IB Mathematics AA SL - Prediction Exams

May 2025 - Paper1

9 questions 90 mins 80 marks

Section A

Question 1

NO CALCULATOR Easy e«

[Maximum mark: 4]

Consider the line L; which passes through the points A(—4, —4) and B(8, —1).

(a) Find the gradient of the line L;.

Line L, is perpendicular to L; and passes through the point (—a, 2a) where a € R.

(b) Given that L, intersects the y-axis at y = 2a — 3, find the value of a.

(a) Using the formula for the gradient of a line

m — Y2 — U
Tg — X1
we can find the gradient of L;
my = L= (=4
8—(—4)
3
12

[1]

3]
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(b) As L, is perpendicular to L; we can find the gradient of L using the formula

mq X my = —1

1

— % = —1

1 ma
my = —4

We can form an equation, using the gradient formula, and solve for a.

Substituting in my and the points (—a, 2a) and (0, 2a — 3) we get

Y2— N
My =
Ty — I1
4 (2a —3) — 2a
00— (—a)
-3
g ==
a
—4a = —3
a=|2
4
Question 2
NO CALCULATOR Easy e e

[Maximum mark: 5]
The graph of y = f(z) for —3 < z < 4 is shown in the following diagram.

Y

(A1)

(M1)
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(a) Write down the value of f(2). 1]

Let g(z) = 2f(z) —1for —3 <z < 4.

(b) On the axes above, sketch the graph of g. 2]
(c) Hence determine the value of (g o f)(2). 1]
(d) Hence solve the equation (f o g)(z) = 0 when z > 0. 1]
a
(a) Evaluating .f(x) when z = 2 revisionvillage
Y
4
6 1
5+
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(b) The function f(z) is mapped to g(z) by two transformations.

By considering g(z) = 2f(z) — 1, we can see there is a
vertical stretch by a scale factor of 2 and a vertical shift down 1 unit.

The vertical stretch (y = 2f(x)) is shown in blue below.

Note that the vertical distance from the y-axis of every point on the curve is doubled.




Note that every point on the blue curve is shifted vertically down 1 unit.

Correct local minimum at (—2,1) ]

Al

Correct y-intercept at (0, 5) ]
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(c) From part (a) we know that f(2) = 1.

Hence

Hence [(go (2) = 3].

Here is the graph of g(z) showing that g(1) = 3.

Here is the graph of g(z) showing that g(1) = 3.

Al



(d) We have the equation (f o g)(z) = 0. The L.H.S. is a composite function which can be
rewritten

(fog)(z) = f(g(2))

Here we can see that g(z) is the inner function and f(z) is the outer function, meaning
that the output of g will be the input of f.

By considering the graph of f(z) we see that when z = 3 then f(z) = 0.
Y

'
6O+




This means in order to have an output of 0, the input must be 3.
flg(z)) =0
f3)=0
Therefore we need to find the value of z, where z > 0, such that g(z) = 3.

From part (c), we know that g(1) = 3, and we can see that this is the only possible
solution when =z > 0.

Hence if z > 0 and (f o g)(z) = 0 then [z = 1).

Al
Question 3
NO CALCULATOR
[Maximum mark: 5]
(2) Show that 12log, 2 = 12 . 1]

log,

(b) Hence solve the equation log, z = 8 — 12log, 2. [4]



(a) Using the change of base formula we can write

L.H.S. = 12log, 2

— 12 (10g22) Al
log,

As log, n = 1, we can replace log, 2 with 1 and simplify

12 ( ! )
log,
!
= ...as required
log,

= R.H.S.

(b) We can replace 12log, 2 with the R.H.S. of the identity from part (a)

log, z = 8 — 12log,, 2

12

M1
log, x (M1)

logyz = 8 —

We now multiply each side by log, z and then rearrange such that the R.H.S. is equal
to 0

(log, z)* = 8log, x — 12
(log, )* — 8logy z + 12 =0 (M1)
This is a hidden quadratic equation. If we replace log, with a variable, say a, we get

a*—8a+12=0

Let’s solve this by factorising.

(a—2)(a—6)=0



Therefore the solutions are

a—2=0 and a—-6=0

a=2 a="6
Recall a = log, z, therefore the solutions become
logyz = 2 log,z = 6

Converting each to exponential form, we get

Question 4

NO CALCULATOR

[Maximum mark: 7]

(a) Show that 4 — 3 cos 2z = 6sin’z + 1.

(b) Hence or otherwise solve 4 — 3 cos(46 + 27) — 9sin(20 + §) = —2for 0 < 6 < .

10

Al
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(a) In a 'show that’ question we should work from the L.H.S. to the R.H.S.

L.H.S. =4 — 3cos2zx

The cosine double angle identity that contains only sin @ is cos 20 = 1 — 2sin’ 6.

Substituting this we obtain
=4 —3(1 — 2sin’ z) M1
=4 -3 +6sin’z

= ...as required

= R.H.S.

(b) By considering a substitution x = 20 + 7 we can write the equation in part (b) so that
contains the expression from part (a).

4 —3cos(40 + &) — 9sin(260 + §) = —2

4 —3cos2x —9sinx = —2

Hence we can substitute the R.H.S. of the equation from part (a) so that the equation
is in terms of sine.
6sin’z + 1 — 9sinz = —2 (M1)
6sinz — 9sinz + 3 =0
2sin’z — 3sinz 4+ 1 =0
Notice that this is a quadratic equation. We can factorise it using grouping which
gives
2sin’z — 3sinz +1 =10
2sin’ z — 2sinz — sinz 4+ 1 = 0
2sinz(sinz — 1) — 1(sinz — 1) = 0

(2sinz — 1)(sinz — 1) =0
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Applying the null factor theorem we get
2sinzx —1=0 sinx—-1=0
sin:c:% sine =1 Al
x

Using the unit circle, we know that sinz = 1 when z — | and sinz = % whenz = §
and z = %“ This is represented in the diagram below.

1

Hence the answers for z are ¢, 5, and %”

(A1)



Recall that we are solving for 6 and we used a substitution.

Hence we can find values of @ that satisfy the equation

20471 =T

[=

0=

[
(o=

The first value we have found is outside of the given domain (0 < # < 7) hence we
need to add (or subtract!) 27 to the value we found from the unit circle to obtain
other values that could be in the domain

20+ 3 =% +2m

— 137

~ 6

— 137 _ 2r
20 = = 8
0 — | lr

=
(o=

This value is now in the given domain.

13
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Let’s find the remaining values

204+T="1
60=|%] Al
_ 5

20+ % =10

6
9: Al

We have found three solutions. Although not required by the question we can view
the values on a graph.

Notice three solutions, one in red and two in blue.

The solution identified with the black dot is the value we found which was not in the
desired domain.
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Question 5

NO CALCULATOR

[Maximum mark: 5]

Consider f(z) = 2cos (x — §) + 3and g(z) = 4cos (z + §) + 2.

The function f is mapped onto g by three transformations.

(a) Fully describe each of the transformations and the order in which they must be applied. 3]
A new function is such that h(z) = g(z) + k where k € R.

(b) Find the minimum value of k such that h(z) > 0 for all z. 2]

(a) By considering the differences between the functions we can work out the

transformations needed to map f(z) to g(z).
First we notice that the inner functions are different.
m
f(z) = 2cos (:c — 5) +3
T
g(z) = 4cos (a: + 5) + 2

If we add 7 units to the inner function of f(z), it will equal the inner function of g(z).

Al
Hence
m
f(z+7) = 2cos (sc— §—I-1r) +3

f(a:+7r):2(:os(a:+g)—l—3

Comparing the function f(z + ) to g(x), we notice that the coefficient of cosine has
been doubled.

f(:c+7r):2(:os(:c+g) +3

™
g(x) = 4cos (a: + 5) + 2



Hence, if we multiply f(z + 7) by 2 we would have

Al

2f(z + ) = 2(2cos (m—l— g) +3)

2f(z + m) = 4cos (a:+ g) +6

If we continue comparing the function 2f(z + 7) to g(z), we see there is a difference of
4 units.

2f(z + 7) = 4cos (m+ g) + 6

g(z) = 4cos (:c + g) + 2
Hence, if we apply a vertical shift of —4 to 2f(z + ), we will obtain g(z).

Al

2f(a:+fr)f4:4cos(:c+—)+674

Summarising the 3 transformations, there is

a horizontal shift left of 7 units, followed by a vertical stretch by a scale factor of 2,
followed by a vertical shift of —4 units.

Note: The horizontal shift could also come after the vertical transformations, however
the two vertical transformations must be applied in the order given.

16



(b) In order to apply a vertical translation such that g(z) > 0 for all z, we need to know
the minimum value of g(z).

The minimum value of cosine is —1. Hence we can determine the minimum of g(z)

(M1)
™
g(z) = 4cos (:r: + E) +2
=4(-1)+2
= -2
Hence, we need to translate the graph vertically upwards at least 2 units.
Therefore, the minimum value is .
Al
Question 6
NO CALCULATOR Hard eeee oo
[Maximum mark: 7]
(a) (i) Consider the following equation 2(7) = (,7,).
Show that it can be written as 3r + 2 = n.
(ii) Now consider the following equation 7(,",) = 2(7).
Show that it can be written as 9r — 2 = 2n. 4]

Consider the expansion

l1+z)"=1+az+..+ ap_12" 1t + apz® + a4+ L+ 2"

Where a; € Q and k € Z.

The coefficients of three consecutive terms of the expansion are such that

Txar1=2x%xar and 1ldXar="7X a1

(b) Find n. (3]

17
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nl i we can rewrite both the

(a) (i) Using the combinations formula () = =)

LHS and the RHS of the equation

9 at B b
rln—r)l)  (r+1!(n—(r+1))
Now we can simplify and rearrange the equation

2(r+1)!  (n—r)!
rt (n—r—1)!

Rewrite the numerators using the concept n! = n(n — 1)!

2(r + 1)r! _ (n—r)(n—r—1)!

r! (n—r—1))! M1

We can cancel out the factorial terms

2(r + 1)t (n—r)(n—r—=TJT
o e

2r+1)=n-—r

A1

As required.

(ii) Rewrite the equation using the combinations formula and simplify in a similar
way to part (a)

! ((r—l)t(nﬂi (r—l))!) -7 (%)
7 2

(r—=D!n—-r+1)! rln—r)!
7r! 2(n —r+1)!
(r —1)! (n—r)!
r(r—1" 2(n-—r+1)(n—")T M1
{z—1)T (p—7J"

Tr=2n—2r+ 2

9r —2 =2n Al

As required.
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(b) We can begin by expanding (1 + x)", using the binomial theorem, in terms of n and r.

(1+z)"=1+ (T)m + (g)mz + .

+z"
The terms in red represent any three consecutive terms in the expansion.

We are told in the question the way in which the coefficients of three consecutive
terms are related.

(1 + a:)n =1l4+aiz+ ...+ a 1:1:;" Ly n,;\.;;;k + ap ,:1:*' e 42"

Hence we can use the information given to write the following two equations in terms
of binomial coefficients

7xak_1=2><ak 14><ak=7><ak+1
(") =2(" wu(™y=7( "
r—1 r T r+1
n n
2 —
) -(5)

In part (a) we already rewrote these equations without the combination notation, lets
call them [1] and [2]. We can now solve them simultaneously and find n and r.

M1
3r+2=n 1]
9 —2=2n 2]
Multiply [1] by 3 and subtract equation [2] from this result
9r —9r 4+ 6 — (—2) =3n —2n

n=2~y Al



SectionB
Question 7

NO CALCULATOR

[Maximum mark: 11]

Consider the function

@) = gﬁ(gﬁ —8z+3)

1
vz

(b) Hence find the z—coordinates of the two stationary points of f(z).

(a) Show that f'(z) = (15z% — 8z + 1).

A particle, P, is moving along the z—axis. Its position s, in metres, relative to the origin after time ¢, measured in
seconds, is given by

2
s(t) = g\/i(th — 8t +3)
Where t > 0.

The particle is moving to the left for ¢ = k seconds.

(c) Hence find k.

4]

(3]

4]

20



(a) There are a number of ways to differentiate this function.
We could expand the brackets using index laws then differentiate each term.

However, in this solution we will use the product rule.

(M1)
If Y = uv
then g—g = vfl—;j + ug—;’
Withu = 222 and v = 922 — 8z + 3.
Using the power rule, we get g—: = %m‘% and g—z = 18z — 8.
By substituting these results into the formula we can write
Fl(z) = (92° — 8z +3) x la~7 + 2zt x (18z — 8) Al1A1

If we look at the requested form of the answer we can see that z~: is a common factor.

Note that for the second term of the derivative we can use the following to help us

. 1 _
factorise zz = 72 X .
Hence we get

— g1 [%(99:2 — 8z +3) + % x z(18z — 8)]

Now we can expand the brackets and simplify
\begin{align* }e}{ \tag*{\textbf{(M1)}} \end{align*}

= m_% [3m2 - %:c + 1+ 122% — %m]

27t (1502 — Bz 4 1)]

1
=|—=(15z — 8z + 1) ... as required

N




(b) Stationary points occur when f’(z) = 0.

Hence we can form an equation

%(15;,:2 8z 41)=0 (M1)

Note that % # 0 for any value of z, therefore we only need to consider the term in the

brackets when solving the equation above. Thus we need to solve

1522 — 8z +1=10

We can attempt to factorise this. Note that 15z* = 3z x 5z and the only
combinations that give +1 are 1 x 1 or (—1) x (—1). Hence through inspection we get

(5z — 1)(3z — 1) =0 A1l

The x—coordinates of the stationary points are ﬂ

Al

(c) The particle is moving left when the velocity is negative. Hence we need to find the
interval for ¢ which satisfies

v(t) <0 (M1)
We can note that v(t) = §'(t) and that the function given for s(t) is of the same form

as f(z) from part (a).

Hence, using the answer from part (a) we can say that

o(t) = %(15152 8t 1)

We can realise that if ¢ > 0 then -1 > 0. Therefore the expression in the bracket will

Vi
determine the sign of v(t).

To help us here we can make a sketch of y = 15t — 8t + 1

22



\ I
!
\ '
\ /
/
\\ /
\ '
/
\
\/ >
1 1
5 3
(M1)
Notice the red part of the curve is when y < 0 and therefore v(t) < 0.
Using our answers from part (b) we can write that v(t) < 0 when } < ¢ < 1.
(A1)

However, the question doesn’t ask for an interval it asks for a total time the particle is
moving left, hence

=
Il

1
5

Elm =

3
15

% seconds Al

Il
5]
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Question 8

NO CALCULATOR Hard eeee

[Maximum mark: 13]

Consider the function f(z) = 4z — 2 — 1.

(a) Write f(z) in the form (z — h)? + k.

A line is drawn through the points A(0, f(0)) and B(2, f(2)).
(b) (i) Write down the coordinates of points A and B.

(i1) Find g(z), the equation of the line passing through points A and B.
(iii) Hence, show that the area enclosed by f(z) and g(z) is % units?.

A horizontal line is drawn through the points C(1, f(1)) and D(3, f(3)).

(¢) Show that the area enclosed by f(z) and line CD is g units?.

Consider the two points E(a, f(a)) and F(a + 2, f(a + 2)).

4
(d) Show that the area enclosed by the function f and the line EF is 3 units?.

24
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(a) To write f in the desired form we must complete the square
(M1)
flz) =4z — 2> - 1
= —(z* —4z) -1
=—[(z-2)" - (2)"] - 1

=—(z-2)P%+4-1

(b) (i) We can find the y—coordinate by evaluating the function at both z = 0 and z = 2

f0)=3-(0-2° f(2)=3-(2-2)°
— 1 =3

Hence the coordinates are [A(O, —1) and B(2, 3)]

Al

25



(ii) We can make a quick sketch of f

(2,3)

» T
A(0,—1) \f(w)

We have the y—intercept already.

And the gradient of the line through A and B is

3 (~1)
2—-0

m =

m =2

Therefore, the line through A and B is

Al

26
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(iii) The shaded area, seen below, shows the area we need to find

. 9(z)
(2,3)

A(0,-1) \f(-'v)

To find the area we evaluate the following definite integral, where A, and B, are
the z—coordinates of points A and B respectively

- [t - sy as
_f02(4xx21(2x1))d:c M1
= jj(2x — %) dx

Using the inverse power rule and substituting in the limits we get

2
1
-
0

@ -y (07 - o) A1

4
= ...as required

(4]

Wl =
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(¢) We can make a quick sketch of the new region enclosed by f(z) and the new
(horizontal) g(z).

D(3,2)

C(1,2)

» T
\ f(z)
We now evaluate the definite integral, where C, and D, are the z—coordinates of
points C' and D respectively

D,

— [ @) - @) do
C,
3

—/ (dz—a?—1—(2))da
1

3
:/(4$m23)dm M1
1

Using the inverse power rule, to integrate each term and substitute in the limits, we
get

1
=18-9-9—(2- ;-3 Al

4 ., .
= gunlts ...as required
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(d) The diagram below shows a region bound by f(z) and g(z) and the points E(a, f(a))

and F(a + 2, f(a + 2))).

The function f needs to be used to calculate the y—coordinate values of £ and F'.

g9(x)

Y
'

(a, f(a))

Fla+2, f(a+2))

» T
\sto

To find the area we need to find the linear function g(z) in terms of a.

(M1)



g(z) is of the form g(z) = myx + ¢4.

Where the gradient, m,, is

_tn
g Ty — I
f(a + 2) — f(a)
. a+2-a
_(8-d*) - (38— (a—2)?)
B 2
Simplifying we get
 —a?+(a—2)*
h 2
 —a*+a’—4da+4
h 2
my =2 — 2a Al
Using the point A(a, f(a)) we can find the y—intercept, ¢4, of g(z)
y=(2-2a)z +c,
f(a) = (2 - 2a)a+ ¢,
3—(a—2)"=(2-2a)a+c,
c, =3 — (a—2)? —2a + 2a°
cg=a’+2a—1 Al

30



The function g(z) in terms of a is
g(z) = (2 -2a)z +a® +2a—1

The shaded area is given by the following definite integral

- [ 0@ - g(a)) da

E,

a+2
—/ (4o —a2° —1— (2 - 2a)c + a® +2a — 1)) da
a

Simplifying we get

dx — 2* —1— (2 — 2ax + a”® + 2a — 1)) dx

—z> + (2a + 2)z — a® — 2a) dzx

f 2z — a? + 2ax — a® — 2a) dz

31
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Now we can integrate each term, using the inverse power rule, and substitute in the
limits.

a+2

1 2 2
= [—§m3 + %mz —z(a® + 2a)} Al

= 3 (@42 + (@t 1)(a+2) ~ (a+2)(a +2a) ..

(%a3 + (@ + 1)a® — a(a® + 2a))

Expanding and simplifying we gradient
1
= —E(a3+6a2+12a+8)—I—a3+5a2+8a—l—4— (a® + 4a® + 4a) — ...

1
(gag -+ a® -+ a’ —a® - 2a2)

We continue to collect any like terms and simplify to get

8
=%—2a2—4a——+a2+4a+4—...
3 3
1
(o)

8
= 2a’ — 4d — 3 . f Ad+ 4 +.a” Al

== 44
3—I-

4
— ...as required



Question 9

NO CALCULATOR Hard eeee

[Maximum mark: 23]

cos T

= for—n<z<m
2+sinz

Consider the function f(z)

(a) Evaluate f(0).

(b) Find all possible values of a if f(a) = 0.

2sinz +1

(¢) (i) Show that f(z) = “@tsma)

(ii) Hence find the z—coordinates of any stationary points of f.

_ 2cos z(1 —sinz) find the nature of any stationary points of f.

(d) Given that f'(z) = ~ (2+sinz)3

(e) Hence sketch the graph of f, clearly showing the values of the axes intercepts and the z—coordinates of any

stationary points.

The function f is positive and decreasing in the region s < x < t.
The area enclosed by f and the z—axis from x = s to z = t is Inc where ¢ € Z.

(f) Find c.

(a) To evaluate the function we substitute in = 0 which gives

B cos (0
2 +45sin0

£(0)

Using the fact that cos0 = 1 and sin 0 = 0 we get
1

2+0

1
|2

Al

33
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(b) Using # = a and the function f we can form an equation

fla) =

~ 2+sina

cosa

=0

Only the numerator can provide solutions to the equation, hence we get

cosa =0 (M1)

Recall, the domain of f is —7m < x < 7, we can use a sketch of cos z to find all
solutions of a in that domain

-1

We know that the principal angle of cos 7 is 0, which is shown in green, and using the
symmetries of the cosine curve we can see that — 7, shown in red, is also a solution.

Al



(c) (i) To differentiate f we need to use the quotient rule.

(M1)
For this we need the derivative of both the numerator and the denominator

d
—(cosz) = —sinz a(2—|—sina:):cosw

dx

Now we can use these results and the quotient rule to form an expression for f'(x)

(2 +sinz)(—sinz) — (cosz)(cos x)

! €Xr) = A].A.].
/() (2 + sinx)?
B —2sinz —sin’x — cos® z
B (2 + sinz)?

—2sinz — (sin’ z + cos® )
(2 + sinz)?

Notice we can use a trigonometric identity to simplify the numerator

M1

—2sinz — 1
(2 + sinz)?
2sinx + 1

=|— m ... as required.
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(ii) To find any stationary points we must solve f'(z) = 0, hence we can form an
equation using the result from part (c)(i)

_251na‘:+1 —0 (M1)
(2 + sinz)?

We only need to consider the numerator, hence we get
—2sinz —1=0

sinz = —— (A1)

The principal solution (this means the solution in the first quadrant) is z = .

However, if we make a sketch of sin  with the same domain as f we can see that

the solutions to sinz = —% are both negative
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Due to the symmetries of the graph we can see that the two angles, x and x»,
marked in red are

x T+ T x 0- 7"
1= - = 2=V= =
6 6
o T
= —_-—— 3’52 = — —
6 6
: : . . 5T
Hence there are two stationary points with z—coordinates of |z = sy and
™
r=——|
6
Al
(d) We can use the second derivative to determine the nature of the stationary points.
If f(z) > 0 the point is a minimum and if f”(z) < 0 it is a maximum.
(M1)

Let’s first test the point z = —§

~2cos (—g)(1 —sin(—§))
(2+sin(—F))*

f”(* ) —

=]

To evaluate the expression above we need the exact values of sin (—§) and cos (— ).

b2 =

From previous work we know that sin (- %) = —3.

We can use the symmetry of the cosine curve
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to realise that cos (—%) = cos (§).
Hence cos (—§) = V3,

Now let’s substitute the two values into the earlier expression we had f”(z) to get

2x32@x(1

(=3))
b M1

f(=5) = )

=13
B3| =
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We don’t need to evaluate the expression exactly we just need to know if it is positive
or negative, let’s do a little simplification

_2xP(1+3)
(3)3

[T

We can now see that quotient will result in a positive value. Hence, as the entire
quotient is being multiplied by —1, the result is negative.

Therefore

f”(*%) <0

Hence |z = —% is a maximum value ]

Al



We can use a similar process for the other stationary point z = — %”

(24 sin (—37))3

fu(_%r) _ 72cos(f%")(1 — sin (— 7))

From previous work we know that sin (—°7) = —J.

[T

And using the symmetries of the cosine curve we get

cos (—°1) = cos (%)
= —cos(§)
V3
2

We can now substitute these two values into the second derivative to get
2(-F) -}
2+ (=3)°
_2\/5

1+
(5)°

B3 =

B3| =

—~

[
—
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We can see that the quotient will now be negative and hence the overall value will be

positive.
Therefore

frr(_%w) >0

Hence |z = —%7’ is a minimum value ’




(e) To help us with the sketch we can summarise our findings so far.

From parts (a) and (b) we found the axes intercepts (0, 1), (—%,0) and (3, 0).

5

We have also found a maximum point at ¢ = —§ and a minimum point at z = — .

We should also remind ourselves that the domain is — 7 < z < 7.

Let’s first sketch the domain and the axes intercepts

a
L4

hg

.
[ ]

wl
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We can now add the stationary points

?

B | —

Max
L 4
|
I
I
om |
- |
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- _r _T
2 i

P R

Min

|2 —@




Finally we can use the plotted points to fit the function. Being careful to stop at the

end-points!

(- Y| P P ———

[Correct axes intercepts]

[Correct position of two stationary points

[Correct shape and end—points]

Al

Al

Al
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(f) We need to identity the region in which f is positive (above the z—axis) and is
decreasing (which means the gradient is negative).

This region is the highlighted red part of f shown below

o=

B
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Hence we can see that the value of s = —% and t =

r2|y

To find the area under the curve between these two values we need to evaluate the
definite integral of f from —§ to §

Area—= [° f(z)de

ESE

m
2 cos T

:/ ST (M1)

_% 2+sinz

This integral is a quotient. Often a good strategy to integrate a quotient is to use a
substitution for the denominator.

Hence let u = 2 + sin z.

To rewrite the integral we will need an expression for dz in terms of du, hence

d—u—cosw
dz
dz = 1 du
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Let’s now replace the original integral so that it is in terms of u. We will omit the

limits for now.

CcosS T ms—:r
du

2+81nm
1
:/—du
U
=Inu|+C Al

Let’s now substitute « = 2 + sin x and reintroduce the limits.
As the integral is now definite we can omit the constant.

This gives

rol3

Area = {ln|2—|—sinw|} Al

ol

As 2 + sinz > 0 for all z we can remove the absolute value signs.
Substituting in the upper and lower limit we get
=In(2+sin (%)) —In(2+sin(-7)) M1
Recall sin ("'2—r) = 1 and sin (—g—r) = —%, hence we get
=In(2+1)—In(2+—(3))

_ 3
fln3—ln§

I
fu—
=

o reles| L

I
=3

Hence

Al



