

Biology

Higher level

Paper 1B

Markscheme

Question	Answers	Notes	Marks
1. a	 - 8 histones with DNA wrapped around ✓. - Linker DNA: Connects nucleosomes; bound by H1 histone ✓. 		2
1. b (i)	- ³² P (DNA) entered bacteria , while ³⁵ S (protein) did not ✓ Only DNA could transmit genetic information to progeny phages ✓ .		2
1. b (ii)	- Radioisotopes allowed precise tracking of molecules ✓. OR - Enabled definitive falsification of protein as genetic material ✓.		1
1. c	 Tetranucleotide hypothesis predicted uniform base ratios Chargaff's data showed variable ratios, disproving repetition 	Award 1 for hypothesis, 1 for falsification.	2

Question	Answers	Notes	Marks
2 a(i)	 Reduces fluidity by restraining phospholipid movement OR Prevents excessive melting of the membrane at high temperatures 	Accept either explanation	1
2 a(ii)	 - Prevents solidification by spacing phospholipids OR - Maintains flexibility at low temperatures 	Accept either explanation	1
2 b	- Prediction: Membrane becomes too fluid (high temps) OR too rigid (low temps) ✓ - Justification: Lacks cholesterol's buffering effect on fluidity ✓	Award 1 for prediction, 1 for justification	2
2 c	- Phospholipids: Form basic bilayer structure AND create semi-permeability ✓ - Cholesterol: Modulates fluidity WITHOUT contributing to structural framework ✓		2
2 d	- Phospholipid bilayer with hydrophilic heads and hydrophobic tails ✓ - Proteins: Integral (spanning) AND peripheral (surface) ✓ - Other components: Cholesterol (modulates fluidity) AND carbohydrates (cell recognition) ✓		3

Question	Answers	Notes	Marks
3a (i)	- Label: Microvilli 🗸.		1
3a (ii)	- Increases absorption of nutrients/ions in PCT ✔.		1
3a (iii)	- Small intestine		1
3b	- Erythrocytes: Flattened biconcave shape (no nucleus) ✓ Type I pneumocytes: Extremely thin (squamous) ✓ Shared trait: Both reduce diffusion distance ✓.		3
3c	- Prediction : Impaired nutrient/waste exchange OR cell death ✓ Justification : Low SA:V limits diffusion efficiency ✓.		2

Question	Answers	Notes	Marks
4 a(i)	- I-band shortens OR becomes narrower ✓ .	Do not accept "disappears."	1
4 a(ii)	 A-band corresponds to myosin filament length Myosin filaments do not shorten during contraction 		2
4 a (iii)	 ATP binds to myosin head, causing detachment from actin ATP hydrolysis provides energy for myosin head reset (cocked position) ATP regeneration (ADP+Pi → ATP) enables next cross-bridge cycle OR "ATP breaks actin-myosin bonds AND powers reorientation" 	Award 1 mark per distinct ATP role.	3
4 b(i)	- Acts as molecular spring (elastic recoil) ✓ Pulls Z-discs back to resting position after stretch ✓. OR - "Stores potential energy during the stretch, releases it for recoil"		2
4 b(ii)	 Increased muscle stiffness ✓ OR Higher risk of strains/tears ✓ OR Reduced flexibility ✓ 		1
4 b(iii)	 Titin anchors myosin to Z-disc, resisting overstretch . Limits sarcomere elongation when antagonistic muscles contract . OR "Acts as a brake by storing elastic energy during stretching" 		2