ k $x = 4$ l $x = -9$ 3 a $x = 28$ b $x = -15$ c $x = -16$ d $x = -12$ e $x = 19$ f $x = -11$ g $x = 10$ h $x = 24$ 4 a $x = -5\frac{1}{2}$ b $x = -3$ c $x = 17$ d $x = -7$ e $x = 3$ f $x = 8\frac{1}{2}$ EXERCISE 11D 1 a $x = 9$ b $x = -12$ c $x = 1$ d $x = -2$ e $x = 1$ f $x = -3$ 2 a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = 1$ f $x = 1$	$r = 2\frac{2}{3}$
3 a $x = 28$ b $x = -15$ c $x = -16$ d $x = -12$ e $x = 19$ f $x = -11$ g $x = 10$ h $x = 24$ 4 a $x = -5\frac{1}{2}$ b $x = -3$ c $x = 17$ d $x = -7$ e $x = 3$ f $x = 8\frac{1}{2}$ EXERCISE 11D 1 a $x = 9$ b $x = -12$ c $x = 1$ d $x = -2$ e $x = 1$ f $x = -3$ 2 a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = 1$ f $x = 1$	$r = 2\frac{2}{3}$
4 a $x = -5\frac{1}{2}$ b $x = -3$ c $x = 17$ d $x = -7$ e $x = 3$ f $x = 8\frac{1}{2}$ EXERCISE 11D 1 a $x = 9$ b $x = -12$ c $x = 1$ d $x = -2$ e $x = 1$ f $x = -3$ 2 a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = 1$ f $x = 1$	$x = 2\frac{2}{3}$
4 a $x = -5\frac{1}{2}$ b $x = -3$ c $x = 17$ d $x = -7$ e $x = 3$ f $x = 8\frac{1}{2}$ EXERCISE 11D 1 a $x = 9$ b $x = -12$ c $x = 1$ d $x = -2$ e $x = 1$ f $x = -3$ 2 a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = 1$ f $x = 1$	$x = 2\frac{2}{3}$
e $x = 3$ f $x = 8\frac{1}{2}$ EXERCISE 11D 1 a $x = 9$ b $x = -12$ c $x = 1$ d $x = -2$ e of f $x = -3$ 2 a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = -3$ f $x = 1$	$x = 2\frac{2}{3}$
EXERCISE 11D 1 a $x = 9$ b $x = -12$ c $x = 1$ d $x = -2$ e $x = -3$ 1 a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = -3$ 1 a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = -3$ 1 f $x = 1$	$x = 2\frac{2}{3}$
1 a $x = 9$ b $x = -12$ c $x = 1$ d $x = -2$ e $x = 1$ f $x = -3$ 2 a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = 1$ f $x = 1$	$x = 2\frac{2}{3}$
f $x = -3$ 2 a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = $ f $x = 1$	$x = 2\frac{1}{3}$
2 a $x = -3$ b $x = 6$ c $x = 2$ d $x = 3$ e $x = $ f $x = 1$	
x = 1	= 2
3 a $r-6$ b $r-3$ c $r-1^{\perp}$ d $r-3$	
e $x = -3\frac{1}{2}$ f $x = -4$	
4 a $x = 3$ b $x = 2$ c $x = 2$ d $x = 6\frac{1}{2}$ e $x =$	- 1
f x = 6	1
5 a $x = 0$ b $x = 2$ c $x = 3$ d $x = 3$ e $x = -$	
f $x = -\frac{7}{9}$ g $x = -5$ h $x = 6$ i $x = 3\frac{1}{2}$ j x	
k no solution l infinite number of solutions (true for al	(1 x)
EXERCISE 11E	
1 a $x = \frac{4}{5}$ b $x = 14$ c $x = \frac{4}{15}$ d $x = 1\frac{3}{4}$ e x	$x = \frac{2}{45}$
f $x = \frac{3}{14}$ g $x = 3\frac{3}{4}$ h $x = 5\frac{1}{4}$	
2 a $x = -\frac{1}{4}$ b $x = -18$ c $x = -5$ d $x = 18$ e	m — 1
	x = -1
f $x = -\frac{1}{5}$ g $x = -1$ h $x = -5$ i no solution	
EXERCISE 11F	
	$x = \frac{3}{8}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e	$x = \frac{3}{8}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$	
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e	
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$	$x = \frac{1}{5}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$	$x = \frac{1}{5}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no solution	$x = \frac{1}{5}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sol EXERCISE 11G	$x = \frac{1}{5}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sole EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$	$x = \frac{1}{5}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sole EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$	$x = \frac{1}{5}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sole EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x - 1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$	$x = \frac{1}{5}$ 7 Jution
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sol EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x - 1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$	$x = \frac{1}{5}$ 7 Jution
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sole EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x - 1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$	$x = \frac{1}{5}$ 7 Jution
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sole EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x - 1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$ c $x + (x + 2) = 52$, where x is odd d $x + (x + 2) + (x + 4) = 69$, where x is odd	$x = \frac{1}{5}$ 7 Jution
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sole EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x - 1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$ c $x + (x + 2) = 52$, where x is odd d $x + (x + 2) + (x + 4) = 69$, where x is odd	$x = \frac{1}{5}$ 7 Jution
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sol EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x - 1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$ c $x + (x + 2) = 52$, where x is odd d $x + (x + 2) + (x + 4) = 69$, where x is odd 3 a $30a + 25(a + 5) = 455$ b $35s + 49(9 - s) = 357$ c $2(f - 7) + 5f = 224$	$x = \frac{1}{5}$ 7 Jution
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sol EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x - 1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$ c $x + (x + 2) = 52$, where x is odd d $x + (x + 2) + (x + 4) = 69$, where x is odd 3 a $30a + 25(a + 5) = 455$ b $35s + 49(9 - s) = 357$ c $2(f - 7) + 5f = 224$ EXERCISE 11H	$x = \frac{1}{5}$ 7 Jution
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sole EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x - 1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$ c $x + (x + 2) = 52$, where x is odd d $x + (x + 2) + (x + 4) = 69$, where x is odd 3 a $30a + 25(a + 5) = 455$ b $35s + 49(9 - s) = 357$ c $2(f - 7) + 5f = 224$ EXERCISE 11H 1 The number is 8. 2 The numbers are 86 and 87.	$x = \frac{1}{5}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sol EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x - 1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$ c $x + (x + 2) = 52$, where x is odd d $x + (x + 2) + (x + 4) = 69$, where x is odd 3 a $30a + 25(a + 5) = 455$ b $35s + 49(9 - s) = 357$ c $2(f - 7) + 5f = 224$ EXERCISE 11H 1 The number is 8. 2 The numbers are 86 and 87.	$x = \frac{1}{5}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sole EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x-1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$ c $x + (x + 2) = 52$, where x is odd d $x + (x + 2) + (x + 4) = 69$, where x is odd 3 a $30a + 25(a + 5) = 455$ b $35s + 49(9 - s) = 357$ c $2(f - 7) + 5f = 224$ EXERCISE 11H 1 The number is 8. 2 The numbers are 86 and 87. 3 The smallest is 35. 4 The number is 12. 5 The number	$x = \frac{1}{5}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sole EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x - 1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$ c $x + (x + 2) = 52$, where x is odd d $x + (x + 2) + (x + 4) = 69$, where x is odd 3 a $30a + 25(a + 5) = 455$ b $35s + 49(9 - s) = 357$ c $2(f - 7) + 5f = 224$ EXERCISE 11H 1 The number is 8. 2 The numbers are 86 and 87. 3 The smallest is 35. 4 The number is 12. 5 The numb 6 The number is 84. 7 Eight 5-cent coins 8 9 bananas 9 five 500 g containers	$x = \frac{1}{5}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sole EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x - 1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$ c $x + (x + 2) = 52$, where x is odd d $x + (x + 2) + (x + 4) = 69$, where x is odd 3 a $30a + 25(a + 5) = 455$ b $35s + 49(9 - s) = 357$ c $2(f - 7) + 5f = 224$ EXERCISE 11H 1 The number is 8. 2 The numbers are 86 and 87. 3 The smallest is 35. 4 The number is 12. 5 The numb 6 The number is 84. 7 Eight 5-cent coins 8 9 bananas 9 five 500 g containers EXERCISE 111	$x = \frac{1}{5}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sole EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x - 1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$ c $x + (x + 2) = 52$, where x is odd d $x + (x + 2) + (x + 4) = 69$, where x is odd 3 a $30a + 25(a + 5) = 455$ b $35s + 49(9 - s) = 357$ c $2(f - 7) + 5f = 224$ EXERCISE 11H 1 The number is 8. 2 The numbers are 86 and 87. 3 The smallest is 35. 4 The number is 12. 5 The numb 6 The number is 84. 7 Eight 5-cent coins 8 9 bananas 9 five 500 g containers EXERCISE 111 1 a 14 cm b 1 m 2 a 7 cm b 7 cm	$x = \frac{1}{5}$
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sole EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x-1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$ c $x + (x + 2) = 52$, where x is odd d $x + (x + 2) + (x + 4) = 69$, where x is odd 3 a $30a + 25(a + 5) = 455$ b $35s + 49(9 - s) = 357$ c $2(f - 7) + 5f = 224$ EXERCISE 11H 1 The number is 8. 2 The numbers are 86 and 87. 3 The smallest is 35. 4 The number is 12. 5 The numb 6 The number is 84. 7 Eight 5-cent coins 8 9 bananas 9 five 500 g containers EXERCISE 111 1 a 14 cm b 1 m 2 a 7 cm b 7 cm 3 a 92 km b 2 h 48 min 4 a 12.5 m s^{-1} b 127	$x = \frac{1}{5}$ 7 hution ber is 4.
1 a $x = 15$ b $x = 4\frac{1}{2}$ c $x = 17\frac{1}{2}$ d $x = 2\frac{1}{4}$ e f $x = -\frac{7}{12}$ g $x = \frac{4}{15}$ h $x = -\frac{2}{15}$ 2 a $x = 1$ b $x = -1$ c $x = 8\frac{1}{2}$ d $x = -12$ e f $x = -1$ 3 a $x = \pm\sqrt{12}$ b $x = \pm 6$ c $x = \pm\sqrt{3}$ d $x = \pm$ e $x = \pm\sqrt{10}$ f $x = \pm\sqrt{35}$ g $x = \pm 4$ h no sole EXERCISE 11G 1 a $x + 6 = 13$ b $x - 5 = -4$ c $2x + 7 = 1$ d $\frac{x - 1}{2} = 45$ e $3x = 17 - x$ f $5x = x + 2$ 2 a $x + (x + 1) = 33$ b $x + (x + 1) + (x + 2) = 102$ c $x + (x + 2) = 52$, where x is odd d $x + (x + 2) + (x + 4) = 69$, where x is odd 3 a $30a + 25(a + 5) = 455$ b $35s + 49(9 - s) = 357$ c $2(f - 7) + 5f = 224$ EXERCISE 11H 1 The number is 8. 2 The numbers are 86 and 87. 3 The smallest is 35. 4 The number is 12. 5 The numb 6 The number is 84. 7 Eight 5-cent coins 8 9 bananas 9 five 500 g containers EXERCISE 111 1 a 14 cm b 1 m 2 a 7 cm b 7 cm 3 a 92 km b 2 h 48 min 4 a 12.5 m s^{-1} b 127	$x = \frac{1}{5}$ 7 lution ber is 4.

10 $x \approx 31.83$

EXERCISE 11J 1 a $y = \frac{9}{5} - \frac{3}{5}x$ b $y = 6 - \frac{4}{3}x$ c y = 4x - 8**d** $y = 21 - \frac{7}{2}x$ **e** $y = 4 - \frac{2}{2}x$ **f** $y = \frac{5}{2}x + 20$ **2 a** x = b - a **b** $x = \frac{z}{n}$ **c** $x = \frac{q-p}{2}$ **d** $x = \frac{r-2y}{2}$ e $x = \frac{c - by}{a}$ f $x = \frac{y - c}{m}$ g $x = \frac{q - 7}{n}$ h $x = \frac{c - a}{b}$ $\mathbf{i} \quad x = \frac{7 - p}{a}$ **3 a** y = mx - c **b** $y = \frac{a - b}{3}$ **c** $y = \frac{p - q}{5}$ **d** $y = \frac{5 - b}{a}$ e $y = \frac{p-r}{a}$ f $y = \frac{q-p}{r}$ **4** a $z = \frac{4}{xy}$ b $z = \frac{y}{x}$ c $z = \frac{4}{5}w$ d $z = \pm \sqrt{3y}$ e $z=\pm\sqrt{xy}$ f $z=\pm\sqrt{wp-wq}$ 5 a $m = \frac{F}{a}$ b $r = \frac{C}{2\pi}$ c $l = \frac{V}{dh}$ d M = DV**e** $b = \frac{2A}{h}$ **f** $R = \frac{100I}{DT}$ **ó** a xy = 800 b $y = \frac{800}{r}$ c $P = 2\left(x + \frac{800}{x}\right)$ 7 a 2x + 2y = 100 b y = 50 - x c A = x(50 - x)**8** 28.6 cm **9 a** 88.0 cm **b** 227 revs **10** a $45\,239$ km b $26\,400$ km h⁻¹ **11** 37.0 m **12** 8.46 cm **13** 3.00 m REVIEW SET 11A **1** x = 7 **2** 3x = 12 **3 a** x = -10 **b** x = 194 a $x = 2\frac{6}{7}$ b x = -2 5 a $x = \frac{1}{15}$ b x = 9**a** 2(x+11) = 48 **b** x + (x+1) + (x+2) = 63The number is 7. 8 twelve 5-cent coins 7 **9** a 22.1 ms⁻¹ b 81.6 m **10** x = 18**a** $y = \frac{5}{3}x - 5$ **b** $d = \frac{C}{3}$ 11 REVIEW SET 11B **1 B 2** x+2=3 **3 a** $x=-19\frac{1}{2}$ **b** x=24 a $x = \frac{3}{4}$ b x = 1 5 a $x = 1\frac{1}{9}$ b x = -2**6** a 4x = x + 15 b x + (x + 2) = 36, x is odd **7** The number is 7. **8 a** 204 800 units **b** 7.75 cm **9** $V = \frac{M}{D}$ **10 a** $y = 4 - \frac{6}{5}x$ **b** $r = \frac{C}{2\pi}$ **11** $r \approx 4.46$ cm EXERCISE 12A **a** 7:11 **b** 14:9 **c i** 13:9 **ii** 9:13 **iii** 5:9 **iv** 9:5 **a** 8:3 **b** 3:7 **c** 35:45 **d** 300:50 **e** 500:3000 **f** 400:2500 **g** 9000:150 **h** 12:8000 **i** 240:40 EXERCISE 12B **a** 3:4 **b** 2:1 **c** 1:3 **d** 3:5 **e** 1:2 **f** 7:4 1:2 h 3:4 i 5:4 j 1:2:3 k 20:1 l 1:2:4 Q **a** 5:2 **b** 3:7 **c** 3:2 **d** 2:1 **e** 7:12 **f** 1:4 **g** 4:1 **h** 1:20 a 1:2 b 3:1 c 3:1 d 3:5 e 2:1 f 1:2 4:1 **h** 6:4:3 g **a** 2:3 **b** 8:15 **c** 8:39 **d** 39:50 **a** 2:1 **b** 1:3 **c** 1:4 **d** 7:10 **e** 3:7 **f** 40:1 5 **g** 1:50 **a** 1:2 **b** 1:2 **c** 1:4 **d** 4:1

7 **a** 2:3 **b** 2:1 **c** 2:3 **d** 4 hours mowing, 6 hours weeding, 4 hours edging, 2 hours sweeping up EXERCISE 12C **1** a x = 12 b x = 3 c x = 10 d x = 28 e x = 35**f** x = 42 **g** x = 96 **h** x = 56 **i** x = 36**2** a $\Box = 15$ b $\Box = 6$ c $\Box = 15$ d $\Box = 9$ e $\Box = 3$ **f** $\Box = 16$ **3** 6 kg of onions **4** 300 apple trees **5** \$30 **6** 90 kg **7** a 28 kg b 76 kg **8** 34 kg **9** Yes, volume $210\,000$ cm³ EXERCISE 12D **1** 97.65 kg **2** \$18 938 **3** 9.38 cm **4** 88.3 mL **5** 12.0 g **6** 477 m^2 EXERCISE 12E 1 a 5 b 5 c 16 d 17 e 13 f 19 g 11 h 19 **a** 25 cm : 25 cm **b** 40 cm : 10 cm **c** 30 cm : 20 cm 2 **d** 17.5 cm : 32.5 cm **3** a \$10:\$40 b €15:€20 c 40 kg:50 kg **4** $$250\,000$ **5** 510 girls **6** 800 m² **7** 40 succeed, 16 fail **8** a 58 years b €103 333 c €96 667 **9** £6000 : £10000 : £20000 **10** a 7.5 kg b 2.5 kg **11** a 16 b 20 c 12 EXERCISE 12F **1 a** 6.2 m **b** 6.9 m **c** 9.75 m **2** a 9.2 cm b 2.88 cm c 11.2 cm 2 6 cm 4 cmb 7.19 cm 5.44 cm **a** 27.5 km **b** 3.6 cm **5** 1:2000000 **6** 300 km^2 EXERCISE 12G **1** a \$2 per metre **b** \$15 per hour **c** \$1.80 per litre **d** 200 L per minute **2** a cost and mass **b** capacity and time **c** capacity and time **d** capacity and capacity **e** cost and length **3** a \$180 b \$540 **4** a 34 L b £31.93 c £23.94 5 **a i** 980 **ii** 612 **iii** 1960 **b** 10 h 21 min


- **i** 29 runs **ii** 72 runs **iii** 22 runs **b** 20.8 overs
- **a** 13 h 20 min **b** 17.1 L **c** \$425 (5 cans) 7
- Q \$21 **b** \$8 **c** \$37
- Yes, because it costs less than having 5 DVDs for 3 nights (C). She will save \$7.

Q **a** 27.8 m s^{-1} **b** 72 km h^{-1}

- **a** $15 \text{ km} \text{h}^{-1}$ **b** 2.1 metres per hour10
- **a** 15 km **b** 140 km **c** 40 km **d** 50 km e $12\,000 \text{ km h}^{-1}$ f 410 km g 19 km h^{-1} h 5 h 12 min

2

3 a i Sarah ii Cleo

- The dotted line is drawn at 1 hour. The point where the dotted line cuts each person's graph shows how much they earned in 1 hour.
- а Lawrence. Lawrence reservoir started with more water than Cannon, but was empty sooner. The slope of its graph is steeper.
 - **b** Lawrence. Its volume was greater than Cannon's at time 0 days (at the start of summer).
- 5 a Nindi b Syd
 - C Nindi. The water level went down at a constant rate (there were no flat sections in the graph).
 - **d** Syd. He had the longest time when the water level did not change (the longest flat section in the graph).
- **a** 3^oC per hour **b** the temperature was constant from 8 am to 9 am **d** 36°C **e** 7 hours
 - **f** 3 pm and 4 pm

EXERCISE 12I

2

- 1 **a** 1.8 km **b** 28 minutes **c i** 1 km **ii** 1.6 km **d** i 6 minutes ii 16 minutes **e** $3.86 \text{ km} \text{ h}^{-1}$
 - **a** 12 minutes **b** 80 km each **c** 20 km each
- d A: 1 h 48 min, B: 2 h 12 min e 24 minutes faster **f** A: 44.4 km h^{-1} , B: 36.4 km h^{-1}
- **a** Bourke family **b** Adams family **c** Adams family 3 **d** 1 h 45 min **e** 1 h 15 min **f** \approx 92 km
- **a** after 2 minutes (1 km from home) **b** 2 minutes
 - **c** 4 minutes **d** $2\frac{1}{3}$ km
 - between the 4th and 6th minutes (after she left the traffic light e until she reached the supermarket)

REVIEW SET 12A

1	а	13:25	b	3:8	2	a 4:	3 b	4:9	c 6:5	
3	а	5:12	b	5:7	4 🗆	= 15	5	25 boys	6 35 1	kg, 40 kg
7	€12	8 00	а	$26 \mathrm{m}$	b 1	1.5 cm	9	a \$14	48.80 b	\$46.50
10	а	95 km	h^{-1}	Ь	11.7 k	${ m m}{ m L}^{-1}$	11	12.6	$\mathrm{km}\mathrm{h}^{-1}$	
12	а	500 k	LΙ	b i	400 k	L, 100	kL, 5	0 kL per	r day	
				ii	250 k	L, 250	kL, 5	0 kL pe	r day	
	c	Yes, th	e ta	nk lose	s the s	ame an	ount	of water	each day	

d after 10 days **REVIEW SET 12B a** 5:12 **b** 1:2 **2 a** 2:3:5 **b** 2:5 **c** 3:2 1 3 **a** 5:3 **b** 9:25 **c** 27:125 **4** 9 **5** 37.5 mL 6 1600 apricot trees, 2000 peach trees **7** 12000 Yen 8 **a** 50 km **b** 6.9 cm **9** 1 minute 10 No of minutes 2 0 1 3 4 5 6 No. of litres 800 775 750 725 700 675 650 no. of litres 800 700 600 500 0 2 4 5 3 6 no, of minutes **11** $35.3 \text{ km} \text{ h}^{-1}$ **12 a** 325 km **b** 30 minutes

c Mahler: 100 km h^{-1} , Schumann: 90 km h^{-1} **d** 88.6 km h^{-1}

EXERCISE 13A

- 1 **a** 9 **b** 5 **c** 12 **d** 40 **e** 7 **f** 9
- 2 2a b 5b c 4xy d 4x e x f -2x g -bа 4a **i** -3xyh
- 3 а 2 **b** c **c** 1 **d** k **e** 3a **f** 5x **g** 5x **h** 8y **i** 18
- ab b abc c 12a d a e r f q g 3b h dp
- i 4r j 3pg k 2ab l 6xy m 5 n 12wz o 12pgr**a** (x+2) **b** 2(x+5) **c** x **d** 2(x+1) **e** 2(x+3)
- f 2x(x-3)

EXERCISE 13B

- 1 **a** 2(x+2) **b** 3(a-4) **c** 5(3-p) **d** 6(3x+2)e 4x(x-2) f 2m(1+4m)
- **a** 4(x+4) **b** 5(2+d) **c** 5(c-1) **d** d(c+e)9
- e 2a(3+4b) f 2x(3-x) g 7a(b-1) h 2b(2a-3c)3
 - **a** 3(a+b) **b** 8(x-2) **c** 3(p+6) **d** 14(2-x)e 7(x-2) f 6(2+x) g c(a+b) h 6(2y-a)
- **i** a(5+b) **j** c(b-6d) **k** x(7-y) **l** y(x+1)
- **m** a(1+b) **n** y(x-z) **o** p(3q+r) **p** c(d-1)
- **a** x(x+2) **b** x(5-2x) **c** 4x(x+2) **d** 7x(2-x)4 6x(x+2) **f** $x^2(x+9)$ **g** xy(x+y) **h** $2x^2(2x-3)$ e i $9x(x^2-2y)$ j $a(a^2+a+1)$ k $2(a^2+2a+4)$ $3a(a^2 - 2a + 3)$
- 5 a 9(b-a) b 3(2b-1) c 4(b-2a) d c(d-7)e a(b-1) f 6x(2-x) g 5x(3x-1) h 2b(2a-b)a(a-1)
- **a** -6(a+b) **b** -4(1+2x) **c** -3(y+2z) **d** -c(9+d)6 e -x(1+y) f -5(x+4) g -3y(4+y) h -9a(2a+b)-8x(2x+3)
- 7 **a** (x-7)(2+x) **b** (x+3)(a+b) **c** (x+2)(4-x)**d** (x+9)(x+1) **e** (b+4)(a-1) **f** (b+c)(a+d)
 - **g** (m+n)(a-b) **h** (x+3)(x-1)
- 8 **a** (x+3)(x-1) **b** (x-7)(x+7) **c** (x+6)(x-4)**d** (x-2)(x-8) **e** x+2 **f** (a+b)(4-a)
- **g** 3(a-2)(a-4) **h** (x+4)(4x+1) **i** 5(x-1)(6-x)(x+5)(4x+17)

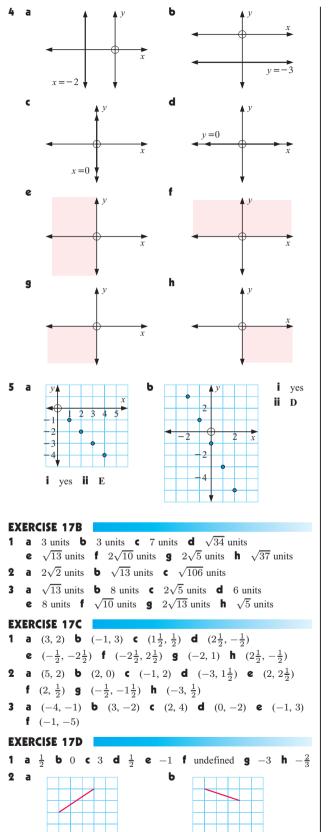
EXERCISE 13C

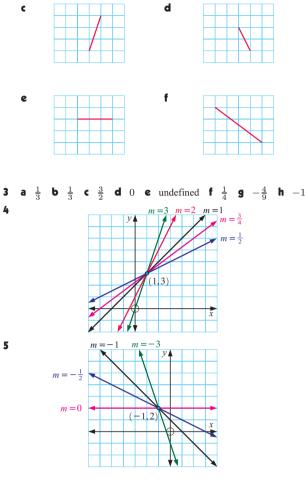
- **1** a (a+1)(3+b) b (c+d)(6+a) c (b+3)(a+2)**d** (n+3)(m+p) **e** (x+3)(x+6) **f** (x+3)(x+8)**g** (x+1)(3x+1) **h** (x+2)(3x+4) **i** (2x+1)(5x+3)
- **a** (x+4)(x-5) **b** (x-7)(x+3) **c** (x-3)(x+2)

d (x-6)(x-3) **e** (x+7)(x-9) **f** (2x+1)(x-3)**g** (3x+2)(x-4) **h** (4x-3)(x-2) **i** (x-1)(9x+4)EXERCISE 13D 1 **a** 2, 5 **b** 2, 6 **c** 2, 8 **d** 5, 6 **e** -2, 7 **f** 3, -7 **g** 3, -6 **h** -3, 10 9 **a** (x+1)(x+4) **b** (x+2)(x+5) **c** (x+3)(x+7)**d** (x+6)(x+9) **e** (x+2)(x+10) **f** (x+3)(x+6)**g** (x+2)(x+12) **h** (x+3)(x+12) **i** (x+3)(x+16)**3** a (x-1)(x-4) b (x-1)(x-3) c (x-2)(x-3)**d** (x-2)(x-11) **e** (x-7)(x-8) **f** (x-4)(x-12)**g** (x-2)(x-14) **h** (x-1)(x-24) **i** (x-3)(x-12)**a** (x+1)(x-9) **b** (x+7)(x-3) **c** (x+2)(x-3)**d** (x-6)(x+3) **e** (x+8)(x-3) **f** (x-12)(x+1)**g** (x+9)(x-6) **h** (x+8)(x-7) **i** (x-7)(x+4)(x-5)(x+4) k (x-9)(x+7) l (x+12)(x-5)**5** a (a-3)(a-4) b (b-3)(b+2) c (c-1)(c-6)**d** $(d+2)^2$ **e** (e-5)(e+4) **f** (f+4)(f+9)**g** $(q-3)^2$ **h** (h-1)(h-9) **i** (i+3)(i-3)(j+5)(j-5) **k** (k+10)(k-10) **l** (l+25)(l-25)**m** 2(x+2)(x-2) **n** 3(x+3)(x-3) **o** (2x+1)(2x-1)EXERCISE 13E **1** a (2x+1)(x+3) b (2x+1)(x+5) c (7x+2)(x+1)**d** (3x+2)(x+2) **e** (3x+2)(x+3) **f** (3x+4)(x+1)**g** (2x+1)(4x+3) **h** (3x+2)(7x+1) **i** (6x+1)(x+1)(6x+1)(x+3) k (5x+3)(2x+1) l (7x+5)(2x+1)**2** a (2x-5)(x+1) b (3x-2)(x+1) c (3x+1)(x-2)**d** (2x-1)(x+2) **e** (2x-1)(x+7) **f** (5x+1)(x-2)**g** (5x-1)(x-3) **h** (11x+3)(x-1) **i** (3x+2)(x-3)(2x-3)(x-3) k (3x-5)(x-2) l (5x-2)(x+3)**m** (3x-2)(x+4) **n** (2x-1)(x+9) **o** (2x-3)(x+6)**p** (2x+7)(x-3) **q** (3x-1)(5x+2) **r** (15x+1)(x-3)**s** (3x-1)(3x-4) **t** (3x+10)(4x-3) **u** (8x-5)(x+3)EXERCISE 13F **1** a (a+b)(a-b) b (p+q)(p-q) c (q+p)(q-p)**d** (m+x)(m-x) **e** (x+5)(x-5) **f** (x+9)(x-9)**g** (a+3)(a-3) **h** (2x+1)(2x-1) **i** (2x+3)(2x-3)(3y+4)(3y-4) k (8+x)(8-x) l (4+3a)(4-3a)**m** (x+10)(x-10) **n** (x+13)(x-13)**o** (3x+2y)(3x-2y) **p** (1+t)(1-t) **q** (3+y)(3-y)(11u+2v)(11u-2v) (x+1)(x-1)t (7a+20)(7a-20)**REVIEW SET 13A a** 3 **b** 5a **c** cd **2 a** (x+1) **b** (x-2)1 3 **a** b(a+1) **b** 3x(x-2) **c** -4c(1+3c)**a** (x-y)(3-2x) **b** $(x+2)^2$ 4 5 **a** (x-4)(x-7) **b** (2x+3)(3x-2)6 (x+2)(x+8) **b** (x-3)(x+2) **c** (x+4)(x-4)а **a** (2x+7)(x+1) **b** (3x-5)(2x-3) **c** (5x+1)(5x-1)7 **REVIEW SET 13B** 1 **a** 4y **b** d **c** ab **2 a** x(5-x) **b** (x+2)**a** 7(2-b) **b** 2a(4a-3) **c** xy(y-1)3 **a** (2-x)(a-3) **b** (x+y)(x-y-3)4 5 **a** (x+6)(x-7) **b** (2x-1)(x-4)**a** (x-6)(x+4) **b** (x-3)(x-8) **c** (x+7)(x-7)6 **a** (2x+1)(x+1) **b** (3x+2)(x-3) **c** (3x+2)(3x-2)7 PUZZLE CONGRATULATIONS YOU CAN FACTORISE EXPRESSIONS NOW EXERCISE 14A

1 a and d; b and e 2 A and O; E, I and M; F and H

3 a i FG ii FĜH b i ON ii OÑM **c i** OR **ii** ORP **d i** TS **ii** TSR I ON II OÑM **f** i FE II FÊD **EXERCISE 14B** 1 **a** A and C {SSS} **b** A and B {RHS} **c** B and C {AAcorS} **d** A and C {SAS} **e** A and C {SAS} **f** B and C {RHS} **g** A and C {SSS} **h** B and C {AAcorS} $\Delta PRQ \cong \Delta ZXY \{SAS\}$ **b** $\Delta ABC \cong \Delta LKM \{SSS\}$ 9 а **c** $\triangle ABC \cong \triangle FED \{AAcorS\}$ **d** $\triangle ABC \cong \triangle EDF \{AAcorS\}$ • $\triangle ABC \cong \triangle FED \{AAcorS\}$ f Only one pair of sides and one angle are the same $\therefore \Delta s$ may or may not be congruent (not enough information). $\Delta ABC \cong \Delta PQR \{SSS\}$ Δs are similar {all angles equal} but may or may not be conh gruent (not enough information). α and β are common to both however sides EF and CB are equal but not corresponding \therefore Δs are not congruent. $\Delta DEF \cong \Delta ZYX \{RHS\}$ EXERCISE 14C 1 a x=0.8 b $x\approx 1.13$ c $x\approx 0.71$ **a** x = 8 **b** x = 8.75 **c** x = 4.8 **d** $x \approx 3.18$ EXERCISE 14D **2** a x = 2.4 b x = 2.8 c $x \approx 3.27$ d x = 9.6e x = 11.2 f x = 5 g $x \approx 6.67$ h x = 7 i x = 7.2EXERCISE 14E a 7 m b 7.5 m 2 1.8 m 3 7 m 4 1 2.67 m5 **b** 176 cm x cm 30 cm ruler **4**5 cm **→** 264 cm **a** $T\widehat{E}M = K\widehat{S}M = 90^{\circ}$; $T\widehat{M}E = \measuredangle K\widehat{M}S$ {vert. opposite} \therefore Δ s TEM and KSM are equiangular, i.e., similar **b** 40 m **7** 1.35 m **8** 116.7 m **9** 1013.3 m **10** 61.8 m **REVIEW SET 14A** A, D and E; B and C 2 a A and B {AAcorS} b A and C {AAcorS} **3** x = 2.8 **5** 66.7 m **REVIEW SET 14B** a FE b $\widehat{\text{FED}}$ 2 a yes {RHS} b no c no 1 **a** $x = 2\frac{1}{3}$ **h** $x = 3\frac{17}{20}$ 3 a x=3 b x=4 c x=124 5 **a** $\angle BAC = \angle NMC = 90^{\circ}$ {given} \measuredangle C is common to both \therefore \triangle s ABC and MNC are equiangular, i.e., similar $=\frac{6}{15}$ $\therefore x = \frac{48}{15} = 3.2$ **C** 6.4 cm EXERCISE 15A **a** 385 m^3 **b** 339 cm^3 **c** 320 cm^3 **d** 45 cm^3 **e** 704 cm^3 **f** 432 cm³ **g** 254 cm³ **h** 288 cm³ **i** 2321 cm³ 670 cm^3 **b** 32 cm^3 **c** 288 cm^3 **d** 58.3 cm^3 9 а

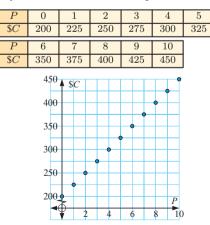

e 85.3 cm^3 **f** 24 cm^3


3

4

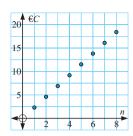
- **a** 125 m^3 **b** 1437 cm^3 **c** 262 cm^3
- **a** $V = \frac{2}{3}\pi r^3$ **b** $V = \frac{2}{3}\pi r^3$ **c** $V = 3\pi r^3$

EXERCISE 16E 5 a 5.94 m^2 b **1** a x = 2.70 b x = 10.07 c x = 8.90 3.56 m^3 c 6 m **a** x = 15.0 **b** x = 44.4 **c** x = 16.9**a** $\phi = 63.43$ **b** $\phi = 29.74$ **c** $\phi = 56.31$ **EXERCISE 16F** 30 cm **1** 39.4° **2** 63.6 m **3** 65.5 m **4** 5.82 m **5** 4.76 m **6** 57.3° **a** 32.5 m^2 **b** 195 m^3 **7** 4500 m^3 **7** 5.64 m **8** 3.30° **9** 311.9 m **10** 12.2 m **11** 50.4 m 6 **8** a 30.8 m^3 b 34.7 m^3 c 65.5 m^3 d \$9493.26**12** 46 m **13** 33.6 m **14** 187 m **15** 32.7° **16** 53.7 m **9** 30 people **10** 1145 sinkers **11** 888 cm³ **12** 116029 cm³ **13** 397 kg **14** 3.85 cm^3 **15** 1.79 m **EXERCISE 16G** a 040° h 235^{o} 297^{o} 1 C d 132^{o} e 225^{o} f. 337^{o} EXERCISE 15B 9 а 055^{o} b 235° C 095^{o} d 275^{o} 145^{o} f 325^{o} e **1** a 22.1 kL b 23.6 kL c 186 kL 055° c 117° d 312^{o} 2200 b e 045^{o} f 157° 9 **a** 24.4 mL **b** \$3.27 per mL 3 A costs \$1.44 per litre, B costs \$1.50 per litre ∴ A is better value **b** 35 km **c** 31.5 km а **a** 1.32 m^3 **b** 1.32 kL **c** 10.5 cm **5** 618 kmfinish **a** 18.1 m^3 **b** $0.08 \text{ m}^3 \text{min}^{-1}$ **c** 3 h 46 min**7** 1.53 L **8** 0.101 L **9** 368 bottles **10** 22.6 kL 35 km **11 a** 0.0209 kL **b** 6.98 minutes **c** 53 min 20 sec start 64 **12** 8.33 cm **13** 72.6 cm W ► E EXERCISE 15C 1 **a** 13.5 m^3 **b** $10\,358 \text{ kg}$ **c** $\in 8804.39$ **2** 3927 bottles 5 а Α **b** 107.7 km **c** 111.8° **a** 100 m^2 **b** \$1650 3 40 km **a** 2.54 cm^2 **b** 6362 cm^3 **c** 0.891 kg **5** 4.37 cm4 6 8.00 cm 7 1.42 m 8 a 2149 kL b 18.1 m c 11.1 m 100 km **REVIEW SET 15A b** 1.7 km **c** 061.9° 6 а start **a** 729.17 cm³ **b** 302.58 cm³ **2** 65.4 cm³ 1 1.5 km **3** $V = \left(\frac{20}{3}\pi x^3\right) \text{ cm}^3$ **4** 50.75 m³ 800 m **a** 19.8 m³ **b** 19800 L **c** 5 h 30 min **6** 27.5 kL 5 a 300 kL b 285 kL **Y** finish **a** $\approx 2590\,000$ m³ **b** 6.9×10^6 tonnes **c** 188 kL **REVIEW SET 16A** REVIEW SET 15B **1** a x = 3.18 b x = 7.20 c x = 9.40**a** 339.29 cm^3 **b** 1272.35 cm^3 **c** 14137.17 cm^3 1 9 a $\theta = 42$ b $\theta = 44$ c $\theta = 46$ 256 cm³ **3** $V = 10x^3$ cm³ **4** 2.04 m³ **a** 97.5 cm **b** 3.15 m **4** 55.2 m **5** 2.10 m **6** 2.67 m 3 **a** 212 m² **b** \$5 089 380 5 7 **a** 84 km **b** 48.2 km **c** 24.1 km h⁻¹ **a** 5.65 m³ **b** 14.6 m³ **c** 20.2 m³ **d** 98.5 kL 6 Yes, by about 11.5 cm. 9 a 230° b 165° c 140° a 210 900 kL b 39 m c 44 230 kL d 8579 kL e 263 709 kL 7 **REVIEW SET 16B** EXERCISE 16A **1** a x = 9.95 b x = 22.45 c x = 3.02a i BC ii AC iii AB b i KM ii KL iii LM 2 **a** $\theta = 46$ **b** $\theta = 23$ **3** 58.5 cm **4** 187 m c i PR ii QR iii PQ d i XZ ii XY iii YZ 338.5 m 6 37.8 m 7 a $45.0 \text{ km} \text{ h}^{-1}$ b 302° 5 e i ce ii de iii cd f i st ii rt iii rs 8 а **b** 18.8 km a i PR II OR III PO IV PO V OR 45° 45 C 080.0° **b i** AC **ii** AB **iii** BC **iv** BC **v** AB W ৰ ► E **EXERCISE 16B** 10.8 km 154 km 1 a i $\frac{3}{5}$ ii $\frac{4}{5}$ iii $\frac{3}{4}$ b i $\frac{5}{13}$ ii $\frac{12}{13}$ iii $\frac{3}{12}$ 0 R c i $\frac{12}{13}$ ii $\frac{5}{13}$ iii $\frac{12}{5}$ d i $\frac{3}{5}$ ii $\frac{4}{5}$ iii $\frac{3}{4}$ EXERCISE 17A $\frac{4}{5}$ **ii** $\frac{3}{5}$ iii $\frac{4}{3}$ f i $\frac{7}{25}$ ii $\frac{24}{25}$ iii $\frac{7}{24}$ **1** J(4, 3), K(-2, -3), L(-4, 2), M(3, -1), N(0, 3)**iii** $\frac{15}{8}$ **h i** $\frac{5}{13}$ **ii** $\frac{12}{13}$ **iii** $\frac{5}{12}$ $\frac{15}{17}$ ii $\frac{8}{17}$ 9 $\frac{1}{1}$ $\frac{24}{25}$ $\frac{11}{10}$ $\frac{24}{7}$ EXERCISE 16C Ρ Т **a** x = 5.74 **b** x = 1.53 **c** x = 47.551 2 x = 8.6 **b** x = 200 **c** x = 117U W R **a** $\theta = 38.7$ **b** $\theta = 39.8$ **c** $\theta = 28.1$ V 0 EXERCISE 16D **a** x = 5.14 **b** x = 10.1 **c** x = 74.9**3 a** 1st **b** 4th **c** 3rd **d** 2nd **a** x = 56.1 **b** x = 15.5 **c** x = 17.3None, it is on the negative *x*-axis. e **a** $\theta = 66.4$ **b** a = 41.4 **c** b = 48.2f None, it is on the negative y-axis. **g** 3rd **h** 4th 3



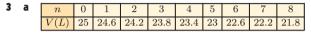
EXERCISE 17E

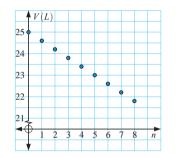
Ь


1 a Independent variable is the number of passengers. Dependent variable is the total charge.

- **c** Yes, it is linear.
- **d** No, as we cannot have part of a passenger.
- **e** \$25 **f i** \$200 **ii** \$25 per passenger

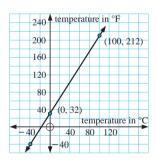
2 a


n	0	1	2	3	4	5	6	7	8
$\in C$	0	2.30	4.60	6.90	9.20	11.50	13.80	16.10	18.40



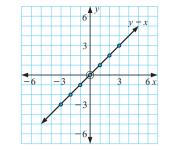
- C Independent variable is the number of blocks of chocolate. Dependent variable is the total cost.
- d Yes, it is linear.

Ь


- No, as only whole blocks of chocolate can be bought. e
- f €2.30 increase **g** €11.50 **h** 9 blocks

- Independent variable is the number of bowls of soup served. b Dependent variable is the volume of soup remaining.
- Yes, it is linear. C
- **d** No, as only whole serves of soup are sold.
- 0.4 L decrease **f** 22.2 L **g** 9 customers e

a, c


- Ь Independent variable is the temperature in degrees Celsius. Dependent variable is the temperature in degrees Fahrenheit.
- -40°C e i 1.7°C ii -3.9°C d

f	°F	50	68	86	104	20	10	0
	°С	10	20	30	40	-6.7	-12.2	-17.8

EXERCISE 17F

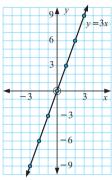
Independent variable is x, dependent variable is y. 1 а

ii	x	-3	-2	-1	0	1	2	3
	y	-3	-2	-1	0	1	2	3

b Independent variable is x, dependent variable is y. $^{-1}$

-3

0

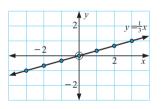

0 3 6 9

2

3

1

Independent variable is x, dependent variable is y. C


ii	x	-3	-2	-1	0	1	2	3
	y	-1	$-\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{2}{3}$	1

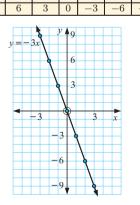
iii

....

ii

iii

Independent variable is x, dependent variable is y. d -1


-2

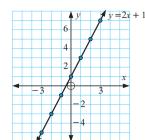
iii

ii

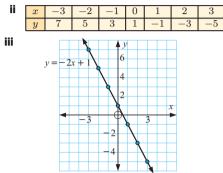
ii x-3

> y9

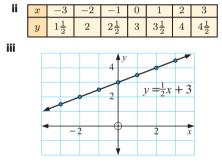
0 1 2

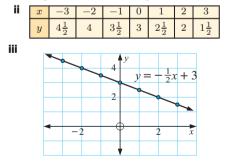

3

-9

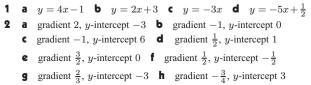

Independent variable is x, dependent variable is y. e i.

x	-3	-2	-1	0	1	2	3
y	-5	-3	-1	1	3	5	7

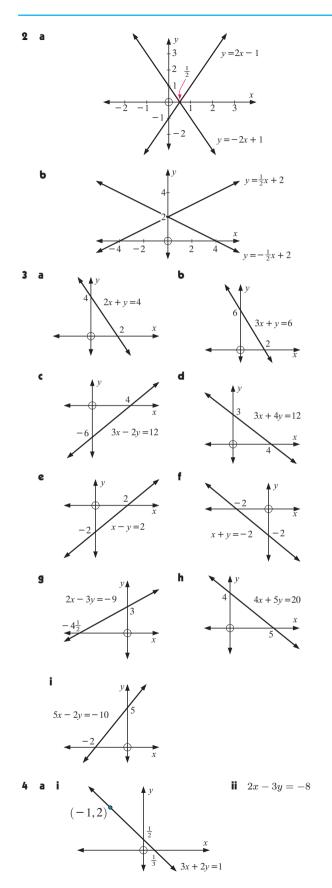

iii

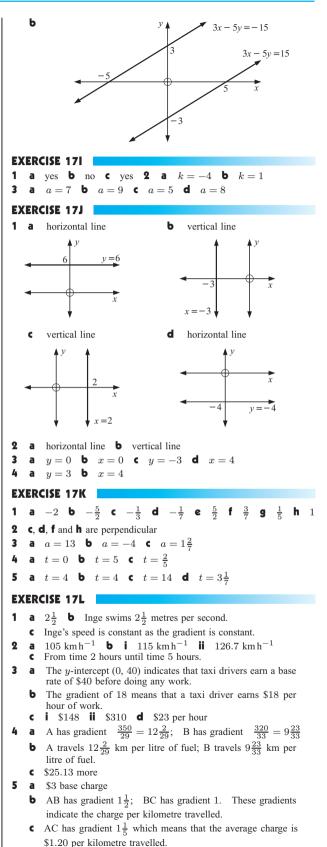

f i Independent variable is x, dependent variable is y.

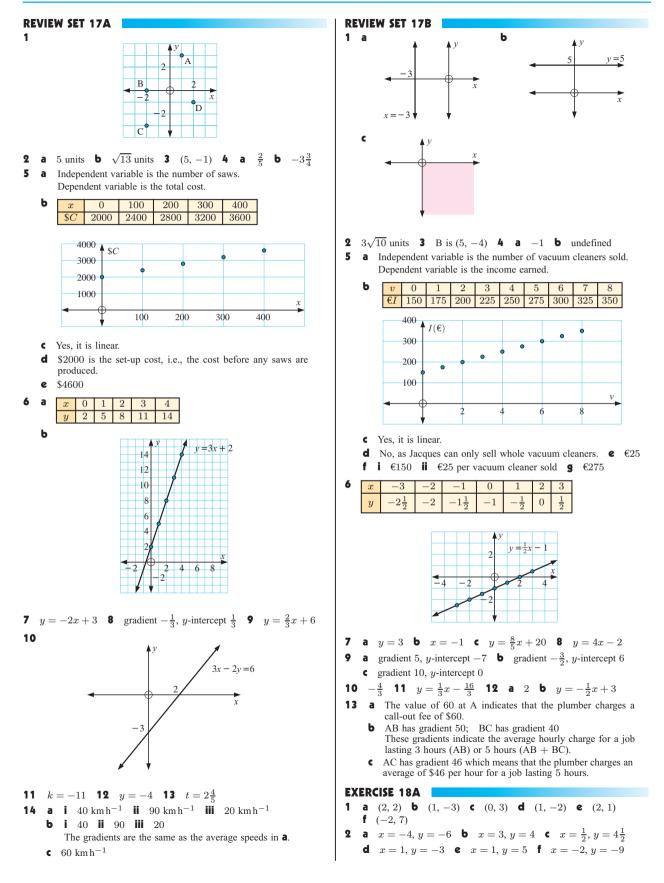
g i Independent variable is x, dependent variable is y.



h i Independent variable is x, dependent variable is y.



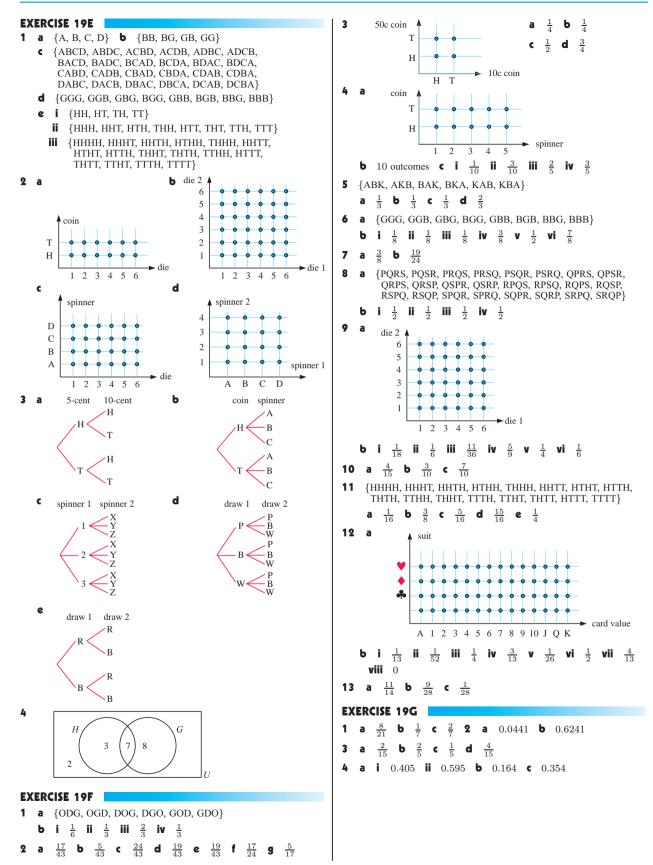

2 b, a, c; coefficient of x 3 the sign of the coefficient of x
4 the constant term


EXERCISE 17G

3 a y = 3x - 5 b y = -2x - 9 c y = -3x + 13**d** $y = \frac{1}{3}x - \frac{1}{3}$ **e** $y = -\frac{1}{4}x + \frac{15}{2}$ **f** y = -3**g** $y = \frac{2}{3}x + \frac{16}{3}$ **h** $y = \frac{3}{5}x + 7$ **i** $y = -\frac{1}{4}x + 2$ **j** $y = -\frac{3}{4}x + 4$ **k** y = 3x + 2 **l** y = -5x + 24**4** a y = x + 4 b $y = \frac{1}{2}x + 4$ c y = -2 d $y = -\frac{1}{3}x + 2$ e $y = \frac{1}{5}x - \frac{9}{5}$ f y = x - 1**5** a $y = \frac{1}{2}x + 3$ b y = 2x + 6 c $y = \frac{2}{5}x - 2$ **d** y = -2x - 2-3 c 0 d undefined e $\frac{4}{3}$ f -6 g $\frac{4}{5}$ 6 a 4 b **h** $-\frac{4}{5}$ **i** 3 **j** $-\frac{3}{4}$ **k** $\frac{A}{B}$ **l** $-\frac{A}{B}$ 7 **a** $y = \frac{2}{3}x + 2$ **b** $y = \frac{5}{4}x - 2$ **c** $y = -\frac{3}{5}x + 3$ **d** y = x + 5 **e** $y = -\frac{5}{3}x - \frac{10}{3}$ **f** $y = -\frac{5}{7}x - \frac{15}{7}$ 8 a $Y = \frac{1}{3}X + 4$ b $N = \frac{2}{3}x - 2$ c $G = -\frac{3}{4}s + 3$ **d** H = -g + 2 **e** $V = \frac{3}{10}t + 5$ **f** $P = -\frac{1}{3}t - 2$ **EXERCISE 17H** 1 a b v = 2x +2 d c x + 52 4r - 2f e = -3x + 42 $1\frac{1}{2}$ 2 (3h g (4 3i. $y = -\frac{3}{2}x + 2$

EXERCISE 18B	REVIE	W SET 18B			
1 a $x = -4, y = -6$ b $x = 5, y = 7$ c $x = 2, y = 6$	1 a	$(1, 4)$ b $(1\frac{1}{2}, -2)$	2) 2 x =	= -2, u =	= -2
d $x = -4, y = -7$ e $x = -2, y = -8$ f no solution		-4, y = -16	-)	-, ,	
g $x = 1, y = 5$ h no solution i $x = \frac{2}{5}, y = 0$		solution - the two line	s are narall	el (same o	radien
2 a $(\frac{1}{2}, 4\frac{1}{2})$ b $(3, 4)$ c $(2, -1)$ d $(0, -4)$ e $(-1, -1)$		rsect	s are paran	er (sume gi	uulen
f (0, 6)	5 x =	1, y = 0 6 5 and	d 17		
	7 saus	sages cost \$0.80 eacl	h, chops co	ost \$2.50 e	ach
	EXERC	ISE 19A			
1 a $x = 2, y = 5$ b $x = 3, y = 1$ c $x = 0, y = 5$ d $x = 5, y = 9$ e $x = 0, y = 4$ f $x = 2, y = 1$		5 2 0.84 3 0.0	0894 4	0.256 5	0.3
2 a $x = 5, y = 3$ b $x = 1, y = \frac{2}{5}$ c $x = 2, y = 1\frac{1}{3}$		0.243 b 0.486			
d $x = 5, y = -2$ e $x = -3, y = -\frac{1}{2}$ f $x = -4\frac{1}{2}, y = -3\frac{1}{2}$	EVED				
a reduces to $5 = 7$ which is never true		ISE 19B			
b no solution - the two lines are parallel (same gradient)	1 a	$\frac{1}{6}$ b $\frac{1}{2}$ c 1	d $\frac{1}{6}$ e	$\frac{5}{6}$ f 0	
they never intersect	2 a	$\frac{1}{3}$ b $\frac{5}{6}$ c $\frac{2}{3}$	d <u>2</u> e	$\frac{1}{6}$ f $\frac{5}{6}$	5
4 a reduces to $8x + 6 = 8x + 6$ which is always true		$\frac{2}{5}$ b $\frac{1}{5}$ c $\frac{4}{5}$	~		-
b infinite number of solutions - the lines are coincident				a 2	1
5 a $11x = 11$ b $4y = 12$ c $9x = 9$ d $9x = 6$ e $-y = 11$ f $-11y = -11$	5 a	i $\frac{1}{3}$ ii 0 b $\frac{3}{3}$	5		
6 a $x = 2, y = 6$ b $x = 1, y = -2$ c $x = -1, y = -3$	6 a	$\frac{1}{5}$ b $\frac{7}{30}$ c $\frac{2}{5}$	d $\frac{1}{20}$	$e \frac{2}{15} f$	$\frac{1}{6}$
d $x = 2, y = 0$ e $x = 1, y = -2$ f $x = -1, y = -3$ d $x = 1, y = -5$ e $x = 2, y = -2$ f $x = -3, y = 1$		$\frac{1}{7}$ b $\frac{2}{7}$ c $\frac{1}{12}$			
7 a $10x + 25y = 5$ b $-3x + y = -4$ c $3x - 21y = 24$					
d $-10x - 8y = -18$ e $-18x - 12y = 12$	· ·	one red, one any col			
f -16x + 8y = -12	Ь	both squares any co	lour other	than red or	r yello
8 a $x = 5, y = -2$ b $x = 1, y = 2$ c $x = 1, y = -6$ d $x = 5, y = 1$ e $x = 1, y = 1$ f $x = -3, y = 4$	EXERC	ISE 19C			
g $x = 2, y = -3$ h $x = 1, y = -1$ i $x = -5, y = -4$	1 65	days 2 a $\frac{1}{4}$ b	75 time	s 3 a	0.36
9 a infinite number of solutions, lines are coincident		5 a 100 b			
b no solution, lines are parallel	1				
EXERCISE 18D	1	$\mathbf{i} \frac{1}{6} \mathbf{ii} \frac{1}{3} \mathbf{iii}$	-	\$1.33	\$0
1 56 and 16 2 22 and 8 3 17 and 51	C C	lose 50 cents d 1	ose \$50		
4 fish costs $\pounds 2.20$ each, chips cost $\pounds 0.75$ per serve	EXERC	SISE 19D			
5 coffee costs €2.90 per cup, muffins cost €1.25 each		407 people b	Brand	Freq	Rel
6 30, 50-cent coins; 26, 10-cent coins		i 0.229	Silktouc	h 125	0.
7 André has €26.10, Michelle has €39.15		ii 0.201	Super	107	0.
8 33, 600 mL cartons; 60, 1 L cartons 9 $a = 3, b = 5$	i	ii 0.307	Just Soa	^	0.
10 length 18 cm, width 10 cm			Indulgen		0.
EXERCISE 18E			Total	407	
1 a $y = 10 - 5x$ b $y = 8 - 4x$ c $y = 12 - 2x$	2 a		DIC	ь	i c
6-2x $12-4x$ $10-7x$		Outcome Freq	Rel Freq		ii 0
d $y = \frac{6-2x}{3}$ e $y = \frac{12-4x}{3}$ f $y = \frac{10-7x}{3}$		0 heads 121 1 head 259	$0.247 \\ 0.530$		
-7 - 2x . $88 - 11x$. $40 - 16x$		2 heads 109	0.330 0.223		
g $y = \frac{-7 - 2x}{9}$ h $y = \frac{88 - 11x}{8}$ i $y = \frac{40 - 16x}{5}$		Total 489	1	1	
2 a $y = 5x - 5$ b $y = 2x - 3$ c $y = 9x - 18$		<u> </u>			
	3 a	1083 people b	Colour	Freq	Rel Fi
d $y = \frac{2x-7}{3}$ e $y = \frac{4x-5}{3}$ f $y = \frac{6x-20}{5}$	c	0.25	Green	361	0.2
3x - 14, $8x - 3$, $11x - 33$		0.75	Red	1083	0.75
g $y = \frac{3x - 14}{7}$ h $y = \frac{8x - 3}{11}$ i $y = \frac{11x - 33}{9}$			Total	1444	1
3 a $(16, -2)$ b $(-14, 5)$ c $(21, 9)$ d $(-5, 15)$	4 -	ED2E distanta			
e $(15, -7)$ f $(22, -13)$		5235 tickets b 0.207	Ticket T	~ 1	*
4 a 18 giraffes, 21 ostriches b 17 chairs, 6 stools			Adul		
• one apple costs 65 cents, one orange costs 85 cents			Concess		
 d eleven 1.5 m lengths, twelve 4 m lengths c CDs cost RM12.50 each, DVDs cost RM19.95 each 			Tota		
	1			020	
f small bags weigh 2 kg each, large bags weigh 5 kg each					
	5 a	Councillor	Freq	Rel Freq	
REVIEW SET 18A	5 a				
REVIEW SET 18A 1 a $(-2, -4)$ b $(1, -2)$ 2 $x = 2, y = 7$ 3 $x = -1, y = 3$	5 a	Councillor Mr Tony Trimboli Mrs Andrea Sims	Freq 2167 724	Rel Freq 0.361 0.121	
REVIEW SET 18A 1 a $(-2, -4)$ b $(1, -2)$ 2 $x = 2, y = 7$ 3 $x = -1, y = 3$ 4 infinite number of solutions (the two lines are coincident)	5 a	Mr Tony Trimboli Mrs Andrea Sims Mrs Sara Chong	2167	0.361	
REVIEW SET 18A 1 a $(-2, -4)$ b $(1, -2)$ 2 $x = 2, y = 7$ 3 $x = -1, y = 3$	5 a	Mr Tony Trimboli Mrs Andrea Sims	2167 724	0.361 0.121	- - -

y = -16on - the two lines are parallel (same gradient) ... they never = 0 **6** 5 and 17 cost \$0.80 each, chops cost \$2.50 each 19A 0.84 3 0.0894 4 0.256 5 0.331 3 **b** 0.486 19B **c** 1 **d** $\frac{1}{6}$ **e** $\frac{5}{6}$ **f** 0 $\frac{1}{2}$ **b** $\frac{5}{6}$ **c** $\frac{2}{3}$ **d** $\frac{2}{3}$ **e** $\frac{1}{6}$ **f** $\frac{5}{6}$ $\frac{1}{5}$ c $\frac{4}{5}$ d $\frac{4}{5}$ 4 a $\frac{1}{2}$ b $\frac{1}{10}$ c $\frac{9}{10}$ b **ii** 0 **b** $\frac{3}{5}$ **b** $\frac{7}{30}$ **c** $\frac{2}{5}$ **d** $\frac{1}{30}$ **e** $\frac{2}{15}$ **f** $\frac{1}{6}$ **b** $\frac{2}{7}$ **c** $\frac{1}{12}$ or $\frac{31}{365}$ or $\frac{124}{1461}$ **d** $\frac{1}{6}$ or $\frac{59}{365}$ or $\frac{237}{1461}$ red, one any colour other than red or black squares any colour other than red or yellow 19C **2** a $\frac{1}{4}$ b 75 times **3** a 0.36 b 26 backs **a** 100 **b** 200 **c** 400 **d** 500 ii $\frac{1}{3}$ iii $\frac{1}{2}$ **b** i \$1.33 ii \$0.50 iii \$3.50 50 cents **d** lose \$50 19D people Ь Rel Freq Brand Freq 229 Silktouch 1250.307.201 Super 107 0.263.307 Just Soap 930.229820.201Indulgence Total 407 1 b 0.247 tcome Freq Rel Freq 0.530 heads 1210.2470.223 2590.530head 0.223 heads 109 `otal 489 1 people b Colour Freq Rel Freq .25Green 361 0.25.75 1083 0.75Red Total 1444 1 5 tickets ь Ticket Type Freq Rel Freq 3762 0.719Adult 1084 0.207Concession Child 389 0.074Total 52351 **b** 0.519 Councillor Freq Rel Freq Tony Trimboli 21670.361s Andrea Sims 7240.121rs Sara Chong 23890.398

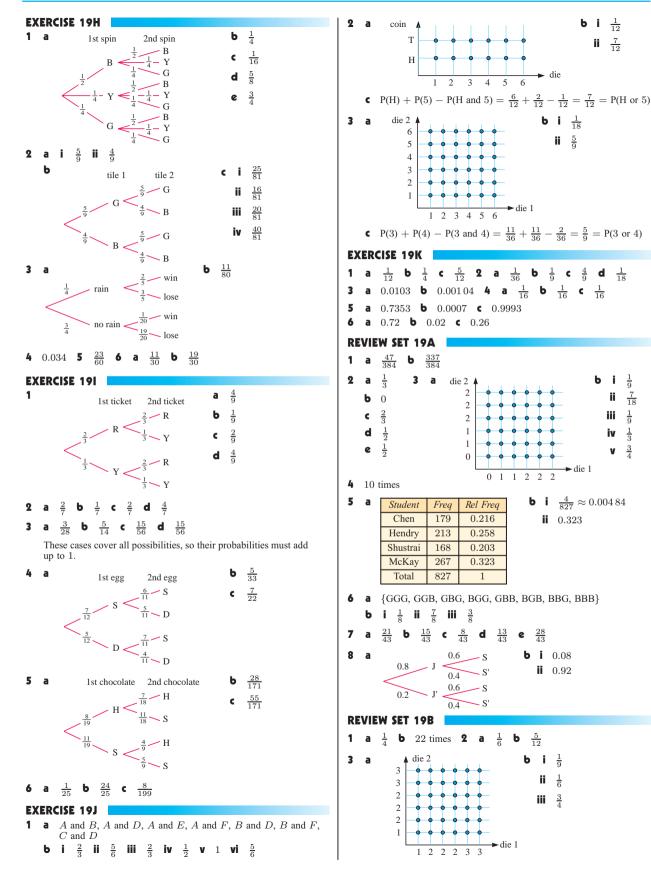

6000

Total

1

6 adult tickets cost \$18 each, student tickets cost \$12 each **7** 14, 50 pence coins; 7, 20 pence coins

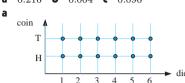
514 ANSWERS

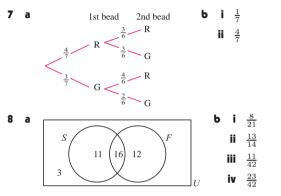


 $\frac{1}{9}$

 $\frac{7}{18}$

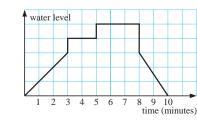
 $\frac{1}{9}$

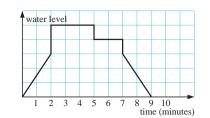

 $\frac{3}{4}$


516 ANSWERS

6

- Two events are said to be independent if one event does not affect the outcome of the other event.
 - b For example, rolling a die and tossing a coin. **ii** For example, selecting two tickets from a bag where the first ticket is not replaced.
- 5 0.216 **b** 0.064 **c** 0.096 а


 $P(T) + P(2) - P(T \text{ and } 2) = \frac{6}{12} + \frac{2}{12} - \frac{1}{12} = \frac{7}{12} = P(T \text{ or } 2)$



EXERCISE 20A

6 а

- **a** E **b** E **c** ves: B and C
 - d The more training an employee has, the more productive they are.
- 2 а A **b** A **c** yes: B and C
 - The less sleep an employee has, the more likely they are to d have an accident.
- 3 Josie is travelling with constant speed {shown by AB}. а Realising she is running late, she quickens her speed a little {shown by BC}. Now back on time, she slows to her usual speed {shown by CD}. She slows to a stop {shown by DE}. She delivers her parcel, and awaits further instruction {shown by E}.
 - **b** Josie is at her delivery base awaiting instructions {shown by AB}. She is given parcels to deliver, so she begins to move {shown by BC}. She travels with a constant speed {shown by CD}. She slows to a stop {shown by DE}. She delivers a parcel {shown by EF}. She increases her speed to her usual rate {shown by FG}. She travels with a constant speed toward her next destination {shown by G}.
- 5 а The bath is filling for one minute, at which time someone gets in. The person immediately turns off the taps and soaks for two minutes. The person then turns the tap on for one minute, then soaks for a further three minutes. The person gets out of the bath and lets the water out, taking 1 minute.
 - A person gets in the bath then fills it, taking two minutes. The b taps are turned off and the person soaks for three minutes. The person gets out of the bath and leaves the water for two minutes. The water is then let out of the bath, taking 1 minute.

EXERCISE 20B 1

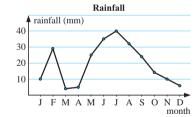
h

- **a** 11 am **b** 8 pm c The number of shoppers in the store increased by 25.
- d
- 28 people
- The graph shows the exact number of shoppers in the store at e each hour, but only estimates the number in between.
- 2 39°C **b** 16 minutes **c** 25°C **d i** 18°C **ii** 8°C а
 - i 50 km ii 5 km b 1 min 40 sec c 6 laps а
 - € 161 km h⁻¹ d 2 minutes

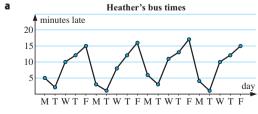
EXERCISE 20C

3

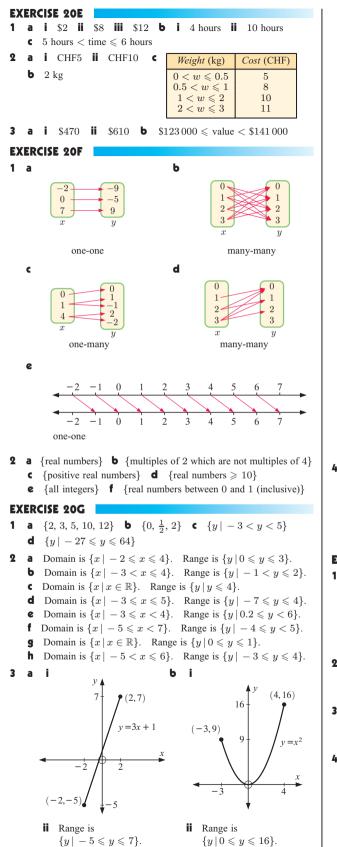
9

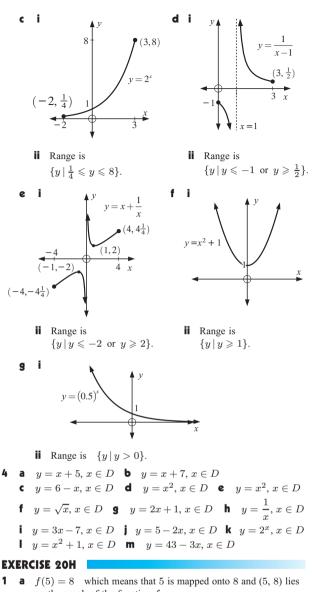

3 а

4

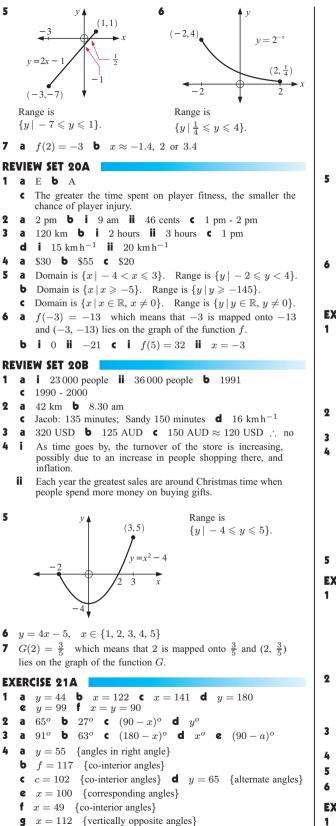

- **i** 211 USD **ii** 170 USD 1 **b** i 73 euros ii 183 euros 2 28 miles \mathbf{ii} 17.5 miles **b** i 77 km ii 48 km
- 2 a 100°C **b** i 104°F ii 167°F iii 32°F

EXERCISE 20D


- 1 а The number of kg of tomatoes produced is increasing with time
 - b 2001 and 2005 are outliers A low yield might be due to a very cold year or pests; a high yield might be due to excellent fertiliser and warmer conditions.
 - 23 kg, should be fairly accurate as it follows the overall trend C of the previous data values.
 - а Participation in sport is decreasing each year.
 - h 2004 is an outlier. A large sporting event such as the Olympic Games that year may have inspired more students to participate in sport.
 - c Less exercise at school may lead to an increase in obesity, and heart disease in later life.

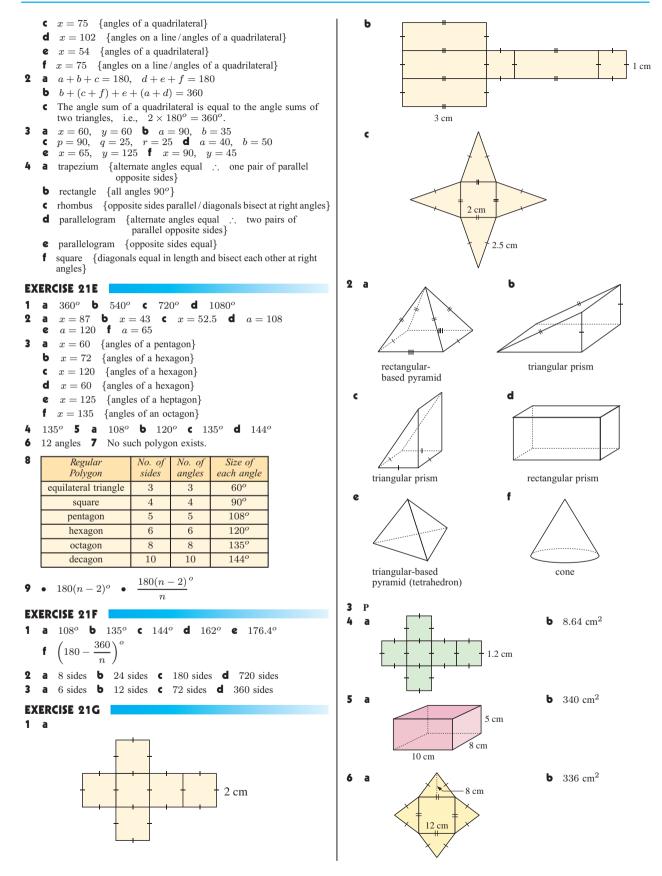


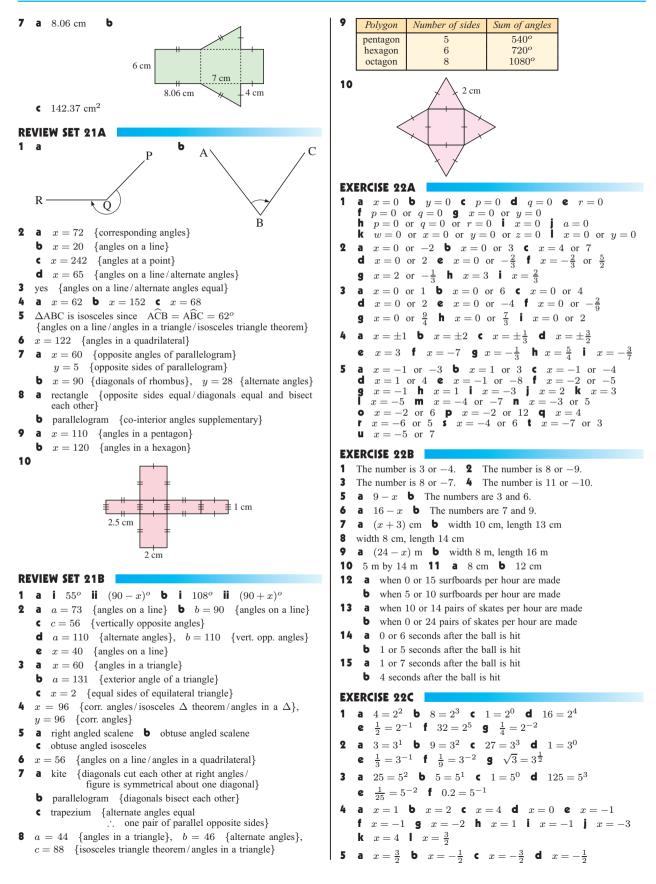
- b Highest rainfall is during June and July with July having the maximum. Rainfall declines over the other months except in February when it increases dramatically. A study of one year is not enough to establish a pattern.
- c February was an outlier with a lot of rain. This could have been the result of a large tropical storm.

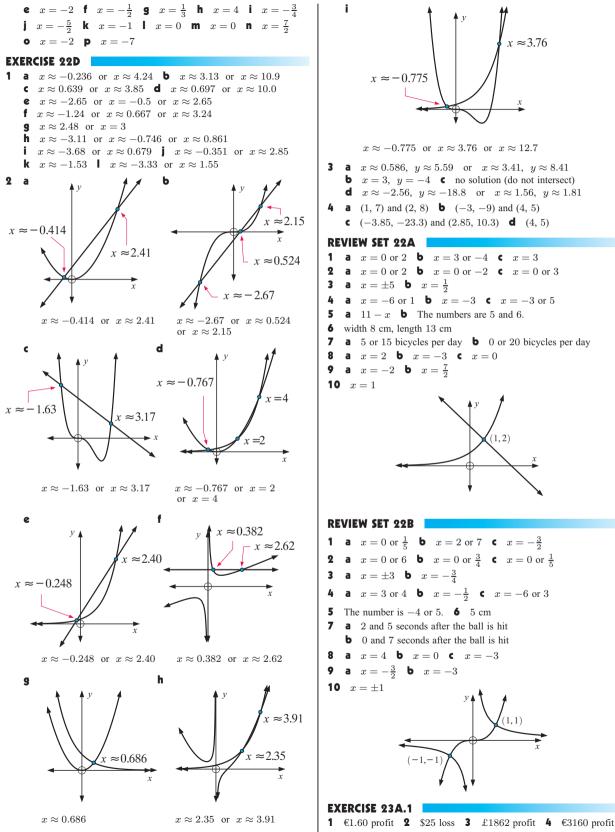


- The bus is latest on Fridays and earliest on Mondays and Ь Tuesdays. There could be a different driver on Mondays and Tuesdays from the rest of the week.
- c She should be able to sleep in 10 minutes on Thursdays and Fridays.

- on the graph of the function f. **b** g(3) = -6 which means that 3 is mapped onto -6 and
- (3, -6) lies on the graph of the function g.
 (4) = 4¹/₃ which means that 4 is mapped onto 4¹/₃ and (4, 4¹/₃) lies on the graph of the function H.
- **2** a i 5 ii -7 iii 21 iv -395
 - **b** i 1 ii 2 iii 32 iv $\frac{1}{4}$
 - **c i** -2 **ii** $2\frac{1}{2}$ **iii** $1\frac{3}{7}$ **iv** $\frac{7}{10}$
- **a** i f(4) = -11 ii $x = \pm 2$
- **b** i g(4) = 81 ii a = -2
- **c** i $x = \pm \sqrt{3}$ ii $x = \pm 2$ **d** $x = \frac{3}{2} \pm \frac{\sqrt{29}}{2}$
- **a** $V(0) = 35\,000$ euros which is the original purchase price of the car.
 - **b** $V(3) = 26\,000$ euros which is the value of the car 3 years after purchase.
 - **c** t = 10, i.e., the value of the car is 5000 euros after 10 years.



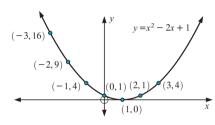

h x = 45 {angles at a point} **i** d = 333 {angles at a point}


 $a = 116 \{ \text{corresponding angles} \}$ x = 138 {angles on a line} \mathbf{I} b = 108 {alternate angles} a = 65 {angles on a line}, b = 65 {corresponding angles} n a = 57 {vert. opp. angles}, b = 57 {corresponding angles} a = 102 {co-interior angles}, b = 102 {co-interior angles} {angles on a line} c = 90a = 59{angles on a line}, b = 59 {corresponding angles} a i = 218{angles at a point} {vert. opp. angles}, b = 58 {co-interior angles} a = 122c = 58 {corresponding angles}, d = 122 {angles on a line} b = 137 {angles at a point} ŧ r = 81, s = 81 {corresponding angles} d = 125 {angles at a point} **b** e = 120 {angles at a point} f = 45 {angles at a point} **d** h = 36 {angles on a line} c q = 60 {corresponding angles / angles on a line} {co-interior angles} **g** x = 45 {angles on a line} f x = 65x = 15 {angles in right angle} h x = 42 {angles at a point} i KL || MN {alternate angles equal} а b KL ∦ MN {co-interior angles not supplementary} KL || MN {corresponding angles equal} C EXERCISE 21B а a = 62 {angles of a triangle} b = 91 {angles of a triangle} c = 109 {angles of a triangle} C d = 128 {exterior angle of a triangle} d e = 136 {exterior angle of a triangle} f = 58 {exterior angle of a triangle} AC c BC d AC and BC e BC f BC AB b а g BC h BC I AB false **c** false **d** false **e** true а true **b** а a = 20{angles of a triangle} h b = 60{angles of a triangle} c c = 56{corresponding angles / angles of a triangle}, {angles of a triangle} d = 76a = 84 {vert. opp. angles}, b = 48 {angles of a triangle} d a = 60 {angles on a line}, b = 100 {ext. angle of a triangle} f a = 72, b = 65 {vertically opposite angles}, c = 137 {ext. angles of triangle}, d = 43 {angles on a line} $46.5^{\circ}, 34.5^{\circ}$ and 99° **EXERCISE 21C** x = 36 {isosceles triangle theorem/angles of a triangle} b {isosceles triangle theorem/angles of a triangle} x = 55C x = 36{isosceles triangle theorem/angles of a triangle} d x = 73{isosceles triangle theorem} 0 x = 60{angles on a line/isos. Δ theorem./angles of a Δ } x = 32.5 {isos. Δ theorem/angles on a line/angles of a Δ } x = 16{isosceles triangle theorem} а {isosceles triangle theorem} x = 9{isosceles triangle theorem/ x = 90C line from apex to midpoint of base} equilateral **b** isosceles **c** equilateral **d** isosceles а equilateral **f** isosceles e а x = 52 **b** $\triangle ABC$ is isosceles (BA = BC) $\phi = 54$ **c** $A\widehat{B}C = 108^{o}$ Ь $\theta = 72$ $\phi = 72$ **C** $A\widehat{B}C = 144^{o}$ $\theta = 36$ b EXERCISE 21D

a x = 77 {angles of a quadrilateral}

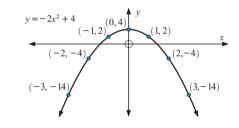
b x = 110 {angles of a quadrilateral}

\$8 loss, but still has 72 to sell next season.

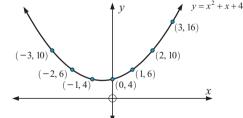

EXERCISE 23A.2 **a** i \$2 ii \$22 **b** i \$200 ii \$450 **c i** £7.50 **ii** £57.50 **d i** \$53550 **ii** \$308550 i €5 ii €20 b i £113.75 ii £211.25 а **c i** \$18 **ii** \$72 **d i** €2016 **ii** €10584 3 \$110.40 **4 a** \$21 **b** \$119 EXERCISE 23B 28% **2** a \$812.50 b \$377.50 c 86.8% 1 a \$1.40 b \$1.05 c 75% 4 a €80 b 10% 3 a \$10700 b 28.0% 6 a \$15 b 27.3% 5 a £140300 b £32800 c 23.4% 7 EXERCISE 23C 1 a €26, €104 b \$23.80, \$44.20 c £6.30, £21.70 2 \$26.04 **3** €88.32 **4** \$288.75 **5** 17.5% **6** 30.6% **7** 18% 8 30% 9 a \$255 b \$742.05 10 a €981 b €114.45 **11 a** €696 **b** i €69.60 ii €626.40 **c** 28% EXERCISE 23D 1 a 1.1 b 0.9 c 1.33 d 0.79 e 1.072 f 0.911 **a** 30% increase **b** 25% increase **c** 6% decrease 9 **d** 14% decrease **e** 47% increase **f** 32% decrease **g** 150% increase **h** 60% decrease \$84.80 b £81.60 c 57 kg d €22.95 e £655.20 а **1** 31.5 m **a** €26 per hour **b** 31.86 m **c** 1.75 m 50% increase **b** 20% decrease **c** 15.8% decrease 5 а d 31.1% increase e 25% increase f 18.8% decrease 46.7% increase **7** 10.6% decrease **8** 7.06% increase 2.11% decrease **10** 8% increase EXERCISE 23E **1** a \$2880 b €2805 c €3239.60 d €5170 **2** False, e.g., \$1000 increased by 10% is \$1100, \$1100 decreased by 10% is \$990, not \$1000. **3** \$63 **4** £328.86 **5** €132 **6** £4428.74 **7** €40575 **8** \$40 279.90 **9** \$55 163.86 **10 a** 31.8% increase **b** 16.1% decrease **c** 21.6% increase **11** 16.3% **12** 20.0% EXERCISE 23F 1 a \$480 b £992.80 c \$10880 d €434.14 **2** First $\$700\,000$, Second $\$759\,375$ \therefore the first plan **3** £3750 **4** €24300 **5** \$67742 **a** 2.67% p.a. **b** 6.82% p.a. **7** 7.5% p.a. **8** 11.1% p.a. 6 **a** 3 years 9 months **b** 6 years **10** \approx 2 years 9 months **11** €257.30 **12** \$1390 **13** £1005 **14** \$2887.30 EXERCISE 23G a \$2977.54 b £5243.18 c €11433.33 1 2 a €105.47 b \$782.73 c £4569.19 **a** 13738.80 Yuan **b** 1738.80 Yuan 3 **a** \$5887.92 **b** \$887.92 **5 a** 42 779 rupee **b** 12 779 rupee 1st plan earns 3200 pesos, 2nd plan earns 3485 pesos ... plan 2 6 EXERCISE 23H a £262.25 b \$793.90 SG c \$516.92 US d ¥60794 1 2 €735.10 **b** €2519.15 **c** €39.45 **d** €46.05 3 a €4.55 b €205.05 c €138.15 4 a €126.35 b €145.10 c €94.20 d €309.75 5 They vary each day, some increase, some decrease. **REVIEW SET 23A 1 a i** 0.87 **ii** 1.109 **b i** 250% increase **ii** 27% decrease

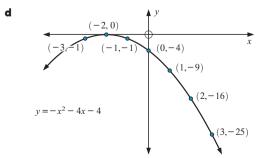
a \$2900 b 58.5 kg 3 a €160 b 71.1% 2 a ¥4590 b ¥1190 5 a £500 b 11.1% **a** \$12 **b** \$68 **7** 79.2% increase **8** \$38.50 **9** \$53.30 **10** \$15000 **11** 5.88% p.a. **12** \approx 2 years 4 months **13** a \$1530 b \$209.17 **14** \$24845.94 **15** *Plan 1:* \$2700. *Plan 2:* \$2703.67 .: Plan 2 earns more interest. **REVIEW SET 23B a i** 1.1 **ii** 0.883 1 **b** i 3.7% increase ii 100% increase iii 6.2% decrease 2 **a** £3915 **b** \approx 380 km **3 a** \$45 **b** 24.3% a 2600 pesos b 600 pesos 5 a €513 b €436.05 4 **6** \$70400 **7** 0.467% decrease **8** €52.45 **9** \$365911 **10** \$1768 **11** \$1200 **12** 4.2 years i.e., 4 years 73 days

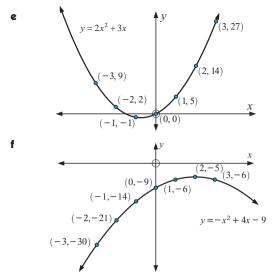
13 a \$34264.87 b \$9264.87 **14** a £4500 b £406.25 **15** a €17271.40 b €9271.40 c 11.6% p.a.

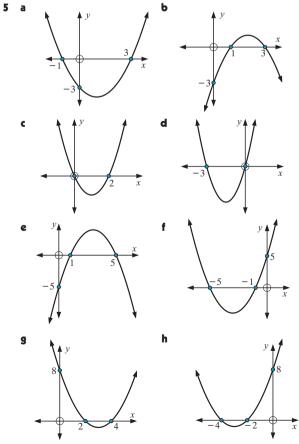

EXERCISE 24A

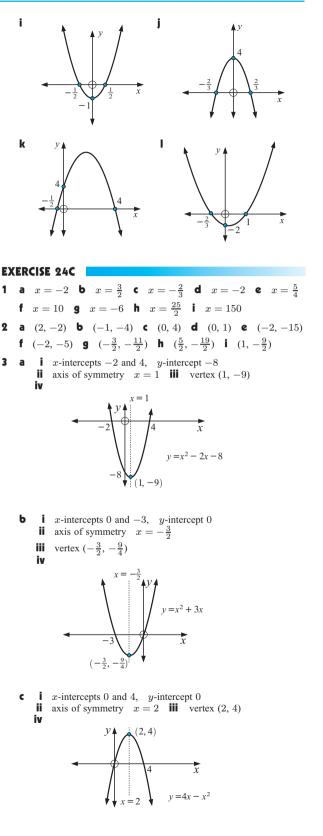
1 a

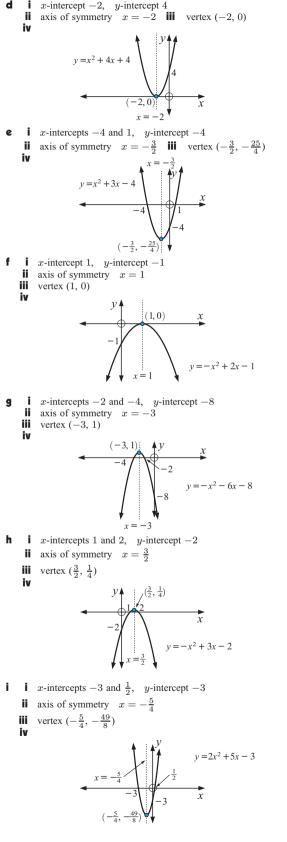



b


C

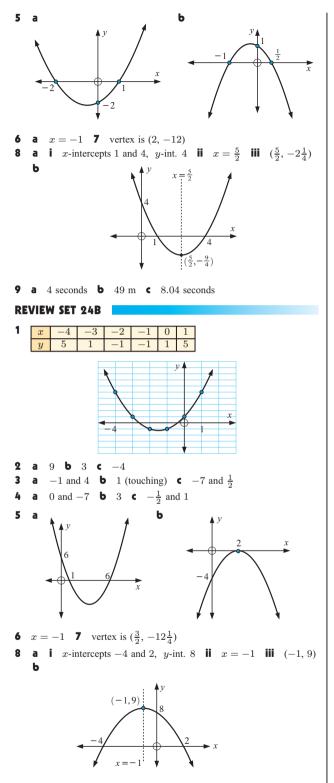





2 The sign determines whether the graph opens upwards (postive) or downwards (negative).

EXERCISE 24B

1 a 3 **b** 2 **c** -8 **d** 1 **e** 6 **f** 5 **g** 6 **h** 8 **i** -2 **2 a** 3 and -1 **b** 2 and 4 **c** -3 and -2 **d** 4 and 5 **e** -3 (touching) **f** 1 (touching) **3 a** ± 3 **b** $\pm \sqrt{3}$ **c** -5 and -2 **d** 3 and -4 **e** 0 and 4 **f** -4 and -2 **g** -1 (touching) **h** 3 (touching) **i** $2 \pm \sqrt{3}$ **j** $-2 \pm \sqrt{7}$ **k** $3 \pm \sqrt{11}$ **l** $-4 \pm \sqrt{5}$

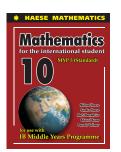


ii axis of symmetry $x = \frac{5}{4}$ **iii** vertex $(\frac{5}{4}, -\frac{121}{8})$ iv **k** i x-intercepts -2 and $\frac{2}{2}$, y-intercept 4 **ii** axis of symmetry $x = -\frac{2}{3}$ **iii** vertex $(-\frac{2}{3}, \frac{16}{3})$ iv **i** x-intercepts 0 and 20, y-intercept 0 **ii** axis of symmetry x = 10**iii** vertex (10, 25) iv $y = -\frac{1}{4}x^2 + 5x$ EXERCISE 24D **a** 6 seconds **b** 72 m **c** 12 seconds 1 2 a 12 skateboards b \$100 per skateboard c \$244 3 **a** 80 km h⁻¹ **b** after 1 second and after 2 seconds; car continues to speed up before slowing down **c** $1\frac{1}{2}$ seconds **d** 89 km h⁻¹ **4 a** 21 taxis **b** €837 **c** €45 **5** a 30^{o} C b 5.00 am c 5^{o} C **6** b x = 10 c 200 m^{2} 7 a $y = -\frac{1}{100}x^2 + 70$ **b** supports are 21 m, 34 m, 45 m, 54 m, 61 m, 66 m, 69 m **a** vertex (30, 30) **b** $y = \frac{1}{45}x^2 - \frac{4}{3}x + 50$ 8 **c** 38.9 m **REVIEW SET 24A** 1 -20 1 2 3 4 x5 2 0 0 2 y12 6 6 12

j i x-intercepts $-\frac{3}{2}$ and 4, y-intercept -12

2 a 1 **b** 9 **c** 2 **3 a** -5 and 1 **b** -1 and 7 **c** $\frac{3}{2}$ (touching) **4 a** 0 and 2 **b** -3 and 4 **c** -6 and 3

ANSWERS 525

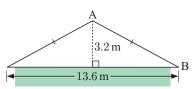

9 a 2 seconds **b** 25 m **c** 4.5 seconds

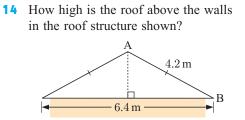
INDEX

INDEX		disjunction	76
		distributive law	172
acute angle	415	domain	405
adjacent angles	418	dot plot	195
adjacent side	312	element	62
algebraic equation	222	ellipse	134
alternate angles	418	empty set	65
angle of depression	321	enlargement factor	287
angle of elevation	321	equal ratios	249
apex	424	equation of line	342
area	32, 133	equilateral triangle	415
average speed	257	equivalent fractions	49
axis of symmetry	481	expansion	268
base angles	424	expectation	376
bearing	325	experimental probability	373
biased sample	190	exponential equation	446
bimodal	203	factorisation	268
box-and-whisker plot	213	finite set	62
capacity	34, 304	five-number summary	213
categorical variable	189	formula	237
census	190	frequency	373
circumference	128	frequency histogram	200
co-interior angles	419	function	406
coincident lines	358	general form	344
collinear points	338, 415	gradient	335
common factor	266	gradient-intercept form	342
complement	65	Heron's formula	124
complementary angles	417	highest common factor	266
complementary event	375	horizontal bar chart	192
concurrent lines	415	horizontal line	350
cone	300	hypotenuse	99, 312
congruent triangles	283	improper fraction	49
conjunction	76	independent events	392
conversion graph	400	independent variable	191
corresponding angles	418	index	170
cross-section	298	infinite set	62
cube	434	integer	44, 63
cylinder	142, 299	interquartile range	211
data	189	irrational number	64
decimal number	150	isosceles triangle	415, 424
denominator	49	kite	429
dependent variable	191	like terms	168
disjoint events	390	line graph	398

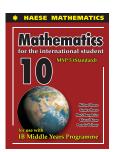
line segment	414	prime factor	266
linear equation	222	prime number	266
logically equivalent	78	principal	463
loss	452	product	112
lower quartile	211	profit	452
lowest common denominator	230	proper fraction	49
many-one mapping	405	proposition	75
mass	35	quadrant	331
mean	112, 202	quadratic equation	440
median	202	quadratic trinomial	273
midpoint	334	quadrilateral	427
mixed number	49	quantitative continuous	190
modal class	198	quantitative discrete	189
mode	192	quantitative variable	189
mutually exclusive	390	quotient	112
natural number	63	range	211, 405
negation	76	rate	255
negatively skewed	195	ratio	246
net	139, 434	rational number	64
Null Factor law	441	real number	64
number of trials	373	rectangle	428
number sequence	73	reflex angle	415
numerator	49	regular payment	466
numerical data	189	relative frequency	373, 378
obtuse angle	415	revolution	415
one-many mapping	406	rhombus	428
one-one mapping	405	right angle	415
opposite side	312	right angled triangle	99
order of operations	46	rule	73
outlier	195	sample	190
overall trend	402	sample space	379
parabola	476	scalene triangle	415
parallel boxplots	215	scientific notation	159
parallel lines	350, 415	segment bar chart	192
parallelogram	428	set	62
percentage	152	set identity	71
perfect square	181	significant figure	92
perimeter	128	similar figures	287
perpendicular lines	351, 415	similar triangles	289
pie chart	192	simple interest	464
point of intersection	358	simultaneous solution	358
polygon	430	slope	335
positively skewed	195	sphere	144, 301

square	429
square-based pyramid	300
standard form	159
stem-and-leaf plot	198
step graph	403
straight angle	415
subject	240
subset	65
supplementary angles	417
surface area	139
symmetrical distribution	195
term	73
theoretical probability	374
time series data	402
transversal	415
trapezium	428
triangular prism	416
triangular-based pyramid	300
truth table	77
truth value	75
turning point	481
undefined gradient	349
unitary method	251
universal set	65
upper quartile	211
Venn diagram	67
vertex	481
vertical column graph	192
vertical line	349
vertically opposite angles	418
volume	33, 298
<i>x</i> -intercept	478
y-intercept	478


ERRATA MATHEMATICS FOR THE INTERNATIONAL STUDENT 10 MYP 5 (Standard)


First edition - 2017 second reprint

The following erratum was made on 20/Nov/2017


page 104 **EXERCISE 6E** Questions **13** and **14** should have diagrams swapped as below:

13 Find the length of the truss AB in the roof structure shown:

ERRATA

MATHEMATICS FOR THE INTERNATIONAL STUDENT 10 MYP 5 (Standard)

First edition - 2015 first reprint

The following erratum was made on 13/May/2016

page 6 GLOBAL CONTEXTS Should not say the projects are printable:

There are six projects in this book, one for each of the Global Contexts: