Standard level

Paper 1B

Question	Answers	Notes	Marks
1. a	- Growth rates decrease in both species when grown together (Species A: $2.5 \rightarrow 1.2 \text{ cm/week}$; Species B: $3.0 \rightarrow 1.8 \text{ cm/week}$). \checkmark - Seed production decreases (Species A: $200 \rightarrow$ 80; Species B: $250 \rightarrow 120$). \checkmark	Award 1 mark per correct comparison. Numerical data must be included for full marks.	2
1. b	 Demonstrates interspecific competition Both species compete for resources, reducing growth/reproduction. OR Competitive exclusion principle One species may dominate over time. 	Accept either explanation. Award marks for linking data to the principle.	2
1. c (i)	- Abiotic factor (e.g., low pH) favors one species 🗸	Award 1 for general influence, 1 for specific example.	1
1. c (ii)	 Fundamental niche: Full range of conditions a species can occupy without competition. Realized niche: Restricted due to competition (e.g., Species A avoids areas with B). 	Award 1 for definition, 1 for effect, 1 for example.	2

Standard level

Paper 1B

Question	Answers	Notes	Marks
2. a (i)	 Inverse relationship: As water temperature increases, oxygen solubility decreases. OR Negative correlation shown on the graph. ✓ 	Award 1 mark for a clear description of the trend. Do not accept "they are related" without specifying the trend.	1
2. a (ii)	 Rising temperatures reduce oxygen solubility, limiting availability for aquatic organisms. This can lead to hypoxia, stressing respiration/metabolism (e.g., fish gills less efficient). 		2
2. b	 Polar water molecules form weak interactions (dipole-induced dipole) with O₂. ✓ Hydrogen bonding creates "cages" that trap nonpolar O₂, enhancing solubility. ✓ 		2
2. c	 - CO₂ is more soluble than O₂ because it reacts with water to form carbonic acid (H₂CO₃). - Biological significance: CO₂ solubility affects pH (ocean acidification), impacting coral calcification/shellfish survival. 		2

Standard level

Paper 1B

Standard level

Paper 1B

Question	Answers	Notes	Marks
	 Energy flows linearly and is lost as heat (second law of thermodynamics). Sun is the constant energy source; heat 	Accept any two.	
3.a	cannot be recycled. - Matter (e.g., carbon) is recycled via biogeochemical cycles (e.g., decomposition).	Do not accept "energy is reused" without qualification.	2
3. b (i)	- 10% (10,000 → 1,000 kJ/m²/yr). ✔		1
3. b (ii)	- 10% (100 → 10 kJ/m²/yr). ✔		1
3. c	 - CO₂ release: Decomposers respire, returning carbon to the atmosphere. - Nutrient recycling: Break organic matter into inorganic forms (e.g., CO₂, minerals) for producers. 	Accept "humus formation" or "detritivore actions" if linked to carbon.	2
3. d	 Increased photosynthesis: Higher CO₂ boosts primary production. ✓ Trophic cascade: More energy flows to consumers (↑ biomass). ✓ Climate impact: Excess CO₂ may disrupt ecosystems (e.g., coral bleaching). ✓ 	Accept any two.	2

Standard level

Paper 1B

Question	Answers	Notes	Marks
1 <u>4</u> a	- Complementary base pairing : A-T and C-G pairing ensures accurate template copying; mismatches are rare due to hydrogen bonding specificity.		1
4. b	 DnaB helicase unwinds the double helix, separating parental strands to serve as templates. This exposes bases for complementary pairing, enabling synthesis of new strands (semi-conservative mechanism). 	Accept "creates replication fork" or "allows polymerase access."	2