In the expansion of $(1+b x)^{n}$, the coefficient of the x term is -6 and the coefficient of the x^{2} term is 27 . Work out the values of b and n

Using the formula:

$$
\begin{gathered}
(1+b x)^{n}=1+n(b x)+\frac{n(n-1)}{2!}(b x)^{2}+\cdots \\
n b=-6 \\
\frac{n(n-1)}{2} b^{2}=27
\end{gathered}
$$

A good way to solve these equations is to substitute $n b=-6$ from the first equation into the second one.

Re-writing this second equation helps to see this...

$$
\begin{aligned}
\frac{\left(n^{2}-n\right) b^{2}}{2} & =27 \\
\frac{(n b)^{2}-n b(b)}{2} & =27 \\
\frac{(-6)^{2}-(-6)(b)}{2} & =27 \\
\frac{36+6 b}{2} & =27 \\
36+6 b & =54 \\
6 b & =18 \\
b & =3 \\
n & =-2
\end{aligned}
$$

