Mathematics: applications and interpretation

Higher level

Paper 3

Markscheme

1. (a) i)
$$(0 - 1 1 0)(3 2) = (-2 3)$$
M1A1ii) 90° Counterclockwise rotation about the originA1A1

(b) i)
$$(2\ 0\ 0\ -2)(-2\ 3) = (-4\ -6)$$
 M1A1

ii)
$$(2\ 0\ 0\ -\ 2\)(0\ -\ 1\ 1\ 0\) = (0\ -\ 2\ -\ 2\ 0\)$$
 M1A1

c) i)
$$(a b c d)(a b c d) = (1 0 0 1)$$
 M1

$$(a^{2} + bc ab + bd ac + dc cb + d^{2}) = (1 \ 0 \ 0 \ 1)$$
 M1A1

Then

$$a^2 + bc = 1$$
 and $cb + d^2 = 1$ **AG**

(ii)
$$det(C) = ad - bc = -1$$
 M1

$$a^{2} + bc = 1$$
 and $cb + d^{2} = 1$
 $ab + bd = 0$ and $ac + dc = 0$

$$bc = 1 - a^2$$

revisondojo.com

🗢 RevisionDojo

 $bc = 1 - d^2$ Then $a^2 = d^2$ so either a = d or a = -dA1 When a = dad - bc = -1 $ad - (1 - a^2) = -1$ $ad - 1 + a^2 = -1$ a(d + a) = 0Either a = 0 which is not possible or d + a = 0 which means that a = -dAs ab + bd = 0 and ac + dc = 0b(a + d) = 0 and c(a + d) = 0 and d + a = 0This holds for any value of b and c So a = -d and $bc = 1 - a^2 = (1 + a)(1 - a)$ a = -d b = (1 + a) and c = (1 - a)So A1 (d)i) $|3 - \lambda 4 2 1 - \lambda| = (3 - \lambda)(1 - \lambda) - 8 = 0$ M1A1 $\lambda = 5, \lambda = -1$ A1A1 ii) (3 4 2 1)(x y) = 5(x y)M1A1 x = 2yA1 (21)e) i) $(\cos\theta - \sin\theta \sin\theta \cos\theta)$ A1A1 ii) $(\cos\theta - \sin\theta \sin\theta \cos\theta)(\cos\theta - \sin\theta \sin\theta \cos\theta) =$ M1 $= \left(\cos^2\theta - \sin^2\theta - 2\sin\theta\cos\theta 2\sin\theta\cos\theta\cos^2\theta - \sin^2\theta\right)$

🗢 RevisionDojo

$$\left(\cos^{2}\theta - \sin^{2}\theta - 2\sin\theta\cos\theta 2\sin\theta\cos\theta\cos^{2}\theta - \sin^{2}\theta\right) = \left(\cos2\theta - \sin2\theta\sin2\theta\cos2\theta\right)$$
A1

 $\left(\cos 2\frac{\pi}{2} - \sin 2\frac{\pi}{2}\sin 2\frac{\pi}{2}\cos 2\frac{\pi}{2}\right) = (\cos \pi - \sin \pi \sin \pi \cos \pi)$ which represents a reflection on the line y = -x

[Total 29 marks]

2. (a) i) a + 95 = 155 M1

$$a = 60$$
 AG

ii)
$$60 + 60 + b = 130$$
 M1

$$b = 10$$

(b) Restricting the size of the sample space to 170 M1

$$P(Minor\ scratches) = 0.353(0.3529411..., \frac{60}{170})$$
 A1

(c) i) H_0 : Damage level and manufacturing process are independent. A1

 H_1 : Damage level and manufacturing process are not independent.

Note: Condone equivalent statements such as 'not dependent' but do not accept "uncorrelated" or "not related" in place of "independent".

(ii) p - value = 0.199 (0.198547....)

M1 A1

R1

(iii) 0.199 > 0.05

Hence there is insufficient evidence to reject the null hypothesis then we can

revisondojo.com

conclude that the damage level and the manufacturing processes used are independent.

A1

Note: Do not award R0A1.

(d) $\frac{110+55}{260} \left(=\frac{165}{260}\right)$		A1
<u>33</u> 52		AG
(e) Either		
Each screen fails independently.		R1
or		
Probability of failure remains constant.		R1
or		
Sample size is sufficiently large.		R1
(f) 80 seen		(A1)
EITHER		
attempt to find a probability ≤ 70 (a	condone strict inequality for <i>(M1)</i>)	(M1)
$(P(X \le 70) =) 0.142 (0.14212)$		A1

Note: Award **(A1) (M1)A0** for an unsupported p = 0.104, from use of strict inequality.

0.142 > 0.05	
OR	
attempt to find the critical region (M	1)
critical region is $X \le 69$ A1	
69 < 70 or '69 is not in the critical region' R1	
THEN	
EITHER	
do not reject the null hypothesis (as there is insufficient evidence that the new	
manufacturing process reduces damage). A1	
OR	
do not accept the alternative hypothesis (as there is insufficient evidence that the	è
new manufacturing process reduces damage). A1	
(g) (i) the test for a proportion is directional and so considers whether the new	
manufacturing reduces the number of components damaged	
(ii) there could be variation in the value of $ ho$ chosen for the null hypothesis / the	
value of p from the sample might not be a representative of the current	
manufacturing process R1	
(h) let	

 $\boldsymbol{\mu}_1$ be the mean length of time before damage appears with the new manufacturing process

and

 $\boldsymbol{\mu}_2$ be the mean length with the current manufacturing process

 $H_0: \mu_1 = \mu_2$ $H_0: \mu_1 > \mu_2$

Note: Award **A1A0** for correct hypotheses in which the two population means are not clearly defined (e.g. unsupported μ_1 and μ_2).

🔁 RevisionDojo

THEN

recognition of the need to use of a two-sample test	
p - value = 0.0165 (0.016516)	A2

Note: If not pooled, answer is 0.016722... award (M1)A2

0.0165 < 0.05

reject the null hypothesis (**OR** accept the alternative hypothesis) **A1** (there is sufficient evidence to conclude that the new manufacturing process increases the mean length of time before any damage appears)

Note: Do not award *ROA1*. Follow through within part (h) for the last *R1A1*, provided their *p*-value is between 0 and 1 inclusive.

(i) The test shows statistical significance, but practical significance is not guaranteed. Other factors may influence screen durability.

A1

R1

[Total 26 marks]