

Chemistry

Standard level

Paper 1B

1 hour 30 minutes [Paper 1A and 1B]

Instructions to candidates

- Do not open the examination paper until instructed to do so.
- Answer all questions
- Answers must be written in the answer boxes provided.
- A calculator is required for this paper.
- A clean copy of the **chemistry data booklet** is required for this paper.
- The maximum mark for paper 1B is [25 marks].
- The maximum mark for paper 1A and paper 1B is [55 marks].

Section **B**

Answer all questions. Answers must be written in the answer boxes provided.

- A student is conducting a series of tests to classify four solutions, labelled A, B, C and D, as weak or strong acids or bases.
 - (a) The results of the first test, electrical conductivity, are shown in the table.

Solution	Brightness of bulb
А	Bright
В	Dim
С	Dim
D	Bright

Classify A and B as weak or strong bases. Give a reason for your answer. [2]

(b) In the second test, the student measures the pH of the solutions. The results are shown in the table.

Solution	рН
А	14
В	9
С	5
D	1

🖸 RevisionDojo

(i) Calculate the [H⁺] in solutions A and C. [2]

Use your answer to part (i) to determine the difference in [H⁺] between solutions A and C.

(c) The final test involved the student adding small pieces of magnesium to solutions C and D.

(i) Predict the rate of reaction of magnesium with solutions C and D. [1]

(ii) Classify C and D as weak or strong acids, giving a reason in each case. [2]

(iii) Suggest why the student did not add magnesium to solutions A and B. [1]

2. Brass is an alloy composed of copper and zinc.

Э)	E	5)	×	p	la	ai	r	۱ I	n	0	V	V	k	Dr	6	35	SS	S	i	S	r	16	al	0	je —	Ð	r	t	h	8	ar	١	p)L	Ir	e	r	r	۱e	et	а	ls	S	S	u	С	h	6	35	5	C	0	р	p	е	er	C	or	Z	zi	n	С	•				
								•	•												•	•												•																																•		
		•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•		• •		•	•	•	•	•	•	•	•	•	•			•	•	•	•	• •	•	•	•	• •	•	•	•	•	• •	•	•	• •	• •	•	•	•	•	• •	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		• •		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	• •	•	•	•	• •	•	•	•	•	• •	•	•	• •	• •	•	•	•	•	• •	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	• •	•	•	•	• •	•	•	•	•	• •	•	•	• •	• •	•	•	•	•	• •	•	•	•	•	•	•	

(b) A student carries out an experiment to calculate the percentage by mass of copper in a sample of brass with a mass of 0.750 g. The three steps of the reaction are shown.

Step 1: Cu(s) + 2HNO₃(aq) + 2H⁺(aq) → Cu²⁺(aq) + 2NO₂(g) + 2H₂O(l) Step 2: 4l⁻(aq) + 2Cu²⁺(aq) → 2Cul(s) + l₂(aq) Step 3: l₂(s) + 2S₂O₃²⁻(aq) → 2l⁻(aq) + S₄O₆²⁻(aq)

Deduce the change in the oxidation state of the copper and the reducing agent in step 2. [2]

.....

(c) The I_2 produced in step 3 is titrated with 31.50 cm³ of 1.00 mol dm⁻³ Na₂S₂O₃(aq).

- (i) Calculate the amount, in mol, of S₂O₃²⁻(aq) used in the titration. [1]
- (ii) Determine the mole ratio of $S_2O_3^{2-}$ (aq) in step 3 to Cu(s) in step 1. [1]

.....

- (iii) Determine the mass of copper in the sample of brass. [2]
- (iv) Calculate the percentage composition by mass of copper and zinc in the sample of brass. [2]

3. The boiling points and solubilities of five members of the alcohol homologous series are shown in the table.

Alcohol	Formula	Boiling point (°C)	Solubility (g / 100 g)
Ethanol	CH ₃ CH ₂ OH	78	Completely
			soluble
Propan-1-ol	CH ₃ CH ₂ CH ₂ OH	97	Completely
			soluble
Butan-1-ol	CH ₃ CH ₂ CH ₂ CH ₂ OH	117	9
Pentan-1-ol	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	138	2.7
Hexan-1-ol	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH	158	0.6

(a) State the general formula of the alcohol homologous series.

[1]

.....

(b) Explain the increase in the boiling points of the five members of the alcohol homologous series. [2]

(c) Suggest a reason why the solubility of the alcohol decreases from ethanol to hexan-1-ol. [1]

(d) Predict the boiling point and solubility of decan-1-ol, the tenth member of the alcohol homologous series. [2]