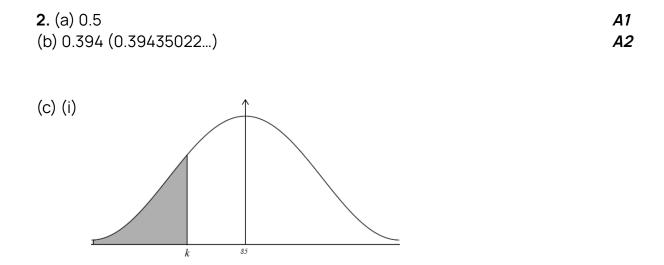
Mathematics: applications and interpretation

Standard level

Paper 2


Markscheme

1. (a) $rs = -1$	A1
(b) i) $r = -0.988(-0.98767)$	A2
ii) strong AND negative	A1A1
Note: Award at most A1A0 if additional answers are seen. Due to the demand of the question, do not accept "negative (from the graph their <i>r</i> value is positive.)" if

(c) (i) $a = -5.57 (-5.5701)$	A1
(ii) $b = 239(239.12)$	A1
(iii) b represents the electricity bill when the temperature is 0°C	A1
(d) i) attempt to substitute 15 for <i>x</i>	(M1)
$y = -5.57 \times 15 + 239$	A1
= 155(155.45)	A1
ii) Interpolation	R1
strong correlation	R1

e) $H_1: \mu_1 \neq \mu_2$	A1
(f) $p = 0.112 (0.11164855) \dots A2$ Note: Award A1 for 0.11 (2sf) Award A1 for an answer of $p = 0.111675 \dots$, from use of unpooled GDC settings.	
(g) 0.112 > 0.05 there is insufficient evidence to reject the null hypothesis therefore the null hypothesis is accepted Note: Do not award <i>ROA1</i> .	R1 A1
(h) (the two populations are) normally distributed Note: Do not accept "independent" as that applies to the samples, not the populations.	A1

[Total 19 marks]

A1A1

Note: Award **A1** for a normal curve (with symmetry and some evidence of change of curvature towards the extreme values). Award **A1** for a shaded region w < k, where k < mean.

(ii) $P(W < k) = 0.25$ solving a cumulative distribution function OR use of inverse function on GDC $k = 71.5$ (71.5102)	(M1) A1
(d) recognizing binomial distribution	(M1)
B(5, 0.25) P(w = 3)	(A1)
0.0879 (0.087890)	A1
(e) $20(w-3) + 50$ or $20w + 30$	A1A1

Note: Award A1 for a linear expression with a gradient of 2,
A1 for a completely correct expression in w .

(f) (\$)154	A1
(g) attempt to solve $20(w - 3) + 50 = 110$ or $20w + 30 = 110$	(M1)
w = 4	A1

$$w = 4$$

[Total 15 marks]

3. (a) $1200 - 30x^2 = 600$	(<i>M1</i>)
x=4.47 (pesos) (since x is positive)	A1
(b) (i) $1200 - 30 \times 5^2 = 450$	A1
(ii) $450 \times 5 = 2250$ (pesos)	A1
(c) (i) profit = revenue - costs = $V \times x - V \times 4$	(M1)
$P = (1200 - 30x^{2})x - (1200 - 30x^{2})4$	A1
$P = -30x^3 + 120x^2 + 1200x - 4800$	AG

revisiondojo.com

(ii)
$$\frac{dP}{dx} = -90x^2 + 240x + 1200$$
 (M1)A1A1
(iii) attempt to find x-value (M1)
e.g. sketch of $\frac{dP}{dx}$ with x-intercept indicated **OR** recognition that it occurs at the
maximum of P **OR** algebraic approach
 $-90x^2 + 240x + 1200 = 0$
 $x = 5.22$ A1
(iv) attempt to substitute their x-value into equation for V (M1)
 $1200 - 30 \times 5.22^2 = 382$ or 383 A1
[Total 13 marks]
4. (a) (i) 0.92 (ii) 0.25 (iii) 0.75 A2
Note: Award A1A0 if one of the values is incorrect, A0A0 otherwise.

(b) $0.08 \times 0.25 = 0.02$	A1
(c) $P(not fail) = 0.69$	A1
multiplying by 200	M1
=138	AG

Note: Award AOMO for a flawed approach to find <i>P</i> (<i>not fail</i>) for example	<u>172.5</u> 250	,
which is reverse engineering.		

(M1)

(d) Attempt to find the probability of one sensor failing.

Then

No sensor	one sensor	both sensors
fails	fails	fail
138	58	4

(A1)

(A1)

degrees of freedom = 2

Note: Award **A1** for df = 2 seen anywhere and may be awarded independent of the **M1** mark. The df cannot be implied from chi square statistic = 40.9

$p - value = 1.31 \times 10^{-9} (1.309 \times 10^{-9})$	(A1)
$0.05 > 1.31 \times 10^{-9}$	R1

hence there is sufficient evidence to reject *H*0; the manufacturers claims are not both correct *A1A1*

Note: The *R1A1* can be awarded as follow through within part (d) from their (explicitly labelled) incorrect p-value. An unrealistic p-value ($p \ge 1$) should preclude awarding the final *R1A1*. Accept either a conclusion to reject the null hypothesis or the manufacturer's claims are not both correct. Do not award *R0A1*.

[Total 12 marks]

(M1)

5. (a) attempt to substitute 4 into the $h'(x)$	(M1)
$\frac{1}{16} \times 4^2 - \frac{3}{8} \times 4 = -\frac{1}{2}$	A1

(b) recognition of need to integrate

 $\frac{1}{48}x^3 - \frac{3}{16}x^2 + c$ (A1) attempt to substitute given condition to find c (M1) $\frac{1}{48}8^3 - \frac{3}{16}8^2 + c = \frac{5}{3}$ c = 3 $h(x) = \frac{1}{48}x^3 - \frac{3}{16}x^2 + 3$ A1

(c) (i)
$$\int_{0}^{8} \left(\frac{1}{48}x^{3} - \frac{3}{16}x^{2} + 3\right) dx$$
 A14

Note: Award A1 for a correct integral, A1 for correct limits in the correct location. Award at most **AOA1** if dx is omitted.

Award at most **AOA1** for "integral y dx" this is not the correct integrand.

(ii) 13.3 (m^2)

Note: A negative area for their integrand is unrealistic. Award at most A1A0 for their FT answer expressed as negative area or a negative area converted to a positive answer."

(d) $13.3 \times 1.5 = 20.0 m^3 (19.95m^3)$

Note: Correct unit must be seen for the A1 to be awarded.

(e) attempt to substitute one of the given conditions, both x and h, into either the	
function or the derivative	(M1)
$h(4) = 16a + 4b + c = \frac{4}{3}$	A1
attempt to differentiate <i>h</i> (<i>x</i>)	(M1)
h'(x) = 2ax + b	(A1)
$8a + b = -\frac{1}{2}$	A1
16a + b = 0	A1

Note: The equations can be found in any order, and hence the associated mark(s) should be awarded independently.

A2

A1

A1A1

Award at most *M1A1M1A1A1A0* if the equations are not simplified to integer values. E.g. $h(4) = a4^2 + b4 + c$

(f)
$$a = \frac{1}{16} (0.0625)$$
, $b = -1$ and $c = \frac{13}{3} (4.33)$ **A2**

Note: Award **A1** if only two are correct, **A0** otherwise. Only follow through from three explicit equations given in part (e).

(g) gradients are the same **OR** $h'(4) = -\frac{1}{2}$ for both curves **A1** heights are the same **OR** $h(4) = \frac{4}{3}$ for both curves **A1**

[Total 21 marks]

🛥 RevisionDojo