Biology ## Higher level ## Paper 2 ## Markscheme | Question | Acceptable Answers | Notes | Marks | |----------|---|------------------------------------|-------| | 1a | 1. Shorter height in Mut001 ✓ .
2. Fewer brace roots in Mut001 ✓ . | | 2 | | 1 b(i) | - 44.4% ✓ .
(Working: [(180–100)/180]×100) | Correct math required. | 1 | | 1 b(ii) | Statistical Significance: - Yes (asterisks indicate P<0.05) ✓. | | 1 | | 1 c(i) | - 3.4:1 (wild-type: mutant) ✔. | Accept
152:45 OR 3.4:1 . | 1 | | 1 c(ii) | - Monohybrid
dominant/recessive (3:1 ratio) ✔. | | 1 | | 1 d(i) | - Heterozygous SNP (G/A) ✔. | | 1 | | 1 d(ii) | - Heterozygosity at this locus ✔ . | | 1 | | 1 e | - Acid growth hypothesis (H⁺ pumps loosen wall) ✓. - Gene expression for sustained growth ✓. | | 2 | | 1 f(i) | Disrupts auxin gradients → stunted growth Root/shoot abnormalities | | 2 | | 1 f(ii) | - Maize: Reduced auxin in roots under Al stress ✔ Arabidopsis: Increased auxin in roots ✔. | | 2 | | Question | Acceptable Answers | Notes | Marks | |----------|---|-------|-------| | | - Aluminum tolerance 🗸 . | | | | 1 g | - Continued root growth in toxic soils | | 2 | | | v . | | | | Question | Acceptable Answers | Notes | Marks | |---------------------|---|---|-------| | 2 a (i) | Structural Changes: 1. Chromatin condensation OR Nuclear envelope breakdown 2. Centrosome duplication OR Spindle formation | Must identify two distinct
changes . | 2 | | 2 a (ii)
2 b (i) | G1 Advantage: - Organelles need proteins/lipids (requires synthesis) ✓ S phase prioritizes DNA replication (resources allocated there) ✓. Most Affected Phase: | | 2 | | 2 b (ii) | - G1 ✓. Impact on Mitosis: - Insufficient cyclins/CDKs for checkpoint passage ✓ Lack of spindle/mitotic machinery proteins ✓. | Protein synthesis must be linked to checkpoints OR structures. | 2 | | 2 c | Opinion: - Agree: Liver cells divide less (longer G0) OR Disagree: Both require full G1 Reason: Cite cell type function (e.g., liver regeneration vs. epithelial turnover) | Must justify with biological
evidence . | 2 | | Question | Acceptable Answers | Notes | Marks | |----------|---|---------------------------|-------| | 3 a(i) | - Hypotonic : Water enters cell (ψ _{cell} < ψ _{solution}) ✓.
- Hypertonic : Water leaves cell (ψ _{cell} > ψ _{solution}) ✓. | | 2 | | 3 a(ii) | ψ _w = 0 kPa: - Isotonic image ✓. Justification: - No net water movement (ψ _{cell} = ψ _{solution}) ✓. | | 1 | | 3 b(i) | $ψ_w = ψ_s + ψ_p = -150 \text{ kPa } \checkmark$. | Correct math is required. | 1 | | 3 b(ii) | Prediction: - ψ _p increases to +450 kPa ✓. Justification: - Distilled water (ψ _w = 0) causes maximal turgor pressure ✓. | | 2 | | Question | Acceptable Answers | Notes | Marks | |----------|---|--|-------| | 4 a | - Rapid rise to peak (~week 8-10)
OR
Sharp decline after the first
trimester ✓ . | Must
describe trend (rise/fall). | 1 | | 4 b(i) | - Week 10-12 ✔. | Must match graph intersection. Accept any of the three numbers | 1 | | 4 b(ii) | - Progesterone : Maintains
endometrium
OR
Prevents contractions ✓.
- Estrogen : Stimulates placental
growth | | 2 | | Question | Acceptable Answers | Notes | Marks | |----------|---|--|-------| | | OR
Prepares mammary glands ✔. | | | | | - Miscarriage risk OR Ectopic pregnancy ✓ Fetal abnormalities OR Placental insufficiency ✓. | Two different implication s required. | 2 | | Question | Acceptable Answers | Notes | Marks | |----------|--|--|-------| | 5 a | - 50% decrease | One mark for working and one for correct percentage. | 1 | | 5 b | - Autoregulation maintains constant O₂/glucose for brain function ✔. OR - Critical for consciousness OR metabolic demand stable ✔. | | 1 | | 5 c | - Vasoconstriction of afferent
arterioles ✔.
OR
- Increased filtration fraction ✔. | | 1 | | Question | Acceptable Answers | Notes | Marks | |----------|---|------------------------------------|-------| | | - High tensile strength OR Resists
turgor pressure ✔ . | Must list two distinct properties. | 2 | | Question | Acceptable Answers | Notes | Marks | |----------|--|---|-------| | | - Insoluble in water OR Forms
microfibrils ✔ . | | | | 6 b | - Symbiotic gut bacteria produce
cellulase ✓.
- Fermentation chambers (e.g.,
rumen) host microbes ✓.
OR
- Cecal digestion (e.g., in rabbits) ✓. | Must explain microbial
role + digestive
adaptation. | 2 | | Question | Acceptable Answers | Notes | Marks | |----------|--|-------------------------------------|-------| | 7 a(i) | $-q = \frac{2 \times aa + Aa}{2 \times Total} = \frac{80 + 320}{2000} = 0.2 $ | Correct working + answer required. | 2 | | 7 a(ii) | - Expected Aa = 2pq×N=2×0.8×0.2×1000=320 ✓. - Conclusion: Observed (320) = Expected (320) → Equilibrium ✓. | Must show calculation + comparison. | 2 | | 7 b | - No natural selection OR Random mating OR No mutations OR Large population ✔. | | 1 | | Question | Acceptable Answers | Notes | Marks | |----------|---------------------------|-------|-------| | 8 a | Chargaff's Rules: | | | | | 1. A = T OR Purines = | | | | | Pyrimidines 🗸 | | 4 | | | 2. G = C ✓. | | | | Question | Acceptable Answers | Notes | Marks | |----------|--|----------------------------------|-------| | | Species Variation: | | | | | 3. Ratios differ between | | | | | species OR (A+T)/(G+C) varies | | | | | v . | | | | | 4. Example : Human DNA has | | | | | ~40% A+T OR <i>E. coli</i> has ~50% | | | | | G+C ✔. | | | | | 1. Base Pairing : Showed A=T | | | | | and G=C, suggesting | | | | | complementary pairing 🗸 . | | | | | 2. Uniform Helix Width : Equal | | | | | purine-pyrimidine ratios implied | | | | | consistent diameter ✔. | | | | | 3. Anti-Parallel Strands: | | | | | Supported by 1:1 stoichiometry | | | | | . | Must explicitly | | | | 4. Non-Repetitive Sequences: | link ≥3 contributions to the | | | 8 b | Falsified tetranucleotide | model. | 7 | | | hypothesis 🗸. | | | | | 5. Quantitative Foundation | Must identify two gaps in | | | | Provided empirical data for | Chargaff's data. | | | | model-building ✔. | | | | | 1. No 3D Data : Did not reveal | | | | | helical shape OR hydrogen | | | | | bonding . | | | | | 2. No Backbone Info : Silent on | | | | | sugar-phosphate arrangement | | | | | Sugai priospriate arrangement | | | | | Strengths: | | | | 8 c | 1. Confirmed DNA as genetic | Must include 2 strengths + 2 | 4 | | | material (not protein) 🗸. | limitations. | · | | | Inaconal (noc process) . | | | | Question | Acceptable Answers | Notes | Marks | |----------|---|-------|-------| | | 2. Used isotopes (³² P/ ³⁵ S) for | | | | | definitive labeling 🗸 . | | | | | Limitations: | | | | | 3. Did not show replication | | | | | mechanism OR structure 🗸. | | | | | 4. Bacteriophage not | | | | | representative of all organisms | | | | | ✓ . | | | | Question | Acceptable Answers | Notes | Marks | |----------|---|---|-------| | 9 a | 1a. Leaves needle-like → Pinus OR Cedrus ✓. 1b. Leaves broad → Go to 2 ✓. 2a. Leaves serrated → Quercus OR Fagus ✓. 2b. Leaves smooth → Acer OR Platanus ✓. | Must include 2 traits per step . | 4 | | 9 b | Comparison: - Dichotomous: Phenotypic; Barcoding: Genetic ✓ Dichotomous: Subjective; Barcoding: Objective ✓ Barcoding detects evolutionary relationships ✓. Dichotomous Keys: - Utility: Fast OR low-cost OR field-friendly ✓ Limitation: Requires morphological | | 7 | | Question | Acceptable Answers | Notes | Marks | |----------|--|--|-------| | | expertise OR fails for cryptic species 🗸 . | | | | | DNA Barcoding: | | | | | - Utility : High accuracy OR identifies | | | | | larvae/eggs ✔. | | | | | - Limitation : Expensive OR requires lab | | | | | access 🗸 . | | | | | 1. Horizontal Gene Transfer : Plasmids | | | | | bypass vertical inheritance 🗸. | Must link plasmid
exchange to species
concept failure. | | | | 2. No Sexual Reproduction : Cannot | | | | 9 c | apply "reproductive isolation" 🗸. | | 4 | | | 3. Genetic Fluidity : Shared genes blur | | | | | species boundaries 🗸. | | | | | 4. Example : Antibiotic resistance | | | | | spread via plasmids 🗸. | | | | Question | Acceptable Answers | Notes | Marks | |----------|--|---------------------------|-------| | | Functional Benefits: | | | | | 1. Nuclear Pore Control : Regulates | | | | | mRNA/protein transport 🗸 . | | | | | 2. Compartmentalization : Separates | | | | | transcription (nucleus) from translation | | | | 10 a | (cytoplasm) ✔. | | 4 | | | 3. Protection : Shields DNA from | | | | | cytoplasmic enzymes OR oxidative | | | | | damage 🗸 . | | | | | 4. Structural Support : Maintains nuclear | | | | | shape during division 🗸 . | | | | | Free Ribosomes: | | | | 10 b | - Synthesize mitochondrial/chloroplast | Must contrast both | 4 | | 100 | proteins 🗸 . | roles + destinations. | 4 | | | - Products remain in | | | | Question | Acceptable Answers | Notes | Marks | |----------|---|-------|-------| | | cytoplasm OR organelle-targeted ✔. | | | | | RER: | | | | | - | | | | | Synthesize secreted OR membrane-bou | | | | | nd proteins ✔. | | | | | - Products go to | | | | | Golgi OR lysosomes OR plasma membrane | | | | | √ . | | | | | Modification Steps: | | | | | - Cisternal Maturation: Proteins move | | | | | through Golgi cisternae 🗸. | | | | | - Glycosylation : Adds carbohydrates | | | | | (e.g., glycoproteins) ✔. | | | | | - Proteolytic Cleavage : Activates | | | | | enzymes (e.g., insulin maturation) 🗸. | | | | 10 c | Packaging: | | 7 | | | - Vesicle Formation : Exocytic vesicles | | | | | bud from <i>trans</i> -Golgi ✓. | | | | | - Targeting : Vesicles fuse with plasma | | | | | membrane ✓. | | | | | Example: Insulin OP digostivo | | | | | Example: Insulin OR digestive | | | | 1 | enzymes OR mucus secretion ✓ . | | |