[1]

IB Mathematics AA HL - Prediction Exams May 2025 - Paper 1

[Maximum mark: 5]

The graph of y=f(x) for $-3 \leq x \leq 4$ is shown in the following diagram.

(a) Write down the value of f(2).

Let g(x)=2f(x)-1 for $-3\leq x\leq 4$.

(b) On the axes above, sketch the graph of g. [2]

(c) Hence determine the value of $(g \circ f)(2)$. [1]

(d) Hence solve the equation $(f \circ g)(x) = 0$ when x > 0.

NO CALCULATOR

Easy ••••

[]

[Maximum mark: 5]

(a) Show that $12\log_x 2 = \frac{12}{\log_2 x}$.

[1]

(b) Hence solve the equation $\log_2 x = 8 - 12 \log_x 2.$

[4]

Question 3

NO CALCULATOR

[]

[Maximum mark: 4]

When the resulting product of $3x^2 + 7x - 6$ multiplied by ax + 1 is divided by x - 1 the remainder is -4.

Find the integer a.

Question 4

NO CALCULATOR

Medium • • • • •

Easy • • • • •

[]

 $[{\rm Maximum\ mark:\ 7}]$

(a) Show that $4 - 3\cos 2x = 6\sin^2 x + 1$.

[1]

(b) Hence or otherwise solve $4-3\cos(4\theta+\frac{2\pi}{3})-9\sin(2\theta+\frac{\pi}{3})=-2$ for $0\leq\theta<\pi$.

[6]

NO CALCULATOR

Medium •••

[]

[Maximum mark: 5]

Consider $f(x)=2\cos\left(x-\frac{\pi}{2}\right)+3$ and $g(x)=4\cos\left(x+\frac{\pi}{2}\right)+2$.

The function f is mapped onto g by three transformations.

(a) Fully describe each of the transformations and the order in which they must be applied.

[3]

A new function is such that h(x) = g(x) + k where $k \in \mathbb{R}$.

(b) Find the minimum value of k such that $h(x) \geq 0$ for all x.

[2]

Question 6

NO CALCULATOR

Medium • • • • •

[]

[4]

[Maximum mark: 7]

(a) (i) Consider the following equation $2\binom{n}{r} = \binom{n}{r+1}$.

Show that it can be written as 3r + 2 = n.

(ii) Now consider the following equation $7\binom{n}{r-1} = 2\binom{n}{r}$.

Show that it can be written as 9r - 2 = 2n.

Consider the expansion

$$(1+x)^n = 1 + a_1x + \dots + a_{k-1}x^{k-1} + a_kx^k + a_{k+1}x^{k+1} + \dots + x^n$$

Where $a_i \in \mathbb{Q}$ and $k \in \mathbb{Z}$.

The coefficients of three consecutive terms of the expansion are such that

$$7 imes a_{k-1} = 2 imes a_k \quad ext{ and } \quad 14 imes a_k = 7 imes a_{k+1}$$

(b) Find n.

NO CALCULATOR

Medium • • • •

[]

[Maximum mark: 8]

Consider the function $f(x) = \frac{\cos(mx) - \cos(nx)}{x^2}$ where $m, n \in \mathbb{R}$.

The function has a maximum value of f_{\max} and it is known that $f_{\max} = \lim_{x \to 0} f(x)$.

(a) Show that
$$f_{\mathrm{max}} = \frac{n^2 - m^2}{2}$$
.

It is now known that m > 0 and $n = 4\sqrt{m}$.

(b) Hence, using these conditions find the largest possible value of $f_{\rm max}.$

[2]

Question 8

NO CALCULATOR

Medium • • • •

[]

[Maximum mark: 8]

The graph of y=f(x) for $0\leq x\leq 6$ is shown below

The odd function h(x) has the domain $-6 \le x \le 6$ and h(x) = 2f(x) for $0 \le x \le 6$.

[2]

[3]

[3]

(a) Sketch h(x) on the axes above.

f(x) is shown again below.

(b) Sketch the graph of $y = [f(x)]^2$ on the axes above.

f(x) is shown one more time below.

(c) Sketch the graph of $y = \frac{1}{f(x)}$ on the axes above.

NO CALCULATOR

lard • • • •

:3

[Maximum mark: 8]

The function f is defined by $f(x) = \frac{\sqrt{1-9x^2}}{2x}$ for $x \ge 0$.

The region R is bounded by the curves y = f(x) and the lines x = 0 and y = 0 as shown in the following diagram.

The shape of a solid clay sculpture can be modeled by rotating the region R though 2π radians about the y-axis.

The top edge of the sculpture has coordinates of $(\frac{1}{6}, k)$.

The volume of clay used to make the sculpture is $a\pi^2$ units². Where $a\in\mathbb{Q}$.

Find a.

Section B

NO CALCULATOR Medium ••••

[Maximum mark: 23]

Consider the function $f(x) = \frac{\cos x}{2 + \sin x}$ for $-\pi \le x \le \pi$.

- (a) Evaluate f(0).
- (b) Find all possible values of a if f(a) = 0. [2]
- (c) (i) Show that $f'(x) = -\frac{2\sin x + 1}{(2 + \sin x)^2}$.
 - (ii) Hence find the x-coordinates of any stationary points of f. [7]
- (d) Given that $f''(x) = -\frac{2\cos x(1-\sin x)}{(2+\sin x)^3}$ find the nature of any stationary points of f. [5]
- (e) Hence sketch the graph of f, clearly showing the values of the axes intercepts and the x-coordinates of any stationary points. [3]

The function f is positive and decreasing in the region s < x < t.

The area enclosed by f and the x-axis from x = s to x = t is $\ln c$ where $c \in \mathbb{Z}$.

(f) Find c. [5]

Question 11

NO CALCULATOR

Hard • • • •

:3

[Maximum mark: 16]

(a) Use mathematical induction to prove that

$$2^n imes \cos x imes \cos 2x imes \cos 4x imes ... imes \cos 2^{n-1}x = rac{\sin 2^n x}{\sin x}$$

where $n \in \mathbb{Z}^+$.

- (b) (i) Find the first two non-zero terms of the Maclaurin series for $\sin 8x$.
 - (ii) Hence find the first two non-zero terms of the Maclaurin series for $\frac{\sin 8x}{\sin x}$.
 - (iii) Hence find an estimate for $\int_0^{0.1} \cos x \cos 2x \cos 4x \, dx$. [12]

NO CALCULATOR Hard •••••

[Maximum mark: 14]

The complex number z is a root of the equation |z+4i|=|z-10i|.

(a) Show that the imaginary part of z is 3.

[2]

- (b) Let ω_1 and ω_2 be two possible values of z such that |z|=6.
 - (i) If ω_1 is in the first quadrant sketch both solutions on an Argand diagram.
 - (ii) Hence find the arguments of ω_1 and ω_2 .

[4]

A different complex number, v, is defined such that

$$v=rac{\omega_1^k\,\omega_2}{-i}$$

Where k is a real number that can take any value in the interval $-10 \leq k \leq 10.$

- (c) (i) Find arg (v) in terms of k and π .
 - (ii) Hence find all possible values of k such that v is a real number.

[8]