

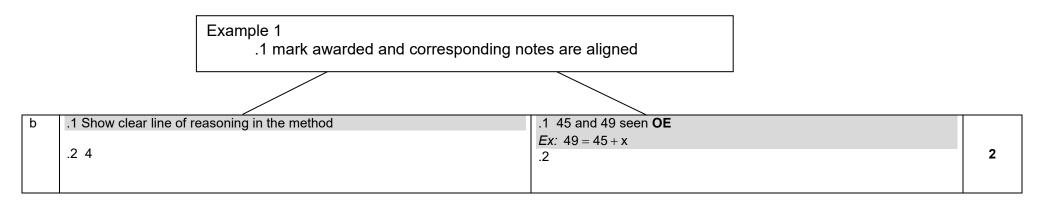
Markscheme

November 2022

Extended Mathematics

On-screen examination

25 pages


This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

The markscheme abbreviations:

The markscheme may make use of the following abbreviation: **OE** – 'or equivalent'

• Bullet notation means award 1 mark – see example below

Error Carried Forward (ECF) marks

Errors made at any step of a solution affect all working that follows. In general, Error Carried Forward (ECF) marks are awarded after an error.

- a. ECF applies from one part of a question to a subsequent part of the question and also applies within the same part.
- b. If an answer resulting from **ECF** is inappropriate (*eg*, negative distances or sinx > 1) then subsequent marks should not be awarded.
- c. If a question is transformed by an error into a **simpler question** then **ECF** may not be fully awarded.
- d. To award ECF marks for a question part, there must be working present for that part.
- e. ECF is only applied to working which is correct. This means that all working subsequent to an error must be checked for accuracy.
- f. A misread (MR) is an error. ECF is normally awarded.

General points

a. As this is an international examination, accept all **alternative forms of notation**, for example 1,9 as 1.9; 1,000 or 1.000. However **DO NOT ACCEPT** incorrect mathematical notation x^2 for x^2 unless noted otherwise in the MS

b. Accept notation errors in intermediate steps.

c. Ignore further working after a correct answer **unless** it indicates a lack of mathematical understanding **i.e. if the further working contradict the correct answer**, then that last mark cannot be awarded.

- d. In the case when a correct result is obtained using incorrect seen method, do not award the mark for the result.
- e. Where candidates have written two solutions to a question, mark the first solution.

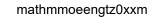
f. In the markscheme, equivalent examples of **numerical** and **algebraic** forms or **simplified** answers will generally be written in the notes preceded by OE (Or Equivalent) e.g. OR 1/2 OR 0.5 OR ; OR x/2 OR ; 0.23 OR 23%

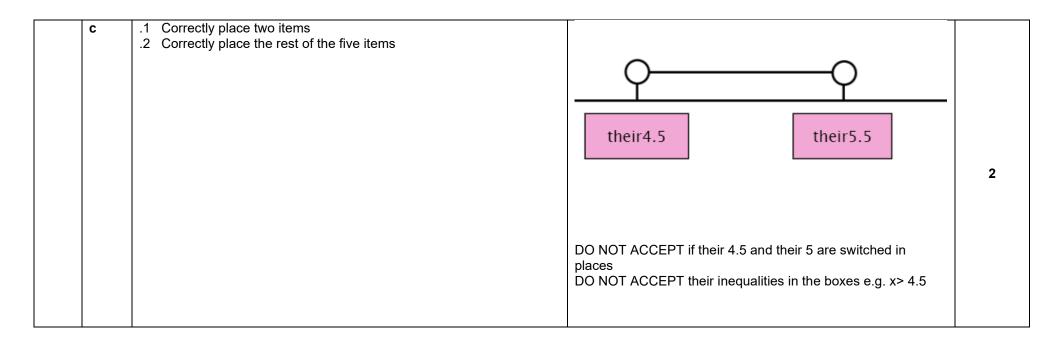
g. In the markscheme, information provided in brackets indicate detail that may be seen in a candidate response but is not necessary to award the marks. However, these results need to be seen in the appropriate context to award the mark.

- h. Special case marks **SC** can be allocated instead of but not in addition to the marks prescribed in the markscheme.
- i. Accept seeing equation not in-line.

j. Calculator screenshots are accepted as working steps. And when a calculator screenshot is taken, accept not seeing the whole operation.

k. In task 2 and 3 where the markscheme is set out in a table then, unless noted otherwise, awarding the highest mark in a category includes all the lower marks in that category. It is probably best to look for the top category mark answer and if you don't find it look at the next mark down.


I. ACCEPT using the correct values regardless their previous result.


m. Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

n. Unless noted otherwise, if a note in a part says to accept the answer without working for 1 mark less than total marks, then seeing the correct answer with any acceptable working step, award full marks. Example: If the note in a part worth 3 marks says "4.3(3...) without working award 2 marks", then seeing any acceptable working step and seeing 4.3(3...) as the answer award the 3 marks.

Q1	Answers			Notes			Total
а	.1 Correctly write two missing values.2 Correctly write the third missing value		Bus	Train	Car	Total	
		Students	66	8	20	94	2
		Teachers	12	29	15	56	-
		Total	78	37	35	150	
b	 .1 Correct number of students who travel by bus or car .2 Correctly divide their86 by their total number of students in part (a) 	n part ^{.1} 86 .2 (<i>their</i> 86) or ⁴³ / ₇₅ or 0.57(333) OE				2	
С	15/56 or 0.267(857) OE						1
d	.1 Correct initial probability	.1 $\frac{12}{56}$ OE or $\frac{44}{56}$					
	.2 Multiply three probabilities without OR with replacement	.2 their $(\frac{12}{56} \times \frac{11}{55} \times \frac{11}{55})$	-				
	.3 Correctly multiply their three probabilities without replacement	.3 their($\frac{5808}{166320}$)	or their $\left(\frac{11}{315}\right)$	or their 0.0349(2	2) OE ACCE	PT 0.035	4
	.4 Correctly multiply their product of probabilities by 3	.4 their($\frac{17424}{166320}$)	or their $\left(\frac{33}{315}\right)$	or their 0.1047(6	61) ACCEPT	0.105	4
		Accept only if 0 \leq	probability \leq 1				

Q2	Answers	Notes	Total
a	.1 Correctly state 1 st transformation .2 Correctly state 2 nd transformation	 .1 vertical stretch or dilation by a factor of 4 ACCEPT enlargement .2 vertical translation of –1 or shift down 1 unit WTTE 	2
b	 AM1 1 Correctly rearrange the equation to have (x – 5)² on one side 2 Correctly square root 3 Correctly calculate their two values of x AM2 1 Correctly expand the equation to have all terms on one side equal zero 2 Correctly factorise their quadratic or correctly substitute their coefficients into quadratic formula 3 Correctly calculate their two values of x 	AM1 .1 $(x-5)^2 = \frac{1}{4}$ OE .2 $x-5 = \pm \frac{1}{2}$ OE ACCEPT $x-5 = \frac{1}{2}$.3 $x = \text{their4.5 AND } x = \text{their5.5 OE}$ AM2 .1 $4x^2 - 40x + 99 = 0$ ACCEPT $4x^2 - 40x + 100 - 1 = 0$.2 $(2x-9)(2x-11)$ or $\frac{40 \pm \sqrt{40^2 - 4 \times 4 \times 99}}{2 \times 4}$ OE ACCEPT solving correctly their simpler quadratic for one value of x .3 $x = \text{their4.5 AND } x = \text{their5.5 OE ACCEPT their correctly}$ calculated values provided only one mistake in substitution into the quadratic formula	3

23	Answers	Notes	Total	
а	.1 Correct use of Pythagoras	.1 $50^2 + 225^2 = h^2 OE$		
	.2 Correct value of height	.2 (<i>h</i> =) 230.48() ACCEPT 230.5		
	.3 Correct comparison of their 230.48 and 230 Storage unit cannot be lifted into place AG	.3 their230.48() > 230 or anything that WTTE Ex: 230.48 is greater than	3	
	Storage unit cannot be inted into place AG	height of ceiling		
		.3 ACCEPT 53125 > 52900 or anything that WTTE		
		.3 DO NOT ACCEPT unless .1 or .2 is awarded		
b	.1 Correctly substitute <i>h</i> , <i>x</i> and 230 into the Pythagoras's theorem	.1 $h^2 + x^2 = 230^2 \text{ OE}$.1 ACCEPT using inequality sign	2	
	.2 Correctly rearrange the formula to have <i>h</i> on one side	.2 (<i>h</i> =) $\sqrt{52900 - x^2}$ OE .2 ACCEPT using inequality sign	2	
С	Correctly calculate their h using $x=50$ and 230 into their formula for h	Their 224(.4994432) ACCEPT in the working ex: $50^2 + 224.(499)^2 = hyp^2$		
		DO NOT ACCEPT 224.49	1	
d	.1 Correctly substitute 50 and 220 into volume of cuboid	.1 50 x 50 x 220		
	.2 Correct calculate their volume for their height	.2 their550 000 (cm³)	2	

	Total
s: ne angle A WTTE. mmon angle or parallel lines or DE or parallel lines or ED or Angle ACB and Angle ACB= Angle	2
or p DE or p ED or Ai	arallel lines or arallel lines or ngle ACB and

b	AM1	AM1				
	.1 Correct ratio	.1 $\frac{7}{3}$ or 0.428(57) OE ACCEPT $\frac{3}{7}$ OE				
	.2 Their correct ratio of area (squaring their ratio)	.2 $(\text{their}\frac{7}{3})^2 \text{ OE}$				
	.3 Multiply their ratio of area by 9	.3 their $(\frac{7}{3})^2 \times 9$ or 49				
		.3 ACCEPT seeing their $\frac{7}{3} \times 9$ or 21 BUT DO NOT ACCEPT <i>their</i> $\frac{3}{7} \times 9$				
	.4 Correctly subtract their area of triangle ADE by 9	.4 (their49-9=) their 40 (cm ²) Accept only if positive				
	AM2 .1 Correct ratio	AM2				
	.2 Correctly calculate length BC	.1 $\frac{7}{3}$ or 0.428(57) OE ACCEPT $\frac{3}{7}$ OE				
	.3 Correctly calculate their length of DE	.2 $(9 = \frac{1}{2} \times BC \times 3 \times \sin 96)$, (BC =)6.03(3) OR $(\frac{3 \times \sin 59}{\sin 96} =)6.084(69)$	4			
	.4 Correctly calculate their area of trapezium	.3 (their $\frac{7}{3} \times their 6.03() = 14.077(1)$ ACCEPT 14 .4 ($\frac{1}{2} \times their 14.077(1) \times 7 \times sin 96 - 9$) = their 39.99 ACCEPT 39.98				
		OR $(\frac{6.03(3) + their 14.077(1)}{2} \times (\frac{9}{0.5 \times 6.03(3)} \times \frac{7}{3} - \frac{9}{0.5 \times 6.03(3)}) = 40(.03)$.4 ACCEPT their 40 only if .2 and .3 are awarded				

С	AM1	AM1	
	.1 Correct substitution into sine rule .2 Correctly rearranging to make $\sin \angle ABC$ the subject .3 Correctly calculate the angle ABC using their sine rule	.1 $\frac{\sin \angle ABC}{3} = \frac{\sin 96}{7}$ OE .2 $((\sin \angle ABC) =) \frac{3\sin 96}{7}$	
	 AM2 1 Correctly calculate length BC 2 Correctly substitute their sides of triangle ABC into cosine rule 3 Correctly calculate the angle ABC using their cosine rule 25 AG 	.3 25.2() AM2 .1 $(9 = \frac{1}{2} \times BC \times 3 \times \sin 96)$, (BC =)6.03(3) OR $(\frac{3 \times \sin 59}{\sin 96} =)6.084(69)$.2 $(\cos B =)\frac{their 6.03(3)^2 + 7^2 - 3^2}{2 \times their 6.03(3) \times 7}$ OE	3
d	AM1	.3 25.2() ACCEPT their25.2 if it rounds to 25 AM1 .1 (180 – 96 – 25 =) 59 (degrees) ACCEPT their25	
	.1 Correctly calculate angle BAC.2 Correctly substitute their angle BAC into cosine rule	.2 $(BE^2) = 7^2 + 7^2 - 2 \times 7 \times 7 \times \cos(\text{their}59) \text{ or } 47.5(2626)$	
	.3 Correctly calculate their BE after substitution into cosine rule	.3 their 6.89(39) (cm) ACCEPT 7 only if .2 or .1 is awarded AM2	
	.1 Correctly calculate angle BAC	.1 $(180 - 96 - 25 =) 59$ (degrees)	
	.2 Correctly calculate angle ABE (or AEB) AND correctly substitute their values into sine rule	.2 (ABE or AEB)= $(\frac{180-59}{2} =)60.5$ AND $\frac{7}{\sin 60.5} = \frac{BE}{\sin 59}$.3 their 6.89(39) (cm) ACCEPT 7 only if .2 or .1 is awarded	3
	.3 Correctly calculate their BE after substitution into sine rule		
	AM3 .1 Correctly calculate angle BAC	AM3 .1 (180 - 96 - 25 =) 59 (degrees) .2 (BCE=)84 and (CBE = $\frac{180 - 59}{2} - 25$) = 35.5 AND $\frac{4}{\sin 35.5} = \frac{BE}{\sin 84}$	
	.2 Correctly calculate angles of triangle BCE AND correctly substitute their values into sine rule or cosine rule .3 Correctly calculate their BE after substitution into sine rule	$\begin{array}{c} 2 (1002 \) 04 \ \text{und} \ (002 \ 2 \ 2 \ 2 \ 0 \ 2 \ 0 \ 0 \ 0 \ 0 $	

Q5	Answers	Notes	Total
а	Correct mass of phone case	$(1.25 \times 29 =) 36(.25) (g)$	1
b	.1 Divide 1000 by their mass	.1 <u>1000</u> their36.25 or 27.586	
	.2 Correctly rounds their answer to nearest whole number	.2 their27 ACCEPT only if $\frac{1000}{their36.25}$ is not a whole number	2
С	.1 Correct method to calculate the mean	.1 $\frac{18.3 + 18.5 + 19.1 + + 21.1}{11}$ or $\frac{218.7}{11}$ ACCEPT 18.3 + 18.5 + 19.1 + + 21.1 /11 .1 ACCEPT if they divide at least sum of eight values by 10 or 11	
	.2 Correct value of mean before rounding	.2 19.88(18) DO NOT ACCEPT 19.89	2
	19.9 AG		
d	.1 two correct values		
	.2 another two correct values	Printer A 19.1 19.9 20.7	
	.3 another two correct values	Mean: 19.9	3
		Min 18.3, Q1 19.1, Median 19.9, Q3 20.7, Max 21.1 and Mode 19.8	

e	One fully correct reason for Printer A referring to a measure of dispersion or mode Printer A is better AG	has smaller range less spread Mode is less ACCEPT most recurring time or most common or most frequent ACCEPT Printer A is better because it is more reliable or more consistent ACCEPT using the descriptor 'better' for 'less/lower/smaller' WTTE DO NOT ACCEPT comments about skewness ex: less skewed DO NOT ACCEPT the length of the box is smaller	1
f	One fully correct reason for Printer B referring to a measure of central tendency Printer B is better AG	DO NOT ACCEPT comments just about the maximum Ex: The maximum is less Examples (WTTE): has a lower median has smaller average ACCEPT using the descriptor 'better' for 'less/lower/smaller' WTTE ACCEPT "smaller Q1 and Q3" DO NOT ACCEPT smaller Q1 only or smaller Q3 only DO NOT ACCEPT comments just about the minimum Ex: The minimum is less	1

26	Answers	Notes	Total
а	.1 b = 2.5 OE ACCEPT [2,2.5] OE .2 c = 50 OE	ACCEPT using capital letters ACCEPT seeing values replaced in the equation	2
b	.1 (<i>n</i> =)8 and (<i>Fmax</i>) = 96 (%)		1
С	AM1 (Solving)	AM1 (Solving)	
	.1 Equate their E with $-1.5(n-8)^2+96$.1 <i>their</i> $2.5n + 50 = -1.5(n-8)^2 + 96$ ACCEPT using < instead of =	
		.1 ACCEPT their E to be 70	
	.2 Correctly expand $(n-8)^2$ and multiply by -1.5	.2 $-1.5n^2 + 24n - 96$ OE SEEN	
	.3 Correctly rearrange their quadratic equation on on one side = 0	.3 their $1.5n^2 - 21.5n + 50 = 0$ ACCEPT using < instead of =	
	.4 Correctly substitute into quadratic formula	.4 their $\frac{21.5 \pm \sqrt{21.5^2 - 4 \times 1.5 \times 50}}{2 \times 1.5}$	
	.5 Correctly calculate their <i>n</i>	.5 (n=) Their 2.92 or 3	
		.5 ACCEPT their positive value of <i>n</i> correctly rounded regardless the domain	5
	AM2 (substitution trials)	AM2 (substitution trials)	
	.1 Correctly substitute in their E and the F same value of n, accept decimal within domain	.1 Ex: $2.5(2) + 50$ and $-1.5(2-8)^2 + 96$	
	.2 Correctly calculate their value of E and the value of F for their	.2 Ex: their55 and 42 when n=2 ACCEPT values from graph not exact	
	value of n .3 Correctly calculate their value of E and the value of F for another value of n	.3 Ex: their60 and 72 when n=4 ACCEPT values from graph not exact	
	.4 Compare value of E and F	.4 evidence of comparing values of their E and F at same value of n Ex: 72>their60 ACCEPT argument based on the graph	
	.5 Correctly identify their <i>n</i> within the given domain	.5 (n=) Their 3	

. 5 DO NOT ACCEPT if n>8 .5 DO NOT ACCEPT their3 if they use only values from graph

d	1 Correct value of h	.1 h=8 ACCEPT seeing 8 in the expression $(L =)a(n - 8)^2 + k$	
	.2 Correct value of k	.2 k=86 ACCEPT seeing 86 in the expression $(L =)a(n - h)^2 + 86$	
	.3 Substitute point (2,50) into conic form	.3 $50 = a(2-h)^2 + k$ ACCEPT substituting n=2 and any values for a,f, and k that gives Ex: 4(2-5)^2+14=50	
	.4 Correct value of a	.4 $a = -1$ ACCEPT seeing -1 in the expression $(L =) - (n - h)^2 + k$. 4 evidence of comparing values of their E and F at same value of n Ex: 72>their60 ACCEPT argument based on the graph	4
		.5 (n=)their3 .5 DO NOT ACCEPT if n>8 .5 DO NOT ACCEPT their3 if they use only values from graph	

6 e					10
Mark	1	2	3	4	5
Identify factors (F)	State one factor from: - Number of observations - The y-intercept Ignore additional irrelevant factors				
Calculation (C)	Equate their L with $-1.5(n-8)^2 + 96$ OR Correctly substitute in their L and the F same value of n	Correctly Expand both quadratics Ex: $-n^2 + 16n - 64 + 86 = -1.5n^2 + 24n$ OR Correctly calculate their value of L and the value of F for a certain value of n	Correctly rearrange their quadratics on one side = 0 Ex: $0.5n^2 - 8n + 22 = 0$ OR Correctly calculate their value of L and the value of F for another value of n	Correctly substitute into quadratic formula OR Compare value of L and F	Correctly calculate their value of n Ex: (<i>n</i> =)3.53 OR Correctly identify their <i>n</i> within the given domain Accept their correctly calculated <i>n</i> only if between 2 and 5
Accuracy (A)	Recognizing it is not accurate with weak justification Examples: (WTTE) these are approximate calculations and not accurate Inaccurate because of rounding Inaccurate because equations not accurate OR Sensible rounding used in calculations without a comment ex: 2.55 is 3 DO NOT ACCEPT: my results are accurate WTTE	Recognizing it is not accurate with acceptable justification Examples: The equations we are using are not exactly the models that represent the data OR Accurate with strong justification Ex: Regardless of the equation I use the intersection between both will still be in the range 2 to 3			

Justify (J)	Weak Justification	Good Justification		
	 Appropriate comment on one of the methods Examples: (WTTE) Correct comment on the graphical behaviour of a method The success rate of E is 50% even with zero observations OR Attempt to comment on two or more methods Examples: (WTTE) The Fisherface is most accurate (or highest success rate) The maximum success rate for F is 96% while for L only 86% 	at least two methods Examples: (WTTE) - Fisherface is better than LBPH in the long run - When n = 2 or less use LBPH and when n = 4 or more use Fisherface - The maximum success rate for F is 96% while for L only 86% for the maximum n -The success rate of E is 50% even with zero observations while for others it is less		
		DO NOT ACCEPT if they do not have a choice of method		

Q7	Answers	Notes	Total
а	AM1 .1 correctly substitute 4 or -4 into the correct equation .2 subtract 2 from 16	AM1 .1 $y = 2^4$ or $(1/2)^{-4}$.2 (height =) 16 - 2 or 2^{4} - 2	
	AM2	AM2	
	.1 equate 14 to g(x)-2 or f(x)-2 .2 evidence of determining x=4 using g(x) or x=-4 using f(x)	.1 $2^{x} - 2 = 14$ or $(\frac{1}{2})^{x} - 2 = 14$	2
	14 AG	.2 x=4 or x=-4 ACCEPT $2^4 = 16$ or $(\frac{1}{2})^{-4} = 16$	

b	Correctly place 64 AND 128		
		Stage (n)Number of new squares added (S)1428316432564	1
c	.1 correctly describe one pattern for S in words .2 correctly describe a second pattern for S in words	6 128 Examples of accepted terminology: - Even numbers, multiples of 2 - Multiples of 8 except the first row OE - Multiples of 4, divisible by 4 - Multiplies by 2, doubles, ratio 2, powers of 2, twice of previous, added to itself -powers of 2	
		- Geometric with ratio 2 DO NOT ACCEPT incomplete terminology, for example: Geometric, multiplies by a constant, has a common ratio, the even numbers or the multiples of 4 DO NOT ACCEPT the rule in words, for example:	2
		2 power n+1 DO NOT ACCEPT <i>n</i> goes up by 1 It is increasing general rules in terms of <i>n</i> , example: $S = 2^{n+1}$ More than two different patterns, all correct award (2 marks) Ex: multiplies by 2, and multiples of 4 and it is 2 to the power n+1 More than two different patterns, with any incorrect award (1 mark) Ex: multiplies by 2, and multiples of 4 and it is 2 to the power n	

mathmmoeengtz0xxm

d	.1 the correct general rule .2 the correct simplified general rule with correct notation for S in terms of <i>n</i> .	.1 (S =) 2^{n+1} or S = 2×2 ⁿ ACCEPT S = 4×2 ⁿ⁻¹ OE .2 S = 2^{n+1} DO NOT ACCEPT description in words	2
e	 .1 correctly substitute n ≥ 5 into their general rule .1 Correctly substitute n ≥ 5 into their general rule .2 Correctly calculate their value of S after substituting n ≥ 5 .3 Recognize that their result is the same as the correctly predicted value 	 .1 Ex: 2⁵⁺¹ .2 Ex: 64 (for <i>n</i> = 5) .3 "the same as when we continue the pattern" WTTE and states how Ex: For n=5, 64 is obtained from pattern of multiplying 32 by 2 ·3 ACCEPT if their value from .2 is the same as their value in the table in part b) or seen here in part e) 	3

7 f						22
Mark	1	2	3	4	5	
Predictions (P) Description	Correctly predict one term for T ACCEPT whether in the table or in the response box Correctly describe a pattern	Correctly predict two terms for T ACCEPT whether in the table or in the response box Correctly describe two	Correctly describe one	Correctly describe one	Correctly describe 1	wo
(D)	in words or recursive rule for <i>T</i> (Ignore additional incorrect patterns) Ex : even numbers, multiples of 2 Multiples of 4 Increases by even numbers Increases by 8, 16, 32 Adds up by 8, 16, 32 First difference doubles Difference is geometric Difference is 2^{n+1} Increases by 2S T=2S-4 or 2 power n Or Recursive rule: $T_n = T_{n-1} + S_n$ or $T_n = 2T_{n-1} + 4 \rightarrow 2^{n-1}$ or $T_n = 2T_{n-1} + 4 \rightarrow 2^{n-1}$ or Tubel to the second s	patterns in words or patterns in words or (Ignore additional incorrect patterns) OR Valid attempt to write general rule for T Ex: number times 2 ⁿ or number plus 2 ⁿ provided it is not the same S rule	pattern in words or recursive rule for <i>T</i> (Ignore additional incorrect patterns) AND Valid attempt to write general rule for T OR Correctly describe the pattern for T as a general rule T = $2^{n+2} - 4$ OE	patterns in words or recursive rule for <i>T</i> (Ignore additional incorrect patterns) AND Correctly write down the general rule for <i>T</i> OR Correctly describe two patterns in words or recursive rule for <i>T</i> (Ignore additional incorrect patterns) AND Valid attempt to write general rule for T	patterns in words recursive rule for (Ignore additio incorrect patterns) AND Correctly write dow general rule for <i>T</i> ACCEPT the general words but penalis notation (for Notation see N)	or <i>T</i> nal /n the rule in

Testing (T)	Attempt to test their general	Correctly test their general		
	rule for T using $n \le 4$	rule for T using $n \le 4$		
	Correctly substitute in	Correctly calculate their		
	their general rule for T	valuefor <i>T</i> intheir		
	value of $n \le 4$	general rule using <i>n</i> ≤		
	OR	4		
	ÖR	AND		
	Correctly test their rule for T	Recognize that their		
	or described pattern or	correctly calculated value		
	recursive rule	for <i>T</i> is the same as the		
		given value.		
		ACCEPT testing correctly		
		$T_n = T_{n-1} + 4 \times 2^{n-1}$		
		ACCEPT seeing their		
		correctly calculated value for		
		T and the given value in the		
	Attempt to verify their	table being equal Correctly calculate their	Correctly calculate their	
Verifying (V)	Attempt to verify their general rule for <i>T</i> using	value for <i>T</i> in their general	value for <i>T</i> in their	
	$n \ge 5$	rule using $n \ge 5$	general rule using $n \ge 5$	
	11 2 0		AND	
	Correctly substitute in their		Recognise that their	
	general rule for <i>T</i> value of <i>n</i>		correctly calculated value	
	≥ 5		for <i>T</i> is the same as their	
			predicted value obtained	
	OR		by continuing the pattern	
	Correctly verify their rule for		ACCEPT verifying correctly	
	<i>T</i> or described pattern or			
	recursive rule		$T_n = T_{n-1} + 4 \times 2^{n-1}$	
			ACCEPT seeing their	
			ACCEPT seeing their correctly calculated value for	
			<i>T</i> and their predicted value	
			in the table being equal	

Justify/	Attempt to justify their	Justify their general rule	Good attempt to justify the		
proof (J)	described pattern or their	arithmetically	general rule for T	rule for T geometrically by	
	general rule	Ex:	geometrically by using	using area of rectangle with	
	Ex:	Seen as justification	incorrect equations or	base 2 and functions for the	
	trying at least two more	Part of it is geometric with	information.	height.	
	values and arguing as	first term 4 and ratio 2 then		Total number of squares is	
	justification that they are the	we subtract 4	height of $y = 2^x$ minus the	the area of a rectangle with	
	same or rule works			base 2 and height of $y = 2^x$	
	or	OR	rectangle of area 4 (4	minus the blank space	
	seen as justification	Attempt to justify their	squares) and x=n+2	under the rectangle of area	
	Ex: It is partially geometric,	general rule geometrically		4 (4 squares)	
	the increase doubles so rule	Ex:	OR	x = n + 1 (because of	
	includes exponential WTTE	Try to calculate area	Good attempt to proof by	starting at x=2)	
	Ex: The difference is	rectangle	induction	$A = b^{*}h - 4$	
	geometric	Adding $2^{n+1} + 2^{n+2} + \dots$		$A = 2^*(2)^{n+1} - 4$	
	-	T=2S-4 (or in words) and		$A = 2^{n+2} - 4$	
	Weak attempt to justify their	$2^{n+2} - 4 = 2 \times 2^{n+1} - 4$			
	general rule geometrically	$2 -4 = 2 \times 2 -4$		OR	
				Correctly proof by induction	
	Ex: T=2S-4 (or in words)				
	````			J4 automatically gains T2	
				and V3	

Communication criteria	nication criteri	ia
------------------------	------------------	----

	Inication criteria					
Mark	1	2	3			
Notation and terminology (N)	Correct notation of <u>the general</u> rule for <i>T</i> <b>OR</b> The notation of <u>the general</u> rule for T includes errors, ex: $2^{n}(n+2)-4$ or non-simplified general rule Ex: $T = 2(2^{n} + 2^{n}) - 4$ <b>OR</b> Correctly describe at least one pattern in words for <i>T</i> DO NOT ACCEPT if they don't have any rules and they don't describe any patterns	Correct notation of <u>the general</u> rule for T $T = 2^{n+2} - 4$ ACCEPT $T = 4 \times 2^n - 4$ or $T = 4(2^n - 1)$ ACCEPT the use of brackets <b>OR</b> The notation of <u>the general</u> rule includes errors (see examples in N1) <b>AND</b> Correctly describe at least one pattern in words for T ACCEPT using $U_n$ instead of $T$ only if they mention that $T = U_n$ DO NOT ACCEPT using * for multiplication using / for division using ^ for power Using x instead of $n$	Correct notation of <u>the general</u> rule for <i>T</i> (see examples in N2) <b>AND</b> Correctly describe at least one pattern in words for <i>T</i> ACCEPT using $U_n$ instead of <i>T</i> only if they mention that $T = U_n$ DO NOT ACCEPT using * for multiplication using / for division using x instead of <i>n</i> DO NOT ACCEPT if they don't have the general rule for <i>T</i>			

Continued on next page

Mark 1	2	3
Communication (L)       At least three from the followin are seen: · describe a pattern in words · write a rule · test their general rule or rule or rule or pattern (at least T1) · verify their general rule or rule rule or pattern (at least V1) · justify their general rule or rule rule or pattern (at least J1)         Describing pattern pattern tem even if D0 awarded       · verify their general rule or rule rule or pattern (at least J1)         Test, verify, and justify may include errors but cannot be considered item (or identified for coherence) if they are zeros       · verify and justify may	At least four of the following items are seen:· describe a pattern in words· write a general rulerecursive· test their general rule (at least T1)· verify their general rule (at least V1)· justify their general rule (at least J1)	e The following two items must be seen : • write the general rule for T • justify the general rule (at least J2) AND At least two of the following items are seen: • describe a pattern or rule in words • test the general rule (at least T1) • verify the general rule (at least V1) AND For coherence, they identify the processes correctly. At least one from the following: • test (at least T1) • verify (at least V1) Ex: • For test: they say "test" and they test using value(s) of $n \le 4$ only • For verify: they say "verify" and they verify using value(s) of $n \ge 5$ only • For test and for verify: they say 'test and verify' and they test using value(s) of $n \le 4$ and then verify using value(s) of $n \ge 5$

Stage ( <i>n</i> )	Number of new squares (S)	Total number of squares (T)
1	4	4
2	8	12
3	16	28
4	32	60
5	64	124
6	128	252
7	256	508
8	512	1020