

Biology

Standard level

Paper 2

Markscheme

Question	Acceptable Answers	Notes	Marks
1 a)	Macrophage(s) OR phagocyte(s) ✓	Must specify immune cell type	1
1 b)	- Binds specifically to CD20 antigen on B-cells ✓ - Antibody's Fc region interacts with Fcγ receptors ✓		2
1 c)	- Chemo affects all dividing cells (non-specific) ✔ - ADCP targets only antigen-positive cells ✔	Comparison required	2
1 d)	- Binds antibody Fc region ✔ AND - Triggers phagocytosis OR signals engulfment ✔		2
1 e)	- Rituximab cannot bind ✔ - Treatment fails OR no ADCP occurs ✔		2
1 f)	- Innate: Macrophages perform destruction ✔ - Adaptive: Antibodies provide specificity ✔		2
1 g)	- Antigen presentation via MHC II ✔ - T-cell activation OR immune response initiation ✔		2
1 h)	- PRR recognition OR antibody binding ✔ - Opsonization enhances binding ✔		2

Question	Acceptable Answers	Notes	Marks
2 a) (i)	Gonadotropin-releasing hormone (GnRH) ✔	Must specify hormone class/name	1
2 a) (ii)	Prevents natural ovulation OR allows controlled ovarian stimulation ✓		1
2 b)	Follicle-stimulating hormone (FSH) 🗸		1
2 c)	- Human chorionic gonadotropin (hCG) ✔		1

Question	Acceptable Answers	Notes	Marks
3 a) (i)	47 ~	Must be an exact	1
	Name of the boundary of the second of the se	count	
3 a) (ii)	Non-disjunction in meiosis I OR meiosis II 🗸	Either division accepted	1
3 a) (iii)	Down syndrome 🗸		1
	Amniocentesis OR		1
•	chorionic villus sampling (CVS) 🗸		'

Question	Acceptable Answers	Notes	Marks
	Small ribosomal subunit OR A-site/P-site (accept "ribosomal binding site") ✓	Must specify location	1
4 b) (i)	Codons on mRNA are read in sequence OR each codon codes for a specific amino acid	Must link codons to amino acids	1

Question	Acceptable Answers	Notes	Marks
	- Carries specific amino acids ✔ - Anticodon binds to complementary mRNA codon ✔	Both parts required	2
4 c)	Allows peptide bond formation between amino acids OR ensures correct positioning for elongation		1

Question	Acceptable Answers	Notes	Marks
5 a)	Energy is lost as heat (respiration) OR not all biomass is consumed/digested OR metabolic waste (e.g., feces, urine)	Must specify one valid energy loss pathway	1
5 b)	Fewer organisms at lower trophic levels OR ecosystem instability OR possible collapse of lower levels		1
5 c)	- Less biomass due to energy loss (10% rule) ✔ - Higher energy per unit mass (more lipids/proteins) ✔		2

Question	Acceptable Answers	Notes	Marks
6 a)	Plants compete for light (shading), water (root growth), or nutrients (soil uptake) OR	Must specify one resource and its competitive consequence	1

Question	Acceptable Answers	Notes	Marks
	survival/reproduction reduced for less competitive individuals 🗸		
6 b)	 Allelopathy (chemical inhibition of competitors) OR Root grafting (resource sharing) OR Canopy partitioning (light optimization) 		1
6 c)	- Extend root surface area for nutrient/water uptake OR - Exchange nutrients (e.g., P, N) for plant carbohydrates OR - Enhance drought/pathogen resistance ✓	Must link fungal function to plant benefit	1

Question	Acceptable Answers	Notes	Marks
7 a	- Receptors bind specific ligands (e.g., hormones, neurotransmitters) ✓ Binding induces conformational change in receptor ✓ Triggers intracellular response (e.g., signal transduction, gene expression) ✓.		3
/ b	- Example: Quorum sensing in Vibrio fischeri using autoinducers ✓ Significance: Coordinates bioluminescence or biofilm formation ✓. OR - Chemotaxis in E. coli via attractant binding to membrane receptors ✓.	Award 1 for example, 1 for significance.	2

Question	Acceptable Answers	Notes	Marks
	- Significance : Directs movement toward nutrients ✓ .		
7 c	Similarities: Both are ligands; bind to receptors; mediate communication (1 max). Differences: - Hormones: Slow, long-distance (endocrine); e.g., insulin ✓ Neurotransmitters: Fast, synaptic; e.g., acetylcholine ✓. OR - Transport: Hormones via blood; neurotransmitters via synaptic cleft ✓.	2 marks for similarity and 2 for difference	4
7 d	Examples: 1. Insulin (peptide hormone) ✓. 2. Testosterone (steroid hormone) ✓. 3. Nitric oxide (gas signaling molecule) ✓. OR - Cytokine OR Glucagon Reasons: - Diverse solubility (hydrophilic vs. hydrophobic ligands) ✓ Specificity for target cells ✓ Variable persistence (rapid vs. sustained signals) ✓.	Award 1 per example (max 3) + 1 per reason (max 3)	6

Question	Acceptable Answers	Notes	Marks
	1. Skin : Physical barrier ✓ .		
	2. Mucous membranes : Trap	Accept any combination	
8 a	pathogens OR secrete antimicrobial	totaling 2 distinct	2
	enzymes ✔.	points.	
	3. Mechanisms : Cilia		

Question	Acceptable Answers	Notes	Marks
	movement OR lysozyme		
	action OR acidic pH ✔.		
8 b	 Recognition: Binds PAMPs via TLRs . Engulfment: Phagosome formation . Destruction: Lysosomal enzymes OR respiratory burst ✓. Presentation: Antigens displayed on MHC-II ✓. 		4
8 c	Similarity: Both protect against pathogens OR involve white blood cells ✓. Differences: - Innate: Fast response OR non-specific recognition ✓ Adaptive: Slow response OR antigen-specific ✓ Memory: Only in adaptive OR provides long-term immunity ✓ Diversity: Adaptive has variable receptors OR somatic recombination ✓.	Must include 1 similarity + any 2 contrasts/differences of the 4	9
8 d	 Herd immunity: Reduces transmission OR protects unvaccinated ✓. Threshold: Depends on Ro OR requires high vaccination rates ✓. Example: Measles OR polio vaccination programs ✓. 		3