Chemistry

Higher level

Paper 2

Markscheme

Question	Answers	Total
1 (a)	C: $40.00 / 12.01 = 3.33$ H: $6.70 / 1.01 = 6.63$ O: $63.31 / 16.00 = 3.33$ CH ₂ O ✓	3
1 (b)	60 / 30 = 2 $C_2H_4O_2 \checkmark$	2
2 (a)	$Zn(s) + 2HNO_3(aq) \rightarrow Zn(NO_3)_2(aq) + H_2(g)$	1
2 (b)	Zn: 3.00 / 65.38 = 0.0459 mol HNO₃: 1.00 × (50.0 / 1000) = 0.0500 mol HNO₃ is limiting reactant ✔	2
2 (c)	$(0.0500 / 2) \times 22.7 = 0.568 \text{dm}^3$	2
2 (d)	Particles must collide with: Correct orientation \checkmark $E \ge E_a \checkmark$	2
2 (e)	Rate of reaction increases 🖌 Frequency of collisions between reactant particles increases 🖌	2
2 (f)	Activation energy, Ea Kinetic energy	1

3 (a)	$\begin{array}{c} H_2 \text{Second-order} \checkmark \\ I_2 \text{First-order} \checkmark \end{array}$	2
3 (b)	Rate = $k[H_2]^2[I_2]$	2
3 (c)	$k = 5 \times 10^3 \mathrm{mol}^{-2} \mathrm{dm}^6 \mathrm{s}^{-1}$	1
4 (a)	Group number determines the number of valence electrons / electrons in outer shell 🖌	1
4 (b)	1s ² 2s ² 2p ⁶ 3s ² ✓ s block ✓	2
4 (c)	Chlorine has higher nuclear charge 🖌 And smaller atomic radius 🖌	2
4 (d)	s orbital 🖌 p orbital 🖌	2
4 (e) (i)	0 / zero 🗸	1
4 (e) (ii)	Coordination bond 🗸 Between lone pairs on ligand and central metal ion 🖌	2
4 (e) (iii)	Cu ²⁺ is magnetic due to unpaired electron in 3d sublevel ✔	1
4 (e) (iv)	4s and 3d sublevels are close in energy ✔ Gradual increase in successive ionisation energies ✔	2
5 (a)	$K = \frac{[SO_3]^2}{[SO_2]^2[O_2]} \checkmark$	1
5 (b)	$[SO_3]_{eq} = 3.00 \text{ mol } dm^{-3}$ $[SO_2]_{eq} = 1.50 \text{ mol } dm^{-3}$ $[O_2]_{eq} = 0.75 \text{ mol } dm^{-3}$ $K = 0.188 \checkmark$	2
5 (c)	$\Delta G^{\ominus} = -8.31 \times 300 \times (\text{In } 0.188)$ $\Delta G^{\ominus} = 4.17 \text{ kJ mol}^{-1} \checkmark$	2
5 (d)	Non-spontaneous and ∆G [⊕] positive ✔	1
5 (e)	Yield of SO₂ decreases ✔ More gaseous molecules on reactants side ✔	2
5 (f) (i)	$SO_3(g) + H_2O(I) \rightarrow H_2SO_4(aq)$	1

5 (f) (ii)Strong acid \checkmark Completely ionises in solution \checkmark 26 (a)HCO3 \checkmark 16 (b) $\begin{bmatrix} :\ddot{0}:\\ .\dot{0}, \ddot{0}, \dot{0} \end{bmatrix}^{2^{2}}$ 16 (b) $\begin{bmatrix} :\ddot{0}:\\ .\dot{0}, \ddot{0}, \dot{0} \end{bmatrix}^{2^{2}}$ 16 (c)Trigonal planar \checkmark Three electron domains around central atom \checkmark 26 (d) $K_{a} = x^{2} / [HA]_{initial}$ $4.5 \times 10^{-7} = x^{2} / 0.0500$ $x = \sqrt{4.5 \times 10^{-7} \times 0.0500}$ 2	
$6 (a) \qquad HCO_{3}^{-} \checkmark \qquad 1$ $6 (b) \qquad \begin{bmatrix} :\ddot{O}: \\ I \\ :O \\ \cdot O \end{bmatrix}^{2^{-}} \checkmark \qquad 1$ $6 (b) \qquad \begin{bmatrix} :\ddot{O}: \\ I \\ :O \\ \cdot O \end{bmatrix}^{2^{-}} \checkmark \qquad 1$ $6 (c) \qquad Trigonal planar \checkmark \qquad 2$ $Three electron domains around central atom \checkmark \qquad 2$ $K_{a} = x^{2} / [HA]_{initial}$ $4.5 \times 10^{-7} = x^{2} / 0.0500$ $x = \sqrt{4.5 \times 10^{-7} \times 0.0500} \qquad 2$	
$6 (d) = \frac{1}{2} \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]^{2} \left[\begin{array}{c} 0 \end{array} \right]^{2} \left[\begin{array}{c} 0 \\ 0 \end{array} \right]^{2} \left[\begin{array}{$	
6 (c) $ \begin{array}{c} \text{Trigonal planar} \checkmark \\ \text{Three electron domains around central atom} \checkmark 2 \\ \\ $	
6 (d) $ \begin{array}{l} \mathcal{K}_{a} = x^{2} / [HA]_{initial} \\ 4.5 \times 10^{-7} = x^{2} / 0.0500 \\ x = \sqrt{4.5 \times 10^{-7} \times 0.0500} \\ \end{array} $ 2	
$x = 1.5 \times 10^{-4}$ pH = -log (1.5 × 10 ⁻⁴) = 3.8 \checkmark	
7 (a) Any two from: Same general formula Differ by CH ₂ Same functional group Gradation in physical properties Similar chemical reactions	
7 (b) H-C-C 1 1 V	
7 (c) Heat and distillation / excess of alcohol 🖌 1	
7 (d)Ethanol has hydrogen bonding between its molecules / ethanal has dipole-dipoles forces between its molecules ✓ Hydrogen bonding is stronger than dipole-dipole forces ✓2	
Bonds broken: 3196 kJBonds formed: 3237 kJ $\Delta H = 3196 - 3237 = -41 \text{ kJ mol}^{-1} \checkmark$ 27 (f) (i)2-bromopropane \checkmark1	

RevisionDojo

7 (f) (ii)	Formation of 2-bromopropane results in the formation of secondary carbocation \checkmark Secondary carbocation is more stable than primary carbocation \checkmark	2
7 (f) (iii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3
7 (g) (i)	Radical substitution 🗸	1
7 (g) (ii)	$: \overset{\frown}{\text{CI}} \overset{\frown}{\overset{\frown}} \overset{\Box}{\underset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\bullet$	2
7 (h)	Diamond does not conduct electricity (no delocalised electrons) ✔ Graphite conducts electricity (has delocalised electrons) ✔	2
8 (a)	Cathode: $2H_2O(I) + 2e^- \rightarrow H_2(g) + 2OH^-(aq) \checkmark$ Anode: $2CI^-(aq) \rightarrow CI_2(g) + 2e^- \checkmark$	2
8 (b)	Electron flow in wires 🗸 Ion flow in electrolyte 🗸	2
8 (c)	Electrostatic attraction between oppositely charged ions 🖌	1
8 (d)	Li ⁺ has smaller ionic radius than Na ⁺ ✔	1
8 (e)	$\Delta H_{\rm f} = 159 + 520 + 121 + (-349) - 864$ $\Delta H_{\rm f} = -413 \rm kJ mol^{-1}$	3
9 (a)	$Zn(s) + Ni^{2+}(aq) \rightarrow Zn^{2+}(aq) + Ni(s)$	1
9 (b)	$E^{\oplus}_{cell} = -0.26 - (-0.76)$ $E^{\oplus}_{cell} = 0.50 \text{V} \checkmark$	1
9 (c)	$\Delta G^{\oplus} = -2 \times 96500 \times 0.50$ $\Delta G^{\oplus} = -193 \text{ kJ mol}^{-1} \checkmark$	2
9 (d)	Spontaneous and ΔG^{Θ} negative \checkmark	1
9 (e)	Any two from: H ₂ (g) 100 kPa, 1 mol dm ⁻³ [H ⁺ (aq)], Pt electrode	2
9 (f)	Anode: $Cr(s) \rightarrow Cr^{3+}(aq) + 3e^{-} \checkmark$ Cathode: $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s) \checkmark$	2

10 (a)	$\Delta H = -366 - (2 \times -242 + 82)$	1
	$\Delta H = 36 \text{ kJ mol}^{-1} \checkmark$	
10 (b)	$\Delta S^{\oplus} = 151 - (2 \times 189 + 220)$	1
	$\Delta S^{\ominus} = -447 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1} \boldsymbol{\checkmark}$	I
10 (c)	$\Delta G^{\ominus} = 36 - 298 \times 0.447$	1
	$\Delta G^{\ominus} = 169 \text{ kJ mol}^{-1} \checkmark$	I
10 (d)	Endothermic with decrease in entropy 🗸	1