
(M1)

Mathematics: applications and interpretation

Higher level

Paper 2

Markscheme

Note: Award **A1** for a normal curve (with symmetry and some evidence of change of curvature towards the extreme values).

Award **A1** for a shaded region w < k, where k < mean.

(ii) P(W < k) = 0.25solving a cumulative distribution function **OR** use of inverse function on GDC *(M1)* k = 71.5 (71.5102...) *A1*

(d) recognizing binomial distribution B(5, 0.25)

P(w = 3) 0.0879 (0.087890)	(A1) A1
(e) $20(w-3) + 50$ or $20w + 30$	A1A1
Note: Award A1 for a linear expression with a gradient of 2, A1 for a completely correct expression in <i>w</i> .	
(f) (\$)154	A1
(g) attempt to solve $20(w - 3) + 50 = 110$ or $20w + 30 = 110$	(M1)
w = 4	A1
	[Total 15 marks]
2. (a) (i) $(6.8 \ 3.4 \ 4.1) - (2.5 \ -1.3 \ 5.2) = (4.3 \ 4.7 \ -1.1)$	A1
Note: Accept alternate vector notation, e.g. $(4.3, 4.7, -1.1)$ or (4.3)	, 4.7, - 1.1)
(ii) use of correct formula to find $ \vec{PQ} $	(M1)

$$\sqrt{4.3^2 + 4.7^2 + (-1.1)^2} = 6.46 \ (km)$$
 A1

(b) magnitude of
$$(2.2 - 1.630)$$
 is
 $\sqrt{2.2^2 + (-1.63)^2 + 0^2} = 2.74$ (A1)

either
$$(4.3 \ 4.7 \ -1.1) \cdot (2.2 \ -1.630)$$
 or
 $4.3 \times 2.2 \ +4.7 \times (-1.63) \ +(-1.1) \times 0$ (M1)

revisiondojo.com

1.799 or 1.80	(A1)
Note: The <i>M</i> mark can be implied by a partially correct <i>A1</i> line	
$angle = \arccos(\frac{1.799}{6.46 \times 2.74})$	(M1)
Then 84. 2°	A1
(c) using sum of angles in a triangle equals 180	(M1)
$180^{\circ} - 84.2^{\circ} - 47.5^{\circ} = 48.3^{\circ}$	(A1)
$\frac{6.46}{sin48.3^{\circ}} = \frac{PR}{sin47.5^{\circ}}$	(A1)
PR = 6.38 (km)	A1
	[Total 12 marks]
3.(a) $1200 - 30x^2 = 600$	(<i>M1</i>)
x=4.47 (pesos) (since x is positive)	A1
(b) (i) $1200 - 30 \times 5^2 = 450$	A1
(ii) $450 \times 5 = 2250$ (pesos)	A1
(c) (i) $profit = revenue - costs = V \times x - V \times 4$	(M1)
$P = (1200 - 30x^2)x - (1200 - 30x^2)4$	A1
$P = -30x^3 + 120x^2 + 1200x - 4800$	AG
(ii) $\frac{dP}{dx} = -90x^2 + 240x + 1200$	(M1)A1A1

(iii) attempt to find x-value (M1) e.g. sketch of $\frac{dP}{dx}$ with x-intercept indicated **OR** recognition that it occurs at the maximum of P **OR** algebraic approach

revisiondojo.com

$-90x^{2} + 240x + 1200 = 0$ x = 5.22	A1
(iv) attempt to substitue their <i>x</i> -value into equation for V 1200 - 30×5.22 ² = 382 or 383	(M1) A1 [Total 13 marks]
4. (a) (i) 0.92 (ii) 0.25 (iii) 0.75 Note: Award <i>A1A0</i> if one of the values is incorrect, <i>A0A0</i> otherwise.	<i>A2</i>
(b) $0.08 \times 0.25 = 0.02$	A1
(c) $P(not fail) = 0.69$ multiplying by 200 =138	A1 M1 AG
Note: Award AOMO for a flawed approach to find $P(not fail)$ for examis reverse engineering.	ple $\frac{172.5}{250}$, which

(d) Attempt to find the probability of one sensor failing.

(M1)

Then

No sensor	one sensor	both sensors
fails	fails	fail
138	58	4

(A1)

(A1)

degrees of freedom = 2

Note: Award **A1** for df = 2 seen anywhere and may be awarded independent of the **M1** mark. The df each at he implied from the implied (0.0)

The df cannot be implied from chi square statistic = 40.9

$$p - value = 1.31 \times 10^{-9} (1.309.... \times 10^{-9})$$
(A1)
0.05 > 1.31 \times 10^{-9}
R1

hence there is sufficient evidence to reject *H*0; the manufacturers claims are not both correct *A1A1*

Note: The *R1A1* can be awarded as follow through within part (d) from their (explicitly labelled) incorrect p-value.

An unrealistic p-value ($p \ge 1$) should preclude awarding the final *R1A1*. Accept either a conclusion to reject the null hypothesis or the manufacturer's claims are not both correct. Do not award *R0A1*.

[Total 12 marks]

5. (a) A.	A1
Any valid reason for accepting A. or rejecting B. and C.	R1
for example:	
- when $y = 0$ slopes have (or appear to have) zero gradient	

- slopes along the vertical lines $\pm \frac{\pi}{2} \pm \frac{3\pi}{2}$ should be horizontal.

Note: Allow A1RO.

(b) $\int \frac{1}{y} dy = \int \cos \cos x dx$	(M1)
ln y = sin(x) + C	M1
$y = C e^{\sin(x)}$	(A1) (A1)

Note: *A1* for left hand side, *A1* for right hand side.

substituting in $x = 0$, $y = 1$	(M1)
$1 = C e^{\sin(0)}$	(A1)
C = 1	
$y = e^{\sin(x)}$	A1
(c) $\frac{dy}{dx} = e^{\sin \sin x} \times \cos \cos x$	M1A1

Note: Award M1 for use of chain rule,

(d) substitution of $e^{\sin \sin x} = y$ from part (b) into part(c) (i) or original differential equation *M1*

- 1	
$\frac{dy}{dx} = y\cos(x)$	A1
and hence $y = e^{sin(x)}$ is a solution for the differential equation	AG
	[Total 13 marks]

6. (a)i) let C be the number of champion enemies eliminated and *M* the number of Jungle Monster.

$mean = 3.5 \times 3 = 10.5$	(A1)
$P(M \le 12) = 0.742$	A1

(ii) attempt to add two means(M1)3.5 + 2.1 = 5.6(M1) $P(M + C > 8) = P(M + C \ge 9)$ (M1)0.114 (0.11432247....)A1

(b) i)
$$E(G) = 4 \times 2.1 + 2 \times 3.5 = 15.4$$
 A1

$$Var(G) = Var(4C + 2M) = 16 \times 2.1 + 4 \times 3.5 = 47.6$$
 (M1)A1

(c) any valid reason for example: **R1** mean is not equal to variance **OR** *G* cannot take all integer values

(d) distribution of mean score is $\overline{G} \sim N(15.4, \frac{47.6}{60})$ (A1) (A1)

Note: Award **A1** for normal distribution with mean 15.4 and **A1** for variance $\frac{47.6}{60}$

 $P(\overline{G} > 15) = 0.673$

A2 [Total 13 marks]

7. (a) attempt to use
$$V = \pi \int x^2 dy$$
 (M1)

$$x^{2} = 4(y - 1) \text{ or any reasonable attempt to find } x \text{ in terms of } y$$

$$V = \pi \int_{0}^{h} (4y - 4) dy$$
(A1)

Note: Correct limits must be seen for the *A1* to be awarded however the dy may be omitted (as not a final answer). If this is given as the final answer to this part the remaining marks can be awarded if seen in part (b).

$$\int (4y - 4)dy = 2y^2 - 4y$$

(A1)

Note: Accept equivalent with alternate variable

$$V = \pi \left[2y^2 - 4y \right]_0^h$$

$$V = \pi (2h^2 - 4h)$$
A1

Note: The final two **A1** marks can be awarded independently of the first **A1**. If $2h^2 - 4h$ or $2y^2 - 4y$ is the final (unsupported) answer award at most **(M1) (M1) (A0) (A1)A0**.

(b) volume of glass =
$$\pi (2 \times 13^2 - 4 \times 13) = 898 (898.49549....)$$
 (A1)
time to fill the glass $\frac{898}{30} = 29.9$ seconds A1

Note: Accept exact answers in terms of $\pi e. g: 286\pi, \frac{143}{15}\pi$

(c) differentiating $V = \pi (2h^2 - 4h)$ implicitly	(M1)
$\frac{dV}{dt} = \pi (4h - 4) \frac{dh}{dt}$	(A1)
$\frac{dh}{dt} = 30 \times \frac{1}{\pi(4h-4)}$	(M1) (A1)

Note: Award *M1* for attempting to solve for $\frac{dh}{dt}$, *A1* for a correct expression.

substituting <i>h</i> =12 seen anywhere	(M1)
0.217 (0.21702946)	A1A1

revisiondojo.com

Note: Award **A1** for the correct value. Award **A1** for the correct units, independent of other marks.

[Total 14 marks]

8. (a) (110101011)

(M1)A1

Note: Award *M1* is for a 3x3 matrix with at least one column correct. Column order is not explicit in question and may not be labelled in candidate response; accept their correct adjacency matrix.

(b) (110101011) ⁶	(M1)
(22 21 21 21 22 1 21 21 22)	A1
21 different routes	A1
(c) i) $0.5^{6} \left(\frac{1}{64}, 0.015625\right)$	(A1)
(ii) 21×0.5^{6}	(M1)
<i>Then</i> 0. 328 (0. 328125, $\frac{21}{64}$)	(A1)

Note: Solutions to this part must be using the value (21) obtained from part (b) to be awarded any marks.

d) (i) $1 \times 0.3 = 0.3$	A1
(ii) $(0.5 \times 0.5) = 0.25$	A1
(iii) $(0.5 \times 0.5 + 0.5 \times 0.5) = 0.5$	A1

e) transition matrix is (0 0. 25 0. 3 0. 7 0. 5 0. 7 0. 3 0. 25 0)

(with order PQ,	PR and QR)
-----------------	------------

Note: Column order is not explicit in question and may not be labelled in candidate response; accept their correct transition matrix. Accept the transposed matrix.

(0 0. 25 0. 3 0. 7 0. 5 0. 7 0. 3 0. 25 0)⁶

(0. 2087165 0. 20832 0. 2079875 0. 583296 0. 58363 0. 583296 0. 2079875 0. 20832 0. 2087165)

0.208 (0.2079875)

 (f) (Taking a high power of a matrix)

 long term probabilities are0. 2087165, 0. 583296 and 0. 2079875
 (M1)

 Q and 0. 583
 A1A1

Note: Award *(M0)A0A0* for an unsupported answer of "Q" (with either no probability or an incorrect probability)

[Total 18 marks]

RevisionDojo

(M1)(A1)

(M1)

A1