Find the term independent of x in the expansion $\left(2 x-\frac{3}{x^{2}}\right)^{6}$

The term independent of x is the term without x in it Let's look at the different possible powers of the two parts

$$
\begin{array}{ll}
(2 x)^{6}=64 x^{6} & \left(-\frac{3}{x^{2}}\right)^{0}=1 \\
(2 x)^{5}=32 x^{5} & \left(-\frac{3}{x^{2}}\right)^{1}=-\frac{3}{x^{2}} \\
(2 x)^{4}=16 x^{4} & \left(-\frac{3}{x^{2}}\right)^{2}=\frac{9}{x^{4}}
\end{array}
$$

If we find the product of these terms then the x s cancel out

$$
\begin{aligned}
\text { Term }= & =\binom{6}{4} \times(2 x)^{4} \times\left(-\frac{3}{x^{2}}\right)^{2} \\
& =15 \times 16 x^{4} \times \frac{9}{x^{4}} \\
& =15 \times 16 \times 9 \\
& =15 \times 16 \times 9 \\
& =2160
\end{aligned}
$$

