

Biology

Standard level

Paper 2

1 hour 30 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open the examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer one question.
- Answers must be written in the answer boxes provided.
- A calculator is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Section A

1. ADCP helps immune cells destroy cancer cells marked by antibodies. Study Figure 1 (stages of ADCP) and Table 1 (monoclonal antibody therapies), then answer the questions.

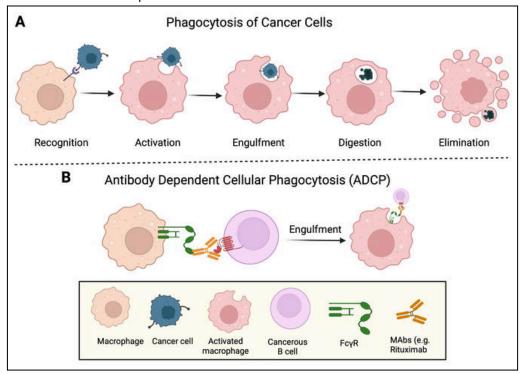
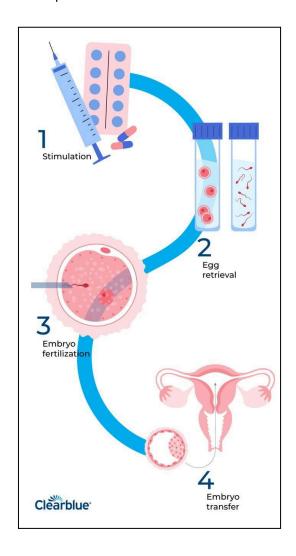


Figure 1.

a) Using Figure 1, identify the immune cell responsible for ADCP.	[1]
b) Describe how Rituximab (Table 1) marks cancer cells for destruction.	[2]



c) Explain why ADCP is more targeted than chemotherapy.	[2]
d) Outline the role of the Fcγ receptor in Figure 1.	[2]
e) A patient's cancer cells lose CD20 expression. Predict the effect on Rituxi treatment.	mab [2]
f) Discuss why ADCP is considered a "bridge" between innate and adaptive immunity.	[2]

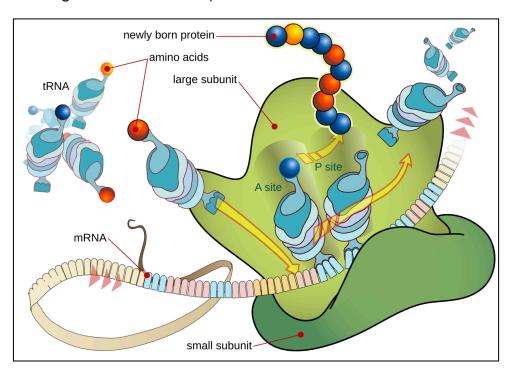
g) Suggest how macrophages recognize digested cancer cell fragments afte	- 1
ADCP.	[2
	•
n) Explain the process of recognition in phagocytosis.	[2
n) Explain the process of recognition in phagocytosis.	[2
n) Explain the process of recognition in phagocytosis.	[2
n) Explain the process of recognition in phagocytosis.	[2

2. The image shows the process of In-vitro fertilization.

a) i)	ld	er	٦t	ify	/t	h	е	fii	ſS	t	h	or	m	าด	or	e	8	ad	In	٦i	ni	S	te	ere	ec	t t	0	S	u	pp	or	e	SS	t	he	e r	ne	er	าร	tr	ʻu	al	С	y	cle) .	[1]
ii) Ex	кр	la	in	W	'h	у '	th	ne	s	u	р	pr	-e	S	si	O	n	0	f	th	nis	s l	ho	or	m	10	n	e	is	n	е	Ce	es	ssa	ar	у .	fo	r	IV	F	SI	JC	CC	es	SS	•	[1]
																																												_			
									•							•			•						٠.	•		•		٠.								•					٠.	•			

[1]

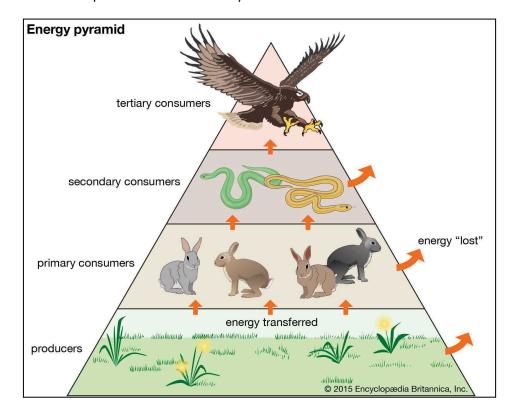
Superovulation nulate multiple		elopment					[
Before egg retri	eval, a final	l hormone	injectio	on is giv	ven. Ider	ntify this horm	none.
3. The karyogi	ram below s	shows chr	omosor	nes fro	m an ind	dividual.	
3. The karyogi	ram below s	shows chr	omosor	mes fro	m an ind	dividual.	
3. The karyogi	ram below s	shows chr	omosor	mes fro	m an ind	dividual.	
3. The karyog	ram below s	shows chr	omosor	mes fro	m an ind	dividual.	
3. The karyogi	ram belows	shows chr	omosor	mes fro	m an ind	dividual.	
88 1 88 6	ram below s	XX 3 XX 8	omosor 9	**	**************************************	36 5 XX 12	


(This question continues on the next page)

a) i) State the total chromosome number in this individual.

[1]
[1]
[1]

4. The image below shows the process of translation.


а) St	a	te	۱ (Ν	h	е	re	Э	t	h	е	r	Υ	۱F	₹I	Ν	4	١	b)İI	n	d	IS	3 '	W	/i	t	h	İI	n	t	r	7	е	1	ri	b	C) (S	0	n	n	е													[1]	

b) Translation requires the interaction of mRNA, tRNA, and ribosomes.
i) Explain how mRNA determines the sequence of amino acids in a polypeptide. [1
ii) Describe the role of tRNA in translation, including the significance of its anticodon.
c) Two tRNA molecules can bind simultaneously to the ribosome. Explain why this is necessary for the elongation of a polypeptide chain.

5. A pyramid of energy flow in an ecosystem, showing decreasing energy at each trophic level, from producers to tertiary consumers.

a) Explain with the energy available at each successive trophlic level decreases. [1]
b) The number of trophic levels in an ecosystem is limited. Based on the diagram, predict what would happen if a new top predator was introduced. [1]
c) Explain why organisms at higher trophic levels have less biomass but higher energy content per unit mass. [1]

a) Explain how limited resources (e.g., light, water, nutrients) drive intraspecific competition in plants.	[1]
b) Describe a real-world example of plant cooperation in response to environmental stress.	[1]
c) Explain how mycorrhizal fungi contribute to cooperative relationships in plant populations.	t [1]

6. Competition and cooperation is observed in intraspecific relationships.

Section B

Answer one question. One additional mark is available for the construction of your answer. Answers must be written within the answer boxes provided.

- 7. Cell signaling is essential for communication within and between organisms.

 a) Explain how receptors function in cell signaling, including the role of ligands. [3]

 b) Describe one example of cell signaling in bacteria, including its significance. [2]

 c) Compare and contrast hormones and neurotransmitters in animal signaling systems. Write on each. [4]
- d) List 3 examples of the chemical substances used as signaling molecules. Discuss why a wide range of chemical substances are used as signaling molecules in organisms. Give three reasons.
- 8. a) Outline the role of skin and mucous membranes as primary defences against pathogens. [2]
- b) Describe how phagocytes recognize and destroy pathogens. [4]
- c) Compare and contrast the innate and adaptive immune systems, including the role of memory cells. List one similarity and 2 differences. [6]
- d) Discuss how herd immunity helps prevent epidemics, using vaccination as an example. [3]

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •

•••••
•••••
•••••
•••••
•••••

•••••
•••••
•••••
•••••
•••••