

Biology

Higher level

Paper 2

Markscheme

Question	Acceptable Answers	Notes	Marks
1a	1. Shorter height in Mut001 ✓ . 2. Fewer brace roots in Mut001 ✓ .		2
1 b(i)	- 44.4% ✓ . (Working: [(180–100)/180]×100)	Correct math required.	1
1 b(ii)	Statistical Significance: - Yes (asterisks indicate P<0.05) ✓.		1
1 c(i)	- 3.4:1 (wild-type: mutant) ✔.	Accept 152:45 OR 3.4:1 .	1
1 c(ii)	- Monohybrid dominant/recessive (3:1 ratio) ✔.		1
1 d(i)	- Heterozygous SNP (G/A) ✔.		1
1 d(ii)	- Heterozygosity at this locus ✔ .		1
1 e	 - Acid growth hypothesis (H⁺ pumps loosen wall) ✓. - Gene expression for sustained growth ✓. 		2
1 f(i)	 Disrupts auxin gradients → stunted growth Root/shoot abnormalities 		2
1 f(ii)	- Maize: Reduced auxin in roots under Al stress ✔ Arabidopsis: Increased auxin in roots ✔.		2

Question	Acceptable Answers	Notes	Marks
	- Aluminum tolerance 🗸 .		
1 g	- Continued root growth in toxic soils		2
	v .		

Question	Acceptable Answers	Notes	Marks
2 a (i)	Structural Changes: 1. Chromatin condensation OR Nuclear envelope breakdown 2. Centrosome duplication OR Spindle formation	Must identify two distinct changes .	2
2 a (ii) 2 b (i)	G1 Advantage: - Organelles need proteins/lipids (requires synthesis) ✓ S phase prioritizes DNA replication (resources allocated there) ✓. Most Affected Phase:		2
2 b (ii)	- G1 ✓. Impact on Mitosis: - Insufficient cyclins/CDKs for checkpoint passage ✓ Lack of spindle/mitotic machinery proteins ✓.	Protein synthesis must be linked to checkpoints OR structures.	2
2 c	Opinion: - Agree: Liver cells divide less (longer G0) OR Disagree: Both require full G1 Reason: Cite cell type function (e.g., liver regeneration vs. epithelial turnover)	Must justify with biological evidence .	2

Question	Acceptable Answers	Notes	Marks
3 a(i)	- Hypotonic : Water enters cell (ψ _{cell} < ψ _{solution}) ✓. - Hypertonic : Water leaves cell (ψ _{cell} > ψ _{solution}) ✓.		2
3 a(ii)	ψ _w = 0 kPa: - Isotonic image ✓. Justification: - No net water movement (ψ _{cell} = ψ _{solution}) ✓.		1
3 b(i)	$ψ_w = ψ_s + ψ_p = -150 \text{ kPa } \checkmark$.	Correct math is required.	1
3 b(ii)	Prediction: - ψ _p increases to +450 kPa ✓. Justification: - Distilled water (ψ _w = 0) causes maximal turgor pressure ✓.		2

Question	Acceptable Answers	Notes	Marks
4 a	- Rapid rise to peak (~week 8-10) OR Sharp decline after the first trimester ✓ .	Must describe trend (rise/fall).	1
4 b(i)	- Week 10-12 ✔.	Must match graph intersection. Accept any of the three numbers	1
4 b(ii)	- Progesterone : Maintains endometrium OR Prevents contractions ✓. - Estrogen : Stimulates placental growth		2

Question	Acceptable Answers	Notes	Marks
	OR Prepares mammary glands ✔.		
	- Miscarriage risk OR Ectopic pregnancy ✓ Fetal abnormalities OR Placental insufficiency ✓.	Two different implication s required.	2

Question	Acceptable Answers	Notes	Marks
5 a	- 50% decrease 	One mark for working and one for correct percentage.	1
5 b	- Autoregulation maintains constant O₂/glucose for brain function ✔. OR - Critical for consciousness OR metabolic demand stable ✔.		1
5 c	- Vasoconstriction of afferent arterioles ✔. OR - Increased filtration fraction ✔.		1

Question	Acceptable Answers	Notes	Marks
	- High tensile strength OR Resists turgor pressure ✔ .	Must list two distinct properties.	2

Question	Acceptable Answers	Notes	Marks
	- Insoluble in water OR Forms microfibrils ✔ .		
6 b	- Symbiotic gut bacteria produce cellulase ✓. - Fermentation chambers (e.g., rumen) host microbes ✓. OR - Cecal digestion (e.g., in rabbits) ✓.	Must explain microbial role + digestive adaptation.	2

Question	Acceptable Answers	Notes	Marks
7 a(i)	$-q = \frac{2 \times aa + Aa}{2 \times Total} = \frac{80 + 320}{2000} = 0.2 $	Correct working + answer required.	2
7 a(ii)	- Expected Aa = 2pq×N=2×0.8×0.2×1000=320 ✓. - Conclusion: Observed (320) = Expected (320) → Equilibrium ✓.	Must show calculation + comparison.	2
7 b	- No natural selection OR Random mating OR No mutations OR Large population ✔.		1

Question	Acceptable Answers	Notes	Marks
8 a	Chargaff's Rules:		
	1. A = T OR Purines =		
	Pyrimidines 🗸		4
	2. G = C ✓.		

Question	Acceptable Answers	Notes	Marks
	Species Variation:		
	3. Ratios differ between		
	species OR (A+T)/(G+C) varies		
	v .		
	4. Example : Human DNA has		
	~40% A+T OR <i>E. coli</i> has ~50%		
	G+C ✔.		
	1. Base Pairing : Showed A=T		
	and G=C, suggesting		
	complementary pairing 🗸 .		
	2. Uniform Helix Width : Equal		
	purine-pyrimidine ratios implied		
	consistent diameter ✔.		
	3. Anti-Parallel Strands:		
	Supported by 1:1 stoichiometry		
	.	Must explicitly	
	4. Non-Repetitive Sequences:	link ≥3 contributions to the	
8 b	Falsified tetranucleotide	model.	7
	hypothesis 🗸.		
	5. Quantitative Foundation	Must identify two gaps in	
	Provided empirical data for	Chargaff's data.	
	model-building ✔.		
	1. No 3D Data : Did not reveal		
	helical shape OR hydrogen		
	bonding .		
	2. No Backbone Info : Silent on		
	sugar-phosphate arrangement		
	Sugai priospriate arrangement		
	Strengths:		
8 c	1. Confirmed DNA as genetic	Must include 2 strengths + 2	4
	material (not protein) 🗸.	limitations.	·
	Inaconal (noc process) .		

Question	Acceptable Answers	Notes	Marks
	2. Used isotopes (³² P/ ³⁵ S) for		
	definitive labeling 🗸 .		
	Limitations:		
	3. Did not show replication		
	mechanism OR structure 🗸.		
	4. Bacteriophage not		
	representative of all organisms		
	✓ .		

Question	Acceptable Answers	Notes	Marks
9 a	 1a. Leaves needle-like → Pinus OR Cedrus ✓. 1b. Leaves broad → Go to 2 ✓. 2a. Leaves serrated → Quercus OR Fagus ✓. 2b. Leaves smooth → Acer OR Platanus ✓. 	Must include 2 traits per step .	4
9 b	Comparison: - Dichotomous: Phenotypic; Barcoding: Genetic ✓ Dichotomous: Subjective; Barcoding: Objective ✓ Barcoding detects evolutionary relationships ✓. Dichotomous Keys: - Utility: Fast OR low-cost OR field-friendly ✓ Limitation: Requires morphological		7

Question	Acceptable Answers	Notes	Marks
	expertise OR fails for cryptic species 🗸 .		
	DNA Barcoding:		
	- Utility : High accuracy OR identifies		
	larvae/eggs ✔.		
	- Limitation : Expensive OR requires lab		
	access 🗸 .		
	1. Horizontal Gene Transfer : Plasmids		
	bypass vertical inheritance 🗸.	Must link plasmid exchange to species concept failure.	
	2. No Sexual Reproduction : Cannot		
9 c	apply "reproductive isolation" 🗸.		4
	3. Genetic Fluidity : Shared genes blur		
	species boundaries 🗸.		
	4. Example : Antibiotic resistance		
	spread via plasmids 🗸.		

Question	Acceptable Answers	Notes	Marks
	Functional Benefits:		
	1. Nuclear Pore Control : Regulates		
	mRNA/protein transport 🗸 .		
	2. Compartmentalization : Separates		
	transcription (nucleus) from translation		
10 a	(cytoplasm) ✔.		4
	3. Protection : Shields DNA from		
	cytoplasmic enzymes OR oxidative		
	damage 🗸 .		
	4. Structural Support : Maintains nuclear		
	shape during division 🗸 .		
	Free Ribosomes:		
10 b	- Synthesize mitochondrial/chloroplast	Must contrast both	4
100	proteins 🗸 .	roles + destinations.	4
	- Products remain in		

Question	Acceptable Answers	Notes	Marks
	cytoplasm OR organelle-targeted ✔.		
	RER:		
	-		
	Synthesize secreted OR membrane-bou		
	nd proteins ✔.		
	- Products go to		
	Golgi OR lysosomes OR plasma membrane		
	√ .		
	Modification Steps:		
	- Cisternal Maturation: Proteins move		
	through Golgi cisternae 🗸.		
	- Glycosylation : Adds carbohydrates		
	(e.g., glycoproteins) ✔.		
	- Proteolytic Cleavage : Activates		
	enzymes (e.g., insulin maturation) 🗸.		
10 c	Packaging:		7
	- Vesicle Formation : Exocytic vesicles		
	bud from <i>trans</i> -Golgi ✓.		
	- Targeting : Vesicles fuse with plasma		
	membrane ✓.		
	Example: Insulin OP digostivo		
	Example: Insulin OR digestive		
1	enzymes OR mucus secretion ✓ .		