L'Hôpital's Rule

You will be familiar with the idea of limits from other areas of mathematics, for example rational functions:
$f(x)=\frac{1}{x}, x \neq 0$
You cannot evaluate $f(0)$
You cannot find a value for $f(x)=0$
However, we can say that as x gets bigger, then $\mathrm{f}(\mathrm{x})$ tends towards 0

This is a limit which can be written $\lim _{x \rightarrow \infty} \frac{1}{x}=0$

Similarly, for the function $g(x)=e^{-x}$
$\lim _{x \rightarrow \infty} e^{-x}=0$
Imagine, we wanted to evaluate the following limit
$\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{e^{-x}}$

This would give $\frac{0}{0}$ which is an indeterminate form.
L'Hôpital's Rule gives us a method to evaluate limits in this form $\frac{0}{0}$ and also $\frac{\infty}{\infty}$

L'Hôpital's Rule $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
This works provided that

1. $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists

AND
2. $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$

OR
3. $\lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$

Let's try to evaluate $\lim _{\mathrm{x} \rightarrow \infty} \frac{\frac{1}{\mathrm{x}}}{\mathrm{e}^{-\mathrm{x}}}$
This can be re-written $\lim _{\mathrm{x} \rightarrow \infty} \frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{x}}$ which is in the indeterminate form $\frac{\infty}{\infty}$
We also need to consider what we mean by $\mathrm{x} \rightarrow \infty$: $\mathrm{x} \rightarrow+\infty$ or $\mathrm{x} \rightarrow-\infty$

$$
\lim _{\mathrm{x} \rightarrow \infty} \frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{x}}=\lim _{\mathrm{x} \rightarrow \infty} \frac{\frac{d}{d x}\left(\mathrm{e}^{\mathrm{x}}\right)}{\frac{d}{d x}(\mathrm{x})}
$$

$$
\begin{aligned}
\frac{d}{d x}\left(\mathrm{e}^{\mathrm{x}}\right) & =\mathrm{e}^{\mathrm{x}} \\
\frac{d}{d x}(\mathrm{x}) & =1
\end{aligned}
$$

Therefore,

$$
\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=\lim _{x \rightarrow+\infty} \frac{e^{x}}{1}=\frac{\infty}{1}=\infty
$$

And,

$$
\lim _{x \rightarrow-\infty} \frac{e^{x}}{x}=\lim _{x \rightarrow-\infty} \frac{e^{x}}{1}=\frac{0}{1}=0
$$

This makes sense when we consider the graph of $y=\frac{e^{x}}{x}$

