

Markscheme

May 2023

Extended Mathematics

On-screen examination

30 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

The markscheme abbreviations:

• Bullet notation means award 1 mark – see example below

Error Carried Forward (ECF) marks

Errors made at any step of a solution affect all working that follows. In general, Error Carried Forward (ECF) marks are awarded after an error.

- a) ECF applies from one part of a question to a subsequent part of the question and also applies within the same part.
- b) If an answer resulting from **ECF** is inappropriate (eg, negative distances or sinx > 1) then subsequent marks should not be awarded.
- c) If a question is transformed by an error into a **simpler question** then **ECF** may not be fully awarded.
- d) To award ECF marks for a question part, there must be working present for that part.
- e) **ECF** is only applied to working which is correct. This means that all working subsequent to an error must be checked for accuracy.
- f) A misread (MR) is an error. ECF is normally awarded.

General points

- a) As this is an international examination, accept all **alternative forms of notation**, for example 1,9 as 1.9; 1,000 or 1.000. However, **DO NOT ACCEPT** incorrect mathematical notation x² for x² unless noted otherwise in the MS.
- b) ACCEPT notation errors in intermediate steps.
- c) Ignore further working after a correct answer **unless** it indicates a lack of mathematical understanding **i.e. if the further working contradict the correct answer**, then that last mark cannot be awarded.
- d) In the case when a correct result is obtained using incorrect seen method, do not award the mark for the result.
- e) Where candidates have written two solutions to a question, mark the first solution.
- f) In the markscheme, equivalent examples of numerical and algebraic forms or simplified answers will generally be written in the notes preceded by OE (Or

Equivalent) e.g. $\frac{1}{2}$ OR 1/2 OR 0.5 OR 2 \div 4 ; $\frac{x}{2}$ OR x / 2 or x \div 2 ; 0.23 OR 23%

- g) In the markscheme, information provided in brackets indicate detail that may be seen in a candidate response but is not necessary to award the marks. However, it indicates what the candidate's result represents. Ex: if last mark is for the result: (AB)=5; this means we award the mark for seeing 5 as the result of calculating AB without necessarily seeing AB=5, but it does not mean we award the mark for seeing 5 representing another length
- h) Special case marks **SC** can be allocated instead of but not in addition to the marks prescribed in the markscheme.
- i) Accept seeing equation not in-line.
- j) Calculator screenshots are accepted as working steps. And when a calculator screenshot is taken, accept not seeing the whole operation.
- k) In task 2 and 3 where the markscheme is set out in a table then, unless noted otherwise, awarding the highest mark in a category includes all the lower marks in that category. It is probably best to look for the top category mark answer and if you don't find it look at the next mark down.
- I) ACCEPT using the correct values or working regardless their previous result.
- m) Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- n) Unless noted otherwise, if a note in a part says to accept the answer without working for 1 mark less than total marks, then seeing the correct answer with any acceptable working step, award full marks. Example: If the note in a part worth 3 marks says "4.3(3...) without working award 2 marks", then seeing any acceptable working step and seeing 4.3(3...) as the answer award the 3 marks.
- o) For "show that" questions, unless otherwise noted, every bullet point has to be seen in order to be awarded.

g	.1 One correct product of three probabilities (DDW or DWD or WDD)	$.1 \frac{10}{25} \times \frac{9}{24} \times \text{their} \frac{15}{23} \text{OR} \frac{10}{25} \times \text{their} \frac{15}{24} \times \frac{9}{23} \text{OR} \frac{15}{25} \times \frac{10}{24} \times \frac{9}{23}$ $\text{OR} \frac{9}{92} \text{OR} 0.0978(3) \text{ ACCEPT } 0.098 \text{ or } 0.1$	
	.2 The other two correct products of three probabilities OR 3 \times their .1	$.2 \frac{10}{25} \times \frac{9}{24} \times \text{their} \frac{15}{23} \text{AND} \frac{10}{25} \times \text{their} \frac{15}{24} \times \frac{9}{23} \text{AND} \frac{15}{25} \times \frac{10}{24} \times \frac{9}{23}$ OR $3 \times \text{their} \frac{9}{92} \text{OR} 3 \times 0.0978(3)$	3
	.3 Correctly add their three probabilities OR their correct probability after multiplying by 3	.3 their $\frac{27}{92}$ or 0.29(3478) OE ACCEPT 27/92 .3 DO NOT ACCEPT if they add more than three .3 ONLY ACCEPT if their probability is less than 1	
С	.1 Correctly substitute $P(A \cap B)$ and their part b) into the correct conditional probability formula	$.1 \frac{\frac{15}{25} \times \frac{10}{24} \times \frac{9}{23}}{\text{their part b}} \text{ or } \frac{0.0978(260)}{0.29(3478)} \text{ or } \frac{\frac{9}{92}}{\text{their part b}} \text{ or } \frac{0.0978(260)}{\text{their part b}} \text{ ACCEPT } \frac{0.1}{\text{their part b}}$ $.1 \text{ DO NOT ACCEPT P(AnB) being P(A)} \times \text{theirP(B)}$	2
	.2 Correctly determine their P(A B)	.2 their $\frac{1}{3}$.2 ACCEPT only if their $\frac{1}{3}$ is less than 1	
d	.1 Correctly multiply P(A) and their P(B) from part b)	.1 $\left(\frac{15}{25} \times \text{their} \frac{27}{92}\right)$ their $\frac{81}{460}$ or their 0.176(08695) ACCEPT 0.18 .1 DO NOT ACCEPT if they don't have a calculated product	
	.2 Correctly state their .1 does not equal $P(A \cap B)$.2 Their .1 does not equal to their $\frac{9}{92}$ WTTE .2 DO NOT ACCEPT if they don't have a calculated product from .1	2
	Event A and B are not independent AG	DO NOT ACCEPT any explanation about independency of events even though it seems correct	

Q3	Answers	Notes	Total
а	AM1 .1 Recognize a first pair of congruent angles (with or without reason)	AM1 .1 One from the list of possibilities	
	.2 Recognize a second pair of congruent angles (with or without reason)	 .2 Another from the list of possibilities List of possibilities : inscribed angles subtended by the same arc ∠ADE=∠BCE or ∠DAE=∠CBE the vertically opposite angles ∠AED=∠BEC 	
	AM2 .1 Correctly apply chords inside circle theorem to recognize that sides are in the same proportion.	AM2 .1 $\overrightarrow{BE} \times \overrightarrow{ED} = \overrightarrow{AE} \times \overrightarrow{EC}$ OE AND $\frac{\overrightarrow{BE}}{\overrightarrow{EC}} = \frac{\overrightarrow{AE}}{\overrightarrow{ED}}$ or $\frac{\overrightarrow{BE}}{\overrightarrow{AE}} = \frac{\overrightarrow{CE}}{\overrightarrow{DE}}$ OE	
	.2 Recognize vertically opposite angles	.2 ∠AED=∠BEC	2
	$A \qquad x+1 \qquad B \\ x-2 \qquad E \\ D \qquad 2x-6 \qquad x+3 \qquad C$	ACCEPT correct angles using different labels CAD or A for \angle EAD DAC or A for \angle DAE DBC or B for \angle EBC CBD or B for \angle CBE ACB or C for \angle ECB BCA or C for \angle BCE ADB or D for \angle ADE BDA or D for \angle EDA ACCEPT saying equal WTTE ex: congruent, the same, etc DO NOT ACCEPT _E for any angle around E	
		DO NOT ACCEPT $\angle E$ is any angle around E DO NOT ACCEPT $\angle E = \angle E$ or lines create two congruent angles at E DO NOT ACCEPT AC and BD are chords on the circumference DO NOT ACCEPT AED similar to BEC	

 _			
b	.1 Correctly apply the similarity	$1\frac{2x-6}{2x-6} = \frac{x-2}{2x-6}$ OF or $\frac{x+1}{2x-2} = \frac{x-2}{2x-6}$ OF	
		x+3 $x+1$ $x+3$ $2x-6$	
		ACCEPT DE AE OF OF DE CE OF	
		ACCEPT = CE OT CE OF CE OE OF CE OF CE OF CE OF CE OF	
		.1 ACCEPT without brackets written as 2x-6 / x+3 = x-2/x+1 OE	
		.1 ACCEPT (x-2):(x+1) = (2x-6):(x+3) OE or (x-2):(2x-6)=(x+1):(x+3) OE	
		.1 DO NOT ACCEPT using ratio 0.5 or 2. Ex: (x+3)=2(2x-6)	
	.2 Correctly cross multiply their ratios	.2 their $(2x-6)(x+1)$ =their $(x-2)(x+3)$ OR their $2x^2-4x-6=x^2+x-6$	
		.2 Accept not seeing this step	
		.2 DO NOT ACCEPT incorrect cross multiplication without seeing their ratios	
		Seeing $(2x 6)(x+1) = (x 2)(x+3)$ implies 1	
		Seeing $(2x-0)(x+1)-(x-2)(x+3)$ implies .1	
	3 Correctly rearrange their correct quadratic	3 (0=) their $x^2 - 5x$ or their (0 =) $-x^2 + 5x$ OR $x^2 = 5x$	
	.4 Correctly factorize $x^2 - 5x$ OE	.4 $(0 =)x(x - 5)$ OE	
		$\sum_{i=1}^{n} \frac{1}{(1-i)^2} \frac{1}{(1-i)^2} \sum_{i=1}^{n} \frac{1}{(1-i)^2} \frac{1}$	
	OR substitute the correct coefficients into the quadratic	OR $\frac{5 \pm \sqrt{(-5)^2 - 4(1)(0)}}{2}$ OE OR $\frac{-5 \pm \sqrt{(5)^2 - 4(-1)(0)}}{2}$ OE	4
	formula	2(1) 2(-1)	
	OR divide by x.	OR from $x^2 = 5x$ to $x = 5$	
	(x =) 5 AC		
	(x -) 3 AG	.4 ACCEPT seeing $x = 0$ AND 5	
		$(v_{\tau}) \in \Lambda C$	
		(x-) 3 AG	
		For 4 marks .1.3.4 or .2.3.4 must be seen	

~	1. Correctly substitute using y=5 into accine rule		
C	. To correctly substitute using x-5 mit cosine fule	$.1 (BC^{-} =)b^{-} + \delta^{-} - 2 \times \delta \times \delta \times \cos \delta U OE$	
	.2 Correctly calculate their BC ² after substituting into cosine rule	.2 (BC=) their 52	
		.3 their $\sqrt{52}$	
	.3 Correctly calculate their BC from their BC ²	ACCEPT decimals their 7.2(111)	
		.3 Seeing $\sqrt{52}$ or 7.2(111) implies .2	4
	.4 Their correct values of m and n	.4 m=2 and n = 13 ACCEPT seeing $2\sqrt{13}$	
		.4 ACCEPT m=1 and n=their52 only if their52 is an integer	
		.4 ACCEPT their correct m and n from their 52	
 h	1 Correct ratio	1 0.5 or 2 OF seen	
ä		.1 ACCEPT seeing $2 \times$ their $2\sqrt{13}$	
	2. Correctly apply their ratio to their 2 $\sqrt{12}$ to find AD	.2 their $\sqrt{13}$.2 implies .1	
		.2 ACCEPT in decimals i.e. their3.6(0555)	
		.2 DO NOT ACCEPT II (IIIIIIAD - IIIIIIIBC	
	.3 Their perimeter correct after adding 21 to their $2\sqrt{13}$.3 21 + their 3√13	
	and their $\sqrt{13}$ in surd form	.3 DO NOT ACCEPT decimals	
		.3 DO NOT ACCEPT the use of "root" in words.	3
		.3 DO NOT ACCEPT a perimeter that does not include theirAD	

Q4	Answers	Notes	Total
а	AM1 (Using slant height) .1 Correctly substitute into Pythagoras OR correctly substitute into correct trig ratio OR correctly use area of triangle formula to find slant height	AM1 .1 $\sqrt{24^2 - 12^2}$ OR 12 x tan60 OE OR $(\frac{1}{2} \times 24 \times 24 \times \sin 60) \div 12$ OE ACCEPT 24 ² = 12 ² + L ² OE or (h ² =)24 ² - 12 ²	
	.2 Correct value for slant height	.2 $\sqrt{432}$ or $12\sqrt{3}$ or 20.78(4609) OE	
	.3 Correctly substitute their .2 into Pythagoras to find h	.3 $\sqrt{(\text{their}\sqrt{432})^2 - 12^2}$ or $\sqrt{\text{their}(12\sqrt{3})^2 - 12^2}$ or $h^2 + 12^2 = \text{their}432$ OE or their 20.78(4609) ² - 12 ² OE	
	.4 Correct value of h before simplifying	.4 √288 .4 ACCEPT 16.97 AND 12√2 =16.97	
	IZVZ AG	AM2	
	AM2 (Using square base) .1 Correctly substitute into Pythagoras OR correctly use trig ratio to find diagonal of the base or half diagonal of the base	.1 $\sqrt{24^2 + 24^2}$ OE OR $\frac{24}{\sin 45}$ OE ACCEPT $24^2 + 24^2$ or $12^2 + 12^2$ OE	4
	.2 Correct value for diagonal of the base or half diagonal of the base	.2 $\sqrt{1152}$ or 24 $\sqrt{2}$ or 33.9(4111) OE .2 ACCEPT 16.97 or 12 $\sqrt{2}$	
	.3 Correctly substitute half of base into Pythagoras to find h	.3 $\sqrt{24^2 - (12\sqrt{2})^2}$ OE or h ² +(12 $\sqrt{2}$) ² =24 ² OE .3 ACCEPT in decimals .3 DO NOT ACCEPT trig ratio using angle 45	
	.4 Correct value of h before simplifying	.4 \sqrt{288}	
	12√2 AG	.4 ACCEPT 16.97 AND $12\sqrt{2} = 16.97$.4 ACCEPT only if .2 and .3 are awarded Reaching $\sqrt{288}$ coming from half of 576, award 0 marks See notes on next page	

		Seeing pyramid made with equilateral triangles so height is half of side $\sqrt{2}$, award 0 marks Calculating the height using the volume of part b, award 0 marks .	
b	 .1 Correctly substitute 12√2 and 24 into volume of pyramid formula .2 Correctly calculate their result after substituting into their volume formula 	.1 $\frac{1}{3} \times 24 \times 24 \times 12\sqrt{2}$ ACCEPT $\frac{1}{3} \times 24 \times 24 \times 16.97$.1 ACCEPT $\frac{1}{3} \times 576 \times 12\sqrt{2}$.2 their3258.34(80) .2 ACCEPT incorrect volume formula providing it includes $24 \times 24 \times 12\sqrt{2}$.2 DO NOT ACCEPT their result if it comes from $\frac{1}{3} \times \text{length} \times 12\sqrt{2}$	3
	.3 Correctly rounded their volume to the nearest integer	.3 their3258	
C	.1 Correctly calculate the modified ratio for the height .2 The correct value of h	.1 $\sqrt[3]{0.75}$ or 0.9(0856) OE seen ACCEPT $\frac{1}{\sqrt[3]{0.75}}$ or 1.1 (the inverse ratio) ACCEPT $0.75 = (\frac{h}{12\sqrt{2}})^3$ OE .2 $(\sqrt[3]{0.75} \times 12\sqrt{2} =)15.4(187)$	2

Q5	Answers	Notes	Total
 а	Correct result	$(0.16 \times 4500 =)720(t)$	1
b	.1 Correct ratio	.1 $\frac{3}{8}$ (=0.375) OE or $\frac{8}{3}$ or 3:8 or 8:3 OE or seen within calculations Ex: $\frac{\text{their720}}{2.67}$ OE .1 ACCEPT seeing $\frac{3}{8}$ as 0.4 or $\frac{8}{3}$ as 2.6 or 2.7 in bp1 only .1 DO NOT ACCEPT 3×8 as ratio or seen within calculations	
	.2 Correctly apply <u>the correct</u> ratio on their720	.2 $(\frac{3}{8} \times \text{their } 720 \text{ or their } 720 \div \frac{8}{3} =)\text{their } 270$	2

							1
C	;	.1 Correctly write two values .2 Correctly write a third values			Weight, tonnes (t)	Production ratio Energy per tonne (TJ / t) Energy Tera-joules (TJ)	
		.3 Correctly write a fourth value		Domestic	1350	r = 0.1 or 1/10 or 1:10 or "1 to 10" 135	
		.4 Correctly write fifth and sixth values	ategory	Commercial	Answer from (a)	r =	
			ö	Industrial	Answer from (b) their 270	2r = (2 × their 0.1 =) their 0.2 OE (0.2 × their270=) their54	
						Total energy produced by the (135 + their72 + their54=) their261 organization this months	4
			Ansv The s r don r con 2r=(2 Ener Total ACC	vers from (a) and (<u>six values are:</u> nestic=0.1 OE ACC nmercial= their r fo 2xtheir r domestic= gy commercial=(0. gy industrial=(0.2 > I Energy=(135+the EPT Energy Comr	b) are not counter CEPT 1/10 or "1:1 or domestic t)their0.2 ACCEP (1 × their720=) the (their270=) their5 ir72+their54=) the mercial 72 or Energy	d as one of the six values 10" or "1 to 10" OE T their2/10 or their "2:10" or their"2 to 10" OE eir72 i4 eir261 rgy industrial 54 regardless their r value	
c	ł	.1 Correct mid-interval values .2 Add the product of their mid-interval values by frequency	.1 86	30, 880, 900,920, 9 × their860 + 4 × the	040 ACCEPT see	bing only three correct $00 + 1 \times \text{their}920 + 3 \times \text{their}940$ OE or 10780	
		.3 Divide their sum by 12	.2 AC	$x: \frac{\text{their bp2}}{2+4+2+1+3}$	y three correct pro	Dducts OE added	4
		.4 Correct mean before rounding AG 900	.4 89	98(.333)			

e	.1 Correct ratio seen <u>in any notation</u>	.1 "if 68420 is 900 then their261 is" WTTE or 68420:900 or $\frac{68420}{900}$ OE (= $\frac{3421}{45}$ = 76.022) ACCEPT 76 .1 ACCEPT 900:68420 or $\frac{900}{68420}$ OE (= $\frac{45}{3421}$ = 0.013(154))	
	.2 Correctly apply <u>the correct</u> ratio on their total energy from c)	.2 $\frac{68420}{900}$ OE × their 261 or their 261 ÷ $\frac{900}{68420}$ OE or their 19841.8 .2 ACCEPT using 76 instead $\frac{68420}{900}$ or using 0.013 instead of $\frac{900}{68420}$	3
	.3 Correctly write their result as an integer	.3 their 19842 .3 ACCEPT their rounding being up or down .3 ACCEPT only if .1 or .2 is awarded	

Q6	Answers	Notes	
a	.1 Correctly substitute (0,120) into the equation .2 Correct value of <i>a</i> as a product after the substitution of (0,120) <i>a</i> = 330 AG	.1 $120 = \frac{a}{(0+6)} + 65$ or $120 = \frac{a}{6} + 65$ ACCEPT substitution of other points (n, E) from the graph in .1 Accepted points (n, E) from the graph: (0,120), (1,112), (2,106), (3,102), (4,98), (5,95), (6, 93), (7,90), (8, 89) ACCEPT <i>E</i> being ±5 the values indicated above .2 $(a =)$ 55×6 .2 ACCEPT 55 = $\frac{a}{6}$	2
b	.1 Correctly substitute 2 into the equation .2 Correct answer after their substitution	.1 $E = \frac{330}{(2+6)} + 65$ or $E = \frac{330}{8} + 65$.2 their106.25 OE .2 ACCEPT 106.3 or 106 or 107	2
C	.1 Correctly subtract their result in b) from 120 .2 Correctly multiply their13.75 by 60 000	 .1 (their120 – their part b) =) their13.75 .1 ACCEPT their part b) being correctly rounded up or down as an integer Ex: (120-their106=) their 14 or (120-their107=) their13 .2 (their13.75×60000 =) their825 000 825 000 without working, award 2 marks (their part b)×60000 or their6 375 000, award 1 mark 120×60000 or 7 200 000, award 0 marks 	2

d	AM1 (Solving)	AM1 (Solving)	
	.1 Correctly equate to 95	1 95 = $\frac{330}{(n+6)}$ + 65 or 30 = $\frac{330}{(n+6)}$ or 30(n+6) = 330 OE	
	.2 Correctly rearrange for their <i>n</i>	.1 ACCEPT the use of inequalities .2 $n = \frac{330}{\text{their30}} - 6$ OE .2 ACCEPT $(n+6) = \frac{330}{\text{their30}}$.2 ACCEPT their30 <i>n</i> =their150 .2 implies .1	
	.3 The correct value of <i>n</i>	.3 (<i>n</i> =)5 .3 ACCEPT 2027	3
	AM2 (using numbers)	AM2 (using numbers)	
	.1 Correctly substitute one number $n \neq 5$ and correctly calculate corresponding E	.1 Ex: $\frac{330}{(1+6)}$ + 65 = 112.14 ACCEPT 112	
	.2 Correctly substitute 5 and equate to 95	$.2 \frac{333}{(5+6)} + 65 = 95$	
	.3 Correctly identify the value of <i>n</i>	.3 (<i>n</i> =) 5 ACCEPT 2027	

Q6e total 10 marks

Mark	1	2	
Factors (F)	 Two from the keywords/phrases below mentioned in the factors box filter(s) carbon or unit(s) or kt or emission(s) 	 The three keywords/phrases below mentioned in the factors box filter(s) carbon or unit(s) or kt or emission(s) 	
	 limit(s) or restriction(s) or requirement(s) or regulation(s) or "difference in emission(s)" or "value(s) of difference" DO NOT ACCEPT other similar keywords Ex: "excess" or "reduction" 	 limit(s) or restriction(s) or requirement(s) or regulation(s) or "difference in emission(s)" or "value(s) of difference" DO NOT ACCEPT other similar keywords Ex: "excess" or "reduction" 	
	ACCEPT multiple keywords in one sentence and ignore additional irrelevant factors	ACCEPT multiple keywords in one sentence and ignore additional irrelevant factors	

Key

DC: The missing values in the row of Difference in carbon emissions

VC: The missing values in the row of Value of difference in carbon emissions ACCEPT negative values for buying (Ex: -0.48,-0.63,-0.72)

Year	2022	2023	2024	2025	2026	2027	2028	2029	2030
Difference in carbon emissions (kt)	28	19.5	12	5.5	0	4.5	8	10.5	12
Value of difference in carbon emissions (\$ million)	1.68	1.17	0.72	0.33		0.27	0.48	0.63	0.72
Buy or sell	sell	sell	sell	sell		buy	buy	buy	buy

Total of Sell is: 1.68+1.17+0.72+0.33=3.9

Total of Buy is: 0.27+0.48+0.63+0.72=2.1

Mark	1	2	3	4
Calculate	One from: (see table above)	Two from: (see table above)	Three from: (see table above)	The four : (see table above)
(C)	Correctly write three DC	 Correctly write three DC 	 Correctly write all DC 	 Correctly write all DC
	 Correctly calculate four of their VC Correctly calculate cost if no filters 	 Correctly calculate four of <u>their</u> VC Correctly calculate cost if no filters 	 Correctly calculate all of <u>their</u> VC Correctly calculate cost if no 	 Correctly calculate all of <u>the</u> VC Correctly calculate cost if no
	ACCEPT -13.32 (\$ mil)	ACCEPT – 13.32	(\$ mil) ACCEPT – 13.32	(\$ mil) ACCEPT $-$ 13.32
	 Weak attempt to calculate <u>their</u> cost if filters installed: They forget the cost of filters or income from selling or price of buying 	 Good attempt to calculate their cost if filters installed: They include cost of filters, income from selling, and price of buying but incorrect final result 	 Correctly calculate <u>their</u> cost if filters installed (14 – their3.9 + their2.1=)their12.2 	 Correctly calculate <u>the</u> cost if filters installed: (14 - 3.9 + 2.1 =)12.2 (\$mil)
	Ex: their3.9 – their2.1 or their1.8	Ex:	ACCEPT _ their12 2(\$mil)	ACCEPT 12.2(\$mil)
	Ex: 14 – their3.9 or their10.1 Ex: 14 + their2.1 or their16.1	14 + their3.9 – their2.1 or their 15.8(\$mil)		
		ACCEPT <u>the</u> correct costs without final result Ex: filters 14 then sell for 3.9 then buy for 2.1 WTTE		

Mark	1	2
Recommendation	ACCEPT only if C1 is achieved	ACCEPT only if C4 is achieved
(J)	Recommendation with one weak justification considering the 8 years period or beyond the 8 years period	Recommendation to install filters with one good justification aligned with the correct calculations
	Examples considering the 8 years period	Ex: Should install filters because they will save 1.12 (mil\$) WTTE
	Ex: Filters will save money WTTE (and we see values aligned with this recommendation even if incorrectly calculated)	Ex: Should install filters because without filters they will spend 13.32(mil) while with filters only 12.2 WTTE
	Ex: Should install filters but in 4 years they will have to buy new ones WTTE	ACCEPT Should install filters because it will save money WTTE, and we see 13.32(mil\$) and 12.2(mil\$) in the calculations
	Ex: Should not install filters because after 2026 (or starting 2027) filters will not be efficient enough WTTE	
	Ex: Should not install because it is not economic (and we see values aligned with this recommendation even if incorrectly calculated)	
	Ex: should not install filters because the price of filters is paid upfront WTTE.	
	DO NOT ACCEPT seeing only price of filters too high	
	OR	
	Examples considering beyond 8 years period	
	Ex: After 2030 (or after 8 years), installing filters will be no good or they will have to buy new filters or take new measures WTTE	
	Ex: On the long run (in the future) they will have to buy more filters WTTE	
	ACCEPT	
	not recommending filters if their justification supports it	
	DO NOT ACCEPT	
	"install filters because it is better for environment" WTTE	

Mark	1	2
Accuracy (A)	 Implies inaccurate with one justification <u>Price</u> of buying/selling (60000) carbon units is approximate WTTE OR <u>Limits</u>/restrictions could change (based on world events or to decrease pollution or because climate change). WTTE 	 Implies inaccurate with two justifications <u>Price</u> of buying/selling (60000) carbon units is approximate WTTE OR <u>Limits</u>/restrictions could change (based on world events or to decrease pollution or because climate change). WTTE
		AND
	OR	
	 <u>(Carbon) emissions</u> are predictions/estimates or might change over the years WTTE 	 <u>(Carbon) emissions are predictions/estimates or might change over the years WTTE</u>
	ACCEPT	
	"values used are estimations or approximated" WTTE for A1	
	DO NOT ACCEPT	DO NOT ACCEPT
	"inaccurate because I rounded" WTTE	"inaccurate because I rounded" WTTE
	accurate regardless their justification	accurate regardless their justification
	just rounding their results	just rounding their results

Q7 Task 3

Glossary for task 3

Term used	Clarification
General rule	Rule in terms of only <i>n</i> (if they use <i>x</i> , it is still general rule but penalise in notation)
The general rule	The correct general rule in terms of only <i>n</i> (if they use <i>x</i> , it is still the general rule but penalise in notation)
Their general rule	valid attempt for the general rule but in terms of only <i>n</i> (if they use <i>x</i> , it is still their general rule but penalise in notation)
Their rule	Correct rule not in terms of only <i>n</i>
Recursive rule	$A = \frac{A_{n-1}}{4}OE$

We accept subsequent use of their general rule provided it is of similar complexity. In general, the complexity of the rule depends on its form. The table below shows examples.

The general rule	ACCEPT for their general rule	DO NOT ACCEPT for their general rule
T = 8n - 8	Linear	
$A = \frac{8}{2^n}$	Quadratic or exponential	Linear

7		Answers	Notes		
	а	Correctly place 32 and 40	5	<mark>-32</mark>	
			6	40	1

b	.1 correctly describe one pattern for T in words .2 correctly describe a second pattern for <i>T</i> in words	ACCEPT complete terminology only, for example (below are four different descriptions) divisible by 8, multiples of 8 Increasing by 8, adds 8, goes up by 8, moving up by 8 difference 8, common difference 8, linear with difference 8, arithmetic with difference 8 Second difference zero DO NOT ACCEPT incomplete terminology, for example: Arithmetic, linear, increasing by a constant, constant difference DO NOT ACCEPT general description, for example: Integers, whole numbers, positive, even numbers, divisible by 2, multiples of 2, multiples of 4 DO NOT ACCEPT the rule in words or description related to n for example: 8 times n minus 8, n multiplied by 8 minus 8, WTTE Note, in the case when they have more than two different patterns: If two are accepted and the rest are all correct: award 2 marks Ex: even numbers and adds 8 and Second difference is zero and it is 8 times n then subtract 8. Ex: multiples of 2 and 4 and linear and increases by 8 and divisible by 8 If two are accepted and any of the rest is incorrect: award 1 mark Ex: <u>increases by 2</u> and Second difference is zero and it is divisible by 8 If only one is accepted, ignore the rest and award 1 mark	2
C	.1 the correct general rule .2 the correct simplified general rule with correct notation for <i>T</i> in terms of <i>n</i> .	.1 $8n-8$ or $8(n-1)$ or $T = 8 \times n - 8$ or $(T =)8 * n - 8$ or $T = 8 \times (n-1)$ or $T = 0 + 8(n-1)$.2 $T = 8n - 8$ or $T = 8(n-1)$.2 ACCEPT using Tn instead of T .2 ACCEPT $T = n8 - 8$ or $T = (n-1)8$.2 ACCEPT using t and N DO NOT ACCEPT description in words	2

d	.1 correctly substitute $n \ge 5$ into their general rule (from 7c or 7b) .2 correctly calculate their value of <i>T</i> after substituting $n \ge 5$.3 recognise that their correctly calculated value of <i>T</i> is the same as their predicted value	 .1 Ex: 8×5-8 .2 Ex: 32 (for <i>n</i> = 5) .3 "the same as when we continue the pattern" WTTE and states how Ex: for <i>n</i>=7, 48 is obtained from pattern of adding 8 to 40 .3 ACCEPT if their value from .2 is the same as their value in the table in part a) or seen here in part d) Ex: we see their calculated <i>T</i>=32 and we see <i>T</i>=32 in their table 	3
e	 AM1 (rhombus) Correctly half the product of the two diagonals AM2 (rectangle – triangles) Correctly subtract area of 4 triangles from the rectangle 	AM1 $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{4}$ AM2 $\frac{1}{8} - \frac{1}{16}$ Comes from 4 triangles each being $\frac{1}{2} \times \frac{1}{4} \times \frac{1}{8} = \frac{1}{64}$ and 1 rectangle $\frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$	
	AM3 (4 triangles) Correct area of 4 triangles or 2 big triangles that form 1 rhombus $\frac{1}{16}$ AG	AM3 $4 \times \frac{1}{64}$ or $2 \times \frac{1}{32}$ Comes from area of 4 triangles each being $\frac{1}{2} \times \frac{1}{4} \times \frac{1}{8}$ or 2 triangles each being $\frac{1}{2} \times \frac{1}{8} \times \frac{1}{2}$ or $\frac{1}{2} \times \frac{1}{4} \times \frac{1}{4}$ ACCEPT notation errors	1
		ACCEPT lengths in decimals only if $\frac{1}{16} = 0.0625$ is seen Ex : $0.5 \times 0.5 \times 0.25 = 0.625$ AND $\frac{1}{16} = 0.0625$ DO NOT ACCEPT $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{4}$ that comes from $A = b^2 \times h$ DO NOT ACCEPT $\frac{1}{4} \times \frac{1}{4}$ DO NOT ACCEPT $\frac{1}{4} \times \frac{1}{4}$ DO NOT ACCEPT working only with denominators Ex : denominators $2 \times 2 \times 4 = 16$	

mathemoeengtz0xxm

Q7e	23	marks
-----	----	-------

Mark		1		2	3		
Predictions (P) ACCEPT whether in the table or in the response box		Correctly predict two terms for <i>L</i> or <i>W</i> er e OR Correctly predict one term for <i>A</i>		Correctly predict two terms for <i>L</i> or <i>W</i> AND Correctly predict one term for <i>A</i>	Correctly predict two terms for <i>L</i> and two terms for <i>W</i>		
				OR Correctly predict two terms for <i>A</i>			
		Ignore addit	ional incorrect predictions	Ignore additional incorrect predictions	Ignore additional incorrect predictions		
		ACCEPT fra ACCEPT in DO NOT AC	actions or index form the table or in the response box CEPT decimals	ACCEPT fractions or index form ACCEPT in the table or in the response box DO NOT ACCEPT decimals	ACCEPT fractions or index form ACCEPT in the table or in the response box DO NOT ACCEPT decimals		
Stage number (<i>n</i>)	Length of big diagona I (<i>L</i>)	Length of small diagona I (<i>W</i>)	Area of rhombus (<i>A</i>)	Examples of rules in equivalent forms (accept de $L = \frac{4}{2^{n}} = 2 \times (\frac{1}{2})^{n-1} = \frac{1}{2^{n-2}} = 2^{2-n}$ $W(-\frac{2}{2} - 1 \times (\frac{1}{2})^{n-1} - \frac{1}{2^{n-2}} = 2^{1-n}$	ecimals) :		
5	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{256}$	$\begin{vmatrix} n & -1 \\ 2^n & 2^{n-1} \\ A = \frac{1}{4^{n-1}} \text{ or } A = \frac{1}{2^{2n-2}} \text{ or } A = 4^{1-n} \text{ or } A$	= 2 ²⁻²ⁿ		
6	$\frac{1}{16}$	$\frac{1}{32}$	1 1024				
7	$\frac{1}{32}$	$\frac{1}{64}$	1 4096				
8	$\frac{1}{64}$	$\frac{1}{128}$	1 16384				

Mark	1	2	3	4	5
Description (D)	Correctly describe a pattern in words for <i>A</i> Ex: Multiply by $\frac{1}{4}$ OE, Divide by 4, Divide by 2 two times	Correctly describe a pattern in words for <i>A</i>	Correctly describe a pattern in words or recursive rule for <i>A</i>	Correctly describe a pattern in words or recursive rule for <i>A</i>	Correctly describe a pattern in words or recursive rule for <i>A</i>
notation errors but penalized in notation (N)	(Geometric with) ratio $\frac{1}{4}$ OE. Denominators multiply by 4 or they are divisible by 4 or they all have 4 as a factor or they are all powers of 4. Denominators <u>except first</u> are multiples of 4.	AND Correct recursive rule for <i>A</i> or rule <i>A</i> =4 ⁿ or Valid	AND Valid attempt to write down a general rule for A	AND Correctly write down the general rule for <i>L</i> or <i>W</i>	AND Correctly write down the general rule for <i>A</i>
	OR Recursive rule for A $A = \frac{A_{n-1}}{4}$ OE or the rule $A=4^n$ OR	attempt to write down general rule for <i>L</i> or <i>W</i>	(at least seeing (a <i>n</i> +b) as an exponent)		
	Valid attempt to write down a general rule for <i>L</i> or <i>W</i> (at least seeing <i>n</i> as an exponent) ACCEPT if they correctly describe a pattern in words or recursive rule for <i>L</i> or <i>W</i> Ex: Multiply by $\frac{1}{2}$ OE, Divide by 2 (Geometric with) ratio $\frac{1}{2}$ OE Denominators are multiples of 2 or divisible by 2 or even numbers or powers of 2 $L = \frac{L_{n-1}}{2}$ or $W = \frac{W_{n-1}}{2}$ OE IGNORE additional incorrect patterns DO NOT ACCEPT Exponential, geometric, arithmetic sequence, denominators are multiples of 2 or even numbers, the square numbers, <i>A</i> is decreasing $A = \frac{1}{2}(L \times W)$	OR Valid attempt to write down a general rule for <i>A</i> (may be incorrect but contains at least (a <i>n</i> +b) as an exponent)	OR Correctly write down the general rule for <i>L</i> or <i>W</i> $L = \frac{4}{2^n}OE$ $W = \frac{2}{2^n}OE$	OR Correctly write down the general rule for A $A = \frac{1}{4^{n-1}}$ OE	
	The rule for A in words as a pattern.				

Mark	1	2	3
Testing (T) ACCEPT transforming into	Attempt to test their general rule for A using $n \le 4$ Ex:	Correctly test their general rule for A , using $n \le 4$ Ex:	
decimals when testing	Substitute in their general rule for A value of $n \le 4$	Correctly calculate their value for A in their general rule using $n \le 4$ AND	
	OR Correctly test their described pattern or their	Recognise that their correctly calculated value for <i>A</i> is the same as the given value.	
	rule (e.g. recursive rule) or their rule for L or W in terms of n	ACCEPT seeing their correctly calculated value for <i>A</i> and the given value in the table being equal	
	DO NOT ACCEPT testing their rule of A=0.5xLxW		
Verifying (V) ACCEPT	Attempt to verify their general rule for A using $n \ge 5$ Ex:	Correctly calculate their value for A in their general rule, using $n \ge 5$	Correctly calculate their value for A in the general rule using $n \ge 5$
transforming into decimals when verifying	Correctly substitute in their general rule for A value of $n \ge 5$		AND Recognise that their correctly calculated value for <i>A</i> is the same as the correct predicted value obtained by continuing the pattern
	OR		ACCEPT seeing their correctly calculated
	Correctly verify their described pattern or their rule (e.g. recursive rule) or their rule for L or W in terms of n		the table being equal
	DO NOT ACCEPT verifying their rule of <i>A</i> =0.5x <i>L</i> x <i>W</i>		

Mark	1	2	3	4
Justify	ACCEPT only if D1 is achieved	ACCEPT only if D4 is achieved	ACCEPT only if D4 is achieved	ACCEPT only if D4 is achieved
(J)	Attempt to use geometric sequence to justify <u>their</u> general rule for <i>A</i> or described pattern or rule or recursive rule Ex : Every time we multiply by $\frac{1}{4}$ so it makes sense to have 4 in my general rule WTTE and we see 4 or $\frac{1}{4}$ in <u>their</u> general rule for <i>A</i>	Correctly use geometric sequence to justify <u>the</u> general rule aligned with their notation for <u>the</u> general rule for <i>A</i> Ex : Assume $a \times r^n$ and substitute $r = \frac{1}{4}$ and a value for <i>A</i> and <i>n</i> then find $a = 4$	Attempt to justify geometrically the general rule for <i>A</i> Half of the product of correct <i>L</i> and <i>W</i> rules without complete simplification Seeing $L \times W$ 4×2	Correctly justify geometrically the general rule for <i>A</i> Half the product of correct <i>L</i> and <i>W</i> with simplification. ACCEPT simplification using factor 4 instead of 2. They show how it simplifies to $A = \frac{1}{2} \text{ or } A = 4^{1-n}$
	OR using parameters	OR	$\frac{1}{2} = \frac{1}{2 \times 2^n \times 2^n} \text{OE}$	4^{n-1}
	Assume $a \times r^n$ and substitute $r = \frac{1}{4}$ and a value for <i>A</i> and <i>n</i> then find incorrect <i>a</i> OR Weak attempt to justify <u>their</u> general rule for <i>A</i> geometrically by using the product of <u>incorrect</u>	Weak attempt to justify <u>the</u> general rule for A geometrically by using half the product of <u>incorrect</u> L and W rules or by using correct L and W rules but incorrectly halved or with mistakes in simplification	or $\frac{4 \times 2}{2 \times 2^n \times 2^n} = \frac{4}{4^n} \text{ OE}$	$A = \frac{1}{4^{n-1}}$ or $A = \frac{1}{2^{2n-2}}$ or $A = 4^{1-n}$ or $A = 2^{2-2n}$
	L and W <u>rules</u> OR <i>L</i> is halved and <i>W</i> is halved so <i>A</i> is divide 4 WTTE	simplification		
	OR			
-	Substitute at least two other values of <i>n</i> in their general rule for <i>A</i> , <i>L</i> or <i>W</i> and say they are the same or the rule works WTTE			
	OR			
	Recognize it is geometric progression and define first term 1 and ratio $\frac{1}{4}$ WTTE			
	DO NOT ACCEPT A is square of W			

Mark	1	2	3		
Notation and terminology (N)	CORRECT NOTATION - using <i>U_n</i> instead of <i>A</i> only if they mention	that $A = U_n$ - using * for multiple	ORS lication		
	- Using decimals				
	- using to power - using x instead of <i>n</i>				
	- "the rule for A is:" instead of "A="				
	ACCEPT only if D1 is achieved	ACCEPT only if D4 is achieved	ACCEPT only if D5 is achieved		
	Correct notation of <u>their general</u> rule for A or rule for L or W Ex:	Correct notation of <u>the general</u> rule for A in simplest form (see examples below and above)	Correct notation of <u>the general</u> rule for A in simplest form (see examples in N2 and above)		
	$A = 4^{n}$ or $L = \frac{4}{2^{n}}$ or $W = \frac{2}{2^{n}}$	ACCEPT simplification using factor 4 instead of 2.	AND		
	OR	Ex: $A = \frac{1}{4^{n-1}}$ or $A = \frac{1}{2^{2n-2}}$	Correctly describe a pattern in words for A		
	The notation of <u>the general</u> rule includes errors or non-simplified or in words	or $A = 4^{1-n}$ or $A = 2^{2-2n}$			
	Ex:	And OE for decimals			
	$A=1/4^{(n-1)}$ or $A=4/4^{n}$ or $A=\frac{4}{4^{n}}$	Ex: $A = 0.25^{n-1}$ or $A = 0.5^{2n-2}$			
	or Missing the "A="				
	Ex: The rule for <i>A</i> is $\frac{1}{4^{n-1}}$	The notation of <u>the general</u> rule includes errors or not simplified or in words (see examples in N1 and above)			
		AND			
	OR	Correctly describe a pattern in words for A			
	Correctly describe a pattern or recursive rule in words for <i>A</i>				
	Ex: $A = \frac{A_{n-1}}{4}$				

Organisation and coherence can be awarded even if there are errors For items:	 At least three of the following items are seen: describe a pattern in words write a rule test their general rule or rule or recursive rule or pattern (at least T1) verify their general rule or rule or recursive rule or pattern (at least V1) 	 At least four of the following items are seen: describe a pattern in words write a general rule test their general rule verify their general rule justify their general rule 	 At least four of the following are seen: describe a pattern or rule in words write the general rule test the general rule verify the general rule justify the general rule
and writing rule	- justify their general rule of rule of recursive rule or pattern (at least J1)	AND	AND
can be considered an item even if D0 awarded Test, verify, and justify may include		For coherence, they identify the processes correctly. At least one from the following: - test - verify - justify	For coherence, they identify the processes correctly. At least two from the following: • test • verify • justify
errors but cannot		Juony	Justify
be considered item (or identified for coherence) if		Ex: • For test:	Ex: • For test:
they are zeros		they say "test" and they substitute in their general rule value(s) of <i>n</i> ≤4 only	they say "test" and they substitute in their general rule value(s) of <i>n</i> ≤4 only
		For verify:	For verify:
		they say "verify" and they substitute in their general rule value(s) of <i>n</i> ≥5 only	they say "verify" and they substitute in their general rule value(s) of <i>n</i> ≥5 only
		• For justify:	For justify:
		They say "justify" and they write a justification	They say "justify" and they write a justification
		Note for coherence: If they say "test and verify" and they substitute in their general rule value(s) of $n \le 4$ followed by value(s) of $n \ge 5$, consider it as only one identified process	Note for coherence: If they say "test and verify" and they substitute in their general rule value(s) of $n\leq 4$ followed by value(s) of $n\geq 5$, consider it as only one identified process

Communication

(L)

ACCEPT only if D4 and J2 are achieved