Biology ## Higher level ## Paper 1B ## Markscheme | Question | Answers | Notes | Marks | |-----------|---|---|-------| | 1. a | - 8 histones with DNA wrapped around ✓. - Linker DNA: Connects nucleosomes; bound by H1 histone ✓. | | 2 | | 1. b (i) | - ³² P (DNA) entered bacteria , while ³⁵ S (protein) did not ✓ Only DNA could transmit genetic information to progeny phages ✓ . | | 2 | | 1. b (ii) | - Radioisotopes allowed precise tracking of molecules ✓. OR - Enabled definitive falsification of protein as genetic material ✓. | | 1 | | 1. c | Tetranucleotide hypothesis predicted uniform base ratios Chargaff's data showed variable ratios, disproving repetition | Award 1 for hypothesis,
1 for falsification. | 2 | | Question | Answers | Notes | Marks | |----------|--|---|-------| | 2 a(i) | Reduces fluidity by restraining phospholipid movement OR Prevents excessive melting of the membrane at high temperatures | Accept either explanation | 1 | | 2 a(ii) | - Prevents solidification by spacing phospholipids OR - Maintains flexibility at low temperatures | Accept either explanation | 1 | | 2 b | - Prediction: Membrane becomes too fluid (high temps) OR too rigid (low temps) ✓ - Justification: Lacks cholesterol's buffering effect on fluidity ✓ | Award 1 for prediction, 1 for justification | 2 | | 2 c | - Phospholipids: Form basic bilayer structure AND create semi-permeability ✓ - Cholesterol: Modulates fluidity WITHOUT contributing to structural framework ✓ | | 2 | | 2 d | - Phospholipid bilayer with hydrophilic heads and hydrophobic tails ✓ - Proteins: Integral (spanning) AND peripheral (surface) ✓ - Other components: Cholesterol (modulates fluidity) AND carbohydrates (cell recognition) ✓ | | 3 | | Question | Answers | Notes | Marks | |----------|--|-------|-------| | 3a (i) | - Label: Microvilli 🗸. | | 1 | | 3a (ii) | - Increases absorption of nutrients/ions in PCT ✔. | | 1 | | 3a (iii) | - Small intestine | | 1 | | 3b | - Erythrocytes: Flattened biconcave shape (no nucleus) ✓ Type I pneumocytes: Extremely thin (squamous) ✓ Shared trait: Both reduce diffusion distance ✓. | | 3 | | 3c | - Prediction : Impaired nutrient/waste exchange OR cell death ✓ Justification : Low SA:V limits diffusion efficiency ✓. | | 2 | | Question | Answers | Notes | Marks | |-----------|--|--|-------| | 4 a(i) | - I-band shortens
OR
becomes narrower ✓ . | Do not accept
"disappears." | 1 | | 4 a(ii) | A-band corresponds to myosin filament length Myosin filaments do not shorten during contraction | | 2 | | 4 a (iii) | ATP binds to myosin head, causing detachment from actin ATP hydrolysis provides energy for myosin head reset (cocked position) ATP regeneration (ADP+Pi → ATP) enables next cross-bridge cycle OR "ATP breaks actin-myosin bonds AND powers reorientation" | Award 1 mark per
distinct ATP role. | 3 | | 4 b(i) | - Acts as molecular spring (elastic recoil) ✓ Pulls Z-discs back to resting position after stretch ✓. OR - "Stores potential energy during the stretch, releases it for recoil" | | 2 | | 4 b(ii) | Increased muscle stiffness ✓ OR Higher risk of strains/tears ✓ OR Reduced flexibility ✓ | | 1 | | 4 b(iii) | Titin anchors myosin to Z-disc, resisting overstretch . Limits sarcomere elongation when antagonistic muscles contract . OR "Acts as a brake by storing elastic energy during stretching" | | 2 |