Mathematics: applications and interpretation

Higher level

Paper 1

Markscheme

1. (a) attempt to substitute into geometric sequence formula for twelfth term **(M1)** $u_{12} = 100 \times 1.05^{12-1}$ or 100,105, 110.25...... 171 (171.0339...) **A1**

(b) (i) attempt to substitute into the geometric series formula **OR** a sum of at least the first three terms *(M1)*

 $S_{12} = \frac{100(1.05^{12}-1)}{1.05-1}$ or $100 + 105 + 110.25 + \dots$

Note: Award **M1** for $u_1 = 100$ and r = 1.05 seen as part of a geometric series formula, or **M1** for sigma notation and their u_n formula (condone missing limits), or **M1** for the sum of at least the **correct** first three terms of the sequence.

$$S_{12} = 1590 (1591.712652....)$$

A1

(ii) finding $S_{24} = 4450.199887 \dots$ or attempt to find the sum between u_{13} and u_{24} (M1)

Note: Award *M1* for $S_{24} = 4450.199887$ or sigma notation that includes correct limits and their u_n formula

4450 - 1590 = 2860.

A1 A1

[Total: 7 marks]

2. (a) EITHER N = 12 $PV = \pm 80000$ $FV = \pm 84100$ PIY = 12(M1) (A1) C/Y = 12OR N = 1 $PV = \pm 80000$ $FV = \pm 84100$ P/Y=1(M1) (A1) C/Y = 12THEN I = 5.00 (5.0008416...)A1 N = 61% =5,8 $PV = \pm 84100$ $PMT = \pm 7000$ P/Y = 12(M1) (A1) C/Y = 12

Note: Award *M1* for an attempt to use a financial app (at least 3 entries, not necessarily correct). Award *A1* for all entries correct in the financial app (condone missing -/+ sign if the correct final answer is seen).

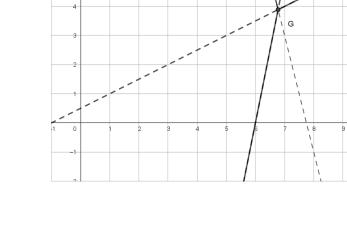
FV= (\$) 44058

Note: Answer must be correct to the nearest dollar to award the final *A1*. Award *(M1) (A1)A0* for an unsupported final answer to a greater degree of accuracy eg. (\$) 44057.778...

Award *M1A1A0* for a truncated answer of 44057 if no working is shown.

[Total: 6 marks]

A1A1


3. (a)
$$y = \frac{1}{2}x + \frac{1}{2}$$

Note: Award **A1** for $\frac{1}{2}x$ and **A1** for $\frac{1}{2}$ (or equivalent equation). Award at most **A1A0** if the answer is not presented as an equation.

(b) G (6.778, 3.889)

(c)

Note: If both answers are not correct to 4 sig figs, award at most **A1A0**.

A1A1

A2

с

Note: Award marks as shown in the table below. Condone edges that do not extend to the sides of the graph or beyond the *x*-axis.

Correct edges	Incorrect edges	Marks
3	0	A2
3	1	A1A0
3	2 or more	AOAO
2	0	A1A0
2	1	A1AO
2	2 or more	AOAO
1	0	A1A0
1	1 or more	AOAO

[Total: 6 marks]

$$S = \frac{1000}{1609} K$$
 or $S = \frac{1}{1.609} K$ A1

Note: If the answer is not written as an equation, award at most M1A0.

(ii)
$$S = \frac{1000}{1609} \times 100 = 62.2$$
 (62.1504039.....) **A1**

(b) i)
$$K = 1.609 \times 65 \approx 105$$
 (104.585) A1
ii) recognizing that the variance is the square of the standard deviation M1
 $\sigma^2 = (1.609 \times 8)^2$

revisiondojo.com

🔁 RevisionDojo

σ ² ≈166 or (165.688)	A1
	[Total: 6 marks]
5. (a) (i) $V = c \times h^3$	(M1)
(ii) replacing $V = 8.75$ and $h = 7$ in their equation	A1
8.75 = $c \times 7^3$	
$c \approx 0.0255 (0.02551020)$	A1
$V = 0.0255 \times (6.5)^3$	A1
(b) Attempt to express the equation for the water uptake	(M1)
$W = \frac{m}{h^2}$	
Writing the ratio between the two trees	(M1)
$k = \frac{\frac{m}{10^2}}{\frac{m}{7^2}}$	A1
$k = \frac{49}{100}$	A1
	[Total: 8 marks]

6. (recognition that OE is a radius and the hypothenuse of triangle ODE) A1

$$\sqrt{6^2 + 10^2} = \sqrt{136}$$

(finding angle $Y \hat{O} E$) correct calculation for finding $D \hat{O} E$ (A1) $D \hat{O} E = \arctan(\frac{10}{6})$ OR $\tan D \hat{O} E = \frac{10}{6}$ expressing $Y \hat{O} E$ as $90^\circ + D \hat{O} E$ (M1)

revisiondojo.com

$\hat{YOE} = 59.0^{\circ}$

substituting *their* radius and angle YOE correctly into arc length formula (M1)

$$Arc EY = \frac{59^{\circ}}{360^{\circ}} \times 2\pi \times \sqrt{136}$$

$$Arc EY = 12.0$$

$$A1$$
[Total: 5 marks]

7. (a) (i) r = 0.966 (0.96623561....) ...

Note: Award *A1* for 0.97.

(ii)
$$m = 10.5t + 41.0$$
 ($m = 10.4957767...t + 40.9886154...$) A1A1

Note: Second **A1** is for the correct variables.

(b) 10.5×1.5	(<i>or</i> 10.4957767×1.5).
15.75 (marks)	(15.7436)

Note: Accept 16.

(c) Accept any valid reason, e.g.:

The students in the sample might not be of equal ability / she has not controlled for ability.

A student with full marks cannot be awarded an extra 15.75 would not be possible. *R1 [Total: 7 marks]*

A2

(M1) A1

🖸 RevisionDojo

8. attempt to use Euler

$y_{n+1} = y_n + 0.1e^{-(x_n + y_n)}$	A1
$y_1 = 2 + 0.1e^{-(0+2)}$	A1
$y_1 = 2.10711$	
$y_2 = 2.147862$	A1
Then	
y(2) = 2.653838	A1

[Total: 4 marks]

9. (a) F and H	A1
----------------	----

(b) correct intervals seen	$(x \le 4 \text{ (or } x < 4) \text{ AND } x \ge 4 \text{ (or } x > 4))$	A1
----------------------------	--	----

	Note: The case of $x = 4$ must be included for this A1 to be awarded.
(M1)	attempt to add edges to 41+ <i>x</i>
A1	(If $x < 4$ (or $x \le 4$) then repeat FH and) length is $41 + 2x$
A1	(If x > 4 (or $x \ge 4$) then repeat FG and GH and) length is $(41+x+4)=45+x$
	(If x > 4 (or $x \ge 4$) then repeat FG and GH and) length is $(41+x+4)=45+x$

Note: If the intervals are not explicit, award at most *A0(M1)A1A1*.

[Total 5 marks]

10. (a) attempt to integrate by substitution or inspection

 $4 \ln |2x^2 + 1| + c$

Note: Award *M1* for $ln(2x^2 + 1)$, *A1* for the 4 and *A1* for *c*. The *A* marks can only be awarded if the *M* mark is awarded. Condone absence of modulus signs.

(b) recognizing that area is $\left[4 \ln \left 2x^2 + 1 \right \right]_0^4$	(M1)
$4 \ln(2 \times 4^2 + 1) - 4 \ln(2 \times 0^2 + 1) =$	(A1)
$4 \ln(33) - 4 \ln(1) =$	(M1)
$4 \ln(33) - 0 =$	
4 <i>ln</i> (33)	A1

Note: Award *(M1)A0M0A0* for an unsupported final answer of 13.98603... Award at most *(M1)A1FTM0A0* if their answer from part (a) does not include In.

[Total 7 marks]

11.

a i) i) $(\cos \cos 2\theta \sin \sin 2\theta \sin \sin 2\theta 2\theta) \times (\cos \cos 2\theta \sin \sin 2\theta \sin 2\theta 2\theta) = A1$ $(2\theta + 2\theta \cos \cos 2\theta \sin \sin 2\theta - \cos \cos 2\theta \sin \sin 2\theta \cos \cos 2\theta \sin \sin 2\theta - \cos \cos 2\theta \sin \sin 2\theta 2\theta + 2\theta)$ = (1001)

A1

ii) Correctly stating that if $A \times A = I$ then $A = A^{-1}$ satisfies the definition of an **inverse matrix** (i.e., a matrix whose product with itself gives the identity). As $T(\theta) \times T(\theta)$ then $T(\theta) = T^{-1}(\theta)$ and is a self inverse matrix **A1A1**

iii) Explaining that matrix multiplication represents successive transformations.

Concluding that since $T(\theta)$ is self-inverse, applying it twice results in the identity transformation.

revisiondojo.com

A1 A1

applying the transformation twice is equivalent to applying the **identity transformation**, which leaves all points unchanged.

b) $ \cos \cos 2\theta \sin \sin 2\theta \sin \sin 2\theta =$	
$= \cos \cos 2\theta \times (-\cos \cos 2\theta) - \sin \sin 2\theta \times \sin \sin 2\theta = -(2\theta + 2\theta) = -$	1
	A1 A1
0.54	
12. (a) $300 = 700 - 600 \times 3^{-0.5t}$	(A1)
0.738 (hours) (0.7381404)	A1
Note: Accept 44.3 minutes.	

(b) values of <i>P</i> are 354, 500, 584, 633	(A1)
$(354 - 260)^{2} + (500 - 420)^{2} + (584 - 560)^{2} + (633 - 620)^{2} =$	(M1) (A1)
= 16000 or 15981	A1

(c) (i) The sum of the square residuals is smaller so it is a better fit
 R1 (ii) Accept a valid argument in favour of model P or against the logistic model.
 R1

The biologist might prefer the **logistic model** because it accounts for a **carrying capacity**, meaning that population growth slows down as it approaches an upper limit, which is often more realistic for biological populations than exponential models. Model P might be preferred as it is **simpler to interpret or easier to work with mathematically**

RevisionDojo

13. a)
$$|z_1| = \sqrt{2^2 + 2^2} = \sqrt{8} = 2\sqrt{2}$$
 A1

$$|z_2| = \sqrt{\sqrt{3}^2 + 1^2} = \sqrt{4} = 2$$
 A1

Since
$$|w| = |z_1| \times |z_2| = 4\sqrt{2}$$
 A1

b)
$$\arg \arg \left(z_{1}\right) = tan^{-1}\left(\frac{2}{2}\right) = \frac{\pi}{4}$$

 $\arg \arg \left(z_{3}\right) = tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$
 $\arg \arg \left(w\right) = \frac{\pi}{4} + \frac{\pi}{6} = \frac{5\pi}{12}$
A1

c) w^n is real when its argument is a multiple of π M1

$$n \times \frac{5\pi}{12} = k\pi$$

$$n = \frac{12}{5}k$$
Then $k = 5$

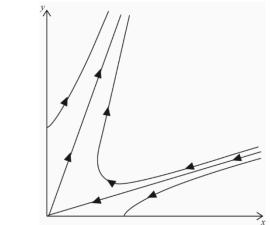
14. (a)
$$x_B = \frac{1}{3} (2(t-2))^2$$

Note: Award **A1** for multiplying by 2 and **A1** for t - 2. Award **A1A0** $\frac{1}{3}(2t - 2)^2$

(b) equating their
$$x_B$$
 to x_A (M1)
 $t = 4$ (hours) A1

Note: Award **A0** if $t = \frac{4}{3}$ is also seen

[Total 4 marks]


15. a)

A1A1A1

b) for Y not to die out $Y > \frac{1}{4} x$	(R1)
as <i>x</i> = 300, <i>y</i> > 75	(M1)
(minimum number of new animals is) 26	A1

[Total 6 marks]

16. attempt to find gradient	(M1)
EITHER	
gradient of tangent = $-\tan 46^\circ = -0.910$	(A1) (A1)
Note: Award A1 for negative and A1 for <i>tan</i> 70° (or equivalent)	
OR	
gradient of tangent = $tan 134^\circ = = -0.910$	(A2)
THEN	
$\frac{dy}{dx} = 1.8\cos\cos(0.6x) = -0.910$	(A1)
Note: Award (A1) for a labelled sketch of the derivative functi	on.
equating derivative to their gradient	(M1)
$1.8\cos \cos (0.6x) = -0.910$	
x=3.5	(A1)
$height = 3 \times sin(0.6 \times 3.5)$	(M1)
= 2.46 (m)	A1
	[Total 8 marks]

RevisionDojo

17. a) (0. 18 0. 18 0. 12 0. 12) × ($x y$) = (0 0)	(M1)
Note: Accept equivalent methods including only using one line of the matrix	
(11) (or any multiple)	A1
b) $D^n = (1 \ 0 \ 0 \ 0.7^n)$	A1

c)
$$(13 - 12)(1000.7^{n})(13 - 12)^{-1}$$
 (M1)
 $(13 - 12)(1000.7^{n})(13 - 12)^{-1}(50003000)$ (A1)
 $(13 - 12)(1000.7^{n})(1600200)$ (A1)
 $(13 - 12)(1600200 \times 0.7^{n})$ (A1)
 $(1600 + 600 \times 0.7^{n} - 1600 + 400 \times 0.7^{n})$ (A1)

Note: Award *A0* if either term in the matrix is incorrect.