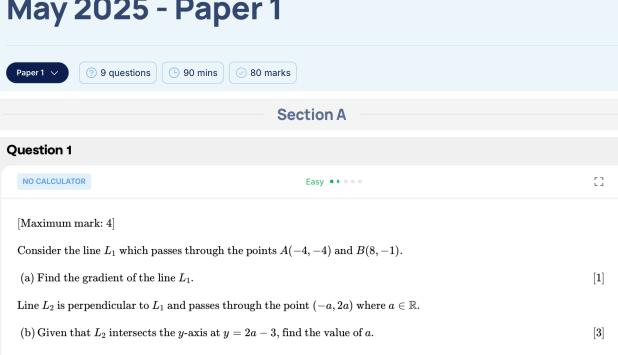
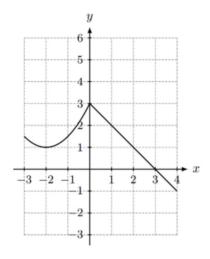
IB Mathematics AA SL - Prediction Exams May 2025 - Paper 1



Question 2 NO CALCULATOR Easy ••••• (3)

 $[{\tt Maximum\ mark:\ 5}]$

The graph of y = f(x) for $-3 \le x \le 4$ is shown in the following diagram.



[1]

 $\mathrm{Let}\ g(x)=2f(x)-1\ \mathrm{for}\ -3\leq x\leq 4.$

(a) Write down the value of f(2).

(b) On the axes above, sketch the graph of g.

[2]

(c) Hence determine the value of $(g \circ f)(2)$.

[1]

(d) Hence solve the equation $(f \circ g)(x) = 0$ when x > 0.

[1]

Question 3

NO CALCULATOR

Medium • • • • •

:3

 $[{\rm Maximum\ mark:\ 5}]$

(a) Show that $12\log_x 2 = \frac{12}{\log_2 x}$.

[1]

(b) Hence solve the equation $\log_2 x = 8 - 12 \log_x 2$.

[4]

Question 4

NO CALCULATOR

Medium • • • • •

[]

[Maximum mark: 7]

(a) Show that $4 - 3\cos 2x = 6\sin^2 x + 1$.

[1]

(b) Hence or otherwise solve $4-3\cos(4\theta+\frac{2\pi}{3})-9\sin(2\theta+\frac{\pi}{3})=-2$ for $0\leq\theta<\pi$.

[6]

Question 5

NO CALCULATOR

Medium • • • • •

[]

[Maximum mark: 5]

Consider $f(x) = 2\cos\left(x - \frac{\pi}{2}\right) + 3$ and $g(x) = 4\cos\left(x + \frac{\pi}{2}\right) + 2$.

The function f is mapped onto g by three transformations.

(a) Fully describe each of the transformations and the order in which they must be applied.

[3]

A new function is such that h(x) = g(x) + k where $k \in \mathbb{R}$.

(b) Find the minimum value of k such that $h(x) \geq 0$ for all x.

[2]

Question 6

NO CALCULATOR

Hard • • • • •

:3

 $[{\rm Maximum\ mark:\ 7}]$

(a) (i) Consider the following equation $2\binom{n}{r} = \binom{n}{r+1}$.

Show that it can be written as 3r + 2 = n.

(ii) Now consider the following equation $7\binom{n}{r-1}=2\binom{n}{r}$.

Show that it can be written as 9r - 2 = 2n.

[4]

Consider the expansion

$$(1+x)^n = 1 + a_1x + ... + a_{k-1}x^{k-1} + a_kx^k + a_{k+1}x^{k+1} + ... + x^n$$

Where $a_i \in \mathbb{Q}$ and $k \in \mathbb{Z}$.

The coefficients of three consecutive terms of the expansion are such that

$$7 imes a_{k-1} = 2 imes a_k \quad ext{ and } \quad 14 imes a_k = 7 imes a_{k+1}$$

(b) Find n.

Section B

Question 7

NO CALCULATOR

Medium • • • •

[]

[Maximum mark: 11]

Consider the function

$$f(x) = \frac{2}{3} \sqrt{x} (9x^2 - 8x + 3)$$

(a) Show that
$$f'(x) = \frac{1}{\sqrt{x}}(15x^2 - 8x + 1)$$
.

. . .

(b) Hence find the x-coordinates of the two stationary points of f(x).

[3]

[4]

A particle, P, is moving along the x-axis. Its position s, in metres, relative to the origin after time t, measured in seconds, is given by

$$s(t) = \frac{2}{3} \sqrt{t} (9t^2 - 8t + 3)$$

Where $t \geq 0$.

The particle is moving to the left for t = k seconds.

(c) Hence find k.

[4]

Question 8

NO CALCULATOR Hard ••••

[Maximum mark: 13]

Consider the function $f(x) = 4x - x^2 - 1$.

(a) Write
$$f(x)$$
 in the form $(x - h)^2 + k$. [2]

A line is drawn through the points A(0, f(0)) and B(2, f(2)).

- (b) (i) Write down the coordinates of points A and B.
 - (ii) Find g(x), the equation of the line passing through points A and B.

(iii) Hence, show that the area enclosed by
$$f(x)$$
 and $g(x)$ is $\frac{4}{3}$ units². [4]

A horizontal line is drawn through the points C(1, f(1)) and D(3, f(3)).

(c) Show that the area enclosed by
$$f(x)$$
 and line CD is $\frac{4}{3}$ units².

Consider the two points E(a, f(a)) and F(a+2, f(a+2)).

(d) Show that the area enclosed by the function
$$f$$
 and the line EF is $\frac{4}{3}$ units². [5]

Question 9

NO CALCULATOR Hard ••••

[Maximum mark: 23]

Consider the function $f(x) = \frac{\cos x}{2 + \sin x}$ for $-\pi \le x \le \pi$.

- (a) Evaluate f(0).
- (b) Find all possible values of a if f(a) = 0. [2]
- (c) (i) Show that $f'(x) = -\frac{2\sin x + 1}{(2 + \sin x)^2}$.
 - (ii) Hence find the x-coordinates of any stationary points of f. [7]
- (d) Given that $f''(x) = -\frac{2\cos x(1-\sin x)}{(2+\sin x)^3}$ find the nature of any stationary points of f. [5]
- (e) Hence sketch the graph of f, clearly showing the values of the axes intercepts and the x-coordinates of any stationary points. [3]

The function f is positive and decreasing in the region s < x < t.

The area enclosed by f and the x-axis from x=s to x=t is $\ln c$ where $c\in\mathbb{Z}.$

(f) Find c.