EQUILIBRIUM Core (SL \& HL)

1. (a) Consider the equilibrium: $\quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
(i) Write an expression for the equilibrium constant, K_{c}, for the reaction.
$\quad k_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{Co}^{\circ}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
(ii) Distinguish between the terms reaction quotient, Q , and equilibrium constant, K_{c}.

(iii) State why this equilibrium reaction is considered homogeneous.

(iv) Initially, an equal number of moles of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}$ (g) only are present in a cylinder and are allowed to reach equilibrium at $800^{\circ} \mathrm{C}$. At $800^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=4.0$ for the reaction.

Sketch a graph to show the change in concentration of the reactants and products with time until the equilibrium is established.

(v) The forward reaction in (a) is exothermic. State and explain the effect on the value of K_{c} if temperature is increased.
\qquad so equihbrium shifts left/toreactants so kr.......ill...decuense.
(vi) State the effect on the position of equilibrium and the value of K_{c} if a catalyst is used.
(A catalyst will speed up the reaction/ attainment of eam).... but will have no effect on k_{c}, and will have no effect on position of equilibnum.
2. (a) The Haber process is used to produce ammonia:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

(i) State and explain how the equilibrium would be affected by increasing the volume of the container at constant temperature.

Increasing the volume will decrease the pressure
shifting the equilibrium to left
as this is the side with greatest moles of gas. V
\qquad
(Can also scove 3 by explaining effect on relative concentrations)
(ii) The percentage yield of ammonia is 25% at $400^{\circ} \mathrm{C}$ and 11% at $500^{\circ} \mathrm{C}$. State and explain whether the reaction is exothermic or endothermic in the forward direction.
.... As temperature increases the yield of product decreases... so equilibrium must shift left/ in the endothermic
\qquad
\qquad
\qquad

