

Markscheme

November 2016

Chemistry

On-screen examination

13 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

- 1 Mark positively. Give candidates credit for what they have achieved and what is correct. Do not deduct marks for incorrect responses.
- 2 Follow the markscheme provided and award only whole marks.
- **3** Each marking point appears on a separate line.
- 4 The maximum mark for each subpart is indicated in the "Total" column.
- 5 Where a mark is awarded a tick should be placed in the text at the precise point where it is clear the candidate deserves the mark.
- 6 Each marking point in a question part should be awarded separately unless there is an instruction to the contrary in the Notes column.
- 7 A question subpart may have more marking points than the total allows. This will be indicated by the word "*max*" in the Answer column. Further guidance may be given in the Notes column.
- 8 Additional instructions on how to interpret the markscheme are in **bold** italic text in the Answer column.
- 9 Alternative wording may be indicated in the Answer column by a slash (/). Either alternative is equally acceptable but the candidate cannot be rewarded for both as they are associated with the same marking point.
- 10 Alternative answers are indicated in the Answer column by "*or*". Either alternative is equally acceptable but the candidate cannot be rewarded for both as they are associated with the same marking point.
- 11 If two related points are required to award a mark, this is indicated by "*and*" in the answer column.
- 12 Words in brackets () in the Answer column are not necessary to gain the mark.
- 13 Words that are <u>underlined</u> are essential for the mark.
- 14 In some questions a reverse argument is also acceptable. This is indicated by the abbreviation *ORA (or reverse argument)* in the Notes column. Candidates should not be rewarded for reverse arguments unless *ORA* is given in the Notes column.
- 15 If the candidate's response has the same meaning or is clearly equivalent to the expected answer the mark should be awarded. In some questions this is emphasized by the abbreviation *WTTE (or words to that effect)* in the Notes column.
- 16 When incorrect answers are used correctly in subsequent question parts the follow through rule applies. Award the mark and add ECF (error carried forward) to the candidate response.
- 17 The order of marking points does not have to be the same as in the Answer column unless stated otherwise.
- 18 Marks should not be awarded where there is a contradiction in an answer. Add CON to the candidate response at the point where the contradiction is made.
- **19** Do not penalize candidates for errors in units or significant figures unless there is specific guidance in the Notes column.
- 20 Questions with higher mark allocations will generally be assessed using a level response method using task specific clarifications developed with reference to the criteria level descriptors. Candidate's work should be marked using a best fit approach. A candidate's response should be reviewed to determine holistically the band in which the response falls. Once this has been determined, each bullet point within that band should be assessed to see if the candidate has met the requirements of the statement. Where those requirements are met, marks should be awarded, starting from the lowest available mark for that band.

Once this process has been completed if the highest (or lowest) mark available for that band has been determined, the examiner must check the band above (or below) to ensure that the initially correct determination of the band was correctly allocated. For example, there may be sufficient detail in the candidate's response to award the lowest mark of the band above.

NB. Marks are distributed unevenly across the mark bands as candidates have to include much more detail in their responses to access the highest mark bands.

Quest	tion	Answers	Notes	Marks	Criterion
1	a			2	A
	b	(butane:) alkane/hydrocarbon (ethanol:) alcohol / alkanol		2	A
-	c	attempt to substitute into equation			
		(energy released =) 147.488 kJ <i>or</i> 147 488 J	Seen or implied		
		(mass of ethanol = 147.488/30.0 =) 4.91626	Accept incorrect use of kJ for 3 rd marking point	5	А
		answer given correctly to 3 sig figs 4.92 (g) unit of g/gram	Unit required Award unit mark separately		
	d	so 1 g releases 49.6 kJ	ECF from 1c		
		<i>or</i> ethanol releases 1380 kJmol ⁻¹ and butane release 2877kJmol ⁻¹ butane is a better fuel for portable heaters because it releases more energy per gram	WTTE	2	A
		or butane is a better fuel as it releases more energy per mole			

2	а		Property 1	Property 2	Accept the properties listed in any orde for the correct element	r	
		Aluminium	malleable	corrosion resistant		4	С
		Carbon	high strength to weight ratio	does not react easily or rigid			
	b	Sc reacts with a	ir or water			1	С
	С	(adding scandiu	m) increases			2	С
		the <u>yield strengt</u>	: <u>h</u>			2	C
3	а	orange-red and	bright red and green		All correct	1	A
	b	energy/heat is re	eleased		WTTE		
		. ,	more energy/heat than they	absorb		2	A
		(so) the reaction	n is exothermic		Only award second mark if first awarded	is	
	С	Cu (copper) or l				1	А
	d	numbers <i>or</i>	oms that have the same nur	nd have different number of neutron nber of protons and have different		1	A
	е	12 (neutrons)			Do not accept 12.31	1	А
4	a	air is mostly a co or air is a mixture of (and N ₂ and O ₂ / or (and N ₂ and O ₂ /	molecules in air) move at a	<i>or</i> have a greater mass than He a slower speed alloon's membrane faster at the sa	toms	3	A

b	hot air rises		
	or		
	the density of warm air is less than the density of colder air		
	(because) the kinetic energy of the molecules is greater in warm air	4	A
	(so) the same mass of gas has a bigger volume		
	it is the lower density of the warm air inside the balloon that will make it float up in the sky		
С	the size of the bag increases/inflates		
		2	A
	(because) the external pressure decreases and the internal pressure is unchanged		

- 8 -

5 a	 plans to test metal but incomplete details given one relevant piece of equipment suggested 	1-2		
	 a dependent variable is suggested but measurement is qualitative only metal identified as independent variable two relevant pieces of equipment attempt at a method but detail is insufficient for another student to follow 	tal identified as independent variable 3-6		
	 a correct dependent variable identified and measurement is quantitative metal identified as independent variable a control variables identified with details of how it is controlled at least two relevant pieces of equipment likely to generate quantitative data method is described and could easily be followed by another student care is needed with acids 	7-12	18	В
	 a correct dependent variable identified and measurement is quantitative metal identified as independent variable at least two control variables identified control variables justified with details complete details of equipment likely to generate quantitative data complete method is described, fully explained and could easily be followed by another student plans to repeat experiment and calculate average care is needed with acids 	13-18		

b	needs to include all metals			
	dependent variable – eg mass lost after set time, rate of production of gas			
	unit for dependent variable included		5	С
	columns for repeats			
	column for average calculation			
а	ion(s)	Do not accept positive ions	1	Α
b	ions cannot move through the salt bridge or electrons cannot flow	ECF from part a		
	circuit is now broken / incomplete			
	or		2	В
	no more charge exchange possible			
	(so) the circuit is broken / incomplete			
а	Voltage / V			
	3.155			
	2.227		1	В
	2.707			_
	0.000			
	one value correctly recorded			
b	the bigger the difference in reactivity and the higher the cell potential	Accept "further apart in the reactivity series" Accept "the elements become more	1	В
		reactive"		
С	Independent variable – metal in the positive half cell			
	dependent variable – cell potential		4	В
	any two controlled variables, for example size of electrodes, surface area of the electrodes, volume of the electrolyte, concentration		-	L
	b	unit for dependent variable included columns for repeats column for average calculation a ion(s) b ions cannot move through the salt bridge or electrons cannot flow circuit is now broken / incomplete or no more charge exchange possible (so) the circuit is broken / incomplete a Voltage / V 1.607 3.155 2.227 2.707 0.000 one value correctly recorded b the bigger the difference in reactivity and the higher the cell potential c independent variable – metal in the positive half cell dependent variable – cell potential any two controlled variables, for example	unit for dependent variable included columns for repeats columns for repeats Do not accept positive ions a ion(s) Do not accept positive ions b ions cannot move through the salt bridge or electrons cannot flow ECF from part a Accept "no electricity can flow" or no more charge exchange possible ECF from part a Accept "no electricity can flow" (so) the circuit is broken / incomplete Incomplete Incomplete a Voltage / V 1.607 3.155 2.227 2.707 0.000 one value correctly recorded Accept "further apart in the reactivity series" Accept "the elements become more reactive" b the bigger the difference in reactivity and the higher the cell potential Accept "the elements become more reactive" c independent variable – metal in the positive half cell any two controlled variables, for example size of electroles, surface area of the electrolyte, concentration	unit for dependent variable included 5 columns for repeats column for average calculation a ion(s) Do not accept positive ions 1 b ions cannot move through the salt bridge or electrons cannot flow ECF from part a Accept "no electricity can flow" circuit is now broken / incomplete or 2 2 no more charge exchange possible (so) the circuit is broken / incomplete 2 (so) the circuit is broken / incomplete 1 1 1.607 3.155 2.227 1 2.707 0.000 0 1 one value correctly recorded Accept "further apart in the reactivity series" Accept "further apart in the reactivity series" 1 c independent variable – metal in the positive half cell Accept "further apart in the reactivity argument is the electrolyte, concentration dependent variable – cell potential Accept "further apart in the reactivity argument is the electrolyte, concentration 4

d	Any four reasonable points, for example			
ŭ	 non-standard conditions might have been used 			
	 different concentrations 			
	 the electrodes may not have been clean 		4	С
	 the temperature might not have been constant 			
	 heat may have been lost 			
е	Any reasonable precaution, for example			
C	 eye protection should be worn 		1	В
	 wash hands after experiment 		•	D
f	Anode			
-	oxidation or electrons are lost	1 mark for correct identification of		
	electrons are lost and oxidation	reduction and oxidation in terms of		
		electron gain or loss wherever seen	2	Α
	Cathode			
	electrons are gained or reduction			
	electrons are gained and reduction			
g	metal atoms deposited at the cathode	no ECF		
	(so) mass of the cathode increases			0
	anode dissolves in the solution		4	C
	(so) mass of anode decreases			
а	(diluting the copper ions solutions) increases the cell voltage		1	С
b	colour becomes paler			
	fewer Cu ²⁺ / copper <u>ions</u> are present		3	С
	Cu ²⁺ / copper ions give the blue colour	Do not accept copper/Cu		
С	(diluting the silver ions solutions) decreases the cell voltage		1	С
d	$Cu(s)$ +2 $Ag^{*}(aq)$ \rightarrow 2 $Ag(s)$ + $Cu^{2*}(aq)$			
	reactants and products all correct			
	no electrons shown		4	D
	correct balancing		4	
	correct use of arrow rather than equilibrium sign and correct state symbols			

9	а	the lower the temperature, the longer the time the charge is maintained	WTTE	1	В
	b	xy scatter graph selected		1	С
	C	70±5%	Accept a range of % as long as the full range falls within 70±5 %	1	С
	d	30±5 %	Accept a range of % as long as the full range falls within 30 ± 5 %	1	С
	e	for the value at 50°C the estimate is <u>valid</u> because it falls within the data set/interpolation for the value at 80°C the estimate may be <u>invalid</u> because it falls outside the data set/extrapolation		2	С

10	а	Any reasonable answer, for example			
		countries not chosen are politically unstable			
		majority of countries not chosen are in the Southern hemisphere			5
		poorer economic conditions / LEDC (less economically developed country)		1	D
		• identification of the fact that Olympic Games are hosted by rich/developed countries only			
		link between economics and (un)equal opportunities			
	b	hydrogen ion concentration decreases			
		iron oxide is a basic oxide/alkaline		3	А
		hydroxide ions react/neutralize with (some of) hydrogen ions in the water			
	С	a change in pH, for example	WTTE		
		living organisms in the water can survive only within a certain range of pH			
		an effect of changing pH, for example			
		change in pH / hydrogen ion concentration of water will cause many organisms to die			
		a change in colour, for example			_
		the soil that gets washed into the water changes the clarity/colour of water causing less		4	D
		sunlight to penetrate			
		an effect of change in clarity/colour, for example			
		(this) affects the photosynthesis of aquatic plants			
		poor visibility for aquatic animals			
		reduced oxygen for fish			

11	 brief account of an impact on either environment or community a comment about industrial process eg roads/noise/power demand/dust/technology brief account of an impact on environment brief account of an impact on community an account of the impact of an industrial process eg about roads/noise/power demand/dust/technology 	1–2 3–5		
	 account of more than one impact on environment account of more than one impact on community more than one impact of an industrial process a detailed account of the impact of at least one industrial process eg about roads/noise/power demand/dust/technology supported with specific examples suggestion for the future unsupported by science 	6–10	17	D
	 account of more than one impact on environment account of one positive impact on community account of one negative impact on community a detailed account of the impact of more than one industrial process eg about roads/noise/power demand/dust/technology supported with specific examples consideration of tech that could be used to counter industrial impacts more than one suggestion for the future supported by science a concluding appraisal linking all the issues discussed previously 	11–17		
12	 Any reasonable points, for example max 4 conserving finite raw materials conserving natural resources (conserving natural resources) for other uses reduction in CO₂ emissions/reduction in climate change reduction in waste as products are recycled/waste management reduction in waste material associated with mining reduced destruction of environment/habitats 		4	D